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Abstract
Weconsider a communication scenario where classical information is encoded in an ensemble of
quantum states that admit a power series expansion in a cost parameter and converge to a single zero
cost state with vanishing cost. For a givenmeasurement scheme, we derive an approximate expression
formutual information in the leading order of the cost parameter. The general results are applied to
selected problems in optical communication, where coherent states of light are used as input symbols
and the cost is quantified as the average number of photons per symbol.We show that for an arbitrary
individualmeasurement on phase shift keyed (PSK) symbols, the photon information efficiency is
upper bounded by 2 nats of information per photon in the low-cost limit, which coincides with the
conventional homodyne detection bound. The presented low-cost approximation facilitates a
systematic analysis of few-symbolmeasurements that exhibit superadditivity of accessible informa-
tion. For the binary PSK alphabet of coherent states, we present designs for two- and three-symbol
measurement schemes based on linear optics, homodyning, and single photon detection that offer
respectively 2.49% and 3.40% enhancement relative to individualmeasurements.We also showhow
designs for scalable superadditivemeasurement schemes emerge from the introduced low-cost
formalism.

1. Introduction

The celebratedHolevo quantity [1] provides a powerful tool to identify howmuch classical information can be
transmitted using symbols drawn from a given ensemble of quantum states. It specifies an upper bound on the
mutual information that can be achievedwith any quantummeasurement satisfying physical constraints. In
general, attaining theHolevo quantity requires a collectivemeasurement on an arbitrary number of symbols
[2–5].When the available class ofmeasurements is restricted, for example to individual or few-symbol
detection, optimization of themutual informationwith respect to themeasurement strategy often becomes a
rather challenging task forwhich universalmethods aremissing. Interestingly, themaximummutual
information that can be obtained usingmeasurements on a restricted number of symbols, known as accessible
information, exhibits superadditive behavior with the number of symbols [6, 7]. This is intimately related to the
fact that quantummeasurement reveals in general only partial knowledge about themeasured states andmore
relevant information can be retrieved through collective detection strategies. Theoretical analysis of
superadditivity of accessible information is highly nontrivial even for binary ensembles of elementary input
states [8–10]. Another problem is the actual physical implementation of optimalmeasurements, e.g. in the
optical domain.

The purpose of this paper is to present a systematic expansion of themutual information in a cost parameter
which characterizes the ensemble of quantum states used for communication. It is assumed that the quantum
states admit a power series expansion in the cost parameter and converge to the same zero-cost state when the
value of the cost parameter tends to zero. This allows us to derive an asymptotic bound on themutual
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information in the leading order of the cost parameter for a givenmeasurement scheme. An essential advantage
of the formalismdeveloped here is that the characteristics of the ensemble enters the asymptotic expression
through a set of state vectors that are independent of the cost parameter. Aswe demonstrate here, this greatly
simplifies identification of bounds onmutual information attainable with few-symbolmeasurements and
provides a systematicmethod to construct experimental schemes that demonstrate superadditivity of accessible
information.

The usefulness of the presented approach is illustratedwith a number of examplesmotivated by optical
communication. In this context, a naturalmeasure for the communication cost is themean photon number per
symbol. Our expansion provides non-trivial bounds on the photon information efficiency (PIE), which specifies
the amount of information that can be transmitted in one photon. In particular, we show that when information
is encoded in the phase of coherent states, themaximumattainable PIE is 2nats per photon in the low-cost limit
when arbitrary individualmeasurements are permitted. This coincides with the commonly used in optical
communications reference value derived from the Shannon–Hartley theorem, which assumes the specific case
of homodyne detection [11].We also provide a relation between the attainable PIE and the peak-to-average
power ratio of a general coherent state ensemble used for communication. Further, we investigate
superadditivity of accessible information in the case of few-symbolmeasurements performed on the binary
ensemble of coherent states with equalmean photon number and opposite phases.We show that linear optical
setups combining photon counting and homodyne detection can be used to demonstrate superadditivity for
coherent states carrying on average less than approx. 0.01 photon.We also discuss how scalable communication
schemes exhibiting the superadditivity effect [10, 12] emerge from the presented formalism.

This paper is organized as follows. Section 2 presents themathematical formulation of the problem. The
asymptotic expansion ofmutual information in the limit of the vanishing cost is carried out in section 3. The
results are applied to communicationwith an ensemble of coherent states and individualmeasurements in
section 4. The case of few-symbolmeasurements on the binary ensemble of coherent states is discussed in
section 5. Finally, section 6 concludes the paper.

2. Problem formulation

A communication scheme can be regarded as encodingmessages onto quantum states of certain physical
carriers which after transmission are subsequentlymeasured at the receiver. Themeasurement results are
processed to decode the inputmessage.We shall consider classical information encoded in afinite ensemble of
quantum states, labeled using an index j and described, after transmission, by density operators ˆ ( )z j , with
respective input probabilities pj. The states depend on a real nonnegative parameter ζ characterizing their cost.
Physically, the costmay correspond e.g. to themean photon number per symbol in the case of optical
communication.Wewill assume that each ˆ ( )z j is an analytical operator-valued function of ζ and that in the

limit z  0 all states ˆ ( )z j converge to the same state ˆ ( ) 0 whichwe shall call the zero-cost state. Furthermore, we
will assume that the states ˆ ( )z j admit a power series expansion in the cost parameter around ζ=0. The
asymptotic analysis will be based on an expansion up to the second order:

ˆ ( ) ˆ ˆ ˆ ( )( ) ( ) ( )z z z» + +    , 1j j j
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Note that the zeroth-order term is independent of j as it is given by the zero-cost state. The above expansion is
assumed to be valid for sufficiently small values of the cost parameter ζ.

Themost generalmeasurement that can be performed on a quantum system is described by a positive
operator-valuedmeasure (POVM)with elements Q̂r that are positive semidefinite and add up to the identity
operator, ˆ ˆå =Qr r . The index r specifies themeasurement result. For simplicity we consider here afinite set of
possiblemeasurement outcomes. The conditional probability ( )∣ zpr j of obtaining an outcome r given the jth

input state is defined byBorn’s rule

( ) [ ˆ ˆ ( )] ( )∣ z z= p QTr . 3r j r j

Themarginal probability of the rth outcome for the ensemble is ( ) ( )∣z z= åp p pr j j r j .

