
J. S
tat. M

ech. (2020) 043103

Thermodynamic properties of ideal 
Bose gas trapped in dierent external 
power-law potentials under generalized 
uncertainty principle*

Ya-Ting Wang and He-Ling Li1

School of Physics and Electronic-Electrical Engineering, Ningxia University, 
Yinchuan 750021, People’s Republic of China
E-mail: ningxiayclhl@163.com

Received 25 November 2019
Accepted for publication 7 February 2020  
Published 14 April 2020

Online at stacks.iop.org/JSTAT/2020/043103
https://doi.org/10.1088/1742-5468/ab780f

Abstract.  Significant evidence is available to support the quantum eects 
of gravity that lead to the generalized uncertainty principle (GUP) and the 
minimum observable length. Usually in quantum mechanics, statistical physics 
does not take gravity into account. Thermodynamic properties of ideal Bose 
gases in dierent external power-law potentials are studied under the GUP 
with a statistical physical method. Critical temperature, internal energy, 
heat capacity, entropy, particle number of ground state and excited state are 
calculated analytically to ideal Bose gases in the external potentials under the 
GUP. Below the critical temperature, taking the rubidium and sodium atoms, 
ideal Bose gases whose particle densities are under standard and experimental 
conditions, respectively, as examples, the relations of internal energy, heat 
capacity and entropy with temperature are analyzed numerically. Theoretical 
and numerical calculations show that: (1) the GUP leads to an increase in 
the critical temperature. (2) When the temperature is lower than the critical 
temperature and slightly higher than 0 K, the GUP’s amendments to internal 
energy, heat capacity and entropy etc are positive. As the temperature increases 
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to a certain value, these amendments become negative. (3) The external 
potentials can increase or decrease the influence of the GUP on thermodynamic 
properties. When ε  =  1 J, ε is the quantity that reflects the external potential 
intensity, and atomic density n  =  2.687  ×  1025 m−3, the GUP’s amendments to 
the internal energy, heat capacity and entropy of the rubidium atoms ideal Bose 
gas first decrease and then increase with the increase of X (where X  ≡  Σi1/ti 
is sum of the reciprocal of the exponents of the power function). In three-
dimensional harmonic potential, the relative correction term of the GUP is 
26 orders of magnitude larger than that of a free-particle system in a fixed 
container. (4) When ε  ≈10−31 J and n  ≈  1020 m−3 (which are the experimental 
data when BEC was first verified by sodium atomic gas), the influence of the 
GUP can be completely ignored. (5) Under certain conditions, GUP may become 
the dominant factor governing the thermodynamic properties of the system.

Keywords: quantum gases
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1.  Introduction

Matter exhibits superfluid and superconducting characteristics at appropriately low 
temperature. Theories and experiments have shown that superfluidity and supercon-
ductivity are closely related to the ‘cooperation’ between quantum particles, such 
as the well-known conventional superconductor microscopic theory (BCS theory, the 
name comes from Bardeen, Cooper and Schrieer) and Bose-Einstein condensation 
theory (BEC theory). The experimental verification of the BEC [1–3] has improved our 
understanding of the nature of macro-quantum objects [4–9].

Applying an external potential is important for restricting and studying quantum 
gases [10, 11]. By changing the shape and intensity of the external potential, we 
can artificially control the scattering length between atoms, which is to control the 
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interaction between atoms [12], and regulate various behaviors of quantum systems. 
Many scholars have studied the thermodynamic properties of ideal boson gas and 
weakly interacting boson gas under dierent limiting potentials [13–18].

When studying the ‘cooperation’ between particles in the context of statistical 
physics and quantum mechanics, because the influence of gravity is minor, we usu-
ally ignore gravitational eects. However, gravity is everywhere. In a quantum theory 
of gravity, the Heisenberg algebra of quantum mechanics is replaced by a deformed 
Heisenberg algebra, and fundamental commutation is modified so that the uncertainty 
principle in regular quantum mechanics is modified to the generalized uncertainty 
principle (GUP) [19]. There exists a minimal observed length, which is a basic quantity 
closely related to the structure of space-time [20]. Considerable evidence (from string 
theory [21], loop quantum gravity [22], and non-commutative geometry [23]) is avail-
able to confirm the GUP.

When considering the quantum eect of gravity, the density of quantum states in 
statistical physics is modified, which may have a significant influence on theoretical 
reasoning regarding the thermodynamic properties of the system. Some studies in the 
literature have applied the GUP to systems of blackbody radiation [24], harmonic 
oscillators [25, 26], ideal gases [24, 27], and astrophysics [28–30]. And some theoretical 
results have been subversive to traditional concepts, for example, heat capacity tends 
to zero at extremely high temperatures [24]. However, the heat capacity calculated by 
traditional statistical physics is the result of the energy equality theorem at normal 
high-temperature conditions, that is, it is a temperature-independent constant. For a 
classic ideal gas, the number of particles in an excited state of the system tends to a cer-
tain value as the temperature tends to infinity. That is, if the number of particles in the 
system increases, they ‘condense’ in the ground state (the condensation as temperature 
tends to infinity!). The energy of the system no longer increases at a limit temperature, 
and an upper energy limit appears [27]. The above results are completely dierent from 
those deduced by traditional statistical physics, thus subverting it.

