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Abstract
Wireless sensor networks (WSNs), which are usually powered by batteries, have been 
extensively used in condition monitoring and fault diagnosis of motors. To extend the battery 
service life, the length of the acquired and transmitted signal should be short and the sampling 
resolution should be reduced. In this case, the motor signal quality is low, which affects 
the fault diagnosis accuracy. To address this issue, this study proposes an enhanced feature 
extraction method for motor fault diagnosis using low-quality vibration signals acquired 
from a battery-powered WSN node. First, the vibration signal is converted to an image using 
a wavelet synchrosqueezed transform technique. Second, the constructed image is enhanced 
using a histogram equalization. Finally, the enhanced image is inputted into a convolutional 
neural network (CNN) model, and the motor fault type can be recognized from the CNN 
output. The effectiveness and efficiency of the proposed method are validated by comparing its 
performance in the brushless direct motor test rig with the performance of several traditional 
methods. The relationship between the fault diagnosis accuracy and WSN performances is 
investigated and discussed. The proposed method shows potential applications for remote 
motor fault diagnosis using the low-quality vibration signal acquired from a WSN node with 
limited battery capacity.

Keywords: motor fault diagnosis, histogram equalization, WSST, CNN, low-quality vibration 
data, WSN
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1.  Introduction

Motors are used to convert electrical energy to mechanical 
energy. Moreover, they have been extensively used in house-
hold appliances and industrial equipment. A motor consists 
of mechanical (e.g. bearing, rotor shaft and shell) and elec-
trical components (e.g. rotor and stator winding). After long 
hours of operation, a motor is prone to various faults due to 
overload, overheat, intensive vibration and performance deg-
radation. Thus, condition monitoring and fault diagnosis are 
necessary to guarantee the safe operation of the motor and 
entire equipment [1–3].

Common motor faults are typically mechanical and elec-
trical in nature. Typical mechanical faults include bearing 
fault, rotor unbalance and bolt looseness, whereas common 
electrical faults include interturn fault, interphase fault, high 
resistance connection and sensor fault [4]. Some faults, such 
as bearing fault, progress slowly and therefore must be moni-
tored and maintained when necessary [5–9]. Other faults, such 
as sensor fault, may occur suddenly and must be detected and 
processed immediately.

To perform effective motor condition monitoring and fault 
diagnosis, motor signals, including motor current, strain, 
vibration and acoustic signal, must be acquired, transmitted 
and processed continuously. These signals are acquired from 
the distributed sensors and then transmitted to the central data 
processing. The signal features are extracted and fused to 
make maintenance decisions.

Recently, deep learning techniques have been developed 
and extensively applied to fault diagnosis [10–18]. In con-
trast to the traditional feature extraction and fusion method, 
deep learning can automatically extract hierarchal features 
from different layers [19]. This characteristic improves the 
efficiency of feature extraction and accuracy of pattern rec-
ognition. For instance, a novel convolutional neural network 
(CNN)-based fault recognition method through image fusion 
of multi-vibration signals was proposed [20], and a deep 
decoupling CNN was presented for intelligent compound 
fault diagnosis [21]. A contractive autoencoder was devel-
oped to extract discriminative features for machine fault 
diagnosis [22]. A two-stage method based on unsupervised 
feature learning was proposed for the intelligent diagnosis of 
machines [23]. The proposed deep learning methods present 
superior performance in fault diagnosis.

The performance of the deep learning techniques mainly 
depends on the model and data [24]. Most studies have focused 
on optimizing the deep learning models to further improve the 
accuracy. In addition to the model, data are crucial for deep 
learning because the accuracy of the model parameters signifi-
cantly depends on the volume of the training data set. At pre-
sent, an increasing number of sensors are installed to monitor 
the motors, and data volume increases rapidly. The massive 
data benefits the usage of the deep learning techniques and 
increases the storage space, transmission bandwidth and com-
putation resources.

Another technique called the Internet of Things (IOT) 
has been rapidly developing in recent years. Through this 
technique, numerous distributed sensors can be installed on 

remote areas, and the data can be collected using wireless 
sensor networks (WSNs) [25]. Figure 1 illustrates an indus-
trial motor and an installed WSN node. Two accelerometers 
are installed on two ends of the motor to obtain the vibra-
tion signals. The signals are transmitted to a remote server 
through general packet radio service networks. The WSNs 
are usually powered by batteries. To extend the service life of 
the battery, signal acquisition and transmission are performed 
in intermittent mode. For instance, a signal with the duration 
of 1 s is acquired and transmitted, and then the WSN goes 
into sleep mode to reduce power dissipation. After a period 
of time, such as 1 h, the WSN goes into the working mode to 
acquire and transmit another signal with 1 s length. Such a 
procedure is shown in figure 2. In this case, a battery may be 
used for several years, depending on the working conditions. 
From another aspect, the length of the sample data will affect 
the service life of the battery. As the power of signal acquisi-
tion and transmission is a constant value, reducing the data 
length can reduce the energy consumption of every working 
cycle and finally extend the service life of the battery, as illus-
trated in the top and bottom subfigures in figure 2. Besides, 
in considering the cost and power consumption, the analog-
to-digital converter (ADC) on the WSN usually has low 
resolution.

