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We present here a revised version of the appendices of Gradenigo and Majumdar (2019 J. 
Stat. Mech. 053206). Some minor corrections are introduced and a new simplified argu-
ment to obtain the critical value of rc, the control parameter for the transition, is pre-
sented. The overall scenario and the description of the transition mechanism depicted in 
Gradenigo and Majumdar (2019 J. Stat. Mech. 053206) remains completely untouched, 
the only relevant dierence being the value of rc fixed to rc = 21/3 = 1.259 92 . . . rather 
than rc = 1.3805 . . .. This dierence also implies a small quantitative changes in figures 2 
and 4; a new version of both figures is reported here. A couple of other typos discovered 
in the paper are pointed out and the correct version of the expressions are reported.
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1. Amendments to appendix B

In this erratum, we report a corrected version of the appendix B of [1], including dierent 
subsections of appendix B, i.e. B.1–B.3. In section B.1, the mechanism for choosing the 
correct root is pointed out, and furthermore, some algebraic errors have been corrected 
in section B.2. This analytically gives the correct value of rc = 21/3 = 1.259 92 (instead 
of the old value of rc  =  1.3805 which was numerically obtained in the published ver-
sion). Consequently the correct value of zc  =  11.7771.. replaces the old numerical value 
zc ≈ 12.0. This change of zc appears clearly in the new figure 4 of this erratum, where 
the dotted vertical line is clearly shifted to the left with respect to the same figure in 
the published version [1]. The argument to obtain rc = 21/3 is presented in section B.3. 
In order to facilitate the comparison to the figures of the present manuscript we have 
given the same numbers as in [1]. Finally, we thank N Smith for pointing out the alge-
braic error in appendix B.2 of the published version.

B. Derivation of the rate function χ(z) in the intermediate matching regime

In this appendix we study the leading large N behavior of the integral that appears in 
the expression for PA(z,N) in equation (56) of [1]:

IN(z) =

∫

Γ(+)

ds
1√
s
eN

1/3Fz(s)
� (1)

where z � 0 can be thought of as a parameter and

Fz(s) = sz +
1

2
σ2 s2 +

1

2sE
,� (2)

with σ2 = 2 + 5E2. It is important to recall that the contour Γ(+) is along a vertical 
axis in the complex s-plane with its real part negative, i.e. Re(s) < 0. Thus, we can 
deform this contour only in the upper left quadrant in the complex s plane (Re(s) < 0 
and Im(s) > 0), but we cannot cross the branch cut on the real negative axis, nor can 
we cross to the s-plane where Re(s) > 0. A convenient choice of the deformed contour, 
as we will see shortly, is the Γ(+) rotated anticlockwise by an angle π/2, so that the 
contour now goes along the real negative s from 0 to −∞.

To evaluate the integral in equation (1), it is natural to look for a saddle point of 
the integrand in the complex s plane in the left upper quadrant, with fixed z. Hence, we 
look for solutions for the stationary points of the function Fz(s) in equation (2). They 
are given by the zeros of the cubic equation

F ′
z(s) =

dFz(s)

ds
= z + σ2 s− 1

2Es2
≡ 0.� (3)

As z � 0 varies, the three roots move in the complex s plane. It turns out that for 
z  <  zl (where zl is to be determined), there is one positive real root and two complex con-
jugate roots. For example, when z  =  0, the three roots of equation (3) are respectively 

https://doi.org/10.1088/1742-5468/ab75e9
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at s = (2Eσ2)−1/2 eiφ with φ = 0, φ = 2π/3 and φ = 4π/3. However, for z  >  zl, all the 
three roots collapse on the real s axis, with s1 < s2 < s3. The roots s1  <  0 and s2  <  0 are 
negative, while s3  >  0 is positive. For example, in figure B1, we plot the function F ′

z(s) 
in equation (3) as a function of real s, for z  =  12 and E  =  2 (so σ2 = 2 + 5E2 = 22). One 
finds, using Mathematica, three roots at s1  =  −1/2 (the lowest root on the negative 
side), s2 = −0.175 186 . . . and s3 = 0.129 732 . . .. We can now determine zl very easily. 
As z decreases, the two negative roots s1 and s2 approach each other and become coinci-
dent at z  =  zl and for z  <  zl, they split apart in the complex s plane and become complex 
conjugates of each other, with their real parts identical and negative. When s1 < s2, the 
function F ′

z(s) has a maximum at sm with s1 < sm < s2 (see figure B1). As z approaches 
zl, s1 and s2 approach each other, and consequently the maximum of F ′

z(s) between s1 
and s2 approaches the height 0. Now, the height of the maximum of F ′

z(s) between s1 
and s2 can be easily evaluated. The maximum occurs at s  =  sm where F ′′

z (s) = 0, i.e. at 
sm = −(Eσ2)−1/3. Hence the height of the maximum is given by

F ′
z(s = sm) = z + σ2 sm +

1

2smE
= z − 3

2

(
σ4

E

)1/3

.� (4)

Hence, the height of the maximum becomes exactly zero when

z = zl =
3

2

(
σ4

E

)1/3

.� (5)

Thus we conclude that for z  >  zl, with zl given exactly in equation  (5), the function 
F ′
z(s) has three real roots at s  =  s1  <  0, s2  <  0 and s3  >  0, with s1 being the smallest 

negative root on the real axis. For z  <  zl, the pair of roots are complex (conjugates). 
However, it turns out (as will be shown below) that for our purpose, it is sucient to 
consider evaluating the integral in equation (1) only in the range z  >  zl where the roots 
are real and evaluating the saddle point equations is considerbaly simpler. So, focusing 
on z  >  zl, out of these three roots as possible saddle points of the integrand in equa-
tion (1), we have to discard s3  >  0 since our saddle points have to belong to the upper 
left quadrant of the complex s plane. This leaves us with s1  <  0 and s2  <  0. Now, we 
deform our vertical contour Γ(+) by rotating it anticlockwise by π/2 so that it runs 
along the negative real axis. Between the two stationary points s1 and s2, it is easy to 
see (see figure B1) that F ′′

z (s1) > 0 (indicating that it is a minimum along real s axis) 
and F ′′

z (s2) < 0 (indicating a local maximum). Since the integral along the deformed 
contour is dominated by the maximum along real negative s for large N, we should 
choose s2 to be the correct root, i.e. the largest among the negative roots of the cubic 
equation z + σ2s− 1/(2Es2) = 0.

Thus, evaluating the integral at s∗ = s2 (and discarding pre-exponential terms) we 
get for large N

IN(z) ≈ exp[−N1/3χ(z)]� (6)

where the rate function χ(z) is given by

χ(z) = −Fz(s = s2) = −s2 z −
1

2
σ2s22 −

1

2s2E
.� (7)

https://doi.org/10.1088/1742-5468/ab75e9
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The right hand side can be further simplified by using the saddle point equation (3), 
i.e. z + σ2s2 − 1/2Es22 = 0. This gives

χ(z) = −zs2
2

− 3

4Es2
.� (8)

B.1. Asymptotic behavior of χ(z)

We now determine the asymptotic behavior of the rate function χ(z) in the range 
zl < z < ∞, where zl is given in equation (5). Essentially, we need to determine s2 (the 
largest among the negative roots) as a function of z by solving equation (3), and substi-
tute it into equation (8) to determine χ(z).

We first consider the limit z → zl from above, where zl is given in equation (5). As 
z → zl from above, we have already mentioned that the two negative roots s1 and s2 
approach each other. Finally at z  =  zl, we have s1 = s2 = sm where sm = −(Eσ2)−1/3 
is the location of the maximum between s1 and s2. Hence as z → zl from above, 
s2 → sm = −(Eσ2)−1/3. Substituting this value of s2 in equation (8) gives the limiting 
behavior

χ(z) → 3

2

( σ

E

)2/3

as z → zl� (9)

as announced in the first line of equation (24) in [1].
To derive the large z → ∞ behavior of χ(z) as announced in the second line of equa-

tion (24) in [1], it is first convenient to re-parametrize s2 and define

Figure 2.  (In place of figure  2 in [1]) Continuous (red) line: rate function of 
equation (22) in [1], analytical prediction. zc ≈ 11.78 is the location of the first-order 
dynamical transition: Ψ′(z) is clearly discontinuous at zc. Dotted lines indicate χ(z) 
for z  <  zc and z2/(2σ2) for z  >  zc. zl is the lowest value of z such that χ(z) can be 
computed via a saddle-point approximation.

https://doi.org/10.1088/1742-5468/ab75e9
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s2 = − 1√
2Ez

θz.� (10)

Substituting this into equation (3), it is easy to see that θz satisfies the cubic equation

−b(z) θ3z + θ2z − 1 = 0,� (11)

where

b(z) =
σ2

√
2E

1

z3/2
.� (12)

Note that due to the change of sign in going from s2 to θz, we now need to determine 
the smallest positive root of θz in equation (11). In terms of θz, χ(z) in equation (8) reads

χ(z) =

√
z

2
√
2E

θ2z + 3

θz
.� (13)

The formulae in equations  (11)–(13) are now particularly suited for the large z 
analysis of χ(z). From equations (11) and (12) it follows that in the limit z → ∞ we 
have that b(z) → 0, so that θz → 1. Hence, for large z or equivalently small b(z), we can 
obtain a perturbative solution of equation (11). To leading order, it is easy to see that

θz = 1 +
b(z)

2
+O

(
b(z)2

)
� (14)

with b(z) given in equation (12). Substituting this into equation (13) gives the large z 
behavior of χ(z)

χ(z) =

√
2

E

√
z − σ2

4E

1

z
+O

(
1

z5/2

)
� (15)

Figure 4.  (In place of figure 4 in [1]) Bottom: numerical data for the rate function 
derivative Ψ′(z). Continuous black line is the analytical prediction in the limit 
N → ∞, the coordinate of the transition point is zc ≈ 11.78 (for E  =  2).

https://doi.org/10.1088/1742-5468/ab75e9
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as announced in the second line of equation (24) in [1].

B.2. Explicit expression of χ(z)

While the excercises in the previous subsections were instructive, it is also possi-
ble to obtain an explicit expression for χ(z) by solving the cubic equation (11) with 
Mathematica. The smallest positive root of equation (11), using Mathematica, reads

θz =
1

3bz
+

1

3 · 22/3bz
(1− i

√
3)(

−2 + 27b2z + 3
√

−12 + 81b2z

)1/3

+
1

3 · 24/3bz
(1 + i

√
3)

(
−2 + 27b2z + 3

√
−12 + 81b2z

)1/3
�

(16)

where bz, used as an abbreviation for b(z), is given in equation (12). Using the expres-
sion of zl in equation (5), we can re-express bz conveniently in a dimensionless form

b2z =
1

2

(
2

3

zl
z

)3

.� (17)

Consequently, the solution θz in equation (16) in terms of the adimensional parameter 
r = z/zl � 1 reads as

θz ≡ θ(r) =

√
3

4
r3/2

[
2 +

(1− i
√
3)

g(r)
+ (1 + i

√
3)g(r)

]
� (18)

where

g(r) =
1

r

(
1 + i

√
r3 − 1

)2/3

.� (19)

By multiplying both numerator and denominator of θ(r) by (1− i
√
r3 − 1)2/3 one ends 

up, after a little algebra, with the following expression

θ(r) =

√
3

4
r3/2

[
2 +

1

r

(
ξ ζ2/3r + ξ ζ

2/3

r

)]
,� (20)

where ξ and ζr denotes a complex number and a complex function of the real variable 
r, respectively:

ξ = 1 + i
√
3

ζr = 1 + i
√
r3 − 1,

� (21)

and we have also introduced the related complex conjugated quantities:

ξ = 1− i
√
3

ζr = 1− i
√
r3 − 1.

