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Abstract

Using in situ data, accumulated in the turbulent magnetosheath by the Magnetospheric Multiscale Mission, we
report a statistical study of magnetic field curvature and discuss its role in the turbulent space plasmas.
Consistent with previous simulation results, the probability distribution function of the curvature is shown to
have distinct power-law tails for both high and low value limits. We find that the magnetic-field-line curvature is
intermittently distributed in space. High curvature values reside near weak magnetic-field regions, while low
curvature values are correlated with small magnitude of the force acting normal to the field lines. A simple
statistical treatment provides an explanation for the observed curvature distribution. This novel statistical
characterization of magnetic curvature in space plasma provides a starting point for assessing, in a turbulence
context, the applicability and impact of particle energization processes, such as curvature drift, that rely on this

fundamental quantity.

Unified Astronomy Thesaurus concepts: Space plasmas (1544); Plasma physics (2089); Magnetohydrody-

namics (1964)

1. Introduction

The curvature of the magnetic field enters in numerous
important ways in electrodynamics (Petschek 1964) and plasma
physics (Boozer 2005), representing one of the principal ways
that magnetic fields interact with matter. Curvature plays a key
role in magnetic reconnection (Petschek 1964), stability of
magnetic confinement (Dobrott et al. 1977), in magnetospheric
physics and space physics (Hameiri et al. 1991), and in particle
heating and acceleration (Pesses et al. 1981; Jokipii 1982;
Dahlin et al. 2014). Usually, curvature is studied with regard to
specific magnetic configurations. For example, stability with
respect to ballooning modes requires favorable curvature that is
antiparallel to the pressure gradients (Boozer 2005). Similarly,
the large curvature of field lines in reconnection exhausts gives
rise to relaxation toward a less stressed state, leading to electron
energization by curvature drift acceleration (Dahlin et al. 2014).
Magnetic-field curvature has been useful for detecting helical
field configuration of flux ropes from in situ measurements
(Slavin et al. 2003; Shen et al. 2007; Sun et al. 2019).

Recently, the curvature of magnetic field lines has been
studied in the magnetohydrodynamic (MHD) model of plasma
turbulence (Yang et al. 2019). In the case of turbulence, it is
impractical to study curvature of individual field lines and one
may resort to a statistical approach, as is typical in studies of
turbulence (Monin & Yaglom 1971). In these simulations, one
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finds interesting properties such as a distribution of curvature
that exhibits two power-law regimes, and a systematic
anticorrelation of curvature with magnetic field strength, for
low values of magnetic field strength. Here, we extend this
statistical examination of magnetic curvature by analysis of
in situ satellite observations in the terrestrial magnetosheath.
We employ Magnetospheric Multiscale (MMS) data that reveal
distributions and correlations that are consistent with, and in
fact very similar to, those observed in the MHD simulations
(Yang et al. 2019). These results confirm the theoretical model
given in Yang et al. (2019), opening the door to new
applications such as curvature drift acceleration in turbulence
as well as the possible role of local explosive instabilities in
turbulence.

The outline of the Letter is as follows: In Section 2, we
discuss the theoretical derivation and approximations. In
Section 3, we apply the theoretical constructs to MMS data
and present the results. We discuss the importance of the results
and conclude in Section 4. In Appendices A and B, we justify
the assumptions made in Section 2. Appendix C shows the
results presented in Section 3 for a different MMS interval.

2. Theory and Method

The curvature s of magnetic field B is defined as

k=1b- Vb|, 1)
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where b = B/B and B = |B|. It can be expressed also in the
form

b x (B - VB)|
K=
BZ

_h

=25
where f, = |b x (B - VB)| is the magnitude of the tension
force (per unit volume) acting normal to the field lines. In the
curvilinear coordinate attached to a field line, traced by a
trajectory vy (s), the scalar s is a coordinate along the field line,

. dy | d d>y /,d> .
.whlle e = d—j/ld—?l =bande, = ﬁ/lle are the unit vectors
in the tangential and normal directions along the field line,
respectively. Then

@)

O(Be,) = Ba—Be — kB2
8 t n-

S A
3)

B- VB = (Be)- V(Be) =B

Equation (2) follows directly from Equation (3).

