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Abstract
Weconsider entanglement-based quantumnetworks where information is stored in a delocalizedway
within regions or thewhole network. This offers a natural protection against failure of network nodes,
loss and decoherence, and has built-in security features. Quantum information is transmittedwithin
the network by performing localmeasurements on individual nodes only. Information can be
localizedwithin regions or at a specific node by collaborative actions using only entanglement within a
region, or sometimes evenwithout entanglement.We discuss several examples based on error
correction stabilizer codes, Dicke states and correlation space encodings.We showhow to design fully
functional networks using encoded states or correlation space resources.

1. Introduction

Quantumnetworks promise to be one of thefirst applications of an upcoming quantum technology [1, 2] (see
also e.g. [3–21]). They are the quantum counterpart of classical networks, where quantum information rather
than classical information is distributed, stored and processed. Of particular importance is the distribution and
storage of entanglement. Such entangled quantum states do not have a classical analog, and offer various
applications ranging fromquantum cryptography and conference key agreement to distributedmetrology and
distributed quantum computation [22–32].

Usually such a quantumnetwork is thought of consisting ofmultiple nodes or parties1 that are connected by
quantum channels [2]. Upon request, quantum information is directly distributed, or entangled states are
generated on demand between different parties. These entangled states can then be used for different
applications, including the distribution of quantum information via teleportation. Alternatively a top-down
approach to quantumnetworks is used [3, 4], where entangled resource states shared among network nodes
serve to guarantee the required functionality. In both cases quantum information is stored locally at a
given node.

Here we analyze a different approach to quantumnetworks, where quantum information is stored in a
delocalizedwaywithin network regions or thewhole network. Such an approach offers several advantages and
interesting features that we illustrate and analyze in detail.

(i) Natural protection against failure of network nodes, loss and decoherence during storage and transport.

(ii) Built-in security features, such as limited accessible information per network node.

(iii) Encoding/decoding and processing of information using only local operations or limited entanglement.

We clarify these features as follows: (i) since information is not localized at a given network node, failure or loss
of individual nodes does not destroy encoded information completely, but only disturbs it to a certain extend.
The same is true for processing or transport of information.While in a standard approach, failure or loss of any
of the nodes involved in a transport process results into complete information loss or loss of entanglement, in
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Throughout this article, we use party, node and site synonymously to refer to a single network node that is located at and operated by a
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the approachwe follow here the failure of one (or several) individual nodesmay have only a very limited
influence, therebyminimizing the influence of network node failures. (ii)With respect to security of the stored
information, the accessible information per node is bounded and can bemade arbitrarily small. This implies that
multiple nodes need to cooperate in order to access the information, while it is protected againstmalicious
parties. In this context it is also interesting to note that the entanglement shared between an individual party and
the rest of the network can be small [33], significantly less than one ebit. (iii) Since information is no longer
stored in its bare form, one has to think of encoding, decoding and processing of information. Ideally, this
should be done by local operations on individual nodes only, however itmay also require some (restricted)
amount of shared entanglement. In fact wefind that processing of information, in particular transport among an
entanglement-based network, is always possible using local operations only [34, 35].

We consider two different scenarios: (a) storage networks, where quantum information is stored in a
distributedway among all ormultiple nodes, and (b) generic networkswith full functionality, including
transport, that are comprised of different connected regions. Each region consists ofmultiple network nodes
and corresponds to a single logical qubit. Regarding (a), we analyze several kind of encodings, where the logical
basis states are given by codewords of error correction stabilizer codes, Dicke states [36–38], or resource states
that have been discussed in the context of quantum computation in correlation space [33–35]. The usage of error
correction codes for storage is well known and has beenwidely discussed. Such an approach offers protection
against noise or loss, however requires active error correction.When used in a distributed scenario aswe
consider here, entanglement or non-local operations are required to detect and correct errors. Dicke state
encodings in contrast have passive, built in protection features. Evenwithout active error correction, quantum
information is only slightly disturbed by loss, decoherence and node failures of a restricted amount of parties.
Furthermore, the information that is distributed among the network can in some cases be probabilistically
localized (using only local operations by all parties, or some restricted amount of entanglement). Finally, we
investigate resource states for quantum computation in correlation space, particularly so-called quantumwires
[35]. There quantum information is encoded in a virtual space that is not directly linked to physical qubits
forming the quantum states. Localmeasurements on physical qubits allow one tomanipulate, process and read-
out information stored in correlation space.We analyze and discuss how information encoded on the
correlation space is distributed throughout the physical particles. Importantly, a downloading process can be
performed, i.e. the quantum information stored in a virtual space can bemapped to physical sites [39]. This is
however in general a probabilistic process that can bemade quasi-deterministic if the download should take
place to an arbitrary nodewithin a small region. Noise and imperfections on physical qubits during storage or
manipulation influence the quantum information stored in correlation space, inmany cases however in a
strongly reducedway.

Regarding (b), we considermulti-party entangled states comprised of logical qubits, that act as resource
states for a quantumnetworkwith full functionality. Each of the logical qubits is associatedwith a region that
consists of several parties, andwe consider entangled states ofmultiple logical qubits shared among the network.
Depending on the choice of resource state, point-to-point communication, generation of bipartite
entanglement or the generation of arbitrary logical graph states between network regions or individual nodes is
possible. In the context of correlation space encodings we consider complex (multi-dimensional) resource
states. Then also processing, ormore concretely transport and of information among the network and download
to individual sites, is of importance.We show that for all cases we consider, the transport can be done solely by
local operations on individual physical nodes, so no extra entanglement is required [40].We also study the
influence of noise and imperfections on such transport and downloading processes. For correlations space
resources, we introduce the notion of transport universality. Note that the required functionality of resource
states in a network differs from full scalemeasurement-based quantum computation as considered in [33]. This
implies that amuch larger class of resource states is suitable in a communication scenario aswe consider here.
Wefind that information transport and download can be done solely by local operations, and analyze the
influence of noise and imperfections on physical sites.

The paper is organized as follows. In section 2we describe the problem setting and introduce required
terminology and notation, in particular regardingDicke states,measurement-based quantum computation and
computation in correlation space. In section 3we consider the storage scenario (a), and analyze uploading,
downloading and localization of information.We study the influence of noise and imperfections for all
combinations ofDicke-state encodings in section 3.3, while we investigate various correlation space encodings
in section 3.4. In the latter case, we determine the effective noise in correlation space, and investigate the
dependence on error positions in physical space. In sections 4 and 5we consider scenario (b), i.e. full quantum
networks built from encoded (logical) states, or by combining correlation space resources respectively.
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2. Background

2.1. Problem setting
WeconsiderN spatially separated parties, each holding a two-level system (qubit). The parties share a pre-
defined entangled state that serves to store one (or several) logical qubits in this network in a delocalizedway.
Information needs to be uploaded from a given site into the network, downloaded to a specific site with the help
of other parties, as well processed. In all cases, this corresponds to a collaborative process where some of the
other parties performmeasurements on their qubit. In the followingwewill review some of the underlying
concepts.We start by describingmeasurement-based information processing, followed by the description of
two different ways to encode quantum information, usingDicke states and correlation space resources. The
required processes and concepts are then discussed in following sections.

2.2.Measurement based quantum computation
Measurement based quantum computation (MBQC) is an alternativemodel for quantum computation in
opposition to quantum logical circuits or quantumTuringmachines.MBQChas no direct classical counterpart,
and is based on the implementation of single qubitmeasurements on a resource state [41, 42]. Any operation
applied to an arbitrary input can be reproduced by an adequatemeasurement pattern on the resource state.
Different classes of resource states have been studied in theMBQC context. In particular, resources forMBQC
based on tensor networks [33, 34] are of special interest for the purposes of this paper.

2.3. Encoded resource states—dicke states
Anatural way to protect information in quantum computation consists in distributing the information of some
particular state into a larger systemofmore physical particles. Given an arbitrary single qubit state
j a bñ = ñ + ñ0 1∣ ∣ ∣ , it can be encoded into a larger logical systemof n particles i.e. j a bñ = ñ + ñ0 1L L L∣ ∣ ∣ , with

some appropriate choice of ñ ñ0 , 1L L∣ ∣ , two orthogonal states of  .2n
With a proper choice of the encoding, the

information of the state can be shielded against errors, losses or intervention of any physical constituents of the
system. Logical blocks are then entangled (seefigure 1) and information is processed at the logical level. In
[33, 34], computational universality ofMBQC resources is analyzed in detail, and novel resources are proposed.
However, we are not interested in computational properties of the encoded resource states, but in their storage
and communication characteristics, i.e. how the information can be diluted throughout the parties and howone
can eventually localize it in some particular physical system.

