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Abstract.  In spite of the attention the study of epidemic dynamics on single-
layer networks has received, the epidemic dynamics on multiplex networks 
is still limited and is facing many challenges. In this work, we consider the 
susceptible-infected-susceptible-type (SIS) epidemic model on multiplex 
networks and investigate the eect of overlap among layers on the spreading 
dynamics. To do so, we assume that the prerequisite of one S-node to be infected 
is that there is at least one infectious neighbor in each layer. A remarkable 
result is that the overlap can alter the nature of the phase transition for the 
onset of epidemic outbreak. Specifically speaking, the system undergoes a 
usual continuous phase transition when two layers are completely overlapped. 
Otherwise, a discontinuous phase transition is observed, accompanied by the 
occurrence of a bistable region in which a disease-free phase and an endemic 
phase are coexisting. As the degree of the overlap decreases, the bistable region 
is enlarged. The results are validated by both simulation and mean-field theory.
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1.  Introduction

In the past few decades, complex networks have proved to be a powerful framework to 
characterize the interaction among the constituents of a variety of complex systems, 
examples range from the social to technological, biological, and other systems in real 
world [1]. Up to now, are a large number of works paid their attention to the study of 
the structures of complex networks and the dynamical behaviors taking place on them 
[2–7]. However, most of these existing achievements mainly focus on single-layer net-
works. In fact, many real-world complex systems are usually composed of multilayer 
networks [8, 9]. A multilayer network is a general concept, which includes interde-
pendent networks, interconnected networks, multiplex networks, network of network, 
and so forth. For example, an interdependent network is formed by the power and 
communication infrastructures, and the transportation system including a set of loca-
tions which is connected by roads, railways, waterways, or airline connections. It has 
been recognized that the multilayer networks can present some novel features dierent 
from the single-layer networks, such as complexity, diversity and fragility [10–14]. The 
research on multilayer networks has covered a variety of dynamics including evolution-
ary games [15–17], synchronization [18–20], opinion formation [21, 22], transportation 
[23, 24], and super-diusive behavior [13, 25, 26].

Epidemic spreading, such as the susceptible-infected-susceptible (SIS) model, is not 
only a paradigm for studying non-equilibrium phase transitions, but also has wide appli-
cations in real epidemics, computer viruses, rumor spreading, or signal propagation in 
neural networks [27]. Therefore, the study of epidemic spreading on networks is always 
one of the most active areas in network science [28]. Recently, with the study in depth 
of multilayer networks, epidemic spreading on multilayer networks has also attracted 
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some attention [29–31]. Cozzo et al [32] have shown that the epidemic threshold for 
the SIS model in a multilayer network is always lower than that in any isolated net-
work. Using an individual-based mean-field approach, Wang et al [33] further showed 
that the epidemic threshold can be reduced dramatically if two nodes corresponding to 
dominant eigenvector components of the adjacency matrices of isolated networks are 
connected. Similar results were also obtained by a degree-based mean-field approach 
[34]. However, Dickison et al [35] unveiled, based on the percolation theory [36], one 
important dierence between the susceptible-infected-recovered (SIR) model and the 
SIS model when the coupling between layers is weak enough. Spreading processes in 
structured metapopulations can be well characterized within the framework of multi-
layer networks as well [37–39]. de Arruda et al [40] used a tensorial representation [41] 
to derive analytical expressions for the epidemic threshold of the SIS and SIR model on 
multilayer networks. They showed, on the one hand, the existence of disease localiza-
tion [42] and the emergence of two or more susceptibility peaks. On the other hand, 
they found that, when the layer with the lowest eigenvalue is located at the center of 
multiplex networks, it can eectively act as a barrier to the disease.

A multiplex network is a special type of multilayer network, where the links at 
each layer represent a dierent type of interaction between the same set of nodes. One 
typical example of the multiplex network is social networks, where nodes represent 
individuals and the dierent layers correspond to dierent types of relationship, such 
as family, friendships, and work-related. A multiplex network also provides a conve-
nient framework for studying the interplay between dierent dynamical processes [43, 
44], including the competing spreading process of epidemic and awareness [45, 46], 
the cooperative eect among dierent spreading dynamics [47], and the interplay of 
spreading dynamics and stochastic migration among dierent layers [48, 49].