It is shown in the following section that high curvature
values are well associated with weak magnetic field. In
contrast, low curvature values mainly result from small normal
force, more so than from large values of magnetic field. These
findings point the way to explain the power-law tails in the
curvature distribution in both the high value range and the low
value range, reasoning as follows Yang et al. (2019).

First, let us consider the low value range. Noting that the
normal force is two-dimensional, we write its Cartesian
components as f; and f>, and then assume that these are
independent random variables and their probability distribution
function (PDFs) for small values obey the Gaussian distribu-
tion. Then the PDFs of f; and f, at small values may be
written as

e o, )

P(f) =Pr(f) =

210}

where f denotes the vale of either f; or f> at the point of interest,
and o7 is the variance. The quantity fn2 / o = ( f12 + fzz) / ol
should then be distributed according to the chi-squared
distribution with 2 degrees of freedom. The corresponding

PDF of f,, at small values (i.e., f, — 0) is
_~
Ps(f) = ize 207, 5)

a1

Here, f represents the value of the variable f,,. See Appendix A
where a slightly more general, but equivalent, development is
given. Since x = f, B~? and low curvature « is determined by
the scaling behavior of small normal force f,, the PDF of
curvature as £ — 0 can be written as

B.(k") = BzPﬁx(n’Bz) = B
o

e . (6)

Here, +’ is the value of the variable . Let us assume that B is
finite in this limit, which could be replaced with B,s in
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Equation (6). Then the Taylor series of the PDF around

K =0is
B*( , B*
—| K - K34 @)
0'%[ 207 )

The higher-degree terms are much smaller as &' — 0, so we
retain only the lowest-order term, and obtain

Pieo(K') ~ K. ®)

In a similar way, we can explain the power-law tail of the
PDF for high curvature values. In isotropic turbulence, we
suppose that x, y, and z components of magnetic fluctuations
are independent Gaussian random variables. Then

Bxa By’ Bz ~ N(Oa U%)’ (9)

where N(0, a%) denotes the normal distribution with mean 0
and variance o3. In real systems, the magnetic fields are never
fully isotropic, so we eliminate the average from each
component and work with the fluctuations. Note that, in a
turbulent system, the increments of the magnetic field are
intermittently distributed with super-Gaussian tails (Matthaeus
et al. 2015), but the fluctuation components themselves are
rather well described by Gaussian distribution (Batchelor 1951;
Padhye et al. 2001; also see Appendix B). The quantity
B2 / o3 = (B} + B} + BY) / 03, therefore, follows the chi-
squared distribution with 3 degrees of freedom. The corresp-
onding PDF of B” is

Vb b
b 203

Ppob)y= ——" 3, 10
# ) = TG {10

where, b’ represents the value of B” at the point of interest, and
I is the gamma function. Since x = f, B~2 and high curvature
K is determined by the scaling behavior of weak magnetic field
B?, the PDF of curvature as K — 00 can be written as

3/2 .1—-5/2 7
By = Jipo[B) o LR kg
K2 K/ (203)3/2T(3/2)

Again, ' is the value of the variable . In analogy to the prior
case, we assume that f,, remains finite in this limit, and replace
the associated value with the average (f,) in Equation (11).
Then the Taylor series for the PDF about 1/x' = 0 becomes

f3/2 5/2 f 7/2
m( S ) 2

It follows that in the limit as ¥’ — oo, ie., 1/k’ — 0, the
curvature PDF scales as

P () ~ KIT/2, 13)

Previously (Yang et al. 2019), the above reasoning was found
to explain the behavior of the distributions of curvature in
three-dimensional, isotropic, MHD simulations. We now
extend this inquiry to the case of a naturally occurring space
plasma, the turbulent magnetosheath.
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Figure 1. Overview of the MMS observations in the turbulent magnetosheath selected for this study. The data shown are from the FGM and FPI instruments on board
the MMS1 spacecraft. Panel (a) shows the magnetic field measurements in GSE coordinates. Panel (b) shows the electron density. Panel (c) shows the ion velocity in
GSE coordinates. Panel (d) shows the curvature calculated (approximately using a curlometer-like method) from the magnetic field (see Equation (1)).