In this paper, the thermodynamic properties of ideal Bose gases in dierent exter-
nal power-law potentials are studied under the GUP. Thermodynamic quantities, such 
as the mean particle number in ground state and excited state, critical temperature, 
internal energy, heat capacity and entropy, are calculated analytically and analyzed 
numerically. The influences of dierent external power-law potentials and of the GUP 
on the thermodynamic properties of Bose systems are discussed.

2. Critical temperature of ideal Bose gases in dierent external power-law poten-
tials under the GUP

Consider a system which consists of an ideal Bose gas trapped in an external potential. 
Single-particle energy in the external potential may be expressed as

ε(p, r) =
p2

2m
+ V (r),� (1)

https://doi.org/10.1088/1742-5468/ab780f
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where p = (px, py, pz) and r = (x, y, z) are the momentum and the coordinates of 
particles in three-dimensional space, respectively, m is the rest mass of a particle, 

p2 = p2x + p2y + p2z. The external power-law potentials may be expressed as

V (r) = ε1|x/L1|t1 + ε2|y/L2|t2 + ε3|z/L3|t3 .� (2)

Where ti, εi, and Li (i  =  1,2,3) are positive constants describing the external poten-
tials. When the number of particles is large, and potential energy of the particles is 
smaller than the kinetic energy of particles in the external potential (this condition is 
often met in relevant experiment [1]), and we can use the Thomas-Fermi semi-classical 
approximation. In this instance, the logarithm of the grand partition function may be 
expressed as

lnΞ = − g

h3

ˆ
ln[1− e−α−βε]dpdr,� (3)

where h is Planck constant, g is spin degeneracy, β = 1/kBT , α=− βµ, kB is Boltzmann 
constant, µ is chemical potential, and T is absolute temperature. dp = dpxdpydpz, 
dr = dxdydz .

From [19], one can easily derive the simplest form of the GUP with modified 
commutation

∆x∆p �
�
2
(1 + A(∆p)2),� (4)

Where � = h/2π. Equation (4) implies a minimum observable length [19, 24], and the 
relationship between the positive parameter A and the minimum observable length 
∆xminis expanded as

∆xmin = �
√
A.� (5)

Where ∆xminis closely related to space-time structure [20].
When considering the GUP, the density of states should include a correction factor 

[24–27, 31, 32]:(1 + Ap2)
−3

. Then the logarithm of the grand partition function of the 
boson system is corrected as

lnΞ = − g

h3

ˆ
ln(1− e−β(ε−µ))

(1 + Ap2)3
dpdr.� (6)

Because in many cases the eect of the GUP is small, the amendment factor (1 + Ap2)
−3

can be expanded by momentum [27, 32].
Ä
1 + Ap2

ä−3
= 1− 3Ap2 +

3 (3 + 1)

2!

Ä
Ap2
ä2 − 3 (3 + 1) (3 + 2)

3!

Ä
Ap2
ä3

+ · · · .
� (7)

Substituting equation (7) into (6), using spherical coordinate and integrating, we can 
obtain

ln Ξ =
gV ∗

λ3
[gη+1(zr)− 9gη+2(zr)mAkBT + 90gη+3(zr)(mAkBT )

2 − · · · ].� (8)

Where λ = h/
√
2πmkBT  is the thermal wavelength, zr = eβµ is fugacity.

https://doi.org/10.1088/1742-5468/ab780f
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V ∗ =
∏3

i=1

2Li

(βεi)
1/ti

Γ(
1

ti
+ 1),� (9)

η = X +
3

2
, X =

∑3

i=1

1

ti
,� (10)

gl(z) is the Bose integration

gl(z) =
1

Γ(l)

ˆ ∞

0

tl−1

z−1et − 1
dt

z�1−−→
∞∑
j=1

z j

jl
,� (11)

gl(z) meets the following conditions

gl (z) = z
dgl+1 (z)

dz
, (l > 1),� (12)

Γ(l) is a gamma function

Γ(l) =

ˆ ∞

0

yl−1eydy.� (13)

When the GUP is not considered (A  =  0), the results obtained by equation  (8) and 
thermodynamic formulas are consistent with those in [13, 16, 17].