The construction of encoded resources states is a passive alternative to error correction codes (where errors
are identified and corrected), such that storage and processing of quantum information in a protectedway is
guaranteed. In this paper, we aim tofind good choices of orthogonal states yñ ñ0L 0∣ ≔ ∣ , yñ ñ1L 1∣ ≔ ∣ in terms of
robustness and strength of the encoded resource states for storage purposes. Our analyzes are restricted to the
use of local operations assisted by classical communication (LOCC) at a physical level. For a given resource state,
only operations on single qubits are available.

Dicke states [36] are an interesting class of quantum states with different applications in quantum
information [43–45] and experimentally obtainable. ADicke state of n qubits and k excitations is a symmetric
state of the form:

Figure 1.Physical qubits are encoded into larger systems (logical qubits)where storage or quantumprocessing is performed in a
protectedway.
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where the operator  represents all the possible permutations for a given number of particles and excitations.
For instance, for k=0, the states reduces to the product state ñÄ0 n∣ and for k=1 the state is simply theWn state
[46]. Note that any twoDicke states with different number of excitations ¹ ¢k k , ñ n k,∣ , ¢ñ n k,∣ , are orthogonal to
each other.

2.4. Correlation space
Several classes of computational resources [33, 34] have been introduced as universal resources forMBQC.
These resource states are definedwithin a tensor network formalism, with some particular boundary conditions,
where quantum information is processed in a virtual space called correlation space. In particular, we are
interested in qubit computational wires introduced in [35]. A computational wire is a family of pure states
formed by a one dimensional chain of two-level systemswhich fulfils two properties, i.e. it is preparable from a
product state by nearest-neighbour interaction and the entanglement between the left and right sides of the
chain approaches one ebit in the limit of large number of qubits. Notice however, that this does not imply that
the entanglement of an individual physical particle with the rest of the chain is one ebit.

A pure quantum state of a chain of n qudits can be described by amatrix product state (MPS) representation
[47, 48]with e.g. open-boundary conditions (see figure 2)
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where = ¼ -s d0, , 1i { }. Readers who are not familiar with the tensor network andMPS formalism are
referred to [47–50].

Quantum information is processed in a virtualD dimensional vector space (correlation space)where the
D×Dmatrices A i[ ] live, as well as theD dimensional vectors ñ ñL R,∣ ∣ , which represent the left and right
boundary conditions. TheMPS is denoted as F ñL n

1(∣ ) since one can consider that the correlation space is in the
state ñL∣ [33]. Anymeasurement on a single physical qubit is translated into some operation acting on the
correlation space state.

One particular instance of 1D structure describedwithin this formalism, and denoted as quantum
computational wire [35], has been shown to be an appropriate building block for constructing resources
universal for quantum computation. For this kind of wires, it is shown [35] that, by single qubitmeasurements
on thefirst -k 1particles, one can prepare the correlation state in any arbitrary state jF ñ k

n(∣ ) . A local
measurement on a physical particle of thewirewith outcome ñmi∣ is associatedwith the application of the
operator A mi[ ]on the correlation space. It is also knownhow the information of the correlation space can be
localized [39] in one physical qubit and how to upload it from a physical site [51].We review these processes in
section 3.4.We are however interested in the communication properties of this kind of wires under the only
assistance of localmeasurements, local operations and classical communication (LOCC). In this paperwe
restrict ourselves to the qubit case, andwhere = =d D 2.We focus on one particular computational wirewith
non-vanishing two point correlation functions and fixed boundary conditions, that we denote as periodwire
(see figure 3):
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where p t=G Xexp i( ), =
f f-

T diag e , e
i
2

i
2( ) and = ñá + ñáX 0 1 1 0∣ ∣ ∣ ∣ is the PauliX operator.We denote τ and

f as period and entanglement factor respectively. AnymatrixA can be expressed in an arbitrary basis m m,0 1{ }

Figure 2.Graphical representation of aMatrix Product State in terms of the valence-bond picture. Each physical particle is associate
with two virtual systems, each of one shares amaximally entangled state with their neighbours. The projector of the virtual space into
each physical system at every site is givenmymatrices A si[ ].
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as = á ñ + á ñA m m A m A0 0 1 1i i i[ ] ∣ [ ] ∣ [ ].We interpret this wire in two different ways. On the one hand, one can
think aboutwires as playing the role of logical blocks of qubits as seen before, with codewords jñ F ñ0 ,L

n
0 1∣ ≔ (∣ )

jñ F ñ1L
n

1 1∣ ≔ (∣ ) , wherej0 andj1 are two orthogonal states of the correlation space. In this case, one logical
qubit is stored in a distributedway among thewire.We study certain features of these wires, such as
entanglement of individual physical qubits, influence of noise and losses, error propagation and information
localization.

Onemay also interpret thesewires in an alternative way. A single wire can be conceived as a building block of
awhole communication networkwhere information is stored in a delocalizedway and transported upon
request, such that direct communication between any different nodes or regions can be established. One can
think about the correlation space in this scenario as a big holographic resource where the information is
delocalized among all the nodes, and therefore, protected.

3. Storage of quantum information

An essential feature of a quantumnetwork in a communication scenario is the storage of quantum information.
In this sectionwe explore the required characteristics of a resource state such that information can be stored in a
non-local way.We analyze families of states that exhibit different properties.We study how errors affect the
stored information, and how the information can be subsequently localized into some particular node or region,
with only the assistance of LOCC.

3.1. Processes and properties
We start be describing the required processes, namely uploading and downloading of quantum information,
and the features we analyze. This includes local entanglement, robustness against errors and loss as well as
security features.

3.1.1. Uploading
Given a quantum state containing some information, one aims to store and protect that information against
noise or external interference. In our scenario, this is accomplished by encoding the state into a larger network
consisting ofmultiple network nodes or parties, such that the information is delocalized or diluted over the
network. This delocalization process is called uploading. Two different uploading procedures should be
distinguished.

First, we consider the casewhere an arbitrary state is directly encoded into a larger systemof n particles. This
task involves global operations (at the logical level) and can be accomplished by constructing an entangled state
between a logical block and an auxiliary system aux (see figure 4). Consider the state:

yñ = ñ ñ + ñ ñ
1

2
0 0 1 1 , 5aux L aux L∣ (∣ ∣ ∣ ∣ ) ( )

where the logical qubits are defined by some orthogonal codewords ñ ñ0 , 1L L∣ ∣ . Thismeans that the system aux is
maximally entangledwith thewhole logical block of qubits. Consider now an arbitrary state f a bñ = ñ + ñ0 1∣ ∣ ∣
that wewant to upload into the logical level. Hence, by performing a Bellmeasurement between the aux system
and fñ∣ , the uploading into the logical level is deterministically achieved, i.e. the global state of the remaining
particles is now a bñ + ñ0 1L L∣ ∣ (up to unitary Pauli correction operations at the logical level).We remark that the
logical Pauli correction operation can in general not be implemented locally, however are irrelevant in the sense
that they actually do not need to be implemented as the logical subspace is unchanged. It suffices to relabel the
basis states, and adapt the information processing and subsequent downloading processes accordingly.

Figure 3. (a)Graphical representation of amatrix product state in terms of tensor networks. Every block is a rank-3 tensor, and open
indices are the physical indices (see [33, 48] for a detailed explanation of graphical rules for tensor network). (b) Simplified illustration
of a quantum computational wire, where qubits are attached in a 1Dwirewith arbitrary local entanglement and non-vanishing two
point correlation functions.
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On the other hand, the uploading process can also be done froma single nodewithin the networkwithout
using an entangled state. In this case, only the network state (e.g. a computational wire) is used, and a single party
(or possibly also several parties) aim to upload quantum information that is given in the formof an auxiliary
quantum state to the logical level, thereby delocalizing the quantum information.

3.1.2. Downloading
The reverse process to the uploading of information is the downloading, i.e. once information is spread out
among the nodes of the network, we require the possibility of localizing this information in one particular
physical system (again, by LOCC). In general, this is achieved by suitablemeasurements on the rest of the
particles. However, crucial differences exist when localizing informationwith standard encoded states (Dicke
states) or in the correlation space framework. Encoding properties defines the characteristics of the localization
process. In particular, two features are specially relevant. The ideal situation is the onewhere the localization is
performed in a deterministic way, and the information is downloaded in an a-priori chosen place.However, due
to the properties of each encoding state, one can be restricted to the casewhere only probabilistic, or open-
destination downloading process is possible. Probabilistic downloadingmeans that information can only be
localized probabilistically in a heraldedway. Thismay be unsatisfactory inmany cases. Open-destination
downloading in turn is still deterministic, however the precise location can not be determined a priori. This
corresponds to a probabilistic download attempt to a given site, which however can be repeated if not successful.
In this way quantum information can be downloaded quasi-determistically to individual sites within a given
region of small size.

We remark that for standard encodings, there are examples where the probability to localize information
from two logical blocks is arbitrarily small, even for the open-destination scenario [33]. For correlation space
encodings, this problemdoes not occure aswe showbelow. Themain difference is that for correlation space
encodings, only a fraction of the qubits need to bemeasured, and unsuccessful downloaded can be repeated.
This leads to a success probability approaching one to download information to an unspecified site within a
region of fixed size (see section 3.4).