Below, we use four-spacecraft linear estimates of gradient,
similar to the “curlometer” method (Dunlop et al. 1988;
Paschmann & Daly 1998) to calculate Vb. Then a dot product
with b yields the curvature x = |b - Vb|. In Section 3, we use
this approach to analyze the statistical properties of the
curvature field using MMS observations, including the
accuracy of the above scaling arguments.

3. MMS Observations

MMS consists of four identical spacecraft orbiting the Earth,
for the chosen period, in a tetrahedral formation with small
(~10 km) separation. The four MMS spacecraft sample the
near-Earth plasma including the magnetosheath (Burch et al.
2016). The Fast Plasma Investigation (FPI; Pollock et al. 2016)
instrument calculates the proton and electron three-dimensional
velocity distribution functions (VDFs) and the Flux-Gate
Magnetometer (FGM; Russell et al. 2016) measures the vector
magnetic field.

In burst mode, the Dual Ion Spectrometer (DIS) and the Dual
Electron Spectrometer (DES) in FPI/MMS measure the ion
and electron VDF at a cadence of 150ms and 30 ms,
respectively. Plasma moments are calculated from each VDF
at the corresponding time resolution. The time resolution of the
FGM magnetic field is 128 Hz in burst mode.

To cover a large statistical sample of the turbulent plasma in
the magnetosheath, here we focus on one long MMS burst-
mode interval between 06:12:43 and 06:52:23 UTC on 2017
December 26. A time-series plot of the selected interval is
shown in Figure 1. The FGM magnetic field components, in the
geocentric solar ecliptic (GSE) coordinate system (Franz &
Harper 2002), are shown in panel (a). The magnetic field
components exhibit large-amplitude fluctuations that are typical
for magnetosheath plasma. The electron density estimates are

Table 1
Description of MMS Data Set from 06:12:43 to 06:52:23 UTC on 2017
December 26

MMS Position |(B)| Bins/1(B)| L d; Bp
X, Y)gse (nT) (km) (km)
(10R., 9 R.) 17.9 0.8 27 47 44

Note. The quantities are defined in the text.

often more accurate than the ion density in the magnetosheath
due to higher thermal speed. Panel (b) plots the electron
density, obtained from the FPI/DES distributions. The three
GSE components of the ion velocity components, measured by
FPI/DIS, are plotted in panel (c). The final panel (d) shows the
time series of the curvature field, derived from the magnetic
field by a finite difference curlometer-like method (see
Section 2). The curvature values are observed to be highly
intermittent with thin “spikes” distributed during the whole
interval that suggest the presence of sheet-like structures.
Several important plasma parameters of the selected MMS
interval are reported in Table 1, including the locations of the
MMS spacecraft in the GSE coordinate system, in units of Earth
radius (R.) during the interval, mean magnetic field (| (B)|), ratio
of rms fluctuation amplitude of the magnetic field (B,ys) to the
mean magnetic field, average spacecraft separation L, ion-inertial
length (d;), and the average plasma beta (3,). The rms fluctuation
amplitude is defined as By = +/(|B(t) — (B)|*), which has a
value of 14 nT here. The spacecraft separations are much smaller
than the ion-inertial length. However, using the curlometer
method in the determination of gradients, there are some errors
associated that affect the estimation of f,, and . Following Shen
et al. (2003, 2007), the fractional error in the curvature values
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Figure 2. PDF of the magnetic field curvature x normalized to its rms value
Krms, computed from the 40 minute MMS data set shown in Figure 1.

can be estimated roughly as

Ar ~ O(Lk), (14)
K

where L is the spacecraft separation. For the present interval,
we may use L ~ 10 km. From Figure 1, the maximum of the
curvature values reaches about x ~ 0.5 km™'. Therefore, the
fractional error in curvature remains within ~0.5. Further, by
comparing the FPI current and curlometer current, several
studies have found that the MMS curlometer usually works
well in the magnetosheath (e.g., Gershman et al. 2018; Stawarz
et al. 2019). Therefore, the results presented below are expected
to be reliable.

