
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ICComSET 2019

Journal of Physics: Conference Series 1477 (2020) 032003

IOP Publishing

doi:10.1088/1742-6596/1477/3/032003

1

TransJoin: An Algorithm to Implement Division Operator of

Relational Algebra in Structured Query Language

A Imamuddin1, I Nahar2, and S Chandra2

1 Computer Science Department, Sekolah Tinggi Teknologi Muhammadiyah Cileungsi,

Bogor, Indonesia
2 Computer Science Department, BINUS University, Jakarta, Indonesia

*ashari@sttmcileungsi.ac.id

Abstract. Division operator is one of operators in Relational Algebra which is not implemented

directly in SQL (Structured Query Language) standard. Therefore it is not be able to retrieve

division query results with an SQL statement in the current relational database management

systems (RDBMS). Database programmers have to create a complicated query to perform the

task. It is the only relational algebra operators which is not implemented in ANSI SQL standard.

This research aimed to study and design an algorithm named TransJoin (transformation and join)

to implement it in SQL. TransJoin works to relation P(x, y) divided by Q(y) resulted R(x) through

grouping and transforming each y attribute becomes P’(x, y’) and Q’(y’) and each x value is a

single tuple with y’ is a composite value of y. Then, result R(x) is resulted of joining P’(x, y’)

and Q’(y’) relations by matching y’ attribute. TransJoin was implemented in an open source

RDBMS SQLLite. TransJoin tested and delivered valid results by comparing of traditional SQL

queries and our proposed SQL queries with various data. The research showed that our algorithm

is much more efficient by consuming 0.078 milliseconds compared contrasted the traditional

query in 1,974.08 milliseconds for 9,991 tuples.

Key words: relational database; relational algebra; division operator SQL; algorithm; query

processing;

1. Introduction

Modern database was started in 1960s when computer was discovered. In 1970, Edgar Frank Codd

published a paper “A Relational Model of Data for Large Shared Data Banks”. It was the first theory

of relational database. Codd offered algebra as foundation of query language for database. He introduced

six primitive algebra operators: Selection, Projection, Cartesian product, Union, Set difference and

Rename. While the derivative operators are Intersections, Divisions, and Joins. Join operator consist

Natural Join, Equijoin, Semijoin, Antijoin and Devide [1].

 SQL (structured query language) is a relational database language. In 1986, a standard for SQL was

defined by the American National Standards Institute (ANSI) and was subsequently adopted in 1987 as

an international standard by the International Organization for Standardization (ISO, 1987). More than

one hundred DBMSs now support SQL, running on various hardware platforms from PCs to mainframes

[2].

 SQL implemented all Code’s relational algebra operations except division operations. Native SQL

did not have direct operator to solve division query need. In the order words, no direct syntax of division

operator in SQL. SQL programmers built their own methods and logics using existing operators to solve

their requirements.

 Cases of division operations are very common and often appear in queries used to solve any

problems. However, the current solution or temporary solution used was to use a combination of various

ICComSET 2019

Journal of Physics: Conference Series 1477 (2020) 032003

IOP Publishing

doi:10.1088/1742-6596/1477/3/032003

2

existing operators with their respective different methods. Using the existing query programmers built

their SQL query by using sub-query. The method implicated to poor performance and inefficient to

produce query results. Moreover, the logic were really complicated.

2. Methods

The research focused on study of division operator in SQL and designed an algorithm of division

operator to be implemented as SQL standard. The algorithm applied using C language in SQLite, one

of open source RDBMS engine.

 The algorithm would be validated by comparing query results of the new standard with the ones

using conventional method. The research would design recommendation standard of using our division

operator to SQL Organization (sql.org) to implement our research output.

3. Algorithm Design

Division operator was the only operator which did not support and be implemented in SQL Standard for

ANSI SQL-2008. Joe Celko, a writer for some books about SQL, had been devoted himself more than

10 years in ANSI/ISO SQL Committee, and a contributor of SQL-89 and SQL-92 standard, in his

electronic journal deplored division operator has not been adopted in SQL standard.[4]

 Division is binary operation which is written as R ÷ S. The operation results are tuples in set R

relates to set S as the followed instance:

Figure 1. Division operation example

 In the real world there are many division cases. For instances, finding programmers who have skill

set of all programming language, finding suppliers who provide all product items, and finding library

members who borrow all computer books. Database practitioners use different method to solve division

cases. Current solving method combines several algebra operators: projection, Cartesian product, set

difference, and join. They also use sub-query to solve the problems which is lack and inefficient

performance.

