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We present here a revised version of the appendices of Gradenigo and Majumdar (2019 J. 
Stat. Mech. 053206). Some minor corrections are introduced and a new simplified argu-
ment to obtain the critical value of rc, the control parameter for the transition, is pre-
sented. The overall scenario and the description of the transition mechanism depicted in 
Gradenigo and Majumdar (2019 J. Stat. Mech. 053206) remains completely untouched, 
the only relevant dierence being the value of rc fixed to rc = 21/3 = 1.259 92 . . . rather 
than rc = 1.3805 . . .. This dierence also implies a small quantitative changes in figures 2 
and 4; a new version of both figures is reported here. A couple of other typos discovered 
in the paper are pointed out and the correct version of the expressions are reported.
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1. Amendments to appendix B

In this erratum, we report a corrected version of the appendix B of [1], including dierent 
subsections of appendix B, i.e. B.1–B.3. In section B.1, the mechanism for choosing the 
correct root is pointed out, and furthermore, some algebraic errors have been corrected 
in section B.2. This analytically gives the correct value of rc = 21/3 = 1.259 92 (instead 
of the old value of rc  =  1.3805 which was numerically obtained in the published ver-
sion). Consequently the correct value of zc  =  11.7771.. replaces the old numerical value 
zc ≈ 12.0. This change of zc appears clearly in the new figure 4 of this erratum, where 
the dotted vertical line is clearly shifted to the left with respect to the same figure in 
the published version [1]. The argument to obtain rc = 21/3 is presented in section B.3. 
In order to facilitate the comparison to the figures of the present manuscript we have 
given the same numbers as in [1]. Finally, we thank N Smith for pointing out the alge-
braic error in appendix B.2 of the published version.

B. Derivation of the rate function χ(z) in the intermediate matching regime

In this appendix we study the leading large N behavior of the integral that appears in 
the expression for PA(z,N) in equation (56) of [1]:

IN(z) =

∫

Γ(+)

ds
1√
s
eN

1/3Fz(s)
� (1)

where z � 0 can be thought of as a parameter and

Fz(s) = sz +
1

2
σ2 s2 +

1

2sE
,� (2)

with σ2 = 2 + 5E2. It is important to recall that the contour Γ(+) is along a vertical 
axis in the complex s-plane with its real part negative, i.e. Re(s) < 0. Thus, we can 
deform this contour only in the upper left quadrant in the complex s plane (Re(s) < 0 
and Im(s) > 0), but we cannot cross the branch cut on the real negative axis, nor can 
we cross to the s-plane where Re(s) > 0. A convenient choice of the deformed contour, 
as we will see shortly, is the Γ(+) rotated anticlockwise by an angle π/2, so that the 
contour now goes along the real negative s from 0 to −∞.

To evaluate the integral in equation (1), it is natural to look for a saddle point of 
the integrand in the complex s plane in the left upper quadrant, with fixed z. Hence, we 
look for solutions for the stationary points of the function Fz(s) in equation (2). They 
are given by the zeros of the cubic equation

F ′
z(s) =

dFz(s)

ds
= z + σ2 s− 1

2Es2
≡ 0.� (3)

As z � 0 varies, the three roots move in the complex s plane. It turns out that for 
z  <  zl (where zl is to be determined), there is one positive real root and two complex con-
jugate roots. For example, when z  =  0, the three roots of equation (3) are respectively 
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at s = (2Eσ2)−1/2 eiφ with φ = 0, φ = 2π/3 and φ = 4π/3. However, for z  >  zl, all the 
three roots collapse on the real s axis, with s1 < s2 < s3. The roots s1  <  0 and s2  <  0 are 
negative, while s3  >  0 is positive. For example, in figure B1, we plot the function F ′

z(s) 
in equation (3) as a function of real s, for z  =  12 and E  =  2 (so σ2 = 2 + 5E2 = 22). One 
finds, using Mathematica, three roots at s1  =  −1/2 (the lowest root on the negative 
side), s2 = −0.175 186 . . . and s3 = 0.129 732 . . .. We can now determine zl very easily. 
As z decreases, the two negative roots s1 and s2 approach each other and become coinci-
dent at z  =  zl and for z  <  zl, they split apart in the complex s plane and become complex 
conjugates of each other, with their real parts identical and negative. When s1 < s2, the 
function F ′

