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1.  Introduction

In the last decade, three-dimensional scanning technologies 
have been widely used in model reconstruction [1]. However, 
the volume of data of raw point clouds is huge, which reduces 
the efficiency of downstream surface reconstruction. As a 
result, point cloud simplification is a particularly important 
step, and it has attracted more and more attention in recent 
years.

On the other hand, with the development of the automo-
bile manufacturing and equipment manufacturing industries, 
the accurate surface reconstruction of industrial parts, such as 
sheet metal parts and cast parts, is becoming a current pursuit 
[2]. Most of these parts have edge regions or rounded cor-
ners for stress equilibrium. These features are important in the 
analysis of the machining process, and should be preserved 
during simplification. As a result, the purpose of this paper 
is to investigate an edge-sensitive, point-based simplification 
method.

1.1.  Previous work

Point cloud simplification is concerned with reducing the 
number of redundant points and preserving geometric fea-
tures, so as to provide a better representation of the under-
lying surface. In early research, many researchers focused on 
the moving least squares (MLS) method, volume data, and 
iterative simplification. MLS is used to construct local sur-
faces implicitly [3, 4], and points are projected to the surface 
for down sampling. Kobbelt et al [5] simplified point clouds 
by extracting feature-sensitive surfaces based on volume data. 
Lipman et al [6] proposed a locally optimal projection (LOP) 
operator and applied it to raw scanned data with complex 
shapes. Huang et al [7] developed a weighted locally optimal 
projection (WLOP) operator based on LOP, which has proven 
to be less sensitive to noise and has the advantage of producing 
an evenly distributed point cloud. To reduce the computational 
complexity of WLOP, Yang et al [8] focused on the decompo-
sition of a point cloud and created multiple output results by 
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iterating over each subset. However, LOP and its variations [9, 
10] still suffer from high computational costs.

Recently, clustering algorithms have been widely applied 
to point-based simplification; they split the point cloud into 
a number of clusters and replace each of them with several 
points. Wu and Kobbelt [11] introduced a global optimization 
scheme. In their work, the global minimal set of splats is com-
puted based on normal vectors and spatial extent to replace 
the entire surface. Zhao et al [12] applied a hierarchical clus-
tering method to partitioning the point cloud and selected a 
representative point for each cluster. Yu et al [13] proposed 
an adaptive simplification method based on a hierarchical tree 
to simplify point-based models efficiently. The method may 
lead to the loss of important edge feature information, due 
to ignoring geometrical characteristics while clustering data 
points. To improve the efficiency, a k-means clustering algo-
rithm [14] was employed to partition point cloud into sphere 
clusters iteratively, and the selection of initial centroids was 
exploited. Benhabiles et al [15] combined a clustering method 
and a coarse-to-fine approach to simplify point clouds. Each 
point of a coarse cloud created by a clustering algorithm is 
assigned a weight quantifying its importance, and a simpli-
fied point cloud is then created by classifying those points into 
high-curvature or planar regions. Classical clustering methods 
were tested in a manner insensitive to edges, because they split 
a point cloud according to the spatial positions of points rather 
than geometrical characteristics. Many relevant methods have 
been used to solve the simplification problem. Park et al [16] 
applied mixed-integer quadratic programming techniques 
to simplification, and they performed well on both indoor 
and outdoor data points. However, it is not suitable for huge 
numbers of data points due to its prohibitive computational 
cost. Han et al [17] set an importance for each point based on 
normal vectors and simplified point clouds by detecting edge 
features and removing redundant points, which preserves edge 
features well. Xin et  al [18] exploited a data simplification 
method based on the back propagation (BP) neural network, 
which is affected by the number and the quality of training 
samples. Bahirat et  al [19] introduced a curvature-sensitive 
surface simplification operator, in which points are selected 
based on the importance of their curvature. Although the algo-
rithm preserves finer details, it is applied only to data points 
obtained from a depth camera. Chen et al [20] proposed a cen-
troidal Voronoi tessellation method to progressively improve 
the resampling quality by interleaving the optimization of res-
ampling points. However, this algorithm does not have a good 
performance on point clouds with edge features due to the 
inaccurately estimated tangent planes. Whelan et al [21] pre-
sented a method for incrementally growing planar segments 
and an accurate method to eliminate most of the redundant 
planar points in dense point clouds. It is time-efficient and 
suitable for real-time operation, but it is not suitable for the 
point clouds of industrial parts. Cheng et al [22] took the sim-
plification as a weighted k-cover problem and simplified the 
point cloud by using an adaptive exponential weight function 
based on the visibility probability of 3D points.