The main quantitative observational result of this study is
contained in Figure 2, which shows the PDFs of the curvature
for the ~40 minute magnetosheath interval of MMS data
described in Table 1 and shown in Figure 1. Many prior
studies (e.g., Shen et al. 2003, 2007; Slavin et al. 2003; Rong
et al. 2011; Akhavan-Tafti et al. 2019; Sun et al. 2019) have
explored curvature of the magnetic field in the magnetosphere
for individual events or collection of structures, but as far as we
are aware, this is the first detailed analysis of statistics of
magnetic-field curvature in turbulent space plasmas using
observational data.

The PDF shown in Figure 2 exhibits two distinct power-law
regimes: at low values of the curvature field, its distribution
scales roughly as x"', while at high curvature values the
distribution behaves as £~ >°. This is remarkably similar to the
empirical and theoretical findings of Yang et al. (2019).

To further clarify the statistics of the magnetic curvature,
Figure 3 shows the joint probability distributions of curvature
and squared magnetic field magnitude, and curvature and normal
force. The relationship between high curvature and regions of
weak magnetic field is corroborated by the former. In Figure 2,
the power-law regimes are separated at /s 5 0.1 and
K/Kmms % 1. From the left panel of Figure 3, the curvature and
magnetic field are rather well associated for x/kms Z 1, and the
association begins to weaken at x/Kuys < 0.1. The Pearson-r

Bandyopadhyay et al.

coefficient between &/ ks and (B/Bims)? for £/ ks = 0.9 has
a magnitude of 0.53, and it is 0.005 for k/Kys < 0.15. This is
consistent with the intuition that weak magnetic fields are easier
to bend, and leads to the above-described x=2° curvature
distribution in the weak magnetic field regime.

Similarly, the positive correlation between curvature and
normal force per unit volume at low curvature is shown in
Figure 3 (right panel). Again, at small curvature values, x and
f, are well correlated with a Pearson-r coefficient value of 0.12
for K/Kms < 0.15, However, at a high curvature value the
association is not so clear, resulting in a Pearson-r value of 0.02
for k/kKms = 0.9. This supports the reasoning that leads to the
kt! behavior of the  distribution at the small values of
curvature. These quantifications are summarized in Table 2.

The interval shown in Figure 1 is selected for no special reason
other than its long duration and the preliminary observation that it
exhibits well-developed turbulence properties (Parashar et al.
2018). The same analyses on other turbulent magnetosheath
intervals produce similar results (see Appendix C and Figure C1).

As a final, direct observational diagnostic, in the two panels
in Figure 4 we show small samples of the time series of
curvature and magnetic field (top panel) and curvature and the
normal force (bottom panel) to illustrate how large (small)
curvature regions are often localized in regions of low magnetic
field strength (low normal force strength).

Indeed, from the top panel of Figure 4 one observes several
peaks in curvature values that are contemporaneous with sharp
drops in the magnetic field strength. Similarly, from the bottom
panel, strong dips in the curvature are accompanied by dips in
the normal force values. For clarity, only small subintervals of
the whole magnetosheath interval are shown. We note that only
curvature large enough, say, x/kms % 1 (i.., the right power-
law regime in Figure 2), is associated with small B, and only
curvature small enough, say, k/kms < 0.1 (i.e., the left power-
law regime in Figure 2), is associated with small f,. This
behavior is also consistent with the trends seen in Figure 3 and
Table 2.

4. Discussion

Employing the unique capabilities of the MMS mission, we
have studied the statistical properties of the curvature of the
magnetic field measured in the terrestrial magnetosheath by the
FGM instrument on board each of the four spacecraft. The data
set employed is a long, 40 minute duration, burst-mode interval
in the terrestrial magnetosheath. This determination of the
statistical character of the magnetic curvature is the first of its
kind in a space plasma, as far as we are aware.

We find two power-law regimes in the distribution of values
of curvature: a ™! regime at low x, and a k2 regime at large
K. We also find an anticorrelation of curvature and magnetic
field strength at low magnetic field strength, and a positive
correlation of curvature and normal force per unit volume at
small values of the force. All of these results are consistent with
the findings of Yang et al. (2019), based on MHD simulations.
What is more remarkable is the degree of quantitative
agreement of the present observations with the MHD results.
The simple theory outlined here clearly is adequate to explain
the two power-law ranges in the curvature that are seen in both
simulations and observations.
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Figure 3. Joint PDFs of curvature  and (left panel) the square of magnetic field magnitude B? and (right panel) the magnitude of the force |f,| acting normal to the
field lines. All quantities are normalized to their respective rms values. Dashed lines with slope of 1 and —1 are shown for reference.

