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1.  Introduction

In deep space exploration missions, radio measurements are 
often used to estimate the mass and gravity of planets, model 
their internal structure, and sound the media around planets. 
This type of research is generally called radio science [1]. The 
physical parameters of the electromagnetic signals that link the 
station and spacecraft change during its propagation due to the 

relative motion of the spacecraft and station, as well as from 
the influence of propagation media. Variations in the gravita-
tional potential at the position of the spacecraft and station are 
also a factor. Physical parameters include phase, frequency, 
amplitude and polarization. The variation in these parameters 
can be used to estimate the atmospheric and ionospheric struc-
ture of planets [2–7], solar corona, planetary gravitational 
fields, shapes, mass [8–20], planetary rings [21–23] and ephe-
merides of planets [24–26]. Furthermore, parameter variation 
can verify the theory of general relativity, gravitational waves 
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This paper introduces a phase tracking method with a computational algorithm for planetary 
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computational intensity of the proposed phase tracking method, graphics processing units 
(GPUs) are employed. The method estimates the instantaneous phase, the frequency, the 
derivative of frequency (line-of-sight acceleration) and the total count phase for different 
integration scales. These observables can be further used in planetary radio sciences. The 
new method was tested on the Mars Express (MEX, ESA) and Chang’e 4 relay satellite 
(China) tracking data. In a real experiment with 400 K data block size and  ∼80 000 DE solver 
objective function evaluations, we were able to achieve the target convergence threshold in 
6.5 s, executing real-time processing on NVIDIA GTX580 and 2× NVIDIA K80 GPUs, 
respectively. The instantaneous Doppler precision for occultation research of this method is 
higher than the result of a traditional Doppler method. The precision of the integral Doppler 
(60 s integration) was 2 mrad s−1 and 4 mrad s−1 for MEX(3-way) and the Chang’e 4 relay 
satellite(3-way) respectively, which is equal to traditional Doppler results.
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detection and gravitational red shift [1, 27–30]. In planetary 
atmospheric and ionospheric structure studies, the parameters 
of interest are instantaneous amplitude, phase and frequency. 
For planetary gravity, ephemerides and the theory of general 
relativity, the parameters of interest are the integral Doppler 
or the total count phase. All these parameters can be retrieved 
through high-precision Doppler measurements.

Since the late 1960s, the Jet Propulsion Laboratory (JPL) 
has been conducting radio science experiments in early deep 
space explorations. Remarkable results have been achieved in 
the course of 50 years: the high-precision gravity field of the 
Moon and Mars have been determined by Doppler tracking 
[31–34]; the atmospheric components and ionospheric models 
of Mars and Venus have been studied from the radio science 
tracking data [7, 35, 36]; and the recent results about radio 
science from Cassini and Juno missions to Saturn and Jupiter 
[5, 18, 19, 26, 27, 37]. These achievements form a basis for 
further deep space explorations.

1.1.  Planetary radio science hardware

The radio science research work conducted by JPL is sup-
ported by the deep space network (DSN) of NASA located at 
Goldstone (USA), Madrid (Spain) and Canberra (Australia). 
The DSN is equipped with 26, 34, and 70  m antennas and 
a Doppler tracking system [1]. The fifth generation of JPL 
Doppler processors was designed in the form of the so-
called ‘block series’. The block series are mainly used in 
precise orbit determination, planetary gravity recovery and 
general relativity research with a close-loop tracking model. 
The open-loop tracking model receivers were developed and 
applied in the space missions of the 1990s, such as the radio 
science receiver (RSR) by JPL [38] and the intermediate fre-
quency modulation system (IFMS) by ESA [39]. The open-
loop tracking model is used in atmospheric and ionospheric 
studies. Recently, some attempts have been made to apply the 
open-loop tracking model to planetary gravity research [40].

In Doppler data processing, the amount of computations is 
large and requires a high-performance computational device. 
The application specific integrated circuit (ASIC) technology 
is employed in the design of traditional Doppler extractors to 
compute the phase accumulation (also called phase counting) 
[41]. General-purpose computing devices also offer enough 
performance to be used in Doppler data processing software 
based on a GNU radio6, e.g. the Universal Software Radio 
Peripheral (USRP). The USRP can process tracking data using 
FFT-based methods to realize aircraft signal tracking [42].

This paper introduces a new phase tracking method, which 
employs graphic processing units (GPUs) to compute phase, 
frequency and the frequency derivative of tracking data. The 
new algorithm fits the tracking data signal into the shape 
expressed by the Taylor polynomial with optimal phase and 
amplitude coefficients within every data block7. The method 
calculates the analytical form of phase expression in the 
neighborhood of the data block center and the amplitude with 

the slope of the signal. The amount of baseband fitting com-
putations is large and is offloaded onto the GPUs. We show 
that real-time data processing can be achieved by using two 
NVIDIA Tesla K80 GPUs. The fitting is performed using 
the differential evolution (DE) algorithm [43] a well-known 
robust method for global optimization problems. From the 
analysis of the form of the phase, we further deduce the fre-
quency, the derivative of frequency (line-of-sight accelera-
tion) and the integral phase (total count phase) at different 
timescales [44]. These observables can be used in planetary 
radio science research to analyze planetary occultations and 
gravitational fields.

1.2.  Differential evolution algorithm

Doppler data block fitting is a computationally expensive 
problem, as each objective function evaluation is a numerical 
integration of the time series. Fortunately, the integration can 
be easily parallelized. Moreover, an additional degree of par-
allelism is offered by certain kinds of optimization algorithms, 
such as DE.

The DE is a robust global optimization method widely used 
in various fields to solve multidimensional problems [45]. The 
DE algorithm originates from a genetic annealing algorithm 
first described by Price et al [46]. The DE algorithm won the 
International Contest on Evolutionary Optimization (ICEO) 
twice, in 1996 and 1997 [47, 48].

In DE, the initial population is randomly chosen within the 
parameter space, while the child parameters vectors are itera-
tively derived from their parents through a mutation proce-
dure, depending on the objective function response (figure 1). 
The mutation is followed by the crossover path selection. In 
order to escape from local minima, DE introduces a weighting 
factor. The iterative process continues until the fulfilment of 
the convergence criteria.