 Division operator algorithm comprises definite division and partial division. Below is explanation

of both algorithms.

3.1. Definite Division Algorithm

Given two relations R(X,Y) and S(Y), the results of R ÷ S operation defined as maximum relation Q

which qualifies for:

 (1)

The definition is written as:

 (2)

ICComSET 2019

Journal of Physics: Conference Series 1477 (2020) 032003

IOP Publishing

doi:10.1088/1742-6596/1477/3/032003

3

Furthermore, an algorithm which directly implements the above definition will be given, but beforehand

it will be explained beforehand a definition that will be used in the algorithm:

Definition 1: For a relation R(X,Y), where X and Y may composite, R grouped by X, written as
X



(R), is a grouping operation R(X,Y) by X transforms to γ(X,Y) that:

 (3)

The following is an example for R(X,Y):

Algorithm 1: Algorithm to derive results of R(X,Y) ÷ S(Y)

Input: relation R(X,Y) and S(Y) without redundand tuple and X and Y may composite

Output: output of R(X,Y) ÷ S(Y)

3.2. Partial Division Algorithm

For two relations R(X,Y) and S(Z,Y), the result of R ÷ S is defined as maximum relation Q which

qualifies for:

 (4)

The following is given two algorithms to implement the definition of the relation structure of the results

of the partial division operations using the help of Definition 1 (transformation). In addition, one of

them also uses Algorithm 1 (Definite Division Algorithm):

Algorithm 2: Algorithm to derive results of R(X,Y) ÷ S(Z,Y)

Input: Relation R(X,Y) and relation S(Z,Y) without redundant tuple, X,Y and Z may composite

Output: results of R(X,Y) ÷ S(Z,Y)

ICComSET 2019

Journal of Physics: Conference Series 1477 (2020) 032003

IOP Publishing

doi:10.1088/1742-6596/1477/3/032003

4

In conclusion, the algorithm works by grouping (transforming) all values of each group into single tuple

(cell) for both columns then performing inner join for value of both columns (attributes). We call this

algorithm as TransJoin (transformation and join).

4. Proposal of New SQL Standard on SELECT Statement

In this section we will discuss grammar design and syntax of the algorithm. Division operator

implemented with a syntactic pattern which is grammatically similar JOIN operator. As join operation,

a division operation involves more than one table, and requires a column that is made as a condition

(divisor factor attribute). We applied the design algorithm (Definite Division and Partial Division). The

algorithm is implemented syntactically using the same the operator, DIVIDE.

 Design of proposed SQL standard composed in the form of BNF (Backus–Naur form) to ease

probability of existing RDBMS which support the form. Modification of SQL standard is by inserting

in code of QUERY (SELECT STATEMENT) with addition of using DIVISION operation. The

following is modification of the standard.

…

<scalar subquery> ::= <subquery>

<subquery> ::= <left paren> <query expression> <right paren>

<query expression> ::= <non-join query expression> | <joined table> |

<divided table>

<non-join query expression> ::= <non-join query term>

 | <query expression> UNION [ALL] [<corresponding spec>] <query term>

 | <query expression> EXCEPT [ALL] [<corresponding spec>] <query

term>

<non-join query term> ::= <non-join query primary>

 | <query term> INTERSECT [ALL] [<corresponding spec>] <query primary>

<non-join query primary> ::= <simple table> | <left paren> <non-join query

expression> <right paren>

<simple table> ::= <query specification> | <table value constructor> |

<explicit table>

<query specification> ::= SELECT [<set quantifier>] <select list> <table

expression>

<select list> ::= <asterisk> | <select sublist> [{ <comma> <select

sublist> }...]

<select sublist> ::= <derived column> | <qualifier> <period> <asterisk>

<derived column> ::= <value expression> [<as clause>]

<as clause> ::= [AS] <column name>

<table expression> ::= <from clause> [<where clause>] [<group by clause>

] [<having clause>]

<from clause> ::= FROM <table reference> [{ <comma> <table reference>

}...]