Hence, the signal acquired from the WSN is usually of low 
quality, which will affect the accuracy of motor fault diag-
nosis. Given this, the application of deep learning techniques 
to improve the accuracy of motor fault diagnosis when the 
data quality of the WSN is low is a favorable but challenging 
topic of interest. This topic has rarely been investigated in 
the literature. Thus, this study proposes an enhanced feature 
extraction method for motor fault diagnosis using the vibra-
tion data acquired from a WSN node. First, a WSN node is 
designed, and the vibration signal of the motor is acquired 
and transmitted to the data processing center. A 1D vibration 
signal is transferred to a 2D image using the time–frequency 
analysis (TFA) method. Second, the contrast ratio of the gen-
erated image is enhanced through the histogram equaliza-
tion method. Finally, the enhanced image is inputted into the 
designed CNN model for motor fault type classification.

Figure 1.  Industrial motor monitored by a WSN node.
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The performance of the proposed method is validated on 
a brushless direct current motor (BLDCM) platform, which 
consists of eight motors with different fault conditions. The 
proposed methods are compared with several traditional 
methods to illustrate their superiority. The contributions of 
this study include three aspects: (1) how the signal length and 
data resolution affect the signal quality and fault diagnosis 
performance is investigated; (2) focusing on the low-quality 
vibration signal from a WSN node, an enhanced method is 
proposed for improving the fault diagnosis accuracy; (3) 
based on the designed WSN node, the relationship among the 
signal length, transmission time, consumed power and clas-
sification accuracy is evaluated and discussed. By combining 
deep learning and IOT techniques, the proposed method dem-
onstrates potential applications in fault diagnosis of motors 
installed in remote areas.

The remainder of this paper is organized as follows. 
Section 2 introduces the proposed method. Section 3 describes 
the experimental setup. Section  4 analyzes the features of 
the motor vibration signals acquired from the WSN node. 
Sections 5 and 6 validate the effectiveness and efficiency of 
the proposed method. Section  7 provides the conclusions 
drawn from this study.

2.  Proposed method

In this study, an enhanced feature extraction method is pro-
posed to process the WSN vibration signal from a motor for 
fault diagnosis. The method consists of three steps as follows: 
(1) construction of a CNN input image through wavelet syn-
chrosqueezed transform (WSST); (2) image enhancement 
using histogram equalization; and (3) motor fault type recog-
nition using CNN. The theories related to these procedures are 
presented subsequently. The implementation and intuitional 
explanation of these steps are further introduced in the exper
imental results in sections 5 and 6.

2.1.  Image construction through WSST

The CNN model is commonly used in image classification. 
Considering that the original motor vibration signal is 1D, 
the vibration signal is transferred to a 2D image to obtain the 
CNN input signal. In recent decades, many TFA methods, 
such as short-time Fourier transform (STFT), wavelet trans-
form, Hilbert transform and other variations, have been pro-
posed. In the present study, to construct the image signal, the 
WSST method is used given its high accuracy and resolution 
[26, 27]. In what follows, the basis of the WSST theory is 
briefly introduced.

The motor vibration signal can be considered a continuous 
signal with multiple components, expressed as

S(t) =
k∑

i=1

Ai(t) cosωi(t) + e(t),� (1)

where Ai(t) and ωi(t) represent the instantaneous amplitude 
and frequency of the ith component of the vibration signal, 
respectively. e(t) denotes the noise or measurement error. The 
coefficients of the continuous wavelet transform (CWT) of 
S(t) can be calculated as

WS(a, b) = a−1/2
ˆ

S(t)ψ∗
Å

t − b
a

ã
dt,� (2)

where ψ*(·) is the conjugation function of the mother wavelet 
ψ(·), and a and b correspond to the wavelet scale and shift fac-
tors. For any point combination (a, b), if WS (a, b) �= 0, then 
the instantaneous frequency f S (a, b) can be obtained as

fS (a, b) = −i(Ws (a, b))−1 ∂

∂b
Ws (a, b) .� (3)

f S (a, b) constructs a mapping relationship from (b, a) to (b, f S 
(a, b)), and the time–frequency representation can be written 
as [28]

Figure 2.  Illustration of the relationship between the signal length and battery service life.
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TS( f , b) =
ˆ

{a:WS(a,b)�=0}
WS(a, b)a−3/2 1

δ
h
Å

f − fS(a, b)
δ

ã
da,

� (4)
where h (·) ∈ C∞

0  is a smooth function that satisfies ‖h‖L1 = 1, 
and δ is the accuracy. If δ is sufficiently small, this operator 
can be regarded as a partial inversion of the CWT of f  over the 
scale a. In this condition, only the small bands around level 
curves in the time-scale plane where fS (a, b) ≈ f  are taken 
over and the rest of the plane is ignored. If δ → 0, the domain 
of the inversion tends to concentrate on the level curves, 
i.e. (a, b) : fS (a, b) = f . Such a localization process is ben-
eficial to recover the signal component more accurately than 
inverting the CWT over the entire time-scale plane. Using 
the WSST, the 1D vibration signal S(t) is transferred to a 2D 
image TS (f , b).

However, the energies of the vibration signal are con-
stantly located at a specific bandwidth. From the perspective 
of an image, bright pixels locate a local area, and other dark 
pixels locate other areas. In particular, the contrast ratio of 
the time–frequency image is low, thereby leading to ineffec-
tively distinguishing the images’ CNN features and low CNN 
classification accuracy. Thus, the generated image is further 
enhanced through the histogram equalization method.