1.3.  GPGPU computing

The graphics processing unit (GPU) is a specialized processor 
originally designed specifically for accelerating video output 
with complex 3D scenes in games, CADs and visual effects. 
In order to optimize the speed of positioning and texturing 
of complex geometries that involve interpolation, the GPUs 
have become rich in floating-point throughput. Furthermore, 
the GPU architecture developed a massive parallelism as the 
fastest approach to process millions of independent triangles 
in 3D rendering. In the early 2000s, enthusiasts already turned 
their interest towards general-purpose computations on GPUs 
(GPGPU) for science and research. However, the GPU pro-
gramming frameworks of that time, such as GLSL shading 
language, implied mandatory video output, did not offer some 
important features, such as fast-shared memory. The GPGPU 
market was revolutionized by the NVIDIA Corporation in 
2007 with the release of the GeForce 8 consumer graphic 
cards. These cards support both traditional video processing 
and compute-only GPGPU pipelines. The GPGPU function-
ality has become widely available to users since the release of 
the CUDA v1.0 software development kit [49]. Also, NVIDIA 

6 www.gnuradio.org/.
7 The data block is usually 2 s and sampling is 200 KHz.
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released Tesla C870—the first compute-dedicated graphics 
card for data centers. Although early GPUs did not offer 
double-precision (64 bits) computation support, their single-
precision (32 bits) performance was a lot higher than on CPUs 
of the same generation. For over a decade, NVIDIA GPU tech-
nology has experienced multiple architectural updates (Tesla, 
Fermi, Kepler, Maxwell, Volta). The latest NVIDIA Tesla 
V100 GPU has a double-precision peak throughput of 7.8 
TFLOPS [50] (see figure 2). The CUDA toolkit and GPGPU 
ecosystem nowadays has grown into a large set of free de-facto 

standard libraries and frameworks for different purposes, such 
as linear algebra (CUBLAS, CUSPARSE), FFT (CUFFT), big 
data (Thrust), and machine learning (TensorFlow).

In our phase tracking method, the DE algorithm is employed 
for solving multidimensional optimization problems. The DE 
algorithm requires thousands of objective function evalua-
tions, each integrates several hundred thousand points of time 
series. Along with the basic double precision floating-point 
multiply-add, the computation of objective function involves 
trigonometric operations. Since objective function integration 

Figure 1.  DE algorithm iteration flowchart.

Figure 2.  Comparison of double-precision (64 bits) computing performance.
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is computationally expensive and parallelizable, the GPU pro-
cessing becomes an ideal candidate. We offloaded this part to 
the GPU by using the Thrust C++ framework [51].

Table B1 compares the solution time cost on NVIDIA 
GTX 580 GPU and 2× Intel E5-2620v2 CPU, which have a 
peak double precision performance of 196 and 60 GFLOPs, 
respectively. Two implementations were evaluated on the 
CPU: OpenMP and Intel VML (Vector Math library). Our 
first version of a Doppler processing prototype is based on 
CPU OpenMP [52]. The GPU yielded a speedup of about 2× 
against a CPU for a small dataset below 2 Mbits. The speedup 
improved significantly for larger datasets and reached 9× for 
256 Mbits. The OpenMP implementation however was faster 
than VML. Table B2 shows the GPU performance of a single 
objective function processing steps corresponding to equa-
tion (2) for a 1 Mbits dataset.

In our experiment, the data block size was 400 K (0.082 ms 
for one evaluation on GTX580) and is evaluated by the DE 
solver  ∼80 000 times to reach the convergence threshold 
(totals 6.5 s on GTX580). Furthermore, by replacing GTX580 
with 2× NVIDIA K80s (3.6 TFLOPs peak) we were able to 
achieve real-time processing.

2.  Receiver and signal model

2.1.  Receiver overview

The planetary radio science receiver (PSRS) started opera-
tion in 2008 and was developed under a contract between 
Shanghai Astronomical Observatory and the Southeast 
University of China. The design of PSRS is similar to the 
RSR receiver framework by JPL [38] with 70 MHz IF signal 
input. PSRS has two output channels: the first channel is a 
narrow band signal recorded on a hard drive after a two-stage 
down conversion from the IF signal; the second channel is a 
hardware Doppler output after a one-stage down conversion. 
Table 1 shows the available PRSR data recording modes. In 
addition to the PSRS receiver, we also developed a interface 
for the Chinese VLBI Data Acquisition System (CDAS) data 
acquisition device to process the Chang’e 4 relay satellite. The 
CDAS receiver was developed by the Shanghai Observatory 

to support the Change’e series VLBI tracking mission and 
records data with a VLBI Mark-V format standard. Details of 
performance parameters can be found in [53].

2.2.  Signal model and objective function

The tracking data recorded on the hard disk had phase errors 
stemming from various physical origins. The continuous data 
stream was processed in segments or blocks of length T where 
the value of T is related to the motion of the spacecraft (the 
relation between length of T and motion of the spacecraft can 
be found in section 3.2.1), and is usually set to 2 s. If the rela-
tive timestamp in the center of the data block has the value 
zero, then the phase can be expanded by a finite Taylor poly-
nomial within the interval [−T/2, T/2]:

φ(t) = φ(0) +
n∑

i=1

φ(i)(0)
i!

ti.� (1)

The value n is the order of Taylor expansion that is also 
related to the motion of the spacecraft. In most of the cases 
n  =  3 meets the truncation error requirements when the block 
length is set to T  =  2 s. Generally, the truncation error is set to 
the phase noise, a topic that will be discussed in section 3.2. 
The radio signal in the data block with the Taylor polynomial 
phase expression can be expressed as

s(t) = (c4 + c5t) cos(φ(t))

= (c4 + c5t) cos(c0 + c1t + c2t2 + c3t3).
� (2)

Here, c0∼3 are the coefficients of Taylor polynomial:

c0 = φ(0)

ci =
φi(0)

i!

∣∣
i=1,2,3.

� (3)

The coefficients c4 and c5 are signal amplitude parameters. 
Moreover, c5 is the slope of amplitude and it can be ignored 
when amplitude change is small with data length below 10 s.