3.1.3. Robustness
The effect of local errors can affect the global state of the resource, jeopardizing the stored information. In
particular, we are interested in errors occurring in single particles when the information is delocalized, and how
robust is the encoded state under that noise. The effect of local noise should have limited influence on the global
state, in order to consider an encoded state robust for storage.Wefind effective noisemaps for this process.
Besides, we study the stability of the resource states under loss of particles.

In order to analyze the effective noise when errors affect particles at the physical level, one can study the
following scenario. Consider themaximally entangled state

F ñ = ñ ñ + ñ ñ+ 1

2
0 0 1 1 , 6aux L aux L∣ (∣ ∣ ∣ ∣ ) ( )

where an auxiliary single particle is defined on = aux
2, entangledwith a logical encoded blockwhich lives

on = Ä L
2 n

. The state resulting from the introduction of local noise on the physical particles of a logical block
is defined as theChoi–Jamiolkowski state [52, 53] i.e.

xG = Ä F ñáFÄ + +
di , 7j

aux (∣ ∣) ( )

where the noisy channel xÄj affects jparticles of the logical qubit. If one then aims to localize (by local operations)
the information of the block into one physical system q, it is relevant to study how close this final state is from a
perfect Bell pair Fñ = ñ ñ + ñ ñ0 0 1 1 ,aux q aux q

1

2
∣ (∣ ∣ ∣ ∣ ) whichwould be the resulting state of a perfect localization.

Figure 4.Uploading process. A Bellmeasurement is performed in the auxiliary system (right) to upload the information of some state
into the logical level. The same picture also holds if one substitutes the logical block by a quantumwire of the formoffigure 3.
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Notice thatΓ contains the full information about the effective noisemap, which is in principle accessible.We
remark that we use the effect of the performed processes on part of amaximally entangled state only as a tool to
analyze the resulting effective noisemaps or the resulting processfidelity.

Similarly, the stability under losses can be analyzed in the followingway.We consider an initial state of the
form F ñáF+ +∣ ∣ (6) shared by the auxiliary particle and the logical qubit, andwe assume that some particles in the
logical block are lost. The effect of a lost particle is described by tracing out that particle, i.e.
G = F ñáF+ +Trf i (∣ ∣), where i are the lost particles. Tracing out is equivalent to performing an average over all the
possibles outcomes of ameasurement of the system i in any basis.

Finally, we compute in both cases (errors and losses) thefidelity of the final statewith respect to the initial
one (6), denoted as Choi–Jamiolkowski fidelity (CJfidelity):

= áF G F ñ+ +F . 8fCJ ∣ ∣ ( )

This parameter is a suitablemeasure to analyze how stable is a resource encoded state against loss of particles
[53]. Note that in order to compute theCJfidelity, we replace the state of each lost particle by an identity
operator, i.e. consider a completely depolarizingmap acting on each of these qubits.

3.1.4. Local entanglement
An essential property of the encoded states is the local entanglement that each physical particle shares with
respect to the rest.We study this characteristic, which determines the behavior, strength and suitability of the
resource states. Consider amaximally entangled state of logical qubits (between two blocks of particles):

F ñ = ñ ñ + ñ ñ+ 1

2
0 0 1 1 . 9L L L L L∣ (∣ ∣ ∣ ∣ ) ( )

We study the entropy of entanglement of a single qubit iwithin a block by computing theVonNeumann entropy
of its reduced density operator, i.e.

r r r= -S Tr log . 10i i i( ) ( ) ( )

Even though the entanglement between blocks of logical qubits ismaximal, in general this is not the case for the
local entanglement of a single party. In fact, encoded states with low local entanglement are of particular
importance, since this leads to advantages in order to construct andmaintain the states.

Other encoding codewords can be explored based on the ones studied here.We consider some additional
examples in appendix A.

3.1.5. Security analysis
Once the information is stored in the resources in a delocalizedway, it is important to analyze the security of the
storage, i.e. howmuch influence a party has about the stored state. At this point, we canmake a distinction
between trusted and untrusted parties. Thefirst case analyzes how errors or losses of the physical qubits can
affect the global state, and has been studied in previous sections.We focus here in the case the parties are not
trusted andwe hence study howmuch information a single party (or a group of them) can access from a encoded
state, i.e. how secure is the storage against attack of parties that aim to access the information even though not
authorized to do so. In order to study this, we perform a similar analysis as was done in [54] in the context of
quantum secret sharing. As in [54]weuse themutual information asfigure ofmerit.We only consider the
situationwhere the initial state is the desired one, i.e. pure and unaltered.We remark that this does not
correspond to full security analysis, but rather illustrates howmuch information an untrusted party can access in
the network given that the resource states were distributed as they should. Given the scenario of section 3.1.1,
where the q system can upload or encode any state, we analyze themutual information between any party of the
resource and the q system. Themutual information determines howmuch information a particle t (or a set of
them) of the resource can obtain about the system q, and therefore, about the global encoded state once the party
q applies the Bellmeasurement (to achieve uploading), local in its system.

The quantummutual information between two systems is defined as

r r r= + -I q t S S S; , 11q t q t,( ) ( ) ( ) ( ) ( )

where S represents theVonNeumann entropy (10) of the reduced density operator of system q, system t, and
both systems, respectively.Wewill use themutual information to assess information accessible by individual
parties, and to determine the corresponding security features.

3.2. Error correction codes—stabilizer encodings
We start by briefly considering a standard encoding using codewords corresponding to error correction
stabilizer codes [55]. The codewords are graph states with ñ = ñG0L∣ ∣ and sñ = ñÄ G1L z

N∣ ∣ , where
ñ =  +ñÎ

ÄG Uk l E kl
N

,∣ ∣( ) . Here = -U diag 1, 1, 1, 1kl ([ ]) is a phase gate, +ñ = ñ + ñ0 1 2∣ (∣ ∣ ) and the
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graphG is specified by a set of edges E. The error correction properties of such a code depend on the choice ofG,
and codes to protect against afixed number of arbitrary single-qubit errors can be designed.

In order tomake use of the error correction features, active error correction needs to be performed.
However, decoding and syndrome readout require global access to the state, i.e. additional entanglement. In
contrast, the downloading process to any specific site is deterministic, and can be accomplished by simply
measuring all other qubits in theZ-basis. Notice however that in this way the error correction features of the
code are not employed. The entanglement of any qubit with the rest of the system ismaximal (for any connected
graph).

3.3.Dicke states
Wecontinue our study by consideringDicke state encodings.We assume codewords of the form

ñ = ñ ñ = ñn k n k0 , , 1 , , 12L L1 2∣ ∣ ∣ ∣ ( )

where ñ = ñn k, n k,∣ ∣ is an abbreviate notation representing aDicke state of n qubits and k excitations (1).

3.3.1. Uploading
Ageneral uploading process can be accomplished from a state of the form (5) by proceeding as explained in
section 3.1.1.

3.3.2. Downloading
In order to analyze how information can be localized from the logical level into one physical constituent, we
consider a downloading process (with LOCC) from two entangled blocks (9)where information is eventually
localized into one of the physical qubits of each block (sites k and ¢k ), such that we end upwith a Bell pair
between the twofinal qubits (see figure 5). Essentially, this procedure is accomplished by performing suitable
measurements in all except one particle in each block. This process can only succeed deterministically for an
a-priori fixed site if the local entanglement of the logical qubit ismaximal.

Consider an initial logical Bell state of the form (9) and twofixed sites k and ¢k . The initial entanglement at
the logical level ismaximal, but the local entropy of entanglement for a single site k is r E 1.kinital ( ) If
downloading succeeds deterministically, information is localized in the sites k and ¢k , and the final state is a
perfect Bell pair. Therefore, the entropy of entanglement of particle k at the end is r =E 1.kfinal ( ) Since the
process only involves LOCC and single-sitemeasurements, one can directly conclude that localization only
succeeds deterministically when the local entanglement of the particle in the initial state ismaximal.

If the local entanglement is notmaximal, one has to facewith a probabilistic localization (in the sense that the
final placewhere the information is localized cannot fixed a priori), or a deterministic but imperfect (in terms of
thefidelity of the final state) downloading.

In case the local entropy of entanglement ismaximal, consider e.g. ñ = ñ ñ = ñÄ Ä0 0 , 1 1L
n

L
n∣ ∣ ∣ ∣ , localization is

simply accomplished by performingXmeasurements on all except one particle of each logical block. This is in
fact also the case for any graph state encoding, whereZmeasurements are enough to localize information.

