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Abstract
This paper is concerned with the study of a nonholonomic system with para-
metric excitation, the Suslov problem with variable gyrostatic momentum. A
detailed analysis is made of the problem of the existence of regimes with
unbounded growth of energy (an analog of Fermi’s acceleration). The exis-
tence of trajectories is shown for which the angular velocity of the rigid body

. . . . 1
increases indefinitely and has the asymptotics #2.
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Introduction

In recent years, nonholonomic systems have attracted the attention of many researchers both
from a purely theoretical point of view [1-3] and from the viewpoint of applications [4—6].
Much of this interest stems from the fact that these systems can exhibit a wide spectrum of
dynamical effects inherent in conservative and dissipative systems. We illustrate this property
of multivariance of the dynamical behavior of nonholonomic systems by a concrete mechanical
problem, the Suslov system with parametric excitation.

We recall that a rigid body with a fixed point is said to be the Suslov system if it moves
subject to the following nonholonomic constraint: the projection of the angular velocity onto
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the body-fixed axis is zero. This constraint was proposed by G K Suslov in [7, p 593], and
its correct realization was proposed by V Vagner [8]. The rigid body subject to this con-
straint executes inertial motion inside a fixed spherical shell to which it is connected by means
of two wheels with sharp edges.

The Suslov system reduces to investigating a two-dimensional (integrable) reduced system
governing the evolution of the angular velocity of the body [9, 10]. The motion of a rigid
body in a fixed coordinate system is discussed in detail in [11].

There are a few well-known generalizations of the Suslov problem. For example, in [12,
13] the external spherical shell is assumed to be free (nonholonomic hinge) or rolling without
slipping on a plane [14]. In [15, 16], the dynamics of the Suslov problem in a gravitational
field is considered. It is shown that in this case the reduced system can exhibit a strange
attractor and the effect of reversal. The authors of [17] address a problem in which the pro-
jection of the angular velocity of the rigid body onto the fixed axis takes a constant value (an
inhomogeneous Suslov constraint). Various multidimensional generalizations of the Suslov
problem are discussed in [18, 19]. Problems concerning the nonintegrability of various
generalizations of the Suslov problem are dealt with in [1, 20, 21].

This paper continues a series of studies [14, 22—25] on the dynamics of nonholonomic
systems with mass distribution periodically depending on time (parametric excitation). We
note that the recent surge of interest in these problems is due to the importance of nonholo-
nomic systems for mobile robotics applications. The problem of possible acceleration of a
mobile system by means of a mechanism undergoing small regular oscillations is of great
interest from this point of view.

We note that the Suslov system is closely related to another nonholonomic system, the
Chaplygin sleigh. The latter can be obtained from the Suslov system using the procedure
of retraction of the group SO(3) in SE(2) [26]. Earlier, two modifications of the Chaplygin
sleigh [27] with parametric excitation were considered: variable gyrostatic momentum [23]
and a material point which executes periodic oscillations [14, 22, 24]. In both cases, one
observes an unbounded speedup in which the angular velocity of the sleigh tends to zero and

the translational velocity increases indefinitely as t3. Note that such a speedup (w t%) dif-

fers greatly from speedup under the action of an external periodic force with nonzero average
value, for which the velocity increases in proportion to time ¢. The influence of the viscous
friction force on the dynamics of the Chaplygin sleigh with parametric excitation is discussed
in [23, 28, 29].

In this paper, we consider the Suslov system with parametric excitation. We assume that
the moving rigid body has two rotors placed inside, which rotate with a given angular veloc-
ity depending periodically on time. This problem reduces to investigating a nonautonomous
two-dimensional reduced system governing the evolution of the angular velocity of the rigid
body.

In contrast to the Chaplygin sleigh with gyrostatic momentum, the reduced system consid-
ered in this work exhibits, depending on the functions defining the gyrostatic momentum A(z)
and K(f), more diversity in its dynamical behavior:

(a) Regular behavior, when the problem reduces to investigating a vector field on a torus. The
torus can display limit cycles and quasi-periodic trajectories (see section 2).

(b) Speedup, when for all initial conditions one component of the angular velocity increases
. . 1 1 .
indefinitely as 72 or ¢3 (see sections 3 and 4).