Very recently, discontinuous phase transition of the spreading model on multiplex 
networks has received growing attention. Velásquez-Rojas and Vazquez [50] coupled 
contact process for disease spreading with the voter model for opinion formation taking 
place on two layers of networks, and they showed that a continuous transition in the 
contact process becomes discontinuous as the infection probability increases beyond 
a threshold. Pires et  al [51] proposed an SIS-like model with an extra vaccinated 
state, in which individuals vaccinate with a probability proportional to their opinions. 
Meanwhile, individuals update their opinions in terms of peer influence. They also 
observed a first-order active-absorbing phase transition in the model. Jiang and Zhou 
[52] studied the eect of resource amount on epidemic control in a modified SIS model 
on a two-layer network, and they found that the spreading process goes through a first-
order phase transition if the infection strength between layers is weak. Su et al [53] 
proposed a reversible social contagion model of community networks that includes the 
factor of social reinforcement. They showed that the model exhibits a first-order phase 
transition in the spreading dynamics, and that a hysteresis loop emerges in the system 
when there is a variety of initially adopted seeds. Chen et al [54] studied the dynamics 
of the SIS model in social-contact multiplex networks when the recovery of infected 
nodes depends on resources from healthy neighbors in the social layer. They found that 
as the infection rate increases the infected density varies smoothly from zero to a finite 
small value and then suddenly jumps to a high value, where a hysteresis phenomenon 
was also observed.

https://doi.org/10.1088/1742-5468/ab780e
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As mentioned in the last paragraph, most of the reports on discontinuous phase 
transitions in spread models were mainly caused by the coupling between dierent 
dynamics across layers. A natural question arises: whether such a discontinuous phase 
transition appears in a single spreading model on multiplex networks? To the end, in 
this work we want to explore a novel discontinuous phase transition in the SIS model. 
We propose a variant of the SIS model on multiplex networks in which a susceptible 
individual can be infected only when s(he) has at least one infectious neighbor in each 
layer. It is obviously that the model incorporates a non-additive characteristic of spread 
dynamics in multiplex networks. As we shall show later, such a nonlinear eect in inter-
layer interactions can induce a discontinuous phase transition for the onset of epidemic 
outbreak. It is also known that if the spreading dynamics is only a simple superposi-
tion of those in each layer, a usual continuous phase transition was observed [32, 40]. 
Moreover, our model is motivated by some real-world situations. For example, in a 
rumor spreading process, a piece of false news is likely to be accepted by a person if it 
was shared simultaneously by multiple types of relationships, such as family members, 
friends, and coworkers. A person may be prone to purchase a new commodity when 
(s)he receives recommendations unanimously from friends of dierent online shopping 
sites [55]. The main findings of the present work is summarized as follows. A key fac-
tor to the nature of phase transition is the degree of edge overlap among dierent 
layers. In particular, when the edges in dierent layers are totally overlapping, the 
model presents a usual continuous phase transition as the SIS model taking place on 
the single-layer networks. Interestingly, when the edges are not totally overlapping, the 
model shows a novel discontinuous phase transition, accompanied by the emergence of 
the bistable region where the endemic extinction phase and the endemic spread phase 
are coexisting. The lower degree of overlap, the wider the bistable region is. We also 
develop a mean-field theory to validate the correctness of the results.

2. Model and simulation details

We consider a spreading model on multiplex networks with two layers, in which each 
layer contains the same number N of nodes and there exists a one-to-one correspon-
dence between nodes in dierent layers. The topology in each layer is described by 

an adjacency matrix A� (� = 1, 2), whose entries A�
ij are defined as A�

ij = 1 if there is 
an edge from node j  to node i in the �th layer, and A�

ij = 0 otherwise. Note that the 

topology at each layer may be dierent. For simplicity, we consider connectivity in 

each layer is symmetric, A�
ij = A�

ji, ∀i, j, and the numbers of edges in two layers are the 
same, M =

∑
i<j A

1
ij =

∑
i<j A

2
ij. We define the fraction of overlapping edges on two 

layers as [56],

O =

∑
i<j A

1
ijA

2
ij

M
,� (1)

with 0 � O � 1. For O = 0, there is no overlapping edge in two layers, and for O = 1, 
the topologies in two layers are exactly the same. To generate a duplex network with a 
given O, we first produce two identical networks as the first layer and the second layer, 
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respectively. Then, we fix the first layer unchanged and rewire the edges in the second 
layer. The rewiring process is described as follows [57]. The first step is to randomly 
choose an overlapping edge in the two layers. The second step is to break the edge and 
then to randomly generate a new edge in the second layer, in which we ensures that the 
new edge in the second layer does not overlap with the first layer. Repeat this process 
many times until a given value of O is reached.

