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1 Introduction

The baryogenesis is a long-standing problem on modern cosmology. The Affleck-Dine mech-
anism is one of promising ideas for baryogenesis, which utilizes flat directions in the mini-
mal supersymmetric standard model (MSSM) and can work even in low reheating temper-
ature [1, 2]. It is known that the flat directions in the MSSM [3], called the Affleck-Dine
fields, can also produce non-topological solitons, Q-balls [4–8]. The properties of Q-balls de-
pend on the potential of the Affleck-Dine field and Q-balls are classified into gauge-mediation
type [6, 9], gravity-mediation type [7, 10, 11], new type and so on [12]. For some parameter
space, the Q-balls are stable against decay into nucleons and can explain the dark matter of
the Universe [6]. Q-balls also have interesting phenomenological applications [13–15].

Previous studies [16–18] suggest that stability of a neutron star could constrain the
abundance of Q-balls in our universe. When Q-balls collide and stop inside a neutron star,
they quickly absorb neutrons and eat up the neutron star, which leads to a stringent con-
straint on the dark matter Q-balls. In [19] (see also [20]), however, it is found that the growth
of Q-balls is suppressed by the U(1) breaking term (A-term), which inevitably exists in the
framework of the Affleck-Dine mechanism.This is because the A-term breaks the U(1) sym-
metry and destabilizes the large Q-balls. The authors in [19] estimated the destabilization
effect by considering the perturbative decay into phonons inside the Q-ball. However, since
the Affleck-Dine field has a large mass outside the Q-balls, the light phonons can not directly
escape from the Q-ball and the Q-ball decay needs some extra processes. So the perturbative
decay rate may contain large uncertainties. Another approach to the Q-ball decay due to the

– 1 –



J
C
A
P
0
4
(
2
0
2
0
)
0
1
7

A-term is numerical lattice simulations, which estimate non-perturbative and classical decay
rate. Thus, it is complementary to the perturbative approach.

In this paper, we investigate the instability of Q-balls by numerical lattice simula-
tions. The numerical estimation for the A-term instability is firstly performed by [21] on
gravity-mediation type Q-balls. We extend the previous calculation and perform the lattice
simulation on the gauge-mediation type as well as gravity-mediation one.

We confirm the instability in both gauge- and gravity-mediation types of Q-balls by the
lattice calculation, and put constraints on the size of Q-balls. Using these results, we perform
a comprehensive analysis of the growing Q-balls, which change the type and profile during
growth in a neutron star. We show the allowed parameter space considering the constraints
by the neutron star stability.

In section 2, we introduce the Q-balls in the gauge-mediated SUSY breaking. The Q-ball
growth inside the neutron star is summarized in section 3. In section 4, we describe the set
up of our numerical simulation and show the results on the instability of Q-balls. Section 5 is
devoted to discussion on the evolution of the three types of Q-balls. We conclude this paper
in section 6. The appendix part contains a summary of thin wall type Q-balls (appendix A)
and the calculation of the perturbative Q-ball decay (appendix B).

2 Property of Q-balls

In the gauge-mediated SUSY breaking, the AD field has the following low energy effective
potential for |Φ| �Mmess (Mmess: messenger mass) [22],

V (Φ) = Vgauge + Vgravity +Am3/2

(
Φn

nMn−3
∗

+ h.c.

)
+ VNR (2.1)

Vgauge = M4
F

[
log

(
|Φ|2

M2
mess

)]2

(2.2)

Vgravity = m2
3/2|Φ|

2

(
1 +K log

(
|Φ|2

M2

))
(2.3)

VNR = B
|Φ|2n−2

M2n−6
∗

, (2.4)

where K is the coefficient of the one-loop correction, m3/2 is the gravitino mass, MF is the
scale of gauge-mediated SUSY breaking1 and M is the renormalization scale, which is taken
as a typical energy scale of a phenomenon to keep the perturbative description. M∗ is the
cut-off scale for the non-renormalizable operator, for example, M∗ ∼ 1016 GeV (GUT scale)
or M∗ = Mpl (Planck scale). We assume that A and B are O(1) real parameters. When
the potential V (Φ) is shallower than quadratic, it has a non-topological soliton (Q-ball)
solution [4] which is written as Φ(t, r) = 1√

2
φ(r) exp(iωt) with radial part φ(r) depending on

the potential.
At small field values, the potential is dominated by Vgauge which leads to Q-balls called

gauge-mediated type. The properties of the gauge-mediation type Q-balls are given by [23]

RQ '
1√
2
ζ−1M−1

F Q1/4, φ0 ' ζMFQ
1/4, ω '

√
2πζMFQ

−1/4, MQ '
4
√

2π

3
ζMFQ

3/4

(2.5)

1MF & 5 × 105 GeV for the minimal direct gauge mediation model.
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where RQ, φ0 and MQ are the size, central field value and mass of the Q-ball, ζ is O(1)
parameter [23]. The gauge-mediation type Q-balls are stable against decay into nucleons for
ω < bmN , which is achieved when they have the large Q-charge given by [22]

Q > Qmin =

(√
2πζMF

bmN

)4

' 1.2× 1030

(
ζ

2.5

MF

106 GeV

1/3

b

)4

, (2.6)

where mN ' 1 GeV is the mass of a nucleon and b = 1/3 is the baryon number of the AD field.

