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Abstract
For one-dimensional random Schrödinger operators, the integrated density of 
states is known to be given in terms of the (averaged) rotation number of the 
Prüfer phase dynamics. This paper develops a controlled perturbation theory 
for the rotation number around an energy at which all the transfer matrices 
commute and are hyperbolic. Such a hyperbolic critical energy appears in 
random hopping models. The main result is a Hölder continuity of the rotation 
number at the critical energy that implies the existence of a pseudo-gap. The 
proof uses renewal theory. The result is illustrated by numerics.
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1.  Intuition and main result

The main result of this note and the intuition behind it can directly be explained by looking 
at a concrete situation. A more general theoretical approach is deferred to the subsequent 
sections. A random hopping model is a discrete random Schrödinger operator on the Hilbert 
space �2(Z) of the form

(Hψ)(n) = −t(n + 1)ψ(n + 1)− t(n)ψ(n − 1), ψ ∈ �2(Z),� (1)

where (t(n))n∈Z is a sequence of independent positive random variables. The model has a 
bipartite chiral symmetry, namely JHJ  =  −H for the operator J|n〉 = (−1)n|n〉 which is a 
symmetry in the sense that J  =  J* and J2 = 1. This implies, in particular, that the spectrum 
and density of states is symmetric around the energy 0. For special choices of the distribution, 
the model is the random Hu–Seeger–Schriefer model [13] as well as a model that maps to cer-
tain quantum spin chains [4]. A standard way to rewrite the Schrödinger equation  Hψ = Eψ 
for a real energy E ∈ R is to use the transfer matrices
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T̂E
n =

(
−E 1

t(n) −t(n)
1

t(n) 0

)
.

For E sufficiently small and for t(n) bounded away from 0, these matrices are elliptic, namely 
conjugate to a rotation matrix. Our focus will be on a situation where the t(n) are independent 
random variables that have the same distribution for even and odd n, respectively. Then it 
is natural to consider the transfer matrices over dimers, that is, the product of two adjacent 
matrices:

TE
n = T̂E

2n+1T̂E
2n =

(
E2 1

t(2n+1)t(2n) −
t(2n+1)

t(2n) E t(2n)
t(2n+1)

−E 1
t(2n+1)t(2n) − t(2n)

t(2n+1)

)
.

At E  =  0, the matrices T0
n  are all diagonal and thus commute, and furthermore, unless 

t(2n) = t(2n + 1), the matrices all have a trace of modulus larger than 2 and are thus hyper-
bolic with two eigenvalues off the unit circle. More generally (see below), an energy with 
commuting hyperbolic (polymer) transfer matrices is called a hyperbolic critical energy. One 
can expand TE

n  in small energies E as follows

TE
n = −

[
1 + E

(
0 −1
1

t(2n+1)2 0

)
− E2

(
1

t(2n+1)2 0

0 0

)]( t(2n+1)
t(2n) 0

0 t(2n)
t(2n+1)

)
,

� (2)
namely up to errors TE

n  is the product of a random diagonal hyperbolic matrix and a matrix 
close to the identity which is, up to fluctuations, a rotation of order E. Next let us recall the 
associated dynamics on the Prüfer phases θ specifying a unit vector and hence a direction in 
R2 via the notation

eθ =

(
cos(θ)

sin(θ)

)
.

The action on these phases is defined iteratively by

RE
n eθE(n) = TE

n eθE(n−1),

where RE
n  is some normalization constant and θE(0) some initial condition. Under the ste-

reographic projection, this becomes the Möbius action of the cotangent of the Prüfer phases:

cot(θE(n)) =
t(2n + 1)2

t(2n)2

cot(θE(n − 1))(1 − E2 1
t(2n+1)2 ) − E t(2n)2

t(2n+1)2

1 + E 1
t(2n)2 cot(θE(n − 1))

.

� (3)
As the cotangent is π-periodic, this equation can be read as a dynamics on (−π

2 , π
2 ] which 

reflects that the direction of eθ  is fixed by the value of θ in the projective space isomorphic 
to (−π

2 , π
2 ] (later on the dynamics will be lifted to an action on R). For E  =  0, the dynamics 

simply reduces to cot(θ0(n)) = κ(n)2 cot(θ0(n − 1)) where κ(n) = t(2n+1)
t(2n) . On the unit circle 

this becomes

e2ıθ0(n) =
(κ(n) + 1

κ(n) ) e2ıθ0(n−1) + (κ(n)− 1
κ(n) )

(κ(n)− 1
κ(n) ) e2ıθ0(n−1) + (κ(n) + 1

κ(n) )
.
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Independent of κ(n), this dynamics has two fixed points at θ = 0 and θ = π
2 . For κ(n) > 1, 

θ = 0 is attractive and θ = π
2  is repulsive, and visa versa for κ(n) < 1. Now let us consider 

a situation where the κ(n) are i.i.d. with random positive values that can be either larger or 
smaller than 1. In the average, this dynamics may lead to a drift to e0 or eπ

2
, pending on the 

distribution. This drift is actually dictated by the Lyapunov exponent at E  =  0:

γ0 = lim
N→∞

1
N

〈
log

( N∏
n=1

κ(n)
)〉

=
〈
log

(
κ(n)

)〉
.

It dictates the growth of the upper component of (2) at E  =  0. The lower component has a 
Lyapunov exponent −γ0. If now γ0 > 0, then there is a drift to e0, while for γ0 < 0 the drift 
is to eπ

2
. This latter is the case in figure 1 and we restrict to this case for the moment. The case 

γ0 = 0 is not considered in this work.
Now let us consider the energy dependent part in (2). Of importance is that the two signs 

in the linear term in E are independent of the distribution of the t(n). Hence the second fac-
tor is, up to corrections, a rotation by a random phase of order E in the positive orientation 
for E  >  0. While almost everywhere on the circle this rotation is very small compared to the 
hyperbolic dynamics generated by the hyperbolic factor κ(n)2, it is dominant close to the two 
fixed points e0 and eπ

2
. This is also included in figure 1. Finally we can sketch intuitively the 

behavior of the random dynamics. Suppose one starts in a neighborhood of e0, either to the 
left or the right. In such a neighborhood, the hyperbolic dynamics is ineffective (recall that 
e0 is a fixed point for all κ(n)), however, there is a counter-clockwise rotation by random 
phases. Eventually, the dynamics will leave the neighborhood and get into a region where the 
hyperbolic dynamics is effective. Due to the drift (see again figure 1) the Prüfer phase typi-
cally reaches a neighborhood of eπ

2
 after a finite number of steps. Again this neighborhood is 

crossed counter-clockwise due to the random rotations. Finally, the dynamics reaches the rhs 
of the circle (projective space). Here it faces a drift which presses it back towards eπ

2
 which, 

however, it cannot cross backwards due to the counter-clockwise rotations at eπ
2
. Hence the 