3.3.3. Robustness under errors
In order to compute theCJfidelity (8)wemake use of some properties ofDicke states. AnyDicke state (1) of n
particles and k excitations can be j-times decomposed as [38]:

Figure 5.Downloading of information. Information can be localized into specific physical sites bymeasuring the rest of qubits in
suitable basis. This process differs when localizing information of the correlation space, where one does not need tomeasure all the
qubits of thewire, which remains functional with the unmeasured ones (see section 3.4).
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where ¢ = + -q j k nmax 0,( ( ) and  =q j kmin ,( ), for  > ¢q q .On the other hand, given a state
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Computing theCJfidelity (8) is hence straightforward for any pair of codewords ñ = ñ ñ = ñn k n k0 , , 1 ,L L1 2∣ ∣ ∣ ∣
and for any number of losses:

= å å
-

- -

´
- - - + - +

= = ¢


- -

F
n n

q q n n q

k q k q n k q n k q

1

, 16

i j q q
q f

f

n

k q

n

k q

n

k

n

k i j f i f j

CJ , 1
2

f

i

f

j

i j

1
2

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎞

⎠

⎟⎟⎟⎟
( )

( )
( )

( )

!( )!

( )!( )!( )!( )!
( )

where

=

-


n

4

, 17
n

n n

n

k

n

kf i j( ) ( )( )
! ( )

andwith ¢ = -q k k nmax 0, max , f1 2[ ( ( ) )]and  = -q n n k kmin , min ,f 1 2[( ) ( )]. Infigure 6 one can see an
illustrative analysis of theCJ fidelity for different codewords configurations. Twomain conclusions can be
extracted. On the one hand, one obtains a higher CJfidelity when the codewords are close to each other in terms
of number of excitations.Moreover, if bothDicke states are close to the limit of zero ormaximal number of
excitations, the CJfidelity is again increased. Therefore, it turns out that the best choice ofDicke state codewords,
if one is only interested on the robustness under losses, is ñ = ñ ñ = ñn n0 , 0 , 1 , 1L L∣ ∣ ∣ ∣ , or the symmetric
choice: ñ = ñ ñ = - ñn n n n0 , , 1 , 1L L∣ ∣ ∣ ∣ .

However, wefind that a conflict of interest exists if one requires other propertiesmore than just robustness
under losses. For instance, as shown above, the success probability of localizing information increases with the
local entanglement.

3.3.4. Local entanglement
Weanalyze now the entanglement properties of theDicke-type encoding. Consider a logicalmaximally
entangled state of the form (9).We study the local entanglement that a physical particle shares with the rest of the

Figure 6. (a)CJfidelity for one loss and for one codewordDicke state fixed as a function of the otherDicke state (note scaling ofY axis).
(b)CJ fidelity for given codewords as a function of the number of lost qubits. (c)CJfidelity for the codewords ñ = ñn0 , 0L∣ ∣ fixed and
different number of losses.
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systemby computing theVonNeumann entropy (10) of its reduced densitymatrix. For the encoding
codewords ñ = ñ ñ = ñn k n k0 , , 1 ,L L1 2∣ ∣ ∣ ∣ , and from the properties introduced before, it is easy to see that the
entropy of entanglement of a single particle is:
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The entropy of entanglement isminimal (see figure 7) for encoding codewords which are, again, close to each
other in terms of excitations and close to the boundaries with small or large (due symmetry)number of
excitations. This result is consistent with the analysis of the robustness against losses, i.e. the less local
entanglement, themore delocalized the information is and themore stability against losses.

An explanatory example is the extreme casewith codewords ñ = ñ ñ = ñÄ Ä0 0 , 1 1L
n

L
n∣ ∣ ∣ ∣ , where the local

entanglement ismaximal and the stability isminimal, i.e. when a single particle is lost, the information and
entanglement is completely destroyed.

3.3.5. Security analysis
Following section 3.1.5, we study the amount of information a single party can access once the quantum
information has been delocalized over the network. The results are shown infigure 8.One finds again a relation
with the local entanglement.We see that the entanglement is a key property that defines how the information is
spread around the system, i.e. the less local entanglement, themore distributed.Hence, a single particle within a
encoding configurationwith low local entanglement has a low information about the global state of the logical
system.

3.4. Correlation space encodings
In this section, we analyze the periodwires (4) conceived as logical blocks, where the state of the correlation space
defines the state of the logical qubit (see section 2.4).

3.4.1. Uploading
The general uploading procedure of section 3.1.1 is applicable for ourwire configuration. In this case, a wire
plays the role of the logical block, with codewords ñ = F ñ ñ = F ñ0 0 , 1 1L L∣ (∣ ) ∣ (∣ ). Note that orthogonality of
correlation space states does not always imply orthogonality of the corresponding wire states [51]. However,
orthogonality is fulfilled for the periodwires (4)wemake use in this paper.

An alternative interpretation of uploading is possible [51], where any physical state is uploaded into the
correlation space.We review this process in the appendix B.

3.4.2. Downloading
In contrast to theDicke-type encoding, it is knownhow to localize information of the correlation space into
some physical site of awire [39]. This process does not imply themeasurement of all the parties of thewire and
we show that it can bemade quasi deterministic. Based on the protocol developed in [39], we analyze how

Figure 7. Local entropy of entanglement of a single particle (18) for different codewords configurations ofDicke states of n=50
particles.
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information is delocalizedwithin the correlation space, andwhich properties influence this spreading of
information.

We briefly review the downloading procedure of [39], and point out some additional features. Given a
quantumwire of the form (4), one can alwaysfind a basis such that

j j j= ñá = ñá + ñáA m r A m r0 , 0 1 , 190 0 0 1 1 0 1[ ] ∣ ∣ [ ] ∣ ∣ ∣ ∣ ( )

with >r 00 , r 01 , + =r r 10
2

1
2 and j j dá ñ =i j ij∣ . In particular, if =r 01 the operators are of the form:

j j= ñá = ñáA m A m0 , 1 , 200 0 1 1[ ] ∣ ∣ [ ] ∣ ∣ ( )

with j ñ = ñ + ñq a qcos 0 e sin 10 2
i

2
∣ ∣ ∣ and j ñ = ñ - ñq a qsin 0 e cos 1 .1 2

i
2

∣ ∣ ∣ In fact, we show that if one can find a
basis m m,0 1{ } such thatmatrices of the form (20) exists, the local entropy of entanglement of any particle of the
wire ismaximal for any θ (see appendix C). Therefore, we can relate the local entanglement of thewirewith the
probabilistic behavior of the localization process (see below).

Consider the case of awirewhich admits a basis where thematrices are of the form (20). Thewire is prepared
in the state yF ñ k

n(∣ ) by appropriatemeasurements of the first k particles. As before, by expanding the +k 1 site
in the ñ ñm m,0 1{∣ ∣ }basis andmapping the state of the correlation space into j jñ ñ  +ñ - ñ, ,0 1{∣ ∣ } {∣ ∣ }by
singlemeasurements of the next physical qubits (from site +k 2 to ¢k ), we end upwith a state of the form:

y yå ñ ñ F ñ= + ¢+ ¢+Z ms m
s

m k s k s k
n

0,1 1 1 2∣ ∣ (∣ ) . In order to accomplish themapping, around τmeasurements are
needed (up to by-products), where τ is the period factor of thewire.With ameasure on the site ¢ +k 1one
achieves the downloading of the state yñ∣ at position +k 1. For amore general wire configuration (19), a filter
operation [39] is needed in order to recover orthogonality, leading to a probabilistic process for an a priori fixed
site downloading.

In particular, we show that the success probability of localizing the information in the periodwire (4) is
directly relatedwith its local entanglement. The periodwires are defined by thematrices (4), and the parameter
f. Aswe discuss below (see section 3.4.4)f determines the local entanglement of thewire. For this wire, there
exists a basis ñmi∣ such that theMPSmatrices are expressed in the form (19), with

= + f-r
1

2
1 e . 211

i( ) ( )

Following [39], one concludes that the success probability of an a-priori fixed site downloading is

f
= - = -p r1 1 cos

2
. 221 ⎜ ⎟⎛

⎝
⎞
⎠∣ ∣ ( )

This shows that the probability depends exclusively on the entanglement factor, and the process is deterministic
(p= 1) for amaximally entangledwire f p=( ). Henceforth, the entanglement of thewire is one crucial
property that defines how the information is spread over the particles.

If we do not restrict ourselves to the case where the localization has to be achieved in a specidfic, pre-defined
site, andwe allow for open destination downloading, the success probability can bemade arbitrarily close to 1
using larger wires. By repeating the filtering process l times, the success probability becomes = -p r1 l

1∣ ∣ . This
is an important difference between theDicke-type encoding and the correlation space,since here there is no need

Figure 8.Mutual information for one party and differentDicke state encoding configuration. Single points represents isolated
fluctuationswhen the difference on the number of excitation between codewords is one.
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ofmeasuring all the qubits to localize information and, therefore, if the localization procedure fails, one can keep
repeating it until succeeding. Besides, once the process succeeds, information is localized in a qubit that is
detached from the unmeasured part of thewire. The remaining part of thewire remains functional and can still
be used to store and process information.