For the large field value φ & φeq =
√

2
M2

F
m3/2

, Vgravity dominates the potential and it has

Q-ball solutions if K < 0. Those Q-balls are generally called gravity-mediation type Q-balls,
but in the framework of gauge-mediated SUSY breaking they are called new type. Taking
M2 = φ2

0/2, the gravity-mediation type Q-balls have the following property:

RQ = 2|K|−1/2m−1
3/2 , φ0 ∼ |K|3/4m3/2Q

1/2 , ω = m3/2

√
1 + 2|K|. (2.7)

The stability condition requires m3/2 < bmN (1 + 2|K|)−1/2. We also investigate the Vgravity

with K > 0. In this case, the Vgravity does not support the Q-ball solution and the Q-ball
becomes the thin wall type as discussed later.

For an extremely large Q-ball, the potential is lifted by the non-renormalizable term
and the field value reaches the critical value φc given by

0 =
d

dφ

(
V/φ2

) ∣∣
φ=φc

. (2.8)

Such a large Q-ball has the field value φc with a thin surface region and is called thin wall
type. The properties of the thin wall type Q-balls are [4]

R ∼
(

3

4πωcφ2
c

)1/3

Q1/3 , φ0 ∼ φc , ω2
c ∼ 2V (φc)/φ

2
c . (2.9)

In the following discussion, the thin wall type Q-ball has following two important properties,
(1)the radius grows like R ∝ Q1/3 as Q increases, and (2) the field value inside the Q-ball no
longer increases. (1) results in a rapid growth rate inside a neutron star and (2) results in
the inefficient suppression of its size by the A-term instability, which we discuss later.

Contrary to the U(1) conserving terms, the A-term does not support the Q-ball but
destabilizes it. For the gravity-mediation type, the instability occurs when the A-term be-
comes comparable to the Vgravity [21]. In section 4, we investigate the A-term instability
based on the ratios of the A-term to the term supporting the Q-ball defined as

ξgauge =
2|A|m3/2Φn

0

nM4
FM

n−3
∗

, (2.10)

ξgravity =
2|A|m3/2Φn−2

0

nm2
3/2M

n−3
∗

, (2.11)

for gauge- and gravity-mediation type, respectively.
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While Q-balls grow inside a neutron star, Q-balls change their type depending on the
dominant potential term. In this paper, we focus on the following three cases:

• Case without Vgravity Vgauge → VNR,

• Case with Vgravity (K < 0) Vgauge → Vgravity(K < 0)→ VNR,

• Case with Vgravity (K > 0) Vgauge → Vgravity(K > 0).

For example, in the case with Vgravity (K < 0), Q-balls grow from the gauge-mediation type to
the gravity-mediation type. When they grow more, the VNR prevents the growth of the field
value, and their radius starts to grow, which results in the thin wall type. In the other case,
K > 0, the Vgravity works like the VNR, in which the thin wall type appears following the gauge-
mediation type. In this paper, we assume that captured Q-balls are gauge mediation type
because the new type Q-balls are not efficiently captured by neutron stars (see next section).

3 Growing Q-ball

Let us summarize the constraint on Q-ball DM from the stability of neutron stars follow-
ing [18, 19]. In this paper we assume that a typical neutron star has the total baryon
charge BNS ∼ 1057, the lifetime longer than τNS = 0.1Gyr, and the neutron number density
n0 ∼ 4 × 10−3 GeV3 at the center [19, 24]. Assuming the gauge-mediated type, the flux of

the Q-ball DM is estimated as F ' 102Q−3/4
(

1 TeV
MF

)
cm−2s−1sr−1 [17]. For a neutron star

with radius RNS ∼ 10km, the number of incoming Q-balls is written as

N = 4π

(
RNS

1cm

)2 t

1s
102Q−3/4

(
1 TeV

MF

)
' 4.0× 104 t

1yr

(
RNS

10km

)2( Q

1024

)−3/4(103 GeV

MF

)
. (3.1)

For the cosmological time scale (t = O(Gyr)), a significant number of Q-balls collide into a
neutron star. The capture of gauge-mediation type Q-balls by a neutron star is discussed
in [16]. They describe the motion of a gauge-mediation type Q-ball inside the neutron star
by the equation, ẍ = −Ω2x − γẋ, where x is the position of the Q-ball from the center of
the neutron star, Ω2 = (4πρns)/(3Mpl

2) is the angular frequency of the orbital motion and
γ ∼ πR2

Qρnsvn/MQ is the friction inside the neutron star. Here ρns is the matter density of
the neutron star and vn is the speed of the neutrons in the star, where we assume vn ∼ 1 in
this paper. Q-balls are captured by the neutron star when the friction dominates the angular
motion as

1� γ

Ω
=

3ρnsvn

ζ38
√

2
M−3
F Q−1/4

√
3

4π

M 2
pl

ρns

= 1.3

(
nns

4× 10−3 GeV3

)1/2

vn

(
2.5

ζ

)3(103 GeV

MF

)3(
1024

Q

)1/4

(3.2)

