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Abstract.  The recommendation is now part of our daily life. As the years 
pass by, companies collect more and more information about the users of their 
platforms. One question which could arise is: are the data collected useful for 
better predictions? In this paper, we investigate the performance impact on adding 
geographical positions on the performance of the prediction of users’ behavior 
using an existing diusion-based recommender system. We show how we can 
improve the accuracy of the diusion algorithm using the geographical position 
of users. The accuracy of the improved algorithm is compared with the state of 
art similar recommender algorithms. Moreover, we design a general framework to 
infer the position location of users based on the position of their activities.
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1.  Introduction

Past years have seen a huge increase in the availability of data. Not only in the amount 
of data, but also in their diversity. One of the first popular challenges to the recom-
mender system was the Netflix Prize in 20095. Since then, many companies have hosted 
their own challenge, asking the external teams to provide the best algorithm to predict 
from their data. One of the most famous platforms to host such a challenge is Kaggle6. 
The Netflix Prize consisted of users giving the rating to movies. Additionally, the time 
of the rating was provided. These properties mentioned above have been successfully 
applied to various recommender systems [1–3]. Now, the challenge moved to process 
additional data, such as geographic location, or even analyzing the text content of the 
reviews [4–6].

Nowadays, there are various datasets with geographic location available. In this 
work, we use the data from Yelp, Foursquare, and Brightkite. Those three online ser-
vices are all related to geographical location, Yelp and Foursquare aim to recommend 

5 www.netflixprize.com/
6 www.kaggle.com
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the commercial location to users, while Brightkite is a service allowing people to check-
in at a dierent location and share their check-ins with other users. These online ser-
vices usually have a large amount of data. For instance, Yelp collected more than 10 
million reviews between 2004 and 2010 and totaling about 30 million visitors per month 
[7]. Users need to choose their favorite one from thousands of businesses on the Yelp 
website. Obviously, two important criteria for their choices are the reviews written by 
other users and the distance between the business and themselves. A person who lives 
in Hong Kong would probably not be interested in a recommendation of a restaurant 
located in New York.

In big towns such as New York, there are thousands of restaurants. Even one lifetime 
would not be sucient to try out all these dierent places. Before the advances in data 
science, we had to rely on people’s word of mouth or the opinion of a single journalist. 
Nowadays, thanks to collaborative platforms we can rely on the community to filter 
out the good places from the bad ones. However, the community alone is not sucient 
[8, 9]. We also need to rely on algorithms to find the most suitable place. Those algo-
rithms are the building blocks of the recommender systems [10]. Recommender systems 
attempt to predict the users’ future behavior based on their past choices, such as 
browsing, collecting, reviewing, consumption and so on [11, 12].

Since the 1990s, location-based services and social networks started to emerge, as 
well as location-based social networks [13, 14]. Since the emergence of these networks, 
recommender systems started to use geographic information [15–17]. The recent work 
[18] embraced a bunch of Markov-based predictors and a series of location recom-
mendation algorithms to mine location-based social networks. Another work related to 
location-based recommendation combined collaborative filtering with location [19]. The 
resulting method was a trade-o between recommendation accuracy and computational 
eectiveness. In [20], a dierent approach was chosen. The geographical areas were 
modeled as a two levels systems, local scale and regional scale were both considered. 
The number of network-based recommendation algorithms using location is still limited 
[21]. The additional geographical information and social information such as the social 
relationships among the users and the similarity between users have been studied on 
their impact on new venues recommendation and exhibited a great improvement over 
traditional collaborative filtering [22].

In this work, we are interested in the study and improvement of a diusion algo-
rithm that was developed based on combining the principle of heat conduction and ran-
dom walk on a network representation of data [23, 24]. The use of these two diusion 
techniques represents two dierent complementary approaches to compute the similar-
ity between nodes. We show a method to improve the recommendation performance by 
combining the diusion algorithm using geographical location data.

