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Abstract. A new 4-D hyperchaotic two-wing system with three quadratic nonlinearities is 

proposed in this paper. The dynamical properties of the new hyperchaotic system are described 

in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, symmetry, 

dissipativity, etc. Also, a detailed dynamical bifurcation analysis of the hyperchaotic system 

has been studied using bifurcation diagrams. As an engineering application, an electronic 

circuit realization of the new hyperchaotic two-wing system is developed in MultiSIM, which 

confirms the feasibility of the theoretical hyperchaotic two-wing system. 

1.  Introduction 

Chaos theory deals with nonlinear dynamical systems exhibiting high sensitivity to small changes in 

initial conditions [1-2]. Mathematically, chaotic systems are characterized by the presence of at least 

one positive Lyapunov exponent. Chaotic systems are very useful in many applications in science and 

engineering such as weather systems [3-5], ecology [6-10], neurons [11-12], biology [13-16], cellular 

neural networks [17-18], chemical reactors [19-24], brain waves [25-26], Tokamak systems [27-28], 

oscillators [29-35], encryption [36-44], finance systems [45-46], circuits [47-50], etc. 

Hyperchaotic systems are defined as nonlinear dynamical systems having two or more positive 

Lyapunov exponents [1-2]. They exhibit more complex behaviour than chaotic dynamical systems as 

the trajectories of hyperchaotic systems can expand in two different directions corresponding to the 

two positive Lyapunov exponents.  

Many new hyperchaotic systems with special behaviour have been reported in the literature such as 

hyperchaotic Lorenz system [51], hyperchaotic Chen system [52], hyperchaotic Lü system [53], 

hyperchaotic Vaidyanathan systems [54-55], etc. 

In this research paper, a new 4-D hyperchaotic two-wing system with three quadratic nonlinearities 

is proposed and the dynamical properties of the new hyperchaotic system are described in terms of 

phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, symmetry, dissipativity, etc. Also, a 
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detailed dynamical bifurcation analysis of the hyperchaotic system has been studied using bifurcation 

diagrams. As an engineering application, an electronic circuit realization of the new hyperchaotic two-

wing system is developed in MultiSim, which confirms the feasibility of the theoretical hyperchaotic 

two-wing system. 

Section 2 describes the new hyperchaotic two-wing system, its phase plots and Lyapunov 

exponents. Section 3 describes the dynamic analysis of the new hyperchaotic two-wing system. 

Furthermore, an electronic circuit realization of the new chaotic system is presented in detail in 

Section 4. The circuit experimental results of the new hyperchaotic system in Section 4 show good 

agreement with the numerical simulations via MATLAB obtained in Section 2. Section 5 draws the 

main conclusions of this research work. 

2.  A New Hyperchaotic Two-Wing system with Three Quadratic Nonlinearities 

In this work, we report a new 4-D dynamical system given by  

( )x a y x yz w

y by xz w

z cz xy

w dx

   
   


  
  

&

&

&

&

       (1) 

where ( , , , )X x y z w is the state and , , ,a b c d are positive constants.  

In this paper, we show that the 4-D system (1) is hyperchaotic for the parameter values 

  33,  18,  5,  4a b c d          (2) 

Using Wolf’s algorithm [56], the Lyapunov exponents of the system (1) for the parameter set 

( , , , ) (33,18,5,4)a b c d  and the initial state (0) (0.1,0.2,0.1,0.2)X  were found as 

1 2 3 42.3201,  0.0307,  0,  22.3468LE LE LE LE        (3) 

Thus, the 4-D system (1) is hyperchaotic with two positive Lyapunov exponents. 

It is noted that the sum of the Lyapunov exponents in (3) is negative. 

1 2 3 4 22 0LE LE LE LE            (4) 

This shows that the system (1) is dissipative with a strange hyperchaotic attractor. 

The Kaplan-Yorke dimension of the system (1) is computed as 

 1 2 3

4

3 3.1052
| |

KY

LE LE LE
D

LE

 
        (5) 

Figure 1 shows the Lyapunov exponents of the 4-D dissipative hyperchaotic system (1) for the 

parameter set ( , , , ) (33,18,5,4)a b c d  and initial state (0) (0.1,0.2,0.1,0.2).X   

We observe that the 4-D hyperchaotic system (1) remains invariant under the change of coordinates 

given by 

 ( , , , ) ( , , , )x y z w x y z w  a       (6) 

This shows that the 4-D hyperchaotic system (1) has rotation symmetry about the z  axis for all 

values of the parameters , , ,a b c and .d  Hence, any non-trivial trajectory ( ( ), ( ), ( ), ( ))x t y t z t w t of the 

system (1) must also have a twin trajectory ( ( ), ( ), ( ), ( ))x t y t z t w t   of the same system (1). 