The light Q-balls with small Q easily stop inside the neutron star and Q-balls with large MF

rarely stop. For the minimal stable Q-ball with Qmin given by eq. (2.6), the efficiency of the
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capture rate eq. (3.2) is converted to the condition on MF as

MF < MF,capture = 2.5× 103 GeV
2.5

ζ
v1/4
n

(
4× 10−3 GeV3

nns

)3/8

(3.3)

We comment on the new type Q-ball as DM. If the DM Q-ball is the new type with
K < 0, the above estimation of the capture rate is modified since the new type has the
constant radius independent of its Q-charge as eq. (2.7). In this case, γ/Ω is smaller than
that of the gauge mediation type and written as

γ

Ω
= πρnsvn4|K−1|m−3

3/2Q
−1

√
3

4π

M 2
pl

ρns

= 0.03×
(

nns

4× 10−3 GeV3

)1/2

vn

(
0.1 GeV

m3/2

)3 0.03

|K|
1024

Q
, (3.4)

which is smaller than that of the gauge mediation type. Thus, the capture of the new
type Q-balls is inefficient [see figure 6] and hence we assume that only gauge-mediation type
Q-balls are captured inside neutron stars in this paper.

After a Q-ball stops inside a neutron star, it starts to absorb the neutrons around it since
the energy per baryon number is lower inside Q-balls than outside [17, 25]. The growth rate
of the Q-ball in a neutron star has large uncertainty. Following [19], we briefly summarize
two estimations of the Q-ball growth rate; one is based on the surface conversion and the
other is hydrodynamic consideration. In the surface conversion scenario, we simply assume
that all neutrons are absorbed into Q-balls when they collide on the surface of Q-balls. The
growth rate is given by

Q̇grow = b−14πR2n0vn ∼ 0.1 GeV

(
R

GeV−1

)2

. (3.5)

In the hydrodynamic consideration scenario, authors in [18] assume that the excess
energy from absorbed neutrons produces the pion cloud around the Q-ball. Based on the
balance of the pressure between the neutron and the pion cloud, the growth rate is evaluated
as [18],

Q̇grow ∼
10π3/2n

5/6
0 R2

b
√

3τ
∼ 1.0× 10−4 GeV

(
R

GeV−1

)2

, (3.6)

where τ ∼ 108 GeV−1 is the neutral pion lifetime. We adopt eq. (3.6) as the conservative
growth rate in this paper.

Since the growth rate depends on the surface area 4πR2, the Q-ball growth is determined
by the R-Q relation of each type. Using eq. (3.6), the Q-ball grows as

Q(t) ∼

(
Q

1/2
in + 2× 1014

(
2.5

ζ

)2(106 GeV

MF

)2
t

yr

)2

(gauge-mediation type), (3.7)

Q(t) ∼ Qin + 6× 1031

(
0.03

|K|

)(
0.1 GeV

m3/2

)2 t

yr
(gravity-mediation type), (3.8)

Q(t) ∼

(
Q

1/3
in + 5× 1026

(
1 GeV6

V (φc)φ2
c

)1/3
t

yr

)3

(thin wall type). (3.9)
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Efficient Capture
Decay into a nucleon

Figure 1. The black solid line is Q-ball charge after it evolves over τNS = 0.1Gyr for the gauge-
mediation type [eq. (3.7)]. Since the growing Q-ball overcomes the threshold value of the thin wall
type Qc1 (dotted lines) given by eq. (A.3), Q(τNS) should be evaluated using the growth rate of thin
wall type [see eq. (3.9)] (red, blue, green lines for n=4,6,8). For the small MF , the Q-ball consume
all the baryon in the neutron star.

Let us consider the typical evolution of a Q-ball inside a neutron star without Vgravity and
A-term, for simplicity. For MF . O(103) GeV, a stable DM Q-ball with Q & Qmin satisfies
the condition of efficient capture (orange region in figure 1) given by eq. (3.2). At first, the
Q-ball follows the growth rate of the gauge-mediation type eq. (3.7). During the growth, the
Q-ball becomes the thin wall type and more quickly grows than the gauge-mediation type.
The dotted lines in figure 1 describe the threshold value of the thin wall type Qc1 given by
eq. (A.3), which is smaller than the Q(τNS) for gauge-mediation type (black solid line). The
thin wall type Q-ball quickly grows (color solid lines) and consume all the baryon in the neu-
tron star for MF . O(104–106) GeV depending on the index of the non-renormalizable term.

Note that the time scale of Q-ball growth is much longer than that for the Q-ball to sink
inside the neutron star t = γ−1 = O(10−12yr)(Q/1024)1/4(MF /(103 GeV))3. Thus, in this
paper, we simply assume that only one large Q-ball stays at the center of the neutron star.

Now we include the decay of Q-balls through the A-term. When the A-term starts to
destabilize the Q-ball, the Q-ball size reaches its upper bound Qmax. After the Q-balls stop
the growth, the baryon consumption rate in eq. (3.6) is determined by its maximum radius
Rmax. In the next section, we evaluate Qmax by the numerical calculations.

