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Abstract. The complexity of the software can increase the possibility of defects. Defective 

software can cause high losses. The software containing defects can cause large losses. Most 

software developers don't document their work properly so that making it difficult to analyse 

software development history data. The cross-project software defect prediction used several 

datasets from different projects and combining for training and testing. The dataset with high 

dimension can cause bias, contain irrelevance data, and require large resources to process it. In 

this study, several dimensional reduction algorithm and Decision Tree as classifier. Based on the 

analysis using ANOVA, all models that implement dimensional reduction can significantly 

improve the performance of the Decision Tree model. 

1. Introduction 

A software defect is fault or bug in the software that causes error and system produces an unexpected or 

incorrect outcome [1], so the system can't meet expectation [2]. The software containing defects can 

cause large losses. To find and repair defects requires additional costs for development. Defective 

software can also cause great damage or financial loss [3]. For example, software used to control drones, 

if they contain defects, can cause crashes. Software for banking transactions or sales that contain defects 

will cause financial losses.  

The software has been developed increasingly complex to increase benefits, as well as security. 

Increased software complexity causes proportional defects to increase [4]. To guarantee that the software 

is errors free, generally done by testing, even though testing is the most expensive stage of software 

development. Efforts to reduce errors and ensure software quality is a difficult challenge [5].  

Prediction of software defects is one of the efforts made to improve the quality of software and reduce 

development costs [6]. Software defect prediction is used to predict program units that tend to contain 

defects so that it can help developers to test properly and find defects quickly. 

To estimate the tendency of defects in software generally, use quality metrics or static codes metrics 

[4]. Much metric software has been used, including Software Change Matrices (SCM) and Code Based 

Matrices (CBM)[7]. 

Many software developers ignore the importance of project documentation, so they don't have 

enough data to use in predicting software defects. Many researchers and practitioners are challenged to 

utilize limited historical data to predict software defects [8]. Software defect prediction using historical 

data from another project is called cross-project defect prediction [9].  
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The cross-project software defect prediction used several datasets from different projects. The 

datasets are combined to train the model and be tested using a dataset from other projects. By combining 

dataset from several projects, the dataset has a large dimension. The dataset with high dimension can 

cause bias, contain irrelevance data, and require large resources to process it. So, in this study, proposed 

to implement the dimension reduction algorithm, namely PCA (Principal Component Analysis), Kernel 

PCA, Sparse PCA, Truncated SVD, Incremental PCA, Gaussian Random Projection, dan Sparse 

Random Projection. 

2. Methodology 

NASA's dataset is used in this study because it is common for this topic. The NASA dataset is obtained 

from https://github.com/klainfo/NASADefectDataset which is a backup of http://nasa-

softwaredefectdatasets.wikispaces.com/ from Shepperd et al. (2014). NASA datasets contain 10 

datasets, but for this work, we use datasets which have the same attributes, namely CM1, MW1, PC1, 

PC3, and PC4. The datasets have been processed based on the initial processing algorithm proposed by 

Shepperd, Song, Sun, and Mair[10] to eliminate implausible value, inconsistent data, and conflicting 

feature value.  

The proposed Cross-project Defect Prediction Model Framework shown in Figure 1. The dataset is 

divided into two-part for train models and test models. Both datasets are standardized using min-max 

scalar and applied to the dimensional reduction algorithm. The reduced dataset is used to train and test 

the model. Model evaluation is done by comparing the performance of the model to get the best model. 

Decision Tree algorithm use as a classification algorithm because quite reliable and efficient in 

generating a classifier model[11]. 

 

 

Figure 1. Cross-project Defect Prediction Model Framework 

 

The purpose of this model is to predict defect prone modules in other projects. The proposed model 

is applied using 5 datasets from NASA. These datasets will be chosen alternately as testing data and the 

other as training data until all datasets have been testing data. The distribution of the dataset as training 

data and testing data is shown in Figure 2. 
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Figure 2. Dataset Distribution for Validation 

 

In the first validation, the first dataset is used as the testing data, while the second until fifth datasets 

are training data. In the second validation, the second dataset is used as testing data, and the other as 

training data. Validation is repeated until all datasets have been used as testing data. 

Validation results are used to measure model performance. To measure the performance of the model 

used the confusion matrix. A confusion matrix is a useful tool for analyzing how well classifiers can 

recognize tuples/features of different classes[12]. Confusion matrix also provides performance appraisal 

of classification models based on the number of objects predicted correctly and incorrectly[13].  

The dataset used for prediction of software defects is generally unbalanced because the amount of 

defect data is far less than that for non-defects [14]. Models that use unbalanced data cannot be evaluated 

through accuracy values [15]. Prediction models that are trained using unbalanced classes tend to 

produce majority class predictions [16] because they don't recognize the minority class well. For the 

evaluation of software defect prediction models generally use AUC (Area Under The Curve)[17]. 

3. Results and Discussion 

The results of the application of the model and dataset obtained the value of performance-based on 

accuracy and AUC. The results of performance measurements are then visualized using the graph shown 

in Figure 3 and Figure 4. Figure 3 is a performance graph based on accuracy, while Figure 4 is a 

performance graph based on AUC. Both graphs show that the application of dimensional reduction 

algorithms can improve model performance both from accuracy and AUC. 