Prüfer phase is for many iterations bound to stay close to the right of eπ
2
, see the histogram 

in figure 1. The only way to reach e0 is via rare sequences of values κ(n) > 1. To analyze the 
corresponding large deviations is a crucial element of understanding the random dynamics. 
Clearly, if the sign of E and γ0  change, the schematic representation changes (orientation and 
the respective roles of e0 and eπ

2
), but the heuristics and therefore also the arguments below are 

the same. Throughout all arguments we focus only on the case γ0 < 0 and E  >  0.
Clearly, from the dynamical point of view it is of interest to study the random times needed 

to make a loop around projective space. Each time the dynamics passes by e0 (or alternatively 
eπ

2
) the process starts anew. Therefore summing all random loop times is precisely what is 

called a renewal process. The elementary renewal theorem (see below) links the average time 
to make a loop to the inverse of the expected value of the time needed for one loop. The aver-
age time to make a loop is also called the rotation number and it is well-known that it is equal 
to the integrated density of states (IDS) of the random Schrödinger operator which is the non-
decreasing function E ∈ R �→ N (E) defined by

N (E) = lim
N→∞

1
N

#{eigenvalues of HN � E},

where HN is the restriction of H to �2({1, . . . , N}). The limit is known to exist almost surely. 
The IDS is one of the most basic quantities describing a random Schrödinger operator and 
its continuity properties are of great importance. Connecting it to the rotation number of the 
Prüfer phases requires some care and this is done in section 3. Then using the detailed infor-
mation on the Prüfer phase dynamics and its dependence on parameters like the energy E and 
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the distribution of the t(n) allows to prove a new result on the IDS at a hyperbolic critical 
energy, such as E  =  0 in the random hopping model described above. The following theorem 
shows that there is an exponent ν  depending on the distribution which provides a Hölder 
estimate on the IDS at the critical energy. This exponent ν  can easily be made very large and 
then the result implies that there is a characteristic pseudo-gap in the IDS, namely the DOS 
vanishes at the critical energy with a large Hölder exponent. Figure  2 provides a striking 
numerical example for this.

Theorem 1.  Suppose that the t(n) are compactly supported in (0,∞) and such that γ0 < 0. 
Moreover, assume that the TE

n  are independent and identically distributed and such that the 
probability of having κ(n) > 1 is positive. Then there exists a unique positive number ν  obey-
ing

〈κ(n)ν〉 = 1.� (4)

For all δ > 0 there exists Cδ < ∞ such that the integrated density of states satisfies

|N (E)−N (0)| � Cδ |E|ν−δ .� (5)

Let us stress that if all t(n) are i.i.d. one clearly has γ0 = 0 so that the hypothesis of the the-
orem is not satisfied. On the other hand, having different distributions for even and odd sites 
generically leads to γ0 �= 0 so that one can generate numerous examples in this manner. If this 
is guaranteed, the convexity of ξ �→ 〈κ(n)ξ〉 implies the existence and uniqueness of ν  which 
is positive for γ0 < 0 and negative for γ0 > 0 (note that γ0  is the derivative of ξ �→ 〈κ(n)ξ〉 at 
ξ = 0). In particular situations it is possible to show that the bound (5) is optimal, but we have 
not analyzed this in detail.

Pseudo-gaps as (4) with ν > 1 appear in numerous models of solid state physics. They can 
result from interactions in high-Tc superconductors [12] or in non-interacting models of semi-
metals such as graphene [14]. Furthermore, also certain quasi-one-dimensional Bogoliubov–
de Gennes Hamiltonians have pseudo-gaps [16]. In these two latter cases, symmetries play a 
crucial role. Also in the model leading to (2) there is a chiral symmetry (related to the bipartite 
structure). Nevertheless, to our best knowledge, there are no earlier works on pseudo-gaps in 

Figure 1.  Schematic representation of the random dynamics as described in the text. 
The histogram shows the distribution of 105 Prüfer phases generated by (3) with a 
distributions of the hopping terms given by (6) where x is uniformly distributed in 
[−1, 1]. The parameters are cev = 1.2, λev = 0.4, cod = 1 and λod = 0 so that γ0 < 0, and 
the energy E  =  0.02. The weight on the right half (in [0, π

2 ]) results from 101 rotations 
during the 105 random dynamical steps.
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strictly one-dimensional random models. Moreover, the remainder of the paper shows how to 
construct such models with a pseudo-gap.

Let us also point out that exponents ν  defined in a similar manner to (4) played a role in [5, 
8, 10]. These papers looked at the Lyapunov exponent near a critical value (corresponding to 
a critical energy in our terminology described below) and exhibited singular behavior of the 
Lyapunov exponent in its vicinity, namely a deviation from the standard quadratic vanishing 
of the Lyapunov exponent. A key role in the analysis in [5], and its rigorous version [8], is a 
perturbative control of the invariant Furstenberg measures. Given the tight connection between 
the IDS and Lyapunov exponent via the Thouless formula, it is hence not surprising that also the 
IDS can have a singular behavior as in (5). This has not been worked out elsewhere though, again 
as far as we know. In fact, a difficulty is linked to the non-local nature of the Thouless form
ula: an information on the scaling of either IDS or Lyapunov exponent at one point (the critical 
value) does not allow to deduce information about the other. For example, to establish Hölder 
regularity of the Lyapunov exponent (as in [7]) requires Hölder regularity of the IDS in a neigh-
borhood of the critical energy, and not just the pointwise information (5). In this paper, we do not 
argue based on the Thouless formula, but rather use oscillation theory to access the IDS directly.

The remainder of the paper is organized as follows. The short next section presents and 
discusses some numerical results that illustrate theorem 1. Section  3 presents the general 
framework of random polymer models (essentially based on [11]) and then defines the notion 
of hyperbolic critical energy (different from the type of critical energies analyzed in [11]). 
This singles out the main structural features of a random Jacobi matrix that lead to a Prüfer 
phase dynamics as qualitatively described in figure 1 and thus also a behavior of the IDS as 
in theorem 1. Section 4 then contains the core of the mathematical analysis. In particular, 
deterministic geometric arguments allow to connect the rotation number to renewal theory 
in sections 4.1 and 4.2, and in section 4.3 the interarrival time is then estimated by a large 
deviation argument. Finally, section 4.4 states and proves theorem 8, the most general result 
on pseudo-gaps in the framework of random polymer models. It incorporates theorem 1. The 
final section 4.5 comments on how to extend the techniques to deal with random variables 
with unbounded support.

2.  Examples and numerical illustration

This section illustrates theorem 1 with several examples. As already explained above, an inter-
esting situation only appears if the even and odd sites of the random hopping model have dif-
ferent distributions. We suppose them to be of the following type

t(2n) d
= cev + λev x, t(2n + 1) d

= cod + λod x,�
(6)

where λev < cev  and λod < cod are all positive parameters and x is a random variable with values 
in [−1, 1]. Hence all even sites have the same distribution, and so do all odd sites. Furthermore, 
all sites are supposed to be independent. Clearly one of the 4 parameters (say the average of cev 
and cod) is merely an energy scale and thus irrelevant. To produce a non-trivial situation in the 
spirit of theorem 1, it is furthermore sufficient to just have randomness of say the even sites, 
which is achieved by choosing λod = 0. This particular situation is of interest for the study of 
certain random quantum spin chains [4].