As a conservative constraint, we require that the Q-balls should not consume all baryon
of the neutron star over τNS. When the A-term is inefficient, the Q-ball continue to grow
until τNS, which leads to the following constraint:

BNS > bQ(τNS), (3.10)

where Q(τNS) is given by eqs. (3.7)–(3.9) On the other hand, when the A-term strongly
suppresses the Q-ball growth, it quickly reaches the maximum size Qmax and the baryon
consumption rate Q̇grow(Rmax) balances to the A-term decay. Assuming that the growth is
quicker than τNS, the constraint is approximately given by

BNS & bτNSQ̇grow(Rmax). (3.11)
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Let us convert BNS > bτNSQ̇grow(Rmax) into the constraint on Qmax. For gauge-mediation
type, from eqs. (2.5) and (3.6) we obtain

Q(gauge)
max < B2

NS

[
b× 10−4 GeV × 0.1Gyr

1

2ζ2

(
1 GeV

MF

)2
]−2

= 6× 1069

(
BNS

1057

)2( MF

106 GeV

ζ

2.5

)4

(3.12)

For gravity mediation type, bτNSQ̇
(gravity)
grow is independent of Qmax. Then, we can convert

BNS > bτNSQ̇grow(Rmax) into the constraint on m3/2 as

m3/2 > 1 GeV ×B−1/2
NS

[
bτNS 10−4 GeV

4

|K|

]1/2

= 1× 10−10 GeV

(
1057

BNS

0.03

|K|
τNS

0.1Gyr

)1/2

(3.13)

In the following section, we investigate the upper bound of Q-charges suppressed by the
A-term.

4 Numerical simulation of A-term decay

We investigate the A-term destabilization of Q-balls using numerical lattice simulation. Let
us describe the setup for calculation. We initially put a Q-ball in the box and follow the time
evolution with the A-term. The initial profile is based on the gauge or gravity-mediation
type with small random fluctuations of O(10−6). We expand the complex field by the two
real field f and g as Φ = 1√

2
φ0(f + ig), where φ0 is the field value at the center of the

Q-ball. The lattice simulation is performed for both gauge and gravity-mediation types. The
Q-ball evolution is studied mainly in simulations with 1 spatial dimension. We also perform
2 dimensional simulations in some cases and confirm that our results are independent of the
spatial dimension. We use the periodic boundary condition and check that the box size and
the resolution do not change the results.

We calculate the integrated energy and Q-charge around the Q-ball as [4, 19]

E =

∫ |x|<R∗

d3x(∂µΦ†∂µΦ + V (Φ)) , Q = i

∫ |x|<R∗

d3x(Φ̇†Φ− Φ†Φ̇), (4.1)

where R∗ is the radius where the local energy density is smaller than 1% of that at the center
of the Q-ball.

4.1 The setup for the gauge-mediation type

We use the following simplified potential:

V (Φ) = M4
F log

(
1 +

|Φ|2

M2
mess

)
+Am3/2

(
Φn

nMn−3
∗

+ h.c.

)
+ α
|Φ|2n−2

M2n−6
∗

. (4.2)

For convenience in the numerical calculation, we modified Vgauge by adding 1 in the argument
of the logarithm and using the linear logarithmic potential instead of the quadratic one. Since
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the A-term is effective for the large field value, our modification does not change the typical
property of gauge-mediation type Q-balls. We also add small higher-order term to avoid
unstable directions in the potential.

We normalize the space-time coordinates as x̂µ = Mφx
µ by using the effective

mass M2
φ = M4

F /M
2
mess. The equation of motions for the real and imaginary parts of

Φ = 1√
2
φ0(f + ig) are given by

0 =

(
∂̂2
t − ∇̂2 +

1

1 + u(f2 + g2)
+ α̃(f2 + g2)n−2

)(
f
g

)
(4.3)

+
nξgauge

4u

(
(f − ig)n−1 + (f + ig)n−1

−i(f − ig)n−1 + i(f + ig)n−1

)
, (4.4)

where u = 1
2φ

2
0/M

2
mess and ξgauge is the ratio of the A-term to the logarithmic one given by

ξgauge =
2|A|m3/2Φn

0

nM4
FM

n−3
∗

. (4.5)

We take u = 5× 103 and 45× 103 to focus on the gauge-mediation type.

4.2 The setup for the gravity-mediation type

The potential for the gravity-mediation type is written as

V (Φ) = m2
3/2|Φ|

2

(
1 +K log

(
ε+
|Φ|2

M2

))
+Am3/2

(
Φn

nMn−3
∗

+ h.c.

)
+ α
|Φ|2n−2

M2n−6
∗

, (4.6)

where we have added a small regulator ε as |K log ε| � 1 to avoid the singular behavior at
φ ∼ 0. We have chosen the renormalization scale as M2 = 1

2φ
2
0 to keep the perturbative

analysis at the center of the Q-ball.
With x̂µ = m3/2x

µ, the equations of motions for the real and imaginary parts of

Φ = 1√
2
φ0(f + ig) are written as

0 =

(
∂̂2
t − ∇̂2 + 1 +K

f2 + g2

ε+ f2 + g2
+K log

(
ε+ f2 + g2

)
+ α̃(f2 + g2)n−2

)(
f
g

)
+
nξgravity

4

(
(f − ig)n−1 + (f + ig)n−1

i−1(f − ig)n−1 − i−1(f + ig)n−1

)
, (4.7)

where ξgravity is the ratio of the A-term to the quadratic one as

ξgravity =
2|A|m3/2Φn−2

0

nm2
3/2M

n−3
∗

. (4.8)