(c) Chaotic dynamics: the system has a strange attractor. An intermediate situation can also
take place in which, depending on initial conditions, one part of trajectories is unbounded
and the other part belongs to a strange attractor (i.e., it slows down) (see sections 4 and 5).

2



J. Phys. A: Math. Theor. 53 (2020) 185701 | A Bizyaev and | S Mamaev

Of interest for further research is the question of the possibility of speedup in nonholo-
nomic robots with a more complex control mechanism, see, e.g., references [4, 5, 30, 31], in
which the control of a spherical robot is discussed. The conditions of speedup in such systems
have yet to be studied.

1. Equations of motion

Consider the motion of a multicomponent mechanical system (see figure 1), which
includes:

(a) A fixed spherical shell,
(b) A rigid body connected to the shell by means of two wheels with sharp edges in such a
way that the rigid body cannot rotate about the fixed vector e:

(w,e) =0, ey

where w is the angular velocity of the body.

(c) Two axisymmetric rotors whose axis of rotation is rigidly attached to the rigid body and
whose angular velocities £2,(¢) and €2,(f) change with time.

As can be seen, the point O of the rigid body, which is at the geometric center of the
shell, remains fixed. In this paper, we also assume that the common center of mass of the
rigid body and the rotors coincides with the fixed point O. As a result, the rigid body executes
inertial motion, since the force of gravity has no effect on its motion.

To describe the motion of the rigid body, we choose two coordinate systems:

(a) An inertial (fixed) coordinate system OXYZ with origin at the fixed point O;

(b) A noninertial (moving) coordinate system Ox;x,x3 chosen in such a way that
0)63”8.

The configuration space of this system coincides with the rotation group N = SO(3);
its elements are rotation matrices Q, and each of these matrices specifies the orientation
of the body in space. We parameterize it by Euler angles (6, i, 1):

cos @ cos 1 — cosf sin Y sin ¢ cos @ sin Y + cos cos ) sin ¢ sin @ sind
Q =| —sin ¢ cos ) — cosf sin 1 cos p — sin ¢ sin 1 4+ cosf cos ¥ cos ¢ cos ¢ sinf
sinf sin —sinf cos ¥ cosf

As coordinates in the tangent space T,\" we choose the projections of the angular velocity of
the body, w = (w, w2, ws), onto the axes of the moving coordinate system:
w; = v sind sin <p+9cos w, w = ¢ siné cos cp—ésin P, w3 =1 cosf + ¢.
(2)

In the coordinate system Ox;x;x; we obtain e = (0,0,1), and hence the constraint
equation (1) has the form

ws = 0. 3)

Regarding the mass distribution of the rigid body and the positions of the rotors we make
additional assumptions:
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Figure 1. Realization of the Suslov problem.

Figure 2. Positions of the axes of the moving coordinate system Oxx,x3 and the prin-
cipal planes of inertia in the cases /1, = 0 and /;3 = 0, here Ox;yz are the principal axes
of inertia of the system.

(a) The vector e, which defines the constraint (1), is perpendicular to one of the principal
axes of inertia of the system, which we take to be the axis Ox; (see figure 2), so that the
tensor of inertia (rigid body + rotors) takes the form

Iy O 0
I=1 0 In Ix3
0 I I3

(b) The axis of rotation of the first and the second rotor coincides, respectively, with the
coordinate axes Ox; and Ox;.

The kinetic energy of the entire system can be represented as

T— %(w,lw) + (w, kD),
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where k(7) is the gyrostatic momentum of the system, which is expressed in terms of
the moments of inertia J;, J, and the angular velocities of the rotors Q;(f), Q,(¢) by the
formula

k() = (0, J1€01(1), J282(0) -

The equations of motion for w in the moving coordinate system Ox;x,x3 are

d /0T aT
m<%>:%xw+Ne, (4)

where N is the undetermined multiplier, which is the torque of the constraint reaction.