Using a basic formula of statistical mechanics, the average number of particles of 
the system can be expressed as

N = −∂ ln Ξ

∂α
=

gV ∗

λ3
[gη(zr)− 9gη+1(zr)mAkBT + 90gη+2(zr)(mAkBT )

2 − · · · ].
�

(14)

When the number of particles N is constant, the chemical potential µ increases 
with a decrease in temperature. When temperature T decreases to Tc, µ → 0, zr → 1, 
and Bose–Einstein condensation (BEC) begins to occur. At this time, the number of 
particles N0 of the ground state with zero energy and momentum can still be ignored. 
Equation (14) may be expressed as

N =
gV ∗

λ3
c

[ζ(η)− 9ζ(η + 1)mAkBTc + 90ζ(η + 2)(mAkBTc)
2 − · · · ].� (15)

Where gl(1) =
∑∞

j=1 1/j
l = ζ(l) is the Riemann-zeta function that converges when l > 1

and diverges when l � 1, λc = h/
√
2πmkBTc. We let

n∗ =
N

V ′ ; V ′ =
3∏

i=1

2Li

(εi)
1/ti

Γ(
1

ti
+ 1).� (16)

When the GUP is not considered (A  =  0), the BEC temperatures of ideal Bose gases 
in external power-law potentials in 3D space can be obtained as

Tc0 =
1
kB
( n∗h3

g(2πm)3/2ζ(η)
)
1
η

= 1
kB
[ Nh3

ζ(η)(2πm)3/2

3∏
i=1

ε
1/ti
i

g(2Li)Γ(1/ti+1)
]
1/η

.
� (17)
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By applying the iterative method to equation (15), when considering the GUP and 
retaining only its second-order amendment, the BEC temperature Tc of the ideal Bose 
gases in external power-law potentials can be expressed as

Tc = Tc0

®
1 +

9

η

ζ (η + 1)

ζ (η)
mAkBTc0 +

9

η

ñÇ
9

2η
+

9

2

å
ζ2 (η + 1)

ζ2 (η)
− 10ζ (η + 2)

ζ (η)

ô
(mAkBTc0)

2 + · · ·
´
.

� (18)
The corrections to the BEC temperatures of the ideal Bose gases in external power-

law potentials by the GUP can be expressed as

∆Tc = Tc0

®
9

η

ζ (η + 1)

ζ (η)
mAkBTc0 +

9

η

ñÇ
9

2η
+

9

2

å
ζ2 (η + 1)

ζ2 (η)
− 10ζ (η + 2)

ζ (η)

ô
(mAkBTc0)

2 + · · ·
´
.

� (19)

3. Thermodynamic properties of ideal Bose gases trapped in dierent external 
power-law potentials under the GUP

3.1. The thermodynamic functions at T > Tc

Using the grand partition function of equation (8) and the particle number of equa-
tion (14), the internal energy U of the system can be obtained

U = kT 2 ∂ ln Ξ
∂T

= ηNkBT
gη+1(zr)

gη(zr)

{
1 + 9

[
gη+1(zr)

gη(zr)
− η+1

η

gη+2(zr)

gη+1(zr)

]
mAkBT

+
ï
81

g2
η+1

(zr)

g2
η
(zr)

−
(
90 + 81η+1

η

)
gη+2(zr)

gη(zr)
+ 90(η+2)

η

gη+3(zr)

gη+1(zr)

]
(mAkBT )

2 + · · ·
}
.

� (20)
Using equation (20), the heat capacity C can be obtained

C = ∂U
∂T

= ηNkB
{
(η + 1) gη+1(zr)

gη(zr)
− η gη(zr)

gη−1(zr)
+ 9

[
(η + 2) gη+1(zr)

gη−1(zr)
+ (η + 1)

g2η+1(zr)

g2η(zr)
− η

g2η(zr)

g2η−1(zr)

− (η+1)(η+2)
η

gη+2(zr)

gη(zr)

]
mAkBT + 9

ï
(19η + 18) gη+1(zr)gη(zr)

g2η−1(zr)
+ 10(η+2)(η+6)

η

gη+3(zr)

gη(zr)

−10 (η + 4) gη+2(zr)

gη−1(zr)
− 9η

g3η(zr)

g3η−1(zr)
+9 (η + 1)

g3η+1(zr)

g3η(zr)
− (η+1)(19η+18)

η

gη+2(zr)gη+1(zr)

g2η(zr)

+
(16η2−9)

η

g2η+1(zr)

gη−1(zr)gη(zr)

ò
(mAkBT )

2 + · · ·
™
.

�

(21)

The entropy S may be expressed as

S = kB (ln Ξ + αN + βU)

= NkB
gη+1(zr)

gη(zr)

{
(η + 1) + 9

[
(η + 1) gη+1(zr)

gη(zr)
− (η + 2) gη+2(zr)

gη+1(zr)

]
mAkBT

+9
ï
9 (1 + η)

g2η+1(zr)

g2η(zr)
− (19η + 28) gη+2(zr)

gη(zr)
+ 10 (η+3)gη+3(zr)

gη+1(zr)

]
(mAkBT )

2 − lnzr + · · ·
}
.