Themaximumamount of classical information that can be transmitted using the input ensemble of
quantum states ̂ j with respective probabilities pj and ameasurement Q̂r is given bymutual information I
calculated for the joint probability distribution ( )∣ zp pj r j , where the conditional probabilities ( )∣ zpr j are given by

equation (3). It will be convenient to decomposemutual information into a sumof contributions from
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individualmeasurement results,
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Throughout this paper we use natural logarithms and the information ismeasured in nats, = e1 nat log bits2 .
Our overall objectivewill be to optimizemutual information overmeasurement operators chosen froma

restricted class and input probabilities for a given set (constellation) of symbols ( )z j in the regime of a small
cost parameter. Thefirst step, presented in the next section, will be a systematic expansion of themutual
information I in the cost parameter ζ that will provide an upper bound on the leading-order term. Fromnowon,
it is assumed that themeasurement operators Q̂r do not depend on the cost parameter. This restricted scenario is
motivated by practical optical communication that uses direct detection or homodyne detection.Wewill see
that even under this restriction the low-cost analysis ofmutual information yields non-trivial results regarding
the superadditivity of accessible information. In section 5.1wewill present an example of further enhancement
when themeasurement can be adjusted to the value of the cost parameter.

3. Asymptotic expansion

In the limit of the vanishing cost parameter, equation (5) can be expressed through expansion of the conditional
probabilities ( )∣ zpr j in ζ, which also determinesmarginal probabilities pr (ζ). As for z  0 all the states ˆ ( )z j

converge to the zero-cost state ˆ ( ) 0 , it will be convenient to introduce a shorthand notation

[ ˆ ˆ ] ( ) ( ) ( )( ) ( )
∣= = =p Q p pTr 0 0 . 6

r r r j r
0 0

The expansion given in equation (1) implies the following approximate expressions for conditional probabilities
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are given by convex combinations

ˆ ˆ ( )( ) ( )å= = p k, 1, 2 9k

j
j j

k
ens

of derivatives defined in equation (2). It should be noted that the zeroth-order term for both conditional
probabilities in equation (7) andmarginal probabilities in equation (8) is identical.

Further steps for a givenmeasurement operator Q̂r depend onwhether the outcome r can be generated by
the zero-cost state or not. In the former case, corresponding to themathematical condition

[ ˆ ˆ ]( ) ( )= >p QTr 0r r
0 0 , wewill call Q̂r a type-Z operator and useZ to denote the corresponding set of

measurement outcomes.Measurement operators for which [ ˆ ˆ ]( ) ( )= =p QTr 0r r
0 0 will be referred to as type-

Ẑ operators and the set ofmeasurement outcomes produced by these operators will be denoted by Ẑ .Wewill
decompose

Z Z

I I I ( )å å= +
Î Î ^

10
r

r
r

r

and analyze separately contributions tomutual information from the two sets ofmeasurement outcomes.
In the case of type-Z operators, the logarithm in equation (5) can be expanded into a power series in the cost

parameter ζ, which yields in the leading order
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The difference ∣
( ) ( )-p pr j r
1 1 appearing under summation can bewritten as

[ ˆ ( ˆ ˆ )] ( )∣
( ) ( ) ( ) ( )- = - p p QTr . 12
r j r r j

1 1 1
ens

1

Wewill transform this expression further using techniques borrowed fromquantum estimation theory [13–16].
Let us recall the notion of the symmetric logarithmic derivative (SLD), defined implicitly at ζ=0 for individual
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and ensemble density operators by respective equations
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that are assumed to bewell defined [17, 18] for physical scenarios considered here. Subtracting the expression in
equation (14) from equation (13) and inserting the difference into equation (12) yields
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Using the Schwarz inequality
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and their hermitian conjugates ˆ†
A and ˆ†

B and inserting the result into equation (11) yields the following upper
bound on themutual information contribution from themeasurement outcome ZÎr :
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Note that the obtained bound is quadratic in the cost parameter ζ.
In the case of type-Ẑ measurement operators, the condition [ ˆ ˆ ]( ) =QTr 0r

0 combinedwith positive
semidefiniteness of the operators Q̂r and ˆ ( ) 0 implies that ˆ ˆ ˆ ˆ( ) ( )= = Q Q 0r r

0 0 . Therefore, a calculation of
[ ˆ ˆ ]( )QTr r j

1 using the SLDdefined in equation (13) yields zero and the leading-order term in the power series

expansion of the conditional probability ( ) [ ˆ ˆ ( )]∣ z z= p QTrr j r j is quadratic in ζ.Wewill write it in the form
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where
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with ˆ ( ) j
2 defined in equation (2) and P̂ being the projection onto the kernel of the zero-cost state ˆ ( ) 0 . This

follows from the fact that for type-Ẑ operators one has ˆ ˆ ˆ ˆP P =Q Qr r .
As a result, the contribution tomutual information generated by ameasurement outcome ZÎ ^r can be

written in the form:

I Ĩ [ ˆ ˆ ]
[ ˆ ˆ ]

[ ˆ ˆ ]
( )( )

( )

( )åz» = ¢
¢

å ¢





p Q

Q

p Q
Tr log

Tr

Tr
. 22r r

j
j r j

r j

l l r l

2 2
2

2

Interestingly, although type-Ẑ operators generate events with vanishing probability in the limit z  0, their
contribution tomutual information is of the same order in ζ as from type-Z operators. A similar behavior was
observed formutual information in a somewhat different context in [19].

Inserting equations (19) and (22) into (10), the leading-order expansion ofmutual information in the cost
parameter ζ is upper bounded by the following expression:
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The sumoverZ-typemeasurement operators appearing in the second line of the above formula can be
expressed in terms of Ẑ -type operators as Z Zå = - åÎ Î ^Q Qr r r r

^ ^ ^ . This allows us towrite the derived
bound solely in terms of Ẑ -type operators as
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Aswewill see in the following sections, the above expression, despite its seemingly complicated form, can help
substantially in the analysis of specific communication scenarios in the low-cost limit.