The DE algorithm minimizes the objective function, which 
should be non-negative. From equation  (2) we constructed 
two types of objective functions. The first one is the classical 
χ2 function and the second one is based on the correlation 
function:

Table 1.  PRSR data recording modes.

Output signal Bandwidth/sampling Quantization Data rate (bit s−1)

Narrow band 16 KHz/32 KHz 8 256 000
16 512 000

25 KHz/50 KHz 8 400 000
16 800 000

50 KHz/100 KHz 8 800 000
16 1600 000

100 KHz/200 KHz 8 1600 000
16 3200 000

Wide band 1 MHz/2 MHz 1,2,4,8 16 000 000
2 MHz/4 MHz 1,2,4,8 32 000 000
4 MHz/8 MHz 1,2,4 32 000 000
8 MHz/16 MHz 1,2 32 000 000

Meas. Sci. Technol. 31 (2020) 045902
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Fχ2

obj(ck) =

N∑
i=1

[si − s(ck, ti)]2

σ2
i

∣∣∣
σi=1

=

N∑
i=1

[si − s(ck, ti)]2
�

(4)

Fcor
obj(ck) =

1
arctan[cor(si, s(ck, ti))] + π

2
.� (5)

In equation (4), 1
σ2

i
 is the weighting factor that is relative 

to the standard deviation of signal influenced by the phys-
ical environment. Influence is equal to every data point. So 
weighting factor can be set to 1. The s(ck, ti) is the signal 
model constructed in equation  (2), and si is the quantized 

signal value. The Fχ2

obj(ck) and Fcor
obj(ck) objective functions shall 

converge to the sum of noise power, and to 1
π ∼ 0.318, respec-

tively. In equation  (5) the signal model is slightly changed, 

such that the amplitude of signal is constant; otherwise, the 
objective function becomes divergent:

s(t) = A cos(c0 + c1t + c2t2 + c3t3).� (6)

The value A is the average amplitude of signal. Figure 3 
shows the relation between Fcor

obj(ck) and cor(si, s(ck, ti)). 
Figure 3 also shows that the convergence is very fast when 
the correlation coefficient approaches zero. Figure 4 makes a 
comparison of the convergence rate of two objective functions 
types.

The data used for comparison is the real Mars express 
(MEX) tracking data with the baseband sampling of 200 KHz. 

Figure 4 shows that Fcor
obj  converges fast than Fχ2

obj with 10 iter-
ations. On the other hand, Fχ2

obj requires 25 times iterations. 

Moreover, the computational difficulty of one Fcor
obj  evalua-

tion is only 60% of the Fχ2

obj function. In total, the Fcor
obj  takes 

75% less time to compute a data block, as compared to Fχ2

obj. 

Although the Fcor
obj  is faster than Fχ2

obj, it cannot handle larger 

block sizes that have significant signal amplitude change.

3.  Data processing and error analysis

3.1.  Data processing

This subsection will introduce the parameter setting for the 
DE algorithm, phase continuity checking and process flow in 
real data processing.

3.1.1.  Determination of the range of parameters to be 
solved.  A determination of the range of parameters to be 
solved is required when calling the DE algorithm, which must 
cover the true value of parameters. Because the DE algorithm 
is a kind of global optimization, generally speaking, a range of 
parameters can be defined, that cover the full range of varia-
tions of the parameters. However, this strategy will generate 
a huge amount of computations. Therefore, determining an 
initial value and a priori range of parameters is necessary 
for highly efficient computation. The range determination 
includes an initial range setting and running time range set-
ting. Appendix A gives a discussion of these two kinds of 

Figure 3.  Relation between the objective function and the 
correlation coefficient.

Figure 4.  Comparison of convergence rate of two objective 
functions types (for the convenience of display, the correlation 
objective function value subtracted a constant of 0.318 309 8861).

Table 2.  The DE algorithm control parameters.

Item Meaning Value

Dim_XC Dimension of problem 6
XCmina The lower bound of parameters *
XCmana The upper bound of parameters *
VTR The expected fitness value of ob-

jective function
0

Itermax The maximum number of iterations 200
F_XC Mutation scaling factor 0.5
CR_XC Crossover factor 0.85
Strategy The strategy of the mutation opera-

tions
3
∣∣6

a Bound of parameters to be solved.

Meas. Sci. Technol. 31 (2020) 045902
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range settings based on the χ2 function model mentioned in 
equation (4).

3.1.2. The DE algorithm control parameter setting.  The DE 
algorithm runs under a set of control parameters. Table  2 
explains these control parameters and values set.

There are six kinds of mutation operations strategies in the 
DE algorithm that affect the solution robustness and computa-
tion speed [45]. For a specific optimization problem, some tests 
are needed to determine the best mutation operations strategy. 
Two types of stop condition are generally used for parameters 
searching. The first one is by fixing the iteration times when a 
proper priori parameters range can be determined at running 
time. The second one is by setting the threshold of change 
of objective function or parameters. In practical applications, 
the parameters and objective function always remain the same 
after dozens of iterations because of the characteristics of the 
genetic algorithms. So, the first type of stop condition was 
used in our real data processing.

3.1.3.  Phase continuity checking.  A natural method to judge 
whether the solution converges is to check the continuity of 
instantaneous phase and frequency at the bound of two adja-
cent data blocks. Using equation (1) we can get the expression 
of phase and frequency:

φ(t) =c0 + c1t + c2t2 + c3t3

F(t) =
dφ(t)

dt
=c1 + 2c2t + 3c3t2.

�

(7)

Phase and frequency at the bound of two adjacent data blocks 
(n and n  +  1) are

φn|right = cn
0 + cn

1t + cn
2t2 + cn

3t3|t=T/2 (mod 2π)

φn+1|left = cn+1
0 + cn+1

1 t + cn+1
2 t2+

cn+1
3 t3|t=−T/2 (mod 2π)

Fn|right = cn
1 + 2cn

2t + 3cn
3t2|t=T/2

Fn+1|left = cn+1
1 + 2cn+1

2 t + 3cn+1
3 t2|t=−T/2.

