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Abstract.  Air quality impacts people’s health and daily life, aects the 
sensitive ecosystems, and even restrains a country’s development. By collecting 
and processing the time series data of air quality index (AQI) of 363 cities of 
China from January 2015 to March 2019, we dedicated to characterize the 
universal patterns, the clustering and correlation of air quality of dierent 
cities by using the methods of complex network and time series analysis. The 
main results are as follows: (1) The air quality network of China (AQNC) is 
constructed by using the planar maximally filtered graph (PMFG) method. 
The geographical distances on the correlation of air quality of dierent cities 
have been studied, it is found that 100 km is a critical distance for strong 
correlation. (2) Eight communities of AQNC have been detected, and their 
patterns have been analyzed by taking into account the Hurst exponent and 
climate environment, it is shown that the eight communities are reasonable, 
and they are significantly influenced by the climate factors, such as monsoons, 
precipitation, geographical regions, etc. (3) The motifs of air quality time series 
of eight communities have been investigated by the visibility graph, for some 
communities, the evolutionary patterns of the motifs are a bit stable, and they 
have long-term memory eects. While for others, there are no stable patterns.
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1.  Introduction

Air pollution has attracted increasing attention in recent years, due to its negative 
eects on the human health and environmental problems [1–3]. The relevant interest-
ing questions include the spatial-temporal pattern of air quality, the propagation of air 
pollution, the relations between air quality and earth environment, etc. Previous stud-
ies in this domain would be generally divided into two groups:

	 (1)	� Time series analysis: it was often used to describe some basic features of air 
quality data [4]. For examples, Schwartz [5] found that there are strong cor-
relations between air pollution levels and daily mortality in London. Kim [6] 
proposed a generalized linear model based on the time series data of ozone in 
Southern California, the model can eectively capture the seasonal non-stationary 
in ordinary time series. The relation between AQI and social-economical factors 
was also studied in [7], they analyzed the AQI of 31 provincial cities of China, 
and found that the value of AQI is positively correlated with the economic level 
and population level. Li [8] tried to infer the urban air condition from perspective 
of time series, they focused on PM2.5 based urban air quality, and introduced two 
kinds of time-series methods for real-time and fine-grained air quality prediction. 
They also proposed a model to show that the spatial scaling rules of population, 
roads and socioeconomic interactions are in a consistent framework [9]. Xu [10] 
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presented a data analysis framework to uncover the impact of urban trac on 
estimating air quality in dierent locations within a metropolitan area. They 
estimated the commuter’s exposure to ambient PM2.5 by using the mobile phone 
data, the environmental justice in PM2.5 exposure was investigated by comparing 
the exposure with housing price [11].

	 (2)	� Complex networks: it is an active area of studying the non-trivial topological fea-
tures, and relations within the multi-agent systems [12–14]. It could be also used 
to study the features and evolution of the time series data [15–20]. Representative 
works, such as, Fan [21] studied the PM2.5 time series data by networks. The 
phase spaces are denoted as nodes, and edges are assigned to nodes with higher 
correlation coecients. They analyzed the relations between the criteria of cor-
relation coecients and the topological quantities, the similarities of dierent 
cities’ air quality. Carnevale [22] use neural network to find the source of air 
pollutants, and found that the source of PM10 is the easiest and most accurate 
to be located. Zhang [23] studied the correlation and scaling behaviors of PM2.5 
time series of dierent cities of China, and found that the probability distribution 
of the correlations has two peaks, the weighted degree distributions of networks 
with dierent kinds of correlations are also discussed. Du [24] established the 
correlation network by using the AQI datasets of 35 major cities, they found that 
the abrupt phase transition usually occurs between three to six weeks ahead of the 
peak or valley point of the evolution of the AQIs mean in highly polluted region. 
Zhang [25] studied the AQI datasets of Beijing, they transformed the AQI time 
series to symbol sequence, and studied the dierent patterns from the network 
perspective. Wei [26] studied the criticality evaluation of air quality standards 
by the network approach. the network was constructed by the relations of each 
standard, the critical standards are identified by measuring the centrality of 
nodes in the network.