4. Individualmeasurements on single-mode coherent states

The asymptotic analysis presented in section 3 can be applied to a variety of physical situations. In the following
wewill consider a scenariomotivated by optical communication, when information is transmitted using an
alphabet of coherent states of a single lightmode [20, 21]

∣
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ne . 25j
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2
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j
2 2

Here ∣ ñn denotes the n-photon Fock state. The complex amplitudes ζγj of coherent states arewritten as products
of complex coefficients γj and the nonnegative cost parameter ζ that can be viewed as the scaling factor for the
entire ensemble represented as a constellation in the complex plane. Physically, it can describe the attenuation of
an optical channel over which information transfer takes place.When z  0, all the states converge to the
vacuum state ∣ ñ0 which plays the role of the zero-cost state ˆ ∣ ∣( ) = ñ á 0 00 introduced in section 2. If individual
coherent states ∣zg ñj are usedwith respective probabilities pj, the average optical energy for the ensemble,
measured in the photon number units, reads

¯ ∣ ∣ ( )åz g=n p 26
j

j j
2 2

and is proportional to the square of the cost parameter. As a simple example,m-ary phase shift keying (PSK)
corresponds to taking g = pej

ij m2 and =p m1j with = ¼ -j m0, 1, , 1.With this parametrization, all the

input states have the optical energy equal to the average ¯ z=n 2.
In this sectionwe consider a scenariowhen information is retrieved bymeasuring individually symbols in

the formof single-mode coherent states defined in equation (25). It is straightforward to obtain explicit
expressions for the two operators that enter the asymptotic expression for themutual information given in
equation (23). The SLDdifference defined in equation (16) reads

ˆ [( )∣ ∣ ( ) ∣ ∣] ( )g g g g= - ñá + - ñáD 2 1 0 0 1 , 27j j jens ens *

where g g= å pj j jens , while

ˆ ∣ ∣ ∣ ∣ ( )( ) g¢ = ñ á 1 1 . 28j j
2 2

Consequently, it is sufficient to consider the action ofmeasurement operators Q̂r only in the two-dimensional
subspace spanned by the zero- and the one-photon Fock states ∣ ñ0 and ∣ ñ1 .

4.1. Photon information efficiency bounds
Suppose first that themeasurement is composed only of type-Z operators. Inserting equation (27) into
equation (19) and recalling that ˆ ∣ ∣( ) = ñ á 0 00 yields for ZÎr :

Ĩ ∣ ˆ ∣ ∣ ∣ ( )åz g gá ñ - Q p2 1 1 . 29r r
j

j j
2

ens
2

The sumover j in the above formula gives the variance of the complex coefficients γj, which is upper bounded by
themean square ∣ ∣gå pj j j

2. If all themeasurement operators are type-Z, one has ∣ ˆ ∣å á ñ =Q1 1 1r r which yields:

Ĩ ∣ ∣ ¯ ( )åz g = p n2 2 , 30
j

j j
2 2

where in the second stepwe have used the calculation of the ensemble average photon number carried out in
equation (26). In optical communication, the ratio I n̄ is known as the photon information efficiency (PIE)
specifying themaximumamount of information that can be carried by one received photon. Therefore
equation (30) can be viewed as an upper bound of 2 nats per photon on the PIE in the asymptotic limit ¯ n 0,
which holds formeasurements composed from type-Z operators Q̂r satisfying the condition ∣ ˆ ∣á ñ >Q0 0 0r .

Interestingly, the asymptotic bound of 2 nats per photon on the PIE in the limit ¯ n 0 appears also in a
scenariowhen information is encoded in a single quadrature of the opticalmodemeasured by shot-noise limited
homodyne detection [11]. In this case the so-called Shannon–Hartley limit for themutual information reads
[22–26]
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and is attained by using an input ensemble of coherent states with theGaussian distribution for themeasured
quadrature and the conjugate quadrature set to zero. A semi-qualitative connection between this scenario and
the bound derived in equation (30) can bemade as follows. As it is well known, decomposing POVMelements
into positive rank-1 operators canmakemutual information only equal or greater [27, 28]. Type-Z and rank-1
POVMelements Q̂r with non-zeromatrix elements ∣ ˆ ∣á ñQ1 1r which non-trivially contribute to equation (30)
must detect coherence between zero- and one-photon Fock states and consequently are sensitive to the phase of
the input coherent state. Homodyne detection is an example of such a phase-sensitivemeasurement, although in
the case of the homodyne POVM the classification criterion based onwhether [ ˆ ˆ ]( ) =QTr 0r

0 or not used in
section 3 becomes problematic. This is because the outcome of the homodynemeasurement has the continuous
form corresponding to thefield quadrature which can take any real value and the conditional probabilities for
homodyne POVMelements on the zero-cost vacuum state become arbitrarily small with the increasing absolute
value of the quadrature.More generally, the low-cost limit of PIE attainable with individual phase-sensitive
measurements coincides with that derived from the Shannon–Hartley theorem alsowhen the input coherent
states are transmitted over a phase-invariant Gaussian channel with excess noise,mapping themonto displaced
thermal states. This case is discussed in appendix A.

Let us now turn our attention to type-Ẑ measurement operators Q̂r. The condition [ ˆ ˆ ]( ) =QTr 0r
0

defining type-Ẑ operators implies that in the zero- and one-photon subspace Q̂r must be proportional to a
projection ∣ ∣ñ á1 1 onto the one-photon state. Therefore in optical scenarios type-Ẑ operators correspond to
direct photon counting. Inserting equation (28) into (22) yields the contribution tomutual information from a
measurement outcome ZÎ ^r in the form

Ĩ ∣ ˆ ∣ ∣ ∣
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å
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2

A frequently encountered constraint in optical communication systems is an upper limit on the peak-to-average
power ratio  of the transmitted signal. In our case  is given by the ratio of themaximummean photon
number carried by one symbol to the average photon number in the input ensemble:

∣ ∣
∣ ∣
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g
g

=
å
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p
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. 33

j j

l l l

2

2

If all themeasurement operators are type-Ẑ , equation (32) summed over r and combinedwith equation (33)
provides an upper bound onmutual information in the form:

Ĩ ∣ ∣ ¯ ( )åz g   p nlog log , 34
j

j j
2 2

where in the second stepwe have used equation (26). The above inequality implies that when photon counting
detection is used, the PIE is upper bounded by the logarithmof the peak-to-average power ratio  . It is easy to
verify that themaximumvalue log can be achieved using a two-symbol ensemble consisting of a coherent
state ∣ ¯ ñn sent with a probability 1 and the vacuum state ∣ ñ0 sentwith the probability - 1 1 , detected by
Geiger-mode photon countingwhich discriminates between zero photons and at least one photon. Such a
strategy is customarily used in deep-space optical communication, where photon information efficiency is of
primary importance [29, 30]. The practical implementation is based on the pulse positionmodulation (PPM)
format which uses frames composed of an an integer number of  temporal bins. Each frame contains one pulse
with themean photon number ¯n located in one of the bins that are otherwise left empty.