�

(22)

The above calculations are obtained by ignoring the number of particles N0 in the 
ground state. So this is the thermodynamic property at T > Tc. When the temperature 
is very low, that is, when T � Tc, N0 increases with the decrease of temperature. N0 
cannot be ignored and the BEC occurs.

https://doi.org/10.1088/1742-5468/ab780f
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3.2. The thermodynamic functions at T < Tc

When T < Tc, µ ≈ 0, zr ≈ 1, the particles number Ne in excited state is

Ne =
gV ∗

λ3
[ζ (η) − 9ζ (η + 1)mAkBT + 90ζ (η + 2) (mAkBT )

2 − · · ·
ó
.� (23)

Ne can be expressed by the total average number of particles N

Ne = N
Ä
T
Tc

äη [
1 + 9ζ(η+1)mAkB

ζ(η)
(Tc − T ) + 90ζ(η+2)(mAkB)

2

ζ(η)
(T 2 − T 2

c )

+
(
9ζ(η+1)mAkB

ζ(η)

)2
(T 2

c − TTc)+ · ··
ò
.

�

(24)

That is, Ne decreases with the decrease of temperature. The number of particles N0 
in the ground state can be expressed as

N0 = N −Ne = N
¶
1−

Ä
T
Tc

äη [(
1 + 9ζ(η+1)mAkB

ζ(η)

)
(Tc − T )

+90ζ(η+2)(mAkB)
2

ζ(η)

Ä
T 2 − Tc

2
ä
+

(
9ζ(η+1)mAkB

ζ(η)

)2
(T 2

c − TTc)+ · · ·
ò™

.
� (25)

From equation (25), we get

N0

N
= 1−

Ä
T
Tc

äη [(
1 + 9ζ(η+1)mAkB

ζ(η)

)
(Tc − T ) + 90ζ(η+2)(mAkB)

2

ζ(η)

Ä
T 2 − Tc

2
ä

+
(
9ζ(η+1)mAkB

ζ(η)

)2
(T 2

c − TTc)+ · ··
ò

� (26)
When T < Tc, only the particles in the excited state contribute to the internal energy. 

The internal energy is

U = ηNkBT
Ä
T
Tc

äη ζ(η+1)
ζ(η)

{
1 + 9

[
ζ(η+1)
ζ(η)

− η+1
η

ζ(η+2)
ζ(η+1)

]
mAkBT

+9 ζ(η+1)
ζ(η)

mAkB (Tc − T ) +
(
9 ζ(η+1)

ζ(η)

)2
(mAkB)

2 (T 2
c − TcT ) +

90ζ(η+2)
ζ(η)

(mAkB)
2

×
Ä
T 2 − Tc

2
ä
+ 81 ζ(η+1)

ζ(η)

[
ζ(η+1)
ζ(η)

− η+1
η

ζ(η+2)
ζ(η+1)

]
(mAkB)

2 (TcT − T 2)

+9
[
9 (1 + η) ζ2(η+1)

ζ2(η)
− (19η + 28) ζ(η+2)

ζ(η)
+ 10 (η + 3) ζ(η+3)

ζ(η+1)

]
(mAkBT )

2 + · · ·
}
.

�

(27)

When T < Tc, the heat capacity C and the entropy S are, respectively

C = ηNkB
Ä
T
Tc

äη ζ(η+1)
ζ(η)

{
(η + 1) + 9 (η + 1) ζ(η+1)

ζ(η)
mAkBTc

−9 (η + 2) η+1
η

ζ(η+2)
ζ(η+1)

mAkBT+
(
9 ζ(η+1)

ζ(η)

)2
(mAkB)

2 [(η + 1)T 2
c − (η + 2)TTc]

+9 ζ(η+1)
ζ(η)

[
9 ζ(η+1)

ζ(η)
− η+1

η
ζ(η+2)
ζ(η+1)

]
(mAkB)

2 [(η + 2)TTc − (η + 3)T 2]

+90 ζ(η+2)
ζ(η)

(mAkB)
2 [(η + 3)T 2 − (η + 1)T 2

c ] + 9 (η + 3)
[
9 (1 + η) ζ2(η+1)

ζ2(η)

− (19η + 28) ζ(η+2)
ζ(η)

+ 10 (η + 3) ζ(η+3)
ζ(η+1)

]
(mAkBT )

2 + · · ·
}
.

�

(28)

S = NkB
Ä
T
Tc

äη ζ(η+1)
ζ(η)

{
(η + 1) + 9

[
(η + 1) ζ(η+1)

ζ(η)
− (η + 2) ζ(η+2)

ζ(η+1)

]
mAkBT

+(η + 1) 9ζ(η+1)
ζ(η)

mAkB (Tc − T ) + 9
[
9 (1 + η) ζ2(η+1)

ζ2(η)
− (19η + 28) ζ(η+2)

ζ(η)

+10 (η + 3) ζ(η+3)
ζ(η+1)

]
(mAkBT )

2 + 90 (η + 1) ζ(η+2)
ζ(η)

(mAkB)
2 (T 2 − T 2

c )

+81ζ(η+1)
ζ(η)

[
(η + 1) ζ(η+1)

ζ(η)
− (η + 2) ζ(η+2)

ζ(η+1)

]
(mAkB)

2 (TcT − T 2) + (η + 1) · · · .
�

(29)
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4. Results and discussion

From equations (18)–(29), it can be seen that the corrections of the critical temperature 
and thermodynamic properties of ideal Bose gases trapped in dierent external power-
law potentials by the GUP are reflected by the series of mAkBTc0, mAkBT or mAkB. 
Only when mAkBTc0, mAkBT and mAkB are small, the series expansion method in this 
paper is meaningful.