2.2.  Image enhancement through histogram equalization

Histogram equalization aims to determine a nonlinear trans-
formation M(·) expressed as [29]

g (x, y) = M (c (x, y)) ,� (5)

where g(x, y ) and c(x, y ) are the output and input images, 
respectively. First, the case of the continuous image is ana-
lyzed. Suppose that the values of the normalized images 
satisfy 0 � g (x, y) � 1, and 0 � c (x, y) � 1. M(·) is differen-
tiable, increasing and invertible, and the following equation is 
obtained:

c (x, y) = M−1 (g (x, y)) .� (6)

The probability density functions (PDFs) of c(x, y ) and g(x, y ) 
can be denoted as p c(c) and p g(g), respectively. p g(g) can be 
obtained using the following equation:

pg (g) =
ï

pc (c)
dc
dg

ò

c=M−1(g)
.� (7)

The transformation function can be defined by rewriting equa-
tion (5) as

g (x, y) = M (c (x, y)) =
ˆ c

0
pc (α)dα,� (8)

in which α is an integration variable, the term 
´ c

0 pc (α)dα is 
the cumulative distribution function of c(x, y ). In addition, a 
derivation equation can be obtained as

dg
dc

=
dM (c (x, y))

dc
= pc (c) .� (9)

Substituting equation  (9) into (7), the following equation  is 
obtained as

pg (g) =
ï

pc (c)
dc
dg

ò

c=M−1(g)
=

ï
pc (c)

1
dg/dc

ò

c=M−1(g)

=

ï
pc (c)

1
pc (c)

ò
= 1.

�

(10)

It can be noticed that the PDF of the variable g(x, y ) is uniformly 
distributed. Hence, by using the cumulative distribution function 
as the transformation function, a grayscale image with uniformly 
distributed levels can be obtained. In other words, the dynamic 
range of the image is improved by histogram equalization.

In accordance with the abovementioned derivations, the 
discrete form of histogram equalization can be obtained. 
Assume that the discrete grayscale image c[x, y ] has L gray 
levels, and the discrete amplitude values of c[x, y ] are c0, 
c1,…, cL−1. The discrete statistical probabilities for different 
gray levels are expressed as

Pi =
ni

N
, i = 0, 1, ..., L − 1,

�
(11)

where ni is the pixel count for gray level i, and N is the total 
number of pixels. Finally, the discrete approximation of equa-
tion (8) can be written as

gk = M [ck] =
k∑

i=0

Pi, k = 0, 1, ..., L − 1.
�

(12)

The values of gk fall in the range of [0, 1] and may have to be 
rounded and scaled appropriately. Through histogram equal-
ization, the histogram of the original time–frequency image is 
re-distributed, and thus the contrast ratio along with the CNN 
classification accuracy will be improved.

2.3.  CNN for motor fault type recognition

CNN models have been confirmed effective in image recogni-
tion and classification [30, 31]. In the present study, 1D vibration 
signals are converted to 2D images. Then, these 2D images are 
enhanced to increase the contrast rates. The enhanced images are 
then processed using the CNN model. Finally, the motor signals 
with different fault types can be recognized [32]. A CNN model 
constantly consists of multiple layers, namely, input, convolu-
tional, batch normalization, rectified linear unit (ReLU), pooling, 
fully connected, and output layers (figure 3). The detailed func-
tions and parameters of the layers are presented below.

The convolutional layer in a CNN model can be expressed 
as

Xl
j = f

Ñ
∑
i∈Mj

Xl−1
i ∗ kl

ij + bl
j

é
,� (13)

where l represents the current layer number, Mj is a collection 
of input features from the previous layer, Xl

j  represents the 
j th feature map generated from the lth layer and kl

ij represents 
the j th kernel, which connects with the ith input feature map. 
Moreover, f (·) denotes an activation function, bl

j represents the 
bias that corresponds to the j th kernel and * represents the 2D 
convolution operation.

Meas. Sci. Technol. 31 (2020) 045016



Q Shu et al

5

The batch normalization layer is used to decrease the 
internal covariance shift and accelerate the training process of 
the CNN. This layer is typically added after the convolution 
layer or the fully connected layer expressed as

x̂(i) =
x(i) − E

[
x(i)

]
»

Var
[
x(i)

] ,

�

(14)

y(i) = γ(i)x̂(i) + β(i),�
(15)

where x̂(i) is the normalized form of x(i), y(i) is the output of 
one neuron response, and γ(i) and β(i) represent the scale and 
shift parameters to be learned, respectively.

The activation function aims to construct a mapping from 
the original linear indivisible multi-dimensional features 
to another space where the linearity of the features can be 
enhanced. In the present study, the commonly used ReLU 
activation function is adopted. The formula of ReLU is

Figure 3.  Illustration of the CNN model.

Figure 4.  Experimental setup and WSN system.
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al+1
i ( j) = f

Ä
yl+1

i ( j)
ä
= max

¶
0, yl+1

i ( j)
©

,� (16)

where yl+1
i ( j) represents the output of the 2D convolution 

operation and al+1
i ( j) represents the activation of yl+1

i ( j).
The pooling layer is mainly used to reduce the param

eters of the CNN. The maximum pooling method is adopted 
in this study. This method takes the maximum value in the 
sensing domain as the output, and the obtained features are 
independent of the positions. The maximum pooling can be 
expressed as

pl+1
i ( j) = max

( j−1)W+1�t�jW

{
ql

i (t)
}

,� (17)

where ql
i (t) represents the value of the ith neuron in the 

frame of the lth layer, t ∈ [( j − 1)W + 1, jW], W represents 
the width of the pooling window and pl+1

i ( j) represents the 

corresponding value of the neuron in the (l  +  1)th layer of 
the pooling operation. By using the CNN, the time–frequency 
features involved in the enhanced images are extracted, and 
hence motor fault types can be distinguished.