�

(8)

Checking whether the values of φn|right and Fn|right are equal 
to φn+1|left and Fn+1|left  within the threshold of noise confirms 
the correctness of the parameter results from the DE algo-
rithm. A real data processing example on MEX data shows the 
continuity of phase and frequency in appendix C. The noise of 
phase is about 50 mrad (1 σ, 1 s integration). The continuity 
of phase is therefore confirmed.

3.1.4.  Data process flow.  The software reads the initial 
parameters range and the DE algorithm controls parameters 
from the control file and runs automatically without manual 
intervention. Figure 5 gives the process flow. In radio measure-
ment, some accidental factors exist that cause phase distortion 
and iterations divergence. In this situation, the software will 
automatically adjust parameter range and try to search again. 
The data block will be abandoned after three attempts.

3.2.  Error analysis

There are three kinds of errors in data processing. The first 
error is the truncation error in phase calculation, which is also 
called the remainder of the Taylor expansion. The second error 
is linked to noise in the tracking data. The third is a system 
error caused by an equipment and propagation medium along 
the signal path. The remainder of the Taylor polynomial is 
relative to the block length and polynomial order. Random 
errors come from thermal noise of signal beacon, receivers 
and propagation medium along the signal path. System error 
can be eliminated by the construction of error models in high-
level data processing, which is beyond the scope of this paper 
and will not be discussed.

3.2.1.  Remainder of Taylor expansion.  The remainder of Tay-
lor polynomial has several forms of expression. A Lagrange 
error bound is usually used for error analysis. The Lagrange 
error bound of equation (1) can be written as

Rn(t) =
φn+1(ξ)

(n + 1)!
tn+1

∣∣∣
ξ∈[0,t]

� (9)

ξ is a point within [0,t]. The max error within the data block 
is generally at the block border. The remainder at the block 
border is

Rn(
T
2
) =

1
2n+1(n + 1)!

φ(n+1)(ξ)Tn+1
∣∣∣
ξ∈[0, T

2 ]

<
1

2n+1(n + 1)!

∣∣φ(n+1)
max

∣∣Tn+1.
� (10)

Figure 5.  Data process flow.

Meas. Sci. Technol. 31 (2020) 045902
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Here 
∣∣φ(n+1)

max
∣∣ is the maximum absolute value of the n  +  1th 

derivative of the phase within the data block. From equa-
tion  (10) we can see that the upper bound of the remainder 
is relative to the order of the Taylor polynomial n, the length 
of data block T and the absolute value of maximum n  +  1th 
derivative of phase. Generally speaking8, n  =  3 can ensure the 
remainder is small enough, with which the upper bound of ∣∣φ(n+1)

max
∣∣ will be 3 × 10−7 rad s−4 (see appendix D). When the 

block length is not so long (less than 10 s), the upper bound 
of the truncation error of the Taylor polynomial is 10−5 rad. 
But in some special cases, such as spacecraft passing across a 

perigee or flying-by, a giant planet amplitude of 
∣∣φ(n+1)

max
∣∣|n=3 

cannot be ignored (this term is about 2 × 10−3 rad s−4 while 
MEX passes across a perigee) and n  =  3 is not enough for 
high precision data processing. In this situation n  =  4 will be 
worked and the upper bound of truncation error could be con-
trolled within 10−4 rad. Derivatives of phase can be estimated 
from the derivatives of line-of-sight velocity using a forecast 
orbit:

∣∣φ(n+1)
max

∣∣ �2πf0
c

∣∣v(n)
max

∣∣ (1-way)

∣∣φ(n+1)
max

∣∣ �4πM2f0
c

∣∣v(n)
max

∣∣ (3-way).
� (11)

In theory, if there is no effect of thermal noise, the trun-
cation error can be adjusted to be very small by tuning the 
parameters n and T. Nevertheless the thermal noise cannot 
be eliminated. To excessively reduce the truncation error is a 
futile effort. So the threshold of truncation error can be set to 
the thermal noise of phase σnoise(T). Here T is the integration 
span for measuring phase noise that is exactly the block length. 
Pätzold et al have given a relative expression of σnoise(T):

σnoise(T) = σnoise(1)

√
1
T

� (12)

σnoise(1) is the standard thermal noise with an integration span 
of 1 s. From the equation (12) we can infer that thermal noise 

can be effectively suppressed by increasing the integration 
time.

A choice of T to balance the truncation error and thermal 
noise from equations (10) and (12) exists. The truncation error 
and T are positively correlated. The thermal noise and T are 
negatively correlated. The optimal length of T can be found by 
balancing the computation amount and the data process preci-
sion. Figure  6 gives the relationship of the truncation error 
and phase thermal noise relative to block length in the MEX 
tracking case (σnoise(1) = 50 mrad). From figure  6 we can 
see that the truncation error will be less than phase thermal 
noise when the block length is shorter than 7 s. In actual data 
processing, to ensure that the truncation error is less than the 
phase noise and improve the data processing efficiency, the 
data block length is generally set to 2 s.

Precision evaluation of the Doppler could be made from 
measurement noise, which is generally relative to integral 
span. Different integral spans are selected in different research 
in radio science. In planetary occultation research integral 
span is often set below 1 s to get high measurement resolution. 
In gravity field research, the integral span is set to dozens of 
seconds to ensure precision and gravity field resolution. While 
in general relative experiment integral span is equal to 104 s to 
achieve extreme Doppler precision. The relationship between 
integral span and Doppler precision is given by equation (12).

3.2.2.  Random phase noise.  Random error noise in data will 
affect the estimation of phase and it can be used as criteria 
for truncation error as described above. Random noise comes 
from two sources. The first source is the thermal noise that 
might come from the signal source, the onboard transponder, 
and the station receiver. The second is random interference of 
solar phase scintillations along the signal path. Carrier phase 
error variance can be expressed as [38]

σ2
noise|1-way = σ2

S +
1
ρL

σ2
noise|3-way =

M2(BTR − BL)

PC/N0|U/L
+ σ2

S +
1
ρL

.
� (13)

Here,

	 •	�σ2
S  is the contribution to carrier loop phase error variance 

due to solar phase scintillations;
	 •	�ρL  is the downlink carrier loop signal-to-noise ratio;
	 •	�M is the transponder ratio;
	 •	�BTR is the one-sided, noise-equivalent, transponder carrier 

loop bandwidth;
	 •	�BL is the one-sided, noise-equivalent, loop bandwidth of 

downlink carrier loop; and
	 •	�PC/N0|U/L  is the uplink carrier power-to-noise spectral 

density ratio.