As can be seen, the multiplier N appears in this case only in the last equation of the sys-
tem (4). From this equation, taking the constraint (3) into account, one can express N as a
function of angular velocities and time. As a result, the equations of motion for the angular
velocities w; and w, decouple and can be represented as

11161 = — (Iywr + ks (D) wa,  Tas = (Iazwy + k3(0) wi — ka(t). )

From a known solution of this system w(#) = (w;(f), wa(?),0), according to (2), the ori-
entation of the body is described by the following system of equations for the Euler
angles

. . . cosf .
0 = w; cos ¢ —w, sin , cp:—,—e(wl sin ¢ + wy cos ),
sin

wj sin @ + wy €os @

P =

sinf

When it comes to finding various dynamical regimes in the system under study, it is of interest
to consider the case I3 # 0. Introducing new variables and functions

v = —Iﬁwl u = 1273(4)2
Ly Vil ©
k3 (1) D3ka(1)
K@) = , A = =
Vil I/l
yields a reduced system which will be the subject of our study in what follows:
i=—vu—K@w—A@), ©=u*+K@u. (7

Of particular interest is the question of whether trajectories unbounded on the plane
(v,u) exist (depending on the choice of functions K(f) and A(?)) (i.e., the possibility of
unbounded speedup), as well as the question of the existence of regular and chaotic regimes of
motion in this system.

Remark 1. After the transformation (6), the dependence on the moments of inertia of
the rigid body and on gyrostatic momentum in the reduced system (7) can be defined
by two functions K(f) and A(7).

Next, we assume the functions K(t) and A(t) to be periodic with the same period T. In this
case, taking the equation 7 = 1 into account, one can assume that the system (7) describes the
vector field on the manifold

M? = {(u,v,tmod T)} ~ R? x S".

5
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Remark 2. One can also consider the case where excitation is given by a quasi-periodic
function. In this case, one can assume K(61, 6»), A(0;, 0>), where

0, =, 0, =0, O, Q = const,

in particular, for K(f;) and A(#,) we obtain periodic functions with different periods. In
this case, the flow of the system (7) turns out to be defined on the four-dimensional
manifold

M* = {(u,v,6, mod Ty, 0, mod T»)} ~ R* x §' x §',

and its analysis requires construction of a three-dimensional Poincaré map.

The undetermined multiplier that defines the torque of the constraint reaction can be
represented in the chosen variables as

Vi)

2
123

N = ((111122 — By — By — (A0 + K@) v+ 1, (k(z) - A(r))) L ®)

Remark 3. If I,; = 0, then the system (5) reduces to a linear system and possesses linear
integrals explicitly depending on time:

F, = 11/ Ihhw cos k(t) + InvIjw; sin k(1) + /1111.(2 sin x(t) dt,

Fs = I1v/Tpw; sin k(1) — Ioy/Tiws cos k() — / Inky cos k(7)dt,
[ ks(p) dr
NGO

Thus, on the fixed level set of the integrals F'; = f; and F, = f>, the angular velocities w; and
wy are given by explicit quadratures.

Kk(t) =

2. An additional integral and quantization of the rotation number

Let A = const (for example, if the gyrostatic momentum is directed along the vector e, we
obtain A = 0). Then the system (7) can be represented as

n=—-vu+K@®), v=u+K®) C)]
and possesses an additional integral
F(x) = v> 4 u°. (10)

The fixed level set of this integral F(x) = const on the plane R> = {(u,v)} defines a cir-
cle, therefore, the functions u(f) and v(f) are bounded and hence an unbounded speedup
of the body is impossible.

On the fixed level set of the integral F(x) = f2, we introduce the angular coordinate

v=fsin®, wu=fcos®.
The equation governing the evolution of the angle ® can be represented as

= f cos ® + K(1). (an
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Figure 3. (a) Graph showing the dependence of the rotation number p on a, constructed
numerically for K(f) = a + b sin(¢) with fixed f = 1, b = 1. (b) The first iteration of the
map O(P) and the diagonal of the square for the values a = 1.5.

K(?) is assumed to be a periodic function of time. Therefore, if we add to equation (11)
t=1, (12)

then we obtain a vector field on the torus T?> = {(® mod 27, t mod T)} (without fixed points).
In this case there exists an invariant, the rotation number, which for the system (11)
can be calculated by the formula

T . @)
= — lim —.
2mt=00

As is well known, in the general case, for systems (11) and (12) without a continuous
invariant measure, the graph showing the dependence of the rotation number on the system
parameters is a Cantor ladder: corresponding to each rational value of the rotation num-
ber p there is a horizontal segment which corresponds to a torus with one or several limit
cycles [32].