3.4.3. Robustness under losses
In an encoding scenario, eachwire plays the role of a logical qubit with codewords given by the states of the
correlation space, typically ñ = F ñ ñ = F ñ0 0 , 1 1L L∣ (∣ ) ∣ (∣ ).

Consider again an auxiliary qubit entangledwith awire in the state

F ñ = ñ F ñ + ñ F ñ+ 1

2
0 0 1 1 , 23aux

n
aux

n
1 1∣ (∣ (∣ ) ∣ (∣ ) ) ( )

with  ¥n .Note this state can be obtained from a single wire and a Bell pair, by performing a Bell
measurement between one qubit of the Bell state, and thefirst particle of thewire,measuring the next k particles
to implement the rotation ñ ñ  ñ ñA m R A m R, 0 , 10 1{ [ ]∣ [ ]∣ } {∣ ∣ } in the correlation space.

We study the robustness of this wire encoding under loss of particles, for different configurations. For that
purpose, we analyze again theCJ fidelity (8)with respect to the state (23)when several particles of thewire are
lost (seefigure 9). TheCJfidelity is computed following the steps specified in section 3.1.3. Similarly to the
Dicke-type encoding, the stability of this encoding under loss of particles depends on the local entanglement of
thewire, where smaller entanglement leads to higher robustness. This confirms the relation between the
entanglement and the spreading of information that we showed above.

3.4.4. Local entanglement
In analogy to section 3.3.4, we analyze the local entanglement of a single particle within awire in the logical state
F ñ = ñ ñ + ñ ñ+ 0 0 1 1L L L L L

1

2
∣ (∣ ∣ ∣ ∣ ), with ñ = F ñ ñ = F ñ0 0 , 1 1L L∣ (∣ ) ∣ (∣ )(see figure 10). The parameterf is the

factor that determines the local entanglement of thewire, a result consistent with the studies of previous
sections. Therefore, denotingf as entanglement factor is justified.One can see the influence of the parameterf
on the local entanglement from the analysis of section 3.4.2. From equation (21), one can infer that the only case
whereMPSmatrices (20) can bewritten in the form (19) is for f p= . In appendix C it is shown that if a basis
exists such that thematrices can be expressed as in equation (19), the local entanglement of thewire ismaximal
(which is the case forf=π). For other values of the entanglement parameter,MPSmatrices are of the general
form (20) and the local entanglement depends onf in theway shown infigure 10. Note that the local
entanglement of thewire can bemade arbitrarily low.

3.4.5. Security analysis—correlation length
Wenow analyze the amount of information available for a single party within thewire. Figure 11 shows that the
mutual information of a single party depends both on the entanglement and the period factors of thewire. In
order to understand these results we need to discern how the information of the correlation space is distributed
throughout all the particles.We evaluate is the correlation length of thewire, which characterize the length scale

Figure 9.CJ fidelity for different entanglement factors of thewire.
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onwhich two-point correlations vanish. Therefore, the correlation length can be seen as a value that determines
the distance over which information is spread in thewire, andwe study the relation off and τwith it. The
correlation length is defined as [48]:

x =
-

l
l

1

log
, 24

2

1
( ) ( )

∣ ∣
∣ ∣

where l1∣ ∣ and l2∣ ∣are the two largest eigenvalues of the transfermatrix = å ÄE A i A i[ ] [ ]¯ . Figure 12 shows the
dependence of the correlation lengthwith the period and the entanglement factor separately. It is clear that both
parameters have an important influence on the distribution of the information over thewire. This can be seen
from the downloading process studied in previous sections, when one aims to localize information
deterministically. Therewe showed that the entanglement factor defines the success probability of the
localization procedure.Moreover, in case one succeeds, a number of particles of the order of the period factor
has to bemeasured in order to accomplish the localization.

We conclude that both, the local entanglement and the period factor, are essential parameters that determine
how the information of the correlation space is distributed through the qubits of thewire, and howmany
particles are needed to localize that information. This is hence related to the amount of information accessible
for each party, as we show in our analysis (figure 11) i.e. themore distributed the information is, the less
information a party can access. Besides, our analysis reveals that the position of the particle alsomatters. Particles

Figure 10.Entropy of entanglement as a function of the entanglement factor of thewire.

Figure 11.Mutual information of one party and different wire period factor (τ) configurations as a function of entanglement factor
with n=400.
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close to the left boundary, where the state of the correlation space is defined (section 2.4), have a higher access to
information than qubits sited away. The correlation length also determines how the amount of accessible
information decreases with the distance to that left boundary.

4.Quantumnetworks of encoded resources

On can also build general entangled resource states that form a fully functional quantumnetwork out of logical
systems. To this aim, one considers an encoding ñ ñ0 , 1L L{∣ ∣ }and amultipartite resource state that is built form
these logical qubits. Each logical qubit is formed by a region, i.e. a set of different parties, and the overall network
consists ofmultiple of these logical qubits or regions. For instance, onemay consider amultipartite logical GHZ
state ñ = ñ + ñÄ ÄGHZ 0 1L L

n
L

n∣ ∣ ∣ , a logical 1D cluster state, or a general logical graph state network state [11].
Each logical qubit serves to store one quantumbit of information, which is—similarly as discussed above–
distributed among the corresponding physical sites. Onemay then use such a resource to transport encoded
quantum information, or to establish entanglement between logical qubits bymeasuring the other logical
systems. For instance, onemay generate from a logical GHZ state a logical Bell pair between any two logical
qubits bymeasuring the remaining -n 1( ) logical systems in the logicalX-basis. A logical graph state can be
manipulated by logicalZ-measurements, which allows one to cut vertices from the graph, and by logicalX orY-
measurements, which allows one to transport quantum information among 1D structures [12], thereby realizing
a general, entanglement based quantumnetwork. Depending on the choice of logical resource state, one can also
achieve full functionality in the sense that any desired logical graph state can be be generated between regions
[3, 11, 12, 21]. For instance, a fully connected decorated logical graph state or a logical 2D-cluster state allow one
to do this between all logical qubits, or a subset of them.

Interestingly, these logicalmeasurements can always be done in a fully localway, that is bymeasuring only
the individual physical qubits. This is a consequence of the result of [40], that states that any two orthorgonal
multiqubit states can be deterministically distinguished by LOCC. The same procedure allows one to actually
perform an arbitary projectivemeasurement in the logical subspace, by choosing the eigenstates of the
observable as the two states to be distinguished. Notice that no direct generalization of this result to distinguish k
orthogonal states exists (only a few special cases are known). Hence an extension of the protocol beyond logical
qubits, i.e. to store and process logical d-level systems, cannot be directly obtained.

Notice that onemaymodify the scheme to distinguish between two orthorgonal states by LOCC to obtain a
(probabilistic) download procedure. One selects the site to be downloaded as last qubit, and performs the LOCC
protocol to distinguish between the two states as outlined in [40]. Only the last step, i.e. themeasurement of the
last particle which determines the final outcome, is not performed. This performs amap jñ  ñ0L 0∣ ∣ ,

jñ  ñ1L 1∣ ∣ , where j ñk{∣ }are orthogonal, but the states are not normalized. That is, theweights between the
resulting statesmay change, depending on the branch of the LOCCprotocol. This change of weights is in
principle known, but needs to be undone to realize a full download of quantum information to physical sites.
Thefinal step corresponds to afiltering operation, which only succeeds probabilistically.

Figure 12.Correlation length of the periodwire as a function of the period factor and the entanglement factor.
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5. Correlation space resources as a quantumnetwork

In this sectionwe consider an alternative interpretation of the correlation space of the quantumwires
introduced before. Here, we understand a quantumwire as a building block for a communication network,
where each particle represents one node of the network.We analyze the properties of thewires when one
demands processing of information (transport) and communication between nodes (or regions) under request
by only local operations, by exploiting the knowledge of the quantumwire of the previous sections.

5.1. Periodwire as a 1Dquantumnetwork

Consider again the period quantumwireΦ of the form (3)with p t=G Xexp i( ) and =
f f-

T diag e , e
i
2

i
2( ), where

τ andf are the period and the entanglement factor respectively. The correlation space is prepared in some state
jñ∣ , i.e. jF ñ n

1(∣ ) . In order to transport the information along thewire, one just needs to performX
measurements on the physical qubits. TheXmeasurement implies the application of theG operator in the
correlation space (up to by-products), such that the state is rotated periodically throughout the virtual positions.
The information shows up completely only every τ positions during transport.We analyze the influence of
errors during the transport by studying a processing-downloading process.