Phase error variance contributed by solar phase scintillations 
is related to the angle SEP (Sun Earth Probe). This effect 
is greater when the sun is near the direction of observation. 
Equation (14) gives the relation between σ2

S  and SEP [38]:

σ2
S =

CbandCloop

(sinθSEP)2.45B1.65
L

∣∣
θSEP∈[5◦,27◦].� (14)

Figure 6.  Variety of phase noise σnoise(T) and remainder R3(
T
2 ).

8 In the following contents of this paper, if not specified, the default value of 
n  =  3.
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In equation  (14) Cband, Cloop are constants that vary 
with frequency band. For X band of up and down link 
Cband = 1.9 × 10−6, Cloop = 5.9. A new and more complex 
piecewise functions model is given by [54], which will be 
considered in our future experiments.

The typical magnitudes of phase noise for two-/three-way 
tracking at X band are [55]

σ2
noise �





0.1 rad residual carrier
0.02 rad suppressed carrier BPSK
0.005 rad QPSK.

� (15)

Equation (15) gives the upper bound of phase noise variance 
for three types of carrier modulation.

4.  Applications

We can form several kinds of observables by using the Taylor 
polynomial coefficients result from the DE algorithm. These 
include integration Doppler, instantaneous Doppler, the total 
count phase and line-of-sight acceleration.

4.1.  Doppler observables

4.1.1.  Integration Doppler.  The integration Doppler is an 
important observation type in planetary gravity research. The 
original definition of the integration Doppler is the phase 
change during a fixed count interval [44]:

Fint_dop =
φte − φts

Tc
.� (16)

Here we ignore the frequency bias for the convenience of dis-
cussion. te is the station time at the end of count interval and 
ts is the station time at the beginning of the count interval. Tc 
is the count interval length that varies for different research 
objects. Typical count times have durations of tens of seconds 
in planetary gravity research while spacecrafts are orbiting a 
planet. In testing the theory of general relativity and gravi-
tational wave searches the counting interval will be a few 
thousand seconds for extremely high Doppler measurement 
precision during an interplanetary cruise [1, 27, 28, 30].

The typical data block length is 2 s and the limitation of 
data block length is 20 s, which is limited by the processing 
ability of the GPUs. We can use the phase connection to form 
longer integration Doppler observables:

Φtotal =

N∑
i=1

[
φi(

T
2
)− φi(−

T
2
)
]∣∣∣

N= Tc
T

Fint_dop =
Φtotal

Tc
.

� (17)

In equation (17) i is the serial number of the block, φi(
T
2 ) can 

be evaluated by phase expression (equation (7)), Φtotal is the 
phase change within count interval Tc, which is also a new kind 
of observation type in planetary science research [44]. Column 
8 of appendix C gives the example of [φi(

T
2 )− φi(− T

2 )]. 
Uncertainty of the integration Doppler can be expressed as:

σ2
int_dop =

σ2(T)
NT

.� (18)

The meaning of equation (18) is the same as equation (12). 
σ2(T) is the phase variance of the block or the phase discon-
tinuous variance at the block border.

Figure 7 shows the precision of the integration Doppler 
with different interval scales in the MEX and CE4 data pro-
cess. The Doppler precision is about 50 mrad s−1 for MEX and 
80 mrad s−1 for the CE4 relay satellite with one second inte-
gration span. The precision of the integral Doppler resulting 
from our fitting method has the same level with traditional the 
PLL method [56].

4.1.2.  Instantaneous Doppler.  The instantaneous Doppler is 
used in planetary occultations research in which high Dop-
pler resolution is required at the ingress or egress of radio 
signals into or out of planetary atmospheres. There are two 
kinds of approximate approaches to compute an instantaneous 
Doppler. The first is to decrease the count interval [44] and 
use the integration Doppler to approximate the instantaneous 
Doppler. The second is using short-time fast Fourier transform 
(FFT) to compute an average frequency of a short data block 
[56]. The Doppler precision of these two approaches will obey 
equation (12), that is 3.16 times of σnoise(1) when the Doppler 
sampling rate is 10 Hz.

Using equation (7) we can conveniently calculate the instan-
taneous Doppler at any time tag within the data block and the 
precision is guaranteed by the truncated error σnoise(2), which 
is 0.7 times of σnoise(1). Thus, the instantaneous Doppler cal-
culated from Taylor polynomial has higher precision than the 
method of the short count interval or method of short-time 
FFT.

As an example, For the Venus Express (VEX) one-way 
open-loop radio occultation experiments we processed the 
tracking data (doy 343) [57] and compared our result9(1 s 
integration span and 10 Hz output10) with the 10 Hz output 

Figure 7.  Precision of integration Doppler changes with count 
interval.

9 Shanghai Observatory of China, SHAO.
10 Evaluation of Taylor polynomia at every point.
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result from Rheinisches Institut für Umweltforschung (RIU) 
by using the FFT method. Figure  8 shows the comparison. 
From figure 8 we can see our result has lower noise than the 
computed result by RIU.

4.2.  Line-of-sight acceleration observables

From equation (11) we can see that derivatives of phase are 
related to the derivatives of line-of-sight velocity that the 
second derivative of phase can be approximated as a function 
of line-of-sight acceleration:

φ(2) � 2πf0
c

alos (1-way)

φ(2) � 4πM2f0
c

alos (3-way).
�

(19)

A strict and full expansion of equation (19) can be found in 
appendix E, which gives the connection between the observ-
able of φ(2) and the dynamic state of the spacecraft and 
stations. In a MEX tracking case, the first-order (1/c) approxi-
mates to 10−3 m s−1 and the second-order (1/c2) approximates 
to 10−4 m s−1.