3.  Experimental setup and WSN system design

To verify the performance of the proposed method, an exper
imental setup and a WSN system are designed, as depicted in 
figure 4.

3.1.  Experimental setup

The experimental setup is demonstrated in figure  5. In this 
figure, eight BLDCMs with different fault types are tested. 
The detailed parameters of the BLDCM and the fault types are 
listed in tables 1 and 2, correspondingly.

3.2.  WSN system: hardware design

A WSN system is designed to acquire the motor vibration 
signal and transmit the signal to a computer for motor fault 
recognition and result statistics. The hardware circuit of the 
WSN is exhibited in figure  6. An accelerometer (CA-YD-
1182, SINOCERA, Inc.) is installed on the driving end of the 
motor to acquire the vibration signal. The signal is sampled 
and quantized using a 16-bit ADC (Max1300, MAXIM, Inc.). 
The ADC is controlled by a microcontroller unit (MCU, 
STM32F407, STMicroelectronics, Inc.) through a serial 
peripheral interface. Two wireless modules (E62-TTL-100), 
that is, one receiver and one transmitter, are used to transmit 
the data from the WSN to a computer. The wireless modules 
communicate with the MCU and an adapter through a universal 

Figure 5.  Experimental setup.

Table 1.  Parameters of the BLDCM.

Motor type
Rated 
voltage

Rated 
power

No. of 
pole pairs

No. of 
phases

80BL110S50 48 VDC 500 W 2 3

Table 2.  Description of the motor fault types.

Motor condition
No. of training/
testing samples Label

Inner raceway fault/2.0 mm 1000/100 1
Outer raceway fault/0.3 mm 1000/100 2
Outer raceway fault/1.0 mm 1000/100 3
Outer raceway fault/2.0 mm 1000/100 4
Inner raceway fault/1.0 mm 1000/100 5
Normal condition 1000/100 6
Hall sensor fault 1000/100 7
Rotor eccentricity 1000/100 8

Meas. Sci. Technol. 31 (2020) 045016
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synchronous asynchronous receiver transmitter (USART) 
interface. The adapter transfers the USART interface to a uni-
versal serial bus interface to connect with the computer. First, 
the data with eight types of motor conditions are acquired 
by the WSN and transmitted to the computer. These storage 
data form an offline database on the computer. The database 
is used to illustrate the method procedure and performance 
in section 4 and also used for training the CNN model. After 
training, the new data are acquired and transmitted frame by 
frame to the computer for online fault recognition.

3.3.  WSN system: algorithm flowchart

The algorithm flowchart for motor fault diagnosis through the 
proposed CNN method and the designed WSN is displayed 
in figure 4.

Step 1: The motor vibration signal is acquired using the 
designed WSN node, and the sampling frequency is set to 
20 kHz. The signal is transmitted to the computer.
Step 2: The 1D vibration signal is converted to a 2D image 
through the WSST technique.
Step 3: The generated 2D image is enhanced through the 
histogram equalization method, and the contrast ratio of the 
image is improved.
Step 4: The enhanced 2D image is sent to the well-trained 
CNN model, and then the bearing fault can be recognized 
from the CNN output.

Considering that this study focuses on the WSN-based 
motor fault diagnosis, the relationship between the fault diag-
nosis accuracy and WSN performance is evaluated. Thus, the 
signal transmission time and consumed energy are measured 

Figure 6.  Hardware circuit of the WSN system.

Figure 7.  Time-domain waveforms of the motor vibration signals: (a) inner raceway fault/2.0 mm, (b) outer raceway fault/0.3 mm, (c) outer 
raceway fault/1.0 mm, (d) outer raceway fault/2.0 mm, (e) inner raceway fault/1.0 mm, (f) normal condition, (g) Hall sensor fault,  
and (h) rotor eccentricity.

Meas. Sci. Technol. 31 (2020) 045016
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and displayed using the graphical user interface on the comp
uter screen (figure 4).

4.  Features of the motor vibration signals acquired 
from WSN node

4.1.  Motor vibration signal waveforms

The motor vibration signals with a length of 968 sampling 
points acquired from the test rig are illustrated in figure  7. 
Figures 7(a)–(h) correspond to fault types 1–8 listed in table 2. 
When an outer raceway fault appears in the motor bearing, 
the fault-induced impulses can be observed in the waveforms, 
as depicted in figures 7(b)–(d). When an inner raceway fault 
occurs, the impulses and waveform fluctuations are observed 
in the signals, as demonstrated in figures  7(a) and (e). For 
the normal motor without fault, the signal amplitude is lower 
than that of the fault signals, as exhibited in figure 7(f). A Hall 
sensor fault that occurs in the motor will result in a commu-
tation delay in the motor driver and further lead to unstable 
rotation. Thus, a periodic fluctuation will occur, as presented 
in figure  7(g). The rotor eccentricity signal is displayed in 
figure  7(h). The signal amplitude is higher than that of the 
normal signal because eccentricity induces intensive vibration.