� (22)

We can then write the complex expressions in equation  (20), both in their polar 
form, i.e. ζr = ρre

iφr and ξ = ρeiφ, with

https://doi.org/10.1088/1742-5468/ab75e9
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ρr = r3/2

φr = arctan(
√
r3 − 1)

� (23)

respectively, and

ρ = 2

φ = arctan(
√
3) =

π

3
.� (24)

Finally, by writing ξ and ζr inside equation (20) in their polar form and taking advan-
tage of the expressions in equations (23) and (24) we get:

θ(r) =

√
3

4
r3/2

[
2 +

1

r
ρ ρ2/3r

(
ei(φ+

2
3
φr) + e−i(φ+ 2

3
φr)

)]

=

√
3

2
r3/2

[
1 + 2 cos

(
π

3
+

2

3
arctan(

√
r3 − 1)

)]
.

�
(25)

In order to explicitly draw the function χ(z), e.g. with the help of Mathematica, one can 
plug the expression of θ(r = z/zl) from equation (25) into the following formula:

χ(z) =

√
z

2
√
2E

θ(z/zl)
2 + 3

θ(z/zl)
.� (26)

B.3. The critical value zc

We show here how to compute the critical value zc at which χ(z) equals z2/(2σ2), i.e. the 
value at which the two branches in figure 2 cross each other. To make the computations 
easier, it is convenient to work with dimensionless variables. Using zl = (3/2)(σ4/E)1/3 
from equation (5), we express z in units of zl, i.e. we define

r =
z

zl
=

2z

3

(
E

σ4

)1/3

.� (27)

In terms of r, one can rewrite b(z) in equation (12) as (using the shorthand notation 
bz  =  b(z)):

b2z =
1

2

(
2

3r

)3

.� (28)

Consequently, equation (11) reduces to

− 1√
2

(
2

3

)3/2

r−3/2 θ(r)3 + θ(r)2 − 1 = 0 ,� (29)

where θ(r) = θz=rzl is dimensionless. Quite remarkably, it turns out that to determine 
the critical value zc, rather conveniently we do not need to solve the above cubic equa-
tion, equation (29). Indeed, at z  =  zc, i.e. r  =  rc, equating χ(zc) = z2c/2σ

2, we get

https://doi.org/10.1088/1742-5468/ab75e9
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√
zc

2
√
2E

[
θ(rc)

2 + 3

θ(rc)

]
=

z2c
2σ2

.� (30)

Expressing in terms of rc, equation (30) simplifies to

θ2(rc) + 3

θ(rc)
=

33/2

2
r3/2c .� (31)

Consider now equation (29) evaluated at r  =  rc. In this equation, we replace rc by its 
expression in equation (31). This immediately gives θ(rc)

2 = 3/2 and hence

θ(rc) =

√
3

2
.� (32)

Using this exact θ(rc) in equation (31) gives

rc =
zc
zl

= 21/3 = 1.259 92 . . .� (33)

It is now straightforward to check that the expression of θ(r) written in equation (25) 
is consistent with the result just found, i.e. from it we retrieve θ(rc = 21/3) =

√
3/2. 

We have that

θ(rc = 21/3) =

√
3

2
r3/2c

[
1 + 2 cos

(
π

3
+

2

3
arctan(

√
r3c − 1)

)]

=

√
3

2

[
1 + 2 cos

(
π

3
+

2

3
arctan(1)

)]
=

√
3

2

[
1 + 2 cos

(π
2

)]

=

√
3

2
,

�

(34)

as expected.
For comparison to numerical simulations, we chose E  =  2, for which 

σ2 = 2 + 5E2 = 22. We get zl = (3/2)(σ4/E)1/3 = 9.347 52 . . ., which gives 
zc = rczl = (1.259 92 . . . )zl = 11.7771 . . . . This is represented by a black dotted vertical 
line in figure 4 (in place of figure 4 in [1]).

2. Other amendments/typos

2.1. Asymptotic behaviour of χ(z) in equation (24) of [1]

Please take into account that the exponent of the subleading term in the expression in 
the second line of equation (24) in [1] is 5/2 and not 3/2. That is, the correct expression 
for the behaviour of χ(z) at large z is

χ(z) =

√
2

E

√
z − σ2

4E

1

z
+O

(
1

z5/2

)
.� (35)

https://doi.org/10.1088/1742-5468/ab75e9
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2.2. Prefactor of PA(z,N) in equations (56) and (85) of [1]

The dependence on N of the prefactor in the right hand side of both equations (56) and 

(85) in [1] is wrong, 1/
√
N1/3 must be replaced with N5/6. In fact, the correct expression 

to be considered in place of equation (56) in [1] is

PA(z,N) = N5/6 e1/(2E
2)

i
√
2πE

∫ i∞

−i∞

dỹ√
ỹ
eN

1/3Fz(ỹ),� (36)

whereas the correct expression to be considered in place of equation (85) in [1] is

PA(z,N) = N5/6 eEX e1/(2E
2)

i
√
2πE

∫ i∞

−i∞

dỹ√
ỹ
eN

1/3Fz(ỹ).� (37)
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Abstract.  We study the probability distribution P(XN  =  X,N) of the total 
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of a constant nonzero drive E. While the central limit theorem predicts a 
standard Gaussian form for P (X,N) near its peak, we show that for large 
positive and negative X, the distribution exhibits anomalous large deviation 
forms. For large positive X, the associated rate function is nonanalytic at a 
critical value of the scaled distance from the peak where its first derivative 
is discontinuous. This signals a first-order dynamical phase transition from a 
homogeneous ‘fluid’ phase to a ‘condensed’ phase that is dominated by a single 
large run. A similar first-order transition occurs for negative large fluctuations 
as well. Numerical simulations are in excellent agreement with our analytical 
predictions.
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1.  Introduction

Recent years have seen immense theoretical and experimental interest in the study of 
‘active’ systems, consisting of self-propelled individual particles [1–4]. These active par-
ticles exhibit novel collective nonequilibrium pheomena, such as the motility induced 
phase separation (MIPS) [5–11], clustering eect [12], spontaneous segregation of mix-
tures of active and passive particles [13] and many other interesting eects. These 
collective eects arise from a combination of self-propulsion and interaction between 
the active particles. However, even in the absence of interactions between particles 
(noninteracting limit), the stochastic process associated with a single active particle 
is rather interesting due purely to the self-propulsion. This self-propulsion induces 
a memory or ‘persistence’ in the eective noise felt by the particle, often leading to 
interesting non-Markovian eects. At the level of individual particles, the simplest 
examples of such active particles are the so called active Brownian motion (ABM) or 
the ‘Run-and-Tumble’ particle (RTP) (for a recent pedagogical review, see [4]). For a 
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single ABM particle, both free as well as confined in a harmonic trap, there have been 
a number of recent theoretical and experimental studies in two dimensions on the posi-
tion distribution [14–20], as well as on its first-passage properties [18]. In this paper, we 
will focus on the other well studied model of a single active particle, namely the RTP 
[5, 8, 10] in one dimension, but subjected to a constant external force E  >  0.

RTP process mimics the typical motion of bacterias such as E. coli [11]: a particle 
moves ballistically at a constant speed for random durations of time, called ‘runs’, 
until sudden changes of direction and speed take place, called ‘tumbles’. The tumbling 
occurs as a Poisson process with rate γ, i.e. the distribution of the duration of a single 
run between two successive tumblings is exponential with parameter γ. We will set 
γ = 1 for the rest of the paper. We will focus here on one dimension. At the end of 
each tumbling, the particle chooses a new velocity drawn independently (from run to 
run) from a probability distribution funtion (PDF) q(v), which is typically symmetric. 
In the standard RTP model known as the persistent random walk, q(v) is chosen to be 
bimodal:

q(v) =
1

2
[δ(v − v0) + δ(v + v0)] .� (1)

In this model, the position x(t) of the RTP evolves in time via

dx

dt
= v0 σ(t) ,� (2)

where σ(t) = ±1 is a dichotomous telegraphic noise that flips between the two states 
with a constant rate γ = 1. This persistent random walk model has been studied exten-
sively in the past and many properties are known, e.g. the propagator and the mean 
exit time from a finite interval, amongst other observables [21, 22]. In one dimension, 
there have been a number of recent theoretical studies on the first-passage properties of 
a free RTP [23–28] and, very recently, for an RTP subjected to an external confining 
potential [29].

In this paper, we will study a variant of this standard RTP model in one dimension. 
In our model, while the duration of a run, say τi for the ith run, is still exponentially 
distributed with rate γ = 1, the actual motion during a ‘run’ is dierent. In our model 
there is an external force E  >  0 that drives the particle during a run. More precisely, at 
the beginning of the ith run, the particle again chooses a new velocity vi from a PDF 
q(v) (which is not necessarily bimodal). Then starting with this initial velocity vi, the 
particle moves via Newton’s second law during the run duration 0 � t � τi

dx

dt
= v(t); m

dv

dt
= E ; v(0) = vi .� (3)

Thus we assume that there is no friction due to the environment (the particle’s motion 
is thus not overdamped as in standard Brownian motion). We will also set the mass 
m  =  1 for simplicity. Integrating equation (3) trivially, the displacement xi during the 
ith run is given by

xi = viτi +
E

2
τ 2i� (4)
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where both τi and vi are independent random variables, drawn respectively from 
p(τ) = e−τ θ(τ) and q(v) which is arbitrary (albeit symmetric). For E  =  0 and q(v) 
bimodal as in equation (1), our model reduces to the standard RTP. We will focus here 

on E  >  0 and Gaussian velocity distribution q(v) = e−v2/2/
√
2π, though our results on 

condensation (see later) will hold for a large class of velocity distributions q(v), includ-
ing the bimodel case discussed above. We consider N successive runs. We work here 
in the ensemble where the total number N of runs (or tumbles) is fixed, rather than 
the total time elapsed t. However, our results can be easily extended to constant time 
ensemble. In the presence of a constant force E, the total distance travelled by the 
particle after N runs is

XN =
N∑
i=1

xi =
N∑
i=1

[
viτi +

E

2
τ 2i

]
.� (5)

In this paper, we are interested in the PDF P (X,N) = Prob.[XN = X] of the total 
displacement for large N. Our main new result is that for E  >  0 and for a broad class 
of q(v)’s including the Gaussian and the bimodal distributions, the PDF P (X,N), for 
large N, exhibits a non-analyticity as a function of X—signalling a condenation type 
first-order ‘phase transition’ in the system, as disussed below. We show that for the 
standard RTP, i.e. for E  =  0 and q(v) bimodal as in equation (1), this interesting phase 
transition disappears. Our main results are summarized in the next section. Below 
we discuss some qualitative features of this PDF P (X,N) for large N and the physics 
behind the phase transition, before moving to a more quantitative detailed analysis in 
the later sections.

Due to the presence of a nonzero E  >  0, the PDF P (X,N) is clearly asymmetric as 
a function of X (see figure 1), and it has three regimes which are denoted as I, II and 
III in figure 1. In the central regime II, P (X,N) describes the probability of typical 
fluctuations of X, while regimes I and III correspond to atypically large fluctuations of 
X on the negative and the positive side respectively. A ‘kink’, which is shown schemati-
cally in figure 1 at X  =  Xc, separates the typical fluctuations regime (II) from positive 
large deviations (regime III). Another similar kink at X  =  −Xc (see figure 1) separates 
regimes I and II on the side of negative fluctuations. The main result of this paper is to 
demonstrate that this change in the nature of the fluctuations at X  =  Xc corresponds 
to a dynamical first-order transition. A similar transition separates fluctuations in the 
center of the distribution from negative large deviations (at the second kink on the left 
at X  =  −Xc, although in this case the transition is ‘hidden’ by an exponential prefactor 
e−E|X|. In the central fluid regime II, the total distance X is democratically distributed 
between N individual runs of average sizes, while in regime III (respectively in I) there 
is a large positive (negative) ‘condensate’ (i.e. a single run that is large) that coexists 
with (N − 1) typical runs. By zooming in close to the kinks or the critical points, we 
show that P (X,N) is described by an anomalous large deviation form near the kinks, 
with a local rate function that is continuous at the kink, but its first-derivative has a 
discontinuous jump (see the results of numerical simulations in figure 4)—thus signal-
ling a first-order phase transition.