In [33-35] it is shown that no Cantor ladder arises for systems of the form (11), and
the graph of the rotation number depending on a parameter is a set of horizontal segments
with integer rotation numbers (p = n, n € Z), which are connected by smooth curves (see
figure 3(a)). Corresponding to horizontal segments is also one or several limit cycles on the
torus T2. If p does not take an integer value, then all trajectories on the torus T? are either peri-
odic (p € Q) or quasi-periodic (p ¢ Q). The above-mentioned property is due to the fact that
the general solution (11) is expressed in terms of solutions to the linear system with periodic
coefficients [33].

Thus, the trajectories of the system (11) and hence (9) can be only of the following types
(see [33] for details):

(a) All trajectories are quasi-periodic or periodic;
(b) There are several limit cycles and all trajectories tend from an unstable limit cycle to a
stable one.

To find the corresponding limit cycles, one can use the Poincaré map of the system on the
torus (11). Choosing as a secant the circle + = 0 (which is intersected by all trajectories due to

7
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a)b=1 b)f=1

Figure 4. The region on the parameter plane for K(f) = a + b sin(¢) in which the rotation
number p takes an integer value (gray).

the equation (12)), we obtain a map of the circle onto itself:
O(®):S' — s,

Figure 3(b) shows a graph of the first iteration of this map. The curve ©"(®) is seen to
intersect the diagonal (of the square), and their intersection points correspond to the periodic
solutions of (11), for example, in figure 3(b) one can see two limit cycles.

Regions with an integer value of the rotation number p (Arnol’d tongues) on the parame-
ter plane of the system are depicted in figure 4. Thus, for the parameters of the system (11)
and (12) for which p takes an integer value, the trajectory of this system asymptotically tends
to a limit cycle in which the angular velocity of the body periodically changes with time.
A detailed discussion of the structure of these regions for systems of the form (11) can be
found in [36].

3. Dynamics for large v and nonlinear speedup

The case K(f) =0. In this case, the reduced system (7) coincides with a reduced sys-
tem describing a different nonholonomic system—the Chaplygin sleigh with gyrostatic
momentum. The following result [23] holds for this system.

Theorem 1. Let A(¢) be a periodic function. Let us calculate the following average value:

(A% = ! / ' A*(r)dr.
T Jo

Ifv(0) > 0 at the initial time instant, then, as t — +00, the function v(t) increases indefinitely
and u(t) tends to zero:

v(t) = C% + 0 (r%) . wt)= —CAr Y +o (f%) , C= (3<A2>)%.

In addition, it is shown in [23] that in this case the sleigh has mean motion in some fixed
direction, and the constraint reaction is a bounded function of time. Thus, the Chaplygin sleigh
can be accelerated without violating the nonholonomic constraint. In the Suslov system (4)
the situation is much different: as is seen from (8), the constraint reaction contains terms

8
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Figure 5. Dependences obtained numerically for A(r) = sint, K(r) = cost ((G) > 0)
and the initial conditions u(0) = 2, v(0) = 10.

linear in v and is not a bounded function during speedup. Evidently, this will lead to a vio-
lation of the constraint (1) at large v and to lateral slipping at the points of contact of the
wheels (see figure 1) (but in this paper we do not analyze this problem).

The case K(f) #0. In what follows, using some assumptions, we obtain a con-
dition for the functions K(f) and A(f) under which the system (7) has unbounded
trajectories.

Let |u| > 1, v > 1 at the initial time instant. Then the quadratic terms become leading in
the system (7). We recall (see, e.g. [9]), that they describe a vector field whose trajectories are
attracted to the positive axis

R+:{1}>>1,u=0},

and preserve the integral (10). Thus, v remains a fairly large quantity, and for u the inequality
|u| > 1 is violated in the course of time.

Numerical experiments show that in the region R, the variable v(f) changes weakly as
compared to u(f) (see figures 6 and 9). Therefore, we integrate the first equation of (7), assuming
that v takes a constant value:

() = Ce™" — e / e (vK®) + A®) dr.

Integrating this relation by parts, using the condition v > 1 and neglecting terms of order
v~3 and higher, we obtain

u(r):—K(z)+M+%+....

9
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Figure 6. Dependences obtained numerically for A(r) = sint, K(f) = —cost ((G) < 0)
and the initial conditions u(0) = 2, v(0) = 10.