Note that equation (32) implies that for PSK alphabets, when all γj are equal in theirmagnitude, the
contribution tomutual information from type-Ẑ operators is zero, Ĩ = 0r when ZÎ ^r . This is consistent
with the simple fact that direct photon counting cannot reveal information encoded in the phase of the
electromagnetic field. Consequently, a general detection strategy combining type-Z and type-Ẑ operators for
a PSK ensemble has the PIE upper bounded by 2 nats per photon in the limit ¯ n 0.

4.2. Individualmeasurements onBPSK symbols
Let us nowdiscuss the case of individualmeasurements on the binary phase shift keying (BPSK) alphabet of two
coherent states ∣zñand ∣ z- ñwith opposite phases and the samemean photon number ¯ z=n 2. Themaximum
mutual information attainable in this scenario can bewritten in a closed analytical form for afinite n̄.Wewill see
that the BPSK alphabet is sufficient to saturate the 2 nats per photon bound on the PIE in the low-cost limit. The
exact expression for themutual information attainable for a given n̄ will be used in section 5 as a benchmark
when discussing superadditivemeasurements onmultiple BPSK symbols.

It has been shown [31, 32] that when a binary ensemble of equiprobable pure states is used for classical
information transmission and only individual detection is permitted,mutual information ismaximized by the

6

New J. Phys. 22 (2020) 043010 LKunz et al



minimum-errormeasurement described byHelstrom [13]. The symmetric probability of awrong identification
of the input BPSK state can be obtained from theHelstrombound

( ∣ ∣ ∣ ) ( ) ( )¯e z z= - - á- ñ = - - -1

2
1 1

1

2
1 1 e , 35n

Hel
2 4

which yieldsmutual information expressed in nats:

I H( ) ( )e= -log 2 . 36Hel Hel

Here

H( ) ( ) ( ) ( )= - - - -x x x x xlog 1 log 1 37

is the entropy of a binary random variable specified in nats. The resulting exact expression for the PIE attainable
with individualmeasurements on the BPSK alphabet, equal to I n̄Hel , is depicted infigure 1 as a function of n̄. In
the limit ¯ n 0 the PIE reaches 2nats. It is worth noting that for ¯ n 0.4 the obtained result exceeds the PIE
I n̄SH obtained from the Shannon–Hartley expression given by equation (31), also plotted infigure 1. This
highlights the specificity of the Shannon–Hartley limit, used as a canonical reference in optical communication,
to the quadraturemeasurement assumed in its derivation. The lower value of I n̄SH compared to I n̄Hel for
¯ n 1can be verified by inspecting the second-to-leading terms in the asymptotic expansions of the respective
expressions given in equations (31) and (36):

I I¯ ¯ ¯ ¯ ( )» - » -n n n n2 4 , 2
8

3
. 38SH

2
Hel

2

As also shown infigure 1, the PIE of 2nats can be attained in the limit ¯ n 0 with a homodynemeasurement on
the BPSK alphabet, provided that the information is retrieved from themeasured continuous quadrature value.
For completeness, themathematical description of this scenario is presented in appendix B.Of course, in this
case the PIE does not exceed I n̄SH for ¯ >n 0.

The physical realization of theminimumerrormeasurement for the BPSK alphabet is known to be the
Dolinar receiver based on photon counting of the displaced input signal with a fast feedback loop [33].
Unfortunately, due to its complexity, realizations of theDolinar receiver have so far been confined to the proof-
of-principle stage [34]. In search for technically less challenging implementations, alternative nearly-optimal
measurements have been investigated, including a feed-forward scheme based on signal splitting and optical
delay lines [35]. A considerable amount of work has been devoted also to displacement receivers without feed-
back or feed-forwardmechanisms [36–42]which show a pretty good performance. Additionally, a non-
demolitionmeasurement based on an atom-light interaction that comes close to theHelstrombound has been
recently proposed [43]. Furthermore, derivatives of theDolinar receiver have been demonstrated for alphabets
consisting ofmore than two coherent states like for example commonly considered quaternary phase shift
keying or higher PSK formats [44–50]. In addition to theminimum-error criterion, one can consider other
strategies to distinguish between non-orthogonal quantum states, such as unambiguous state discrimination
[51–53]. Time-resolved photon counting of the PPM formatmentioned in section 4.1 can be viewed as a
realization of the unambiguous strategy for quantum states of light preparedwithin PPM frames: registering a

Figure 1.The PIE for the BPSK alphabet detected using theminimum errormeasurement I n̄Hel (dotted line) compared to the
Shannon–Hartley limit I n̄SH (grey solid line), which assumes aGaussian ensemble of coherent states. The black solid line depicts the
case of the homodyne-detected BPSK alphabet I ¯/ nBPSK hom calculated in appendix B.
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photocount in a given time bin identifies unambiguously the location of the pulse, i.e. the input state, whereas
absence of any photocount over the entire frame yields an inconclusive result.

5. Collectivemeasurements onBPSKwords

Wewill nowuse the upper bound on themutual information expanded in the cost parameter as derived in
section 3 to identify collectivemeasurement schemes onmultiple BPSK symbols that beat the performance of
individual detection.While the designs for collective schemeswill bemotivated by the analysis of themutual
information in the asymptotic limit of the vanishing cost, the actual figure for themutual information, or
equivalently the photon information efficiency, attainable using the designedmeasurement will be calculated
exactly for a given finite n̄ and compared against the individual detection benchmark given in equation (36).

When collectivemeasurements can be performed on a sequence of individual quantum systems, for example
a train of single-mode light pulses, one needs to consider an input ensemble in the formofwords composed from
the alphabet of elementary symbols, such as coherent states introduced in equation (25). The input probabilities
are then defined for entire words. In the remainder of the paper, wewill restrict our attention towords
constructed from the BPSK alphabet of coherent states ∣zñand ∣ z- ñ.Words of lengthM can be then
conveniently labelledwithM-bit strings = ¼j j jj M1 2 . The input states are pure, ˆ ∣ ∣y y= ñ á j j j , and have the
formofM-mode coherent states,

∣ ∣( ) ∣( ) ∣( ) ( )y z z zñ = - ñ - ñ - ñ1 1 1 . 39j j j
j M1 2

The label j needs now to be used as an ensemble index in lieu of jwhen applying general results derived in
section 3. For a fair comparisonwith the individualmeasurement scenario, the cost should be quantifiedwith
themean photon number per elementary symbol, given in the present case by ¯ z=n 2. The entire optical energy of
a BPSKword of lengthM is ¯z =M Mn2 .