Thus in our simple model, the PDF of the total displacement P (X,N) exhibits 
a first-order phase transition, similar to the condensation transition that occurs in 
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various lattice models of mass-transport [30–37]. In these models, each site of a lat-
tice (of N sites) has a certain mass mi � 0 and a fraction of the mass at each site gets 
transported to a neighbouring site with a rate that depends on the local mass—total 
mass M is conserved by the dynamics. The zero range process (ZRP) is a special case 
of these more general mass-transport models [30–33]. The dynamics drives the system 
into a nonequilibrium steady state and there is a whole class of models for which the 
steady state has a product measure, i.e. the joint distribution of masses in the steady 
state becomes factorised [32]. Furthermore, under certain conditions, the system in the 
steady state undergoes a phase transition from a fluid phase for M  <  Mc, to a condensed 
phase (M  >  Mc) where one single site acquires a mass proportional to the total mass M 
[32, 33]. This single site is the so called condensate.

The total distance X travelled by an RTP in N runs in our model is the counter-
part to the total mass M in mass-transport models on a lattice with N sites. Hence, 
the condensate (a single site carrying a mass proportional to N) in the mass transport 
model corresponds to a single extensive run in the RTP model. One dierence is that 
in mass-transport models, the mass M is always positive, unlike in our case where X 
can be both positive and negative. Consequently, we have both ‘positive’ and ‘nega-
tive’ condensates, while in the standard mass-transport models, there is only a ‘posi-
tive’ condensate. This explains why we have a pair of critical points (see figure 1), as 

Figure 1. Main: schematic representation of P (X,N). Mean value is 〈X〉 = EN . 
Vertical lines separates three regions, I, II and III, corresponding respectively to 
X  <  −Xc, −Xc � X < Xc and X  >  Xc. The two dynamical transitions are located 
at Xc and  −Xc. Region II is the homogeneous phase. Regions I and III are the 
condensed phases. Dotted parabola is a guide to the eye. For X ∈ [−〈X〉, 〈X〉] 
(inside the dotted vertical lines), the PDF P (X,N) is the result of a saddle-
point approximation. Insets: typical trajectories for each of the three regions: 
homogeneous trajectories for II, dominated by one single run for I and III.
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opposed to a single critical point in mass-transport models. Another dierence lies in 
the observable of interest. In mass-transport models, the central object of interest is 
the mass distribution at a single lattice site and it shows dierent behaviors across 
the condensation transition. In our case we focus on a simpler object, the distribution 
P (X,N) (playing the role of the partition function in mass-transport models with a 
factorised steady state), and we show how the signature of the condensation transition 
is already manifest in P (X,N) itself. One of our main results is to show that near this 
critical point, P (X,N) exhibits an anomalous large deviation form with an associated 
rate function that shows a discontinuity in its first derivative.

The rest of the paper is organized as follows. In section 2, we define our model pre-
cisely and summarize the main results. Section 3 contains the most extensive analytical 
computation of the distribution P (X,N) of the total displacement for X > 〈X〉 = EN  
(positive fluctuations). It also includes a discussion on the details of numerical sim-
ulations (section 3.4). Section  4 contains analogous computation of P (X,N) for 
X < −〈X〉 = −EN , i.e. for negative fluctuations. Section 5 contains a summary and 
conclusions. Finally, some details of the computations are presented in the appendices.

2. The model and the summary of the main results

We consider a single RTP on a line, starting initially at X  =  0. Each trajectory is made 
of N independent runs. The ith run starts with initial velocity vi and lasts a random 
time τi. The particle is also subjected to a constant force (field) E  >  0. The total dis-
placement of the particle after N runs, using Newton’s law for each run, is therefore 
given by

XN =
N∑
i=1

xi =
N∑
i=1

[
viτi +

E

2
τ 2i

]
� (6)

where xi denotes the displacement during the ith run. The velocity vi’s and the dura-
tion τi’s for each run are i.i.d random variables drawn from the normalized PDF’s

q(v) =
1√
2π

exp
[
−v2/2

]
� (7)

p(τ) = Θ(τ) exp(−τ)� (8)
where Θ(t) is the Heaviside theta function: Θ(t) = 1 for t � 0 and Θ(t) = 0 for t  <  0. 
Even though we present detailed results only for the Gaussian velocity distribution q(v) 
in equation (7), our main conclusions concerning the first-order phase transition is valid 
for a broad class of q(v)’s, including the bimodal distribution in equation (1). Our goal 
is to compute the probability distribution P (X,N) = Prob.[XN = X] of the total dis-

placement XN =
∑N

i=1 xi. Thus, XN is clearly a sum of N i.i.d. random variables. Each 
of the xi’s has the normalized marginal PDF

P(x) =

∫ ∞

−∞
dv

∫ ∞

0

dτ q(v) p(τ) δ(x− vτ − Eτ 2/2)� (9)

https://doi.org/10.1088/1742-5468/ab11be
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where q(v) and p(τ) are given in equations (7) and (8) respectively. The mean and the 
variance of the displacement during each run can be computed easily and one gets

〈x〉 = E� (10)

σ2 = 〈x2〉 − 〈x〉2 = 2 + 5E2.� (11)

Computing explicitly P(x) from equation  (9) is hard, however as we will see, what 
really matters for the large N behavior of P (X,N) is the asymptotic tail behavior of 
P(x). These tails can be explicitly obtained (see appendix A). For large positive x we 
get

P(x → ∞) ≈ 1

E
e2/E

2

x−1/2 e−
√

2x/E,� (12)

and for large negative x

P(x → −∞) = e−E |x|P(|x|)

≈ e−E |x| e
2/E2

E
|x|−1/2 e−

√
2|x|/E .

� (13)

Thus the PDF P(XN  =  X,N) of the sum XN =
∑N

i=1 xi reads

P (X,N) =

∫ ∞

−∞

[
N∏
i=1

dxi P(xi)

]
δ

(
X −

N∑
i=1

xi

)
� (14)

where P(x) is given in equation (9).

2.1. Relation to mass transport models and a criterion for condensation transition

It is interesting to notice that P (X,N) is formally similar to the partition function of 
lattice models of mass-transport with a factorised steady state [30–35]. The latter reads 
as:

Z(M ,N) =

∫ ∞

0

[
N∏
i=1

dmi f(mi)

]
δ

(
M −

N∑
i=1

mi

)
� (15)

where mi � 0 denotes the mass at site i, f (mi) the corresponding steady state weight 
and M being the total mass. Comparing equations (14) and (15), and identifying the run 
distance xi with the mass mi, X with M, and f (mi) with P(xi), we see that formally, our 
P (X,N) is exactly the counterpart of the partition function Z(M ,N) in mass-transport 
models: the only dierence is that, at variance with mi’s which are non-negative vari-
ables, our xi’s can be both positive and negative, which give rise to two condensed 
phases (respectively with a long positive and a long negative run).

Before discussing our strategy for the computation of P (X,N) in equation  (14) 
with P(x) given by (9), it is useful to recall, from the literature on the mass-transport 
models, which classes of P(x) may lead to the phenomenon of condensation. For the 
mass-transport models with positive mass m distributed via the PDF f(m) in equa-
tion (15), it is known [33] that a condensation occurs when the tail of f(m) remains 
bounded in the interval e−cm < f(m) < 1/m2, as m → ∞, where c  >  0 is any positive 

https://doi.org/10.1088/1742-5468/ab11be
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constant. The ZRP typically corresponds to f(m) ∼ m−1−µ with µ > 1, and hence 
exhibits condensation [32, 33]. However, another class of f(m)’s that satisfy these 
bounds for large m is the so called stretched exponential class: f(m) ∼ exp [−amα] for 
large m, with 0 < α < 1. Hence this class will also exhibit the condensation transition 
[34, 35]. In our RTP model with p(τ) = e−τ and q(v) = e−v2/2/

√
2π, we see that for 

large x, P(x) in equation  (12) decays as a stretched exponential with the stretching 
exponent α = 1/2. Hence, we would expect a condensation transition for large positive 
X. A similar argument on the negative side shows that we will have a condensation 
transition for large negative X as well. Hence, we expect that for any choice of p(τ) 
and q(v) that leads via equation (9) to a marginal distribution P(x) which satisfies the 
bounds e−c x < P(x) < 1/x2 for large x, one will get a condensation. For example, for 
E  >  0, p(τ) = e−τθ(τ) and with a bimodal velocity distribution q(v) as in equation (1), 
it is easy to show (see appendix A) that as x → ∞,

P(x) ∼ 1√
2E x

e−
√

2x/E ,� (16)

which again satisfies the criterion for condensation. However, for the standard RTP 
model, i.e. if E  =  0, p(τ) = e−τ and q(v) is bimodal as in equation (1), one finds (see 
appendix A)

P(x) =
1

2v0
e−|x|/v0 ,� (17)

which does not satisfy the condensation criterion above. Hence, for the standard RTP, 
this condensation transition is absent. Thus, we see that while we present detailed 
calculations only for the Gaussian velocity distribution, the phenomenon of condensa-
tion that we have found for the RTP model is robust: it occurs for a broad class of 
p(τ) and q(v) that lead to a marginal P(x) satisfying the asymptotic bounds mentioned 
above. Incidentally, to the best of our knowledge, our model provides the first physical 
realization of the condensation belonging to this stretched exponential class.

2.2. Strategy for the large N analysis of P(X ,N)

Let us now briefly outline our strategy to compute analytically the PDF P (X,N). By 

using the integral representation of the delta function: δ(X) =
∫
esX ds/(2πi), one can 

write P (X,N) as

P (X,N) =
1

2πi

∫ s0+i∞

s0−i∞
ds eNh(s)

h(s) = sx+ log[L(s)]
�

(18)

where x  =  X/N and

L(s) =
∫ ∞

−∞
dx e−s x P(x) ,

=
√
π

e
1

2s(E−s)√
2s(E − s)

erfc

[
1√

2s(E − s)

]
�

(19)
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where erfc(z) = 2√
π

∫∞
z

e−u2
du is the complementary error function.

The integration contour in equation (18) is the Bromwich contour in the complex s 
plane. There are two possible situations: (A) the equation ∂h(s)/∂s = 0 has a solution 
for real s  =  s0 (see figure 3) and then the the integral in equation (18) can be computed 
for large N using a saddle-point approximation; (B) there is no saddle point and one has 
to carry out the integration along the complex Bromwich contour. While the behaviour 
of P (X,N) in case (A) has been already considered in [38], the accurate study of the 
PDF in case (B) is the original result of this paper: it is in this regime that the conden-
sation takes place. Let us just mention that in regime (A), which corresponds to values 
X ∈ [−〈X〉, 〈X〉] with 〈X〉 = EN  (see inside the homogeneous regime (II) in figure 1), 
the PDF P (X,N) exhibits a large deviation form of the kind

P (X,N) ∼ exp

{
−NΦ

(
x =

X

N

)}
,

�
(20)

where the rate function Φ(x) was computed numerically in [38]. It is easy to see, by vir-
tue of central limit theorem [39], that in the vicinity of X = 〈X〉 = EN  and similarly 
around X = −〈X〉 = −EN , the rate function simply reads

Φ(x) =

{
(x−E)2

2σ2 , for x � E

−Ex+ (x+E)2

2σ2 , for x � −E,
� (21)

where x  =  X/N and E = 〈X〉/N .
Consider now studying P (X,N) in equation  (18) as a function of increasing X. 