Table 2
Pearson’s-r Coefficient between Curvature and Magnetic Field Strength, and
Normal Force for Low and High Curvature Ranges

Range
K/ Kms < 0.15 K/ Kms = 0.9
&/ Erms, (B/Bims)? r = 0.005 r=-0.53
Variables K/Krmss | fyl/1 s r=0.12 r=0.02

It is interesting to note that the kind of distribution we find for
curvature (Figure 2) has been studied in applied mathematics and
is known as a “double-Pareto” distribution (Reed 2001; Reed &
Hughes 2002; Reed & Jorgensen 2004; Fang et al. 2012),
generalizing the standard nomenclature of the Pareto distribution
for a range of scale-invariant power-law behavior (Mitzenmacher
2004). This type of distribution generally indicates a multiplicative
process. However, if such a process is uninhibited it leads to a
lognormal distribution. When a physical effect, such as the
inner scale of turbulence, or the particle gyromotion changes
the physics and limits the process, it becomes a double-Pareto.
The mathematics of such processes may provide fruitful directions
for additional study of the nature of magnetic field curvature and
its effects on particle acceleration.

One possibility that presents itself is that these results may be
applicable to turbulent magnetic fields in other venues
including other heliospheric environments and perhaps in
astrophysical contexts as well. We note that, in order to derive
the power-law scalings, Equations (8) and (13), we assume that
the magnetic field components are isotropically distributed.
Real systems are never perfectly isotropic at any length scale,
but the magnetosheath conditions are rather close to isotropy
with a weak DC field (see Figure 1 and Table 1). Extending the
present study to other plasma systems, e.g., solar wind,
magnetotail, magnetosphere, etc., would require appropriate
modification to the derivation, although the basic arguments are
expected to remain unchanged. Independent confirmation from
other simulations, laboratory experiments, as well as other
observations, if available, is called for. To the extent that these

ol —log 4 (/K e |
—log,, (BB, )

1r | 1

I

° R MI wwﬂ‘

ml |

2l 4
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0

-1

-2
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Figure 4. Time series of the curvature field, in the thin red line, superposed on
the magnetic-field magnitude (top panel) and the magnitude of the normal force
(bottom panel), in the broad blue line, and for a small subinterval of the whole
magnetosheath interval.

results are robust, at least one major theoretical application is
suggested. Specifically, curvature drift acceleration theory
(e.g., Hoshino et al. 2001; Dahlin et al. 2014; Guo et al.
2015) has apparently been very successful in explaining
electron energization in individual magnetic reconnection
events. Since this theory depends explicitly on x, one would
expect that an immediate extension based on the present results
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would be to include a statistical distribution of curvature
values, to develop a curvature drift energization mechanism
appropriate to magnetized plasma turbulence.
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Appendix A
Distribution of Normal Force at Small Values

In deriving the scaling properties of curvature, , at low-x
values (Equation (8)), we assume that the normal force
components f; and f, are independent Gaussian variables for
small values. However, the only result that is actually used in
the subsequent development is Equation (5) which is the
distribution of the values of the magnitude of the normal force,
f,- The exact form of the distributions of f; and f>, therefore, is
not a salient point. Rather, if f, follows a chi-squared
distribution with 2 degrees of freedom (Equation (5)) for small
values of f,,, that would support the subsequent development of
the theory. Figure A1 shows the distribution of f,, and compares
it with Equation (5) for the interval analyzed in the main text. It
is evident that the small values of normal force are well
described by Equation (5).
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Figure Al. PDFs of the value of the normal force f,, as computed from MMS
data analyzed using the 40 minute interval analyzed in this Letter.
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Appendix B
Distribution of Magnetic-field Components in the
Magnetosheath Plasma

In deriving the scaling properties of curvature, x, at high-~
values (Equation (13)), we assume that the probability
distribution of magnetic-field components is approximately
Gaussian, e.g., in Equation (9). Although established in the
pristine solar wind at 1 au (Padhye et al. 2001), and expected in
general for primitive variables in turbulence (Batchelor 1951),
the Gaussianity of the turbulent fluctuations in the magne-
tosheath has not been previously quantified, as far as we are
aware (although see Whang 1977). To justify this approx-
imation, here we examine the PDFs of the fluctuations of the
magnetic field components using an analysis of several MMS
data sets. Functional fits as well as moment comparisons
(kurtoses) are used in drawing conclusions concerning the
degree of non-Gaussianity.