From the analytical expression of the BEC critical temperature of equation (18), it 
can be seen that: when the GUP is considered, the critical temperatures Tc of the ideal 
Bose gases trapped in the external power-law potentials in the form of equation  (2) 
rise. Because the BEC is a kind of ‘cooperative’ phenomenon of quantum correlation 
between particles. The GUP itself is an added quantum eect, which is similar to the 
addition of a quantum ‘correlation’ between particles that enhances the ‘cooperation’ 
phenomenon of the BEC and leads to an increase in Tc.

In order to further analyze the influence of the GUP on the thermodynamic prop-
erties of the ideal Bose gas at low temperature and the precise numerical relations, 
we take the ideal Bose gas trapped in 3D harmonic potential as an example. At this 
point, we know from equation  (10) X = 1/2 + 1/2 + 1/2 = 3/2, η = 3. When T < Tc, 
the internal energy, heat capacity, entropy, critical temperature and excited states 
particle number are, respectively

U = 2.7NkBT

Ç
T

Tc

å3

(1 + 8.1mAkBTc − 11.496mAkBT + · · · ) ,� (30)

C = 2.701NkB

Ç
T

Tc

å3

(4 + 32.414mAkBTc − 57.483mAkBT + · · · ) ,� (31)

S = 0.900NkB

Ç
T

Tc

å3

(4 + 32.414mAkBTc − 43.113mAkBT + · · · ) ,� (32)

Tc = Tc0

î
1+2.7mAkBTc0 − 3.993(mAkBTc0)

2 + · · ·
ó
,� (33)

Ne = N

Ç
T

Tc

å3

(1 + 8.104mAkBTc − 8.104mAkBT + · · · ) .� (34)

When A  =  0 and T < Tc, equations (30)–(34) return to the expressions of the ther-
modynamic quantities of the ideal Bose gas in the 3D harmonic potential without con-
sidering the GUP.

U = 2.7NkBT

Ç
T

Tc

å3

,� (35)

C = 10.8NkB

Ç
T

Tc

å3

,� (36)

https://doi.org/10.1088/1742-5468/ab780f
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S = 3.600NkB

Ç
T

Tc

å3

,� (37)

Tc = Tc0 =
1

kB

[
Nh3

ζ(3)(2πm)3/2

3∏
i=1

ε1/ti

g(2Li)Γ(1/ti + 1)

]1/3
,� (38)

Ne = N

Ç
T

Tc

å3

.� (39)

When T < Tc, the amendments of the GUP to the internal energy, heat capacity, 
entropy, critical temperature and excited states particle number of idea Bose gas are, 
respectively

∆U = 2.7NkBT

Ç
T

Tc

å3

(8.1mAkBTc − 11.496mAkBT + · · · ) ,� (40)

∆C = 2.701NkB

Ç
T

Tc

å3

(32.414mAkBTc − 57.483mAkBT + · · · ) ,� (41)

∆S = 0.900NkB

Ç
T

Tc

å3

(32.414mAkBTc − 43.113mAkBT + · · · ) ,� (42)

∆T = Tc − Tc0 = Tc0

î
2.7mAkBTc0 − 3.993(mAkBTc0)

2 + · · ·
ó
,� (43)

∆Ne = N

Ç
T

Tc

å3

(8.104mAkBTc − 8.104mAkBT + · · · ) .� (44)

In some Refs of the quantum theory of gravity [33–35], the range of minimum observ-
able length is given as ∆xmin = 10−17 − 10−16m. In this paper, we let ∆xmin ≈ 10−16 m. 

According to equation (5), the positive parameter A can be regarded as 1036(m JS−1)
2
. 

Note that the order of magnitudes of particle mass m, Boltzmann constant kB and criti-
cal temperature Tc0, and low temperature preconditions, such as, mAkBTc0, mAkBT and 
mAkB are usually small quantities. The order of magnitude of the first order correction 
term of the GUP is much larger than that of the second order correction term, so only 
the first order correction term of the GUP is considered.

As follows, we take two examples to do numerical calculation.
One is rubidium atom Bose gas. We take the particle density of ideal gas in the stan-

dard state as the average density of rubidium atoms ideal Bose gas, namely Loschmidt 
constant n = N/V = 2.687× 1025 m−3. For simplicity, we let ε = ε1 = ε2 = ε3 = 1J, 
and this is a very strong external potential. The mass of the rubidium atom m equals 
to 1.445× 10−25 kg, and the spin degeneracy g equals to 1 (see figures 1–7 and table 1).