Based on the concept of appendix E we gave an estimation 
of the mass and second-order coefficients of gravity of Phobos 
[58]. The line-of-sight acceleration observable (φ(2)) directly 
reflects the kinematic state of the spacecraft (r2, ṙ2, r̈2) and can 
be used to estimate the dynamic parameters relative to space-
craft (r̈2) by employing a reference orbit. It also can be used 
in a least square regression combined with traditional Doppler 
observables to solve parameters like gravity field coefficients.

5.  Conclusion

This paper introduces a new phase tracking method for plan-
etary radio science research based on general purpose com-
puting on GPU (GPGPU) technology. The proposed method 
gives the same precision in integration Doppler processing as 
the traditional PLL phase counting method (50 mrad s−1 for 1 
s and 2 mrad s−1 for 60 s integration span in the case of MEX 

data). This method has three main advantages over existing 
hardware and software Doppler processing solutions. Firstly, 
through the adjustment of the polynomial order and data 
block length, the analytical form of phase (frequency) will 
give higher precision for the instantaneous Doppler required 
in planetary occultation research (10 Hz or 100 Hz sampling 
rate). Secondly, the method can give the line-of-sight accel-
eration observable, which directly reflects the dynamic state 
of the spacecraft (see appendix E).Using line-of-sight accel-
eration we can directly solve the dynamic parameters with 
respect to a reference orbit. Thirdly, GPUs are less expensive 
and easier for software development, compared to the tradi-
tional ASIC-based PLL Doppler processing equipment.
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Appendix A.  A priori parameter range setting

The determination of the proper initial range of parameters 
needs an estimation of parameters. From equation (3) we can 
see that the polynomial coefficients are determined by deriva-
tives of phase at the block center. So if we can estimate the 
derivatives of phase at the block center then the polynomial 
coefficients can be determined properly. The detailed estima-
tion process is as follows.

Figure 8.  VEX occultation result comparison of SHAO and RIU.
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	 1.	�c0 is the instantaneous phase at the block center and the 
range can be set as [0, 2π].

	 2.	�c1 is the instantaneous frequency at the block center 
(rad s−1). It can be determined through FFT computation 
of a small piece of data extracted from the block center. 
The range of c1 can be set as ±10% of c1.

	 3.	�c2 is equal to half of the second derivative of phase at the 
block center. So the value of c2 can be estimated by the 
central difference method through three equally spaced 
frequency values near the block center. The frequency 
value is calculated as step 2.

	 4.	�c3 is the 1/6 of third derivative of phase at the block center. 
This term is very small and will not be greater than 10 in 
all situations. In real data processing, the initial range of 
c3 is set to [−50, 50] for the sake of insurance.

	 5.	�c4 is the amplitude of signal. It can be determined by the 
FFT algorithm done at step 2. The range of c4 can be set 
as ±10% of c4.

	 6.	�c5 is the slope of amplitude, where relative uncertainty is 
big when block length is not long enough. For the sake of 
insurance its range is set as [−0.2c4

1
T , 0.2c4

1
T ].

If there is a forecast orbit of spacecraft derivatives of phase at 
the block center, this also can be properly estimated from orbit 
using equation (11).

Determination of the range of parameters at running time is 
exactly the automatic tracking of the signal. Extrapolation is 
used in coefficients of Taylor polynomial estimation from the 
nth block to the n  +  1th block. The specific estimation of the 
running time range is as follows.

	 1.	�Range of cn+1
0  is the same as initial range setting [0, 2π]

	 2.	�Value of cn+1
1  can be extrapolated from the first-

order phase derivative of block n (equation (1)): 
φ̇n(t) = cn

1 + 2cn
2t + 3cn

3t2. So the value is cn+1
1 = φ̇n(T), 

and range could be set as [φ̇n(T/2), φ̇n(3T/2)]11.
	 3.	�Value of cn+1

2  can be extrapolated as 
cn+1

1 , which is cn+1
2 = 0.5φ̈n(T). Range could be set as 

[0.5φ̈n(T/2), 0.5φ̈n(3T/2)].
	 4.	�Value of c3 is small and the range can be further narrowed 

from the result of the first time of DE calling.
	 5.	�Range of cn+1

4  is [cn
4 − 0.1cn

4, cn
4 + 0.1cn

4].
	 6.	�Range of c5 can be fixed as c3.

Range settings by means of extrapolation of cn+1
1  and cn+1

2  
are effective in most situations when derivatives of phase are 
monotonic functions. Nevertheless, when derivatives of phase 
are not monotonic functions within two blocks the range of 
parameters will not cover the true value, then the parameter 
search will fail. This generally happens while the spacecraft 
crosses the orbital apogee or perigee. The software will auto-
matically restart a search after properly enlarging the range of 
parameters. Meanwhile the values of c3 and c5 are the random 
distribution when data length is not long enough (that is the 
signal-to- noise ratio is not big enough) (appendix C).

Appendix B. Tables about GPU performance

Table B2.  Single objective function processing steps on NVIDIA 
GTX580 (1 Mbit dataset).

Manipulation Time consumed (ms)

Array initialization 0.039
Elements square of array 0.015
Array linear algebra operation 0.017
Array trigonometric operation 0.016
Array summation 0.118
Total timea 0.205

a Without host↔GPU data transfer time.

11 The sign will be decided by software automatically.

Table B1.  CPU and GPU computing speed comparison.

Data volume 
(Mbits)

GTX580 
(GPU) (ms)

OpenMP 
(CPU) (ms)

VML 
(CPU) (ms)

1 0.2 0.5 0.7
2 0.3 0.6 1.6
4 0.3 2.2 3.5
8 0.5 6.5 7.8
16 0.9 13.4 13.3
32 1.7 25.2 25.2
64 3.3 48.6 50.2
128 6.4 68.6 100.7
256 12.6 107.3 201.2
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Appendix D.  Remainder estimation of MEX and 
Cassini

Taylor series remainder estimations for MEX and Cassini 
tracking.