To begin, we analyze the main 40 minute data interval
analyzed in the text, shown in Figure 1 and described in
Table 1. The data from each spacecraft are rank-ordered into
100 bins of variable width such that each bin has an equal
number of data points. For each component, data from all four
spacecraft are collected together to increase the statistical
weight. The density of points in each bin provides an
approximation to the PDFs, This procedure is carried out for
the fluctuating magnetic-field components, and these empiri-
cally determined PDFs are shown in Figure Bl. The solid
curves are the corresponding Gaussian PDFs with zero mean
and a variance equal to that computed from the data. The
goodness of fit is measured by 2, defined as

2 xilf(a) — g(a)l Aa;
Silf (@) Ag;

where f(a;) is the observed PDF of any magnetic-field
component, and g(a;) is the corresponding Gaussian distribu-
tion. For a perfect agreement (f = g), x> = 0; a small value of
X~ indicates satisfactory fitness.

Quantitative results for the main 40 minute MMS interval are
shown in the first row of entries of Table B1. As figures of
merit, the values of the parameter x> are listed along with
values of the kurtosis for each component. While the goodness
of the Gaussian representation is measured by y?, the closeness
of the PDFs to Gaussian distributions can be also be quantified
by the kurtosis. The kurtosis for a Gaussian distribution is 3; a
kurtosis value greater (less) than 3 represents a super-(sub-)
Gaussian distribution (Matthaeus et al. 2015). The closeness of
the PDFs of the magnetic-field components to Gaussian is clear
from Figure B1 and from the values of y* and kurtoses listed in
Table B1. On deriving the power law of the curvature PDF at
large values, we also neglect the differences among B,, B,, B,
distributions, i.e., the variances of the three components are the
same in Equation (9). For the 40 minute MMS interval we have
op, = 7, og, = 8, o, = 10, which can also be seen from the
the width of the three distributions shown in Figure B1.

To draw a more proper conclusion, we further analyze a few
other turbulent magnetosheath intervals. Note that for good
statistical weight, long intervals are required. Therefore, we
select magnetosheath intervals of at least a few minutes duration
and with no prominent discontinuity. All the selected intervals
have a large fluctuation amplitude with B,s/|(B)| = 1, and the

) (BI)
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Figure B1. PDFs of fluctuations of the magnetic field as computed from MMS data analyzed in this Letter. X,

Y, and Z components are shown in the left, middle, and
right panels. The dots represent centers of the binned data, and the solid line shows the reference Gaussian. Each of the 100 bins contains 15,373 measurements.

Table B1
Kurtoses and x> Values for the Magnetic Field Components Measured by MMS in the Magnetosheath
Interval MMS Position Parameter b, by b, Bis/|(B)| Shock Type
X, Ycse