5.1.1. Errors during transport
Consider an initial Bell state and a period quantumwire. A generalized Bellmeasurement is performed between
the second qubit of the Bell pair and the first one of thewire. After by-product corrections (assuming successful
uploading), the remaining state is of the form:

F ñ = ñ F ñ + ñ F ñ+ 1

2
0 0 1 1 . 25aux k

n
aux k

n∣ (∣ (∣ ) ∣ (∣ ) ) ( )

We transport the state two periods (2τpositions) in thewire before starting a localization process. In the ideal
case (no error), the state of the correlation space F ñi(∣ ) isfirstmapped into itself by the transport. Assuming the
localization process is successful (otherwise it could be repeated until succeeding), the remaining state is again a
Bell pair between thefirst qubit of the initial Bell state (aux) and the qubit of thewire where downloading
succeeds, decoupled from the rest of thewire. In order to examine the stability of thewire under errors in the
transport, we study thefidelity of this final state in case some error (or loss) occurs during the transport with
respect to the ideal case (Bell pair obtained), with a similar spirit as for theCJfidelity (8).

When an error affects a physical particle, the corresponding error on itsmatrix operator of the correlation
space is in general non-trivial. For instance, for amaximally entangled periodwirewithf=π, if a Pauli error
affect any particle, the effect on the correlation space is (see appendixD for proof):

ñ ñ ñZ j A j Z X j XA j X Y j XA j ZX, , i . 26∣ ⟶ [ ] ∣ ⟶ [ ] ∣ ⟶ [ ] ( )

Note that, when one transports information bymeasuring on theX basis, aX error in themeasured qubit has no
influence on the correlation space state.

For other entanglement configuration of thewire, these relations between the physical errors and they
correspondence in the correlation space become cumbersome.However, if the qubit where anyCPTP error
occurs ismeasured in any basis (which is the case we typically comeup against), it is known [56]which is the
effect on the correlation space.

Consider now, for instance, a PauliZ error affecting the kth particle of thewirewith probability one during a
transport process. The state F ñi(∣ ) for =i 0, 1{ } is nowmapped into some state cF ñi(∣ ) after the transport.
Assume also that the subsequent downloading process is successful. If the local entanglement of thewire is
maximal, i.e.T=Z, the error shows up completely in the end, i.e. the final state is the Bell state
F ñ = ñ - ñ- 00 111

2
∣ (∣ ∣ ). However, if one reduces the local entanglement of thewire (the parameterf) , the

error appears diluted at the end of the process. For instance, for f = p
3
, thefinal state expressed in the Bell basis

is: F ñ + F ñ+ -3

2

1

2
∣ ∣ . Figure 13 shows thefidelity of the final state jñ∣ after the transport-localization process

with someZ error affecting one particle in the transport, i.e. j= á F ñ+F 2∣ ∣ ∣ , for different entanglement
parameters. The remarkable result is that thisfidelity does not depend on the positionwhere the error happens
or the period parameter of thewire. Therefore, the stability of thewire depends exclusively on the entanglement,
as one can conclude due to the strong similarity betweenfigures 13 and 10.

The price to pay for the protection against errors is a lower success probability of delocalizing and localizing
information.However, when considering arbitrarily largewires, these processes can bemade quasi-
deterministic with open destination targets. One can always choose regions such that localizationwithin this
region has an arbitrary high probability of success. The size of this regions depends entirely on the local
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entanglement of thewire. Notice that for a given success propability p for the downloading process, the required
number of repetitions to succeedwith a probability - 1 is given by = -n plog log 1( ) ( ).

5.1.2. Losses during transport
Theworst case of the previous scenario occurs when the particles are lost.We consider the overall process of
uploading–processing–downloading, wherewe assume that one ormore particles are lost (and hence traced out)
during the transport.We study again thefidelity with respect to the ideal Bell state. Note that tracing out a
particle is equivalent to averaging over the possible outcomes of ameasurement in a given basis. By observation,
one can easily check that, in our case, thismap is analogous to a phase-flip channel s s s + -q q Z Z1( ( ) )
with probability =q 1

2
at the physical level. TheKraus decomposition of thismap can be obtained by first

expressing the final state in the Bell basis followed by a subsequent diagonalization

å åy y l y y
x

m m m , 27i j i j i j i j
i

i i i00 00 , , ,
diag.

1 1 2 2 1 1 2 2
∣ ⟩⟨ ∣ ⟶ ∣ ⟩⟨ ∣ ⟶ ∣ ⟩⟨ ∣ ( )

where theKraus operatorsKi are identified from: y ñ = ñK m mi i i00∣ ∣ . For the case of one lost particle, this is
always a rank-2 channel, independently of the position of the lost qubit.

A remarkable effect is observedwhenmore than one qubit is lost.Wefind afidelity dependencewith the
relative position of the lost particles (see figure 14). The effect of the relative position of the particles is strongly
relatedwith the period factor τ of thewire. Given two losses, if the distance between them correspondswith one
period τ, the fidelity isminimal. However, thefidelity ismaximizedwhen the relative distance coincides with

half of a period t
2
. In amore general scenario, withm lost qubits, one has to consider the n

m( ) relative distances of
every pair of lost particles. Thefidelity ismaximal (minimal)when themaximal possible number of relative
distances is equal to tt

2
( ).We conjecture that this effect is due to the non-vanishing two-point correlation

functions.

5.2. Periodwire as building block for general networks
In this sectionwe consider periodwires as building blocks for general communication resources.We show that
resource states for a fully functional communication networkwith arbitrary topology can be constructed by
merging elementary wires in a suitable way. This then enables entanglement routing among the network.We
start by listing the required functionality. One can consider a wire as a resource where quantum information can
be uploaded, transported among thewire, and then downloaded at a chosen position. Similarly, onemay also
use such awire to establish entanglement between two chosen sites. This corresponds to a double-downloading
process as detailed below.

In turn, a network is given bymultiple parties that are connected bywires. Onemay then upload information
froma given site, download it to a chosen site aswell as transport information amongwires. Since in a general
network a single node can be connected to several neighbours, one requires that the transport direction froma
given node can be freely chosen. This includes the possibility tomerge and cut wires, where themerging is only
needed to establish resources [11, 12]. Herewemainly consider point-to-point communication, i.e. using the
network in such away that information is transported fromA toB. Onemay also establish entanglement

Figure 13. Fidelity of the downloaded state with aZ error occurring in the transport, as a function of the local entanglement of the
wire.
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between the two chosen sites.We also showhow certain graph states, includingGHZ states, can be obtained in
the network.

We show in the following how all elementary building blocks and required processes can be realizedwith
correlation space resources.

It was shown in [51] how to upload some arbitrary state (placed in the zeroth site) into the correlation space
by LOCC and localmeasurements.With analogous techniques used in [51] (see appendix), it is straightforward
to see that a state can be uploaded fromany node of thewire, by choosing the direction of uploadingwithin the
wire. This involves cutting thewire in the opposite direction. The uploaded state can be subsequently
transported to other regions in a protectedway, and localized in another node.

5.2.1. Cutting of resources
It is possible to cut a chain froman arbitrary site of thewire in any direction, by using similar techniques than for
localization (section 3.4.2). For simplicity, consider awire withmaximal local entanglement:

åF ñ = á ñ ¼ ñ-L s A s A s L s s . 28n
n n n1 1 1 1(∣ ) ∣ [ ] [ ]∣ ∣ ( )

Taking property (20) into account, one can expand the kth site in its basis, i.e.

å jF = á ñ á ñ ¼ ñ ñ-s A s i A s L s s m . 29n n i k n i k1 1 1∣ [ ] ∣ ∣ [ ]∣ ∣ ∣ ( ) 

By appropriatemeasurements of the next q sites, one can perform the transformation
j jñ ñ  +ñ - ñ, ,0 1{∣ ∣ ∣ ∣ } in the correlation space. Expanding the site = + +r k q 1 in its basis:

å jF = á ñ á ñ ¼ ñ ñ ñ-s A s i A s L s s m m . 30n n j r k n i k j r1 1 1∣ [ ] ∣ ∣ [ ]∣ ∣ ∣ ∣ ( ) 

Finally, bymeasuring site r and selecting the outcome ñm r0∣

å j jF = á ñ á ñ ¼ ñ ñ = F ñ Ä F ñ- ¢s A s i A s L s s m L , 31n n r k n i k r
n k

1 0 1 1 0 1∣ [ ] ∣ ∣ [ ]∣ ∣ ∣ (∣ ) (∣ ) ( ) 

one succeeds in cutting the chain into twowires, both preserving their functionality, but separately. Note that the
information of the initial wire remains completely in the right one. In case the entanglement is notmaximal, one
cannot select the positionwhere the cutting is accomplished, but it eventually succeeds, similar as in the
downloading process.