4.2.  Signal features analysis

In this subsection, the features of the vibration signals 
acquired from the WSN node are further analyzed, and the 
relationship among the signal length, data resolution and fault 

diagnosis effect is investigated. Envelope spectral analysis is 
a commonly used technique to analyze the vibration signal 
features. For instance, when a localized fault occurs in a 
motor bearing, the fault characteristic order (FCO), which 
is the ratio of the fault characteristic frequency and rotation 
frequency, will appear in the envelope order spectrum. The 
motor bearing signal with the outer raceway fault is used as an 
example. According to the bearing type (6002Z) and bearing 
parameters (outside diameter: 32 mm, inside diameter: 
15 mm, number of rollers: 9), the FCO at the outer raceway 
fault (denoted as FCOO) is calculated as 3.59 [33]. Besides, 
the data resolution of the ADC in the WSN node is 16-bit, as 
introduced in section 3.2. To evaluate how the data resolution 
affects the motor fault diagnosis, the vibration signal with the 
bearing outer raceway fault is sampled by another commercial 
data acquisition system (DAS, USB4432, NI, Inc.) with 24-bit 
ADC resolution for comparison.

The results for different signal length and data resolu-
tion are shown in figure 8. The subfigures in the left column 
show the signals acquired from the NI DAS with 24-bit ADC 
resolution and their corresponding envelope order spectra. In 
figure 8(b), the spectrum is calculated from the signal with a 
length of 9680 sampling points, and the fault indicator FCOO 
and its harmonics such as 2  ×  FCOO can be clearly seen in 
the spectra. Such a result confirms that an outer raceway fault 
occurs in the motor bearing. When the signal length decreases 
from 9680 points to 1452 points, the envelope order spectrum 
is shown in figure 8(d). The FCOO and 2  ×  FCOO components 
can still be found, but the frequency resolution which equals 
to the sampling frequency divided by the number of sampling 

Figure 8.  Effects of signal length and data resolution for motor bearing fault diagnosis with a sampling frequency of 20 kHz: (a) 9680 
sampling points in 24-bit and (b) its envelope order spectrum; (c) 1452 sampling points in 24-bit and (d) its envelope order spectrum;  
(e) 9680 sampling points in 16-bit and (f) its envelope order spectrum; (g) 1452 sampling points in 16-bit and (h) its envelope order spectrum.
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points, decreases obviously. To quantitatively evaluate the 
effect of motor bearing fault diagnosis, the signal-to-noise 
ratio (SNR) is introduced as expressed below:

SNR = 10log10

∑5
i=1 P

î
i × round

Ä
FCOO×NFFT

fs

ä
+ 1
ó

∑NFFT/2
i=1 P [i]−

5∑
i=1

P
î
i × round

Ä
FCOO×NFFT

fs

ä
+ 1
ó ,

� (18)

in which P[i], i  =  1, 2,…, NFFT is the discrete spectrum, 
NFFT is the number of points of fast Fourier transform and f s 
is the sampling frequency. The SNR in equation (18) regards 
FCOO and its second to fifth harmonics as useful signals and 
the other components as noises. The SNR in figures 8(b) and 
(d) are calculated as  −4.12 and  −9.15 dB, respectively. In 
other words, the SNR decreases with the decrease of signal 
length, and further affects the diagnosis performance.

The waveforms and spectra of the WSN signals from 
the offline database are shown in the subfigures in the right 
column of figure 8. The signal length in figure 8(e) is the same 
as that in figure  8(a). However, the spectrum in figure  8(f) 
demonstrates that the noise interference is more obvious than 
that in figure 8(b). For instance, a noise component f 1 with 
no explicit meaning is close to the FCOO. The corresponding 
SNR is calculated as  −7.89 dB, which is lower than that from 

the 24-bit ADC in figure 8(b). Such a result indicates that the 
ADC resolution affects the accuracy of the extracted features 
of the vibration signals. Moreover, when the signal has a short 
length (1452 sampling points) and low data resolution (16-
bit), the results are shown in figures 8(g) and (h). The FCOO 
and its harmonics are hardly identified in the spectrum, and 
the SNR decreases to  −19.68 dB. According to the above 
analyses, it can be found that the WSN signal is usually of 
low quality due to the limitations of the hardware including 
limited battery capacity and limited ADC resolution.

As indicated in table  2, the motor fault types include the 
bearing fault, Hall sensor fault and rotor eccentricity. Different 
bearing fault types can be distinguished by the FCO indicators 
[33]. Except for the bearing fault, the waveforms and envelope 
order spectra of the Hall sensor fault and rotor eccentricity 
vibration signals are shown in figure  9. The signal length is 
3872 sampling points in figures 9(a) and (c). It can be seen in 
the envelope order spectra that both the Hall sensor fault and 
rotor eccentricity contain the 1×, 2×  and multiple integer har-
monics. Indeed, the Hall sensor fault can be regarded as one 
kind of electrical asymmetry fault, and hence its fault features 
are similar to those of the mechanical rotor eccentricity. As 
the magnitudes of these harmonics will vary in different tests, 
the Hall sensor fault and rotor eccentricity are not easily and 

Figure 9.  (a) Hall sensor fault signal waveform and (b) its envelope order spectrum; (c) rotor eccentricity signal waveform and (d) its 
envelope order spectrum.
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directly distinguished in the envelope order spectra. In addition, 
when the signal length decreases further, these two kinds of 
faults will become more difficult to recognize from the spec-
trum. Hence, a more effective method should be investigated to 
distinguish different motor fault types from the WSN signals.

5.  Effectiveness evaluation of the proposed method

As indicated in section 4, the quality of the signals from the 
WSN node is low and hence it is difficult to diagnose the 
motor fault by using the traditional envelope spectral analysis 
method. Hence, an improved CNN-based feature extraction 
and pattern recognition method is investigated in this study. 
The vibration signals in figure 7 are analyzed to validate the 
effectiveness of the proposed method for motor fault diagnosis.