Edge areas are crucial features in analysis of the machining 
process of industrial parts, such as sheet metal parts and cast 

parts. In addition, some industrial parts are likely to have 
defects in edge areas, such as burrs or flash. To analyze and 
improve the machining process, the edge features with both 
thin and thick contours should be preserved. To preserve more 
edge features, we create a clustering scheme by applying two 
different clustering algorithms to the splitting of the point 
cloud, according to spatial distances and geometrical charac-
teristics respectively, which provides non-sphere clusters to 
split-edge regions.

1.2.  Our work

In this paper we focus on developing a simplification method 
for scanned point clouds. The method makes the points dense 
in the areas of high curvature, and sparse in the relatively 
planar areas. The proposed method has three main parts. First, 
a feature descriptor of each point is created, to describe geo-
metrical characteristics. The point cloud is then grouped into 
k clusters by a k-means clustering method. After obtaining an 
initial clustering result, the high-curvature clusters are parti-
tioned into some sub-clusters by applying a fuzzy c-means 
(FCM) algorithm and a k-means clustering algorithm alter-
nately. The sub-clusters with few points are merged with their 
neighboring clusters after each iteration. Finally, when the 
termination condition is satisfied, every cluster will be repre-
sented by only one point. There are three main contributions 
in this paper, as follows.

	(1)	�A new feature descriptor is created to represent the geo-
metrical characteristics of each point, according to the 
distribution of its neighboring normal vectors. A geomet-
rical domain is then generated, based on the descriptor. 
As a result, the characteristics of the point cloud can be 
presented in both spatial and geometrical domains.

	(2)	�A new metric is created in the geometrical domain. An 
FCM algorithm with the new metric is then proposed, 
to partition the high-curvature clusters into smaller sub-
clusters based on feature descriptors, which is capable of 
obtaining non-spherical clusters and performs well on the 
splitting of edge regions.

	(3)	�Two different clustering algorithms are used to group 
data points, based on Euclidean distance and geometrical 
characteristics, respectively. The clustering scheme is 
sensitive to both the edge with a small curvature and the 
edge with a thick contour, which means that our method 
is able to preserve small edge details and rounded corner 
features well.

In section  2 we introduce the principles of the proposed 
method and the error estimation method. The performance 
of the proposed method is evaluated by experiment and dis-
cussed in section 3. Section 4 concludes the paper.

2.  Proposed simplification method

To simplify the point cloud, we create a clustering scheme to 
partition the point cloud into clusters. Two clustering algo-
rithms are used in our simplification method. The goal of the 
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k-means clustering algorithm is to gather points whose spa-
tial positions are close, and the goal of the FCM algorithm 
is to gather points with similar geometrical characteristics. 
Actually, the k-means clustering algorithm can be regarded as 
a special FCM algorithm, where its membership function is a 
signum function and its metric is simple Euclidean distance. 
Although the k-means clustering algorithm is able to parti-
tion a 3D point cloud into k clusters robustly and efficiently, 
it does not perform well in high-curvature areas. As a result, 
the FCM algorithm is applied on clustering points in the same 
cluster generated by the k-means clustering algorithm, based 
on their geometrical characteristics, due to its insensitivity to 
noise and changeable metrics.

The point-based simplification algorithm proposed in this 
paper is performed in several steps. First, if points do not 
have normal vectors, principal component analysis (PCA) 
will be used to estimate normal vectors [23]. Second, the geo-
metrical descriptor of each point is calculated according to 
three eigenvalues of a symmetric matrix built based on unit 
normal vectors of neighboring points. Third, the point cloud is 
split into k initial clusters by the k-means clustering algorithm, 
and the clusters containing high-curvature points are selected 
according to a selection condition. The FCM clustering algo-
rithm, whose metric is created by combining geometrical 
descriptors with normal vectors, is then used to partition these 
clusters further, and the k-means clustering algorithm is used 
to split the FCM results into small sub-clusters. In order to 
distinguish the edge-like points from the outliers, clusters 
with few members named after singular clusters are removed 
and their members are merged with neighboring clusters 
after each iteration. Finally, the point cloud is simplified by 
selecting only one point in each sub-cluster. Figure 1 shows 
the framework of the whole simplification process. The input 
point cloud is denoted as a point set P  =  {p 1, p 2, …, p N } in 
this paper.