The above model is also the Hu–Seeger–Schrieffer model if the odd sites are interpreted 
as random masses and the even ones as random hoppings between dimers. This model has a 
rich phase diagram [13] in the various parameters with quantum phase transitions at values of 
vanishing Lyapunov exponent γ0  at zero energy. This is precisely the situation not analyzed 
in this paper.

F Dorsch and H Schulz-Baldes﻿J. Phys. A: Math. Theor. 53 (2020) 185201
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As to the distribution of the random variable x, we consider two cases. In the first example, 
it is the uniform distribution on [−1, 1]. In this case, one can evaluate explicitly

〈κ(n)ξ〉 = 1 − ξ

1 + ξ

(cev + λev)
1+ξ − (cev − λev)

1+ξ

λev

λod

(cod + λod)1−ξ − (cod − λod)1−ξ
.

Note that one can take the limits λev → 0 and λod → 0. The solution to (4) can now readily be 
computed numerically. Furthermore, the zero energy Lyapunov exponent can be calculated 
(see [13]):

γ0 = 〈log(κ(n))〉 = 1
2

log

(
(cod + λod)

cod
λod

+1

(cod − λod)
cod
λod

−1

(cev − λev)
cev
λev

−1

(cev + λev)
cev
λev

+1

)
.

A remarkable treat of these formulas is that the root ν  of (4) strongly depends on the param
eters of the model. A numerical evaluation of the global DOS and the IDOS and Lyapunov 
exponent value close to E  =  0 is provided in figure 2.

The second example considered here is that x has the Bernoulli distribution (1 − p)δ−1 + pδ1 
with parameter p ∈ [0, 1]. Again it is possible to write out explicit formulas for 〈κ(n)ξ〉 and 
γ0 , e.g.

〈κ(n)ξ〉 =
(

p(cod + λod)
ξ + (1 − p)(cod − λod)

ξ
) (

p(cev + λev)
−ξ + (1 − p)(cev − λev)

−ξ
)

.

Bernoulli variables are known to easily lead to singular spectra. Indeed, this appears to be the 
case for the parameters chosen in figure 3. Furthermore, the spectrum surprisingly has some 
sort of self-similar structure. In this situation ν ≈ 0.09 is much smaller than 1, leading to clus-
tering of eigenvalues close to E  =  0.

3.  Rotation numbers at hyperbolic critical energies

3.1.  Polymer models and hyperbolic critical energies

Let Σ be a subset of 
⋃L

K=1{K} × RK
+ × RK

 where L is a fixed maximal length. Any point 

σ ∈ Σ is of the form σ = (K, t̂σ(0), . . . , t̂σ(K − 1), v̂σ(0), . . . , v̂σ(K − 1)) and fixes what we 

Figure 2.  The left figure shows a histogram of all eigenvalues of a random realization of 
the Hamiltonian of length 5000 with same parameters as in figure 1. Up to normalization 
this is the density of states. The exponent in (4) is ν ≈ 9.71 which leads to the pseudo-
gap. The right figure shows the integrated density of states close to E  =  0 as calculated 
numerically from the rotation number via (25).

F Dorsch and H Schulz-Baldes﻿J. Phys. A: Math. Theor. 53 (2020) 185201
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call a polymer (as in [11]) of length Lσ = K  with hopping terms ̂tσ = (̂tσ(0), . . . , t̂σ(K − 1)) 
and potentials v̂σ = (v̂σ(0), . . . , v̂σ(K − 1)). Then let us consider the Tychonov space 
Ω0 = ΣZ. If p is a probability on Σ, then P0 = p×Z is a probability on Ω0 which is invariant 
and ergodic under the left shift τ0 : Ω0 → Ω0 given by (σm)m∈Z → (σm+1)m∈Z. Associated to 
each ω0 = (σm)m∈Z ∈ Ω0 one has two sequences

tω0 = (tω0(n))n∈Z = (. . . , t̂σ0 , t̂σ1 , . . .),
vω0 = (vω0(n))n∈Z = (. . . , v̂σ0 , v̂σ1 , . . .).

These sequences are not necessarily invariant under shifts of the index because the origin is 
always a left edge of a polymer. In order to pass into the usual shift invariant framework, one 
can proceed similarly as in the construction of the Palm distribution. Set

ΩK = {ω0 ∈ Ω0 : Lσ0 = K} × {0, . . . , K − 1}, Ω =

L⋃
K=1

ΩK .

Now the left shift τ : Ω → Ω is defined by

τ(ω0, k) =



(ω0, k + 1) if k < Lσ0 − 1 ,

(τ0ω0, 0) if k = Lσ0 − 1 ,

where τ0 is the left shift on Ω0. Now for any set AK ⊂ {ω0 ∈ Ω0 : Lσ0 = K}, one sets for all 
k ∈ {0, . . . , K − 1}

P(AK × {k}) = P0(AK)

〈Lσ〉
.

It can then be verified that P is invariant and ergodic w.r.t. the Z-action τ . Finally, for 
ω = (ω0, k) let us introduce sequences of positive and real numbers respectively by setting

tω(n) = tω0(n + k), vω(n) = vω0(n + k), n ∈ Z.

These are the matrix entries of the Jacobi matrix Hω which we call the polymer Hamiltonian 
of the configuration ω . Namely, it is defined by

(Hωψ)(n) = −tω(n + 1)ψ(n + 1) + vω(n)ψ(n)− tω(n)ψ(n − 1) , ψ ∈ �2(Z) ,� (7)

and (Hω)ω∈Ω becomes a family of random operators. The polymer transfer matrices TE
σ  at 

energy E ∈ R over a polymer σ = (K, t̂σ(0), . . . , t̂σ(K − 1), v̂σ(0), . . . , v̂σ(K − 1)) are intro-
duced by

Figure 3.  For these graphs, the parameters are cev = 1.4, λev = 1.3, cod = 1 and λod = 0, 
and the even hopping terms were drawn with the Bernoulli distribution with p = 2

3 for 
the value 1. For these values, ν ≈ 0.09. The first two figures show the histogram of the 
eigenvalues, the second one being simply a zoom in the first one, and the third graph 
shows the IDS close to E  =  0 as calculated via the rotation number (25).
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TE
σ =

K∏
k=1

T̂v̂σ(k−1)−E,̂tσ(k−1) , where T̂v̂,̂t =
1
t̂

(
v̂ −t̂2

1 0

)
.� (8)

The transfer matrices over several polymers are then

TE
ω0
(k, m) = TE

σk−1
· TE

σk−2
· . . . · TE

σm
, k > m ,� (9)

and TE
ω0
(k, m) = TE

ω0
(m, k)−1 if k  <  m, TE

ω0
(m, m) = 1.