2017 Dec 26, 06:12:43-06:52:23 (10R., 9R.) X2 0.018 0.023 0.023 0.8 quasi-||
Kurtosis 3.56 3.50 3.23

2016 Jan 11, 00:57:04-01:00:34 OR., —8R.) x? 0.031 0.020 0.067 1.5 quasi-_L
Kurtosis 3.76 3.06 4.5

2017 Jan 18, 00:45:54-00:49:42 (8 Re, =S5 R.) X2 0.020 0.067 0.113 1.8 quasi-||
Kurtosis 2717 2.43 3.56

2017 Jan 27, 08:02:03-08:08:03 (11 R, 6 R.) X2 0.04 0.09 0.02 2.1 quasi-||
Kurtosis 3.14 3.08 3.29

2017 Dec 21, 06:41:55-07:03:51 (13R., —1R,) x? 0.085 0.022 0.019 2.1 quasi-||
Kurtosis 3.23 2.92 2.75

2017 Dec 21, 07:21:54-07:48:01 (14R., OR,) X2 0.012 0.094 0.045 1.9 quasi-||
Kurtosis 4.03 2.83 2.61

2018 Apr 19, 05:08:04-05:41:51 (=3 Re, —22R.) x? 0.011 0.014 0.011 3.1 quasi-_L
Kurtosis 341 3.81 3.46

2018 Apr 23, 07:50:14-08:33:41 (3R, 18R,) X2 0.019 0.035 0.027 1 quasi-_L
Kurtosis 3.54 3.47 3.73

2018 Oct 27, 09:13:14-09:57:41 (—2R., 24 R.) X2 0.017 0.010 0.029 2.5 quasi-||
Kurtosis 3.07 3.28 2.86

2018 Nov 21, 16:10:14-16:55:31 (11 R, 13R,) X2 0.010 0.049 0.009 0.9 quasi-_L
Kurtosis 3.84 3.75 2.92

2018 Nov 29, 22:42:34-23:31:01 (11 R., 8R.) X2 0.008 0.005 0.008 5 quasi-||
Kurtosis 3.04 2.90 3.10

2018 Dec 5, 14:53:23—15:20:13 (12 Re, TR.) x? 0.019 0.015 0.013 7.5 quasi-||
Kurtosis 3.39 2.95 2.82

2019 Jan 11, 03:22:23-03:52:23 (12 Re, 2 R.) x? 0.011 0.02 0.028 2.0 quasi-||
Kurtosis 3.52 2.56 2.94

2019 Apr 5, 10:58:33-11:25:52 (12R., —10R,) X2 0.024 0.035 0.086 1.9 quasi-||
Kurtosis 2.66 2.69 2.63

variances of the three components are close. Further, we check
that each of these intervals exhibits a Kolmogorov “—5/3”
spectrum, which is often considered an adequate indicator of
well-developed turbulence. The collection of studied magne-
tosheath intervals are reported in Table B1, where we also report
whether each interval is downstream of the quasi-parallel or
quasi-perpendicular bow-shock region. The nature of turbulent
fluctuations may be significantly different in the magnetosheath
plasma downstream of the quasi-parallel and the quasi-
perpendicular shock. The plasma downstream of the quasi-parallel

shock is usually found to be more turbulent, relative to that of the
quasi-perpendicular shock. The examined intervals include those
corresponding to both kinds of shock and with a substantial
variation in the normalized fluctuation amplitude By /|(B)|.
From Table B1, we see that the kurtosis lies generally
between 2.4 and 4.03, and the values of kurtosis and the fitness
parameter x> do not appear to change systematically from the
quasi-parallel to the quasi-perpendicular shock. Although this
is not a fully exhaustive sampling, it appears that turbulent
magnetosheath fluctuations are often found in a near-Gaussian
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state, as is common for fluctuations of the primitive variables in
strong homogeneous turbulence (Batchelor 1951; Schumann &
Patterson 1978).

Appendix C
Additional Supporting Analysis

We also perform the analyses presented in the main article,
namely, Figures 2 and 3, for all the intervals listed in Table B1.
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Again, every interval is found to return a reasonably similar
result (not shown here), with no systematic variation between
quasi-parallel and quasi-perpendicular shocked plasma. The
interval studied in the main article corresponds to the quasi-
parallel shock. For demonstration, we show the corresponding
figures produced for a long magnetosheath interval downstream
of the quasi-perpendicular shock in Figure C1. Again, the
agreement is satisfactory, and the scaling laws appear to hold,
in general, for turbulent magnetosheath plasmas.

2018-04-19 05:08:05 - 05:41:51

0 1
10g10(B/mes)2

log1o(|ful/|falims)

Figure C1. Magnetosheath plasma downstream of the quasi-perpendicular shock observed by MMS on 2018 April 19 (Table B1). Left: PDF of the magnetic field
curvature x normalized to its rms value fim,. Middle: joint PDF of curvature x and the square of magnetic field magnitude B> Right: joint PDF of curvature x and the

magnitude of the force |f,| acting normal to the field lines.
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