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1 Introduction

Among other approaches to modified gravity, teleparallel theories are quickly becoming more
and more popular. And since they are actively used for cosmological model building [1], it is
important to have a clear understanding of how the cosmological perturbation theory works
in them. This issue has been thoroughly discussed in our previous work [2] where we have
adopted the classical formulation of f(T) gravity which makes use of zero spin connection.

The choice of zero spin connection entails violation of local Lorentz symmetry in the
space of tetrads, though the model can be easily covariantised by introducing an arbitrary
inertial spin connection [3, 4]. Moreover, some authors would even insist that only the covari-
ant version should be used. Then, it seems important to understand how the perturbation
theory works in the covariant formulation, too, even though it can be easily shown generically
that the theory experiences absolutely no modification beyond the aesthetic one if rewritten
in the covariant form [4, 5].

Such an attempt has indeed been undertaken in a recent paper [6]. However we feel that
many things there remain inconclusive. The calculations are done by a brute force approach
with unclear results while, in reality, inclusion of the spin connection into perturbation theory
is a very simple task which can be understood in a beautiful way.

In the present paper we would like to explain how we think the perturbation theory must
be done. In section 2 we review the issue of cosmological perturbations in f(T) models of
gravity and also correct some mistakes from our previous work [2]. In section 3 we consider
perturbations of a flat spin connection. In section 4 we present a very simple and clear
way of incorporating them into the cosmological perturbation theory. Finally, in section 5
we conclude.
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2 Review and corrections to the previous work

The action of f(T) gravity is

S = −
∫
d4x‖e‖ · f (T) (2.1)

which yields the equations of motion

fT
(0)

Gµν +fTTSνµα∂
αT +

1

2
(f − fTT) gµν = 8πG ·Θµν (2.2)

where (0) over an object means that it has been calculated in terms of the Levi-Civita
connection instead of the teleparallel one.

The notations are as follows. The spacetime connection is given by the tetrad e and the
spin connection ω as

Γαµν = eαA
(
∂µe

A
ν + ωAµBe

B
ν

)
,

the torsion tensor is simply Tαµν = Γαµν − Γανµ, the superpotential and the torsion scalar are
defined by

Sαµν =
1

2
(Tµαν + T νµα + Tαµν) + gαµT ν − gανTµ (2.3)

and

T =
1

2
TαβµS

αβµ =
1

4
TαβµT

αβµ +
1

2
TαβµT

βαµ − TµTµ (2.4)

respectively, with the torsion vector being Tµ ≡ Tαµα. Finally, Θµν is the energy-momentum
tensor of the matter content of the universe (from now on assumed to be a perfect fluid).

We consider perturbations around the simplest cosmological solutions of the form

ds2 = a2(τ) ·
(
−dτ2 + dxi · dxi

)
with the most trivial choice of the tetrad

eAµ = a(τ) · δAµ

and zero spin connection. Analysis in the ref. [2] has been made in the pure tetrad gauge,
i.e. ωAµB = 0 even for perturbations. (Note that due to the lack of local Lorentz invariance,
the choice of this background tetrad in pure tetrad formalism is a part of the physical choice
of background cosmology, not merely a possible description of a given solution; and it would
be interesting to also construct perturbation theory around other solutions with the same
metric, such as those of the ref. [7].)

We used the following parametrisation for the tetrad variations

e�00 = a(τ) · (1 + φ) ,

e�0i = a(τ) · (∂iβ + ui) ,

ea0 = a(τ) · (∂aζ + va) ,

eaj = a(τ) ·
(

(1− ψ)δaj + ∂2ajσ + εajk∂ks+ ∂jca + εajkwk +
1

2
haj

)
with the usual assumptions that the vectors are divergenceless, and the tensor is divergence-
less and traceless. The spacetime indices like µ run over 0 for time and i or j for spatial
coordinates, while for the tangent indices A we use �0 and a respectively.
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Apart from the perturbed metric components

g00 = −a2(τ) · (1 + 2φ) ,

g0i = a2(τ) · (∂i (ζ − β) + vi − ui) ,
gij = a2(τ) ·

(
(1− 2ψ)δij + 2∂2ijσ + +∂icj + ∂jci + hij

)
,

we have 6 new variables related to local Lorentz transformations: boosts in 3 independent
directions parametrised by ui + vi + ∂i(β + ζ) and rotations around 3 independent axes
parametrised by wi + ∂is.