There is a saddle point s0 on the real s axis as long as −〈X〉 < X < 〈X〉. As X → 〈X〉 
from below, s0 → 0. Similarly, as X → −〈X〉 from above, s0 → E (see figure 3). Our 
main interest in this paper is to study what happens when X exceeds 〈X〉 on the posi-
tive side (respectively when X goes below −〈X〉 on the negative side), i.e. when there is 
no longer a saddle point on the real s axis in the complex s plane. A detailed study of 
the inverse Laplace transform in equation (18), when there is no saddle point, reveals a 
rich behavior of P (X,N) for X > 〈X〉 (respectively for X < −〈X〉).

2.3. Summary of the main results

Let us summarize our main results for X > 〈X〉 (detailed calculations are provided 
in section 3). Similar computations for X < −〈X〉 are done in section 4. It turns out 
that when X exceeds 〈X〉 by O(

√
N), the behavior of P (X,N) still remains Gaussian 

(as expected from the central limit theorem). Actually this Gaussian form continues 
to hold all the way up to X − 〈X〉 ∼ N2/3. However, when X − 〈X〉 exceeds the criti-
cal value Xc = zc N

2/3 (where zc is a constant of order 1 that we compute explicitly), 
the Gaussian form ceases to hold. This is where the condensate starts to form. In this  
intermediate regime, where X − 〈X〉 = z N2/3 (where z ∼ O(1)), P (X,N) exhib-
its an anomalous large deviation form. Finally, in the extreme tail regime when 
X − 〈X〉 ∼ O(N), where the system is dominated by one single large condensate, 
P (X,N) has a stretched exponential form. These three behaviors are summarized as 
follows:

https://doi.org/10.1088/1742-5468/ab11be
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P (X,N) ≈





e−(X−NE)2/(2Nσ2) for (X − EN) ∼ N1/2

e−N1/3Ψ(z) for (X − EN) ∼ N2/3

e−
√

2/E (X−EN)1/2 for (X − EN) ∼ N

where z  =  (X  −  EN)/N2/3. The rate function Ψ(z) can be expressed as

Ψ(z) = min

[
z2

2σ2
,χ(z)

]
� (22)

where the function χ(z) can be computed exactly (see section 3) in the regime z ∈ [zl,∞] 
with

zl =
3σ4/3

2E1/3
.� (23)

In this regime zl < z < ∞, the function χ(z) has the asymptotic behaviors

χ(z) =




3
2

(
σ
E

)2/3
z → zl√

2
E

√
z − σ2

4E
1
z
+O

(
1

z3/2

)
, z � 1

.� (24)

The two competing functions z2/2σ2 and χ(z) in equation (22) are plotted in figure 2. 
Clearly, there exists a critical value z  =  zc where these two functions cross each other, 
such that one gets from equation (22)

Ψ(z) =

{
z < zc =⇒ z2/(2σ2)

z > zc =⇒ χ(z)� (25)

where zc is given by the solution of the equation

z2

2σ2
= χ(z).� (26)

At z  =  zc, the two functions match continuously, but the derivative Ψ′(z) is discontinu-
ous at z  =  zc (see figure 2), signalling a first-order dynamical phase transition. The two 
functions cross each other at zc, provided zc > zl. Indeed, by writing z in units of zl and 
solving numerically the matching condition in equation  (26), we find that, indepen-
dently of the value of E,

zc
zl

≈ 1.3805,
� (27)

which shows that zc > zl for any choice of the field E.
Our analysis also clarifies that the mechanism of this dynamical transition is a typi-

cal one for a classic first-order phase transition: we show that the PDF P (X,N), for 
X − 〈X〉 = z N2/3 where z ∼ O(1), can be written as a sum of two contributions,

P (X,N) = PG(z,N) + PA(z,N),� (28)
where PG(z,N) denotes Gaussian fluctuations, while PA(z,N) (where the subscript A is 
for anomalous) denotes the rare fluctuations emerging from the formation of a conden-
sate. These two terms compete with each other. In the vicinity of the transition point 
zc both contributions can be written in a large deviation form:
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PG(z,N) ∼ e−N1/3z2/(2σ2)

PA(z,N) ∼ e−N1/3χ(z).
� (29)

Since for z  <  zc one has z2/(2σ2) < χ(z), see figure 2, then limN→∞ PA(z,N)/PG(z,N) = 0: 
the Gaussian contribution dominates. On the contrary for z  >  zc one finds z2/(2σ2) > χ(z) 
and the probability of the condensate takes over, i.e. limN→∞ PG(z,N)/PA(z,N) = 0.

The accurate description of the first-order dynamical phase transition character-
izing the tails of P (X,N) is the main theoretical prediction of this paper. We have 
verified it via direct numerical simulations (see figure 4) and have found excellent agree-
ment between numerics and theory.

3. First-order dynamical transition: calculation of the rate function

In this section, we compute the large N behaviour of P (X,N) for X > 〈X〉. The strat-
egy consists in evaluating the leading contribution to the integral in equation  (18) 
according to the scale of the deviation of X from the average 〈X〉 that one is interested 
in. In particular we identify the three following regimes:

	 (i)	� X − 〈X〉 ∼ N1/2: the Gaussian regime.
		 We discuss it in section 3.1.

Figure 2.  Continuous (red) line: rate function of equation  (22), analytical 
prediction. zc ≈ 12.9 is the location of the first-order dynamical transition: Ψ′(z) is 
clearly discontinuous at zc. Dotted lines indicates χ(z) for z  <  zc and z2/(2σ2) for 
z  >  zc. zl is the lowest value of z such that χ(z) can be computed via a saddle-point 
approximation.
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	 (ii)	� X − 〈X〉 ∼ N , the extreme large-deviation regime.
		 This is discussed it in section 3.2.

	 (iii)	� X − 〈X〉 ∼ N2/3, the intermediate matching regime.
		 We discuss it in section 3.3.

In the Gaussian regime, for completeness, we also repeat how to compute P (X,N) 
when X < 〈X〉 and |X − 〈X〉| ∼ N1/2, just to show that the result is consistent with 
fluctuations above the mean.

The three regimes listed above have one common feature: in order to compute 
P (X,N), the Bromwich contour appearing in its integral representation in equation (18) 
must be deformed in order to pass around the branch cut on the negative semiaxis, see 
figure 3. In figure 3 the analytical properties in the complex s plane of L(s), the function 
defined in equations (18) and (19) are represented: it has two branch cuts on the real 
axis. The branch cut on the semiaxis [E,∞[ is related to the behaviour of P (X,N) for 
X < −〈X〉, the branch cut on ]−∞, 0] to the behaviour for X > 〈X〉. In figure 3 are 
shown the examples of the two possible shapes of the Bromwich contour, depending 
on whether X lies inside or outside the interval [−〈X〉, 〈X〉]. For X ∈ [−〈X〉, 〈X〉] the 
Bromwich contour is a straight vertical line crossing the real axis at s0, where s0 is the 
saddle-point of the function h(s) = sx+ log[L(s)], with x  =  X/N. For X /∈ [−〈X〉, 〈X〉] 
the contour must be deformed in order to pass around the branch cut.

In the following subsections we discuss the details of our calculations.

3.1. Gaussian fluctuations

Let us start with the calculation of the probability of O(N1/2) fluctuations around 
〈X〉 = EN , considering separately the two cases X  <  EN and X  >  EN. The result in 
the second case is that the non-analyticity at the branch cut is negligible, and the 
probability of fluctuations of order |X − EN | ∼ 1/

√
N  is Gaussian also for X  >  EN. 

The general strategy of all the following calculations is to first fix the scale of the 
fluctuations |X − EN | we are interested in, and then consider the corresponding orders 
in the expansion of L(s) around s0  =  0.

We start by computing P (X,N) for X  <  EN and |X − EN | ∼ N1/2. The expansion 
of L(s) in equation (19) for small and positive s reads:

L(s) = 1− Es+
(1 + 3E2)

2
s2 +O(s3),� (30)

from which one then gets

log[L(s)] = −Es+
1

2
σ2s2 +O(s3),� (31)

where σ2 = (2 + 5E2) is the second cumulant of the distribution P(x) defined in  
equation (9). Plugging the above expansions into the integral of equation (18) one gets, 
for large N:
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P (X,N) ≈
∫ s0+i∞

s0−i∞

ds

2πi
es(X−EN)+N σ2

2
s2+O(Ns3).� (32)

Since we are interested in evaluating the contribution to P (X,N) at the scale 
|X − EN | ∼ N1/2, from X and s we change variables to z and s̃:

X − EN = z N1/2

s = s̃/N1/2,
� (33)

and then take the limit N → ∞. All the irrelevant contributions vanish and one is left 
with a trivial Gaussian integral:

P (X,N) =
1√
N

∫ i∞

−i∞

ds̃

2πi
es̃z+

σ2

2
s̃2 =

e−(X−EN)2/(2σ2N)

√
2πσ2N

.� (34)

The same result can be obtained in a straightforward manner with the saddle-point 
approximation.

More interesting is the calculation of P (X,N) for X  >  EN. In this case the 
Bromwich contour needs to be deformed as shown in figure 3. Due to the presence of 
the branch cut ]−∞, 0], the expansion of L(s) in equation (19) is non-analytic at s0  =  0 
for Re(s) < 0, in particular it yields dierent results for the positive and the negative 
imaginary semiplane:

L(s+ i0+) = 1− Es+ (1 + 3E2)s2 + . . .+

√
2π

sE
e

1
2sE

+ 1
2E2

L(s+ i0−) = 1− Es+ (1 + 3E2)s2 + . . . .
�

(35)

Figure 3.  Analyticity structure of L(s), see equation (19), in the complex s plane. 
Wiggled lines: the two branch cuts, respectively ]−∞, 0] and [E,∞[. Straight (blue) 
line: Bromwich contour for the calculation of P (X,N) when −〈X〉 < X < 〈X〉, 
with s0 indicating the location of the saddle-point. Deformed (red) line: Bromwich 
contour to compute P (X,N) when X > 〈X〉, s0 indicates the new saddle point. 
Γ(+) and Γ(−) are labels for contour pieces in the positive and negative imaginary 
semiplanes.
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Accordingly, for the expansion of the logarithm one finds:

log[L(s+ i0+)] = −Es+
1

2
σ2s2 + . . .+

√
2π

sE
e

1
2sE

+ 1
2E2

log[L(s+ i0−)] = −Es+
1

2
σ2s2 + . . . .

�

(36)

Now, to compute P (X,N) at the scale X − EN ∼
√
N  we consider separately the 

integration along the contour in the positive immaginary semiplane, denoted as Γ
(+)

 in 
figure 3, and along the contour in the negative semiplane, denoted as Γ

(−)
, so that

P (X,N) = I(−) + I(−),� (37)
where the symbols I(−) and I(+) denote respectively the contour integrations along Γ

(−)
 

and Γ
(+)

. By plugging the expansions of equation (36) in the two integrals and changing 
of variables to z  =  (X  −  EN)/N1/2 and s = s̃/N1/2 one gets respectively:

I(−) =
1√
N

∫

Γ
(−)

ds̃

2πi
es̃z+

σ2

2
s̃2+O(N− 1

2 ),� (38)

and

I(+) =
1√
N

∫

Γ(+)

ds̃

2πi
es̃z+

σ2

2
s̃2+O(N− 1

2 )+N5/4
√

2π
s̃E

e

√
N

2s̃E
+ 1

2E2

.� (39)

Since in the present case Re(s̃) < 0 the non-analytic contribution to the expansion of 
log[L(s)] in equation (39) is exponentially small in 

√
N  and can be neglected, so that to 

the leading order the integrands of I(−) and of I(+) are identical. By dropping also the 

terms O(N− 1
2 ) in the argument of exponential one ends up with the formula:

P (X,N) =
1√
N

∫

Γ
(−)

+Γ
(+)

ds̃

2πi
es̃z+

σ2

2
s̃2 =

1√
N

∫ i∞

−i∞

ds̃

2πi
es̃z+

σ2

2
s̃2

=
e−(X−EN)2/(2σ2N)

√
2πσ2N

.