4.3 Result

We calculate the time evolution of a Q-ball for various values of ξ. For small ξ, the Q-ball
remains stable. However, as ξ increases, the charge of the Q-ball starts to decay. We show
the typical decay of a Q-ball in figure 2. At first, the Q-charge decreases and the spacial
profile starts to distort (See right figure in figure 2). With some delay the energy starts to
decrease. After the Q-ball loses some fraction of its Q-charge, the energy becomes stable at
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Figure 2. A typical example of a Q-ball decay in 1 dimensional case. The Q-ball is gauge-mediation
type with n = 6, u = 45× 103 and ξgauge = 2.25. In the left figure, the energy and Q-charge around
Q-ball [eq. (4.1)] are normalized by the initial value, Q(t̂)/Q(0) and E(t̂)/E(0). In the right figure,
we plot spatial profiles of a local Q-charge at three t̂.

t̂ = 0 t̂ = 6× 103 t̂ = 3× 104

Figure 3. Typical examples of Q-ball decays in 2 dimensional case. The Q-ball is gravity-mediation
type with n = 8, K = −0.03 and ξgravity = 0.16. The horizontal axes describe spacial coordinates x̂
and ŷ. The vertical axis describes an energy density.

t̂ ∼ 15 × 103. In the following calculation, we perform the numerical simulation until the
energy becomes stable after they decayed and evaluate its energy and Q-charge. We also
show the results on the 2 dimensional calculation in figure 3.

As a criterion of Q-ball decay, we tabulate the critical ξ where its energy is reduced to
90 % of its initial value and the Q-charge is to the 50% when the energy density becomes
stable. The results are shown in table 1. In the gauge-mediation case, the critical value for

the A-term is ξ
(c)
gauge ∼ O(1). On the other hand, in the gravity mediation case, the critical

value for the A-term is ξ
(c)
gravity ∼ O(0.1). For the gauge-mediation case, the different values

of u result in slightly different values of ξ
(c)
gauge since the mass in a vacuum is different in our

calculation.
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For n=4

criteria K = −0.03 K=−0.1 u = 5× 103 u = 45× 103

90% for energy 0.02 0.06 1.0 1.8

50% for charge 0.01 0.03 1.5 1.4

For n=6

criteria K = −0.03 K=−0.1 u = 5× 103 u = 45× 103

90% for energy 0.05 0.08 1.5 2.25

50% for charge 0.05 0.08 1.5 2.25

For n=8

criteria K = −0.03 K=−0.1 u = 5× 103 u = 45× 103

90% for energy 0.09 0.17 1.0 1.4

50% for charge 0.16 0.20 1.0 1.4

Table 1. The critical value of ξ for the gravity-mediation type (K = −0.03,−0.1) and the gauge-
mediation type (u = 5× 103, 45× 103).

The upper bound of Q-charge is evaluated by ξ(c) as

Q(gauge)
max =

(√
2

ζ

)4(
nξ

(c)
gauge

2|A|

)4/n (
Mn−3
∗ M4−n

F m−1
3/2

)4/n

=

(
2.5

ζ

)4
[
ξ

(c)
gauge

|A|

(
M∗

2.43× 1018 GeV

)n−3( MF

106 GeV

)4−n(0.1 GeV

m3/2

)]4/n

×


5× 1018 (n = 4)

6× 1028 (n = 6)

6× 1033 (n = 8)

, (4.9)

and

Q(gravity)
max =

2

|K|3/2

(
nξ

(c)
gravity

2|A|
Mn−3
∗

mn−3
3/2

) 2
n−2

=

(
0.03

|K|

)3/2
[

1

|A|

(
ξ

(c)
gravity

0.1

)(
0.1 GeV

m3/2

M∗
2.43× 1018 GeV

)n−3
] 2

n−2

×


2× 1021 (n = 4)

3× 1031 (n = 6)

6× 1034 (n = 8)

. (4.10)
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Q Efficient Capture

Decay into a nucleon
Figure 4. The upper limit on the Q-ball charge Qmax for the case without Vgravity. The orange region
describes the Q-balls effectively captured by the neutron star [eq. (3.2)]. When Q-ball is captured in
the neutron star, it starts to grow its Q-charge. The growing Q-ball reaches its maximum size Qmax

given by the A-term decay eq. (4.9) with m3/2 = 0.1 GeV (Solid color lines). The color of lines means
that the indices of A-term ∝ Φn are n = 4 (Red), 6 (Blue) and 8 (Green). In the upper gray region
the Q-ball consumes all the baryons in the neutron star [eqs. (3.7) and (3.12)]. In the lower gray
region Q-balls decay into the nucleon [eq. (2.6)]. The dotted lines describe the critical charge Qc1 of
the thin wall type Q-ball [see eq. (A.3)].