z(s) has a maximum at sm with s1 < sm < s2 (see figure B1). As z approaches 
zl, s1 and s2 approach each other, and consequently the maximum of F ′

z(s) between s1 
and s2 approaches the height 0. Now, the height of the maximum of F ′

z(s) between s1 
and s2 can be easily evaluated. The maximum occurs at s  =  sm where F ′′

z (s) = 0, i.e. at 
sm = −(Eσ2)−1/3. Hence the height of the maximum is given by

F ′
z(s = sm) = z + σ2 sm +

1

2smE
= z − 3

2

(
σ4

E

)1/3

.� (4)

Hence, the height of the maximum becomes exactly zero when

z = zl =
3

2

(
σ4

E

)1/3

.� (5)

Thus we conclude that for z  >  zl, with zl given exactly in equation  (5), the function 
F ′
z(s) has three real roots at s  =  s1  <  0, s2  <  0 and s3  >  0, with s1 being the smallest 

negative root on the real axis. For z  <  zl, the pair of roots are complex (conjugates). 
However, it turns out (as will be shown below) that for our purpose, it is sucient to 
consider evaluating the integral in equation (1) only in the range z  >  zl where the roots 
are real and evaluating the saddle point equations is considerbaly simpler. So, focusing 
on z  >  zl, out of these three roots as possible saddle points of the integrand in equa-
tion (1), we have to discard s3  >  0 since our saddle points have to belong to the upper 
left quadrant of the complex s plane. This leaves us with s1  <  0 and s2  <  0. Now, we 
deform our vertical contour Γ(+) by rotating it anticlockwise by π/2 so that it runs 
along the negative real axis. Between the two stationary points s1 and s2, it is easy to 
see (see figure B1) that F ′′

z (s1) > 0 (indicating that it is a minimum along real s axis) 
and F ′′

z (s2) < 0 (indicating a local maximum). Since the integral along the deformed 
contour is dominated by the maximum along real negative s for large N, we should 
choose s2 to be the correct root, i.e. the largest among the negative roots of the cubic 
equation z + σ2s− 1/(2Es2) = 0.

Thus, evaluating the integral at s∗ = s2 (and discarding pre-exponential terms) we 
get for large N

IN(z) ≈ exp[−N1/3χ(z)]� (6)

where the rate function χ(z) is given by

χ(z) = −Fz(s = s2) = −s2 z −
1

2
σ2s22 −

1

2s2E
.� (7)

https://doi.org/10.1088/1742-5468/ab75e9
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The right hand side can be further simplified by using the saddle point equation (3), 
i.e. z + σ2s2 − 1/2Es22 = 0. This gives

χ(z) = −zs2
2

− 3

4Es2
.� (8)

B.1. Asymptotic behavior of χ(z)

We now determine the asymptotic behavior of the rate function χ(z) in the range 
zl < z < ∞, where zl is given in equation (5). Essentially, we need to determine s2 (the 
largest among the negative roots) as a function of z by solving equation (3), and substi-
tute it into equation (8) to determine χ(z).

We first consider the limit z → zl from above, where zl is given in equation (5). As 
z → zl from above, we have already mentioned that the two negative roots s1 and s2 
approach each other. Finally at z  =  zl, we have s1 = s2 = sm where sm = −(Eσ2)−1/3 
is the location of the maximum between s1 and s2. Hence as z → zl from above, 
s2 → sm = −(Eσ2)−1/3. Substituting this value of s2 in equation (8) gives the limiting 
behavior

χ(z) → 3

2

( σ

E

)2/3

as z → zl� (9)

as announced in the first line of equation (24) in [1].
To derive the large z → ∞ behavior of χ(z) as announced in the second line of equa-

tion (24) in [1], it is first convenient to re-parametrize s2 and define

Figure 2.  (In place of figure  2 in [1]) Continuous (red) line: rate function of 
equation (22) in [1], analytical prediction. zc ≈ 11.78 is the location of the first-order 
dynamical transition: Ψ′(z) is clearly discontinuous at zc. Dotted lines indicate χ(z) 
for z  <  zc and z2/(2σ2) for z  >  zc. zl is the lowest value of z such that χ(z) can be 
computed via a saddle-point approximation.