2

Substituting the resulting relation into the second equation of (7) and neglecting terms v~ ~ and

higher, we find

G (A(z) _ k(r)) i
v

From the relation thus obtained we see that, if one neglects higher-order terms, then
(1?) = G() = 2K(1) (A(r) _ K(z)) ,

where G(f) = G(t + T). As is well known, in this case the evolution of v?(¢) is given by the
relation

v* = (G)t+H(t), H(t)=H(@+T).

Noting that (KK) = ((1k?)") = 0, we obtain the following conjecture.
Conjecture of acceleration. If the average

T
(G) = % / 2K()A(t)dr > 0, (13)
0

then the system (7) has trajectories unbounded in v, which have the following asymptotics:

v(1) = Ct? +o(t%), u(t):—K(t)Jro(f%), c =/(G). (14)

10
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If (G) < 0, then there are no unbounded trajectories. The case (G) = 0 requires a separate
analysis.

As can be seen, in the above cases of acceleration, (K(f) = 0), and existence of an addi-
tional integral, (A(f) = 0), we have (G) = 0. In addition, condition (13) and asymptotics (14)
are in good agreement with numerical calculations (see figure 5) for the initial conditions
u,v > 1. If (G) < 0, then numerical experiments (see figure 6) show that for u,v > 1 the
velocity decreases (i.e., the body slows down) and the trajectory leaves the region u, v > 1. In
this case, the system can exhibit a strange attractor (see the next section).

Remark 4. We note that the proof of the theorem as presented in [23] is based on the
fact that the function v(¢) in (7) is monotonic for K(f) = 0. As can be seen (e.g., from
figure 5), this does not hold true in the general case, and it is impossible to generalize this
proof.

4. Coexistence of a strange attractor and unbounded trajectories (speedup)

As noted above, in the Chaplygin sleigh problem [23], in the presence of acceleration, all tra-
jectories of the reduced system are unbounded. We show that in this case one can choose
the functions A(¢) and K(f) in such a way that, with acceleration present in the system,
it can have a strange attractor.

As an example, we choose a one-parameter family of functions

sin t .
A = — acost, K(t)=sint, « = const.

In this case, the reduced system of equation (7) can be represented as

. . . cos t . .
u:—vu—vsmt—asmt—T, 0 =u® 4 u sin t. (15)

Since the right-hand side depends periodically on time, the vector field (15) generates a period
advance map of the plane (a Poincaré map), which we investigate numerically.
In this case, the quantity (13), which defines the average evolution of v2, has the form

(©) =3

By the hypothesis of acceleration, it is necessary to consider two situations, according as
whether the system (15) has unbounded trajectories (a > 0) or has none (o < 0).

The case o < 0. Then all trajectories of the system (15) are bounded. Numerical exper-
iments show that in this case one can observe the following two qualitatively different
dynamical regimes.

(a) Stability and multistability: as t — +o0, all trajectories tend to one or several periodic
solutions of the system (15) (see figure 7).

(b) Chaotic oscillations: the system exhibits a strange attractor (see figure 8) which attracts
all trajectories of the system. In particular, this also holds for & = 0. A typical view of a
Poincaré map is shown in figure 9.
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Figure 7. A Poincaré map and the dependence u(v) for the fixed parameter « = —0.2
and the initial conditions = 0, v = 0.6, u = 0.06. Red denotes a limit cycle. In this
case, a cycle of period 3 (consisting of isolated points) arises on the Poincaré map.

Figure 8. A Poincaré map and the dependence u(v) for the fixed parameter « = —0.05
and the initial conditions t =0, v =1, u = 1.

For a chaotic trajectory corresponding to a strange attractor for the parameters in figure 8,
the Lyapunov exponents are’

A~ 0.087, A= -0262, M\=0

The dimension of this attractor on the map, estimated from the Kaplan — Yorke formula [38],
is
A

D=1+ ~133.
| Az

The case o > 0. Depending on the value of the parameter «, the system (15) has the
following regimes.

(a) Chaotic oscillations and speedup: there are unbounded and bounded trajectories, which
are attracted to a strange attractor.

5 One zero value of the Lyapunov exponent corresponds to a shift in the trajectory [37].

12
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Figure 9. A Poincaré map and the dependence u(v) for the fixed parameter oo = 0 and
the initial conditions t = 0, v =5, u = 1.4.

Figure 10. The fixed parameter o = 0.1 (a) a Poincaré map and (b) location of the
domain of attraction of the attractor (gray) and of the fixed point of the map >3y.