For the purposes of perturbation theory, it was convenient to separate the antisymmetric

(Sνµα − Sµνα) ∂αT = (Tαµν + gαµTν − gανTµ) ∂αT = 0 (2.5)

(in case fTT 6= 0), and the symmetric

fT
(0)

Gµν +fTTQ
µ
ν +

1

2
(f − fTT) δµν = 8πGΘµ

ν (2.6)

components of the equations of motion (2.2) where

Qµν ≡
1

2
(Sµνα + Sνµα) ∂αT. (2.7)

We refer the reader to the ref. [2] for details (some of them will be reproduced in the
section 4 with inclusion of the spin connection). However the general result is that the linear
perturbation theory is very similar to the case of general relativity with a notable exception
of a gravitational slip φ−ψ 6= 0 in absence of anisotropic stress. Here we would like to correct
a number of small mistakes from that paper [2].

2.1 Pseudoscalar variation

It was claimed in our previous work [2] that the pseudoscalar perturbation s contributes to
the variation of Ti0j components

Ti0j = −Tij0 = a2 ·
(
Hδij + εijk∂ks

′)
only (H ≡ a′

a ). It is not correct. One can easily derive that

Tijk = −a2 · (εijl∂2kls− εikl∂2jls)

which generically is not zero as can be seen by e.g. taking divergence ∂kTijk = −a2εijl∂l4 s.

However, one can see that the main claim was correct. The pseudoscalar perturbation
does not show up in the linearised equations of motion. It is very easy to prove. The only
place it can appear in is the perturbation of Sνµα in the fTTSνµα∂

αT term because the
variation of the torsion scalar is easily computed to be δT = −4H

a2
(4ζ + 3Hφ+ 3ψ′) which

does not contain s. And it is easily seen that Sµν0 components do not depend on s either.

This is actually an interesting point concerning the poorly understood issue of the so-
called remnant symmetry [8]. We see that out of the six new variables only one (ζ) contributes
to the linear variation of the torsion scalar. At the level of linearised equations of motion
five of them contribute (all but s).
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2.2 The vector sector

A more serious mistake has been made concerning the vector (and pseudovector) perturba-
tions. We had the following (correct) torsion tensor components

T0ij = a2 · (∂jui − ∂iuj) ,
T00i = a2 ·

(
−u′i +H(vi − ui)

)
,

Tijk = a2 · (εikl∂jwl − εijl∂kwl) ,
Ti0j = a2 ·

(
Hδij + εijkw

′
k − ∂jvi

)
,

with an obvious misprint in the form of unwanted factor of ∂i in T00i in ref. [2]. However,
already the torsion vector was found incorrectly. Using the formulae above, we see

Ti = −u′i + εijk∂jwk

which differs from the ref. [2] by the first term, while it is of course correct that T0 = 3H
does not receive any correction from the vector sector at linear order, and neither does the
torsion scalar.

The antisymmetric equation of motion (2.5) in its spatial part indeed boils down [2] to
T0ij = 0 for which the only admissible solution in perturbation theory is ui = 0. However,
the mixed components of this equation (2.5) were found incorrectly. Let us rewrite them as

0 =
(
−T 0

αi + δ0αTi − gαiT0
)
gα0T′ = (−T 0 0

i + g00Ti)T′. (2.8)

One can easily see that T 0 0
i = 1

a2
u′i, and this equation gives εijk∂jwk = 0, to be solved as

wi = 0, if T′ 6= 0. Given that

T =
6H2

a2
,

the last condition is satisfied as long as the cosmology is different from Minkowski and de
Sitter spacetimes where the model reduces to general relativity.

In the symmetric part of equations, the Q tensor (2.7) is

Qµν =
1

2

(
Tµνα + Tνµα + 2gµνTα − (gαµTν + gανTµ)

)
gα0T′

And we find that the antisymmetric equation (2.8) has set Q0
i to zero since

Q0
i =

1

2

(
T 0 0
i − g00Ti

)
T′ =

6H(H ′ −H2)

a4
εijk∂jwk.

Unbelievably enough, the Q0
i = 0 equality means that, according to mixed components

of equation (2.6), despite all mistakes in calculations the final result given in the ref. [2] for
the constraint relating the metric perturbation and the vortical velocity u of perfect fluid

fT 4 vi = 16πGa(ρ+ p)ui

is absolutely correct. Even though Q0i 6= 0, contrary to what has been stated there.
Calculations leading to the decay equation for vector perturbations are not influenced

by these corrections, and it appears to be correct in the ref. [2]. With this remark we conlcude
the correction of mistakes.
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3 Variation of the spin connection

Now we want to add to this game a variation of the spin connection in the flat class. It
can be easily done. We just need to remember that at the linearised level around zero spin
connection the flatness condition reads ∂µω

A
νB−∂νωAµB = 0 (quadratic terms omitted). As

such, it is equivalent to flatness of six independent differential forms taking values in the field
of real numbers. Since the assumed spacetime topology is trivial, the only solution is that
the forms are exact: ωAνB = ∂νλ

A
B with arbitrary λAB = −λBA. This is also the solution

reported in the ref. [6].
In this result, one can recognise the (linearised around Λ = I) condition of the connec-

tion being inertial ωAνB = (Λ−1)
A
C∂νΛCB, with λ being an element of the Lie algebra of the Lie

group to which Λ belongs. In other words, flat connections are the same as inertial connec-
tions. In general, existence of flat non-inertial connections would be a cohomology problem
for differential forms taking values in the Lorentz algebra. This freedom is connected to
global issues, and therefore is expected to be of no big deal anyway. Moreover, these ques-
tions of global topology should not be considered separately from the global parallelisability
condition of teleparallel approaches (not so restrictive in causal 3+1 dimensions though).