�

(40)

The last equation completes the demonstration that at the scale |X − EN | ∼ N1/2 the 
distribution P (X,N) is a Gaussian centered at 〈X〉 = EN . This is, in fact, just a con-
sequence of the validity of the central limit theorem.

3.2. Extreme large deviation

We now focus on the extreme right tail of P (X,N), where X −NE ∼ O(N). To com-
pute the leading contributions to P (X,N) on this scale, we change variables from from 
X and s to z and s̃ as follows:

X − EN = z N

s = s̃/N .� (41)

Also in this case, see for comparison section  3.1, it is then convenient to split the 
integral expression of P (X,N) in the positive and negative immaginary semiplane 
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contributions, denoted respectively as I(+) and I(−). The function log[L(s)] is not ana-
lytic at s0  =  0 and for Re(s) < 0 the expansions in the positive and negative semiplane 
are dierent and are those written in equation (36). Plugging in the definition of I(−) 
and I(+) the expressions of equation (36) and the change of variables of equation (41) 
one finds respectively

I(−) =
1

N

∫

Γ
(−)

ds̃

2πi
es̃z+

σ2

2N
s̃2+O(N−2) =

1

N

∫

Γ
(−)

ds̃

2πi
es̃z

[
1 +

σ2

2N
s̃2 +O(N−2)

]
,

� (42)
and

I(+) =
1

N

∫

Γ
(+)

ds̃

2πi
es̃z+

σ2

2N
s̃2+O(N−2)+N3/2

√
2π
s̃E

e
N

2s̃E
+ 1

2E2

.� (43)

Note that all terms except s̃z inside the exponential are small for large N (including 
the term containing eN/(2s̃E), since the real part of s is negative along the contour Γ(+)). 
Hence, we can expand the exponential for large N. Keeping only leading order terms, 
we get

I(+) ≈
1

N

∫

Γ
(+)

ds̃

2πi
es̃z

[
1 +

σ2

2N
s̃2 +O(N−2) +N3/2

√
2π

s̃E
e

N
2s̃E

+ 1
2E2

]
.� (44)

Summing the two contributions and grouping the analytic terms in the expansion one 
gets

I(+) + I(−) ≈
1

N

∫ i∞

−i∞

ds

2πi
esz

[
1 +

σ2

2N
s2 +O(N−2)

]

+N1/2

∫

Γ(+)

ds

2πi
esz

√
2π

sE
e

N
2sE

+ 1
2E2 .

�

(45)

One can easily show that the integrals in the first line of equation (45) (coming from 
the analytic terms) all vanish. For example, the first term just gives a delta function 
δ(z)/N  that vanishes for any z  >  0. The other analytic terms similarly can be evaluated 
using

∫ i∞

−i∞

ds

2πi
esz sn = δ(n)(z)� (46)

and thus contribute Dirac delta’s derivatives of increasing order which all vanish for 
z  >  0.

Thus, the only nonvanishing contribution for large N comes from the integral in the 
second line of of equation (45). To evaluate this integral, it is convenient to first rescale 
s →

√
N s and rewrite it as

I(+) + I(−) ≈ N3/4

√
2π

E
e

1
2E2

∫

Γ(+)

ds

2πi

1√
s
e
√
N(sz+ 1

2sE
) .

To evaluate this integral, it is first convenient to rotate the contour Γ(+) anticlockwise 
by angle π/2. We are allowed to do this since the function is analytic in the left upper 
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quadrant in the complex s plane. So, the deformed (rotated) contour now runs along 
the real axis from 0 to −∞. This amounts to setting s  =  −x with x running from 0 to 
∞, and the integral in equation (47) reduces to an integral on the real positive axis 
x ∈ [0,∞]

I(+) + I(−) ≈ N3/4

√
1

2π E
e

1
2E2

∫ ∞

0

dx√
x
e−

√
N(zx+ 1

2xE ) .� (47)

This integral can now be evaluated using the saddle point method. Defining,

u(x) = xz +
1

2xE
� (48)

it is easy to check that u(x) has a unique minimum at x∗ = 1/
√
2zE  (where u′′(x∗) > 0). 

By plugging x∗ = −1/
√
2zE into the integral of equation (47) and evaluating carefully 

the integral (including the Gaussian fluctuations around the saddle point) [40]5, we get, 
for large N and with z = (X − EN)/N ,

P (X,N) ≈ N e
1

2E2

exp
[
−(2/E)1/2

√
(X − EN)

]
√
2E(X − EN)

,� (49)

which is our final result for this section. Let us notice that the expression written in 
equation (49) is identical to N times the asymptotic behaviour of the marginal probabil-
ity distribution of the displacement in a single run, given in equation (12). This fact is 
perfectly consistent with the existence of a single positive condensate for X −NE ∼ N , 
that dominates the sum of N i.i.d random variables each distributed via the marginal 
distribution; the combinatorial factor N in front indicates that any one of the N vari-
ables can be the condensate.

3.3. First-order transition: the intermediate matching regime

The main new result of this paper is the detailed study of the intermediate regime 
where Gaussian fluctuation and extreme large positive fluctuation both are of the same 
order: their competition is at the heart of the first-order nature of the dynamical trans
ition that we find. This condition

exp

[
−(X − EN)2

2σ2N

]
∼ exp

[
−
√

2

E

√
(X − EN)

]
,� (50)

simply sets the scale of the matching to be

X − EN ∼ N2/3.� (51)

5 The general formula for the saddle-point approximation of a contour integral in the complex plane which depend 
on a large parameter λ is

I(λ) =
∫

Γ

dz f(z) eλS(z) =

(
2π

−λS ′′(z0)

) 1
2

eλS(z0) f(z0). (B.28)
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As a consequence, in order to single out the leading contributions to P (X,N) at this 
scale we must change variable from X to z in the integral of equation  (18), with 
z ∼ O(1) such that:

X − EN = zN2/3.� (52)
The trick is then to chose the proper rescaling of s so that the analytic terms of the 
log[L(s)] expansions (responsible for the Gaussian fluctuations), and the non-analytic 
ones (responsible for the anomalous fluctuations coming from the formation of the con-
densate), are of the same order. As is shown below, this is achieved by rescaling s as

s = s̃/N1/3.� (53)

Once again it is useful to evaluate separately the two contributions I(+) and I(−) after 
the change of variables. Taking into account the expansion of log[L(s)] in equation (36) 
one gets respectively:

I(−) =

∫

Γ
(−)

ds

2πi
esN

2/3z+N σ2

2
s2+O(Ns3)

=
1

N1/3

∫

Γ
(−)

ds̃

2πi
e
N1/3

(
s̃z+σ2

2
s̃2

)
+O(1)

,
�

(54)

and

I(+) =

∫ i∞

0

ds

2πi
es(X−NE)+N σ2

2
s2+O(Ns3)+

√
2π
s̃E

e
1

2s̃E
+ 1

2E2

=

∫ i∞

0

ds̃

2πiN
1
3

eN
1/3s̃z+N1/3 σ2

2
s̃2+O(1)+

√
2πN1/3

s̃E
e
N1/3

2s̃E
+ 1

2E2

=

∫ i∞

0

ds̃

2πiN
1
3

eN
1/3s̃z+N1/3 σ2

2
s̃2

[
1 +

√
2πN1/3

s̃E
e

N1/3

2s̃E
+ 1

2E2

]
.

�

(55)

By summing the expression of the two integrals in equations (54) and (55) it is then 
easy to write P (X,N), with X − EN = z N2/3, explicitly as the sum of a Gaussian and 
an anomalous contribution:

P (X,N) = PG(z,N) + PA(z,N)

PG(z,N) =
1

N1/3

∫ i∞

−i∞

ds

2πi
e
N1/3

(
sz+σ2

2
s2

)

PA(z,N) =
e1/(2E

2)

i
√
2πN1/3

∫

Γ
(+)

ds
1√
s
eN

1/3Fz(s)

�

(56)

where the function Fz(s) reads:

Fz(s) = sz +
1

2
σ2s2 +

1

2sE
.� (57)

The integral in the second line of equation (56) can be easily performed using the 
saddle point method, and gives a Gaussian contribution, justifying its name

https://doi.org/10.1088/1742-5468/ab11be


A first-order dynamical transition in the displacement distribution of a driven run-and-tumble particle

18https://doi.org/10.1088/1742-5468/ab11be

J. S
tat. M

ech. (2019) 053206

PG(z,N) ≈ 1√
2πσ2N

exp

[
−N1/3 z2

2σ2

]
.� (58)

The integral in the second line of equation (56), giving rise to the anomalous part, can 
be also be computed with a saddle point approximation only when the saddle-point 
equation

∂Fz(s)

∂s
= 0� (59)

has a real root s*. The real roots of equation (59) and their properties are studied in full 
detail in appendix B. In the same appendix, we also discuss the domain of existence of 
the saddle point solution and give the explicit solution.

Skipping further details, we find that the saddle-point equation F ′
z(s) = 0 has a real 

solution s* only for z ∈ [zl,∞], with zl = 3σ4/3/2E1/3 (see appendix B): in this range 
the integral PA(z,N) can be explicitly evaluated. For z  <  zl, computing the integral is 
hard as there is no saddle point on the real negative s axis. However, as we will see, 
we do not need the information on PA(z,N) for z = (X − EN)/N2/3 < zl. We will see 
that the transition occurs at z = zc > zl, so it is enough to compute PA(z,N) for z  >  zl. 
Hence, for our purpose, evaluating PA(z,N) by saddle point is sucient. Assuming the 
existence of a saddle point at s  =  s* and plugging the explicit expression of s* as a func-
tion of z (see appendix B) into equation (56) one gets:

PA(z,N) ∼ e−N1/3χ(z).� (60)

The shape of the function χ(z) is shown in figure 2, where its behavior is compared with 
the parabola z2/(2σ2) of the Gaussian term. All the details on the derivation of χ(z) are 
in appendix B. The asymptotics are:

χ(z) =




3
2

(
σ
E

)2/3
z → zl√

2
E

√
z − σ2

4E
1
z
+O

(
1

z3/2

)
z � 1.

� (61)

Dropping the irrelevant prefactors aside, we then get

P (X,N) ≈ exp

{
−N1/3 z2

2σ2

}
+ exp

{
−N1/3χ(z)

}
.� (62)

By solving numerically the equation z2/(2σ2) = χ(z) one finds the value of zc in units 
of zl:

zc
zl

≈ 1.3805.� (63)

In the numerical simulations we set the acceleration to E  =  2. By plugging this value 
in the expression of zl given in appendix B we finally get:

zc ≈ 12.9,� (64)
the value indicated by the dotted vertical line in figure 4.

The mechanism of the first-order transition is now transparent. Recall that 
X − EN = z N2/3. When z  <  zc, the probability distribution P (X,N) is dominated 
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by the Gaussian contribution PG(z,N), since z2/(2σ2) < χ(z). On the contrary for 
z  >  zc the distribution is dominated by the anomalous contribution PA(z,N), since 
z2/(2σ2) > χ(z). The result can be summarized as follows:

z < zc =⇒
z2

2σ2
< χ(z) =⇒ P (X,N) ≈ e−N1/3z2/(2σ2)

z > zc =⇒
z2

2σ2
> χ(z) =⇒ P (X,N) ≈ e−N1/3χ(z).