Time series analysis and complex networks are two useful metrics for carrying out 
the quantitative analysis of the air quality data. However, most of the previous works 
did not consider dierent cities as a whole system (other than the fluctuations, there 
should be interactions and correlations), and the geographical factors are not taken 
into account when analyzing the temporal characteristic of air quality. Therefore, we 
dedicate to study both the air quality patterns and the correlations of dierent cities 
with more complete datasets as we can [27], that is, the AQI series data of totally 363 
cities from January 2015 to March 2019.

Through calculating the Pearson correlation coecients [28] of AQI series data 
between each pair of cities, we construct the AQNC by using the PMFG algorithm 
[29–31]. The probability distribution of the geographical distances of cities which have 
direct links in AQNC shows that the air pollution has a strong correlation within 100 
km and this correlation would become weak as the distance increases. Eight communi-
ties are detected in AQNC based on the edges centrality algorithm [32], the detection 
results are reasonable both for the large modularity and the geographical distribution. 
The air quality patterns of each community are studied by considering the long-term 
memory eects and geographical environments. To uncover the characteristics of the 
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motifs of AQI series data, we use the visibility graph to explore the evolutionary pat-
terns of motifs.

The rest of the paper is organized as follows. In section 2, the AQNC is constructed 
by PMFG, the basic properties of AQI and the correlations of air quality of dierent 
cities also studied. In section 3, the community structure of AQNC is detected, and 
the patterns of dierent communities are analyzed by taking into account the regional 
average Hurst exponents, average Hurst exponents of each city, etc. Section 4 shows 
the results of AQI evolutionary pattern using the visibility graph method. Conclusions 
and discussions are made in section 5.

2. Construction of AQNC and correlation of AQI of dierent cities

The comprehensive evaluation of AQI is based on the pollution index of SO2, NO2, CO, 
PM2.5, PM10, and O3 [33]. We collected and processed the daily AQI time series data 
of 363 cities of China from January 2015 to March 2019 from [27]. The AQI time series 
data is transformed to AQNC by employing the well-known PMFG method. Based on 
the correlation of AQI of dierent cities, the geographical distance on the air pollution 
diusion has been investigated.

2.1. The construction of AQNC and some basic properties of AQI

The air quality displays seasonal cycles, thus the datasets of AQI have strong seasonal 
eect. There are dierent methods of removing this eect, such as by subtracting the 
mean seasonal cycle and dividing by the seasonal standard deviation of each grid point 
time series [34, 35] or the curve-fitting method [36]. The time length of our AQI data-
sets are around 4 years, the mean seasonal cycle would have large fluctuations, there-
fore we decide to use the curve-fitting method to remove the eect of seasonality, the 
calculation processes are as follows:

	 (1)	� Fit the AQI time series data of each year by using the polynomial function with 
5 parameters, so as to get the general trend of the datasets.

	 (2)	� The detrended datasets (denoted as AQId) are obtained by subtracting the trend-
datasets from the original datasets.

One example of this detrended process is shown in figure 1 for the city of Akesu. The 
blue and red cures on figure 1(a) represent the evolution of the original datasets and 
fitting trend datasets of AQI, respectively. The orange cure on figure 1(b) corresponds 
to the evolution of the detrended datasets of AQI (denoted as AQId). We have tested 
the seasonality trends of the AQId by employing the Fourier transform method [37], 
and found that the periodogram has no obvious spike. We also calculate the cycle 
lengths of the top 10 peaks, all of them are not close to one year. Therefore, we would 
conclude that the seasonality trends of the detrended AQI data (AQId) are removed.

https://doi.org/10.1088/1742-5468/ab7813
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The Pearson correlation coecient is introduced to calculate the correlations of the 

detrended AQI time series data AQId of N  =  363 cities. The Ct,δ
ij  between cities i and j  

during the time period {t− δ/2, t+ δ/2} is defined as

Ct,δ
ij =

〈I ti I tj〉 − 〈I ti 〉〈I tj〉√
[〈I ti

2〉 − 〈I ti 〉
2][〈I tj

2〉 − 〈I tj〉
2]