 
Figure 3. Accuracy of model 

 

1 2 3 4 5

1 Testing

2 Training Testing

3 Testing

4 Testing Training

5 Testing

Validation
Split

Training

Training

Training

Training

Training

Training



ICComSET 2019

Journal of Physics: Conference Series 1477 (2020) 022030

IOP Publishing

doi:10.1088/1742-6596/1477/2/022030

4

 

 

 

 

 

 

 
Figure 4. AUC (Area Under the Curve) of model 

 

To find out the best model, it is necessary to do a statistical analysis based on the performance value 

of the model. Statistical analysis was carried out using ANOVA (Analysis of Variance). The significance 

value (denoted as α or alpha) is set to 0.01. The analysis is done by calculating the p-value of the two 

models in pairs and turns. The resulting p-values are shown in Table 1 for Accuracy and Tabel 2 for 

AUC.  

 

Table 1. P-value comparison of accuracy 

 
Model DT PCA Kernel 

PCA 

Sparse 

PCA 

Truncated 

SVD 

Incremental 

PCA 

Gaussian Random 

Projection 

Sparse Random 

Projection 

DT 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 

PCA 0.000 1.000 1.000 0.000 0.485 0.623 0.002 0.001 

Kernel PCA 0.000 1.000 1.000 0.000 0.485 0.623 0.002 0.001 

Sparse PCA 0.000 0.000 0.000 1.000 0.000 0.000 0.258 0.000 

Truncated SVD 0.000 0.485 0.485 0.000 1.000 0.892 0.000 0.002 

Incremental PCA 0.000 0.623 0.623 0.000 0.892 1.000 0.000 0.004 

Gaussian Random 

Projection 

0.000 0.002 0.002 0.258 0.000 0.000 1.000 0.000 

Sparse Random 

Projection 

0.001 0.001 0.001 0.000 0.002 0.004 0.000 1.000 

 

Table 2. P-value comparison of AUC (Area Under the Curve) 

Model DT PCA Kernel 

PCA 

Sparse 

PCA 

Truncated 

SVD 

Incremental 

PCA 

Gaussian 

Random 

Projection 

Sparse Random 

Projection 

DT 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

PCA 0.000 1.000 1.000 0.258 0.981 0.612 0.000 0.851 

Kernel PCA 0.000 1.000 1.000 0.258 0.981 0.612 0.000 0.851 

Sparse PCA 0.000 0.258 0.258 1.000 0.432 0.827 0.000 0.271 

Truncated SVD 0.000 0.981 0.981 0.432 1.000 0.678 0.001 0.856 

Incremental PCA 0.000 0.612 0.612 0.827 0.678 1.000 0.003 0.540 

Gaussian Random 

Projection 
0.000 0.000 0.000 0.000 0.001 0.003 1.000 0.000 

Sparse Random 

Projection 
0.000 0.851 0.851 0.271 0.856 0.540 0.000 1.000 
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The initial hypothesis (H0) states that all models have the same mean value (H0: µ1 = µ2). If the p-

value is smaller than the significance value (α), it is stated to have a significant difference. Significant 

values (p-value) and significantly different are written in bold in Table 3 for Accuracy and Tabel 4 for 

AUC. All of models that implement dimensional reduction are significantly different. 

 

Table 3. Significantly different comparison of accuracy 

 
Model DT PCA Kernel 

PCA 

Sparse 

PCA 

Truncated 

SVD 

Incremental 

PCA 

Gaussian Random 

Projection 

Sparse Random 

Projection 

DT Not Sig Sig Sig Sig Sig Sig Sig 

PCA Sig Not Not Sig Not Not Sig Sig 

Kernel PCA Sig Not Not Sig Not Not Sig Sig 

Sparse PCA Sig Sig Sig Not Sig Sig Not Sig 

Truncated SVD Sig Not Not Sig Not Not Sig Sig 

Incremental PCA Sig Not Not Sig Not Not Sig Sig 

Gaussian Random 

Projection 

Sig Sig Sig Not Sig Sig Not Sig 

Sparse Random 

Projection 

Sig Sig Sig Sig Sig Sig Sig Not 

 

Table 4. Significantly different comparison of AUC (Area Under the Curve) 

 
Model DT PCA Kernel 

PCA 

Sparse 

PCA 

Truncated 

SVD 

Incremental 

PCA 

Gaussian Random 

Projection 

Sparse Random 

Projection 

DT Not  Sig  Sig  Sig  Sig  Sig  Sig  Sig 

PCA Sig  Not  Not  Not  Not  Not  Sig  Not 

Kernel PCA Sig  Not  Not  Not  Not  Not  Sig  Not 

Sparse PCA Sig  Not  Not  Not  Not  Not  Sig  Not 

Truncated SVD Sig  Not  Not  Not  Not  Not  Sig  Not 

Incremental PCA Sig  Not  Not  Not  Not  Not  Sig  Not 

Gaussian Random 

Projection 
Sig  Sig  Sig  Sig  Sig  Sig  Not  Sig 

Sparse Random 

Projection 
Sig  Not  Not  Not  Not  Not  Sig  Not 

 

To find out the significant difference towards better or decreasing visualization using a boxplot 

diagram as shown in Figure 5 and Figure 6. Both Figure shows that the seven dimensional reduction 

models can significantly increase the accuracy  and AUC of Decision Tree classifiers. 

 

 
 

Figure 5. Boxplot of accuracy models 
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Figure 6. Boxplot of AUC (Area Under the Curve) models 

4. Conclusion 

Based on statistical analysis using ANOVA on the value of Accuracy and AUC, all the proposed models 

have significantly different from Naïve Bayes model. The visualization using boxplot diagram show 

that all proposed models have higher performance, so it can conclude that all proposed models have 

better performance. It’s can state that the proposed models can find software defects better than Naïve 

Bayes. 
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