Definition 2.  An energy Ec ∈ R is called a hyperbolic critical energy for the random fam-
ily (Hω)ω∈Ω of polymer Hamiltonians if the polymer transfer matrices TEc

σ  are hyperbolic (i.e. 
|Tr(TEc

σ )| > 2 ) or equal to ±1 and commute for all σ,σ′ ∈ Σ:

[TEc
σ , TEc

σ′ ] = 0.� (10)

Note that the critical energies considered in [11] were elliptic, namely |Tr(TEc
σ )| < 2 or 

TEc
σ = ±1. The case of parabolic critical energies was considered in [6]. The definition of the 

critical energy assures that there exists a real invertible matrix M with unit determinant trans-
forming TEc

σ  for all σ simultaneously into diagonal hyperbolic matrices:

MTEc
σ M−1 = ±Dκσ

, Dκσ
=

(
κσ 0
0 1

κσ

)
,� (11)

where the sign ± is chosen such that κσ > 0. For κσ �= 1, the matrix Dσ is a hyperbolic 
matrix from SL(2,R) in its usual normal form.

Hypothesis. The random variable κσ satisfies the following:

(i) P (κσ �= 1) > 0, (ii) ∃ ν �= 0 : 〈κν
σ〉 = 1.

Remark. Items (i) and (ii) imply that the support of κσ intersects both (0, 1) and (1,∞) non-
trivially. Let us also note that the strict convexity of ξ �→ κξ implies the uniqueness of ν . If 
ν > 0, then by Jensen’s inequality,

∂ξ 〈κξ
σ〉 |ξ=0= 〈log κσ〉 = ν−1〈log κν

σ〉 < ν−1 log〈κν
σ〉 = 0,

with possibly 〈log κσ〉 = −∞. If ν < 0, then 〈log κσ〉 > 0. In the following we may assume 
that ν > 0, as otherwise (κσ , M) can be replaced by (κ−1

σ , IM), where ıI  is the second Pauli 
matrix.� �

Example. Let Lσ = 2 and v̂σ = (0, 0) and ̂tσ = (̂tσ(0), 1). Then

TE
σ = T̂−E,1T̂−E,̂tσ(0) =

(
E2−1
t̂σ(0) Et̂σ(0)
−E

t̂σ(0) −t̂σ(0)

)
= −

[(
1 −E
E 1

)
+O(E2)

]( 1
t̂σ(0) 0

0 t̂σ(0)

)
.

Hence Ec  =  0 is a hyperbolic critical energy and the basis transformation M in (11) is the 
identity. Note that the first factor on the rhs is to lowest order in E a rotation by E.� �

It will be convenient to always expand the polymer transfer matrix around the critical 
energy similar as in the example. More precisely, let us introce real numbers aσ , bσ , cσ by

MTEc+ε
σ M−1 = ±

[
1 + aσε

(
0 −1
1 0

)
+ bσε

(
0 1
1 0

)
+ cσε

(
1 0
0 −1

)
+O(ε2)

]
Dκσ .� (12)

F Dorsch and H Schulz-Baldes﻿J. Phys. A: Math. Theor. 53 (2020) 185201
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In the above example, one has Ec  =  0 and bσ = cσ = 0 and aσ = 1. In general:

Proposition 3.  The inequalities aσ � 0 and a2
σ � b2

σ + c2
σ  hold for all σ ∈ Σ.

Proof.  Let us set J =
(0−1

1 0

)
 and recall that

(
MTE

σM−1)∗J∗ ∂E
(
MTE

σM−1)

= (TE
σM−1)∗J∗

Lσ−1∑
k=0

[ Lσ−1∏
l=k+1

T̂v̂σ(l)−E,̂tσ(l)

]( −1
t̂σ(k) 0

0 0

)[ k−1∏
l=0

T̂v̂σ(l)−E,̂tσ(l)

]
M−1

=

Lσ−1∑
k=0

(M−1)∗
[ k∏

l=0

T̂v̂σ(l)−E,̂tσ(l)

]∗
J∗

(
−1

t̂σ(k) 0

0 0

)[ k−1∏
l=0

T̂v̂σ(l)−E,̂tσ(l)

]
M−1

=

Lσ−1∑
k=0

(M−1)∗
[ k−1∏

l=0

T̂v̂σ(l)−E,̂tσ(l)

]∗(
T̂v̂σ(k)−E,̂tσ(k)

)∗
J∗

(
−1

t̂σ(k) 0

0 0

)[ k−1∏
l=0

T̂v̂σ(l)−E,̂tσ(l)

]
M−1

=

Lσ−1∑
k=0

(M−1)∗
[ k−1∏

l=0

T̂v̂σ(l)−E,̂tσ(l)

]∗ ( 1
t̂2
σ(k) 0

0 0

)[ k−1∏
l=0

T̂v̂σ(l)−E,̂tσ(l)

]
M−1.

Now this matrix is manifestly non-negative. On the other hand, replacing (12) gives

(
MTEc

σ M−1)∗J∗∂E
(
MTEc

σ M−1) = D∗
κσ

J∗
[

aσ

(
0 −1
1 0

)
+ bσ

(
0 1
1 0

)
+ cσ

(
1 0
0 −1

)]
Dκσ

= D∗
κσ

[
aσ

(
1 0
0 1

)
+ bσ

(
1 0
0 −1

)
− cσ

(
0 1
1 0

)]
Dκσ

.

Non-negativity of this expression implies the claim.� □ 

3.2.  Prüfer variables

This section briefly recalls definitions and basic properties of the free Prüfer variables and 
M-modified Prüfer variables. As this can be spelled out for every single realization ω , the 
index is dropped. Let (t(n))n∈Z be a sequence of positive numbers and (v(n))n∈Z a sequence 
of real numbers. As in (7) they define a Jacobi matrix H. Given an initial phase θ(0) ∈ R and 
an energy E ∈ R, let us construct the formal solution (uE(n))n∈Z by

−t(n + 1)uE(n + 1) + v(n)uE(n)− t(n)uE(n − 1) = EuE(n) ,� (13)

and the initial conditions
(

t(0) uE(0)
uE(−1)

)
=

(
cos(θ(0))
sin(θ(0))

)
.

Using the definition (8) of the single site transfer matrices T̂v̂,̂t, the transfer matrix from site k 
to n is introduced by

T̂E(n, k) =
n−1∏
l=k

T̂v(l)−E,t(l) .
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It allows to rewrite the (formal) eigenfunction equation (13) as
(

t(n) uE(n)
uE(n − 1)

)
= T̂E(n, k)

(
t(k) uE(k)
uE(k − 1)

)
.� (14)

The free Prüfer phases θ0,E(n) and amplitudes R0,E(n)  >  0 are now defined by

R0,E(n)
(
cos(θ0,E(n))
sin(θ0,E(n))

)
=

(
t(n)uE(n)
uE(n − 1)

)
,� (15)

the above initial conditions as well as

−π

2
< θ0,E(n + 1)− θ0,E(n) <

3π
2

.