We consider an SIS-type spreading dynamics on duplex networks. Each node is 
either susceptible (σi(t) = 0) or infected (σi(t) = 1) at time t. The dynamics of the model 
is defined as follows. (i) Infection: for a susceptible node i, (s)he can be infected only 

if there are at least one infectious neighbor in each layer. Denoting by n�
i =

∑
j A

l
ijσj 

the number of infectious neighbors of node i in the �th layer, the rate of node i being 
infected at time t can be written as

Rinf = λ

(
n1
i + n2

i

2

)
Θ
(
n1
i − 1

)
Θ
(
n2
i − 1

)
,� (2)

where λ is the infection rate, and Θ(x) is the Heaviside function defined as Θ(x) = 1 
for x � 0 and Θ(x) = 0 for x  <  0. The Heaviside function in equation (2) renders that 
the total spreading rate is not a simple superposition of the spreading rates in two lay-
ers. As mentioned before, we have shown that the setting of equation (2) incorporates 
some practical considerations observed in real situations, such as rumor spread and 
commodity recommendations, which highlights the importance of social reinforcement 
in the spreading of information [58]. We should also note that the spreading dynamics 
in our model is similar to the threshold model [59] and core spreading model [60, 61] 
in single-layer networks. (ii) Recovery: for an infectious node i, (s)he becomes spontane-
ously susceptible at time t with a recovery rate µ. Without loss of generality, we set to 
µ = 1 and define β = λ/µ as a dimensionless infection rate. A schematic of our model 
is shown in figure 1.

We adopt a random sequential-update algorithm to simulate the model [62]. We 
discretize the time in small time steps ∆t. A node i is first chosen randomly and is tried 
to update its state. If node i is susceptible, (s)he becomes infected with the probability 
Rinf∆t. If node i is infected, (s)he recovers to be susceptible with the probability µ∆t. 
Time is then incremented by ∆t/N and we iterate up to some final time. The selection 
of ∆t is delicate. Too small ∆t will lead to the occurrence of null events very frequently, 
so that the simulation becomes inecient. Too large ∆t will cause the updating prob-
abilities larger than one that are unphysical. In practice, we used ∆t = 1/(kmaxλ) to 
minimize the probability that nothing happens while keeping all probabilities smaller 
than one, where kmax is the maximal degree of nodes in two layers. Note that the ran-
dom sequential-update algorithm has been widely used to simulate the continuous-time 
Markov process. It has also been verified that this algorithm did not produce essential 
dierence from more sophisticated, but computationally demanding, exact Gillespie 
algorithm [63].

https://doi.org/10.1088/1742-5468/ab780e
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3. Simulation results

We first consider the case where two layer networks are consisted of Poisson random 
graphs [64] with N = 10 000 nodes and the same average degree 〈k〉 = 20. Figure 2 
shows the simulation results with two dierent initial infection density ρ0 = 0.02 and 

ρ0 = 0.98 and several dierent values of O, where we have defined ρ(t) = N−1
∑N

i=1 σi(t). 
For O = 1, our model recovers to the usual SIS model in single-layer networks, and the 
system undergoes a continuous second-order phase transition from a healthy phase to 
an endemic phase as β increases, separated by a threshold value of βc (see figure 2(a)). 
Strikingly, the nature of phase transition is essentially changed to be discontinuous for 
O < 1, as shown in figures 2(b)–(d). The results for dierent initial conditions do not 
coincide in a certain range of β ∈ [βF , βC ], forming a hysteresis region that is a typical 
characteristic of a first-order phase transition. Within the hysteresis region, the sys-
tem is bistable. Specially, when the initial density of infection is low, the epidemic will 
become extinct. While for high initial density of infection, the system will maintain a 
certain proportion of prevalence. As O decreases, βF  is almost unchanged and βC shifts 
to a larger value, thus the bistable region is enlarged.

In figure 3, we show ρ as a function of β in a two-layer network, in which the first 
layer is a Barabási–Albert (BA) network [65] and the second one is obtained by rewir-
ing edges from a BA network the same as the first layer. The qualitative results are 
the same as figure 2. That is to say, for a more degree-heterogeneous network we also 
observe the discontinuous phase transition for the onset of epidemic outbreak and a 
bistable region with the coexisting healthy phase and endemic phase in a more degree-
heterogeneous network. However, to observe such phenomena explicitly, we need to use 
lower degrees of overlap in edges among layers.

We now consider the case when the number of edges in the two layers are not the 
same. A particular example of interest is that one layer is completely embedded in 

Figure 1.  A schematic of our model. A susceptible node can be infected only if 
there are at least one infected neighbor in each layer, and an infected node can 
spontaneously recover to be susceptible. According to equation (2), node 3 can be 
infected by the common infected neighbor (node 1) with the rate 1.5λ. But node 4 
cannot be infected as (s)he has no infectious neighbors in the first layer.

https://doi.org/10.1088/1742-5468/ab780e
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another layer. This architecture will yield one layer completely overlapping with the 
second one but not the vice versa. In figure 4, we show the results in two Poisson ran-
dom graphs with N = 10 000 nodes. The average degree in the first layer is fixed at 20, 
and the average degree in the second layer is twice (a) and four times (b) larger than 
that of the first layer. One can see that the phase transition is discontinuous. If the 
dierence of connection densities between the two layers becomes larger, the discon-
tinuous characteristic of the phase transition will become more obvious.