� (1)

where δ is the estimation interval, and 〈. . . 〉 is the sample mean over the detrended 
AQI series vector {I ti} of city i. In the process of calculating the correlations between 
two cities’ detrended AQI series, we shift the time series backwards and forwards from 
1 day to 30 d. Then we calculate the correlation coecients for the overlap time range 
of the detrended AQI time series of the two cities, and the largest value is assigned to 
the Pearson correlation coecient between the two cities. After we calculate the N ×N 
correlation coecients Cij of each city i and city j , we get the air quality correlation 
matrix.

The N ×N correlation matrix is transformed to network by using the PMFG 
method [31], which is useful and eective to convert the time series data to the com-
plex network, by showing the correlations between dierent time series datasets. The 
Pearson correlation coecients Cij are ranked from the largest one to the smallest one. 
Then 3(N − 2) edges are added between cities according to the correlation coecients 
rank list (from the largest one), and the new edge adding process should keep the net-
work as a planar graph.

The main advantage of this method is that, at the very beginning, edges are added 
between cities with larger Pearson correlation coecients, after many edges are added, 
the overall picture of the network is almost clear. But there are still a few cities that 
are not connected to the network, and if new edges are added without the condition of 
keeping the network as a planar graph, there should be huge number of new edges to 
be added so as to connect all cities. So with this method, all nodes could be connected 
to the network with less edges, which makes the correlations between cities clean and 
clear. Moreover, the minimum spanning tree is more convenient and ecient to show 
the correlations between dierent cities. For example, the community structures of 
networks could be detected with better accuracy.

We have checked the Pearson correlation coecients distribution of city-pairs with 
links in the network, normally their Pearson correlation coecients are larger. This 
means that the network links in AQNC could reflect the overall picture of the correla-
tions between cities.

The average correlation coecients 〈C〉 of each pair of cities are calculated for 
dierent correlation length δ ranging from 30  d to 180  d (in order to reduce the 
fluctuations of only one constant correlation length). The evolutions of 〈C〉 and the 
average AQI of all cities are shown in figure 2. When 〈AQI〉 is larger, 〈C〉 also becomes 
larger. While the peaks of the curve of 〈C〉 slightly shift to the left compared to that 
of the curve of 〈AQI〉. It means that after 〈C〉 reaches the largest value, the air quality 
would become worse then.
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2.2. Air pollution diusion distance

Wind is an important factor that aects the diusion of air pollutions [23]. Normally 
the closer the geographical distance of two cities, the stronger the correlation of their 
AQI would be. Therefore, we investigate the relationship between the Pearson cor-
relation coecients of any two cities and their geographical distances, and plot them 
in the double-log scale (see figure 3). One could observe that there are two regimes of 
the relationship, i.e. double power laws with two dierent slopes. The turning point 
is (d  =  465 km, C  =  0.423). It means that, when d  >  465 km, the correlations between 
cities would become weaker.

Boers [38] studied the global rainfall teleconnections by calculating the probability 
distribution of distances of links between dierent places within the network. They 
found a critical distance of 2500 km, within the critical distance, the rainfall shows a 
regional weather system, when the distance is larger than 2500 km, the rainfall telecon-
nections are the global-scale ones. In this realm, we both investigate the probability 
distribution of geographical distances of any two cities and of the connected cities in 
the AQNC, the results are shown in figures 4(b) and (b), respectively. The probabil-
ity distribution of distances of any two cities follows P (d) ∼ e−0.001 75dd1.546, the peak 
of the distribution is around 1000 km. But the peak of the probability distribution of 
distances of links in AQNC is around 100 km. There are two regimes of the distribu-
tion, the critical distance is around 100 km. In the region of (10, 100) km, the prob-
ability distribution of distance follows P (d) ∼ d1.54, while in the region of (100, 1000) 
km, P (d) ∼ d−1.99. It means that most of the geographical distances of the connected 
cities in AQNC are around 100 km. In China, 100 km is more or less the geographical 
distance between two nearby cities (cities that are in our AQI data list), the air quali-
ties have strong correlations between them. Also, comparing figure 4(a) (geographical 
distance distribution of any two cities) and figure 4(b), in the range of (0, 100) km, we 
observe that both of the two geographical distance distributions have the similar form 
with P (d) ∼ d1.54, this indicates that if the geographical distance of two cities is smaller 
than 100 km, there would be a link between them in the network, so there are strong 
correlations between them.