�
(65)

Figure 4. Top: numerical data for the rate function Ψ(z). Dierent curves correspond 
to dierent number of runs N in the trajectory: N = 102, 103, 104. Acceleration is 
set to E  =  2. Dotted (black) line: guide to the eye, Gaussian (inverted) parabola. 
Bottom: numerical data for the rate function derivative Ψ′(z). Continuous black 
line is the analytical prediction in the limit N → ∞, the coordinate of the transition 
point is zc ≈ 12.9 (for E  =  2).
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Thus the mechanism behind the first order transition corresponds to a classic first-
order phase transition scenario in standard thermodynamics: in the vicinity of the 
transition point there is a competition between two phases characterized by a dierent 
free-energy (here the value of the rate function) and the transition point itself is defined 
as the value of the control parameter (here the value of the displacement) where the 
free-energy dierence between the two phases changes sign.

3.4. First-order transition from numerical simulations

The direct consequence of the description in equation  (65) is that the rate function 
Ψ(z), which is Ψ(z) = z2/(2σ2) for z  <  zc and Ψ(z) = χ(z) for z  >  zc, has a discontinuity 
in its first-order derivative Ψ′(z) at zc: this happens because the two functions z2/(2σ2) 
and χ(z) match continuously at zc, but with a dierent slope.

We show in this section that the discontinuity of the rate function Ψ(z) appears 
for large enough N when one tries to sample numerically the tails of P (X,N). We 
have studied the behaviour of P (X,N) for N = 102, 103, 104 runs in the trajectory. The 
behaviour of the rate function Ψ(z) and of its derivative Ψ′(z) are shown in figure 4. 
While at N  =  102 the transition from the Gaussian to the large deviations regime is still 
a smooth crossover, the trend for increasing N goes clearly towards a discontinuous 
jump of Ψ′(x). The location of the discontinuity revealed by the numerical simulations 
is in agreement with the analytic prediction zc ≈ 12.9 given for the value E  =  2.

Simulations are straightforward but one has to chose a clever strategy: just look-
ing at the probability distribution of independent identically distributed random vari-
ables is not sucient, since doing like that one can only probe the typical fluctuations 
regime, |X − 〈X〉| ∼ N1/2, but not the large deviations. In order to sample P (X,N) 
in the whole regime of interest a set of many simulations is needed, each probing the 
behaviour of the PDF in a narrow interval [X∗,X∗ +∆]. We provide in what follows a 
detailed description of the numerical protocol.

In order to achieve an ecient sampling of P (X,N) also in the matching and in 
the large deviations regime we follow here the strategy to compute the tails of random 
matrices eigenvalues distribution used in [44, 45]. The basic idea is to sample P (X,N) 
in many small intervals [X∗,X∗ +∆] varying X*, in order to recover finally the whole 
distribution. The sampling of P (X,N) in each interval [X∗,X∗ +∆] corresponds to an 
independent Monte Carlo simulation. Since the total number of runs in the trajectory 
is fixed to N, for each value of X* we fix the initial condition chosing a set (τ in1 , . . . , τ inN ) 
of runs durations and a set (vin1 , . . . , v

in
N) of initial velocities for each run such that:

N∑
i=1

[
vini τ

in
i +

E

2
(τ ini )2

]
> X∗.� (66)

In the initial condition all the local variables are of order unit: vini , τ
in
i = O(1). The 

stochastic dynamics to sample P (X,N) in the vicinity of X* then goes on as any stan-
dard Metropolis algorithm: attempted updates are accepted or rejected with probabil-
ity p = min[1, p(Cold)/p(Cnew)] where the stationary probability of a configuration p(C) 
reads as:
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p(τ1, v1, . . . , τN , vN) ≈ exp

(
−

N∑
i=1

[
τi + v2i /2

]
)
.� (67)

The only additional ingredient with respect to a standard Metropolis algorithm is that 
all attempts which brings XN below X* are rejected. The precise form of the probability 
distribution sampled for each value of X* in the Monte Carlo dynamics is therefore:

P (X,N |X > X∗) = e−
∑N

i=1[τi+v2i /2] Θ

(
N∑
i=1

[
viτi +

E

2
τi

]
−X∗

)
,� (68)

where Θ(x) is the Heavyside step function.
We define as a Monte Carlo sweep the sequence of N local attempts of the kind 

(vi, τi) ⇒ (vnewi , τnewi ) where

vnewi = vi + δv,

τnewi = τi + δτ .� (69)
The shifts δv, δτ are random variables drawn from uniform distributions. Then, if and 
only if the constraint implemented by the Heavyside step function in equation (68) is 
satisfied, otherwise the attempt is rejected immediately, the new values (vnewi , τnewi ) are 
accepted with probability:

pacc = min
[
1, e−[(v

new
i )2/2+τnewi −(v2i /2+τi)]

]
.� (70)

In order to recover the full probability distribution P (X,N) within the interval 
X ∈ I = [〈X〉, 〈X〉+ 2zc〈X〉2/3] we have divided I in a grid of M  =  100 elements. More 
precisely, we have run M simulations for a set of equally-spaced values X∗ ∈ I . Each 
simulation allows one to sample P(X,N |X  >  X*) only in a small interval on the right 
of X*. The value zc is the critical one predicted by the theory. The choice of the inter-
val I has been somehow arbitrary, we just took care that it was centered around the 
expected critical value Xc for the condensation transition. We have taken a number of 
sweeps Nsweeps ≈ 107, enough to forget the initial conditions.

The relation between the PDF P(X,N |X  >  X*) sampled in the MC numerical simu-
lations and the PDF we want to investigate, P (X,N), is as follows:

P (X,N) = P (X,N |X > X∗) P (X > X∗,N).� (71)
In particular, what we are interested in is the rate function Ψ(z) defined as:

Ψ

(
z =

X − 〈X〉
N2/3

)
= − 1

N1/3
log [P (X,N)] .� (72)

The rate function Ψz∗(z) that we measure in the vicinity of X* by sampling the prob-
ability distribution in equation (68) diers from the original one, due to equation (71), 
by an additive constant:
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Ψ(z) = − 1

N1/3
log [P (X,N |X > X∗)]− 1

N1/3
log [P (X > X∗,N)]

= Ψz∗(z) + f(z∗),
� (73)

where f (z*) is a function that depends only on z*. By taking the derivative with respect 
to z (and taking into account that dz = dX/N2/3) one gets rid of the additive constant 
and obtain the following expression:

dΨ(z)

dz
=

dΨz∗(z)

dz
= − N1/3

P (X,N |X > X∗)

dP (X,N |X > X∗)

dX
.� (74)

Therefore what we have done has been to sample numerically dΨz∗(z)/dz in the vicin-
ity of many values z* by means of the biased Monte Carlo dynamics. The function Ψ(z) 
has been then obtained from the numerical integration of the first-order derivative. 
Both the rate function Ψ(z) and its first derivative Ψ′(z) are shown in figure 4.

4. First-order transition for negative fluctuations

So far we focused only on the right tail of P (X,N), but the probability distribution 
is not symmetric due to E, as is shown in the pictorial representation of figure 1. We 
need to comment also on the behaviour of the left tail of P (X,N). In this section we 
demonstrate that even for negative fluctuations a first-order dynamical transition takes 

place, and that, following the same arguments of section 3, it is located at X
(−)
c = −Xc, 

where Xc = zcN
2/3 +NE, with zc given in equations (63) and (64). The location of the 

transition for negative fluctuations is symmetric to that for positive ones. The only 
dierence with the case of positive fluctuations is that for X  <  0 the PDF has in front 
an exponential damping factor due to the field E. Here is the summary of the behavior 
of P (X,N) in the three regimes, i.e. typical fluctuations, extreme large negative devia-
tions and the intermediate matching regime, for X  <  0:

P (X,N) ≈





e−E|X| e−(X+NE)2/(2Nσ2) for (X + EN) ∼ N1/2

e−E|X| e−N1/3Ψ(z) for (X + EN) ∼ N2/3

e−E|X| e−
√

2/E |X+EN |1/2 for (X + EN) ∼ N

,� (75)

where z  =  −(X  +  NE)/N2/3 and the rate function Ψ(z) is the same as the one we have 
computed for positive fluctuations.

The calculations to obtain the behaviours in equation (75) are identical to those for 
X  >  0, which are described in full detail in section 3 and in appendix B. We are not 
going to repeat all of them here. We will sketch the derivation of the results in equa-
tion (75) only for the matching regime, which is the most interesting among the three. 
This discussion has also the purpose of highlighting the (small) dierences with the 
calculations in the case X  >  0, in particular to show where the prefactor e−E|X| comes 
from.

First, as can be easily noticed looking at equation (19), the function L(s) has the 
following symmetry
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L(s) = L(E − s),� (76)
which is important for the following reason. To compute P (X,N) for values of the total 
displacemente X  >  EN we needed to wrap the Bromwich contour around the branch cut 
at ]−∞, 0] (see figure 3). This was done by taking the analytic continuation of log[L(s)] 
in the complex plane in the neighbourhood of s0  =  0. In the same manner, in order to 
compute P (X,N) for X  <  −NE, we must wrap the Bromwich contour around the branch 
cut at [E,∞[. To do this we need the analytic continuation of log[L(s)] in the neighbour-
hood of s0  =  E. Due to the symmetry in equation (76) the expansion of log[L(s)] in the 
neighbourhood of s0  =  E is identical to the one in the neighbourhood of s0  =  0, including 
the non-analyticities due to the branch cut. In particular we have that:

log[L(E − s+ i0+)] = −E(E − s) +
1

2
σ2(E − s)2 + . . .+

√
π

2E(E − s)
e

1
2s(E−s)

+ 1
2E2

log[L(E − s+ i0−)] = −E(E − s) +
1

2
σ2(E − s)2 + . . . .

�
(77)

As done in the case of positive fluctuations, also for X  <  −NE is convenient to split 
the expression of the inverse Laplace transform of P (X,N), see equation (18), in two 
contributions: the contour integral in the negative semiplane, I(−), and the contour 
integral in the positive semiplane, I(+). Let us consider first the integral I(−):

I(−) =

∫

Γ(−)

ds

2πi
esX+N[−E(E−s)+ 1

2
σ2(E−s)2+...].� (78)

In this case (X  <  0) is convenient to change variable from s to y   =  E  −  s:

I(−) = −
∫

−Γ(−)

dy

2πi
e(E−y)X+N[−Ey+ 1

2
σ2y2+...]

= eXE

∫

Γ(−)

dy

2πi
e−y(X+EN)+N 1

2
σ2y2+....