<table reference> ::= <table name> [<correlation specification>]

ICComSET 2019

Journal of Physics: Conference Series 1477 (2020) 032003

IOP Publishing

doi:10.1088/1742-6596/1477/3/032003

5

 | <derived table> <correlation specification> | <joined table> | <divided

table>

<correlation specification> ::= [AS] <correlation name> [<left paren>

<derived column list> <right paren>]

<derived column list> ::= <column name list>

<derived table> ::= <table subquery>

<table subquery> ::= <subquery>

<joined table> ::= <cross join> | <qualified join> | <left paren> <joined

table> <right paren>

<cross join> ::= <table reference> CROSS JOIN <table reference>

<qualified join> ::= <table reference> [NATURAL] [<join type>] JOIN

<table reference> [<join specification>]

<join type> ::= INNER | <outer join type> [OUTER] | UNION

<outer join type> ::= LEFT | RIGHT | FULL

<join specification> ::= <join condition> | <named columns join>

<join condition> ::= ON <search condition>

<named columns join> ::= USING <left paren> <join column list> <right

paren>

<join column list> ::= <column name list>

<divided table> ::= <table reference> DIVIDE <table reference> <divide

specification>

<divide specification> ::= USING <left paren> <column name list> <right

paren>

<where clause> ::= WHERE <search condition>

<group by clause> ::= GROUP BY <grouping column reference list>

<grouping column reference list> ::= <grouping column reference> [{

<comma> <grouping column reference> }...]

<grouping column reference> ::= <column reference> [<collate clause>]

<collate clause> ::= COLLATE <collation name>

<collation name> ::= <qualified name>

<having clause> ::= HAVING <search condition>

<table value constructor> ::= VALUES <table value constructor list>

<table value constructor list> ::= <row value constructor> [{ <comma>

<row value constructor> }...]

<explicit table> ::= TABLE <table name>

<query term> ::= <non-join query term> | <joined table> | <divided table>

<corresponding spec> ::= CORRESPONDING [BY <left paren> <corresponding

column list> <right paren>]

<corresponding column list> ::= <column name list>

<query primary> ::= <non-join query primary> | <joined table> | <divided

table>

The following diagrams are BNF grammar to represent the flow language flow.

ICComSET 2019

Journal of Physics: Conference Series 1477 (2020) 032003

IOP Publishing

doi:10.1088/1742-6596/1477/3/032003

6

The following is given 3 (three) common relations in database system text books: Supplier, Part, and

SupplierPart.

Figure 2. Supplier, part, and supplier part relations

Here is division operation of Relational Algebra to solve problem for finding suppliers (SupplierID)

who supply all parts (PartID).

Using the existing standard we write below query statement.

SELECT DISTINCT SupplierID

FROM SupplierPart as sp1

WHERE NOT EXISTS

 (SELECT * FROM Part as p1

 WHERE NOT EXISTS

 (SELECT * FROM SupplierPart sp2

 WHERE sp1.SupplierID = sp2.SupplierID

 and sp2.PartID = p1.PartID))

While using the new standard the query statement is:

SELECT DISTINCT SupplierID

FROM SupplierPart DIVIDE Part using (PartID)

5. Implementation

The algorithm is implemented in SQLite (http://www.sqlite.org) which is an embedded RDBMS engine

in the form of an in-process library that was developed using the C programming language. The main

reason for choosing SQLite is because it is an RDBMS engine that is public domain and open source,

so it is more realistic to be implemented as an object of implementation of the algorithm. The

implementation is by modifying the SQLite library in order to make the engine recognize the "DIVIDE"

token with the grammar-compliant syntax and produces output that matches the division operation.

 Figure 3 depicts SQLite architecture. “Other source files” comprises C code files collection which

contains 107 files including header-files. One of the files is “SELECT.C” as the core of SELECT

statement. Based on an analysis of the overall flow of the existing process, the modification steps taken

are: adding DIVIDE keywords to be recognized by the parser; modifying the grammar on the parser so

that it can recognize DIVIDE syntax patterns; adding a new type other than JOIN and modify the parser

to generate code for that type; and adding new process functions as the core of the processing routines

performed on the DIVIDE type..

SuppliertPart ÷ Part

ICComSET 2019

Journal of Physics: Conference Series 1477 (2020) 032003

IOP Publishing

doi:10.1088/1742-6596/1477/3/032003

7

Figure 3. SQLite architecture

6. Evaluation

Tests for the proposed new query (SELECT query contains the DIVIDE operator) compared against

classic queries which are alternative queries that exist in a variety of commonly found database literature

books [5][6][7][10] and in general are often used and taught academically as an alternative form of query

for the implementation of division operations.