Figure 1.  (a) The AQI time series of Akesu (blue curve), the red line is the fitting 
curve by employing the polynomial function. (b) The time series of the detrended 
datasets of AQI (denoted as AQId). (a) The AQI and trend curve of Akesu. (b) 
Time evolution of AQId of Akesu.

https://doi.org/10.1088/1742-5468/ab7813
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Furthermore, the relationship between the average AQI (over all the periods) of a 
single city 〈AQIS〉 and its neighboring cities’ average AQI 〈AQIN〉 have been investi-
gated. Considering the relationship between Pearson correlation coecients and geo-
graphical distances of two cities in figure  3, we assign 465 km as the neighboring 
influential range. Results are shown in figure 5(a), one can observe that the larger the 
average AQI of a city, the larger the average AQI of its neighboring cities. The prob-
ability distribution of the correlation coecients between each city’s AQId and its 
neighboring cities’ average AQId is shown in figure 5(b), it is obvious that the peak of 
the distribution is around 0.75, which shows very strong positive correlations. All these 
results demonstrate that the neighboring cities can have very similar AQI patterns.

3. Communities of AQNC and their patterns

In complex network, a community is a group of nodes which are relatively densely 
connected to each other within the group but sparsely connected to nodes in other 
groups of the network [39]. Detecting communities [40–42] can not only uncover the 
correlations between internal structures and functional behaviors of networks, but also 
have many practical applications in domains such as biology, sociology, economics and 
climate science, etc.

In our studies, the community means that, the AQI time series of cities within one 
community have the same pattern, i.e. the evolution features of AQI are similar to 
each other, so they have strong correlations. The community structure of AQNC is 
detected based on the edge centrality algorithm [32], the result is compared with the 
geographical location of cities [43]. The Hurst exponents of a city’s AQI series data and 
a community’s 〈AQI〉 series data are calculated, respectively. By taking into account 
the monsoonal distribution, precipitation distribution and other geographical climate 
factors, we analyze the dierent patterns of AQI time series belonging to dierent 
communities.

Figure 2.  (a) The time evolution of 〈AQI〉 (average AQI of 363 cities of China (blue 
line), the red line just displays the general trend of the evolution of 〈AQI〉 to guide 
the eyes.). (b) The time evolution of 〈C〉 (average correlation coecients C between 
all cities with dierent correlation length δ). The error bars represent the standard 
deviation of 〈C〉 for dierent correlation lengths δ ranging from 30 d to 180 d.

https://doi.org/10.1088/1742-5468/ab7813
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3.1. Results of community detection

As shown in figure 6(a), eight communities of AQNC have been detected, the value of 
modularity is 0.807, it means that the community detection result is accurate and reli-
able, i.e. the AQNC has obvious community structure. From figure 6(b), one could find 
that the cities belonging to the same community almost locate in the same region, this 
indicates that the air quality of a city is largely influenced by its geographical location, 
i.e. the similar pattern of air quality is mostly due to the similar geographical environ
ment. The locations of the eight communities and their geographical features are as 
follows [44–46]:

Figure 3.  The relationship between the geographical distances d for each pair 
of cities and their corresponding Pearson correlation coecients C in double-log 
scale. The red and blue curves are the power law fittings of the two regimes, the 
turning point is (465, 0.423). The correlation coecients are averaged over each 
bin of 10 km, the error bars represent the standard deviations of C over each bin.