https://doi.org/10.1088/1742-5468/ab75e9
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s2 = − 1√
2Ez

θz.� (10)

Substituting this into equation (3), it is easy to see that θz satisfies the cubic equation

−b(z) θ3z + θ2z − 1 = 0,� (11)

where

b(z) =
σ2

√
2E

1

z3/2
.� (12)

Note that due to the change of sign in going from s2 to θz, we now need to determine 
the smallest positive root of θz in equation (11). In terms of θz, χ(z) in equation (8) reads

χ(z) =

√
z

2
√
2E

θ2z + 3

θz
.� (13)

The formulae in equations  (11)–(13) are now particularly suited for the large z 
analysis of χ(z). From equations (11) and (12) it follows that in the limit z → ∞ we 
have that b(z) → 0, so that θz → 1. Hence, for large z or equivalently small b(z), we can 
obtain a perturbative solution of equation (11). To leading order, it is easy to see that

θz = 1 +
b(z)

2
+O

(
b(z)2

)
� (14)

with b(z) given in equation (12). Substituting this into equation (13) gives the large z 
behavior of χ(z)

χ(z) =

√
2

E

√
z − σ2

4E

1

z
+O

(
1

z5/2

)
� (15)

Figure 4.  (In place of figure 4 in [1]) Bottom: numerical data for the rate function 
derivative Ψ′(z). Continuous black line is the analytical prediction in the limit 
N → ∞, the coordinate of the transition point is zc ≈ 11.78 (for E  =  2).

https://doi.org/10.1088/1742-5468/ab75e9
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as announced in the second line of equation (24) in [1].

B.2. Explicit expression of χ(z)

While the excercises in the previous subsections were instructive, it is also possi-
ble to obtain an explicit expression for χ(z) by solving the cubic equation (11) with 
Mathematica. The smallest positive root of equation (11), using Mathematica, reads

θz =
1

3bz
+

1

3 · 22/3bz
(1− i

√
3)(

−2 + 27b2z + 3
√

−12 + 81b2z

)1/3

+
1

3 · 24/3bz
(1 + i

√
3)

(
−2 + 27b2z + 3

√
−12 + 81b2z

)1/3
�

(16)

where bz, used as an abbreviation for b(z), is given in equation (12). Using the expres-
sion of zl in equation (5), we can re-express bz conveniently in a dimensionless form

b2z =
1

2

(
2

3

zl
z

)3

.� (17)

Consequently, the solution θz in equation (16) in terms of the adimensional parameter 
r = z/zl � 1 reads as

θz ≡ θ(r) =

√
3

4
r3/2

[
2 +

(1− i
√
3)

g(r)
+ (1 + i

√
3)g(r)

]
� (18)

where

g(r) =
1

r

(
1 + i

√
r3 − 1

)2/3

.� (19)

By multiplying both numerator and denominator of θ(r) by (1− i
√
r3 − 1)2/3 one ends 

up, after a little algebra, with the following expression

θ(r) =

√
3

4
r3/2

[
2 +

1

r

(
ξ ζ2/3r + ξ ζ

2/3

r

)]
,� (20)

where ξ and ζr denotes a complex number and a complex function of the real variable 
r, respectively:

ξ = 1 + i
√
3

ζr = 1 + i
√
r3 − 1,

� (21)

and we have also introduced the related complex conjugated quantities:

ξ = 1− i
√
3

ζr = 1− i
√
r3 − 1.

� (22)

We can then write the complex expressions in equation  (20), both in their polar 
form, i.e. ζr = ρre

iφr and ξ = ρeiφ, with

https://doi.org/10.1088/1742-5468/ab75e9
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ρr = r3/2

φr = arctan(
√
r3 − 1)

� (23)

respectively, and

ρ = 2

φ = arctan(
√
3) =

π

3
.� (24)

Finally, by writing ξ and ζr inside equation (20) in their polar form and taking advan-
tage of the expressions in equations (23) and (24) we get:

θ(r) =

√
3

4
r3/2

[
2 +

1

r
ρ ρ2/3r

(
ei(φ+

2
3
φr) + e−i(φ+ 2

3
φr)

)]

=

√
3

2
r3/2

[
1 + 2 cos

(
π

3
+

2

3
arctan(

√
r3 − 1)

)]
.