5 Evolution of Q-balls inside a neutron star

In section 2, we classifies the three paths of the Q-ball growth, i.e. Case without Vgravity,
Case with Vgravity (K < 0) and Case with Vgravity (K > 0). In each case, the consumption
rate of neutron stars by Q-balls depends on their profile, i.e. the gauge-mediation type, the
gravity-mediation type or the thin wall type. The growth stops when the Q-ball reaches its
maximum size determined by the A-term. We consider the transition of Q-ball type during
its growth, and examine whether the Q-ball consumes all baryon in the neutron star.

We also compare our conservative results with the previous perturbative discussion. (See
brief summary in appendix B.) In the following, we sometimes use the following reference
values [24]:

ζ ∼ 2.5, MF = 103 GeV, m3/2 = 0.1 GeV, M∗ = Mpl = 2.43× 1018 GeV,

τNS = 0.1Gyr, BNS = 1057. (5.1)

5.1 Case without Vgravity

In this case, we ignore the Vgravity[Φ]. Q-balls are the gauge-meditation type at first and
grow to become the thin wall type, as we explained in section 3. We assume that the A-term
suppresses the growth of Q-balls before they become thin wall type, which we confirm later.

We show the maximum Q-ball charge Qmax for MF = (1 − 106) GeV in figure 4. DM
Q-balls should satisfy the stability condition given by eq. (2.6), which excludes the lower gray
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region in the figure. The efficient captures of Q-balls in a neutron star take place for γ/Ω� 1
[eq. (3.2)] (Orange region). Figure 4 shows that the capture process mainly occurs for the
Q-balls with MF . 2.5×103 GeV. All baryons in a neutron star are consumed by a Q-ball in
the upper gray region where BNS > bQ or BNS > bτNSQ̇. Color solid lines denote the upper
limit on the Q-ball size Qmax by A-term [eq. (4.9)]. Note that our analysis assumes that the
Q-balls never become the thin wall type. Color dotted lines donate the critical charge Qc1
of the thin wall type Q-ball [eq. (A.3)]. As you can see, Qmax is smaller than Qc1 for stable
Q-balls. For the broad range of MF , the A-term suppresses the Q-ball growth and avoids
the destruction of neutron stars.

5.2 Case with Vgravity (K < 0)

The Vgravity with large m3/2 and K < 0 results in the appearance of gravity-mediation type Q-
balls. Let us assume that the gauge-mediation type Q-balls are captured inside a neutron star.

After the capture, the Q-balls grow and start to change its profile into the gravity-
mediation type when its Q-charge exceeds the critical charge [12],

Qeq ∼

(
φeq

|K|3/4m3/2

)2

∼ 4× 1030

(
MF

106 GeV

)4(0.1 GeV

m3/2

)4(0.03

|K|

)3/2

. (5.2)

Since the gauge-mediation type has the upper bound Qmax as described in the previous
subsection, the appearance of the gravity-mediation type requires Qmax > Qeq, which puts a
condition on m3/2 as

m3/2 > 8× 10−3 GeV

(
1035

Qmax

)1/4(
MF

106 GeV

)(
0.03

|K|

)3/8

(5.3)

For this parameter region the captured Q-balls grow into the gravity-mediation type.

In this case, we need to evaluate Qmax based on the gravity-mediation type pro-
file. Note that the ratios of A-term and non-renormalizable term to the mass term are
ξgravity ∼ φn−2/(m3/2M

n−3
∗ ) and (φn−2/(m3/2M

n−3
∗ ))2, both of which become order one at

the same field value. Since we found ξgravity ∼ O(0.1), the A-term suppression stops the
Q-ball growth before the VNR dominates the potential [20].

We also comment on the perturbative description of Vgravity. In considering the growing
Q-ball we have to take the renormalization scale independent of its charge and φ0 for a given
m3/2. During the growth of Q-ball from Q ∼ 1020 to Q ∼ 1040 in the gravity-mediation
type [see figure 6], the field value φ0 of the Q-ball increases by about ten orders of magni-
tude. This also increases the perturbative correction K log[φ2

0/(2M
2)] in eq. (2.7). We fix

the renormalization scale M so that it does not spoil the perturbativity. For K = −0.03, we
can keep its contribution perturbative over the typical growth history by taking the appro-
priate renormalization scale M ∼ 1013 GeV (m3/2/0.1 GeV). With this choice the Q-ball has

Q = 1030 at φ0 =
√

2M where the correction vanishes.

Let us estimate the neutron star constraint. The baryon consumption of gravity-
mediation type given by eq. (3.13) is independent of the Q-charge. The constraint
BNS > bτNSQ̇grow puts the lower bound on m3/2 given by eq. (3.13), which is obviously
satisfied in this case as seen from eq. (5.3). Thus, the new type Q-ball in this case is not
constrained by the stability of neutron stars.

– 12 –
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Efficient Capture

Figure 5. The upper limit on the Q-ball charge Qmax in the case with Vgravity for K = 0.1 and
m3/2 = 0.01 GeV. Solid color line denotes the upper bound of growing Q-balls Qmax given by eq. (4.9).
Above the dashed black line, the Q-balls becomes thin wall type eq. (5.4). The black solid line donates
the growth of the thin wall type Q-ball at τNS. The thin wall type Q-ball quickly consumes all baryon
in the neutron star with MF < MF,c (vertical gray line) given by eq. (5.6).