The other is sodium atoms Bose gas that originally verified the BEC [2]. The exper
imental data are: n = 1.5× 1020 m−3,N = 7× 105, ωx = 745Hz, ωy = 235Hz, ωz = 410Hz, 
m = 3.819× 10−26 kg, g = 1. Using εi/L

ti
i = mω2

i /2, we can estimate εi ≈ 10−31 ∼ 10−30 J 
(see figures 8–10 and table 2.)

https://doi.org/10.1088/1742-5468/ab780f
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Figure 1 shows that in 3D harmonic potential the numerical calculation results of the 
relations between the internal energy of ideal rubidium atomic gas with temperature, 
and the GUP’s amendment to the internal energy (embedded figure) with temperature, 
when the GUP is, and is not, considered and T  <  Tc.

According to the comparison of the two internal energy variation curves with and 
without the GUP with temperature in figure 1, it can be known that: In the temper
ature region where T/Tc  <  0.71, the GUP increases the internal energy at the same 
temperature. In the temperature region of T/Tc  >  0.71, the GUP reduces the internal 
energy at the same temperature.

As the temperature increases, the ‘gravitational eect’, a characteristic of the 
quantum correlation of the boson system, increases, and the additional energy of the 
gravitational eect is negative, which is represented by a decrease in internal energy. 
Because the GUP is derived from ‘quantum eect of gravity’. From the embedded 
diagram in figure 1, it can be seen the amendment of the GUP of internal energy can 
reach an order of magnitude 10−1, and the GUP’s influence is already large at this time.

Figure 2 shows the numerical relationship of heat capacity and the GUP’s amend-
ment to the heat capacity with temperature, when the GUP is, and is not, considered 
and T  <  Tc. According to figure 2, the amendment of the GUP of the heat capacity can 
reach an order of magnitude 10−1, and the GUP’s influence is already large at this time. 
In the temperature region where T/Tc  <  0.57, the GUP increases the heat capacity at 
the same temperature. In the temperature region of T/Tc  >  0.57, the GUP reduces the 
heat capacity at the same temperature.

Figure 3 shows the numerical relationship of entropy and the GUP’s amendment 
to the entropy with temperature, when the GUP is, and is not, considered and T  <  Tc. 
According to figure 3, the amendment of the GUP of the entropy can reach an order of 
magnitude 10−1. In the temperature region where T/Tc  <  0.73, the GUP increases the 
entropy at the same temperature. In the temperature region of T/Tc  >  0.73, the GUP 
reduces the entropy at the same temperature.

Figures 4–6 are the comparison of the numerical relationship between the influence 
of the GUP on the internal energy, heat capacity and entropy with the change of 
temperature in dierent external potentials when T < Tc, respectively.

It can be seen from figures 4–6 that with the increase of X =
∑3

i=1 1/ti (X  =  0 is a 
free particle system, X  =  3/2 is a system in 3D harmonic potential) and temperature, 
the amendments of the internal energy, heat capacity and entropy of ideal rubidium 
atomic gas by the GUP decreases first and then increases near the turning point, and 
increases significantly after passing the turning point, that is, the external potential has 
a great influence on the amendments of the GUP. In order to further clearly display 
this characteristic, table 1 gives the specific values of the thermodynamic quantities of 
the ideal rubidium atomic gases in a container with a fixed volume and in a 3D har-
monic potential when ε = ε1 = ε2 = ε3 = 1J, T  =  Tc, the GUP is considered and not 
considered, and when the density of rubidium atom is Loschmidt constant.

Comparing these values, it is known that the amendments of the GUP to the ther-
modynamic quantities of idea rubidium atom gas in the 3D harmonic potential increase 
by 13 to 26 orders of magnitude than the amendments of free ideal rubidium atom gas 
in the fixed container.

https://doi.org/10.1088/1742-5468/ab780f


Thermodynamic properties of ideal Bose gas trapped in dierent external power-law potentials

11https://doi.org/10.1088/1742-5468/ab780f

J. S
tat. M

ech. (2020) 043103

After further numerical analysis, we found that when ε � 10−26 J, the critical 
temperature and internal energy of rubidium atoms ideal Bose gas with particle density 
of Loschmidt constant increased with the increase of X at T  =  Tc; When ε � 10−28 J, 
they decrease as X increases at T  =  Tc. See figure 7. However, the heat capacity and 
entropy have no such characteristics.

Because in the initial experiments to verify the BEC of the sodium atom gas, the 
atomic density (n  ≈1020 m−3) is relatively low and the external field strength (ε  ≈10−31–
10−30J) is relatively small, the relative amendment terms of the GUP are only 10−18–
10−17, and the eect of GUP can be completely ignored. The numerical relationship 
of the internal energy, heat capacity and entropy and the GUP’s amendment to these 

Table 1.  Comparison of thermodynamic variables and their amendments of 
rubidium atom system between the system in the harmonic potential and the free 
particle system when the GUP is and is not, considered with the standard state.