�
(25)

In order to explicitly draw the function χ(z), e.g. with the help of Mathematica, one can 
plug the expression of θ(r = z/zl) from equation (25) into the following formula:

χ(z) =

√
z

2
√
2E

θ(z/zl)
2 + 3

θ(z/zl)
.� (26)

B.3. The critical value zc

We show here how to compute the critical value zc at which χ(z) equals z2/(2σ2), i.e. the 
value at which the two branches in figure 2 cross each other. To make the computations 
easier, it is convenient to work with dimensionless variables. Using zl = (3/2)(σ4/E)1/3 
from equation (5), we express z in units of zl, i.e. we define

r =
z

zl
=

2z

3

(
E

σ4

)1/3

.� (27)

In terms of r, one can rewrite b(z) in equation (12) as (using the shorthand notation 
bz  =  b(z)):

b2z =
1

2

(
2

3r

)3

.� (28)

Consequently, equation (11) reduces to

− 1√
2

(
2

3

)3/2

r−3/2 θ(r)3 + θ(r)2 − 1 = 0 ,� (29)

where θ(r) = θz=rzl is dimensionless. Quite remarkably, it turns out that to determine 
the critical value zc, rather conveniently we do not need to solve the above cubic equa-
tion, equation (29). Indeed, at z  =  zc, i.e. r  =  rc, equating χ(zc) = z2c/2σ

2, we get

https://doi.org/10.1088/1742-5468/ab75e9
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√
zc

2
√
2E

[
θ(rc)

2 + 3

θ(rc)

]
=

z2c
2σ2

.� (30)

Expressing in terms of rc, equation (30) simplifies to

θ2(rc) + 3

θ(rc)
=

33/2

2
r3/2c .� (31)

Consider now equation (29) evaluated at r  =  rc. In this equation, we replace rc by its 
expression in equation (31). This immediately gives θ(rc)

2 = 3/2 and hence

θ(rc) =

√
3

2
.� (32)

Using this exact θ(rc) in equation (31) gives

rc =
zc
zl

= 21/3 = 1.259 92 . . .� (33)

It is now straightforward to check that the expression of θ(r) written in equation (25) 
is consistent with the result just found, i.e. from it we retrieve θ(rc = 21/3) =

√
3/2. 

We have that

θ(rc = 21/3) =

√
3

2
r3/2c

[
1 + 2 cos

(
π

3
+

2

3
arctan(

√
r3c − 1)

)]

=

√
3

2

[
1 + 2 cos

(
π

3
+

2

3
arctan(1)

)]
=

√
3

2

[
1 + 2 cos

(π
2

)]

=

√
3

2
,

�

(34)

as expected.
For comparison to numerical simulations, we chose E  =  2, for which 

σ2 = 2 + 5E2 = 22. We get zl = (3/2)(σ4/E)1/3 = 9.347 52 . . ., which gives 
zc = rczl = (1.259 92 . . . )zl = 11.7771 . . . . This is represented by a black dotted vertical 
line in figure 4 (in place of figure 4 in [1]).

2. Other amendments/typos

2.1. Asymptotic behaviour of χ(z) in equation (24) of [1]

Please take into account that the exponent of the subleading term in the expression in 
the second line of equation (24) in [1] is 5/2 and not 3/2. That is, the correct expression 
for the behaviour of χ(z) at large z is

χ(z) =

√
2

E

√
z − σ2

4E

1

z
+O

(
1

z5/2

)
.� (35)

https://doi.org/10.1088/1742-5468/ab75e9
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2.2. Prefactor of PA(z,N) in equations (56) and (85) of [1]

The dependence on N of the prefactor in the right hand side of both equations (56) and 

(85) in [1] is wrong, 1/
√
N1/3 must be replaced with N5/6. In fact, the correct expression 

to be considered in place of equation (56) in [1] is

PA(z,N) = N5/6 e1/(2E
2)

i
√
2πE

∫ i∞

−i∞

dỹ√
ỹ
eN

1/3Fz(ỹ),� (36)

whereas the correct expression to be considered in place of equation (85) in [1] is

PA(z,N) = N5/6 eEX e1/(2E
2)

i
√
2πE

∫ i∞

−i∞

dỹ√
ỹ
eN

1/3Fz(ỹ).� (37)
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