The key of the discontinuous phase transitions lies in the coexistence of two or more 
dierent stable phases. The origin of such a discontinuity in our model stems from the 
interaction between the nonlinearity of spreading dynamics introducing by equation (2) 
and the overlapping among the layers. For a multi-layer network with low overlap, an 
intuitive argument with regard to the coexistence of healthy phase and endemic phase 
may be presented as follows. For a high initial density of the infected nodes, most of 
the nodes have at least one infected neighbor in each layer, such that the spread of 
epidemic is equivalent to that in a single-layer network. When the initial density of the 
infected nodes is low, the reason why epidemics cannot spread is that most of nodes 
do not meet the condition of spreading dynamics in equation (2). That is to say, under 
the latter case, nonlinear eect of spreading dynamics does react and destroy connected 

Figure 2.  The density of infected nodes ρ as a function of the infection rate β 
in a two-layer network consisted of two Poisson random graphs. Two dierent 
initial infection densities are used: ρ0 = 0.98 (squares) and ρ0 = 0.02 (crosses). 
From (a) to (d) the overlap parameter O are 1.0, 0.8, 0.5, and 0.2, respectively. 
The other parameters are N = 10 000 and 〈k〉 = 20. The lines denote the results of 
homogeneous mean-field theory (see equation (18)).

https://doi.org/10.1088/1742-5468/ab780e
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infectious clusters, such that the epidemic dies out. This is akin to explosive synchro-
nization in multiplex networks [66, 67], which demonstrate discontinuous transition in 
one layer due to the suppression of formation of giant cluster drawn from the second 
layer, either due to frequency mismatch in the mirror nodes [66] or due to negative 
intralayer coupling of the second layer [67]. In the next section, we will present a for-
mulistic interpretation to the discontinuous phase transition based on a mean-field 
theory.

4. Mean-field theory

4.1.  Individual-based mean-field theory

To be first, let ρi(t) denote the probability of node i being infected at time t. That is 
to say, at time t the state of node i takes the value σi(t) = 1 with the probability ρi(t) 
and σi(t) = 0 with the complementary probability 1− ρi(t). To write down the time-
evolution equation for node i, a key step is to derive the rate of node i being infected at 
time t. To do so, we denote by N1(i) and N2(i) the set of neighbors of node i in the first 

Figure 3.  The density of infected nodes ρ as a function of the infection rate β 
in a two-layer network, in which the first layer is a BA network and the second 
one is obtained by rewiring edges from a BA network same as the first layer. 
Two dierent initial infection densities are used: ρ0 = 0.98 (squares) and ρ0 = 0.02 
(crosses). From (a) to (d) the overlap parameter O are 1.0, 0.2, 0.1, and 0.0, 
respectively. The other parameters are N = 10 000 and 〈k〉 = 20. The lines denote 
the results of individual-based mean-field theory (see equation (13)).

https://doi.org/10.1088/1742-5468/ab780e
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layer and in the second layer, respectively. Let N∩(i) = N1(i) ∩N2(i) denote the set of 
common neighbors of node i in the two layers, such that N1(2)(i) = N∩(i) +N1(2)\∩(i), 
where N1(2)\∩(i) is the set of neighbors of node i belonging to the first (second) layer 
but not to the second (first) layer, see figure 5 for a schematic. The probability of hav-
ing {n1,n2,n3} infected neighbors out of the sets N1\∩(i), N∩(i), and N2\∩(i) can be 
repressed as the product of three Poisson binomial distributions,

P (n1,n2,n3) = P1 (n1)P2 (n2)P3 (n3) ,� (3)
where

P1 (n1) =
∑
Z∈F1

∏
j∈Z

ρj
∏
j∈Zc

(1− ρj).� (4)

Here F1 are all the subsets of N1\∩(i) containing n1 elements, and Zc is the complement 
of Z, i.e. Zc = N1\∩(i)\Z. Similarly, we can write down the expressions of P2(n2) and 
P3(n3), which are not shown here to avoid the duplication. According to equation (2), 
the rate of node i being infected at time t can be written as,

Rinf =

|N1\∩(i)|∑
n1=0

|N∩(i)|∑
n2=0

|N2\∩(i)|∑
n3=0

P (n1,n2,n3)λ

(
n1 + 2n2 + n3

2

)
Θ(n1 + n2 − 1)Θ (n2 + n3 − 1),

� (5)
where 

∣∣N1\∩(i)
∣∣, |N∩(i)|, and 

∣∣N2\∩(i)
∣∣ are the sizes of the sets of N1\∩(i), N∩(i), and 

N2\∩(i), respectively. To facilitate the calculation of Rinf , we rewrite equation (5) as,