5.2.2. Double localization of information
Given a network constructed fromperiodwires (see below), it is important to be able to connect particles upon
request, i.e. to establish entanglement between two (ormore) parties. Consider again amaximally entangled
wire, i.e. f p= . Given two, previously fixed, qubits of thewire, denoted as k1 and k2,

å j jF ñ = á ñ á ñ á ñ ñ ñ ¼ ñ-L s A s i j A s L m m s s , 32n
n n i k j k i k j k n1 1 1 11 2 1 2(∣ ) ∣ [ ] ∣ ∣ ∣ ∣ [ ]∣ ∣ ∣ ∣ ( )   

one can create a direct communication link between themby applying a double localization process (figure 15).
This is achieved bymeasuring the particles toward the exterior direction in each case,mapping j ñ  ñ+ii k1

∣ ∣ to

Figure 14.Dependence of thefidelity with the last lost particle. Bold line corresponds to one single loss. Dashed–dotted line represents
two losses and the dependencewith the second, where thefirst lost particles isfixed at site 1. Dashed line illustrates the case of three
losses and the dependencewith the third, where thefirst two lost particles are fixed in positions 1 and 2.
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the left, and j jñ  ñ + - ñj 1k
j1

2 0 12
∣ (∣ ( ) ∣ ) to the right. If there are t - 1particles between the two qubits, and

wemeasure the t - 1particles in theX basis, where τ is the period factor of thewire, a Bell pair is obtained
between the selected qubits and the state is decoupled from the rest of thewire in both directions (see figure 15).
In case the local entanglement of thewire is notmaximal, this process becomes probabilistic and target sites
cannot befixed previously.

Note that this process has two inconveniences. First, not any pair of particles can be chosen, since one is
restricted to the property of leaving one period between them. Secondly, in case that we obtain unwanted
outcomes (by-products) in themeasurement of the intermediate nodes, thefinal state is not a perfect Bell pair.

Nevertheless, both problems can be solved by considering compensation stations placed in different
positions of the network. This stations are simply constructedwith a certain number of auxiliarywires of limited
length. These auxiliarywires are coupledwith themainwires in order to process information until period
restrictions andmeasurement by-products arefixed. In a sense, these boxes serve to extend the distance between
two sites to a full period. All possibilities are present, and one only needs to cut all wires except the onewith the
proper length. Notice that the length of thewire can be properly chosen such that cutting and correcting suitable
byproducts is possible.

5.2.3.Merging of resources
Weconceive the 1Dquantumwires as fundamental building blocks. In order to constructmore complex
structures, one has to be able to couple wires in order to route the information or create direct links between any
constituents.

For simplicity, we restrict ourselves to the case ofmaximally entangledwires. However, these processes are
valid also for lower entangledwires, by applying appropriate filtering operations and taking into account the
impossibility of a priori fixed destination.We start by showing that two 1Dwires can be coupled in the boundary
qubits tomerge them into a larger wire. Given twowires initialized in the +ñ∣ state,

åF +ñ Ä F¢ + ñ = á + ñá + ñ ¼ ñ ¼ ñ¢ - ¢ - ¢s A s A s s A s A s s s s s ,

33

n
n
k

k k n n n n n k1 1 1 1 1(∣ ) (∣ ) ∣ [ ] [ ]∣ ∣ [ ] [ ]∣ ∣ ∣
( )

 

weperform the operation = ñá + ñáP m m0 0 1 10 1∣ ∣ ∣ ∣between the last qubit of the left chain and the first qubit
of the right one,merging them into an intermediate node r. The basis m m,0 1{ }corresponds to the onewhere
operators are expressed as equation (20). Note that for thewires we use this basis coincides with the
computational basis. Therefore, one obtains

j

F = åá + ñá + ñ ¼ ñ ¼ ñ ñ =

= åá ñá +ñ ¼ ñ ñ ¼ ñ = F +ñ
- - - ¢+

- - - ¢+

s A s A i i A s A s s s s s i

s A s i A s A s s s i s s , 34

k k n n n k r

k k i n n r n k
k

1 1 1 1 1 1

1 1 1 1 1 1 1

∣ [ ] [ ]∣ ∣ [ ] [ ]∣ ∣ ∣ ∣
∣ [ ] ∣ ∣ [ ] [ ]∣ ∣ ∣ ∣ (∣ ) ( )

 

 

and themerging successes (see figure 16(a)).
More than twowires can be coupled.One can consider, for instance, threewires where a projection

= ñá + ñáP 0 000 1 111∣ ∣ ∣ ∣ is performed on their extremities (first site of each), i.e.

F = åá + ñá + ñá + ñ
´ ¼ ñ ¼ ñ ¼ ñ ñ

¢¢ ¢¢- ¢ ¢- -

¢ ¢ ¢¢ ¢¢

s A s A i s A s A i s A s A i

s s s s s s i . 35
n n n n n n

n n n r

1 1 1

2 2 2

∣ [ ] [ ]∣ ∣ [ ] [ ]∣ ∣ [ ] [ ]∣
∣ ∣ ∣ ∣ ( )

  

If now the states of the correlation space are allmapped j ñ  ñii∣ ∣ by suitable localmeasurements and one
expands the next site (denoted as q):

F = åá ñá ñá ñ ¼ ñ

´ ¼ ñ ¼ ñ ñ ñ
¢¢ ¢¢- ¢ ¢- - -

¢- ¢ ¢¢- ¢¢ ¢ ¢¢

s A s A j s A s A j s A s A j s s

s s s s jjj j

0 0 0

. 36

n n n n n n q n

q n q n qq q r

1 1 1 1

1 1

∣ [ ] [ ]∣ ∣ [ ] [ ]∣ ∣ [ ] [ ]∣ ∣
∣ ∣ ∣ ∣ ( )

  

Figure 15. Localization of a Bell pair within awire. Information is localized in two sites by processing a procedure similar to
downloading along the external directions fromboth qubits.
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If now localization on eachwire is performed (see previous section), bymapping the correlation state to ñ∣
andmeasuring the following site in the computational basis, a 4-partyGHZ stateå ñ ñ¢ jjj jqq q r∣ ∣ is obtained. By
measuring the r qubit in theX basis, a GHZof three qubits (one of eachwire) is found and decoupled from the
rest of thewires (figure 16(b)). Note that the remainingwires are still functional. Note also that by constructing
router stations with auxiliarywires, any particle can be chosen on demand to be part of this GHZ state. This
process can be expanded for an arbitrary large number of wires, therefore generating n-party GHZ states.

With analogous techniques, one can prove that twowires can be coupled in anymiddle point of them, such
that a four-partyGHZ state can be obtained by downloading information in the four diverging directions (see
figure 16(b)). Given thismerging configuration, one can easily check that a cutting can be performed in any of
the directions, such that one can transport information through the remaining chain leafs (see figure 16(c)). That
is, a networkwith a given structure (intersectingwires), one can either generate GHZ states between parties next
to an intersection vertex, or use any of the intersecting vertices to route information. To this aim all but an
incoming and outgoingwire are cut.

We emphasize that themerging of wires is a not process that takes placewhen processing information in the
network. This should rather be understood as a tool that describes the required resource states in such an
entanglement based network, and how they can (in principle) be generated from individual wire states.

5.2.4. Fully functional communication network
Given the quantumperiodwires and the tools studied above, it is possible to construct a networkswith arbitrary
topologywhere information can be transport through in a protectedway, andwhere direct communication
links between any two (ormore) particles can be established. These is accomplished bymerging 1Dwires and
including compensation stations between regions as described above (see figure 17).

6. Summary and conclusions

Wehave studied two different approaches for encoding and storage of quantum information in a distributed
way.On the one hand,Dicke-type encodings (section 3.3) rely on an experimentally attainable class of states
(Dicke states), where different orthogonal pairs of states can be selected exhibiting different properties. The
measurement of all the parties is necessary to localize information, and the entanglement determines the success
probability of this process. A conflict of interest exists when aiming to store informationwith stability under
errors (or losses) and still having a high success probability to localize information.

On the other hand, we have analyzed the properties of the correlation space resource states, in particular of
periodwires (section 3.4) for storage of quantum information.We have seen how information is distributed
over thewire. Thesewires are basically defined by two tunable parameters that define its entanglement and the
correlation length. Therefore, localization of information (with LOCC) can bemade quasi-deterministic by
allowing for open-site destination, without compromising stability under errors or losses. Once the
downloading succeeds, the qubit with the localized information is detached from the unmeasuredwire, which
remains functional. Thereby the probability of success for the download process depends on the entanglement

Figure 16. (a)Twowires can bemerged in their boundaries to create a largerwire.Morewires can bemerged in their boundaries to
distill multipartite entangled states with one particle of eachwire. (b)Wires can be alsomerged in anymiddle point to localize n-party
entangled states. (c)Bymergingwires in anymiddle point, one can re-direct the transport of information of the correlation space
along any other direction of themergedwires.
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factor, while the required number of particles to bemeasured to accomplish localization depends on the
correlation length.

Moreover, we have shown that one can construct a fully functional communication network. This is either
based on consideringmultipartite resource states that are comprised of logical qubits. In this case, information is
distributed over regions that form the logical qubits, but can be processed and routed among the network solely
by local operations on the individual sites.