Taking these perturbations into account is a very trivial task. Indeed, by the very
construction, our model, as well as any other covariant teleparallel model, is invariant under
the following transformation:

eAµ −→ ΛACe
C
µ , ωAµB −→ ΛACω

C
µD(Λ−1)DB − (Λ−1)AC∂µΛCB, (3.1)

which at the linear order around our background reads

δeAµ −→ δeAµ + a(τ) · λACδCµ , ωAνB −→ ωAνB − ∂νλAB.

Therefore we see that one linear combination of ∂
(
1
aδe
)

and ω is gauge invariant under
local Lorentz transformations while another lacks any physical meaning, see also ref. [9].
Covariantising the perturbation theory of ref. [2] amounts to substituting the antisymmetric
perturbation of the tetrad with its covariant version.

4 Perturbation theory in Lorentz-covariant formulation of f(T) gravity

Let us illustrate the previous statements by explicit calculations. Adding the term with
ωAνB = ∂νλ

A
B to the spacetime connection coefficients, we see that very simple corrections

have to be added to the pure-tetrad torsion tensor components found in the ref. [2]:

Tαµν = Tαµν

∣∣∣∣
ω=0

+ a2(∂µλαν − ∂νλαµ) (4.1)

where the Latin indices are traded for Greek ones in the usual way via applying the tetrad.
The spin connection fluctuations can be classified into the scalar and vector ones in

precise analogy with the Lorentzian part of the tetrad:

λ0i = ∂iζ̃ + ũi,

λij = εijk(∂ks̃+ w̃k)

with divergenceless vectors ũ and w̃.
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Note that it is very important to separate the scalar and the vector perturbations. It
has not been done in the ref. [6], and that’s how the Authors were led to their first attempt of
solving the equations with a zero gravitational slip ansatz. They arrive at a condition that a
curl equals a gradient. Since it requires in perturbation theory that both are zero, the system
ends up being overdetermined in precise analogy with the old ref. [10]. In both cases the
antisymmetric perturbation is unjustifiably neglected, either by choosing the diagonal tetrad
ansatz in the pure tetrad gauge, or by setting some spin connection components to zero at will
in a gauge in which all antisymmetric perturbations are moved to the spin connection sector.

4.1 Tensor perturbations

Since there is no tensor perturbation in the spin connection, this equation remains the same:

fTh
′′
ij + 2H

(
fT +

6fTT (H ′ −H2)

a2

)
h′ij − fT 4 hij = 0.

4.2 Vector perturbations

For vector perturbations with c = 0 (diffeomorphisms’) gauge, we get

T0ij = a2 · (∂j(ui − ũi)− ∂i(uj − ũj)) ,
T00i = a2 ·

(
−(ui − ũi)′ +H(vi − ui)

)
,

Tijk = a2 · (εikl∂j(wl + w̃l)− εijl∂k(wl + w̃l)) ,

Ti0j = a2 ·
(
Hδij + εijk(wk + w̃k)

′ − ∂j(vi − ũi)
)
.

This is precisely the same torsion components which had been reported in the ref. [2] and in
the section 2.2 of this work, with the addition of new terms (variables with the tilde) given
by the formula (4.1).

We readily see that all the expressions for torsion components preserved their structure,
with the only change that w is replaced by w + w̃, and u by u − ũ, and v by v − ũ. Those
are Lorentz invariant combinations.

For u and v we could make the separation into the symmetric and antisymmetric varia-
tions more explicit by saying that v+u is replaced by v+u−2ũ, while the metric perturbation
v−u is intact. Let us explain it by making a simple observation that u = 1

2(u+v) + 1
2(u−v)

while u − ũ = 1
2(u + v − 2ũ) + 1

2(u − v), and analogously for v and v − ũ. In other words,
indeed we only have to replace the variables of antisymmetric variation of the tetrad by their
gauge invariant counterparts according to the local Lorentz symmetry (3.1).

After this replacement, all calculations proceed as before introducing the spin connec-
tion. As a result, we can only find the gauge invariant combinations of variables (such as
w + w̃) but not individual gauge-dependent quantities (such as w). In particular, the anti-
symmetric equations give now ui − ũi = 0 and wi + w̃i = 0 (compare to the section 2.2).