N/V = 2.687× 1025 m−3

ε = 1(J) T  =  Tc

Thermodynamic quantity of 
rubidium atom system  
without the GUP

The first order amendment term 
of the GUP to thermodynamic 
quantity of rubidium atom system

External potential

Free  
particle 
system. 
(X  =  0)

System in 3D 
harmonic  
potential. 
(X  =  3/2)

Free  
particle  
system.
(X  =  0)

System in 3D  
harmonic  
potential. 
(X  =  3/2)

Internal energy  
(J/particle)

1.840× 10−26 6.641× 10−13 −4.642× 10−40 −7.556× 10−14

Heat capacity 
(J/K·particle)

2.658× 10−23 1.492× 10−22 −1.144× 10−36 −3.245× 10−23

Entropy (J/K·particle) 1.868× 10−23 4.927× 10−23 −3.679× 10−37 −4.615× 10−24

Table 2.  Comparison of thermodynamic variables and their amendments of 
sodium atom system between the system in the harmonic potential and the free 
particle system when the GUP is and is not, considered with the experimental data 
of verifying the BEC for the first time.

n = 1.5× 1020 m−3

ε ≈ 9.211× 10−31(J)
N  = 7  ×  105. T  =  Tc

Thermodynamic quantity  
of sodium atom system without 
the GUP

 The first order amendment term 
of the GUP to thermodynamic 
quantity of sodium atom system

External potential

Free  
particle  
system. 
(X  =  0)

System in 3D 
harmonic  
potential. 
(X  =  3/2)

Free  
particle  
system.
(X  =  0)

System in 3D 
harmonic  
potential. 
(X  =  3/2)

Internal energy  
(J/particle)

2.097× 10−29 9.885× 10−30 −1.740× 10−46 −4.636× 10−48

Heat capacity 
(J/K·particle)

2.658× 10−23 1.492× 10−22 −3.599× 10−40 −1.307× 10−40

Entropy 
(J/K·particle)

1.868× 10−23 4.972× 10−23 −1.158× 10−40 −1.859× 10−41

https://doi.org/10.1088/1742-5468/ab780f
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variables with temperature are similar to figures 1–3, when the GUP is, and is not, 
considered and T  <  Tc.

Figures 8–10 are the comparison of the numerical relationship between the influence 
of the GUP on the internal energy, heat capacity and entropy of the sodium atoms 
ideal gas with the change of temperature in dierent external potentials when T < Tc, 
respectively.

Figure 1.  Changes of the numerical relationship between the internal energy and 
amendment to the internal energy (embedded graph) of the rubidium atoms ideal 
gas in a 3D harmonic potential with temperature when the particle density is 
Loschmidt constant,ε = ε1 = ε2 = ε3 = 1J and T  <  Tc.

Figure 2.  Changes of the numerical relationship between the heat capacity and 
amendment to the heat capacity (embedded graph) of the rubidium atoms ideal 
gas in a 3D harmonic potential with temperature when the particle density is 
Loschmidt constant,ε = ε1 = ε2 = ε3 = 1J and T  <  Tc.

https://doi.org/10.1088/1742-5468/ab780f
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By comparing the numerical calculation results in table 2, we found that:

	 (1)	� In the experimental scenario of the BEC of the sodium atoms gas, the atomic 
density and the strength of the external field, the influence of the external field 
and the GUP on the thermodynamic properties of the system is far less than that 
of the above theoretical scenario of rubidium atoms gas.

	 (2)	� When ε � 10−26 J, the critical temperature and internal energy of sodium atoms 
gas increased with the increase of X at T  =  Tc; When ε � 10−33 J, they decrease 
as X increases at T  =  Tc. However, the heat capacity and entropy have also no 
such characteristics.

5. Conclusion

In this paper, the GUP or the quantum eect of gravity is considered. On the prem-
ise that the amendments of the GUP are small, the critical temperature Tc and the 
modification of Tc by the GUP for the Bose Einstein condensate (BEC) of ideal Bose 
gases in dierent external power law potentials given in equation (2) are calculated ana-
lytically (see equations (18) and (19)). Under the conditions of T > Tc and T < Tc, the 
analytical expressions of the internal energy, heat capacity, entropy, ground state and 
excited state particle numbers are given respectively (see equations (20)–(29)). Taking 
the 3D harmonic potential as an example, when the particle densities are Loschmidt 
constant (n  ≈  1025 m−3) and the initial experimental data to verify the BEC (n  ≈1020 
m−3), the quantities ε = ε1 = ε2 = ε3 reflecting the external potential intensity are 1 J 
and 9.211  ×  10−31 J respectively and the temperature is lower than the critical temper
ature Tc, the relation of the internal energy, heat capacity, entropy and the GUP’s 

Figure 3.  Changes of the numerical relationship between the entropy and 
amendment to the entropy (embedded graph) of the rubidium atoms ideal gas in 
a 3D harmonic potential with temperature when the particle density is Loschmidt 
constant, ε = ε1 = ε2 = ε3 = 1J and T  <  Tc.

https://doi.org/10.1088/1742-5468/ab780f
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amendments of rubidium and sodium atoms ideal Bose gases with temperature are 
calculated and analyzed numerically, and the conclusions are as follows:

	 (1)	� The GUP raises the temperature of the BEC of the ideal Bose gas, whether it 
is in a container with a fixed volume or in an external potential. Because the 
‘minimum observable length’ implied by the GUP leads to the enhancement of 
this quantum ‘cooperation’ phenomenon between the BEC particles.

