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Abstract. The paper presents electron beam sintering of functionally gradient (FGM) 

Al2O3/ZrO2 materials. An electron beam generated by a pre-vacuum plasma electron source for 

sintering was used. FGM were manufactured with different number of layers of aluminum oxide 

and zirconium dioxide powders. The layers differed in the percentage of components by volume. 

It is shown that the sintering of the composite sample occurs during electron-beam heating. After 

sintering for 10 min at 1600°C, the sample density increases up to 4 g/cm3. The presented photos 

of cross-sections of the samples indicate low pore content after sintering. 

1. Introduction 

Functional gradient materials (FGM) are characterized by a nonlinear distribution of composition and 

properties (hardness, density, thermal conductivity, modulus of elasticity) by volume, which 

distinguishes them from traditional materials [1, 2]. The need for FGM is related to their ability to 

operate under the thermal stress created by the temperature difference between the sample sides [3]. 

Gradient ceramics, and in particular the system based on Al2O3-ZrO2, currently displaces a number of 

metals and alloys [4]. Zirconium and aluminum ceramics play an important role in medicine, namely in 

joint prosthetics, implantology and other very important branches of medicine [5, 6]. Alumina ceramics 

has a high hardness and wear resistance among structural materials, the disadvantage of this material is 

its high fragility. Zirconium dioxide ceramic combines high strength and crack resistance. FGM based 

on aluminum and zirconium oxides are used in medicine for implants that combine in one material the 

high strength of inert ceramics with biocompatibility of bioactive ceramics and its ability to participate 

in metabolic processes of the body. An important factor is the lack of immune response of the body to 

ZrO2, as well as Al2O3 [7]. Despite the success in this direction when using FM at high temperatures 

(coating, individual units and assemblies) there are characteristic problems of interfacial reaction, which 

largely determine the reliability and durability of these materials. 

Currently various methods of obtaining FGM based on ZrO2 and Al2O3 have been developed: dry 

pressing followed by heat treatment  [8], diffusion welding [9], electrophoretic deposition [10], tape-

cast alumina-zirconia laminates [11], slip casting [12], printing with “ceramic inks” [13]. The choice of 

FGM creation method depends on the required level of properties for a particular practical application. 

There is no universal way to obtain FGM based on ZrO2 and Al2O3 with any given composition and 

gradient profile properties and, therefore, it is necessary to use a set of different methods. In work [14] 

successes in use of a forevacuum plasma electron source for creation of FGM of metal-ceramic materials 

on the basis of aluminum oxide and titanium are presented. A narrowly focused electron beam 

propagating in vacuum at pressures from units to tens of Pascal [15] is capable of rapidly heating the 
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workpiece surface to the sintering temperature (about 1600°C). The plasma formed during the beam 

propagation in the gas neutralizes the negative charge of the surface irradiated by the electron beam 

[16]. Forvacuum plasma electron sources are successfully used for sintering of ceramics, electron beam 

welding of metal-ceramic units, processing of quartz glass and other technologies of processing of 

dielectrics [17, 18].  

The purpose of this study is to carry out electron-beam sintering of a gradient material based on 

aluminum oxide and zirconium using a forevacuum plasma electron source. 

 

2. Materials and methods 

The experiments were carried out using a plasma electron source, a schematic image of which is shown 

in Figure 1. The design and basic parameters of the electron source are presented in [19]. In the 

forevacuum pressure range, the electron source generated a beam with a diameter of 0.5 mm with a 

current of 50 mA and electron energy of 20 kV. Focusing of the electron beam was carried out by means 

of a magnetic focusing system, and deflection of the beam to the processed sample – by means of a 

magnetic deflecting system. The plasma source was placed on the flange of the vacuum chamber. All 

the experiments were in the medium of helium. The choice of helium is due to its chemical inertness. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Scheme of the experimental setup: 1 – plasma 

source of focused electron beam, 2 – magnetic focusing and 

deflecting coils, 3 – electron beam, 4 – infrared pyrometer, 5 

– graphite crucible and sintered sample, 6 – vacuum chamber, 

7 – collector. 

 

 

The sintering process was carried out as follows: the sample 5 was placed in a working vacuum 

chamber on a graphite crucible. The crucible was located at a distance of 45 cm from the electronic 

source. The working chamber was pumped to a pressure of 3 Pa, after which the chamber was filled 

with helium to a pressure of 30 Pa. The sample was heated for 20 minutes. During heating, the power 

of the electron beam was increased from 20 to 400 W with a heating rate of 80 deg/min. When the 

temperature of the treated surface reached 1600°C the heating stopped and the sample was kept at a 

constant temperature for 10 minutes. The surface temperature of the sintered sample was measured using 

a pyrometer 4. After exposure, the power of the electron beam gradually decreased to 20 watts for 10 

minutes. The cooling rate of the sample was 100 deg/min. After switching off the plasma electron 

source, the sample was cooled in vacuum for 10-15 minutes. 