Figure 4.  The density of infected nodes ρ as a function of the infection rate 
β in a two-layer Poisson random graph, in which the first layer is completely 
overlapped with the second one but not the vice versa. The average degree in the 
first layer is fixed at 20, and the average degree in the second layer is twice (a) 
and four times (b) larger than that of the first layer. Two dierent initial infection 
densities are used: ρ0 = 0.98 (squares) and ρ0 = 0.02 (crosses). The other parameter 
is N = 10 000. The lines denote the results of homogeneous mean-field theory (see 
equation (17)).
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Rinf =

|N1\∩(i)|∑
n1=0

|N∩(i)|∑
n2=0

|N2\∩(i)|∑
n3=0

P (n1,n2,n3)λ

(
n1 + 2n2 + n3

2

)
−
|N1\∩(i)|∑
n1=0

P (n1, 0, 0)λ
n1

2

−
|N2\∩(i)|∑
n3=0

P (0, 0,n3)λ
n3

2
.

� (6)

The first term on the right-hand side of equation (6) can be computed as,

|N1\∩(i)|∑
n1=0

|N∩(i)|∑
n2=0

|N2\∩(i)|∑
n3=0

P (n1,n2,n3)λ

(
n1 + 2n2 + n3

2

)

=
λ

2



|N1\∩(i)|∑
n1=0

n1P1 (n1) +

|N∩(i)|∑
n2=0

2n2P2 (n2) +

|N2\∩(i)|∑
n3=0

n3P3 (n3)




=
λ

2
[〈n1〉+ 2 〈n2〉+ 〈n3〉] ,

�

(7)

where

〈n1〉 =
∑

j∈N1\∩

ρj =
∑
j

A1
ij

(
1− A2

ij

)
ρj,

〈n2〉 =
∑
j∈N∩

ρj =
∑
j

A1
ijA

2
ijρj,

〈n3〉 =
∑

j∈N2\∩

ρj =
∑
j

A2
ij

(
1− A1

ij

)
ρj.

� (8)

Figure 5.  A schematic representation of neighborhood of node i. N1(i) and N2(i) 
denote the sets of neighbors of node i in the first layer and in the second layer, 
respectively. N∩(i) = N1(i) ∩N2(i) is the set of common neighbors of node i in the 
two layers. N1(2)\∩(i) = N1(2)(i)−N∩(i) is the set of neighbors of node i belonging 
to the first (second) layer but not to the second (first) layer.

https://doi.org/10.1088/1742-5468/ab780e


Eect of overlap on spreading dynamics on multiplex networks

11https://doi.org/10.1088/1742-5468/ab780e

J. S
tat. M

ech. (2020) 043402

The second term and the third term on the right-hand side of equation (6) can be 
computed as,

|N1\∩(i)|∑
n1=0

P (n1, 0, 0)λ
n1

2
=

λ

2
P2 (0)P3 (0)

|N1\∩(i)|∑
n1=0

n1P1 (n1) =
λ

2
P2 (0)P3 (0) 〈n1〉,

� (9)
and

|N2\∩(i)|∑
n3=0

P (0, 0,n3)λ
n3

2
=

λ

2
P1 (0)P2 (0)

|N2\∩(i)|∑
n3=0

n3P3 (n3) =
λ

2
P1 (0)P2 (0) 〈n3〉 ,

� (10)
respectively. Here

P1 (0)P2 (0) =
∏

j∈N1(i)

(1− ρj) =
∏
j

(
1− A1

ijρj
)
,

P2 (0)P3 (0) =
∏

j∈N2(i)

(1− ρj) =
∏
j

(
1− A2

ijρj
)
.

� (11)

Substituting equations (7)–(11) into equation (6), we have

Rinf =
λ

2

∑
j

(
A1

ij + A2
ij

)
ρj −

λ

2

∏
j

(
1− A2

ijρj
)∑

j

A1
ij

(
1− A2

ij

)
ρj

− λ

2

∏
j

(
1− A1

ijρj
)∑

j

A2
ij

(
1− A1

ij

)
ρj.

� (12)

Thus, the time-evolution of ρi can be written as

dρi
dt

= −µρi + (1− ρi)Rinf .� (13)

Equation (13) is the main theoretical result of the present work. It is not hard to 
check that ρi = 0 (i = 1, · · · ,N ) is always a set of stationary solution of equation (13). 
Near the onset of epidemic outbreak, ρi � 0, equation (13) can be linearized as,

dρi
dt

= −µρi + λ
∑
j

A1
ijA

2
ijρj,� (14)

or in the matrix form,

d�ρ

dt
=

(
−µI+ λÃ

)
�ρ,� (15)

where �ρ = [ρ1, . . . , ρN ]
T , I is the N-dimensional identity matrix, and the entries of Ã 

are Ãij = A1
ijA

2
ij. That is to say, Ãij = 1 only when A1

ij = 1 and A2
ij = 1 simultaneously, 

and therefore we call Ã the overlapping adjacency matrix of multiplex network. The 

solution ρi = 0 loses its stability when the largest eigenvalue of −µI+ λÃ is larger 
than zero, which determines the epidemic threshold that is the reciprocal of the largest 
eigenvalue of Ã, i.e.
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βC =
1

Λmax

(
Ã
) .