Our goal will be to identify the probability distribution pj for input words ∣y ñj and the few-symbol collective
measurement strategy thatmaximizesmutual information in the low-cost limit. Let us first specialize
equation (24) to the scenario considered here. It will be convenient to denote a normalized superposition state of
one photon inMmodes as:

∣ [( ) ∣ ∣ ∣ ( ) ∣ ∣ ∣ ( ) ∣ ∣ ∣ ] ( )ñ = - ñ ñ ¼ ñ + - ñ ñ ¼ ñ + - ñ ñ ¼ ñ
M

1
1

1 1 0 0 1 0 1 0 1 0 0 1 40j j j
j M1 2

and use ∣ ∣ ∣ ∣ñ = ñ ñ ¼ ñv 0 0 0 for theM-mode vacuum state.With this notation, the SLDdifference for the state ̂ j

reads

ˆ (∣ ∣ ∣ ∣) ( )= ñá + ñáD M2 1 v v 1 41j j j

and respectively

ˆ ∣ ∣ ( )( )¢ = ñ á M 1 1 . 42j j j
2

After inserting these expressions into equation (24) it is easy to notice that pairs of terms corresponding to j and
its bitwise negation j can be combined together because the corresponding one-photon states ∣ ñ1j and ∣ ñ1 j

differ only by an irrelevant globalminus sign.Wewill select one of the jʼs as a representative for each pair and use
the equivalence class [ ]j as an index for the two-fold reduced sumover the input ensemble. The result reads

Z

I
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟˜ ∣ ˆ ∣

∣ ˆ ∣
∣ ˆ ∣

( )
[ ]

[ ] [ ] [ ]
[ ] [ ]

[ ] [ ] [ ] [ ]
å åz z+ á ñ

á ñ

å á ñ
-

Î ^

 M M p Q
Q

p Q
2 1 1 log

1 1

1 1
2 , 43

r
r

r

rj
j j j

j j

l l l l

2 2

where [ ] = + p p pj j j is the total probability of using either word from a given pair. The above expression can be
equivalently written as

Z

Ĩ ( ) ∣ ˆ ∣ ( )
[ ]

[ ] [ ] [ ]å åz z+ á ñ
Î ^

 M M f p Q2 1 1 44
r

r
j

j j j
2 2

Z

∣ ˆ ∣
∣ ˆ ∣

∣ ˆ ∣
( )

[ ]
[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]
å åz+ á ñ

á ñ

å á ñÎ ^

M p Q
p Q

p Q
1 1 log

1 1

1 1
, 45

r
r

r

rj
j j j

j j j

l l l l

2

where

( ) ( )= -f u u
u

ulog
1

2 . 46

Since for any j and r the argument of the logarithm in equation (44) does not exceeds one, the second line of that
expression containing logarithms is nonpositive therefore by neglecting it one arrives at aweaker upper bound
of the form:
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Z

I
⎛
⎝⎜

⎞
⎠⎟

˜ ( ) ∣ ˆ ∣ ( )
[ ]

[ ] [ ] [ ]å åz z+ á ñ
Î ^

 M M f p Q2 1 1 . 47
r

r
j

j j j
2 2

The function f (u) defined in equation (46)will play an important role in further analysis. Its graph is shown in
figure 2. It is easy to verify by an elementary calculation that on the interval 0�u�1 the function f (u) is
concave, has a singlemaximumat = »u e1 0.04983* equal to ( ) =f u u* * and becomes negative for
arguments >u e1 2.

5.1. Two-symbolmeasurements
In the case of two-symbolmeasurements,M=2, we have only two non-equivalent one-photon states that can
be compactly denoted as

∣ ∣ ∣ (∣ ∣ ∣ ∣ ) ( )+ñ = ñ = - ñ = ñ ñ + ñ ñ1 1
1

2
1 0 0 1 , 4800 11

∣ ∣ ∣ (∣ ∣ ∣ ∣ ) ( )-ñ = ñ = - ñ = ñ ñ - ñ ñ1 1
1

2
1 0 0 1 . 4901 10

Wewill also use+ and− symbols to label the two respective equivalence classes [ ] [ ]+º =00 11 and
[ ] [ ]+º =01 10 of the inputwordswith corresponding probabilities = ++p p p00 11 and = +-p p p10 01.

Equation (47) can be then simplified to the form

Ĩ ¯ [ ( ) ( )] ( )+ ++
+

-
- n Q f p Q f p2 2 , 50

wherewe have denoted

Z Z

∣ ˆ ∣ ∣ ˆ ∣ ( )å å= á+ +ñ = á- -ñ+

Î

-

Î^ ^

Q Q Q Q, . 51
r

r
r

r

BecauseQ± are the overall probabilities of obtaining an ZÎ ^r outcome on states ∣ñ, they are constrained by
 Q0 1. The goal now is tomaximize the right hand side of equation (50). Given the properties of the

function f (u) discussed earlier and taking into account that + =+ -p p 1, the right hand side of equation (50) is
optimized by selecting = = =-

-p u e Q1 , 13* , and =+Q 0. An equivalent solution has exchanged labels+
and−. This finally yields:

Ĩ ¯ [ ( )] ¯ ( ) ( )+ = + n f u n e2 2 2 2 1 . 523*

Given that themean photon number in an inputword is n̄2 , the asymptotic value of the PIE is upper bounded
by Ĩ ( ¯) +n e2 2 1 3, which presents a relative increase of ( ) »e1 2 2.49%3 compared to the individual
measurement scenario.Note that the value derived in equation (52)maximizes also the full expression given in
equation (44), as for the chosen p± andQ± the second logarithmic term in equation (44) vanishes.

The optimum identified above can be translated into an opticalmeasurement scheme that asymptotically
saturates the bound derived in equation (52). The condition =-Q 1 implies that input states ∣y ñ01 and ∣y ñ10

containing the ∣-ñcomponent should be detected by type-Ẑ measurement operators, which as discussed in
section 4 correspond in the optical domain to single photon detection. Since photon detection is phase-
insensitive, the optimum = +-p p p01 10 specifies only the overall probability of using the two input states ∣y ñ01

Figure 2.The function f (u)defined in equation (46). The function is concave and has a singlemaximumat =u e1 3* . For u e1 2

the function becomes negative.
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and ∣y ñ10 . For concreteness, wewill take only ∣y ñ01 . On the other hand, the requirement =+Q 0means that
input states ∣y ñ00 and ∣y ñ11 containing the one-photon component ∣+ñaremeasured only by type-Z operators,
which corresponds to phase-sensitive detection.We have seen in section 4 that such ameasurement can be
realized by theDolinar receiver or homodyning. In order tomaximize the contribution tomutual information,
one needs to use the states ∣y ñ00 and ∣y ñ11 with the same input probabilities =p p00 11.