Appendix E.  Observation function of second 
derivative of phase

Acronyms:

	 •	�1 foot mark means uplink station
	 •	�2 foot mark means satellite
	 •	�3 foot mark means downlink station
	 •	�c speed of light in vacuum
	 •	�ti coordinate time at position i
	 •	�ri position vector of object i in inertia frame
	 •	�rij position vector of object j relative to i
	 •	�ri velocity vector of object i in inertia frame
	 •	�rij velocity vector of object j to i
	 •	�ri acceleration vector of object i in inertia frame
	 •	�FT frequency transmitted from uplink station
	 •	�M2 transponder turnaround ratio onboard
	 •	�FR frequency received by downlink station
	 •	�τ3 atomic clock of downlink station
	 •	�rij distance from position i to j
	 •	�rij deviation of distance from position i to j
	 •	�Φi  Newtown gravitation at position i
	 •	�si velocity magnitude of object i relative to Sun
	 •	�SSB Solar System Barycenter
	 •	�LB = 1.550 520−8 Lagrangian constant of astronomy.

E.1. Two-/three-way tracking model

Moyer gives a precise formula accurate to 1/c2 describing the 
sky frequency received by the downlink station in two-/three-
way tracking models [59].

(1 − FR

M2FT
) =

1
c
(ṙ12 + ṙ23) +

1
c2 [ṙ12ṗ12 + ṙ23ṗ23

−ṙ12ṙ23 + (φ1 − φ3) +
1
2
(ṡ2

1 − ṡ2
3)

]
.

�

(E.1)

Using above equation, the derivative of FR to τ3 can be written 
as(1/c terms):

dFR

dτ3

∣∣∣
o(1/c)

= −M2FT

c
(

dṙ12

dτ3
+

dṙ23

dτ3
).� (E.2)

Expansion of the right side of the above equation:

dṙ12

dτ3
=

∂ṙ12

∂t1

dt1
dt2

dt2
dt3

dt3
dτ3

+
∂ṙ12

∂t2

dt2
dt3

dt3
dτ3

dṙ23

dτ3
=

∂ṙ23

∂t2

dt2
dt3

dt3
dτ3

+
∂ṙ23

∂t3

dt3
dτ3

.
�

(E.3)

Expansion of partial derivatives of velocity to coordinate time:

∂ṙ12

∂t1
= +

1
r3

12
(r12 · ṙ1)(r12 · ṙ12)−

1
r12

(ṙ1 · ṙ12 + r12 · r̈1)

∂ṙ12

∂t2
= − 1

r3
12
(r12 · ṙ2)(r12 · ṙ12) +

1
r12

(ṙ2 · ṙ12 + r12 · r̈2)

∂ṙ23

∂t2
= +

1
r3

23
(r23 · ṙ2)(r23 · ṙ23)−

1
r23

(ṙ2 · ṙ23 + r23 · r̈2)

∂ṙ23

∂t3
= − 1

r3
23
(r23 · ṙ3)(r23 · ṙ23) +

1
r23

(ṙ3 · ṙ23 + r23 · r̈3).

� (E.4)
The relation between coordinate time and station time [59]:

dt3
dτ3

= (1 − LB)(1 − 2Φ3

c2 − ṡ3
2

c2 )−
1
2 ≈ 1 +

Φ3

c2 +
ṡ3

2

2c2 − LB.

� (E.5)
The relation of coordinate time of different objects and defini-
tions of relative velocity:

Table D1.  Related parameters of the error remainder estimation of MEX and Cassini.

∣∣φ(2)
max

∣∣ (rad 
s−2)

∣∣φ(3)
max

∣∣ (rad 
s−3)

∣∣φ(4)
max

∣∣ (rad 
s−4)

∣∣φ(5)
max

∣∣ 
(rad s−5)

Arcs/band σnoise (mrad)c
Polynomia  
order

Block 
length (s)

∣∣amax
∣∣ (m s−2)

∣∣a(1)
max

∣∣ (m s−3)
∣∣a(2)

max
∣∣ (m s−4)

∣∣a(3)
max

∣∣  
(m s−5)

Mex(cruise)/X(2AU) a 50 2 10 7 × 100 5 × 10−4 3 × 10−7

3 × 10−2e 1 × 10−6 1 × 10−10

Mex(orbiting)/X 50 4
∣∣3d 2 8 × 102 6 × 10−1 2 × 10−3 3 × 10−6

2 × 100 2 × 10−3 6 × 10−6 8 × 10−9

Cas(cruise)/X(10AU)b 20 2 10 7 × 100 5 × 10−4 3 × 10−7

3 × 10−2e 1 × 10−6 1 × 10−10

Cas(orbiting)/Xb 20 4
∣∣3d 2 3 × 103 2 × 100 3 × 10−3 6 × 10−6

8 × 100 6 × 10−3 8 × 10−6 2 × 10−8

a Three-way tracking.
b Three-way tracking.
c One second integration time.
d Four order when near perigee, three order with normal arcs.
e The main contribution is the rotation of the earth.
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dt1
dt2

= 1 − ṙ12

c
− ṙ12ṗ12

c2

dt2
dt3

= 1 − ṙ23

c
− ṙ23ṗ23

c2

dt1
dt2

dt2
dt3

= 1 − ṙ12 + ṙ23

c
+

ṙ12ṙ23 − ṙ12ṗ12 − ṙ23ṗ23

c2

ṙ12 =
r12

r12
· ṙ12

ṙ23 =
r23

r23
· ṙ23

ṗ12 =
r12

r12
· ṙ1

ṗ23 =
r23

r23
· ṙ2

ṙ12 = ṙ2 − ṙ1

ṙ23 = ṙ3 − ṙ2.

�

(E.6)

By substituting equations  (E.2)–(E.6) into (E.1) we can get 
the first order of 1/c expansion for the derivative of FR to τ3.

The expansion of 1/c2 terms of equation (E.1)12:

dFR

dτ3

∣∣∣
o(1/c2)

= −M2FT

c2

[
d(ṙ12ṗ12)

dτ3
+

d(ṙ23ṗ23)

dτ3
− d(ṙ12ṙ23)

dτ3

]

= −M2FT

c2

[
∂ṙ12

∂τ3
ṗ12 +

∂ṗ12

∂τ3
ṙ12

+
∂ṙ23

∂τ3
ṗ23 +

∂ṗ23

∂τ3
ṙ23 −

∂ṙ12

∂τ3
ṙ23 −

∂ṙ23

∂τ3
ṙ12

]
.