�
(79)

Then, in order to have a variable which is positive and is of order O(1) when 
X + EN ∼ N2/3 we introduce:

z = −X + EN

N2/3
.� (80)

By rescaling the integration variable y = ỹ/N
1
3, appropriate for the matching interme-

diate regime, we can rewrite

I(−) = eEX 1

N1/3

∫

Γ(−)

dỹ

2πi
eN

1/3[ỹz+ 1
2
σ2ỹ2]+O(1).� (81)

The expression of I(−) in equation  (81), is, apart from the prefactor eEX, identi-
cal to the analogous one evaluted for X  >  0, see equation (54). The only dierence 
is that now the scaling variable z is defined as z  =  −(X  +  EN)/N2/3 rather than 
z  =  (X  −  EN)/N2/3. In the same way for the integral in the positive complex semi-
plane we find:
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I(+) = eEX 1

N1/3

∫

Γ
(+)

dỹ

2πi
e
N1/3[ỹz+ 1

2
σ2ỹ2]+...+

√
2πN1/3

Eỹ
e
N1/3

2Eỹ
+ 1

2E2

.� (82)

Recalling that we are expanding for Re(y) = Re(E − s) < 0 (see figure 3), and hence 
ỹ < 0, we can further expand:

I(+) = eEX 1

N1/3

∫

Γ
(+)

dỹ

2πi
eN

1/3[ỹz+ 1
2
σ2ỹ2]


1 +

√
2πN1/3

Eỹ
e

N1/3

2Eỹ
+ 1

2E2




= eEX 1

N1/3

∫

Γ
(+)

dỹ

2πi
eN

1/3[ỹz+ 1
2
σ2ỹ2] + eEX 1

N1/3

∫

Γ
(+)

dỹ

2πi
eN

1/3Fz(ỹ)

�
(83)

so that

I(+) + I(−) = eEX 1

N1/3

∫ i∞

−i∞

dỹ

2πi
eN

1/3[ỹz+ 1
2
σ2ỹ2] + eEX 1

N1/3

∫

Γ
(+)

dỹ

2πi
eN

1/3Fz(ỹ)

Fz(ỹ) = ỹz +
1

2
σ2ỹ2 +

1

2ỹE
,

�

(84)

where the function Fz(ỹ) is identical to that of equation (57), hence leading to the same 
conclusions. For negative fluctuations as well, it is then straightforward to see that 
in the intermediate matching regime we have two competing contributions, i.e. the 
Gaussian, PG(z,N), and anomalous one, PA(z,N):

PG(z,N) =
1

N1/3

∫ i∞

−i∞

dỹ

2πi
eN

1/3[ỹz+ 1
2
σ2ỹ2]

PA(z,N) =
1

N1/3

∫ i∞

−i∞

dỹ

2πi
eN

1/3Fz(ỹ),

�
(85)

where z  =  −(X  +  NE)/N2/3. The probability distribution for negative fluctuations in 
the matching regime reads therefore as:

P (X,N) = eEX [PG(z,N) + PA(z,N)] .� (86)

Apart from the prefactor eEX the expression of P (X,N), for negative fluctuations 
in the matching regime, is the same as that for positive fluctuations: the condensa-
tion transition at zc is driven by the same mechanism, the competition between the 
Gaussian fluctuations of PG(z,N) and the anomalous one of PA(z,N). The calcul
ation of the probability of typical fluctuations X +NE ∼ N1/2 and of large deviations 
X +NE ∼ N  can be very easily done following the same steps of section 3, which we 
do not repeat here.

5. Conclusions

We have studied the probability distribution P (X,N) of the total displacement 

XN =
∑N

i=1 xi for a run-and-tumble (RTP) particle on a line, subject to a constant force 
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E  >  0. The PDF p(τ) for the distribution of duration of a run and the PDF q(v) for the 
velocity at the beginning of a run are two inputs to the model, along with E  >  0. The 
standard RTP corresponds to the choice E  =  0, p(τ) = e−τ θ(τ) (Poisson tumbling with 

rate 1) and a bimodal q(v) = 1
2
[δ(v − v0) + δ(v + v0)]. The main conclusion of this paper 

is that a broad class of p(τ) and q(v), for E  >  0, leads to a condensation transition. This 
is manifest as a singularity in the displacement PDF P (X,N) for large N and the trans
ition is first-order. A criterion for the condensation is provided for dierent choices of 
p(τ) and q(v). As a representative case, we have provided detailed analysis and results 

for the specific choice: arbitrary E  >  0, p(τ) = e−τ θ(τ) and q(v) = e−v2/2/
√
2π. We have 

also argued that the standard RTP does not have this interesting phase transition.
By a detailed computation of the PDF P (X,N) of the total displacement after N 

runs, we have shown that while the central part of the PDF P (X,N) is characterized 
by a Gaussian form (as dictated by the central limit theorem), both the right and left 
tails of P (X,N) have anomalous large deviation forms. On the positive side, as the 
control parameter X  −  EN exceeds a critical value zc N

2/3, a condensate forms, i.e. the 
sum starts getting dominated by a single long run. This signals a phase transition, as 
a function of X, from the central regime dominated by Gaussian fluctuations to the 
condensate regime dominated by a single long run. A similar transition occurs for large 
negative X where a negative long run dominates the sum. The phase transition is quali-
tatively similar to condensation phenomenon in mass transport models, where the role 
of the large condensate mass is played here by the macroscopic extent of the displace-
ment travelled without tumbles in one single run.

The main new result of our study is the uncovering of an intermediate matching 
regime where the PDF P (X,N) of the total displacement exhibits an anomalous large 

deviation form, P (X,N) ∼ e−N1/3Ψ(z) with z = (X − 〈X〉)/N2/3. Quite remarkable is 
the non-analytic behaviour of the associated rate function Ψ(z) at the critical point 
z  =  zc, here the function is continuous but its first derivative jumps: we are in presence 
of a first-order phase transition. The two phases on either side of the critical point zc 
corresponds respectively to a fluid phase (z  <  zc) and a phase with a single large con-
densate (z  >  zc). The mechanism behind this transition is typical of a thermodynamic 
first-order phase transition, where there is an energy jump (first order derivative of the 
free energy with respect to the inverse temperature β) emerging from the competition 
between two phases. Here we have homogeneous trajectories with Gaussian probability 
PG(X,N) competing with trajectories dominated by one single run characterized by 
the anomalous part of the distribution PA(X,N). The transition takes place when the 
two competing terms are of the same order. An interesting feature of the analysis pre-
sented here is that the first-order dynamical transition studied takes place in a regime 
where the natural scale (speed) of large deviations is N1/3 and not N, as is typical in 
extensive thermodynamic systems.

In this paper, we have shown that the problem of computing the total displacement 
of the RTP reduces to the computation of the distribution of the linear statistics (in 
this case just the sum) of a set of i.i.d random variables, each drawn from a marginal 
distribution that has a stretched exponential tail. Our study shows that even for such a 
simple system, the distribution P (X,N) has an anomalous large deviation regime that 
exhibits a discontinuity in the first-derivative of the rate function. It is worth pointing 
out that in a certain class of strongly correlated random variables (typically arising in 
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problems involving the eigenvalues of a random matrix), the distribution of linear sta-
tistics is known to exhibit a large deviation form that typically undergoes similar phase 
transitions [41–52]. However, in these systems the underlying random variables have 
long-range correlations, whereas in our problem the underlying random variables are 
completely uncorrelated! Thus the mechanism of the first-order phase transition in our 
model is quite dierent from that of the Coulomb gas systems studied in [41–52]. Here 
we find a condensation transition analogous to that of mass transport models [30–36].

Finally, we have presented here only results for the case of external field E  >  0, 
although we also have preliminar results for the case E  =  0. We already know that the 
limit E → 0 is singular: the exponents controlling the asymptotic decay of P (X,N) in 
the case of zero external field are dierent from the finite field case. All the details on 
P (X,N)’s large deviation form in the case of E  =  0 are going to be presented elsewhere 
[53]. The results of the present paper also have important implications for an equilib-
rium thermodynamics study of wave-function localization in the nonlinear Schrödinger 
equation: this is the subject of another forthcoming work [54].
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Appendix A. Asymptotic tails of P(x)

In this appendix, we present the asymptotic bahaviors of the distribution of the dis-
placement in a single run, namely the marginal distribution P(x) written in equa-

tion (9) of section 2. We first consider p(τ) = e−τ θ(τ) and q(v) = e−v2/2/
√
2π. Let us 

first define the mean and the variance of P(x), which can be easily computed. The 
mean is given by

〈x〉 = 〈v〉〈τ〉+ 1

2
E 〈τ 2〉 = E .� (A.1)

Similarly, the second moment is simply,

〈x2〉 = 〈v2〉〈τ 2〉+ E〈v〉〈τ 3〉+ E2

4
〈τ 4〉 = 2 + 6E2� (A.2)

and hence the variance is given by

σ2 = 〈x2〉 − 〈x〉2 = 2 + 5E2 .� (A.3)

To compute the full marginal distribution P(x), we perform the Gaussian integral over 
v to get
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P(x) =
1√
2π

∫ ∞

0

dτ

τ
exp

[
−τ − (x− Eτ 2/2)2

2τ 2

]
.� (A.4)

This integral is hard to compute exactly. However, we are only interested in the large 
|x| asymptotic tails of P(x).

To derive the asymptotics of P(x) in equation (A.4), it is first convenient to rewrite 
it as

P(x) =
1√
2π

exE/2

∫ ∞

0

dτ

τ
exp

[
−τ − x2

2τ 2
− E2τ 2

8

]
.� (A.5)

Since P(x) is manifestly asymmetric, let us consider the two limits x → ∞ and x → −∞ 
separately. Consider first the positive side x � 0. Let us first rescale τ =

√
x y in equa-

tion (A.5), and rewrite the integral for any x � 0 as

P(x) =
1√
2π

∫ ∞

0

dy

y
exp

[
−
√
x y − x

2

(
Ey

2
− 1

y

)2
]
.� (A.6)

This is a convenient starting point for analysing the asymptotic tail x → ∞. The domi-

nant contribution to this integral for large x comes from the vicinity of y = y∗ =
√

2/E 
that minimizes the square inside the exponential. Setting y =

√
2/E + z, expanding 

around z  =  0 (keeping terms up to O(z2)) and performing the resulting Gaussian inte-
gration gives, to leading order for large positive x

P(x) ≈ 1

E
e2/E

2

x−1/2 e−
√

2x/E .� (A.7)

Turning now to the large negative x, we set x = −|x| in equation (A.5) and rewrite 
it, for x  <  0 as

P(x < 0) = e−E|x|/2
∫ ∞

0

dτ

τ
exp

[
−τ − |x|2

2τ 2
− E2τ 2

8

]

= e−E |x|P(|x|)
�

(A.8)

where, in the second line, we used the expression of P(x) in equation (A.5) with argu-
ment |x| > 0. Hence, for large x → −∞, we can use the already derived asymptotics of 
P(x) for large positive x in equation (A.7). This then gives, to leading order as x → −∞,

P(x) ≈ 1

E
e2/E

2

e−E |x||x|−1/2 e−
√

2|x|/E .� (A.9)

The results in equations (A.7) and (A.9) can then be combined into the single expression

P(x) ≈

{
c1 |x|−1/2 e−(2/E)1/2 |x|1/2 , x → ∞
c1 |x|−1/2 e−E |x| −(2/E)1/2 |x|1/2 , x → −∞� (A.10)

where c1 = e2/E
2
/E is a constant. Thus the marginal PDF of x has stretched expo-

nential tails on both sides with stretching exponent α = 1/2, but in addition on the 
negative side it has an overall multiplicative exponential factor e−E |x|. We note that 
this model with a field E  >  0 has been studied earlier in [38, 55–58] under the name of 
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Stochastic Lorentz gas, but no investigation was carried out on its condensation trans
itions and the associated first-order phase transitions.

Consider now the case where E  >  0, p(τ) = e−τ θ(τ), but the velocity distribution 
q(v) is bimodal as in equation (1). Substituting q(v) in equation (9) and carrying out 
the v integration gives

P(x) =
1

2

∫ ∞

0

dτ e−τ

[
δ

(
x− v0τ − E

2
τ 2
)
+ δ

(
x+ v0τ − E

2
τ 2
)]

.� (A.11)

Now, for large x  >  0, the leading contribution comes from large τ , hence one can 
neglect v0τ  terms leading to

P(x) ≈
∫ ∞

0

dτ e−τ δ

(
x− E

2
τ 2
)

=
1√
2E x

e−
√

2x/E .
�

(A.12)

Hence, for large x  >  0, the marginal distribution P(x) has a stretched exponential 
decay and it satisfies the criterion for positive condensation. In contrast, for negative x 
and E  >  0, it is easy to see that P(x) strictly vanishes for x < −v20/2E. Thus the mar-
ginal distribution is bounded on the negative side. Consequently it does not satisfy the 
condensation criterion for negative x. Thus, in this example, we only have one sided 
condensation in the displacement PDF P (X,N).

We next consider the standard RTP case: E  =  0, p(τ) = e−τθ(τ) and q(v) bimodal as 
in equation (1). Substituting q(v) in equation (9) and carrying out the v integral gives

P(x) =
1

2

∫ ∞

0

dτ e−τ [δ(x− v0τ) + δ(x+ v0τ)]

=
1

2v0
e−|x|/v0 .