A straightforwardway to subject the input states to the required type of detection is to interfere the two
component coherent states in each two-symbol word on a balanced 50/50 beam splitter, as shown infigure 3.
This results in the transformation

∣ ∣ ∣
∣ ∣ ∣
∣ ∣ ∣ ( )

y z

y z

y z

ñ ñ ñ

ñ - ñ ñ

ñ ñ ñ

2 0 ,

2 0 ,

0 2 , 53

00

11

01

where the two kets on the right hand side refer to the two output ports of the beam splitter. Note that when a
Dolinar receiver is used as a phase-sensitivemeasurement, this reproduces the two-symbolmeasurement
strategy described byGuha [10]. In the following, we consider homodyne detection as amore standard phase-
sensitivemeasurement technique. For afinite ¯ z=n 2 wehave optimized numerically the PIE I ( ¯)n22 given by
the ratio of the actualmutual information I2 calculated using equation (B6) in appendix B and themean photon
number over input probabilities parameterizedwith ( )+ = = = -p p u p p u, 1 201 10 00 11 in a scenariowhen
a combination of homodyne detection and single photon detection (SPD) is implemented on the two output
beam splitter ports. The results are shown in figure 4. It is seen that in the limit ¯ n 0 the PIE indeed approaches
the value derived in equation (52)which is also shown analytically in appendix B. Superadditivity of accessible
information for the BPSK alphabet, when the amount of transmitted information exceeds that attainable with
individualmeasurements, occurs for ¯ <n 0.0117.

The PIE attainable for two-symbolmeasurements can be further improved by introducing a displacement
operation before the single photon detector (SPD), shownwithin a dashed box infigure 3. This operation adds a

Figure 3.A communication scheme providing superadditive advantage for two-symbol BPSKwords. Input states ∣ ∣ ∣y y yñ ñ ñ, ,00 11 01

are interfered on a 50:50 beamsplitter resulting in the transformation of equation (53). Thefirst outputmode undergoes homodyne
detectionwhereas the second one ismeasured by a single photon detector (SPD). The optional displacement operation preceding the
SPD can slightly enhancemutual information.

Figure 4. (a)ThePIE defined as I ( ¯)n22 for the two-symbolmeasurement shown schematically infigure 3 (solid line, without
displacement preceding SPD; dashed line, with displacement) compared to the optimal individualmeasurement (dotted line) as a
function of themean photon number n̄.Without a displacement operation the PIE tends to 2.0498 (an advantage of 2.49%) as derived
in equation (52).With displacement the PIE reaches at 2.0564 (an advantage of 2.82%). (b)The probability u of sending the state ∣y ñ01

in the schemewithout (solid line) orwith (dashed line) displacement as a function of themean photon number n̄.
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coherent amplitudeβ to thefield detected by the SPD. Such an arrangement is known as the generalized
Kennedy receiver [38, 40–42]. As seen infigure 4, optimizingβ for a given n̄ yields a slightly higher value of PIE,
approaching 2.0564 in the limit ¯ n 0, which corresponds to 2.82% enhancement relative to individual
measurements. Noticeably, the displacement valueβ tends to zerowith diminishing n̄, as seen infigure 5. This
result indicates that the asymptotic analysis ofmutual information in the low-cost limit carried out in section 3
may yield a different bound if explicit dependence of themeasurement operators on the cost parameter is
allowed. A similar effect occurs also in the analysis of superadditivity of accessible information in the case of a
collectivemeasurement on qubit pairs [9].

5.2. Three-symbolmeasurements
In the case of three-symbol BPSKwords, the one-photon sector relevant to the evaluation ofmutual information
in the low-cost limit is spanned by four states:

∣ ∣ ∣ (∣ ∣ ∣ )

∣ ∣ ∣ (∣ ∣ ∣ )

∣ ∣ ∣ (∣ ∣ ∣ )

∣ ∣ ∣ (∣ ∣ ∣ ) ( )

++ñ= ñ = - ñ = ñ + ñ + ñ

+-ñ= ñ = - ñ = ñ + ñ - ñ

-+ñ= ñ = - ñ = ñ - ñ + ñ

--ñ= ñ = - ñ = ñ - ñ - ñ

1 1
1

3
100 010 001 ,

1 1
1

3
100 010 001 ,

1 1
1

3
100 010 001 ,

1 1
1

3
100 010 001 . 54

000 111

001 110

010 101

011 100

An essential difference with the two-symbol case is that the four single-photon states listed above aremutually
nonorthogonal. Thismakes it problematic to use equation (47) for optimization as thematrix elements

Z∣( ˆ )∣[ ] [ ]á å ñÎ ^Q1 1r rj j cannot be set independently for each one photon state ∣ [ ]ñ1 j . Consequently, one needs to
revert back to equation (43) for further analysis.Wewill denote the four equivalence classes with indices

[ ] [ ] [ ] [ ] [ ] [ ]++ º = +- º = -+ º =000 111 , 001 110 , 010 101 , and [ ] [ ]-- º =011 100 .
We have performed a numerical search for input probabilities [ ]p j and type-Ẑ POVMelements of rank-1

form in the one-photon sector thatmaximize the right hand side of equation (43). Up to a permutation of the
modes, the numerical results suggest an optimumcharacterized by a high degree of symmetry with

( )= - = = =++ +- -+ --p v p p v p1 2 , , 0 55

and two type-Ẑ projective operators ˆ ∣ ∣= ñ á =Q q q r, 1, 2r r r , which are given in the orthonormal basis
∣ ∣ ∣ñ ñ ñ100 , 010 , 001 by

Figure 5.A contour plot of the PIE I ( ¯)n2 for the two-symbolmeasurement depicted in figure 3 as a function of themean photon
number n̄ and the displacementβ. The dashed line indicates the optimal displacement value for a givenmean photon number n̄.
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It is straightforward to verify that ∣ ∣á ++ñ = á ++ñ =q q 01 2 . The geometry of themeasurement is visualized in
figure 6with a three-dimensional diagramusing the fact that the relevant state vectors have real components.
The four one-photon states specified in equation (54) are located in vertices of a cube centered at the origin of the
coordinate system. The twomutually orthogonal states ∣ ñq1 and ∣ ñq2 corresponding to projective type-Ẑ
operators lie in the plane perpendicular to ∣++ñ. Thismeans that the vector ∣++ñdefines a subspace onwhich a
type-Zmeasurement needs to be carried out. The vectors ∣ ñq1 and ∣ ñq2 can be viewed as an implementation of a
minimum-errormeasurement for inputs ∣+-ñand ∣-+ñprojected onto the plane perpendicular to ∣++ñ.