Figures 2-5 show the 2-D phase portraits of the hyperchaotic system (1) for the parameter set 

( , , , ) (33,18,5,4)a b c d  and initial state (0) (0.1,0.2,0.1,0.2).X  from the phase plots, we see that 

the 4-D system (1) has a hyperchaotic two-wing attractor.  
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Figure 1. Lyapunov exponents of the 

hyperchaotic two-wing system (1) for the 

parameter set ( , , , ) (33,18,5,4)a b c d  and 

initial state (0) (0.1,0.2,0.1,0.2)X   

 Figure 2. MATLAB plot showing the 2-D 

phase portrait of the hyperchaotic two-

wing system (1) in the ( , )x y  plane for 

( , , , ) (33,18,5,4)a b c d  and 

(0) (0.1,0.2,0.1,0.2)X    

 

 

 

 

 

Figure 3. MATLAB plot showing the 2-D 

phase portrait of the hyperchaotic two-wing 

system (1) in the ( , )x z  plane for 

( , , , ) (33,18,5,4)a b c d   and 

(0) (0.1,0.2,0.1,0.2)X   

 Figure 4. MATLAB plot showing the 2-D phase 

portrait of the hyperchaotic two-wing system (1) in 

the ( , )x w  plane for ( , , , ) (33,18,5,4)a b c d   and 

(0) (0.1,0.2,0.1,0.2)X   
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Figure 5. MATLAB plot showing the 2-D phase portrait of 

the hyperchaotic two-wing system (1) in the ( , )z w  plane 

for ( , , , ) (33,18,5,4)a b c d  and (0) (0.1,0.2,0.1,0.2)X    

 

The equilibrium points of the new hyperchaotic system (1) are obtained by solving the system   

   ( ) 0a y x yz w         (7a) 

                  0by xz w         (7b) 

                 0cz xy                     (7c) 

        0dx       (7d) 

From (7d), we deduce that  0.x   Substituting 0x  in (7c), we get 0.z   

Substituting 0x z  in (7a) and (7b), we get  

  0ay w   and 0by w        (8) 

Solving (8), we get ( ) 0.a b y   Since a b for the hyperchaotic case (2), we must have 0.y    

Substituting 0y  in (8), we get 0.w   

Hence, 0 (0,0,0,0)E  is the only equilibrium point of the 4-D hyperchaotic system (1). 

The Jacobian matrix of the new hyperchaotic system (1) at 0 (0,0,0,0)E  is obtained as 

0 1 33 33 0 1

0 0 1 0 18 0 1

0 0 0 0 0 5 0

0 0 0 4 0 0 0

a a

b
J

c

d

    
   
    
    
   
    

     (9) 

The Jacobian matrix J has the spectral values  5, 32.9572,0.1020  and 17.8553.  

This shows that the equilibrium point 0E is a saddle point and unstable. 

Hence, we conclude that the 4-D hyperchaotic system (1) has self-excited attractor [2]. 
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3.  Dynamic Analysis for the New Hyperchaotic System 

3.1 Equilibrium points for the new hyperchaotic system 

The four-dimensional hyperchaotic system introduced in this work is given by 

( ) ( , , , )

( , , , )

( , , , )

( , , , )

x a y x yz w F x y z w

y by xz w G x y z w

z cz xy H x y z w

w dx K x y z w

    

   

   

  

&

&

&

&

     (10) 

The divergence of the flow defined by the system (10) is  

( ),
F G H K

a c b
x y z w

   
      

   
     (11) 

which is negative for the chosen parameter values (2). Thus, the trajectories of the 4-D system (10) 

evolve to lie within a bounded region of the phase space. 

In Section 2, we showed that the trivial fixed point 0 (0,0,0,0)E  is the only equilibrium point of 

the new hyperchaotic system (10).   

Linear stability of the equilibrium state 0E is found by computing the fourth order Jacobian matrix 

eJ evaluated at the equilibrium state: 

 

0 1

0 0 1

0 0 0

0 0 0

e

a a

b
J

c

d

 
 
 
 
 
 

       (12) 

Linear stability is found by analyzing the characteristic polynomial of ,eJ which is the determinant 

of 4eJ I , where  give the eigenvalues and 4I is the (4, 4) identity matrix. One factor of 

4( ) det( )eJ I    is ( ),c  leaving a cubic polynomial for the three remaining eigenvalues: 

 
3 2( ) ( ) ( ) 0a b d ab d a b              (13) 

3.2 Bifurcations 

A steady bifurcation occurs when 0,   which implies that 0d  or .a b Neither possibility is 

allowed here, because of the assumptions that all four parameters are positive, with  .a b  

We now consider the possibility of a simple Hopf bifurcation. Substituting iw  into (13) gives 

two equations for 
2 ,w viz. either 

2w d or 
2 ,w d ab  which cannot be both satisfied unless a  or 

b vanish.  