This paper is organized as follows: first, the methods used in this work are described. 
The network framework and notations are given, then we define the metrics used in 
this work to assess the performance of the recommendation algorithms. We follow the 
description of the recommendation algorithm. After that, we show how we compute the 
position of users based on their activities. This is crucial as in most applications the 
users would not give their home address, and also some users might have activities that 
are far from their home. We then discuss how we combine the users’ position with the 
recommendation algorithm and finally show how it improves the results.

https://doi.org/10.1088/1742-5468/ab74c5
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2. Recommendation metrics and datasets

We start by describing the general network framework and the notation system we use 
in this paper, as well as the metrics used to evaluate the performance of recommender 
systems. We then focus on the description of the recommender system, followed by 
the method used to assess the location of users in the system. Lastly, we show how we 
include the location of users in the recommendation process.

Many recommender systems related studies divide the data randomly by hiding 
10% of the data and trying to predict it based on the remaining 90%. Recently, it was 
shown that it is essential to keep the time ordering of the data and divide data accord-
ing to their time-stamp [25], as we are otherwise discarding major features of the data 
evolution, such as user interest evolution.

2.1. Networks and metrics

Most of the data can be represented as networks (or called Graph). Networks are made 
of nodes, and two nodes are connected by a link when there is a relation between them 
in [24]. In this work, we use data with two types of nodes: users and items. A link can 
only occur between a user and an item (i.e. not between two users or two items). This 
is what we define as a bipartite network. For the sake of simplicity, we use the generic 
term of the item for non-user nodes, but they can be anything that interacts with a 
user. For example a review of a business, a purchased product, a message on an online 
board.

2.1.1. Notation.  We use Latin letters for users and Greek letters for items. As the 
data are time dependent, most of the quantities depend on the considered time t. The 
number of users in the dataset is defined as U and the number of items as I. The most 
fundamental quantity of the network representation is the adjacency matrix A. The 
elements of A denote the relations between users and items. We have aiα = 1 if user i 
is connected to item α, and aiα = 0 otherwise. The degree of users ki(t) of user i is the 
number of links connected to it at time t. Similarly, the degree kα(t) of item α is the 
number of users connected to item α.

2.1.2. Recommendation metrics.  To evaluate a recommender system, the data are 
usually divided into two separate sets: the training set and the test set. The algorithm 
is trained on the training set and then evaluated on the test set. Note that during the 
training, the algorithm has no access to the information contained in the test set: it 
attempts to predict it at best without any knowledge of its content. As shown in [25], 
it is better to divide the data based on time rather than random division when the time 
is available, as it reflects the real evolution of the data [26]. In practice, we proceed 
as follows. Consider that the data span from time 0 to time Tm and a probe timespan 
parameter ∆P . We randomly select a time TP ∈ [0.8Tm, 0.9Tm]. We set every data with 
a timestamp t � TP  as being in the training set, and every data with a timestamp 
TP < t � TP +∆P  as the test set. The choice of ∆P  depends on the typical time dura-
tion of the data. To obtain statistically relevant results, 200 dierent random TP are 
chosen for each evaluation.

https://doi.org/10.1088/1742-5468/ab74c5
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The goal of the recommendation system is to make prime suggestions to users. 
Based on the training set, the recommendation algorithm computes a score for each 
user-item couple in the network. For each user, the items are ranked from highest score 
to lowest score, and for each user, the top-N items with the highest score constitute its 
recommendation list.

We use the following metrics to evaluate the performance of the recommender 
system: Precision and Recall [27, 28], F1 score [29], AUC [30, 31], NDCG [32], mean 
distance of recommended items, Novelty [24, 33], and Coverage [34]. The first four 
metrics measure the accuracy of the algorithm, and Novelty and Coverage measure 
its diversity. A good algorithm should benefit both users and item providers. On one 
hand, it should be accurate and diverse on the content it recommends while on the 
other hand, it also should devote to promote the Coverage for items providers so that 
no provider is left out.