2.1.  Generation of geometrical descriptor

Geometrical descriptors are used to describe geometrical fea-
tures during the preprocessing of the point clouds. Most geo-
metrical descriptors are computed based on the distribution 
of the points, ignoring the normal vectors [24]. Therefore, we 
select the principal curvature as the descriptor. Although the 
two principal curvature directions can be estimated by PCA 
after projecting neighboring normal vectors onto the tangent 
plane [25], it is a complex and time-consuming procedure. To 
address this problem, we build a 3  ×  3 matrix to describe the 
two principal curvatures according to the distribution of neigh-
boring normal vectors. We dubbed the mean distance dmean of 
the point cloud P as a basic length, and we define a search 
sphere for each point p i in set P with a constant radius of r 
(r  =  3dmean in this paper). The point p j  in the search sphere, 
which meets nT

i nj > 0, is regarded as a neighboring point of 
p i, where ni is the unit normal vector of p i and nj  is the unit 
normal vector of p j . This selection method can eliminate the 
false neighboring points when the model has two opposing 
flat parts in close proximity. For the point p i, the unit normal 

vectors of all its neighboring points are used to create a matrix, 
and due to the symmetry of the matrix nT

i nj, the matrix can be 
represented as

F(nn) =
∑
pj∈Pi

(nT
n nj)

2
= nT

n (
∑
pj∈Pi

njnT
j )nn,� (1)

where Pi is the set of neighboring points and nn is the normal 
vector of the normal plane. For the point p i, this matrix F(nn) is 
the sum of square distances from normal vectors to the normal 
plane, and it represents the distribution of neighboring normal 
vectors. The two unit principal curvature direction vectors are 
represented as v1 = argmin

nn

F(nn) and v2 = argmin
nn

F(nn). 

Therefore, the matrix M =
∑

pj∈Pi
njnT

j  represents the distri-
bution of neighboring normal vectors implicitly. Equivalently, 
the two smaller eigenvalues of matrix M represent two 
principal curvatures indirectly. The geometrical descriptor 
hi  =  (αi, βi) of point pi is computed by

αi =
λ3

λ1 + λ2 + λ3
, βi =

λ2

λ1 + λ2 + λ3
,� (2)

where λ1, λ2, λ3 (λ1 > λ2 > λ3) are the three eigenvalues of 
the matrix M. Here, αi represents the non-planar degree of 

Figure 1.  Simplification process.
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p i; in other words, the higher this value is, the more edge-
like or corner-like the local region is. Next, βi represents the 
edge-like degree of p i or, equivalently, the higher this value is, 
the more likely it is that p i is located at an edge region. As a 
result, descriptor hi describes the geometrical feature of p i by 
combining αi and βi.

The descriptor is created based on normal vectors of neigh-
boring points. Therefore, when the point cloud has too much 
noise, it is necessary to smooth the normal vectors before cre-
ating hi. The details of the smoothing of normal vectors are 
described in [9].

2.2.  Initial k-means clustering method

After the generation of the geometrical descriptor, the point 
cloud can be represented both in the spatial domain and the 
geometrical domain. To group the points having similar spa-
tial positions and similar geometrical characteristics, the 
k-means clustering algorithm and FCM algorithm are applied. 
On the uniform data set, the k-means clustering algorithm is 
more robust and accurate than the FCM algorithm [26]. As a 
result, the k-means clustering algorithm is used to partition 
the point cloud into k groups, denoted as G  =  {g1,g2, …, gk}. 
Each point is grouped into the cluster with the nearest centroid 
iteratively.

The choice of initial cluster centroids has a great effect on 
the k-means clustering result. Some of the centroids are likely 
to gather together when using a common random selection 
method, resulting in a non-uniform initialization result. In 
contrast to that method, we select k (k � N) initial cluster 
centroids in the following steps.

	(1)	�Select one point in the point cloud randomly.
	(2)	�For the selected point, search its neighboring points and 

mark them all.
	(3)	�Select the next point from the unmarked points randomly.
	(4)	�Repeat steps 2 and 3 until k points are selected as initial 

cluster centroids.

Our cluster centroids initialization method is capable of 
generating uniform cluster centroids.

2.3.  Fuzzy c-means clustering method

After initial k-means clustering, the points in the cluster 
located at an edge region have different geometrical char-
acteristics, which should be grouped further. Generally, the 
scanned point cloud is approximately uniform, since all the 
multi-view scans are from the same scanner. However, unlike 
with the spatial position, the distribution of characteristics in 
the geometrical domain is non-uniform, limiting the perfor-
mance of the k-means clustering algorithm. On the other hand, 
there might be some noise points or outliers in the point cloud 
due to light disturbance during the data acquisition phase. To 
address these problems, the FCM algorithm is used due to its 
insensitivity to non-uniform data and noise [27, 28]. In addi-
tion, we create a new metric of the FCM algorithm based on 
both geometrical characteristics and normal vectors to achieve 

non-sphere clustering results, capable of partitioning high-
curvature clusters into edge and planar areas well.