Inserting equation (55) and type-Ẑ operators specified in equation (56) into (44) yields

Ĩ ¯ ¯ { [ ( ) ] ( )} ( )+ + - - + n
n

v v f v6
6

9
4 3 log 2 3 4 log 2 8 . 573

The right hand side reachesmaximumat »v 0.0375* resulting in a PIE bound Ĩ ( ¯) n3 2.06793 , which
represents relative 3.40% improvement compared to individualmeasurements.

Analogously to the two-symbol case, the above solution suggests an optical implementation shown in
figure 7. A single three-port linear optical circuit is constructed such that photons prepared in one of three
orthogonal superoposition states ∣ ∣++ñ ñq, 1 , and ∣ ñq2 are routed to different output ports. Homodyne detection
is implemented on the port corresponding to the ∣++ñ input, while two other ports aremonitored by SPDs. The
input probabilities are parameterized as = = -p p v1 2000 111 and = =p p v001 010 .Maximization over v for
a given ¯ z=n 2 yields the actual photon information efficiency I ( ¯)n33 shown in figure 8(a)with the optimal
value of v depicted infigure 8(b). It is seen that the PIE and and the probability v attain respectively the 3.40%
enhancement and the optimal value implied by equation (57). in the asymptotic limit ¯ n 0.

5.3.Orthogonal words
Although for BPSKwords longer than two symbols full optimization of the asymptotic expression formutual
information requires resorting to numericalmeans, some interesting observations can bemadewhen the
ensemble of input words is a priori restricted to a subset for which all the one-photon states defined in
equation (40) aremutually orthogonal, apart frompairs that differ only by a globalminus sign. Such subsets can
be systematically constructed usingHadamardmatrices, which are real orthogonalmatrices with entries±1

Figure 6.Graphic representation of the optimalmeasurement attaining superadditive advantage for three-symbol BPSKwords. Input
states ∣ ∣ ∣y y yñ ñ ñ, ,000 001 010 corresponding to single-photon states ∣ ∣ ∣++ñ +-ñ -+ñ, , represented by black arrows aremeasured
using a projective POVMwith one element parallel to ∣++ñ and two others being ∣ ñq0 and ∣ ñq1 , indicated by red arrows. The latter part
of the POVM is theminimum errormeasurement between projections of ∣ ∣+-ñ -+ñ, onto the plane orthogonal to ∣++ñ, indicated
by dashed arrows.
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defined in dimensions that are integer powers of 2 and conjectured to exist for any dimension that is amultiple
of 4 [54]. The orthogonal words are chosen such that sequences of signs for individual coherent states specified
in equation (39) are given by rows of aHadamardmatrix, up to a global phase flip. The orthogonality property of
Hadamardmatricesmean that for such a reduced subset one-photon states ∣ ñ1j and ∣ ñ¢1j defined in equation (40)
aremutually orthogonal when j and ¢j correspond to different rows of aHadamardmatrix.

The orthogonality of the states ∣ [ ]ñ1 j implies that the value of each of thematrix elements

Z∣( ˆ )∣[ ]
[ ] [ ]= á å ñÎ ^Q Q1 1r r

j
j j in equation (47) can be set independently within physical constraints [ ] Q0 1j .

The obviousway tomaximize equation (47) is then to take [ ] =Q 1j if ( )[ ] >f p 0j and [ ] =Q 0j otherwise.

Recalling that f (t) is positive for arguments < <t e0 1 2, this reduces equation (47) to

Ĩ ( ) ( )
[ ]

[ ]
[ ]

åz z+
< <

 M M f p2 . 58
p ej

j
2 2

;0 1j
2

Importantly, by takingmeasurement operators Q̂r in the formof projections onto one-photon states ∣ ∣[ ] [ ]ñ á1 1j j ,
the second line of equation (44) can bemade identically equal to zero, which implies that the bound (58) is
equivalent to equation (43).

Suppose now that exactly ¢M indices [ ]j satisfy the condition [ ]< <p e0 1j
2. The concavity of f (t) on the

interval < <t e0 1 2 implies that

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ( )

[ ]
[ ]

[ ]
[ ]

[ ] [ ]

å å¢
¢< < < <

f p M f
M

p
1

. 59
p e p ej

j
j

j
;0 1 ;0 1j j

2 2

Thismeans that it is always beneficial tomake all the probabilities [ ]p j from the interval [ ]< <p e0 1j
2

identical. Consequently, the sumappearing on the right hand side of equation (58) ismaximized by an

Figure 7.A schematic representation of a communication protocol attaining superadditive advantage for three-symbol BPSKwords.
Input states ∣ ∣ ∣ ∣y y y yñ ñ ñ ñ, , ,000 111 001 010 arefirstmixed by a set of beam splitters with respective transmissivities 50%and 66%
resulting in respective states. The first outputmode undergoes a homodyne detectionwhereas the second and the third one are
measured by SPDs.

Figure 8. (a)ThePIE defined as I ( ¯)n3 of the three-symbolmeasurement depicted infigure 7 (solid line) compared to the optimal
individualmeasurement (dotted line) as a function of themean photon number n̄. (b)The probability v of sending either the state
∣y ñ001 or ∣y ñ010 which are detected by a SPD as a function of themean photon number n̄.
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expression of the form ( )¢M f t under constraints < <t e0 1 2 and ¢ M t 1 to guarantee that the sumof the
probabilities does not exceed one.

In the case of orthogonal words based on theHadamard construction one has ¢ M M . In this case a
straightforward calculation shows that themutual information ismaximized by one of two strategies. Thefirst
one uses ¢ =M M and =t M1 . The resulting bound on the PIE has the simple form Mlog . This value can be
achieved by feedingHadamardwords into a linear optical circuit whichmaps themonto the PPM format
subsequently detected by single photon detection [10, 12]. The second strategy is to use ¢ = -M M 1
Hadamard sequences with probabilities equal to =t e1 3* whichmaximize individual terms in equation (58).
The residual probability ( )- -M t1 1 * should be divided equally between the remainingHamadard sequence
and its phaseflipped version that need to be detected by a type-Zmeasurement. The resulting PIE is

( )+ -M e2 1 3. Thefirst strategy is optimal for M 16, while the second one offers higher PIE for
=M 2, 4, 8, 12. Its special case forM=2 is themeasurement described in section 5.1. These observations are

consistent with the results presented in [55]. It should be kept inmind that the limiting value of PIE is attained
when ¯ Mn 1and terms of the order ( ¯)Mn 2 and higher can be neglectedwhen calculating the photocount
probability.When selecting the communication protocol for a given n̄ itmay be optimal to choose afinite
M [56].