Recall and Precision [27, 28, 35] both measure the proportion of items that are 
predicted accurately. If an item α is in the recommendation of user i, and user i collects 
the item α in the test set, we count the item as correctly predicted. On the contrary, if 
user i collects the item α in the test set and item α is not in the recommendation list 
of user i, we count the item as not predicted. If we label ci the number of correct pre-
diction for user i and ni the number of items that were not predicted, Recall writes as:

R =
1

U

U∑
i

ci
ci + ni

.� (1)

Precision is computed as:

P =
1

U

U∑
i

ci
N
,� (2)

with N the length of the recommendation list.
F1 score [29] combines Precision and Recall. The recommender results hope that 

the higher the Precision, the better the Recall, but in fact the two are contradictory in 
some cases. For example, if we search only one result and it is accurate, then Precision 
is 100%, but Recall is very low; and if we return all the items, Recall is 100%, but 
Precision is very low. Therefore, they need to be considered comprehensively. F1 is 
the weighted harmonic average of Precision and recall. The calculation formula is as 
follows:

F1 =
2PR

P +R
.� (3)

AUC [30, 31] is a commonly used metric to evaluate the accuracy of prediction 
algorithms. To explain the idea behind this metric, let us focus on a specific user i. 
For this user, we select two items randomly, one which the user collects in the test set 
(aiα(TP +∆P ) = 1) and one he does not (aiβ(TP +∆P ) = 0). If our recommendation 
algorithm is good, it should give a higher score to item α than β . In our case, the num-
ber of samples is quite limited, so we can compute AUC in the following way:

https://doi.org/10.1088/1742-5468/ab74c5
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AUC =
1

U

U∑
i

(∑
α∈Pi

yiα − Ci(Ci + 1)/2

CiNi

)
,� (4)

where Pi is the set of collected items in the test set for user i, and yiα is the rank of 
item α in the recommendation list for user i, the item with the lowest score being rank 
1 and the one with the highest score rank being N. Ci is described as the number of 
collected items for user i in the test set. On the contrary, Ni represents the number of 
uncollected items for user i.

NDCG [32] is usually used to measure the ranking quality of the recommenda-
tion lists. The higher ranking of items chosen by users in the recommendation list, the 
higher NDCG score, which means the recommendation result is better. Cumulative 
gain (CG) accumulates the relative score of each recommendation list and can be writ-
ten for user u as

CGu(N) =
N∑
i

reliu,� (5)

where reliu denotes the relevance of recommended items at position i in user u’s recom-
mendation, and N is the length of the recommendation list. reliu can take any value in 
the general expression of equation (5). In our work, the reli represents the presence or 
not of the item in the user’s test list with a binary value: 1 if the user collects the item, 
and 0 if not. One disadvantage of CG is that it does not consider the rank of recom-
mended items. However, the results with high relevance should be at the top of the 
recommendation list. Therefore, discounted cumulative gain (DCG) was created to take 
the rank into account. The discounted version of CG for user u writes

DCGu(N) =
N∑
i

2rel
i
u − 1

log2(i+ 1)
.� (6)

DCG still has its shortcomings. It is dicult to evaluate the quality of the recom-
mendation between dierent lists. Normalized discounted cumulative gain (NDCG) 
introduces a normalization that allows a relevant comparison between the recommen-
dation list of all users. Before introducing NDCG, we need to introduce Ideal DCG 
(IDCG), which refers to the best possible recommendation list a user, that is, assuming 
that the recommendation list contains all items from the test set at the top. NDCG can 
be computed for user u as:

NDCGu(N) =
DCGu(N)

IDCGu

.� (7)

Finally, NDCG is computed as follows:

NDCG(N) =
1

U

U∑
u

NDCGu(N).� (8)

Novelty [24, 33] refers to the ability of recommender systems to recommended 
items which are not yet popular to users. It is simple to assume that the lower the item 
degree is in the recommended list, the better the Novelty should be. The self-information 

https://doi.org/10.1088/1742-5468/ab74c5
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of the item is used to compute the Novelty of the item. If a user chooses an item at 
random, the probability of item α being selected is kα(t)/U  The calculation of Novelty 
is as follows:

Novelty =
1

U

U∑
i

1

N

∑
α∈Ri

log2

(
kα(t)