We denote the geometrical descriptors of points in an initial 
group gt (t  =  1, 2, …, k) as set H  =  {h1, h2, …, hn}, where n is 
the cardinality of the data gt. The FCM algorithm transforms 
the classical classification into a fuzzy optimization by intro-
ducing a fuzzy weight and membership function. To group 
the data set, the FCM algorithm defines an objective function

JFCM =
n∑

i=1

c∑
k=1

(uik)
md(hi, vk),� (3)

where c is the number of fuzzy clusters, uik is the member-
ship value of the ith member hi on the kth fuzzy cluster and ∑c

k=1 uik = 1, vk is the centroid of the kth fuzzy cluster, 
d(hi, vk) is the metric and m is the fuzzification parameter. 
The FCM algorithm updates the membership values and the 
cluster centroids iteratively to minimize the objective func-
tion. The Euclidean distance between hi and vk is the most 
common metric. However, most rounded corners and edge 
regions in sheet metal parts or cast parts are symmetrical, and 
the points on the two sides of an edge region are likely to 
grouped into the same cluster when using the classical metric 
because they have similar geometrical descriptors. As a result, 
we add the unit normal vector into the geometrical descriptor, 
and it changes into hi  =  (αi, βi, ni). A new metric between 
hi  =  (αi, βi, ni) and vk  =  (αv

i ,βv
i , nv

i ) is then defined as

d(hi, vk) =
el(a−cos b) + 1

el(a−cos b)

»
(αi − αv

k)
2
+ (βi − βv

k)
2,� (4)

where a =
nT

i · nv
k

|ni||nv
k |

, l is an empirical value which is set to 25 in 

this paper, and b is a user-defined angle threshold to control 
the contribution of the normal vector direction to the metric, 
which is set to 60° in this paper.

Similar to the k-means clustering algorithm, the initializa-
tion of cluster centroids is vital for the FCM algorithm. To 
accelerate the clustering process, the selection of c initial 
cluster centroids consists of three steps, as follows.

	(1)	�Compute the center point of the cluster vk and select the 
point whose metric distance to vk is a maximum as the 
first cluster centroid.

	(2)	�Select the point whose metric distance to the first cluster 
centroid is a maximum as the second cluster centroid.

	(3)	�Select c–2 points iteratively, and each selected point vk 
meets the condition defined as

vk = argmax
hi

(min d(hi, vj)), (i = 1, 2, · · · , n; j = 1, 2, · · · , k − 1).

� (5)
After the initialization of centroids, the membership value of 
each point graded on every centroid is calculated by

uik =
1

∑c
j=1

î
d(hi,vk)
d(hi,vj)

ó1/(m−1) ,� (6)

and each point belongs to the group with maximum member-
ship value in the initial clustering. The centroids are updated 

Meas. Sci. Technol. 31 (2020) 045203



S Liu et al

5

by vk =

∑n
i=1

um
ikhi∑n

i=1
um

ik
, and the membership values are updated 

by formula (6) until the movement of each centroid in the 
spatial domain is lower than a specified minimum threshold, 
which is set to 10−6 in this paper. Figure 2 shows the clus-
tering results achieved by using the classical metric and the 
proposed metric. We set the number of fuzzy clusters to three, 
and points in the same cluster are in the same color. Due to the 
symmetry of the edge area, the points on the two sides have 
similar geometrical characteristics. Thus, the classical metric 
cannot partition them well and group them into the same 
cluster, although they are discontinuous in the spatial domain. 
In contrast, the proposed metric with angle control can dis-
tinguish these points, and makes the sub-clusters continuous 
in the spatial domain. It can be seen that the FCM algorithm 
using the proposed metric is capable of splitting the two sides 
of the edge region.

2.4.  Alternate clustering

In order to gather points with similar geometrical and spatial 
characteristics, FCM clustering and k-means clustering are 
applied in the geometrical domain and spatial domain alter-
nately. The clustering process of each initial cluster consists 
of four steps, as follows.

	(1)	�Applying the FCM algorithm to the geometrical domain, 
to gather points having similar geometrical characteristics.

	(2)	�Applying the k-means algorithm to the spatial domain, 
to split the FCM results into smaller sub-clusters. In an 
FCM cluster, the two points whose spatial positions are 
the farthest are selected as the new initial centroids of the 
k-means clustering algorithm.