Note that the dependence of the Prüfer variables on θ(0) is suppressed. Recall that ∂Eθ
0,E(n) is 

strictly positive for n � 2 and strictly negative for n � −2 (e.g. [11], lemma 2).
Let ΠN  be the projection on �2({0, . . . , N − 1}) and denote the associated finite-size Jacobi 

matrix by HN = ΠNHΠN . As HN has Dirichlet boundary conditions, let us choose uE(−1)  =  0 
and t(0)uE(0)  =  1 as initial conditions in the recurrence relation (13). This corresponds to an 
initial Prüfer phase θ(0) = 0. The oscillation theorem (e.g. [11]) implies

∣∣∣∣
1
π

θ0,E(N)−# {negative eigenvalues of (HN − E) }
∣∣∣∣ �

1
2

.� (16)

Next let us pass to M-modified Prüfer variables. Hence fix M ∈ SL(2,R). Define a smooth 
function m : R → R with m(θ + π) = m(θ) + π  and 0 < C1 � m′ � C2 < ∞, by

r(θ)em(θ) = Meθ, r(θ) > 0 , m(0) ∈ [−π,π),

where eθ ∈ R2 is the unit vector as defined in the introduction. Then the M-modified Prüfer 
variables (RM,E(n), θM,E(n)) ∈ R+ × R for the initial condition θM,E(0) = θ = m(θ0) are 
given by

θM,E(n) = m(θ0,E(n)) ,� (17)

and

RM,E(n)
(
cos(θM,E(n))
sin(θM,E(n))

)
= M

(
t(n) uE(n)
uE(n − 1)

)
,� (18)

where the dependence on the initial phase is again suppressed. Then (16) implies [11]
∣∣∣∣

1
π

θM,E(N)−# {negative eigenvalues of (HN − E) }
∣∣∣∣ �

5
2

.� (19)

3.3.  Covariant Jacobi matrices

Let (Ω, τ ,Z, P) be a compact space Ω, endowed with a Z-action τ  and a τ -invariant and ergodic 
probability measure P. For a function f ∈ L1(Ω, P), let us denote E( f (ω)) =

∫
dP(ω) f (ω). A 

strongly continuous family (Hω)ω∈Ω of two-sided tridiagonal, self-adjoint matrices on �2(Z) 
is called covariant if the covariance relation UHωU∗ = Hτω holds where U is the translation 
on �2(Z). Hω is characterized by two sequences (tω(n))n∈Z and (vω(n))n∈Z such that (7) holds.
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The IDS at energy E ∈ R of the family (Hω)ω∈Ω can P-almost surely be defined by  
[1, 2, 15]

N (E) = lim
N→∞

1
N

Tr(χ(−∞,E](ΠNHωΠN)) ,� (20)

while the Lyapunov exponent γ(E) for E ∈ R is P-almost surely given by the formula

γ(E) = lim
N→∞

1
N

log
(∥∥∥T̂E

ω(N, 0)
∥∥∥
)

,

where the transfer matrix T̂E
ω(N, 0) from site 0 to N is defined as in section 3.2. Both the IDS 

and the Lyapunov exponent are self-averaging quantities, notably an average over P may be 
introduced before taking the limit without changing the result [15]. The IDS and the Lyapunov 
exponent are linked by the Thouless formula (see [3], p. 376)

γ(E) = −〈log(t(0))〉+
∫

N (dE′) log(|E − E′|), E ∈ C.� (21)

For each Hω let (RM,E
ω (n), θM,E

ω (n)) denote the associated M-modified Prüfer variables with 
some initial condition, then according to (19)

N (E) = lim
N→∞

1
π

1
N

〈
θM,E
ω (N)

〉
.� (22)

The rhs is the rotation number and the equality (22) expresses what is called the rotation num-
ber calculation of the IDS.

3.4.  Modified polymer Prüfer variables

While the exposition in the last two sections  was generic, we now specify to the random 
polymer model with a hyperbolic critical energy Ec. Then there is a naturally associated basis 
change M such that the transfer matrices over a polymer σ ∈ Σ are given by (12). It is now nat-
ural to consider the M-modified Prüfer variables θM,E

ω (m) not on all sites of m ∈ Z, but rather 
only on the left boundaries of the nth polymer which for a configuration ω =

(
(σm)m∈Z, k) is 

given by k +
∑n−1

l=0 Lσl . Hence let us introduce the M-modified polymer Prüfer variables by

θεω(n) = θM,Ec+ε
ω

(
k +

n−1∑
l=0

Lσl

)
mod π,� (23)

together with a suitable choice of lift that will be fixed next. For that purpose, let us recall that 
by the elementary gap labelling of the gap at Ec for the periodic operator given by periodizing 
the polymer block σ, there exists an integer lσ ∈ {0, . . . , Lσ} such that

θ0,Ec
ω (Lσ − k)− θ0,Ec

ω (−k) = π lσ� (24)

where ω = (ω0, k) is such that ω0 = (σn)n∈Z with σ0 = σ. Then the IDS of the random poly-
mer Hamiltonian (Hω)ω∈Ω at the critical energy is given by

N (Ec) =
〈lσ〉
〈Lσ〉

.

Then (24) implies that

θM,Ec
ω (Lσ − k)− θM,Ec

ω (−k) = π lσ ,
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where still ω = (ω0, k) is such that ω0 = (σn)n∈Z with σ0 = σ. Then the lift in (23) is fixed by

θεω(n)− θεω(n − 1) = θM,Ec+ε
ω

(
−k +

n−1∑
l=0

Lσl

)
− θM,Ec+ε

ω

(
−k +

n−2∑
l=0

Lσl

)
− πlσn .

Consequently, by iterating this and taking in (22) subsequences only on the polymer boundaries,

N (Ec + ε) =
1
π

lim
N→∞

1∑N−1
n=0 Lσn

〈
θεω(N) + π

N∑
n=1

lσn

〉

= N (Ec) +
1

π 〈Lσ〉
lim

N→∞

1
N

〈θεω(N)〉 .

�

(25)

Due to the set-up, the M-modified polymer Prüfer variables satisfy

Rε
ω(n)

(
cos(θεω(n))
sin(θεω(n))

)
= MTEc+ε

σn
M−1

(
cos(θεω(n − 1))
sin(θεω(n − 1))

)
,� (26)

where Rε
ω(n) > 0 is a normalization factor that is irrelevant for the present purposes. One can 

now replace (12) for MTEc+ε
σ M−1. It is, however, useful to include the term resulting from cσ 

into the hyperbolic factor. The cost is a commutator of higher order ε2. Hence let us introduce 
the notations

MTEc+ε
σ M−1 = Qε

σ Dκσ(1+εcσ),� (27)

with

Qε
σ = 1 + aσε

(
0 −1
1 0

)
+ bσε

(
0 1
1 0

)
+ ε2 Aε

σ , Aε
σ =

(
αε
σ βε

σ

γε
σ δεσ

)
.