U

)−1

,� (9)

where Ri is the recommendation list of user i.
Mean distance is the metric to measure the distance between recommended items 

and users, i.e. the average distance between users and their products in the recommen-
dation list. In many situations, people tend to prefer closer locations. So the smaller the 
mean distance, which indicates that the objects in the recommended list are closer to 
the user, the possibility of user’s selection is greater, and the recommendation system 
performance is better. Mean distance is calculated as follows:

Mean Distance =
1

U

U∑
i

∑
α∈Ri

diα

N
,� (10)

with diα the distance between user i and item α defined in section 3.2.
Coverage [34] is described as the proportion of items recommended for all users 

over the total number of available items. This metric reflects the ability of the algo-
rithm to cover its catalog of items. If the Coverage is higher, it means that more distinct 
items are recommended, while a lower value indicates that the algorithm recommends 
a smaller part of the whole set of items. The higher the portion of items covered, the 
more likely users will discover more items. It also shows the fairness to the item provid-
ers. Note that more items are discovered by the users which will increase the popular-
ity of overall products. More importantly, it will aect the item information spreading 
among users. Coverage is formulated as:

Coverage =
| ∪i∈U Ri|

I
,� (11)

with I the total number of dierent items in the dataset.

2.2. Empirical datasets

We conduct three dierent real datasets for our experiment shown in the table 1. The 
description of the three datasets as follow.

Yelp7 is a famous business commenting website, which covers businesses such as 
clothing, food, housing and so on. Users can review and rate the business on the web-
site. Yelp company organized the challenge and released the relevant dataset. In this 
dataset, it records the links of users’ comments, including the time of comments and 
the geographic location of businesses.

Foursquare8 is a mobile service website based on user location information. Users 
can share their location information with others. Using foursquare services, users can 
not only check in the locations which are already registered in the dataset but can also 
check in a new location. The locations can be for instance hotels or stores. In this work, 

7 www.yelp.com/dataset

https://doi.org/10.1088/1742-5468/ab74c5
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we use the dataset in Tokyo from 2012 to 2013. Each link contains user, location of the 
check-in and time information.

In Brightkite9, users can publish text and photos on the site and check in some-
where, and others can comment on them, so they can get to know new friends accord-
ing to where they go. This paper used the dataset from 2008 to 2010. The data include 
time and location information of users’ checking-in as is the case in the above datasets. 
The check-ins are located in various countries.

3. Diusion-based location-aware recommendation framework

3.1. Time hybrid spreading (THybridS)

The recommender system we use in this study is base on the probabilistic spreading 
(ProbS) [23]. Two network-based recommender algorithms were developed to perform 
recommendation, with very dierent results. The first one, ProbS based on the process 
of random walk [36] performs recommendation with high accuracy. While the second 
one, base on Heat diusion process (HeatS) [37] has low accuracy but tends to favor the 
diversity of the recommended objects. As the two are based on the physical process of 
diusion, they can be merged together in an elegant way [24]. The merging of the two 
processes results in a method that is at the same time more accurate and more diverse 
than both processes separately. This is an important feature of this algorithm, as rec-
ommender systems tend to be biased towards the popular items [38].

The recommendation score of THybridS is obtained first through propagation and 
process, and then by adjusting the scores to account for the recent activity of the net-
work. Mathematically, the propagation matrix writes:

Wαβ(t) =
1

kα(t)1−λkβ(t)λ

U∑
j=1

ajα(t)ajβ(t)

kα(t)
,� (12)

where λ is a parameter between 0 and 1 that tune the hybridization between HeatS 
(λ = 0) and ProbS (λ = 1). The recommendation score of item α for user i is then com-
puted as

r(i)α (t) =
I∑

β=1

Wαβ(t)aiβ(t).� (13)

3.2. Users’ geographical position

In most datasets, the position of items is given. But the position of users is undefined 
for privacy concern.

In this work, we make the assumption that each user has a favorite area where 
he goes regularly. We refer to this area as the ideal position of a user. From this 

8 https://sites.google.com/site/yangdingqi/home/foursquare-dataset
9 https://snap.stanford.edu/data/loc-brightkite.html

https://doi.org/10.1088/1742-5468/ab74c5
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assumption, we can define a user’s position as the average position of his business’ 
reviews. However with this approach, there is one major drawback: if a user lives in 
New York and regularly reviews businesses there, his average position will be located 
somewhere in New York. But if he goes on vacation two weeks to Paris and reviews 
business here, his average position will suddenly be somewhere in the middle of the 
Atlantic ocean.