 The test factors to be compared are of two types. The first one is in terms of performance factors

to the existing query by looking at the travel time used (elapsed time). Then the second is in terms of

ease of use factor with the indicator used is the number of tokens / words used in each query. We

conducted 10 (ten) tests with different number of tuples then we compare query time between the

conventional query and new query for the same cases. Q1 is execution time for conventional query while

Q2 is for the new query as in Table 1. The test used the same machine with the specifications are Intel

Core2Duo 2,66Ghz, RAM 3GB under Windows 7 32-bit operating system.

Table 1 showed that that new query (using our algorithm) is much more efficient by consuming 0.078

milliseconds compared contrasted the traditional query in 1,974.08 milliseconds for 9,991 tuples.

Table 1. Test results

Test#
Supplier

Count

Part

Count

SupplierPart

Count

Result

Count

Q1

Time

Q2

Time

1 175 35 2061 39 35.708 0.016

2 200 40 2865 51 82.992 0.016

3 225 45 3241 47 102.774 0.016

4 250 50 4152 59 209.15 0.031

5 275 55 5064 66 345.869 0.032

6 300 60 5185 58 359.441 0.032

7 325 65 7398 86 927.207 0.032

8 350 70 7518 75 968.906 0.063

9 375 75 9163 91 1515.47 0.063

10 400 80 9991 81 1974.08 0.078

ICComSET 2019

Journal of Physics: Conference Series 1477 (2020) 032003

IOP Publishing

doi:10.1088/1742-6596/1477/3/032003

8

7. Conclusion

This research has produced division operator algorithm which can be used as an alternative in answering

the problem of division operations in SQL. The designed algorithm can be implemented on the RDBMS

engine. Based on the test results, the algorithm that has been implemented on one of the RDBMS

engines, namely SQLite and it is much more efficient to solve division operation problems by making

queries containing subqueries) which is 120 times faster. Or in the other word, the proposed query is

77% shorter than the conventional solution.

The research also proposed new SQL standard to solve division problem. The proposed standard and

algorithm are enable to be implemented in other RDMBS platforms.

References

[1] Codd, E.F (1970). A Relational Model of Data for Large Shared Data Banks. Communications of

the ACM Volume 13, No. 6.

[2] Connolly, Thomas.M, Begg. Caroline. E. (2015) Database Systems. Sixth Edition, University of

Paisley, London.

[3] Baase, Sara. (1999). Computer Algorithms: Introduction to design and analysis. Third Edition.

Addison-Wesley, California.

[4] Celko, Joe. (2005). SQL For Smarties: Advanced SQL Programming. Third Edition. Morgan

Kauffman, California.

[5] Date, C.J (2004). An Introduction to Database System, 8th Edition. Addition Wesley Publishing,

Massachusetts.

[6] Desai, B (1990). An Introduction to Database System, 7th Edition. West Publishing CO,

Minnesota.

[7] Elmasri R., Navathe S.B. (2004). Fundamentals of Database System. Fourth Edition. Addison-

Wesley, California.

[8] Fortier, Paul J. (1999). SQL-3 Implementing the Object Relation Database. McGraw-Hill, New

York.

[9] Groff, James R. (1999). SQL: The Complete Reference. McGraw-Hill, New York.

[10] Kroenke, David. (2006). Database Processing Fundamentals, Design and Implementation. Tenth

Edition. Pearson Prentice Hall, New Jersey.

[11] Mannino, Michael V. (2004). Database, Design, Application, Development & Administration.

Second Edition. McGraw-Hill, New York.

[12] O’Neil, Patrick. (1999). Database Principles, Programming, Performance. Morgan Kauffman,

California.

[13] Ramakrishnan R., and Gehrke J. (2000). Database Management Systems. Second Edition.

McGraw-Hill, New York.

[14] Tseng, Frank S.C, Arbee L.P. Chen, Wei-Pang Yang. (2000). Implementing the Division

Operation on a Database Containing Uncertain Data. Future Databases, Kyoto.

[15] Watson Richard (1999). Database Management – Databases and Organization. Second Edition.

Wiley, USA.