Modifying κσ to κσ(1 + εcσ) is, for ε sufficiently small, not of any relevance, but does lead 
to heavier notations and some inessential complications in the argument below, so we simply 
suppose cσ = 0 for all σ ∈ Σ. Note that this is the case anyhow in the random hopping model, 
see (2). Of importance will be, however, to make some assumptions on the random coeffi-
cients of Qε

σ. We will assume that the following are positive and finite quantities:

C1 = ess inf (aσ − |bσ|) , C2 = ess sup
(
aσ + |bσ|

)
, C3 = sup

|ε|�1
ess sup ‖Aε

σ‖,

� (28)
where the essential infimum and supremum are taken over σ ∈ Σ. Even though it can be 
worked around it (see section 4.5), the arguments below become simpler when we also assume 
finiteness of

C4 = ess supκσ .

Example. These assumptions are satisfied in case of (2) provided the support of t(2n + 1) is 
compact in (0,∞). Indeed, then C3 = ess sup t(2n + 1)−2 < ∞ and

aσ =
t(2n + 1)−2 + 1

2
, bσ =

t(2n + 1)−2 − 1
2

, cσ = 0,

so that C1 = min{1, ess inf t(2n + 1)−2} > 0 and C2 = max{1, ess sup t(2n + 1)−2} < ∞. �
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4.  Bound on the rotation number

In this section, we prove an upper bound of the average rotation number on the rhs of (25) in 
the vicinity of a critical energy Ec. This will be based on a detailed analysis of the modified 
polymer Prüfer phases defined in section 3.4 and, in particular, a probabilistic control on the 
average time to make a loop in projective space. It will be convenient to achieve this for the 
Dyson–Schmidt variables defined by

xεω(n) = − cot(θεω(n)).� (29)

The map θ ∈ (−π
2 , π

2 ] �→ x = − cot(θ) ∈ R is an orientation preserving bijection onto the 
one-point compactification R = R ∪ {∞} which is also called the stereographic projection 
(some other authors do not include the sign or use the tangent). Just as in (3), the dynamics of 
the xεω(n) as deduced from (26) is given by the Möbius transformation with the matrix given 
in (27). The Möbius action of a 2 × 2 matrix M on R  is denoted by M · x. As this dynamics 
is generated by two consecutive Möbius actions by Dκσn

 and Qε
σn

 (recall that we suppose 
cσ = 0), it is useful to set

xεω(n − 1
2
) = Dκσn

· xεω(n − 1),

so that

xεω(n) = Qε
σn

· xεω(n − 1
2
) = (Qε

σn
Dκσn

) · xεω(n − 1).

The dynamics is shown in figure 4.

4.1.  Deterministic bounds on Dyson–Schmidt variables

The first step of the analysis consists of deterministic arguments to verify that the scenario 
sketched in the introduction is valid. Hence let us drop all indices on Qε

σn
, Dκσn

, xεω(n), aσn, 
bσn, α

ε
σn

, βε
σn

, γε
σn

 and δεσn
 in order to improve readability. Furthermore, let us spell out the 

action of Q and D on x explicitly:

Q · x =
(1 + ε2α)x + (a−b − εβ)ε

1 + ε2δ − (a+b + εγ)εx
, D · x = κ2x.� (30)

As the effect of Q· and D· is strongly dependent on x ∈ R, it will be useful to split the com-
pactified real line in several regions. This splitting will depend on a parameter k > 1 associ-
ated to which we also fix K = 2C2(1 − k−1)−1. Then set:

RI = (−∞, 0],
RII = {x ∈ R : 0 < x < Kε} ,

RIII =
{

x ∈ R : Kε � x � (Kε)−1} ,

RIV =
{

x ∈ R ∪ {∞} : x > (Kε)−1} .

Lemma 4.  There exists an ε0 = ε0(k, C1, C3) ∈ (0, 1) such that all ε ∈ (0, ε0] satisfy

Kε � x � (Kε)−1 =⇒ Q · x � kx, (RIII)� (31)

Kε � x � (Kε)−1 =⇒ (DQ) · x � kκ2x, (RIII)� (32)
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x > 0 and (QD) · x � 0 =⇒ D · x > (Kε)−1, (into RIvia RIV)
� (33)

x � 0 =⇒ Q · x < Kε. (from RI)� (34)

Proof.  Let us first note that Q is a (random) rotation by terms of order ε, so that there is no 
real solution of the fixed point equation Q · x = x. However, for k > 1, there are two real roots 
of the quadratic equation Q · x = kx  which are given by

x± =
k(1 + ε2δ)− (1 + ε2α)

2kε(a+b + εγ)

(
1 ±

√
1 − 4kε2(a+b + εγ)(a−b − εβ)

[k(1 + ε2δ)− (1 + ε2α)]2

)
.

Indeed, the term under the square root is positive by the assumptions C1  >  0 and C2 < ∞ 
for ε sufficiently small. For y ∈ [0, 1] one has 1 − y �

√
1 − y. With this at hand, one readily 

checks that [y−, y+] ⊂ [x−, x+] for

y− =
2ε(a−b − εβ)

k(1 + ε2δ)− (1 + ε2α)
, y+ =

k(1 + ε2δ)− (1 + ε2α)

kε(a+b + εγ)
− 2ε(a−b − εβ)

k(1 + ε2γ)− (1 + ε2α)
.

Hence for x ∈ [y−, y+], one has Q · x � kx . In the final step of the proof of (31), one now has 
to check that [εK, 1

εK ] ⊂ [y−, y+]. Indeed, using the assumed bounds on the constants in (28), 
one has (uniformly in σ) for ε sufficiently small

y− �
2ε(C2 + εC3)

k(1 − ε2C3)− (1 + ε2C3)
� ε

2kC2

k − 1
= εK,

and

y+ �
k(1 − ε2C3)− (1 + ε2C3)

kε(C2 + εC3)
− 2ε(C2 + εC3)

k(1 − ε2C3)− (1 + ε2C3)
�

1
ε

k − 1
2kC2

=
1
εK

.

Now the proof of (31) is completed. That of (32) then follows directly from (30).

Figure 4.  Schematic representation of the random dynamics of the Dyson–Schmidt 
variables and the region described in the text.
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As for the proof of (33), recall that the denominator of Q · x in (30) is positive whenever 
0 < x � (Kε)−1 (see above). Moreover, the numerator is bounded below C1ε(1 + C3)

−1 > 0 
for ε sufficiently small. Thus Q · x > 0. As D· preserves the sign, the negation of (33) is falsi-
fied by replacing x by D · x.

As for the proof of (34), it is sufficient to consider the case Q · x > 0 in which both numera-
tor and denominator in (30) are positive. Using x  <  0, one can now estimate as follows:

Q · x �
(C2 + εC3)ε

1 − ε2C3
�

2C2ε

1 − ε2C3
=

(K − 2C2(k − 1)−1)ε

1 − ε2C3
< εK,

again for sufficiently small ε.� □ 

Let us now collect a few first implications of lemma 4. For this purpose, let us use the 
notation

Rc
I = (0,∞].