5.1.  WSST images generated from the vibration signals

In section  2.1, 1D vibration signals are converted to 2D 
images as the CNN inputs. WSST is an advanced TFA method 
and it has better performance in characterizing the signal fea-
tures in the time–frequency plane compared with the tradi-
tional methods such as STFT and CWT. A comparison of the 
TFA methods for analyzing the Hall sensor fault and rotor 
eccentricity signals is performed and the results are shown 
in figure  10. The signal length is 1568 sampling points for 
both signals. The parameters of the STFT are configured as 

window length 256 points, overlap 250 points and NFFT 256 
points. For the CWT and WSST, the bump wavelet is selected 
and other parameters are defaults in the built-in MATLAB 
functions. In each subfigure, the x- and y -axes represent the 
time- and frequency-axis, respectively. The STFT results are 
shown in the top subfigures, where it can be seen that these 
two subfigures are similar. The dominant frequency bandwidth 
locates at the low-frequency region (close to the bottom of the 
subfigure). However, as the frequency resolution of the STFT 
method is limited, the dominant bandwidths of two signals are 
partly overlapped as indicated by a horizontal red line. Such 
a result decreases the discrimination of the two signals and 
further affects the diagnosis accuracy of the motor faults. The 
results from the CWT methods are shown in the middle sub-
figures in figure 10. The periodic impulses can be seen in the 
time–frequency plane as indicated by the highlight spots, and 
the resolution of the time–frequency figure has been improved 
compared with that of the STFT. However, the overlapping 
of the dominant bandwidths at the frequency-axis can still be 
noticed as indicated by a red line. The results from the WSST 
method are shown in the bottom subfigures in figure 10. It can 
be found that the energy smearing phenomenon is reduced by 
introducing the synchrosqueezed transform and hence the fea-
tures on the time–frequency plane can be better identified. The 
horizontal red line also indicates that there are no overlapping 
bandwidths in the two subfigures. In view of pattern recogni-
tion, the more different features that exist in the two figures, 
the better the discrimination. Hence, it is expected that the 
WSST-based feature extraction method will produce a high 
accuracy of motor fault diagnosis.

Then, the grayscale WSST images corresponding to the 
signals in figure 7 are illustrated in figure 11. A dark pixel and 
a bright pixel represent the low and high energies on the time–
frequency plane of the vibration signal, correspondingly. In 
the generated images, the majority of the energies distribute at 
the low-frequency region (i.e. the bottom of the image). At the 
high-frequency region, the time–frequency energies are low, 
as indicated in the concentrated dark regions at the top of the 
image. Given the image quality, the image contrast rate is low, 
thereby decreasing the accuracy of CNN feature extraction 
and fault recognition.

5.2.  Image enhancement using histogram equalization

Histogram equalization is applied to the original image to 
improve the contrast rate. Figure  12(a) depicts the original 
image and its gray-level distributions. Based on the image, 
most of the pixels distribute at low gray levels (i.e. below 50). 
This image is then enhanced using histogram equalization, 
and the result is displayed in figure 12(b). The distribution of 
dark and bright pixels is more homogeneous in the enhanced 
image than in the original image. Figure  13 demonstrates 
the respective enhanced versions of the images presented in 
figure 11. The details and textures of the enhanced images can 
be identified well. In particular, the image contrast rate has 
been improved, thus benefiting CNN feature extraction and 
image classification.

Figure 10.  Comparison of the TFA methods in processing the Hall 
sensor fault and rotor eccentricity signals. Top: STFT; middle: 
CWT; bottom: WSST.
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5.3.  Motor fault recognition using CNN

In this study, the CNN model is used to extract the hierar-
chal features from the enhanced images exhibited in figure 13. 
Then, the motor fault type can be recognized from the CNN 
output. The parameters of the CNN model are listed in table 3. 

Eight kinds of enhanced images that correspond to different 
motor fault types are used to train the CNN model. Each data 
set from the offline database comprises a total of 1100 samples 
for every motor condition. Of these samples, 1000 are used for 
training, while 100 are utilized for validation (8000 samples 
are trained and 800 samples are validated). The CNN is trained 

Figure 11.  Time–frequency images generated using the WSST.

Figure 12.  Illustration of image histogram equalization: (a) before and (b) after enhancement.
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using the stochastic gradient descent with momentum with 
an initial learning rate of 0.01, and the maximum number of 
epochs is set to three. The other parameters are defaults in the 
built-in MATLAB functions. In the CNN training and valida-
tion (figure 14), the training accuracy is approximately 100%, 
and the training loss converges to nearly 0 after 40 epochs.

A well-trained CNN model is obtained after 40 epochs of 
training. To validate the effectiveness of the proposed method, 
eight kinds of images are selected randomly from the valida-
tion data set and inputted into the well-trained CNN model. 
The results of the predictive and actual fault modes are illus-
trated in figure 15. The highlighted values are the maximum 
of each row. In this figure, the maximum probability of the 
predictive fault modes matches the actual fault modes in each 
test. The maximum probability ranges from 98.33%–100%, 
which is significantly larger than other probabilities. The 

results indicate that the motor fault type is successfully recog-
nized through the proposed method.