5.3 Case with Vgravity (K > 0)

For K > 0, the Vgravity does not support the Q-balls solutions. Thus, the Vgravity makes
Q-balls thin wall type when the Q-ball grows over the threshold value Qc3 given by

Qc3 ∼
(

1

ζ

)4( φc3
MF

)4

∼ 1× 1029

(
0.1

K

)2( MF

106 GeV

)4(0.1 GeV

m3/2

)4

, (5.4)

where φc3 is the critical value [see eq. (A.6)]. Once the Q-ball grows into the thin wall type,
the field value of the Q-ball does not exceed φc3 and the A-term no longer becomes effective.
From eq. (3.9), the thin wall type Q-ball grows over τNS as

Q(τNS) ∼ 6× 1076

(
MF

103 GeV

)−8( K

0.1

)( m3/2

0.1 GeV

)2

, (5.5)

and it consumes all the baryon in a neutron star for

MF < MF,c = 3× 105 GeV

[
1057

BNS

(
K

0.1

)( m3/2

0.1 GeV

)2
]1/8

. (5.6)

We show the Qmax with K > 0 and m3/2 = 0.01 GeV in figure 5. The Q-ball becomes
the thin wall type above the Qc3 (Black dashed line). The thin wall type Q-ball quickly grows
up to Q(τNS) (Black solid line) and consumes the neutron star on MF < MF,c. The color
lines are the upper bound of Q-ball size Qmax [eq. (4.9)], which does not exist for the thin
wall type Q-balls. To avoid the constraint by the neutron star, A-term needs to suppress
the Q-ball growth before it becomes the thin wall type. Once the Q-ball is captured by the
neutron star, the allowed parameter regions are MF ∼ 103 GeV for n=4 case or MF > MF,c

for n=6 and 8 case. Compared to the case without Vgravity in figure 4, the allowed parameter
region of the case with Vgravity (K > 0) is small.
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Figure 6. The upper limit on the Q-ball size Qmax for our results (solid color lines) and previous
calculation (dashed color lines) [19]. The figures describe gauge-mediation type in the case without
Vgravity (left) and gravity-mediation type in the case with Vgravity (K < 0) (right). The orange regions
show the parameters for which Q-balls are captured by neutron stars efficiently.

5.4 Comparison to perturbative calculation

Let us compare our results with the previous calculation of the perturbative decay rate [19],
which is summarized in appendix B. Although they focus on the gauge mediation type, we
also evaluate the perturbative decay rate for the gravity mediation type.

In figure 6, solid color lines donate our results Qmax and dashed color lines donate the

previous calculation Q
(p)
max.

For the gauge-mediation type (left figure), the previous calculation Q
(p)
max puts stronger

constraints on Qmax compared to our results [eq. (B.5)]. Both our and the previous results [19]
show that neutron stars are stable against the growth of Q-balls in the gauge-mediation type.

For the gravity-mediation type (right figure), interestingly, the perturbative decay
[eq. (B.7)] is inefficient compared to our result [eq. (B.5)]. It is because the perturbative

decay rate is suppressed by the momentum conservation as Γ
(1)
n ∝ exp

[
−(Rω)2n2/(2n− 2)

]
,

in which (Rω)2 ' 4|K|−1 � 1 in gravity mediation type.2

6 Conclusion

The Affleck-Dine mechanism can produce non-topological solitons, Q-balls, which can explain
the dark matter of the universe. The stability of neutron stars gives one of the stringent
constraints on the DM Q-balls. The DM Q-balls can be trapped inside the neutron stars,
grow consuming their baryon charge, and finally destabilize the neutron stars. In this paper,
we have performed the numerical lattice simulations and confirmed that the growth of Q-balls
is suppressed by the U(1) breaking A-term. Since a growing Q-ball has large field value, the
A-term becomes effective and the Q-ball loses some fraction of its charge until it becomes
stable against the A-term instability.

In the previous calculation, the Q-ball destabilization is evaluated by perturbative cal-
culations for the gauge-mediation type [19] and by numerical simulations for the gravity-
mediation type [21]. In general, growing Q-balls change the type and property. Thus, for
a comprehensive treatment of the Q-ball growth inside a neutron star, we have evaluated

2The perturbative decay may become efficient even in thin wall type when we make a detailed estimation,
e.g. the exact profile of thin wall type and higher-order terms of perturbative decay.
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both the gravity and the gauge-mediation types numerically in this paper. We estimated the
critical Q-charge above which the Q-balls start to decay.

For the gauge-mediation type (Case without Vgravity), we have confirmed that the A-
term effectively suppresses the Q-ball growth and DM Q-balls are not constrained. As for
the new type Q-balls (Case with Vgravity), we have two possibilities for the gravity-mediation
type potential, K < 0 or K > 0. In the former case, we have found that the Q-ball can
become the gravity-mediation type and its growth is also suppressed by the A-term. In the
latter case, the Q-ball quickly becomes the thin wall type. We have found the only small
parameter space, where the new type Q-balls avoids the constraint by the neutron star.
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A Transition of Q-balls into the thin wall type

(I) Case without Vgravity.