	 (2)	� When T < Tc and T is slightly greater than 0 K, the amendments of the GUP 
to the internal energy, heat capacity and entropy are positive. When the 

Figure 4.  Comparison of the relation of the internal energy of the rubidium atoms 
ideal gas in dierent external potentials considering the GUP with temperature 
when the particle density is Loschmidt constant, ε = ε1 = ε2 = ε3 = 1J and T  ⩽  Tc.

Figure 5.  Comparison of the relation of the heat capacity of the rubidium atoms 
ideal gas in dierent external potentials considering the GUP with temperature 
when the particle density is Loschmidt constant, ε = ε1 = ε2 = ε3 = 1J and T  ⩽  Tc.

https://doi.org/10.1088/1742-5468/ab780f
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temperature rises to a certain value, these amendments become negative, that is, 
thermodynamic variables such as the internal energy, heat capacity and entropy 
increase first and then decrease under the influence of the GUP. We think that 
‘increase first’ is the direct expression of the state density decrease. The ‘then 
decrease’ is because the GUP originates from the ‘quantum eect of gravity’. 
The characteristic of the quantum correlation of the multi-particle boson system 
is the ‘gravitational eect’. The GUP enhances the quantum correlation of the 
boson system, which is manifested as the decrease of the internal energy.

	 (3)	� External potentials can make the GUP’s corrections huge. Under the condition 
that ε = ε1 = ε2 = ε3 = 1J and n = 2.687× 1025 m−3are taken, due to the cor-
relation between the external potential and the GUP, the GUP’s amendments 
of the internal energy, heat capacity and entropy of the rubidium atom gas 
decreases first and then increases with the increase of X (X  ≡  Σi1/ti is the sum 
of reciprocal of the exponents ti of the power function) and temperature. When 
T  =  Tc, compared with the free particle system with X  =  0, the amendments 
of the GUP to the internal energy, heat capacity and entropy of the system in 
the 3D harmonic potential with X  =  3/2 increases by 26, 13 and 13 orders of 
magnitude respectively.

	 (4)	� The ε has a transition region (εa,εb). When ε  >  εb, the amendments of the GUP 
to the internal energy and critical temperature increased with the increase of X at 
T  =  Tc; When ε  <  εa, they decrease as X increases at T  =  Tc. However, the heat 
capacity and entropy have no such characteristics.

	 (5)	� When T  <  Tc and there is no external potential, the amendments of the GUP is 
usually small. For example, the relative amendments of the thermodynamic vari-
ables of free rubidium atoms ideal gas in a fixed volume with an average particle 

Figure 6.  Comparison of the relation of the entropy of the rubidium atoms ideal 
gas in dierent external potentials considering the GUP with temperature when 
the particle density is Loschmidt constant, ε = ε1 = ε2 = ε3 = 1J and T  ⩽  Tc.

https://doi.org/10.1088/1742-5468/ab780f
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density of Loschmidt constant are only 10−14 to 10−13 orders of magnitude, and 
the influence of the GUP can be completely ignored. However, under the con-
dition of the same particle density and temperature, the relative amendments 
can reach the order of magnitude of 10−1 when the external potential intensity 
ε = ε1 = ε2 = ε3 is 1 J in the 3D harmonic potential, and the GUP’s amendments 
should be considered.

Figure 7.  Comparison of the relation of the internal energy of the rubidium atoms 
ideal gas in dierent external potentials considering the GUP with temperature 
when the particle density is Loschmidt constant, ε = ε1 = ε2 = ε3 = 10−28 J and 
T  ⩽  Tc.

Figure 8.  Comparison of the relation of the internal energy of the sodium atoms 
ideal gas in dierent external potentials considering the GUP with temperature 
when n = 1.5× 1020 m−3, ε = 9.211× 10−31 J and T  ⩽  Tc.
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	 (6)	� Under the experimental situation of particle density n  ≈1020 m−3 and the external 
potential intensity ε  ≈10−31 J, the relative amendments of the GUP to the ther-
modynamic variables are about 10−18–10−17. At this point, the eect of the GUP 
can be completely ignored.

	 (7)	� The GUP may dominate the properties of a system rather than act as a simple 
amendment, which cannot be accurately analyzed by the series expansion method 
proposed in this paper and needs to be confirmed by a more accurate calculation 
method.

Figure 9.  Comparison of the relation of the heat capacity of the sodium atoms 
ideal gas in dierent external potentials considering the GUP with temperature 
when n = 1.5× 1020 m−3, ε = 9.211× 10−31 J and T  ⩽  Tc.

Figure 10.  Comparison of the relation of the entropy of the sodium atoms ideal 
gas in dierent external potentials considering the GUP with temperature when 
n = 1.5× 1020 m−3, ε = 9.211× 10−31 J and T  ⩽  Tc.
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