Loops on projective space require passages from RI to Rc
I  and back to RI. Since D· preserves 

the sign, leaving one of the half-lines and entering the other one, is only possible as a conse-
quence of the action Q·, namely

(xεω(n − 1), xεω(n)) ∈ Rc
I ×RI =⇒ xεω(n − 1

2
) ∈ Rc

I ,� (35)

(xεω(n − 1), xεω(n)) ∈ RI ×Rc
I =⇒ xεω(n − 1

2
) ∈ RI.� (36)

Now, (35) can be improved, namely by using lemma 4, whose penultimate statement (33) 
implies that RI can only be entered by leaving RIV, i.e.

(xεω(n − 1), xεω(n)) ∈ Rc
I ×RI =⇒ xεω(n − 1

2
) ∈ RIV.� (37)

Statement (36) is can be improved in a similar way. However, it is more useful to understand 
a consequence of the last statement (34) of lemma 4, namely

(xεω(n − 1), xεω(n)) ∈ RI ×Rc
I =⇒ xεω(n) ∈ RII.� (38)

Therefore, a rotation requires a stay in RII at an integer-valued time and a later hit of RIV at a 
half-integer-valued time, notably for all N ∈ N one has

∃ 0 < M1 < M2 � N : (x(0), xεω(M1), xεω(M2)) ∈ RI ×Rc
I ×RI

⇓

∃ 0 < P � Q < N : (xεω(P), xεω(Q +
1
2
)) ∈ RII ×RIV

� (39)

with the understanding that M1, M2, P and Q are required to be integers. The passage through 
RIII  in (39) is first analyzed under the hypothesis of bounded support of κσ, i.e. C4 < ∞. 
Lemma 5 states (under the latter assumption) that the dynamics can only leave RII by entering 
a certain subset of RIII . To formulate it precisely, we decompose RIII  into

R<
III =

{
x ∈ R : Kε � x < 2(C4)

2Kε
}

,

R>
III =

{
x ∈ R : 2(C4)

2Kε � x � (Kε)−1} .

F Dorsch and H Schulz-Baldes﻿J. Phys. A: Math. Theor. 53 (2020) 185201



16

Lemma 5.  Assume C4 < ∞. Then for all ε > 0 sufficiently small and all m ∈ 1
2N

x(m) ∈ RII and x(�m�+ 1
2
) �∈ RII =⇒ x(�m�+ 1

2
) ∈ R<

III,� (40)

where �m� = min{n ∈ N : n � m}.

Proof.  If m ∈ N, the statement is trivial because C4 � κ. Hence suppose m �∈ N and set 
x = x(m). Then x(�m�+ 1

2 ) = (DQ) · x. Now, since x ∈ RII, Q · x is positive and obeys

Q · x =
(1 + ε2α)x + (a−b − εβ)ε

1 + ε2δ − (a+b + εγ)εx
<

3
2 K ε

3
4

= 2 K ε.

Thus, (DQ) · x = κ2(Q · x) ∈ (0, C2
42Kε), and hence (DQ) · x ∈ R<

III due to (DQ) · x �∈ RII.� □ 

4.2. The associated renewal process

Now let ε > 0 be sufficiently small so that lemmata 4 and 5 hold. Lemma 5 implies a conse-
quence of the lower statement of (39), namely

∃ 0 < P � Q < N : (xεω(P), xεω(Q +
1
2
)) ∈ RII ×RIV

⇓

∃ 1 < R < S < N : (xεω(R +
1
2
), xεω(S +

1
2
)) ∈ R<

III ×RIV

� (41)

for all N ∈ N, with P, Q, R and S required to be integers. In view of statement (32) of lemma 
4, the lower statement of (41) implies, in turn,

∃ 1 < R < S < N : (xεω(R +
1
2
), xεω(S +

1
2
)) ∈ R<

III ×RIV

⇓

∃ 2 < N1 � N2 < N :
N2∏

n=N1

kκ2
σn

>
(
2C2

4K2ε2)−1

� (42)

for all N ∈ N, where R, S, N1 and N2 are integers, since at least the width of R>
III  has to be 

overcome.
As mentioned above, a rotation requires, in particular, the run of xεω(·) from RI into Rc

I  and 
then back to RI. If the starting and terminating region RI were a singleton, the completion of 
a rotation would be construable as the occurence of a renewal of the process. Such renewals 
do not actually occur in the present process, since the locations of the dynamics after the re-
entrances into RI are vague. Accordingly, the random durations of the respective rotations are 
not identically distributed. However, the statements (39), (41), (42) combined imply

∃ 0 < M1 < M2 � N : (x(0), xεω(M1), xεω(M2)) ∈ RI ×Rc
I ×RI

⇓

∃ 2 < N1 � N2 < N :
N2∏

n=N1

kκ2
σn

>
(
2C2

4K2ε2)−1
.

� (43)
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Thus, these random durations can be uniformly bounded from below by i.i.d. (and R+-valued) 
random variables {Xn}n∈N satisfying for all s � 0

P(X1 � s) = P
(
∃ 2 < N1 � N2 < �s� :

N2∏
n=N1

kκ2
σn

>
(
2C2

4K2ε2)−1
)

,� (44)

which are then proper interarrival times and specify a renewal process (see [9], section 10) via

P(t) = max
{

M ∈ N :
M∑

n=1

Xn � t
}

, t � 0.� (45)

Now, the interarrival times of the renewal process (45) bound the random durations of the 
rotations from below. The renewal function 〈P(·)〉, accordingly, bounds the (expected) rotation 
number 1

π 〈θεω(N)〉 from above. Indeed, (43)–(45) imply

1
π
〈θεω(N)〉 � 〈P(N)〉+ 1

2
,

for any starting point θεω(0) ∈
(
0, π

2

]
. Hence the elementary renewal theorem [9, section 10]

lim
t→∞

〈P(t)〉
t

= 〈X1〉−1� (46)

yields

lim sup
N→∞

1
π

〈θεω(N)〉
N

� 〈X1〉−1.� (47)

Thus the next aim is a lower bound of the mean of the interarrival time X1.

4.3. The large deviation estimate

The present section is devoted to a lower bound on the expectation of X1 given by (44). The 
desired lower bound can be obtained by controlling the probability of the event

∃ 2 < N1 � N2 < N :
N2∏

n=N1

kκ2
σn

>
(
2C2

4K2ε2)−1
� (48)

for N ∈ N. A rough upper bound on the probability of (48), a union of events, is given by the 
sum of the probabilities of the single events, i.e. for fixed N1 and N2. This turns out to be suf-
ficient for our purposes. As a preparation for bounding the probabilities of the single events, 
let us observe that there exists a unique �k ∈ (0, ν

2 ) such that
〈(

kκ2
σ

)�k
〉
= 1� (49)

(see [8], section 1.2) is satisfied. Indeed, (49) is equivalent to f (�k) = gk(�k), where

f : [0,
ν

2
] → (0, 1], � �→ 〈κ2�〉, and gk : [0,

ν

2
] → [k−

ν
2 , 1], � �→ k−�.