� (16)

For O = 1, equation  (16) recovers to the result of single-layer networks [68–70], 
βC(O = 1) = 1/Λmax(A). For O = 0, Ã becomes a null matrix and therefore 
βC(O = 0) = ∞. For 0 < O < 1, βC falls between βC(O = 1) and βC(O = 0).

In figure 6, we show the phase diagram of the model in β ∼ O space. We use the 
same networks as the figure 3. The phase diagram is divided into three regions, sepa-
rated by two transition values of β , βF  and βC . βC is obtained by calculating the larg-
est eigenvalue of the overlapping adjacency matrix (see equation (16)). Note that due to 
nonlinear characteristic of equation (13) βF  cannot be obtained in general by analytical 
derivation. Alternatively, βF  is obtained by numerically solving the steady equation of 
ρi (letting dρi/dt = 0 in equation (13)) using the initial condition ρi(0) = 1.

4.2. Homogeneous mean-field theory

For homogeneous networks, each node is assumed to be statistically equivalent, and thus 

ρi = ρ for ∀i, and degrees of each node in each layer are the same, i.e. 
∑

j A
1
ij = 〈k〉1 and ∑

j A
2
ij = 〈k〉2 for ∀i. Here, the rate equation for homogeneous mean-field theory does 

not need to be rederived. Alternatively, it can be obtained by rewriting equation (13) 
based on the above assumption in homogeneous networks. Thus, 

∑
j A

1(2)
ij ρj = 〈k〉1(2) ρ, ∏

j

(
1− A

1(2)
ij ρj

)
= (1− ρ) 〈k〉1(2), and 

∑
j A

1(2)
ij

(
1− A

2(1)
ij

)
ρj = 〈k〉1(2)

(
1−O1(2)

)
ρ, and 

equation (13) can be rewritten as,

dρ

dt
= −µρ+

λ

2
ρ (1− ρ)

[
〈k〉1 + 〈k〉2 − 〈k〉1(1− ρ)〈k〉2 (1−O1)− 〈k〉2(1− ρ)〈k〉1 (1−O2)

]
,

� (17)
where we have defined O1(2) =

∑
i<j A

1
ijA

2
ij/

∑
i<j A

1(2)
ij  as the fraction of the number 

of overlapping edges in the total number of edges in the first (second) layer. When 

Figure 6.  Phase diagram in β ∼ O plane. The used networks are the same as those 
in figure 3.
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the numbers of edges in each layer are the same as considered before, O1 = O2 = O, 
〈k〉1 = 〈k〉2 = 〈k〉, equation (17) can be simplified to

dρ

dt
= −µρ+ λ 〈k〉 (1− ρ) ρ

[
1− (1−O) (1− ρ)〈k〉

]
.� (18)

Notice that ρ = 0 is always a stationary solution of equation (18). Such a trivial solu-
tion corresponds to the healthy phase where no infected nodes survive. According to 
linear stability analysis, the solution becomes unstable when the derivative of the 
right-hand side of equation (18) with respect to ρ at ρ = 0 is larger than zero, which 
determines the epidemic threshold βC ,

βC =
1

〈k〉O
.� (19)

Comparing to mean-field equation of the SIS model in single-layer networks [5], our 

model can give rise to an additional term in equation (18), (1−O) (1− ρ)〈k〉. Obviously, 
the additional term vanishes in the case of O = 1. Importantly, we shall see that 
for O �= 1 the additional term can lead to an essential change in the bifurcation of 
the model. The results for the simple mean-field theory are summarized in figure 7. 
Figures 7(a)–(c) shows ρ as a function of β for three distinct values of O. For O = 1, 