Figure 4.  (a) The geographical distance distribution of any two cities among 
363 cities. The peak of the distribution is around 1000 km. (b) The geographical 
distance distribution of two cities that have direct links in the network. It is 
plotted in log-log scale, red line is the fitting cure in the range of (10, 100) km, while 
the green line is the fitting curve in the range of (100, 1000) km. (a) Geographical 
distance distribution of any two cities among 363 cities. (b) Geographical distance 
distribution of the connected cities in AQNC.
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	 (1)	� Southeast China: Area with extreme high precipitation, the cities locate on the 
monsoonal path.

	 (2)	� East China: Plain area with medium precipitation, close to the East China Sea.

	 (3)	� Southwest highland of China: Highland area with rough terrain, medium 
precipitation and low wind.

	 (4)	� Northeast China: Plain area with low precipitation and high wind.

	 (5)	� Central-north China: Plain area with medium precipitation and low wind.

	 (6)	� Basin of China: Basin area with medium precipitation and low wind.

	 (7)	� Gobi desert of China: Gobi desert area with rough terrain, low precipitation 
and high wind.

	 (8)	� Central-south China: Plain area with high precipitation and medium wind.

3.2. AQI pattern analysis by Hurst exponent and environmental factors

The Hurst exponent is employed as a measure of the long-term memory of time series. 
It relates to the autocorrelations of the time series, and the rate at which these decrease 
as the lag between pairs of values increases [47]. We calculate the Hurst exponent 
by using the rescaled range analysis (R/S analysis) [48], for a time series of length n, 
X = X1,X2, ...,Xn, the rescaled range is calculated as follows:

Figure 5.  (a) The relationship between the average AQI of a single city 〈AQIS〉 and 
the average AQI of its neighboring cities 〈AQIN〉 within 465 km. (b) The probability 
distribution of the correlation coecients between each city’s detrended AQI series 
data and its neighboring cities’ average detrended AQI series data. (a) Average 
AQI of a single city versus the average AQI of its neighboring cities within 465 
km. (b) Probability distribution of the correlation coecients between each city’s 
AQId and its neighboring cities’ average AQId.

https://doi.org/10.1088/1742-5468/ab7813
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m =
1

n

n∑
i=1

Xi,� (2)

Yt = Xt −m for t = 1, 2, ...,n,� (3)

Zt =
t∑

i=1

Yi for t = 1, 2, ...,n,� (4)

R(n) = max(Zt)−min(Zt) for t = 1, 2, ...,n,� (5)

S(n) =

√√√√ 1

n

n∑
i=1

(Xi −m)2� (6)

where m is the mean value of the series data, Yt is the mean-adjusted series, Zt is the 
cumulative deviation series, and R(n) represents the range of deviation, S(n) is the 
standard deviation (normalization factor). Using the above formulas, we can calculate 
the rescaled range R/S(n) = R(n)/S(n), averaging all the partial time series by length 
n, and obtain R/S(n) ∼ nH, in which H is the Hurst exponent. In the calculation pro-
cess for Hurst exponent, we found that the R/S line becomes not smooth when n  >  365, 
so we set one year as the upper bound length of long-term memory. Values of Hurst 
exponents of the AQI time series of all 363 cities are shown in figure 7(a), and the value 
of the Hurst exponent HA of the average AQI time series of all cities is 0.955. These 
results indicate that the AQI time series have the strong long-term memory eects, 
regardless of the climate patterns or geographical locations of the cities.

We average the AQI time series of cities within the same community, and calculate 
each community’s Hurst exponent denoted as HC (see table 1 and figure 7(b)). The 