6. Conclusions

Wepresented a systematic expansion ofmutual information for a given ensemble of quantum states and afixed
measurement in the cost parameter characterizing the input ensemble, assuming thatwith vanishing cost all
states converge to one zero-cost state. In the case of optical communicationwith coherent states, the cost is
naturally quantified in terms of the average photon number and the zero-cost state is the vacuum state.Mutual
information can bewritten as a sumof contributions produced by individualmeasurement outcomes. The
expansion depends onwhether themeasurement operator corresponding to a given outcome detects the zero-
cost state or not. In the optical domain, these two classes of operators can be interpreted as photon counting and
phase-sensitive detection such as homodyning. The developed formalism substantially helps in deriving bounds
on the attainablemutual information in the low-cost limit, reducing the dimensionality of the relevantHilbert
space to zero- and one-photon Fock states andmapping the geometry of the ensemble onto a set offixed state
vectors that are independent of the cost parameter.

In the case of individualmeasurements on a coherent state ensemblewith a vanishingmean photon number,
we derived bounds on the attainable photon information efficiency that go beyond those obtained assuming
conventional detection techniques. Furthermore, superadditivity of accessible information has been analysed
forwords composed of the BPSK alphabet of coherent states. Themathematical structure of the derived general
bound has been used to identify collectivemeasurements that offer performance beyond individual detection. In
the casewhen single photon states characterizing thewords in the low-cost limit are orthogonal one can
calculate an analytical value for the asymptoticmaximumPIE and the design of the collectivemeasurement is
apparent. The remaining cases inwhich one cannot assume orthogonality aremuchmore involved and in
general one need to resort to numerical optimization.We presented experimental schemes based on linear
optics, homodyne detection, and photon countingwhich in the low-cost limit offer superadditive enhancement
over the single-symbolmeasurements equal to 2.49% and 3.40% respectively for two- and three-symbol
measurements. Their performance forfinitemean photon number has been analyzed using as a benchmark the
minimum-errormeasurement on single symbols, which is known tomaximize themutual information for
individual detection. Interestingly, further optimization of collective detection requires a careful adjustment of
themeasurement to the value of cost parameter.

The developedmathematical formalism can find applications not only in standard classical communication
but also in private communication, where the private communication rate can be expressed by the difference of
themutual informations between sender and receiver and the eavesdropper [57, 58]. An extension of our
methods in linewith [19] to tackle vonNeumann or Renyi entropiesmay allow to analyze low-cost limits of
various quantum information quantities likeHolevo information [1], coherent information [59, 60] or other
quantities, relevant in quantumkey distribution.
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AppendixA. Photon information efficiency for displaced thermal states

The treatment of individualmeasurements performed on coherent states presented in section 4 can be
generalized to the case of displaced thermal states

ˆ ˆ ( ) ˆ ˆ ( ) ( )†g z g z= D D , A1j j jth

where ˆ ( )g zD j is the displacement operator and
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is a thermal state with themean photon number nb, which plays the role of the zero-cost state ˆ ˆ( ) = 0
th. Such

states are produced e.g. as a result of propagation of coherent states through a phase-invariant Gaussian channel
with excess noise.

In the present case the zero-cost state ismixed and has support on the entire bosonicHilbert space. Thus all
POVMoperators Q̂r need to be type-Z. For a displaced thermal state, the SLDdifference D̂j at z = 0 defined in
equation (16) reads
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1 2
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where ˆ†a and â denote respectively the creation and the annilation operators of the bosonicmode.
Inserting equation (A3) into (19) yields an upper bound onmutual information I in the low cost limit in the

form
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wherewe have used [( ˆ ) ]† ( )r =aTr 02 0 and [ ˆ ]( )r =aTr 02 0 aswell as the definition of themean photon number
from equation (26). Note that equation (A4) is identical with the first order expansion of the Shannon–Hartley
formula [11] for the scenariowith excess noise
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Appendix B.Homodynemeasurement schemes

The statistics of outcomes for shot-noise limited homodyne detection of the real quadrature x on a coherent
state with a complex amplitude ζ is given by aGaussian probability distribution

( ∣ ) [ ( ) ] ( )z
p

z= - -p x x
1

exp 2 Re . B1hom
2

Mutual information for homodyne detection of the BPSK ensemble of coherent states with real amplitudes ∣zñ
and ∣ z- ñcan be obtained by plugging equation (B1) into (4) and (5)

I ( ) [ ( )] ( )òz
p

z z= -
z-

-¥
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-x x x4

e
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BPSK hom
2

2 2
2

with the summation over results exchanged to integration. Expanding all the functions in the second termup to
the fourth order in ζ yields
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The rightmost expression coincides with the power series expansion of the Shannon–Hartley limit given in
equation (38).

The statistics outcomes on the single photon detector (SPD)deployed in themeasurement scheme discussed
in section 5.1 and depicted infigure 3with an optional displacementβ is given by
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where k=0, 1 indicates respectively if any photonswere registered or not and z ¢ is thefield amplitude before
the displacement operation. The probabilities of possible outcomes in the two-symbolmeasurement design of
figure 3 are then given by
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Themutual information can bewritten as

I H( ) { [ ( ∣ )] [ ( ∣ )]} ( )å= - +H X K p p h p xj j, 0 , B6
j

j2 SPD hom

whereH(X,K ) denotes the joint entropy of the outcomes at the homodyne detector and the SPD,H is the
entropy of a binary random variable defined in equation (37) and [ ( )] ( ) ( )ò= -

-¥

¥
h p x x p x p xd log .

In the case of a pure SPDmeasurement without displacement (β=0) one can calculatemutual information
by expanding plog x,0 appearing in the expression for ( )H X K, up the second order in ζ. Taking the limit of

¯z = n 02 in the resulting expression yields

I ¯ ( ) ¯ ¯ [ ( )] ( )» - - = +n u nu u n f u4 1 2 log 2 2 . B72

The derived expression is equal to themutual information of the two-symbol scenario of equation (52) and is
maximized by =u e1 3. The advantage is 2.49% compared to the individualmeasurement.
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