Figure 7.  Results from the homogeneous mean-field theory. (a)–(c) shows ρ versus 
β for three dierent O: 1.0 (a), 0.8 (b), and 0.5 (c). (d) Shows the phase diagram 
in β ∼ O plane. Solid lines and dotted lines in (a)–(c) denote stable and unstable 
solutions, respectively. The average degree is 〈k〉 = 20.
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our model recovers to the standard SIS model, and it is well-known that ρ shows a 
transcritical bifurcation as β varies. Across the epidemic threshold β = 1/ 〈k〉 (here 
we have used 〈k〉 = 20) from below, the trivial solution ρ = 0 loses its stability, and a 
new solution of ρ �= 0 arises. In physics, we call that the model undergoes a continuous 
phase transition from a healthy phase (ρ = 0) to an endemic phase (ρ > 0) at β = βC . 
For O �= 1, the bifurcation feature is changed essentially. When β < βF , ρ = 0 is only 
stable solution. When βF < β < βC, two stable solutions exist, ρ = 0 and ρ > 0, and 
an unstable solution (ρuns) lying in between the two stable solutions. Depending on the 
initial density ρ0 of infected nodes, the system will arrive at either a healthy phase (for 
ρ0 < ρuns) or an endemic phase (for ρ0 > ρuns). As β approaches βF  or βC , one of stable 
solutions and the unstable solution of ρ get close to each other, until they colloid and 
annihilate via a saddle-node bifurcation. When β > βC , ρ = 0 is unstable and ρ > 0 
is only stable. Therefore, for O < 1 the system is divided into three phases in terms 
of β . For β < βF  the system is in the healthy phase. For β > βC the system is in the 
endemic phase. Between them, the system is in bistable phase. Figure 7(d) shows the 
phase diagram in the parametric space β ∼ O. The boundary line βF  shows a very slow 
decrease as O increase, and the other one βC decreases obviously with O according to 

Figure 8.  The density of infected nodes ρ as a function of the infection rate β in 
a two-layer network where the first layer is consisted of a Watts–Strogatz small-
world network and the second layer is obtained by randomly rewiring the first layer 
network such that a given fraction of overlapping edges is achieved. Two dierent 
initial infected densities are used: ρ0 = 0.02 (squares) and ρ0 = 0.98 (crosses). From 
(a) to (d) the overlap parameters O are 1.0, 0.8, 0.5, and 0.2, respectively. The 
other parameters are N = 10 000 and 〈k〉 = 20.
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equation (19), such that we can see that the bistable region is clearly enlarged as O 
decreases.

5. Comparison between simulation and theory

It is expected that the homogenous mean-field theory coincides with the simulation 
results in the Poisson random graph (shown in figure 2). To compare them, we numer
ically solve equation (18) using the same initial conditions as the simulations, and theor
etical results are shown by lines in figure 2. There is an excellent agreement between 
the theory and simulation. We should note that the theoretical value of βC is not easy 
to access in simulation. For example, for 〈k〉 = 20 and O = 0.5, we have βC = 0.1 in 
terms of equation (19) (shown in figure 7(c)). In simulation, we use ρ0 = 0.02 and give 
βC = 0.076, as shown in figure 2(c). In principle, we can access the theoretical limit of 
equation (19) by using a lower initial density of infection in simulation. However, if the 
number of infected seeds is very small, the finite-size fluctuations may drive, with a very 
high probability, the system to the absorbing state whenever no more infected nodes 

Figure 9.  The density of infected nodes ρ as a function of the infection rate β in 
a two-layer network where the first layer is consisted of a 100× 100 square lattice 
and the second layer is obtained by randomly rewiring the first layer network such 
that a given fraction of overlapping edges is achieved. Two dierent initial infected 
densities are used: ρ0 = 0.02 (squares) and ρ0 = 0.98 (crosses). From (a) to (d) the 
overlap parameters O are 1.0, 0.8, 0.7, and 0.5, respectively.
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survive. Once the absorbing state is reached, the system cannot be left. Therefore, in 
order to verify the theoretical prediction in equation (19) with an adequate accuracy, 
one needs to use a considerable large network size to reduce the finite-size fluctuations. 
It will certainly increase a more computational resource.

For more degree heterogeneous networks, individual-based mean-field theory is 
more appropriate. Using the duplex networks the same as those in figure 3, we numer
ically solve equation  (13) to obtain stationary value of ρi and the average infection 

density ρ = N−1
∑N

i=1 ρi, as indicated by lines in figure 3. As expected, the theory can 

well reproduce the simulation results.

6. Results on other multiplex networks

To validate the generality of our conclusion, we also present the simulation results 
in other multiplex networks. In figure 8, the first layer is consisted a Watts–Strogatz 

Figure 10.  The density of infected nodes ρ as a function of the infection rate β 
in a three-layer network consisted of three Poisson random graphs. Two dierent 
initial infection densities are used: ρ0 = 0.02 (squares) and ρ0 = 0.98 (crosses). From 
(a) to (d) the overlap parameter O are 1.0, 0.8, 0.5, and 0.2, respectively. The other 
parameters are N = 10 000 and 〈k〉 = 20.

https://doi.org/10.1088/1742-5468/ab780e


Eect of overlap on spreading dynamics on multiplex networks

17https://doi.org/10.1088/1742-5468/ab780e

J. S
tat. M

ech. (2020) 043402

small-world network [71]. The small-world network is generated as follows. We start 
with a regular ring network with N = 10 000 nodes in which each node is connected to 
its first K  =  20 neighbors (K/2 on either side), and we then randomly rewire each edge 
of the ring network with probability p   =  0.05 such that pNK/2 long-range edges are 
generated. In figure 9, the first layer consisted of a 100× 100 square lattice (periodic 
boundary) in which each node is connected to its four nearest neighbors. The second 
layers both in figures 8 and 9 are obtained by randomly rewiring the first layer network 
such that a given fraction of overlapping edges is achieved. From figures 8 and 9, one 
sees that for less degrees of overlapping edges in the two layers, a discontinuous phase 
transition can be also observed. That is to say, the main conclusion in our work holds 
for other network models as well.