Since the same combinations, w + w̃, u − ũ and v − ũ, enter the symmetric part of
equations, the latter finally experiences no change. In particular, we get

Q0
i =

6H(H ′ −H2)

a4
εijk∂j(wk + w̃k) = 0,

and therefore no change in the summetric part

fT 4 (vi − ui) = 16πGa(ρ+ p)ui.

– 6 –
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Also nothing changes

fT · (vi − ui)′ + 2

(
fTH +

6fTTH(H ′ −H2)

a2

)
· (vi − ui) = 0

for the decay equation. The only subtlety is that now we have to write the genuine metric
perturbation v − u instead of simple v because the u = 0 equality (instead of u = ũ) is just
a gauge choice of vanishing spin connection.

4.3 Pseudoscalar perturbations

In pseudoscalars we have

Ti0j = a2 ·
(
Hδij + εijk∂k(s+ s̃)′

)
,

Tijk = −a2 · (εijl∂2kl(s+ s̃)− εikl∂2jl(s+ s̃));

the s variable is substituted by s+ s̃.

Of course, they still do not make it to the linearised field equations. Both s and s̃ remain
undetermined, the difference due to the rotational symmetry in covariantised models, and
the sum because of a mysterious reason which can be called remnant symmetry. Technically
the latter can be traced back to the fact that Sij0 accidentally appears identically symmetric
at the linear order, so that we lack one equation in the antisymmetric part.

4.4 Scalar perturbations

Finally, for scalar perturbations, in the σ = 0 and β = ζ (diffeomorphisms’) Newtonian
gauge, we have according to the formula (4.1)

T00i = a2 · ∂i
(
φ− (ζ − ζ̃)′

)
,

Tijk = a2 · (δij∂kψ − δik∂jψ) ,

Ti0j = a2 ·
(
Hδij − ∂2ij(ζ − ζ̃)− δij

(
2Hψ + ψ′

))
,

so that ζ of the ref. [2] is replaced by ζ − ζ̃, with no other change to the scalar perturbations
from ref. [2] but this replacement.

Again, the meaning is simple. The sum ζ + ζ̃ is a pure (Lorentz group) gauge variable,
while the difference can be found via the antisymmetric equation (mixed components):

4 (ζ − ζ̃) = −3

(
ψ′ +Hφ− H ′ −H2

H
ψ

)
. (4.2)

And this very same combination enters all the equations of the symmetric part. For example,
the (spatial) off-diagonal one gives the gravitational slip as:

φ− ψ = −12fTTH(H ′ −H2)

fT
(ζ − ζ̃). (4.3)

Obviously, after eliminating the ζ-s, neither this nor any other scalar perturbation equation
of the ref. [2] experiences any modification. And in general, all equations of the section 7 of
ref. [2] remain the same with ζ replaced by ζ− ζ̃ wherever needed. In particular, the acoustic

– 7 –
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waves are described by equations (7.6) and (7.7) of the ref. [2] with the gravitational slip
determined by our equations (4.2), (4.3) equivalent to those given there.

Let us remark again that including the spin connection into the cosmological pertur-
bation theory amounts to rewriting the very same equations of the pure tetrad formalism
in a (local Lorentz) covariant form. From this point of view, the approach of refs. [2, 11]
corresponds to the ζ̃ = 0 gauge in the scalar sector, while the ref. [6] employs the ζ = 0 gauge
instead. If correctly done, the latter method can lead to nothing but the very same results
as the pure tetrad approach did. For example, if one considers only symmetric perturbations
of the tetrad, with the spin connection perturbations taken for the antisymmetic part, then
the relevant connection perturbation for the scalar sector is given by ζ̃. One can translate
it into the pure tetrad formulation by setting the spin connection perturbation to zero and
adding the ζ = −ζ̃ perturbation to the tetrad instead.

An important point however is that, one way or another, the antisymmetric part of
the perturbation must be fully taken into account. Otherwise calculations would not be
self-consistent, and the equation of motion (2.2) might turn out overdetermined [10].

5 Conclusions

We have shown by explicit calculations that the perturbation theory in f(T) cosmology does
not depend on whether one works in the pure tetrad formalism or in a covariant formulation.
Of course, this is not a big surprise. However, it allowed us to present the way of working with
cosmological perturbations in presence of the flat spin connection. And at the same time we
corrected some small mistakes from the ref. [2]. Fortunately, they did not change the main
conclusions, and the worst ones belonged to the least interesting sector of perturbations, the
vector one.

Note that the approach presented here is completely general. Introducing the flat spin
conneciton leads to the same (local Lorentz) gauge invariant combinations of tetrad and spin
connection components [9] in perturbation theory of any modified teleparallel model [2, 12],
if properly covariantised [4] indeed. These considerations should be taken seriously if one
wishes to study cosmological implications of teleparallel approaches to modified gravity.
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