(b) Speedup: except for the unstable fixed points of the map, all trajectories are noncompact;
in this case, v — 400 as t — +o00. Numerical experiments show that their asymptotics is
described by (14).

If a > 0, but is smaller than some critical value «, then the map exhibits both noncom-
pact and bounded chaotic trajectories (see figure 10(a)). In this case, the map has an unstable
fixed point 3.

Figure 10(b) shows a numerically constructed basin of attraction of a strange attractor. The
fixed point of the map X lies in the boundary of this basin of attraction and corresponds
to a periodic solution of the system (15). The multipliers of the periodic solution ¥, are, to
within the error of calculation, equal to

A~ 1.0474+1073, Ay ~00+10"°

over the whole range 0 < o < ag. A weak expansion can be observed in the direction of the
eigenvector E, whereas in the direction E, a strong compression arises, so that the fixed point
on the map is degenerate (to within the error of calculation). Thus, the basin of attraction
of the strange attractor is bounded by the stable invariant manifold (incoming separatrix) I
of point ¥y. A similar situation arises in the two-dimensional Hénon map [39]. At the same

13
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-3 40| 3
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Figure 11. A Poincaré map for the fixed parameter v = 0.15 and for different initial
conditions.

-05 —-03 —-01 0 0.1 0.3

Figure 12. Chart of the largest Lyapunov exponent \; for a trajectory with the fixed ini-
tial conditions # = 0 and u = 0, but with different values of the parameter « and different
initial conditions for the variable v.

time, the smallness of the eigenvalue of A, makes it extremely difficult to numerically obtain
the separatrix I';.

As « increases, the point 3, approaches the origin of coordinates. Numerical experi-
ments show that, after reaching the critical value @ = «,, all trajectories, except for the
above-mentioned fixed point 3}y and the unstable fixed points of the map, become unbounded
(see figure 11).

The situation described above is clearly illustrated by the chart of the largest Lyapunov
exponent A\, which is shown in figure 12. In the region @ < 0, the trajectory tends, regardless
of v(0), to a limit cycle (\; < 0) or to a strange attractor (A\; > 0). In the region o > 0, as
o increases depending on v(0), there are regions in which a strange attractor (A\; > 0) and
unbounded trajectories (A\; < 0) are observed. Then, after the critical value of « has been
reached, only unbounded trajectories are observed.

5. Reversibility and coexistence of a strange attractor and a strange repeller
If a = 0, then the system (15) has the involution

u— —u, v——v, t——t, (16)

14
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Figure 13. A Poincaré map in forward (red) and backward (blue) time for different
values of the parameter «v and the fixed initial conditions r = 0, u = 1, v = 1.

i.e., the system turns out to be reversible. As is well known, in this case the attractors and
repellers occur as pairs and are symmetric with respect to the involution (16). For example,
a strange attractor and a strange repeller arise simultaneously, see figure 13(a). When a # 0,
the involution (16) is absent; as a result, the attractor and the repeller become asymmetric
with respect to the involution (16) (figures 13(b) and (c)).

In figure 13(c), the strange attractor coexists with the strange repeller. As the parameter
« increases, the strange attractor ‘merges’ with the strange repeller [40, 41], giving rise to
mixed dynamics. Interestingly, this system exhibits a new type of mixed dynamics in which
the closure of the strange attractor intersects with that of the strange repeller in an irreversible
system (13b). Earlier, this phenomenon was observed in the model of coupled oscillators [42].
In nonholonomic mechanics, mixed dynamics in an irreversible system has been discovered
for the first time. We note that the phenomenon of intersection of the closure of a strange
attractor and a repeller (mixed dynamics) is discussed in detail in [43].

As « decreases further, the trajectories for # — 4-0o asymptotically tend to a limit cycle or
a strange attractor, and those for t — —oo are unbounded (that is, the system becomes in fact
dissipative). Many dynamical systems arising in nonholonomic mechanics are reversible [44,
45]. However, as we have seen in the above example, this is not always the case.

In this and the previous sections, the chart of Lyapunov exponents and the Poincaré
map have been constructed using the software package computer dynamics: Chaos (see
http://site4.ics.org.ru/chaos_pack/), which was developed at the Institute of Computer Science
of the Udmurt State University. The system of differential equations of motion is solved numer-
ically by the Runge—Kutta—Werner method of the sixth order of accuracy with control of the
integration error.
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