In order to solve this problem, we use a clustering algorithm [39]. The idea behind 
a clustering algorithm is to divide items into distinct clusters. Based on the previous 
example, the clustering algorithm is useful to categorize which reviews of the users are 
located in New York, and which ones are located in Paris. In order to perform this 
task we choose a classic and simple algorithm named DBSCAN [40, 41] to determine 
the ideal position of users. There are three adjustable parameters: ε as the radius of 
the cluster. MinItem, the threshold for the minimal number of items contained in the 
cluster. And MinStep, the threshold of the time interval for collection in the cluster. 
This parameter was added to avoid defining a holiday position as an ideal position. For 
a given user i, the process to determine its ideal position is the following.

	•	 �Randomly select an item α collected by user i. If there are at least minItem items 
selected by user i are contained in the circular area with the position of item α as 
its center and of radius ε, this circular area defines a cluster for user i.

	•	 �Repeatedly scan all the items collected by user i, and obtain a certain number of 
candidate clusters Q1, Q2, Q3 as shown in figure 1(a).

	•	 �Select the optimal cluster from candidate clusters. As shown in figure 1(b), items 
in each cluster are arranged according to their collection time, and the time 
interval of two items is marked on the horizontal line with arrow between two 
items. Then count the number of items that were collected with a time separation 
of at least MinStep in each cluster. The cluster with the largest number is chosen 
as the optimal cluster for user i. In our experiment, ε is set to 30 km, MinItem 
is 4, and MinStep is 20 days. As we can observe, cluster Q1 contains the largest 
number of time separations that are no bigger than MinStep. So cluster Q1 is the 
optimal cluster for user i.

Figure 1.  Illustration of DBSCAN clustering algorithm. For a given user i, (a) 
shows the dierent candidate clusters of him. (b) Shows the check-in intervals 
included in the candidate clusters with of which unit is days.

https://doi.org/10.1088/1742-5468/ab74c5
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The ideal position of the user is computed as the average position of items in his opti-
mal cluster.

xu =
1

|Qo|
∑
α∈Q�

xα,� (14)

where Qo is the optimal cluster of the user i. xi = (xi, yi) and xα = (xα, yα) are the vec-
tors of user i position and item α position, respectively, which are composed of latitude 
xi/xα and longitude yi/yα . The distance between user i and item α reads:

diα =
√

(xi − xα)2 + (yi − yα)2.� (15)

3.3. Geo-THybridS

In the user-driven datasets, the geographical position is important. For instance, res-
taurants and shops have a physical location. Without geographical information, the 
recommendation results can be tricky and inept. According to [42], people tend to go 
to nearby places and periodically visit certain places. This information is quite impor-
tant, as we can assume that people tend to go regularly in the same areas, because 
they live or work close to that area, or they are especially attracted to it. Based on this 
reasonable assumption, we proposed a combination of THybridS algorithm with the 
geographical position. The calculation formula is as follows.

g(i)α = r(i)α exp (diαθ),� (16)

where diα is the distance between user i and item α, and θ is an adjustable parameter. 
When θ is negative, the algorithm gives additional weights to items close to the user, 
while when it is positive it favors distant items.

4. Baselines

4.1. Fusion-algorithm

In order to validate the performance of our algorithm, we compare it with a standard 
one in the literature that we name Fusion-algorithm in this work [42]. This algorithm 
uses two dierent scores, one based on users similarity, the other based on geographical 
position. The scores are calculated separately and then combined together.