�
(A.13)

Thus, in this case, the marginal P(x) decays exponentially on both sides and hence 
does not satisfy the condensation criterion. Consequently, for the standard RTP, we 
do not have condensation on either side. However, for E  =  0, and arbitrary velocity 
distribution q(v) with a finite width, the condensation transition is restored [53].

Appendix B. Derivation of the rate function χ(z) in the intermediate matching 
regime

In this appendix we study the leading large N behavior of the integral that appears in 
the expression for PA(z,N) in equation (56):

IN(z) =

∫

Γ(+)

ds
1√
s
eN

1/3Fz(s)
� (B.1)

where z � 0 can be thought of as a parameter and

Fz(s) = sz +
1

2
σ2 s2 +

1

2sE
,� (B.2)
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with σ2 = 2 + 5E2. It is important to recall that the contour Γ(+) is along a vertical 
axis in the complex s-plane with its real part negative, i.e. Re(s) < 0. Thus, we can 
deform this contour only in the upper left quadrant in the complex s plane (Re(s) < 0 
and Im(s) > 0), but we can not cross the branch cut on the real negative axis, nor can 
we cross to the s-plane where Re(s) > 0.

To evaluate the integral in equation (B.1), it is natural to look for a saddle point of 
the integrand in the complex s plane in the left upper quadrant, with fixed z. Hence, 
we look for solutions for the stationary points of the function Fz(s) in equation (B.2). 
They are given by the zeros of the cubic equation

F ′
z(s) =

dFz(s)

ds
= z + σ2 s− 1

2Es2
≡ 0.� (B.3)

As z � 0 varies, the three roots move in the complex s plane. It turns out that for z  <  zl 
(where zl is to be determined), there is one positive real root and two complex conju-
gate roots. For example, when z  =  0, the three roots of equation (B.3) are respectively 
at s = (2Eσ2)−1/2 eiφ with φ = 0, φ = 2π/3 and φ = 4π/3. However, for z  >  zl, all the 
three roots collapse on the real s axis, with s1 < s2 < s3. The roots s1  <  0 and s2  <  0 are 
negative, while s3  >  0 is positive. For example, in figure B1, we plot the function F ′

z(s) 
in equation (B.3) as a function of real s, for z  =  12 and E  =  2 (so σ2 = 2 + 5E2 = 22). 
One finds, using Mathematica, three roots at s1  =  −1/2 (the lowest root on the negative 
side), s2 = −0.175 186 . . . and s3 = 0.129 732 . . .. We can now determine zl very easily. 
As z decreases, the two negative roots s1 and s2 approach each other and become coinci-
dent at z  =  zl and for z  <  zl, they split apart in the complex s plane and become complex 
conjugate of each other, with their real parts identical and negative. When s1 < s2, the 
function F ′

z(s) has a maximum at sm with s1 < sm < s2 (see figure B1). As z approaches 
zl, s1 and s2 approach each other, and consequently the maximum of F ′

z(s) between s1 
and s2 approach the height 0. Now, the height of the maximum of F ′

z(s) between s1 
and s2 can be easily evaluated. The maximum occurs at s  =  sm where F ′′

z (s) = 0, i.e. at 
sm = −(Eσ2)−1/3. Hence the height of the maximum is given by

F ′
z(s = sm) = z + σ2 sm +

1

2smE
= z − 3

2

(
σ4

E

)1/3

.� (B.4)

Hence, the height of the maximum becomes exactly zero when

z = zl =
3

2

(
σ4

E

)1/3

.

�

(B.5)

Thus we conclude that for z  >  zl, with zl given excatly in equation (B.5), the function 
F ′
z(s) has three real roots at s  =  s1  <  0, s2  <  0 and s3  >  0, with s1 being the smallest 

negative root on the real axis. For z  <  zl, the pair of roots are complex (conjugates). 
However, it turns out (as will be shown below) that for our purpose, it is sucient to 
consider evaluating the integral in equation (B.1) only in the range z  >  zl where the 
roots are real and evaluating the saddle point equations are considerbaly simpler. So, 
focusing on z  >  zl, out of these 3 roots as possible saddle points of the integrand in 
equation (B.1), we have to discard s3  >  0 since our saddle points have to belong to the 
upper left quadrant of the complex s plane. This leaves us with s1  <  0 and s2  <  0. In 
order for the root to be a saddle, it must have a minimum along real s, so that it has 
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a maximum along the vertical axis Γ(+). Now, out of two roots s1  <  0 and s2  <  0, it is 
clear from figure B1 that the while the second derivative is positive at s1, F

′′
z (s1) > 0, at 

s2 the second derivative it is negative, F ′′
z (s2) < 0. Thus, the function Fz(s) has a local 

minimum at s  =  s1 along real s, while it has a local maximum at s  =  s2. Hence, for the 
saddle point evaluation of the integral in equation (B.1), we must choose s  =  s1, i.e. the 
lowest negative root, that ensures that the Bromwich contour when deformed to pass 
through s  =  s1, will have a maximum along the vertical s direction. Thus, evaluating 
this saddle point (and discarding preexponential terms) we get for large N

IN(z) ≈ exp[−N1/3χ(z)]� (B.6)

where the rate function χ(z) is given by

χ(z) = −Fz(s = s1) = −s1 z −
1

2
σ2s21 −

1

2s1E
.� (B.7)

The right hand side can be further simplified by using the saddle point equation (B.3), 
i.e. z + σ2s1 − 1/2Es21 = 0. This gives

χ(z) = −zs1
2

− 3

4Es1
.� (B.8)

B.1. Asymptotic behavior of χ(z)

We now determine the asymptotic behavior of the rate function χ(z) in the range 
zl < z < ∞, where zl is given in equation (B.5). Essentially, we need to determine s1 
(the lowest negative root) as a function of z by solving equation (B.3), and substitute it 
in equation (B.8) to determine χ(z).

We first consider the limit z → zl from above, where zl is given in equation (B.5). 
As z → zl from above, we have already mentioned that the two negative roots s1 and 
s2 approach each other. Finally at z  =  zl, we have s1 = s2 = sm where sm = −(Eσ2)−1/3 
is the location of the maximum between s1 and s2. Hence as z → zl from above, 
s1 → sm = −(Eσ2)−1/3. Substituting this value of s1 in equation (B.8) gives the limiting 
behavior

χ(z) → 3

2

( σ

E

)2/3

as z → zl� (B.9)

as announced in the first line of equation (24).
To derive the large z → ∞ behavior of χ(z) as announced in the second line of equa-

tion (24), it is first convenient to re-parametrize s1 and define

s1 = − 1√
2Ez

θz.� (B.10)

Substituting this in equation (B.3), it is easy to see that θz satisfies the cubic equation

−b(z) θ3z + θ2z − 1 = 0,� (B.11)

where
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b(z) =
σ2

√
2E

1

z3/2
.� (B.12)

Note that due to the change of sign in going from s1 to θz, we now need to determine 
the largest positive root of θz in equation (B.11). In terms of θz, χ(z) in equation (B.8) 
reads

χ(z) =
√
z

√
2

E

θ2z + 3

4θz
.� (B.13)

The representations in equations (B.11)–(B.13) are now particularly suited for the 
large z analysis of χ(z). From equation (B.11), it follows that as z → ∞, θz → 1. Hence, 
for large z or equivalently small b(z), we can obtain a perturbative solution of equa-
tion (B.11). To leading order, it is easy to see that

θz = 1 +
b(z)

2
+O

(
b(z)2

)
� (B.14)

with b(z) given in equation (B.12). Substituting this in equation (B.13) gives the large 
z behavior of χ(z)

χ(z) =

√
2

E

√
z − σ2

4E

1

z
+O

(
1

z5/2

)
� (B.15)

as announced in the second line of equation (24).

B.2. Explicit expression of χ(z)

While the excercises in the previous subsections were instructive, it turns out that one 
can obtain an explicit expression for χ(z) by explicitly solving the cubic equation (B.11) 

Figure B1.  A plot of F ′
z(s) = z + σ2 s− 1

2Es2
 as a function of s (s real) for z  =  12, 

E  =  2 and σ2 = 2 + 5E2 = 22. There are three zeros on the real s axis (obtained by 
Mathematica) at s1  =  −0.5, s2 = −0.175 186 . . . and s3 = 0.129 732 . . ..
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using Mathematica. The largest positive root of equation  (B.11), using Mathematica, 
reads

θz =
1

6 bz




−2 +

24/3(
−2 + 3 bz(9 bz +

√
−12 + 81 b2z)

)1/3
+ 22/3

(
−2 + 3 bz(9 bz +

√
−12 + 81 b2z)

)1/3




� (B.16)
where b(z) is given in equation (B.12). Using the expression of zl in equation (B.5), we 
can re-express b(z) conveniently in a dimensionless form

b2z =
1

2

(
2

3

zl
z

)3

.� (B.17)

Consequently, the solution θz in equation (B.16) in terms of the adimensional param
eter r = z/zl � 1 reads as

θz ≡ θ(r) =

√
3

2
r3/2

[
−1 +

1

g(r)
+ g(r)

]
� (B.18)

where

g(r) =
1

r

(
1 + i

√
r3 − 1

)2/3

.� (B.19)

By multiplying both numerator and denominator of θ(r) by (1− i
√
r3 − 1)2/3 one ends 

up, after a little algebra, with the following expression

θr =

√
3

2
r3/2


−r3 + r2

(
ζ
2/3
r + ζr

2/3
)

r3


 ,� (B.20)

where ζr = 1 + i
√
r3 − 1. By writing it in the polar form, ζr = ρre

iφr, with ρr = r3/2 and 
φr = arctan(

√
r3 − 1), we get a nice explicit expression

θ(r) =

√
3

2
r3/2

[
−1 + 2 cos

(
2

3
arctan(

√
r3 − 1)

)]
.� (B.21)

Hence, this gives an explicit exact result for the rate function χ(z) in equation (B.13)

χ(z) =
√
z

√
2

E

θ(r)2 + 3

4θ(r)
,� (B.22)

where θ(r) is given in equation (B.21) and r = z/zl � 1 where zl =
3
2

(
σ4

E

)
1/3. One can 

check that the results obtained in the previous subsections are completely consistent 
with this exact expression.

B.3. The critical value zc

The first order transition occurs at z  =  zc when the two solutions χ(z) and z2/2σ2 cross 
each other, i.e. when

χ(z) = z2/(2σ2).� (B.23)
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We express z  =  rzl in terms of the adimensional parameter r with zl given in equa-
tion (B.5), and use the exact expression of χ(z) in equation (B.22). Then the crossing 
condition (B.23) simplifies to

θ(r)2 + 3

θ(r)
=

3
√
3

8
r3/2 .� (B.24)

It can be further simplified using equation (B.21). We write θ(r) =
√
3r3/2q(r)/2 with

q(r) =

[
−1 + 2 cos

(
2

3
arctan(

√
r3 − 1)

)]
.� (B.25)

Then, equation (B.24) for θ(r) can be transformed to the following equation for q(r)

3

4
r3q2(r) + 3− 9

4
r3q(r) = 0,� (B.26)

where q(r) is given in equation (B.25). The condition (B.26) can then be easily solved 
numerically to give

rc =
zc
zl

≈ 1.3805.� (B.27)

Thus, independently of E  >  0, the critical value zc > zl, and for determining zc it is 
enough to know χ(z) for z  >  zl, justifying aposteriori that we limited our analysis of 
χ(z) only in the regime z  >  zl. For comparsion to numerical simulations, we chose 
E  =  2, for which σ2 = 2 + 5E2 = 22. We get zl = (3/2)(σ4/E)1/3 = 9.347 52 . . ., which 
gives zc ≈ 1.3805 zl ≈ 12.9. This is represented as a black dotted vertical line in figure 4.
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