Samples of gradient ceramics in the form of discs were made for sintering. Samples were made from 

fine-grained powders of aluminum oxide and zirconium dioxide. Cold static pressing in a closed mold 

was used [20]. This method of pressing is relatively simple in terms of technological implementation 

and universal for pressing products of different shapes from powders of any composition, allowing to 

implement a multi-place scheme of pressing in production conditions. The composition of the samples 

varied discretely in volume. Sample 1 consisted of three layers – the first layer is aluminum oxide, the 

second layer is a mixture of powders of aluminum oxide 50% and zirconium dioxide 50% (wt), the third 

layer is zirconium dioxide. Sample 2 consisted of six layers. The first layer – aluminum oxide, layers 2-
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5 consisted of a mixture of powders of aluminum oxide and zirconium dioxide, 6th layer consisted of 

zirconium dioxide (table. 1). The aluminum oxide content in the second sample varied by 20% from 

layer to layer. The third sample contained 11 layers and the content of aluminum oxide in each layer 

varied by 10% (table 1). After sintering, the elemental composition and microstructure of the samples 

were studied by scanning electron microscopy using a Hitachi s-3400N microscope. 

 

Table 1. Composition of sintered samples. 

No  

Sample 1 Sample 2 Sample 3 

Al2O3, 

mass.% 

ZrO2, 

mass.% 

Al2O3, 

mass.% 

ZrO2,  

mass.% 

Al2O3, 

mass.% 

ZrO2, 

mass.% 

1 100 0 100 0 100 0 

2 50 50 80 20 90 10 

3 0 100 60 40 80 20 

4 

 

40 60 70 30 

5 20 80 60 40 

6 0 100 50 50 

7 

 

40 60 

8 30 70 

9 20 80 

10 10 90 

11 0 100 

 

3. Experimental results and discussion 

As a result of electron beam sintering, samples were obtained, the parameters of which before and after 

sintering are given in table 2. As can be seen from table 1, the volume of all samples after sintering 

decreased and the density increased. The highest density of 4 g/cm3 was found in the Sample 2 consisting 

of six layers. The low density value after sintering in Sample 3 may be due to insufficient heating. 

Table 2. Sample parameters before and after sintering. 

 

In studies it was found that ceramic tablets under the influence of unilateral irradiation are deformed 

(become concave) due to more intense shrinkage on the irradiated side. 

 

  

 Sample 1 Sample 2 Sample 3 

before after before after before after 

m, g 0.541 0.526 0.569 0.549 0.805 0.779 

d, mm 10.19 9.8 10.14 8.630 10.22 9.89 

h, mm 2.43 2.25 2.500 2.300 3.56 3.44 

ρ, g\cm2 2.731 3.442 2.819 4.083 2.758 3.265 

b a ZrO2 

Al2O3 

Al2O3 

ZrO2 
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Figure 2. A photo of a section of sintered 

samples with different number of layers:  

a – 3, b – 6, c – 11. 

As can be seen from figure 2, Sample 1 has clearly defined layer boundaries. Irradiation of the sample 

was carried out from the side of zirconium dioxide. As the number of layers increases, the distribution 

of elements becomes smoother, allowing the creation of multi-layered materials with a gradient 

structure. The presence of pores and cracks on sintered samples is obviously associated with 

inhomogeneous heating of the sample and requires the selection of sintering modes. The heterogeneity 

of the material distribution near the side surfaces is obviously related to the method of pressing the 

sample. As is known, the friction of the pressed material on the walls of the mold leads to anisotropy 

and uneven properties of the product in different directions, which can be a source of macrodefects in 

sintered products [21].  

Figure 3 shows the depth distribution of the elements for a six layer sample. 
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Figure 3. Distribution of elemental composition in depth of samples (a – Sample 1, b – Sample 2, c – 

Sample 3). 

As expected, the Sample 1 with three layers is characterized by a sharp change in concentration with 

clearly defined boundaries on the cut. The Sample 2 is characterized by a smooth change in 

concentration, which may tell us about a stronger bond. In the future, it is planned to conduct a process 

of thermal cycling of samples and test the strength of the bond between the layers. 

 

4. Conclusion 

As a result of the research, samples of gradient ceramics were obtained. The density of the obtained 

samples increased by an average of 30%, which is associated with shrinkage by reducing the pore size 

during sintering. The distribution of elements in the sample volume showed that with the growth of the 

number of layers, the distribution of elements becomes smoother. The samples are durable and do not 

break down during manual manipulation. Electron beam sintering of multilayer gradient samples from 

Al2O3-ZrO2 ceramics allows obtaining dense sintered materials with a non-uniform distribution of the 

c 

ZrO2 

Al2O3 
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concentration of elements that can be used in the manufacture of prostheses and other branches of 

medicine. 
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