3.3 Numerical Integrations 

In our numerical integrations, we vary each parameter in turn to create a series of bifurcation transition 

diagrams in terms of  max .x Figure 6 shows a bifurcation transition plot of maxx  as a  decreases. The 

dynamics is predominantly chaotic for 25.3,a   with a window of period-3 orbits and their period-

doubling bifurcations for 30.98 31.17a   (see Figure 7). 33a  falls within the second of the 

chaotic regions. 

Figure 8 shows the bifurcation transition plot of the maxima of x  over each cycle as b  increases. 

There is a period-3 window for 19.34 19.47,b   while the parameter choice of 18b   falls within 

the initial chaotic regime.  
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Next, we show the bifurcation transition plot of maxx as c  decreases from 15c   to 0.c   We 

note that 5c   clearly falls within the first chaotic regime (see Figure 9), and there is a reverse 

period-doubling cascade for the period-3 orbit in 7.32 8.24.c   

Finally, Figure 10 shows the bifurcation transition plot for maxx as d increases. Clearly visible is 

the reverse period-doubling bifurcation for the period-3 cycle in 10.48 12.2.d   The parameter 

choice of 4d   falls well within the first chaotic region. 

 

 

 

 

Figure 6. Part of the bifurcation transition plot 

of maxx as a decreases for the 4-D system (10) 
 

Figure 7.  An example of a period-3 orbit of the 

4-D system (10) for 31a   

 

 

 

 

 

Figure 8. Bifurcation transition plot of maxx

as b increases the 4-D system (10) 

 Figure 9.  Bifurcation transition plot of maxx

as c decreases the 4-D system (10) 

 

Figure 10. Bifurcation transition plot of maxx as d  increases the 4-D system (10) 
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4.  Circuit Implementation of the New Hyperchaotic System 

This study will consider the analog circuit implementation of the new hyperchaotic two-wing system 

described in (1). Figure 11 shows a four channels electronic circuit scheme with variables , , ,x y z w  

from the system (1). The analog circuit of the new hyperchaotic system is realized by resistors, 

capacitors, operational amplifiers and multipliers. By applying Kirchhoff’s laws to this circuit, its 

dynamics are presented by the following circuital equations: 

   

1 1 1 2 1 3 1 4

2 5 2 6 2 7

3 8 3 9

4 10

1 1 1 1

10

1 1 1

10

1 1

10

1

x y x yz w
C R C R C R C R

y y xz w
C R C R C R

z z xy
C R C R

w x
C R

    



  


   


  


&

&

&

&

     (14) 

 

Where x, y, z, w are the voltages across the capacitors C1, C2, C3 and C4, respectively. the values of the 

circuit elements can be determined: R1 = R2 = 12.12 kΩ, R3 = R6 = R9 = 40 kΩ, R4 = R7 = 400 kΩ, R5 = 

22.22 kΩ, R8 = 80 kΩ, R10 = R11 = R12 = R13 = R14  = R15 = R16 = 100 kΩ, C1 = C2 = C3 = C4 = 3.2 nF. 

After validation using MultiSIM, we can see a two-wing chaotic attractor from the oscilloscope as 

shown in Figures 12-15.  Obviously, the MultiSIM results same with the theoretical model system (1).  
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Figure 11. Circuit design for the new hyperchaotic system (1) 

 

 

 

 

Figure 12. MultiSIM output of the new 

hyperchaotic system in ( , )x y  plane 
 Figure 13. MultiSIM output of the new 

hyperchaotic system in ( , )y z  plane 

 

 

 

 

Figure 14. MultiSIM output of the new 

hyperchaotic system in ( , )z w  plane 
 

Figure 15. MultiSIM output of the new 

hyperchaotic system in  ( , )x w  plane 
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5.  Conclusions 

A new 4-D hyperchaotic two-wing system with three quadratic nonlinearities is proposed in this 

paper. The dynamical properties of the new hyperchaotic system were analyzed with the help of phase 

portraits, Lyapunov exponents, Kaplan-Yorke dimension, bifurcation diagrams, symmetry, 

dissipativity, etc. As an engineering application, an electronic circuit realization of the new 

hyperchaotic two-wing system was developed in MultiSIM. We demonstrated that the MultiSim 

outputs of the new hyperchaotic two-wing system show good agreement with the MATLAB 

simulations of the system. Thus, the proposed new hyperchaotic two-wing system can be implemented 

for many real-world applications. 
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