The first one computes users similarity, closely related to collaborative filtering [28].

simusers
iα =

∑U
j=1 wijajα∑U

j=1 wij

,� (17)

where ajα are elements of the adjacency matrix and the cosine similarity wij is

wij =

∑I
α=1 ciαcjα√∑I

α=1 c
2
iα

√∑I
α=1 c

2
jα

.
� (18)

https://doi.org/10.1088/1742-5468/ab74c5
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The geographical score of this algorithm is computed as:

simgeo
iα =

∏
β∈Ii

f(d(α, β)),
� (19)

where Ii is the set of items of user i, and d(α, β) the distance between item α and 
item β . f(x) = a exp (bx) is a function of the distance, in this work we choose an expo-
nentially decaying function with two parameters a and b. Finally, the two scores are 
combined together as:

simfusion
iα = (1− δ)simusers

iα + δsimgeo
iα ,� (20)

with an additional parameters δ such that 0 � δ � 1.

4.2. Closest-item

We add the spatial distance in the THybridS, but we also want to consider the per-
formance of the spatial distance on its own as a baseline performance. We design a 
Closest-item method, which only uses geographic information for recommendation. It 
ranks items according to the distance between products and users, and then generates a 
recommendation list. The calculation of the score fi,α for item α and user i is as follows:

fi,α =
1

di,α
,� (21)

where di,α is the distance between user i and item α.

4.3. SVDPP

The third baseline algorithm included in our study is called SVDPP. This is extension 
of SVD method [43]. A scoring matrix R that includes ratings of items by users can be 
decomposed into two low-dimensional matrices:

R = P TQ,� (22)
where P ∈ R f∗U is for user i, and Q ∈ R f∗I is for item α.

SVDPP is the algorithm that adds implicit feedback to SVD [44]. pi ∈ R f  is the 
user-factor vector for user i while qα ∈ R f  is the item-factor vector for item α. riα is the 
predicted score of user i for item α which is computed as follows:

riα = µ+ bi + bα + qTα ( pi +
1√

|N(i)|

∑
β∈N(i)

yβ),� (23)

where µ is the global average of scores for all records in the training set, bi is the user 
bias and bα is the item bias. N(i) represents the set of items that have been collected 
by user i, and yβ is the attribute of the item β . Note that this system predicts ratings 
rather than predict whether the user will go to a location or not.
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5. Results

As mentioned in section  2.1.2, Recall and Precision are both important and com-
plementary metrics to characterize the accuracy of a result. However, Precision is 
aected by the sparsity of the data: in our data, many users have only one or two new 
items in the test set. Precision of a recommender system for these users is often very 
low. However, it does not mean that the recommendation system is ineective. Thus, 
the normalization brought by the Recall metric allows more attention to these users. 
Therefore, all our results are optimized according to the Recall metric. However, note 
that optimizing with Precision does not change the results significantly. We show the 
Recall, Precision, and Novelty as a function of the distance parameter θ, and the tun-
ing parameter λ on the three datasets in figure 2. The first interesting result is that 
the relevant values for θ are around  −0.1 for Yelp. In Yelp dataset, we use kilometers 
for the distance between users and the location of the shops. This means that users 
typically favor shops within a radius of ten kilometers by a factor of 1/e, and that 
around 90% of their interests are located within twenty kilometers radius. There are 
two regions where Recall is in dark red. This is due to the multiple cities in the dataset, 
which have dierent typical distances. We found the highest Recall to be located at 
around θ = −0.1, and λ = 1.0. Precision also has two corresponding dark green regions, 
which indicates that the impact of parameters on Precision is similar to that on Recall. 
Moreover, Novelty increases with decreasing λ, and reaches its maximum when λ is 0. 
This is because 1− λ represents the proportion of HeatS which provide more contrib
utions to the diversity of recommendation.

For the Foursquare dataset, we see directly that the optimal θ is smaller than for 
Yelp dataset. This means that the typical activity radius in Tokyo is bigger than in 
Yelp dataset (Las Vegas and Phoenix cities). This dierence might come from the cit-
ies, but also from the type of data, as a lot of check-ins in Foursquare are about train 
stations. This type of data is not present in Yelp, as it consists of business reviews. 
We also note that above θ = −0.075 the Recall rises again, which can be due to the 
typical distance between working and living locations. For Foursquare, the optimal λ 
is 0.9 which indicates that users’ choices in the dataset are less driven by popularity 
than for Yelp.