6.  Efficiency evaluation and discussions

First, the vibration signal acquired from the designed WSN 
node is converted to an image. Second, the motor fault type 
can be recognized through the proposed CNN method. The 
WSN node is constantly powered by a battery with limited 
capacity, and each signal acquisition and transmission will 
consume energy. Therefore, decreasing the data length of the 
acquired signal will reduce the consumed energy and extend 
the service life of the node. On the other hand, the signal length 
affects the accuracy of feature extraction and fault recognition 
because a long signal contains sufficient information relative 
to the motor condition, and vice versa. Thus, the relationship 

Figure 13.  Enhanced images using histogram equalization.

Table 3.  Details of the designed CNN Model.

Layer Layer type Parameters

1 Input layer 28s  ×  28 pixels
2 Convolutional layer Filter size  =  3  ×  3 pixels, no. of filters  =  16
3 Batch normalization layer —
4 ReLU layer —
5 Max-pooling layer Pool size  =  [2 2], stride  =  [3 3]
6 Fully connected layer No. of channels  =  8
7 Softmax layer —
8 Classification layer No. of channels  =  8
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between the data length and motor fault recognition rate must 
be evaluated through the CNN method.

6.1.  Method comparison

The proposed method is compared with four other methods 
in terms of different signal length and image resolution. The 

details of the different methods are summarized in table  4. 
M1 represents the proposed method, which is introduced in 
section 2. M2 is a simplified method of M1 without the his-
togram equalization procedure. M3 is similar to M2, except 
that the CWT, rather than the WSST, is used to obtain the 2D 
image. M4 is also a CNN-based method and the input image is 
constructed using STFT. Image I[i, j ] in method M5 (referred 

Figure 14.  Procedures of the CNN training and validation.

Figure 15.  Confusion matrix of the actual and predictive fault modes.

Table 4.  Detailed descriptions of the different methods.

Method Key technique Detailed description

M1 WSST, histogram equalization Vibration signal is converted to an image through WSST, 
image is enhanced through histogram equalization

M2 WSST Vibration signal is converted to an image through WSST
M3 CWT Vibration signal is converted to an image through CWT
M4 STFT Vibration signal is converted to an image through STFT
M5 Signal realignment 1D Vibration signal is realigned to construct a 2D image
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from [34]) is constructed directly from the original vibration 
signal S[n] and is expressed as

I [i, j] = S [(i − 1)× K1 + j] , i = 1, 2, ..., K2, j = 1, 2, ..., K1,
� (19)
where K1  ×  K2 is the resolution of the constructed image. For 
each method, accuracy Acc refers to the average accuracy for 
the eight kinds of motor conditions and is defined as

Acc =

∑8
i=1 Acci

8
,� (20)

where Acci is the validation accuracy of each fault type. This 
variable can be calculated as

Acci =
NS

NT
× 100%,� (21)

where NS and NT  =  100 are the numbers of successful and the 
total tests, respectively. Here, TOP-1 accuracy is used to count 
the successful tests. That is, if the maximum probability of the 
predictive fault mode matches the actual fault mode, then the 
test will be considered successful.

The image resolution is selected from 7  ×  7 pixels to 
28  ×  28 pixels, and the corresponding vibration signal length 
is selected from 98 sampling points to 1568 sampling points. 
The training data is obtained from the offline database and the 
validation data is acquired from the WSN in real time frame 
by frame. The data here and the data in figure 8(g) are in the 
same database. In figure 8(g), the signal length is 1452 sam-
pling points, and the generated image is resized to 26  ×  26 
pixels for CNN training and validation. Besides the signal 
with a length of 1452 points, seven other kinds of signals with 

different lengths are tested to validate the overall performance 
of the proposed method. The validation accuracy of different 
methods under various resolution conditions is depicted in 
figure 16. Basically, the M1 curve is above the other curves in 
figure 16, which indicates that the proposed method achieves 
a better validation accuracy. For instance, the validation acc
uracy of the data with a 1452 signal length (corresponding to 
figure 8(g)) reaches 99.13%. This value is the highest out of 
all the methods with the same signal length, and hence dem-
onstrates the superiority of the proposed method over other 
existing ones. From another aspect, the accuracy increases 
with the image resolution because a large image contains suf-
ficient information relative to the motor condition. When the 
image resolution reaches 28  ×  28 pixels, the accuracy of the 
M1, M2, M3 and M4 methods exceeds 98%, which is higher 
than that of M5. This result indicates that the image con-
structed through the TFA method contains more information 
than that constructed using the original time-domain signal.

When the image resolution or the signal length decreases, the 
accuracy of all the methods decreases accordingly. However, 
the accuracy remains higher in the proposed method M1 than 
in the other methods. In particular, the accuracy (without 
histogram equalization) is lower in M2 than in the proposed 
method with histogram equalization. This result explains that 
the histogram equalization can effectively improve the image 
contrast rate and further benefit feature extraction and fault 
type recognition. These experimental results demonstrate that 
the proposed method is effective and efficient for recognizing 
different motor fault types, especially when the vibration 
signal length from the WSN node is limited.

Figure 16.  Comparison between the proposed method M1 and other methods.
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6.2.  WSN performance evaluation

The effectiveness and efficiency of the proposed method has 
been validated through the abovementioned experiments. 
Considering that the vibration signal is acquired and trans-
mitted from the designed WSN node, the energy consump-
tion and transmission time are evaluated to explain the use 
of the proposed method explicitly in practical applications. 
The statistical results are summarized in table 5. In the second 
column, data length represents the number of sampling points. 
Each sampling point occupies 2 bytes of storage space in 
accordance with the resolution of the ADC (16-bit). The third 
column measures the data transmission time from the trans-
mitter and receiver of the WSN system. The baud rate of the 
transmitter/receiver is set to 9600 bit s−1. The fourth column 
represents the total consumed energy of the transmitter and 
receiver calculated by multiplying the supply voltage and con-
sumed current. The fifth column measures the CNN training 
time on the computer (configuration: Dual Core 2.30 GHz 

CPU, 8.00 GB RAM, 64-bit WIN10 Operation System, and 
MATLAB 2018b). The sixth column measures the execu-
tion time for each frame, including signal conversion, image 
enhancement and CNN classification.