In figure 10, we show the results on a three-layer network consisted of three Poisson 
random graphs with N = 10 000 and 〈k〉 = 20, in which we have assumed that a sus-
ceptible node can be infected only when it has at least one infectious neighbor in each 
layer. It can be seen that the main conclusions are consistent with those in a two-layer 
network. At last, we perform simulations on two real multiplex networks: Elegans mul-
tiplex connectome [72, 73] and SACCHCERE multiplex network [74, 75]. We find that 
they can produce discontinuous phase transition as well, as shown in figure 11.

Figure 11.  The density of infected nodes ρ as a function of the infection rate 
β in two real multiplex networks. Two dierent initial infection densities are 
used: ρ0 = 0.02 (squares) and ρ0 = 0.98 (crosses). (a) Elegans multiplex connectome 
consisted of three layers corresponding to dierent synaptic junctions: electric, 
chemical monadic, and chemical polyadic [72, 73]. The multiplex network contains 
279 nodes and 5863 edges. The overlap parameter is O = 0.165. (b) SACCHCERE 
multiplex network [74, 75]. The original network consisted of seven layers, but we 
only used the first four layers: physical association, suppressive genetic interaction 
defined by inequality, direct interaction, and synthetic genetic interaction defined 
by inequality. The multiplex network contains 6570 nodes and 151 991 edges. 
The overlap parameter is O = 0.013. Note here that the number of edges in each 
layer is not the same, and the overlap parameter O is defined as the number of 
overlapping edges in all layers divided by the minimum of the number of edges in 
all layers.
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7. Conclusions

In conclusion, we have studied an SIS-type epidemic spreading model in multiplex net-
works, in which a susceptible individual can be infected only when (s)he has at least 
one infectious neighbor in each layer. We find that the proportion of overlapping edges 
between dierent layers has a significant impact on the nature of phase transition for 
the epidemic outbreak. When all the edges are completely overlapped, the model recov-
ers to the standard SIS model in single-layer networks, and it undergoes a continuous 
phase transition. Otherwise, the model shows an essentially dierent nature of phase 
transition, that is of a discontinuous first order. Using low and high initial densities of 
infected individuals, the model shows two distinct transition pathways from an endemic 
extinction phase to an endemic spread phase as the infection rate increases. Two such 
pathways form a hysteresis region in which the system is bistable with the coexist-
ing endemic extinction phase and endemic spread phase. As the degree of overlapping 
edges decreases, the left boundary of the hysteresis region changes slowly, but the right 
boundary of the hysteresis region moves swiftly to a larger value of the infection rate, 
such that the hysteresis region is enlarged as O decreases. Moreover, we have developed 
an individual-based mean-field theory that can derive the time-evolution equations of 
infected probabilities of individuals. The individual-based mean-field equations can be 
reduced to a single equation of average infection density. Such a coarse graining is 
advantageous to unveil the physical mechanics of phenomena observed in simulations. 
By linear stability analysis, we have derived the threshold of epidemic outbreak, corre
sponding to the right boundary of hysteresis region. Our theory can well reproduce the 
simulation results.

Recently, there were some studies that reported distinct mechanisms leading to 
discontinuous or explosive spreading outbreak in single-layer networks, such as reinfec-
tions in social contagions [76], synergistic eect in transmission rate [77], cooperative 
coinfections of multiple diseases [78–80], core contact process [60, 61], and higher-order 
interactions between individuals [81], etc. The present work shows a new mechanism 
that can lead to a discontinuous phase transition due to the interacting spreading 
dynamics across dierent network layers. This mechanism underlies the importance of 
correlations in edges belong to dierent layers. Therefore, our study adds to the con-
tinuing eort of the eects of multiplexity on dynamic processes on multiplex networks, 
compared to conventional single-layer ones. On the one hand, in most social systems, 
individuals interact with each other in complicated patterns that include multiple types 
of relationships. The present findings may improve our understanding for some real-
world spreading processes in such complex systems such as the spread of a rumor, the 
formation of a new opinion. On the other hand, a common characteristic of discontinu-
ous epidemic outbreak is that infinitesimal increase of the external parameters, such 
as infection rate, can give rise to a considerable macroscopic spreading scope. There 
is no doubt that it brings more challenges for controlling or predicting epidemic out-
breaks [82]. Finally, we expect that the present theoretical findings can be supported 
by empirical or experimental research in the future.
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