For the Brightkite dataset, the typical value of θ is around  −0.0001, which is much 
smaller than the typical value of the other datasets. This is due to the fact the distance 
between the user’s location and their check-ins is more broadly distributed compared 
to the two other datasets. The optimal value of λ is 0.8.

The results for the three datasets of the optimal λ and θ values are shown in 
table 2. For the three datasets, the Recall is greatly improved: 5.5% for Yelp, 8.7% 
for Foursquare, and 2.5% for Brightkite. What’s more, the results also show that our 
method consistently outperforms Geo-THyBridS in Precision for all three datasets. 
Specifically, Geo-THybridS achieves 8.3% improvement over THyBridS on Yelp, 2.6% 
on Foursquare and 1.8% on Brightkite. The AUC was not improved by adding the geo-
graphical modification on all the three datasets. While an improvement of this metric 
would be ideal, the top of the recommendation list, which is evaluated with Recall is 
more relevant. With many items in the dataset, the rank of the item does not change 
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significantly the AUC score, for instance, the AUC score would not change much if an 
item is ranked 20 or 50. But for users, it is quite important.

The mean distance of the recommended items was significantly reduced for the 
three datasets. It is nearly divided by a factor 10 in the Yelp, decreased by around 20% 
in the Foursquare, and divided by nearly 40% in Brightkite.

In figure  3(a), we show the distance distribution of users to their recommended 
items. From the distribution, we see that the improvement on the mean distance 
metric is not due only to some outliers that would be far away from the users with 
the THybridS algorithm. The improvement is due to the recommended items being 
closer to users in general. As the result shows, for the Yelp dataset, more than 90% of 
the items recommended by our algorithm are between 0 and 10 km, and the rest are 
mostly in the 10–50 km range. For THybridS, only about 60% of the items are in the 
0–10 km region, and 33% of them are 10–50 km, and the remaining 5.3% are farther 
away. For the Foursquare dataset, More than 50% of the recommended items lie in the 
0–5 km range, while for ThybridS it is only about 40%. For the remaining larger dis-
tances, the distribution of the THybridS is higher than that of Geo-THybridS. For the 
Brightkite dataset, the distribution dierence between the two methods is relatively 
small, but we still can clearly see the advantages of the algorithm with geographical 
information. Compared with 50% of the recommended items located between 0 and 30 
km for THybridS, Geo-THybridS is 5% higher. For the rest of the larger distances, the 

Figure 2.  Heatmap of recall, precision and novelty on the three datasets as a 
function of the distance parameter θ, and the hybrid parameter λ.
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percentage of our method are all slightly less than that of the THybridS. Figure 3(a) 
indicates that our algorithm encourages users to discover local items.

In our experiments, the test set duration is set to one day, which means it predicts 
what the users will do for the next day. We change the test day from 1 to 100 and 
observe the change of Recall. As shown in figure 3(b), the Recall of the three datasets 
remain stable when the time changes. There is no excessive fluctuation, which shows 
that the results are not aected by the choice of a specific duration for the test set.

Regarding the diversity metrics, the Novelty for the Foursquare and Brightkite 
remained stable. Although the Novelty of Geo-ThybridS for the Yelp is lower than 
THybridS, it is not so much decreased as well. Additionally, the Coverage for the three 
datasets is also consistent with the THybrid. This shows that our method can keep 
diversity while improving accuracy.

We compare the Geo-THybridS algorithm with four other baseline methods in 
figure 4 as a function of the length of the recommendation list N. The parameters for 
all algorithms were optimized according to the maximization of Recall. The two best 
performing algorithms for all metrics are THybridS and Geo-THybridS. Two of the 
other algorithms, Fusion-algorithm and Closest-item, also use geographical data. As 
the Fusion-algorithm uses a neighborhood-based collaborative filtering, it is a memory 
intensive algorithm, we had to reduce the network size to 5000 users and 10 000 items, 
and reduce the number of dierent samples from 100 to 10. The results are clear and 
our algorithm clearly outperforms the other methods in terms of accuracy. For the 

Figure 3.  (a) The distance distribution of users and recommended items. (b) The 
Recall as a function of the number of test days for the three datasets. The values 
of the parameters are optimized for the best recall when the number of test days 
is set to one.