� (E.7)
Some terms have been expanded in equations (E.3) and (E.6) 
and the remains can be expanded as

∂ṗ12

∂τ3
=

∂ṗ12

∂t1

dt1
dt2

dt2
dt3

dt3
dτ3

+
∂ṗ12

∂t2

dt2
dt3

dt3
dτ3

∂ṗ23

∂τ3
=

∂ṗ23

∂t2

dt2
dt3

dt3
dτ3

+
∂ṗ23

∂t3

dt3
dτ3

.
� (E.8)

Derivatives of different timescales can be found in equa-
tions (E.5) and (E.6). Remaining terms of equation (E.8) can 
be expanded as

∂ṗ12

∂t1
= +

1
r3

12
(r12 · ṙ1)(r12 · ṙ1)−

1
r12

(ṙ1 · ṙ1 − r12 · r̈1)

∂ṗ12

∂t2
= − 1

r3
12
(r12 · ṙ2)(r12 · ṙ1) +

1
r12

(ṙ2 · ṙ1)

∂ṗ23

∂t2
= +

1
r3

23
(r23 · ṙ2)(r23 · ṙ2)−

1
r23

(ṙ2 · ṙ2 − r23 · r̈2)

∂ṗ23

∂t3
= − 1

r3
23
(r23 · ṙ3)(r23 · ṙ2) +

1
r23

(ṙ3 · ṙ2).
�

(E.9)

By substituting equations  (E.5)–(E.9) into (E.7) we can get 
the expansion of 1/c2 terms of equation (E.1).

Formally, the second derivative of phase can be written as

d2φ

dτ 2
3
=

dFR

dτ3
(ri, ṙi, r̈i)

∣∣∣
o(1/c)

+
dFR

dτ3
(ri, ṙi, r̈i)

∣∣∣
o(1/c2)

.�

(E.10)

Here the scale of station time τ3 is the same as time tag of the 
data block. So the phase derivatives are equal to each other:

d2φ

dτ 2
3
=

d2φ

dt2 .� (E.11)

E.2.  Magnitude estimation of d
2φ

dτ 2
3
 with the case  

of MEX mission

Considering a common three-way tracking of MEX with the 
uplink station of New Norcia located in Australia and the 
downlink station of Sheshan located in China:

	 •	�Distance from station to MEX: r12 � r23 = 2 × 108 Km.
	 •	�Distance between stations: r13 � 3000 Km.
	 •	�Velocity of station relative to SSB: ṙ1 � ṙ3 = 30 Km s−1.
	 •	�Velocity of MEX relative to SSB ṙ2 � 30 Km s−1.

Considering that the distance between station and spacecraft 
is much larger than the distance between stations, the fol-
lowing relationship is defined and established:

ê =
r23

r23

� −r12

r12
.

� (E.12)

Here, ê is the unit vector of the opposite direction of 
line-of-sight.

The first order of equation (E.10). By ignoring the influence 
of gravitation on the timescale derivative (equation (E.5)), the 
first order of equation (E.10) can be simplified as

dFR

dτ3
(ri, ṙi, r̈i)

∣∣∣
o(1/c)

� −M2FT

c

[
(δ1

12 + ê · r̈1)(1 − βv)

+ (δ2
12 + δ2

23 − 2ê · r̈2)(1 − βu)

+ (δ3
23 + ê · r̈3)

]
.

� (E.13)

In the equation amplitude of r̈1 and r̈3 in the frame of SSB is 
about 10−2 m s−2 due to Earth rotation and the amplitude of 
r̈2(MEX) is about 1 m s−2 due to orbit motion. δi

ij are cross 
velocity terms with the dimension of acceleration and with 
amplitude of 10−3 m s−2:

δ1
12 = +

1
r3

12
(r12 · ṙ1)(r12 · ṙ12)−

1
r12

(ṙ1 · ṙ12)

δ2
12 = − 1

r3
12
(r12 · ṙ2)(r12 · ṙ12) +

1
r12

(ṙ2 · ṙ12)

δ2
23 = +

1
r3

23
(r23 · ṙ2)(r23 · ṙ23)−

1
r23

(ṙ2 · ṙ23)

δ3
23 = − 1

r3
23
(r23 · ṙ3)(r23 · ṙ23) +

1
r23

(ṙ3 · ṙ23).

�

(E.14)

The definition of β factor(amplitude is about 10−4):

βu =
ṙ23

c

βv =
ṙ12 + ṙ23

c
.

� (E.15)
12 The last two terms are very small(� 10−10) and will be ignored.
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If we ignore the contributions of δi
ij and β, equation (E.13) can 

be further simplified as (in Newtonian frame):

dFR

dτ3
(ri, ṙi, r̈i)

∣∣∣
o(1/c)

� −M2FT

c
[ê · r̈1 − 2ê · r̈2 + ê · r̈3].�

(E.16)
Here we can see that in Newton frame the second derivative 
of phase could be approximated as a function of line-of-sight 
acceleration of r̈1, r̈2 and r̈3 with an error of 10−3m s−2.

	The second order of equation  (E.10).The second order13 of 
equation (E.10) can be simplified to the order of β2:

dFR

dτ3
(ri, ṙi, r̈i)

∣∣∣
o(1/c2)

� −M2FT

c
{(1 − βv)

× [(βm + βw)ê · r̈1 + βmδ
1
12 + βwδ

12
1 ]

+ (1 − βu)[−(βm + βn + βu)ê · r̈2 + βmδ
2
12 + βnδ

2
23 + βuδ

23
2 ]

+ [βnê · r̈3 + βnδ
3
23] + βw(1 − βu)δ

12
2 + βuδ

23
3 }.

�
(E.17)

Here, δi
ij terms are defined in equation (E.14) and new defini-

tions of β are (with the amplitude of 10−4):

βw =
ṙ12

c

βm =
ṗ12 − ṙ23

c

βn =
ṗ23 − ṙ12

c
βu,v,w,m,n � 10−4.

� (E.18)

The main term of equation  (E.17) approximates to β �  
10−4 m s−2.
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