Our second approach consists in using periodwires as building blocks.We showhow to cut andmerge
wires, andwe also discuss how to upload, transport and localize informationwithin thewires. By suitably
couplingwires beforehand to form suitable resource states and by establishing compensation stations to
compensate by-products, a 2Dnetwork can be built such that direct communication links can be obtained
between any group of constituents fromdifferent regions of the network. This is done in such away that
information is distributed throughout the correlation space network in a dilutedway, such that it is protected
from errors or even loss of particles. In addition, information processing takes place solely bymeasuring
individual (physical) qubits. Entanglement and correlations of thewire determine how the information is
distributed. Themore spread the information is, themore protected it is. However, when information is widely
distributed through the network, localization and cutting processes becomes probabilistic, and sometimes the
target nodes cannot befixed a priori. Therefore, we consider these networks particularly useful for
communication between regions (instead of single nodes)with a high robustness under errors or attacks.

With our approach, we have shown an alternative view on quantumnetworks. The essential element is that
information is stored in a distributed (or holographic)waywithin parts or thewhole network, thereby
protecting it against errors and losses while keeping the processing of information simple, i.e. using only
measurements on individual sites. It would be interesting to extend our approach to the storage ofmultiple
qubits in the network in a delocalizedway.While it is straightforward to consider generalizations of the
resources to store higher dimensional systems ormultiple qubits, it is not clear if and howuploading,
downloading and information processing can be achieved using only local operations on individual sites.
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AppendixA. Concatenated encoding codewords

Alternative extensions ofDicke-type encodings can be explored. For instance, one can consider the
concatenation of twoDicke states, with a similar spirit of the concatenated-GHZ [57]. By taking
ñ = ñ ñ = ñn k n k0 , , 1 ,1 2∣ ˜ ∣ ∣ ˜ ∣ , one can define the following codewords:

Figure 17.Construction example of a fully functional communication network based on periodwires. Information can be protected
during transport and direct links (multipartite states) can be obtained between constituents of any regionwith the help of the auxiliary
wires in the compensation stations.
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∣ (∣ ˜ ∣ ˜ ) (∣ ˜ ∣ ˜ )

∣ (∣ ˜ ∣ ˜ ) (∣ ˜ ∣ ˜ ) ( )

where the particles are organized inN groups ofm particles each.Without going into details, our results indicate
that this concatenated-Dicke states can be a suitable intermediate choice for storing information. Given two
Dicke states codewords ñ ñ0 , 1∣ ˜ ∣ ˜ , direct encoding brings certain values for the robustness and local entanglement
(see previous sections). However, if one considers their concatenated form (A1), the robustness is in general
decreased and the local entanglement is increased to some extent. This is due to the “block” structure, which
gives some extra structure in terms of local entanglement. This compromises however the robustness under
losses, as the effect of a loss depends on the size of the corresponding block.One loss hasmore impact in its block
—and therefore on thewhole states—if the size of the block is smaller. These tunable properties, togetherwith
the block structure of the concatenated encoding, can be useful for some purposes.

Appendix B.Uploading of information in correlation space

It was shown in [51] how to upload some state into the correlation space by LOCC.Given an arbitrary state
y l lñ = ñ + ñ0 10 0 1∣ ∣ ∣ (placed in the zeroth site) that wewant to upload to the correlation space, and given awire
F ñL n

1(∣ ) , one canwrite the initial state in terms of some orthogonal basis ñms{∣ }at site 1:

åy lF ñ Ä ñ = F ñ Ä ñ Ä ñ
=

L A m L m i . B1n

i s
i s

n
s1 0

, 0,1
2 1 0(∣ ) ∣ ( [ ]∣ ) ∣ ∣ ( )

Ageneralized Bellmeasurement is subsequently applied to complete the uploading, i.e. by projecting onto
ñ = å ñ Ä ñB m jj j1 10 1 0∣ ∣ ∣ the remaining state of thewire is lå F ñA m Lj j j

n
2( [ ]∣ ) . Finally, by adequate local

measurements on the next physical sites, one can implement the basis change ñ  ñA m L ss{ [ ]∣ } {∣ } in the
correlation space and the upload is successful. However, this process is not always successful. In case the states

ñA m L0[ ]∣ and ñA m L1[ ]∣ are not orthogonal, onewould need some probabilistic filtering operation (in analogy
to section 3.4.2).

AppendixC.Maximally entangledwire

We show that, given a quantumwirewith period τ for which one can find a basis mi{ }where
j j= ñá = ñáA m A m0 , 10 0 1 1[ ] ∣ ∣ [ ] ∣ ∣, the local entanglement of any particle ismaximal.We consider a general

case where j q qñ = ñ + ñcos 0 sin 10∣ ∣ ∣ and j q qñ = ñ - ñsin 0 cos 11∣ ∣ ∣ , for any θ. In the periodwires we use, the
basis mi{ } coincides with the computational basis. Consider now awire in the state:

åF +ñ = á +ñ ¼ ñ-s A s A s s s . C1n
n n n1 1 1 1(∣ ) ∣ [ ] [ ]∣ ∣ ( )

One can compute the reduced density operator of an arbitrary particle q, by first constructing the corresponding
matrix product operator (MPO) [58, 59]

år = ¢ ¢ ¼ ñá ¢ ¼ ¢M s s M s s s s s s, ,n n n n1 1 1 1( [ ] [ ])∣ ∣

with ÄD D2 2 operators ¢ = å Ä ¢¢M s s A s A s,i i s s i i,[ ] [ ] [ ]¯ , and subsequently tracing out the rest of particles.

Note that tracing out is equivalent to contracting indices si and ¢si in every siteM (see figure C1). One can
compute each element ¢s s,q q( ) of the reduced densitymatrix of site q by contracting the expression from right
and left, i.e.

år = ¢ ñá ¢- +M s M s s M s s s, ,q q q q q q q1 1( [ ] [ ] [ ])∣ ∣

where -M sq 1[ ] and +M sq 1[ ] are tensors of dimension Ä D1 2 and ÄD 12 respectively. One can easily check
that, from the right contracted boundary vector 1 0 0 1( ), any new Ä D1 2 vector carried to the left is again

q q q q= + + =E sin cos 0 0 sin cos 1 0 0 1 ,i
2 2 2 2( ) ( ) where Ei is the intermediate transfer operator at

position i.With these techniques, it is straightforward to see that the reduced density operator of the qubit q
(enough far away fromboundaries) is equal to the identity, independent of the value of θ and the state of the
correlation space, therefore proving that the entropy of entanglement of thewire ismaximal at a local level, if a
basis exists such that j j= ñá = ñáA m A m0 , 1 .0 0 1 1[ ] ∣ ∣ [ ] ∣ ∣
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AppendixD. Errors in the correlation space

Given amaximally entangled periodwirewith f p= and period τ, one can find a basis mi{ }where the
correlation spacematrices can be expressed (20) as j j= ñá = ñáA m A m0 , 1 .0 0 1 1[ ] ∣ ∣ [ ] ∣ ∣ Noting that
já ñ = + - Å -i e 1 ej

w i j w1

2
∣ ( ( ) )with = pw

k

i , one can represent thewire state as:

F +ñ = åá +ñ ¼ ñ = å + - + -
´ + - + - ¼ ¼ ñ

-
Å - Å -

Å - Å -

- +

-

s A s A s s s

s s s

e 1 e e 1 e

e 1 e e 1 e .

D1

n
n n n

w s s w w s s w

w s s w w s s w
q n

1 1 1 1

1

n n q q

q q

1 1

1 1 2

(∣ ) ∣ [ ] [ ]∣ ∣ ( ( ) ) ( ( ) )
( ( ) ) ( ( ) )∣

( )

 


If a PauliX error affects now the q qubit, ñ = Å ñX s s 1q q∣ ∣ . Therefore, by relabelling in the equation (D1), the
state after the error is

F = å + - + - + - + -
¼ ¼ ñ

Å - Å Å - Å Å - Å -- + -

s s s

e 1 e e 1 e e 1 e e 1 e

.

D2

w s s w w s s w w s s w w s s w

q n

1 1

1

n n q q q q1 1 1 1 2( ( ) ) ( ( ) )( ( ) ) ( ( ) )
∣

( )

 

It is easy to check that the effect on the correlation space is equivalent to themap
j = ñ á ÅÅA m XA m X i 1 ,q

i
q

i i q1[ ] [ ] ∣ ∣ on the virtual operator corresponding to the particle q. Equivalently, if
a PauliZ error applies to qubit q, i.e. ñ = - ñZ s s1q

q
q∣ ( ) ∣ , can be directly seen from the formofmatrices A m0[ ]

and A m1[ ], that the translation of this error into the correlation space operator is A m A m Zq
i

q
i[ ] [ ] .

For PauliY error, one just need to combine the previous cases tofind expression (26).
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