Table 1.  Basic information of three used datasets: the number of users U, the 
number of items I, the number of links L, the average degree of users 〈ki〉, and the 
average degree of items 〈kα〉.

U I L 〈ki〉 〈kα〉

Yelp 123 368 41 958 804 789 6.5 19.6
Brightkite 37 303 15 651 201 308 92.3 3.4
Foursquare 2293 61 852 211 670 5.4 12.9
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Figure 4.  Comparison of the Geo-THybridS algorithm with the other four methods 
on the Yelp dataset as a function of the length of the recommendation list N.

Figure 5. The improvements of the four accuracy metrics for the Geo-THybridS and 
THybridS algorithms for all three datasets. The duration of the test set is 7 days.
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Recall metric, our algorithm performs 3.3% better than THybridS as well as outper-
forming the Fusion algorithm by a factor of three, the Closest-item method by a factor 
of five, and SVDPP by a factor of ten. Other three accuracy metrics Precision, F1 and 
NDCG have also been significantly improved by our method.

In order to see clearly the dierence between Geo-ThybridS and THybridS, we 
increase the duration of the test set to seven days and compute the relative improve-
ment for the four accuracy metrics. The results are shown in figure 5. The improve-
ment of Recall, Precision, F1, and NDCG are consistent overall choices for the length 
of the recommendation list, but stronger when the list is shorter. This indicates that 
geographical modification improves especially the top of the recommendation list.

6. Conclusion

In this paper, a way of improving the recommendation process using the THybridS 
recommender system was shown. We demonstrated that it is not required to have the 
GPS location of the user to improve the recommendation. Indeed, people go out with 
friends and often at the same places, not necessarily close to their home.

The Geo-ThybridS algorithm recommends objects that are more local orientated. 
This is a nice feature that promotes local businesses. It is unfortunately not possible 
for us to test the impact of such a feature, but reducing the distance between users 

Table 2.  Comparison of accuracy, diversity and mean distance of the THybridS and Geo-
THybridS on the three datasets. The length of recommended list N  =  50. The values of the 
parameters are optimized for the best recall.

Accuracy Diversity

P R AUC NDGC Novelty Coverage
Mean 
distance

Yelp THy-
bridS

0.0036 0.127 0.907 0.093 11.4 6.8% 46.39

Geo-
THy-
bridS

0.0039 0.134 0.896 0.096 10.7 6.8% 5.09

Foursquare THy-
bridS

0.0038 0.138 0.888 0.107 4.1 2.6% 7.1

Geo-
THy-
bridS

0.0039 0.150 0.881 0.115 4.1 2.6% 4.73

Brightkite THy-
bridS

0.0055 0.283 0.877 0.172 11.3 1.8% 757.9

Geo-
THy-
bridS

0.0056 0.290 0.879 0.179 11.3 1.8% 537.1

Yelp: THybridS with λ = 1.0; Geo-THybridS with λ = 1.0 and θ = −0.1.
Foursquare: THybridS with λ = 0.8; Geo-THybridS with λ = 0.9 and θ = −0.075.
Brightkite: THybridS with λ = 0.8; Geo-THybridS with λ = 0.8 and θ = −0.0001.
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and their recommended objects could boost the tendency of users to try recommended 
businesses. We remark that, from a practical view, the possibility of evaluating the 
impact can be easily developed under our framework when we can obtain local business 
evolving data.

Given the performance of the THybridS algorithm, an increase of 8% in accuracy is 
significant. Some additional research directions would be the dependence of the hybrid-
ization parameter λ on the location of users. By looking at the shape of the heatmap 
of Recall on Brightkite dataset in figure 2, it is clear that there are two distinct areas. 
It is quite possible that one area corresponds to the countryside and small towns, while 
the other corresponding to large cities. Also, some people tend to go further away to try 
new restaurants than others. The tuning of the parameter θ according to users’ profile 
may also improve the recommendation process further. Additional insights could be 
obtained by taking subsets of the Yelp dataset. For example, dividing the datasets into 
individual cities or districts, and observe the results and parameters of the dierent 
locations.
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