Figure 6.  (a) The community detection result of AQNC. It contains eight  
communities and the cities of the same community are denoted by the same color. 
(b) The geographical locations of the cities of dierent communities on the Chinese 
map, the colors of cities are the same as shown in (a) the background of figure is  
the landforms map of China obtained from [46]. (a) Community structure of 
AQNC. (b) Geographical locations of cities of dierent communities.
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community’s Hurst exponent HC was compared with the average Hurst exponent of all 
single cities within the community (denoted as 〈HS〉) in figure 8. The HC is larger than 
〈HS〉 for each community, since the time series of average AQI of a community has 
smaller fluctuations. HC and 〈HS〉 are linearly correlated except community 4 (Orange 
color point) and community 7 (Cyan color point) that exhibits an abnormal feature 
(see figure 8). The Hurst exponents of dierent communities posses their own features, 
since for each community, it has its own geographical aggregation eect. The datasets 
of the precipitation, monsoon, and wind energy data of dierent areas are obtained 
from the previous studies and literatures [44–46]. Thus for example we roughly divide 
the precipitation into four levels according to their values, and got the levels of low, 
medium, high and extreme high. The geographical characteristics of each community, 
including the precipitation, monsoon, wind, regional geomorphic feature and average 
Pearson correlation coecient 〈Cc〉, are presented in table 1.

From the community analysis of AQNC, we can discuss the results as follows: (1) 
The values of the 〈HS〉 and HC are relatively large in the basin area, due to the very 
low wind/air exchanges, which implies that the AQI time series of the basin area has 
strong long-term memory. (2) The wind and precipitation are negatively correlated 
with the Hurst exponents of single cities, as well as communities. Since the wind and 
precipitation could influence very large area, so as to break the air pollution accumula-
tive eect [49], and lessen the Hurst exponents. (3) The highland and gobi desert areas 
have rough terrain which can lead to low correlation between cities (small 〈Cc〉), and 
large HC, such as communities 3 and 7. The community 7 have high wind that leads to 
small 〈HS〉, but rough terrain reduces the air flow and leads to large HC. (4) The wind 
(local area) could reduce the value of the Hurst exponent of single cities, but reduce 

Table 1.  Basic quantities and features of the eight communities. 〈AQI〉 is the 
average AQI of a community through the whole period. HC is the Hurst exponent 
of a community. 〈HS〉 is the average Hurst exponent of all single cities within the 
community. 〈Cc〉 is the average Pearson correlation coecient among cities of the 
same community with distance being less than 465 km.

Community 
label Color 〈AQI〉 HC 〈HS〉 〈Cc〉 Precipitation

Geographical  
features

1 Red 54.46 0.863 0.83 0.630 Extreme high Close to ocean, 
in  
monsoon path

2 Yellow 74.99 0.892 0.846 0.576 Medium Close to ocean, 
not in monsoon 
path

3 Purple 49.84 0.959 0.901 0.424 Medium Highland, low 
wind

4 Orange 73.04 0.881 0.819 0.569 Low Plain, high wind
5 Black 103.37 0.92 0.874 0.558 Medium Plain, low wind
6 Brown 76.09 0.972 0.911 0.625 Low Basin, low wind
7 Cyan 88.46 0.906 0.835 0.481 Low Gobi desert, high 

wind
8 Green 75.25 0.937 0.895 0.659 High Plain, medium 

wind
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the value of communities (HC) slightly. Since it can only influence the AQI change in 
smaller area (single city), and it is not the same as monsoon which can influence large 
area (the community area), such as community 4.

4. Motifs of AQI time series by the visibility graph

The visibility graph method was used to analyze evolution features, especially the 
motifs of AQI time series. Some standard motifs were recognized by comparing the 
original time series with the shued ones. We further studied the stability of these 
motifs of dierent communities by checking their long-term memory eects.

4.1. The process and properties of visibility graph

The visibility graph was proposed by Lacasa [15] and used to transform the time series 
to graphs, then these graphs are regarded as vertices to construct a new network [50]. 
Here, we choose five timing points from t to t  +  4 and set every timing point as one ver-
tex in the network, if two elements (e.g. with height being the value of AQI) at dierent 