When the gravitino mass is sufficiently small, Vgravity does not dominate the potential.
In this case, Vgauge dominates the potential for small field value φ < φc1 and VNR does
for large field value φ > φc1 with the critical value φc1 given by the condition

0 =
d

dφ

(
Vgauge+VNR

φ2

)∣∣∣∣
φ=φc1

,(
Φc1

M∗

)2n−2(M∗
MF

)4

=
1

2n−4

(
[log(Φc1/Mmess)]

2−2log(Φc1/Mmess)
)
∼O(1), (A.1)

which leads to

φc1 ∼
√

2M∗

(
MF

M∗

) 2
n−1

. (A.2)

The critical charge of Q-balls at φc1 is given by

Qc1 ∼
(

1

ζ

φc1
MF

)4

=

(√
2

ζ

)4(
MF

M∗

) 8
n−1
−4

. (A.3)

(II) Case with Vgravity (K < 0).

When gravitino mass is large enough to achieve φeq < φc1, Vgravity dominates the
potential for φeq < φ < φc2 and VNR does for φc2 < φ, where the critical value φc2 is
given by

0 =
d

dφ

(
Vgravity + VNR

φ2

) ∣∣∣∣
φ=φc2

⇒ φc2 =
√

2M∗

(√
|K|
n− 2

m3/2

M∗

) 1
n−2

. (A.4)

– 15 –



J
C
A
P
0
4
(
2
0
2
0
)
0
1
7

The critical charges of Q-balls for φc2 is

Qc2 ∼

(
φc2

|K|3/4m3/2

)2

∼

( √
2M∗

|K|3/4m3/2

)2(
|K|1/2m3/2√
n− 2M∗

) 2
n−2

. (A.5)

(III) Case with Vgravity (K > 0).

With K > 0, Vgravity does not support the condition of the Q-ball. Then, the thick
wall solution appears for φ ∼ φc3 given by

0 =
d

dφ

(
Vgravity + Vgauge

φ2

) ∣∣∣∣
φ=φc3

,

φc3 =
√

2

√
M4
F

Km2
3/2

([log(Φc3/Mmess)]2 − 2 log(Φc3/Mmess)) ∼
√

2
M2
F

K1/2m3/2

, (A.6)

Qc3 ∼
(

1

ζ

)4( φc3
MF

)4

∼ 1× 1029

(
0.1

K

)2( MF

106 GeV

)4(0.1 GeV

m3/2

)4

(A.7)

In this case, Q-balls smoothly change from the gauge-mediation type to the thin wall
type.

B Perturbative decay of Q-ball by A-term

Let us summarize the perturbative decay rate of Q-ball by A-term [19].

The decay rate into N particles is given by [19]

Γ(N)
n = 4π52n−2N |gn|2nNR6Φ

2(n−N)
0 ω2N−1J (N)

n (B.1)

with gn =
m3/2

M∗
A

nMn−4
∗

in this case. The decay rate depends on N as Γ
(N)
n ∝

(
ω

2Φ0

)2N
∝ Q−N .

Thus, with large Q, we only need to focus on N = 1 scattering. The phase space integral for
N = 1 is a function of Rω:

J (1)
n (Rω) = exp

(
− R2ω2

2(n− 1)
(n2 − (4πRω)−2)

) √
(n2 − (4πRω)−2)

(2π)2
θ(n− (4πRω)−1). (B.2)

In this paper, we use the following decay rate as the perturbative estimation:

Γ(1)
n = 2π5J (1)

n (Rω)ω1

(
m3/2

M∗

)2( A√
n

)2

(RM∗)
6

(√
2Φ0

M∗

)2(n−1)

. (B.3)

Γ
(1)
n represents the decay rate of Q-charges into the phonon on the Q-ball with energy

∆Eex = nω. The phonon may decay into some light particles, but it is unclear what the
decay channel is and whether the inverse process is negligible. In this paper, we do not study
the detail of this process.
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For gauge-mediation type, the maximum size of Q-balls is given by the balance of the

Q-ball growth Q̇grow ∝ Q1/2 and the decay rate Γ
(1)
n ∝ Q(2n+3)/4:

Q(gauge:p)
max =

((
106 GeV

MF

2.5

ζ

)2n−5(
Mpl

2.43× 1018 GeV

)2n−6(0.1 GeV

m3/2

)2( 1

|A|

)2
) 4

1+2n

(B.4)

×


4× 1010 (n = 4)

2× 1023 (n = 6)

8× 1029 (n = 8)

(B.5)

For the gravity-mediation type, the maximum size is given by

Q(gravity:p)
max =

10−4 GeV4|K|−1
(

1GeV
m3/2

)2

Γ
(1)
n (Q= 1)


1

n−1

(B.6)

=

((
Mpl

2.43∗1018 GeV

)2n−6(0.1GeV

m3/2

)2n−3 1

|A|2

) 1
n−1

×



3×1030 (n= 4,K =−0.1)

2×1038 (n= 6,K =−0.1)

4×1041 (n= 8,K =−0.1)

1×1067 (n= 4,K =−0.03)

1×1068 (n= 6,K =−0.03)

6×1068 (n= 8,K =−0.03)

.

(B.7)

Since the momentum conservation suppresses the decay into phonons, the A-term is less
effective for the Q-balls in the gravity-mediation type.
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