In table  5, data transmission time and consumed energy 
increase nearly linearly with the image resolution and signal 
length because the transmitter/receiver operates in a stable 
mode. Because the size of the image data set is small (8000 
samples) and the image resolution is low (maximal: 28  ×  28 
pixels), CNN training is fast on the computer. The classifi-
cation time on the computer is small for all the cases, given 
sufficient computation resources required in executing a CNN 
algorithm. By comparing the results presented in figure 16 and 
table 5, a large image and a long signal length will increase 
the classification accuracy of the motor fault diagnosis and the 
consumed energy of the WSN. Thus, a trade-off between the 
accuracy and energy must be considered in motor fault diag-
nosis when the signal is acquired from a WSN with limited 
power supply.

Table 5.  Comparison of the transmission time, consumed energy, training and classification time for different image sizes and signal 
lengths.

Image resolution 
(pixels)

Signal length 
(samples)

Data transmission  
time (s)

Transmission  
consumed energy (J)

CNN training  
time (s)

CNN classification 
time (s)

7  ×  7 98 0.057 0.020 2.33 0.081

10  ×  10 200 0.115 0.039 2.67 0.108

12  ×  12 288 0.165 0.057 3.33 0.115

14  ×  14 392 0.225 0.077 4.33 0.133

18  ×  18 648 0.371 0.127 6.00 0.143

22  ×  22 968 0.554 0.190 7.67 0.173

26  ×  26 1452 0.774 0.265 9.13 0.198

28  ×  28 1568 0.898 0.308 11.67 0.211

Figure 17.  Comparison of different wavelets for the construction of time–frequency images.
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6.3.  Discussions

In this study, the WSST constructs the images and then the 
CNN extracts the hierarchical features from the images. The 
wavelet function is a key factor that affects the TFA and image 
quality. In this subsection, the effects of the wavelet func-
tions for image construction are investigated. Three wavelet 
functions including ‘Bump’, ‘Morlet’ and ‘Morse’ wavelets 
are used in both CWT and WSST methods for comparison, 
and the results are shown in figure 17. It can be found in the 
subfigures in the left panel (CWT method) that the ‘Bump’ 
wavelet has the best performance in characterizing the time–
frequency features of the vibration signals. For instance, the 
periodic impulses in the vibration signals are highlighted, and 
the smearing phenomenon at frequency-axis in the ‘Bump’ 
subfigures is not that obvious compared with that in the 
‘Morlet’ and ‘Morse’ subfigures. The results of the WSST 
method are shown in the subfigures in the right panel. It can be 
found that three different wavelet functions generate similar 
time–frequency images and these images have high definition 
in time–frequency planes. The synchrosqueezed process in 
the WSST re-distributes the energies at scales, and reduces 
the sensitivities of the time–frequency distribution coeffi-
cients, and finally improves the robustness and adaptivity of 
the wavelet transform.

In addition, the CNN classification accuracies based on the 
CWT and WSST in considering different wavelets are also 
calculated. The signal length and image resolution are con-
figured as 968 points and 22  ×  22 pixels, respectively. The 
results are shown in table 6. It can be seen in the first to third 
columns that the ‘Bump’ wavelet has the highest accuracy 
when the CWT is used to construct the images. This result is 
confirmed with the intuitional analysis in figure 17. For the 
results from the WSST method shown in the fourth to sixth 
columns, the ‘Bump’ and ‘Morse’ wavelets generate better 
results than the ‘Morlet’ wavelet. From another aspect, the 
accuracies from the WSST are all higher than those of the 
CWT, which confirms that a better image quality contributes 
better pattern recognition. The above results indicate that the 
proposed method including the WSST and histogram equali-
zation steps are essential to obtain a high motor fault diagnosis 
accuracy, especially when the quality of the vibration signal is 
low due to the limitation of WSN.

7.  Conclusion

This study proposes an enhanced feature extraction method to 
realize motor fault diagnosis using a vibration signal acquired 
from a WSN node. The proposed method contains four suc-
cessive steps. (1) The vibration signal is acquired from an 
accelerometer installed in a motor and then transmitted to a 
computer through a WSN system. (2) A 1D vibration signal is 
converted to a 2D image through the WSST method. (3) The 

contrast rate of the constructed image is enhanced through 
histogram equalization. (4) A CNN model is designed and 
trained using the motor data set, and then the recognized 
motor fault is realized using the well-trained CNN model. 
The effectiveness of this method is verified on the BLDCM 
test rig with different types of motor faults. Moreover, the 
efficiency of the proposed method is validated by comparing 
it with other traditional methods. Considering that the data is 
acquired and transmitted from a WSN node, the relationship 
between the image resolution, data length, transmission time 
and consumed energy is investigated and discussed. The pro-
posed method exhibits ensemble superiority to other methods 
when the vibration signal length is limited. Therefore, the 
proposed CNN method is suitable for remote motor fault 
diagnosis, especially when the motor signal is acquired and 
transmitted from a WSN with limited power supply.
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