Figure 7.  The heat map of the Hurst exponents of (a) 363 cities and (b) eight 
communities. (c) The heat map of the average AQI of the 363 cities. (d) The 
geographical distribution of precipitation and monsoon versus communities (the 
background map is cited from [45]). (a) Hurst exponents of 363 cities. (b) Hurst 
exponents of eight communities. (c) The average AQI of 363 cities. (d) Community 
versus geographical environment.
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considered each time window with length 5, and set every timing point as a vertex. An 
edge is added if two vertices (with the height of AQI value) could see each other, for 
which the direction is from the early timing vertex to the subsequent one. Please find 
the schematic diagram in figure 9. Figure 9(c) is the corresponding adjacency matrix of 
the graph in figure 9(b). The values of elements on the red line are 1 since they reflect 
the adjacent timing points. The values of elements below the diagonals are 0. Thus we 
can represent the visibility graph by the elements above the red line. According to the 
previous results [51], for 5 timing points, the connection patterns in the visibility graph 
can be divided into 25 kinds.

We denote the network composed of 5 timing vertices as a mode gt, and the next 
shifted (only one step) 5 timing vertices as gt+1, and so on. So the time series of AQI 
can be denoted as gt, gt+1, gt+2, ..., gt+n. For the next step, we add an edge for any two 

Figure 8.  The relation of a community’s Hurst exponent HC versus the average 
Hurst exponent of all single cities within the community 〈HS〉. As can be seen, they 
are linearly correlated, except community 4 with orange color and community 7 
with cyan color.

Figure 9.  The process of transforming the time series to visibility graph and its 
corresponding adjacent matrix. (a) Time series. (b) Visibility graph mode. (c) 
Adjacent matrix.
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Figure 10.  The transforming patterns of the visibility graphs of eight communities, 
the thickness of the line is proportional to the frequency of that transformation, 
and the size of the vertex is proportional to the frequency of the visibility graph 
in the AQI time series. The labels of the visibility graphs are named in the way 
that, if we transform that label to the binary number with nine-digits (0 or 1), then 
these nine-digits (0 or 1) just correspond to the nine numbers at the top right-hand 
corner of the adjacent matrix of visibility graph. (a) Southeast China. (b) East 
China. (c) Southwest highland of China. (d) Northeast China. (e) Central-north 
China. (f) Basin of China. (g) Gobi desert of China. (h) Central-south China.

https://doi.org/10.1088/1742-5468/ab7813


Chinese cities’ air quality pattern and correlation

15https://doi.org/10.1088/1742-5468/ab7813

J. S
tat. M

ech. (2020) 043403

consecutive mode gt, gt+1, and the same mode of visibility graph as one point, then 
the network is constituted by 25 visibility graphs (most visibility graphs cannot be 
generated), and the mutual transformation can be obtained, which is named as the 
visibility network. The network is shown in figure 10, which could reflect the patterns 
and rules of AQI evolution. Each node corresponds to a visibility graph. The digit next 
to the node is the name of the visibility graph, in the way that, if we transform that 
name-digit to the binary number with nine-digits (0 or 1), then these nine-digits (0 or 
1) just correspond to the nine numbers at the top right-hand corner of the adjacent 
matrix of visibility graph. So the name-digit could reflect the very basic information of 
the visibility graph. The larger points imply the patterns appear in AQI series much 
more frequently, and the thicker line means the two patterns have higher probability 
of transforming from one to another. We calculate the top 8 nodes (visibility graphs) 
with large frequencies of all communities (see table 2).

4.2. Characteristics of motifs of the AQI time series

To investigate the characteristics of motifs of AQI time series, we shue the AQI series 
and construct some new visibility networks, then we compare the frequency of each 
visibility graph between the two visibility networks. If the degree of an original visibil-
ity network is larger than that of the shued visibility network, this visibility graph 
could be called the ‘motif pattern’. The dierent visibility graphs are ranked by the 
distinction between the original time series and the shued one. The top five motifs 
and corresponding time series of eight communities are shown in table 3. The motifs are 
not the same with the top frequency visibility graphs (table 2), and the motifs 1 and 2 
of all communities are the same.

Table 2.  The top eight large frequency visibility graphs and corresponding time 
series of eight communities. The labels of the visibility graphs are the same as in 
figure 10.