But f  is continuous, convex and obeys f−1(1) = {0, α
2 } and gk is bijective and decreasing. 

Moreover, (49) implies that all ξ ∈ (0, �k) satisfy
〈(

kκ2
σ

)�k−ξ
〉
< 1.

F Dorsch and H Schulz-Baldes﻿J. Phys. A: Math. Theor. 53 (2020) 185201



18

Lemma 6.  For some k  >  1 let �k ∈ (0, ν
2 ) be such that it satisfies (49). Then,

P
(
∃ 2 < N1 � N2 < N :

N2∏
n=N1

kκ2
σn

> ζ−1
)

� ζ�k−ξN
(〈(

kκ2
σn

)�k−ξ
〉−1

− 1
)−1

� (50)

holds for all N ∈ N, ξ ∈ (0, �k) and ζ > 0.

Proof.  The series of estimates

P

(
∃ 2 < N1 � N2 < N :

N2∏
n=N1

kκ2
σn

> ζ−1

)
�

N−1∑
N2=3

P

(
∃ 2 < N1 � N2 :

N2∏
n=N1

kκ2
σn

> ζ−1

)

�
N−1∑
N2=3

N2∑
N1=3

P

(
N2∏

n=N1

kκ2
σn

> ζ−1

)

�
N−1∑
N2=3

N2∑
N1=3

P

(
N2∏

n=N1

(
kκ2

σn

)�k−ξ
> ζξ−�k

)

� ζ�k−ξ
N−1∑
N1=3

N2∑
N1=3

〈(
kκ2

σn

)�k−ξ
〉N2−N1+1

� ζ�k−ξN
∑
n∈N

〈(
kκ2

σn

)�k−ξ
〉n

= ζ�k−ξN
(〈(

kκ2
σn

)�k−ξ
〉−1

− 1
)−1

completes the proof.� □ 

The desired lower bound on 〈X1〉 is now obtained by using the estimate proved in lemma 6.

Lemma 7.  For some k  >  1 let �k ∈ (0, ν
2 ) be such that it satisfies (49). Moreover, let 

ξ ∈ (0, �k). Then, sufficiently small ε > 0 satisfy the estimate

〈X1〉 �
1
2
(2C2

4K2ε2)ξ−�k

(
1 −

〈(
kκ2

σn

)�k−ξ
〉)

.� (51)

Proof.  Let N ∈ N. In view of (44) and the bound (50) obtained in lemma (6), it holds that

P(X1 � N) � (2C2
4K2ε2)�k−ξN

(〈(
kκ2

σn

)�k−ξ
〉−1

− 1
)−1

.

Thus, setting

Υ = (2C2
4K2ε2)ξ−νc

(〈(
kκ2

σn

)�k−ξ
〉−1

− 1
)

,

it holds that

〈X1〉 =
∑
N∈N

P (X1 � N) =
∑

N∈N0

[1 − P (X1 � N)] �
∑

N∈N0

min
{

0, 1 −Υ−1N
}

=

�Υ�∑
N=0

[
1 −Υ−1N

]
= �Υ� −Υ−1

�Υ�∑
N=1

N = �Υ� − �Υ� (�Υ�+ 1)
2Υ

�
(Υ− 1)2

2Υ
,
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which implies (51) for sufficiently small ε.� □ 

4.4.  Conclusion of the argument: the case of bounded support

Now all technical elements needed for the proof of theorem 1 are prepared. The following 
result also includes the generalization to arbitrary hyperbolic critical energies.

Theorem 8.  Let Ec be a hyperbolic critical energy of a random polymer Hamiltonian. 
Let C1 to C4 be finite positive constants. Suppose that γ0 < 0 and that the exponent ν > 0 is 
defined by (4), namely 〈κν

σ〉 = 1. For all δ ∈ (0, ν) there exist Cδ < ∞ such that sufficiently 
small ε satisfy

|N (Ec + ε)−N (Ec)| � Cδ ε
ν−δ .

Proof.  Due to (25) it is sufficient to prove a bound on the rotation number. For k  >  1 let 
�k ∈ (0, ν

2 ) be such that it satisfies (49) and ξ ∈ (0, �k). Furthermore, let ε > 0 be such that the 
statements of lemmas 4, 5 and 7 hold. Then, (47) and (51) imply

lim sup
N→∞

1
2π

〈θεω(N)〉
N

� 2 (2C2
4K2ε2)�k−ξ

(
1 −

〈(
kκ2

σn

)�k−ξ
〉)−1

.� (52)

But �k is continuous in k and converges to ν2  as k ↓ 1. Thus the rhs of (52) is bounded above 
by Cδε

ν−δ for

Cδ = 2 (2C2
4K2)�k−ξ

(
1 −

〈(
kκ2

σn

)�k−ξ
〉)−1

,

where k  >  1 and ξ ∈ (0, �k) have to be chosen such that 2(�k − ξ) = ν − δ  holds.� □ 

4.5. The case of unbounded support

Proving upper bounds on the rotation number is somewhat more involved, once the assump-
tion C4 < ∞ is dropped. In this situation, there does not exists some K ∈ (1,∞) such that

κσ1 � K, κσ2 � K, . . . , κσN � K� (53)

holds with probability 1. However, the above arguments can be applied to the cases where the 
event (53) does occur. Thus, (43) reads more generally

∃ 0 < M1 < M2 � N : (x(0), xεω(M1), xεω(M2)) ∈ RI ×Rc
I ×RI

⇓

(53) is violated or ∃ 2 < N1 � N2 < N :
N2∏

n=N1

kκ2
σn

>
(
2K2K2ε2)−1

.

� (54)

Thus, let us analyze the renewal process induced by the i.i.d. interarrival times {X̃n}n∈N with

P
(
X̃1 � s

)
= P

(
(53) is violated or ∃ 2 < N1 � N2 < N :

N2∏
n=N1

kκ2
σn

>
(
2K2K2ε2)−1

)
,
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where s � 0 and N = �s�, instead of (45). Now, the probability of the violation of (53) is dealt 
with by

P ( (53) is violated) � N P(κ > K) = N P(κν > Kν) � K−νN,

where we used 〈κν
σ〉 = 1, so that lemma 6 implies that all k  >  1 and ξ ∈ (0, �k) obey

P
(
X̃1 � N

)
� N

[
K−ν + (2K2K2ε2)�k−ξ

(〈(
kκ2

σn

)�k−ξ
〉−1

− 1
)−1

]
.� (55)

Clearly, the choice K = ε−
1
2 optimizes the order of the right side of (55) in ε as k ↓ 1. This 

allows to prove that the bound in theorem 8 remains valid if the exponent ν − δ  is replaced by 
ν
2 − δ, even if C4 is not finite.
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