Graph label 256 304 1 257

Visibility graph

Time series

Graph label 19 0 311 16

Visibility graph

Time series

https://doi.org/10.1088/1742-5468/ab7813


Chinese cities’ air quality pattern and correlation

16https://doi.org/10.1088/1742-5468/ab7813

J. S
tat. M

ech. (2020) 043403

Table 3.  The top five motifs and corresponding time series of eight communities.

Motif label 1 2 3 4 5

Southeast China

East China

Southwest  
highland of China

Northeast China

Central-north China

Basin of China

Gobi desert of 
China

(Continued)
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Then we calculate the Hurst exponents of motifs in eight communities. We imple-
mented the metric [50] of calculating the Hurst exponent of discrete time series with 
dierent interval as follows: The top three motifs are chosen to calculate the Hurst 
exponents of AQI series. Firstly, we denote the time of the chosen motif as ωk, where 
k = 1, 2, ...,M means the motif is the kth appeared one in the time series. Then we set

Central-south China

                           Table 3.  (Continued )

Motif label 1 2 3 4 5

Figure 11.  The relation between R/S and n of motifs, it is plotted in log-log 
scale. The dierent colors represent dierent motifs, and the dotted lines are the 
calculated results, the fitting results are the real lines.

Table 4.  The HG exponent of top three motif in eight average AQI series, and 
most HG exponents are larger than 0.5 or nearly equals to 0.5.

Community 
label 1 2 3 4 5 6 7 8

Motif 1 0.574 0.546 0.512 0.728 0.726 0.639 0.486 0.765
Motif 2 0.494 0.623 0.624 0.631 0.619 0.663 0.609 0.503
Motif 3 0.661 0.579 0.611 0.735 0.597 0.617 0.531 0.583
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Ω j = (ωj+1 − ωj,ωj+2 − ωj+1, ...,ωj+n − ωj+n−1),� (7)
where j = 1, 2, ..,M − n, then

Φ j(i) =
i∑

w=1

[Ω j(w)− 〈Ω j〉]

= ωj+1 − ωj −
i

n
(ωj+n − ωj) (i = 1, 2, ...,n.).

�

(8)

The Hurst exponent can be calculated as

R/S(n) =
1

M − n

M−n∑
j−1

max[Φ j(1), Φ j(2), ..., Φ j(n)]−min[Φ j(1), Φ j(2), ..., Φ j(n)]

std(Ω j)
.� (9)

In the relation R/S(n) ∼ nHG, HG is Hurst exponent of the visibility graph pattern. 
Since the fluctuations of AQI series of single city are large, we average the AQI series 
of all cities within one community, then we can obtain eight average AQI series. As is 
the same calculation process of the Hurst exponent, the R/S line becomes not smooth 
when n  >  27, thus we can calculate HG by setting n with dierent values in the range 
of (1, 27). Otherwise the fourth and the subsequent motifs in each communities have 
low frequencies, their Hurst exponents could not be calculated, therefore we have only 
studied the top three motifs. The relation between R/S and n is presented in figure 11 
and the HG exponents of all the communities are listed in table 4. Results show that 
most of the HG exponents are larger than 0.5 or approximately equal to 0.5. Therefore, 
the evolutionary patterns have the long-term memory eect and the motifs always 
appear next if this motif have appear frequently.

5. Conclusion

We have analyzed the AQI time series from network perspective by using the PMFG 
method. The correlations of AQI between dierent cities have been calculated, it is 
found that there are strong correlations between cities within 100 km. Eight com-
munities of the AQNC have been found, and we observe that the cities in the same 
community almost distribute in the same region. We have also calculated the regional 
Hurst exponent and single city’s Hurst exponents, respectively, and found that the 
AQI time series have a strong long-term memory eect. Furthermore, we have used the 
precipitation, monsoon, and geographical environment to explain the pattern of AQI, 
regional Hurst exponent, and average Hurst exponent of single cities in every commu-
nity. Lastly, we have transformed the AQI time series to visibility graphs, and got the 
motifs of eight communities. The Hurst exponents of motifs have been calculated, and 
results indicate that the evolutionary patterns of AQI in most communities are have 
long-term memory.
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