	(3)	�Merging a group with few members with its neighboring 
groups after each iteration. In order to preserve geo-
metrical features, we should distinguish edge points from 
outliers. For the whole point cloud, the distribution of 
real geometrical characteristics is continuous. However, 
in local regions, both outliers and edge points are likely 
to cause discontinuity of the distribution of geometrical 
characteristics, and it is difficult to distinguish them in the 
present single cluster. Due to this local geometrical dis-
continuity, these outliers or edge points will be grouped 
into clusters with few members or even only one member. 
Thus, we merge the cluster with its neighboring cluster, 
in three steps. First, the group named after the singular 
cluster is removed from the clustering result. Then, for 
each point in the singular cluster, the clusters containing 
its neighboring points are found as its neighboring clus-
ters. Finally, the membership values of the point graded 
on its neighboring clusters are calculated, and the point 
is grouped into the neighboring cluster with maximum 
membership value. If the point is an edge point, it will 
be grouped into the neighboring high-curvature region 
cluster whose members have similar geometrical charac-
teristics to it. If the point is an outlier, it will be grouped 
into the singular cluster again in the next update because 
its geometrical characteristic differs from all its neigh-
boring points. If all sub-clusters subdivided from the 
same cluster are merged into one cluster, these singular 
clusters and their members will be removed directly. 
Figure  3 shows the process and the result of merging. 
After subdivision, the initial three clusters (figure 3(c)) 
are partitioned into nine clusters (figure (d)). Before 
merging, the red vertex is in a singular cluster, and after 
merging, it is merged into its neighboring edge cluster 
colored in blue. It can be seen that the edge point is 
merged into its neighboring edge cluster whose members 
have similar geometrical characteristics to it. Although 
the merging process is likely to remove sharp points, 
resulting in sharp feature loss, it is suitable for the point 
clouds of sheet metal parts and cast parts because most of 
these industrial parts have few sharp regions, in order to 
avoid stress concentrations.

	(4)	�We select the sub-clusters with a maximum metric higher 
than the user-defined threshold ε as the next initial clus-
ters, and repeat steps 1 to 3 until all clusters’ maximum 
metrics are lower than the threshold ε.

The fuzzification of parameter m determines the fuzzy 
degree of the boundaries between fuzzy clusters. In this paper 
we set m to 2 and the number of fuzzy clusters c to 3. The 
cluster whose members number fewer than 3 is regarded as a 
singular cluster.

Figure 2.  Comparison between the classical metric and the 
proposed metric: (a) the initial k-means clustering result of a sheet 
metal part (one cluster is displayed in one color); (b) the FCM 
clustering result of the initial cluster in the yellow box, using the 
classical metric (c  =  3); and (c) the FCM clustering result of the 
initial cluster in the yellow box, using the proposed metric (c  =  3, 
b  =  60°).
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2.5.  Final simplification

After clustering, the point cloud is partitioned into many clus-
ters, and in each cluster, the points have similar spatial and 
geometrical characteristics. Therefore, we select a represen-
tative point for each cluster to simplify the point cloud. In 
this paper we replace each cluster by its centroid [12, 14]. 
Figure 4 shows the final simplification process. There is an 
error between the origin surface and the simplified surface, 
and the quality of the simplification result can be measured by 
estimating the error.

If the user wants the simplification result to be a proper 
subset of the origin point dataset, the point which is nearest 
to the centroid is selected to represent the cluster, rather than 
the centroid.

Figure 3.  The process of merging a singular cluster into its neighboring clusters: (a) an edge point cloud; (b) initial clusters after initial 
k-means clustering; (c) the three initial clusters in the red box of (b). (d) A singular cluster containing only one edge point in the green box 
after fuzzy clustering, with its neighboring points in the red circle. (Each initial cluster is partitioned into three sub-clusters. The green, red, 
and blue clusters are edge clusters.) (e) Neighboring clusters of the singular cluster containing neighboring points. (f) Merging the edge 
point into the neighboring edge cluster with maximum membership value.

Figure 4.  Simplification by replacing each cluster by its centroid: (a) initial points marked in blue circles and origin surface marked in a 
blue curve; (b) centroids marked in red triangles and simplified surface marked in a red curve.

Figure 5.  Elements of experiment: XTOP system and the scanned 
model.
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2.6.  Error estimation

To quantify simplification accuracy, we must measure the 
geometrical error between the simplified point cloud Q and 
the original point cloud P. We denote the surface of P as S 
and the surface of Q as S′. Similar to [3, 29, 30], we esti-
mate the simplified error by measuring the maximum error 
and the mean error between the surface S and the surface S′. 
In accordance with [3], an up-sampled point cloud of points 
on S is created to compute point-to-surface distances. Owing 
to the approximate uniform distribution of the scanned point 
cloud, we use the original point clouds directly to measure 
error in this paper. For each p  in the origin point cloud P, the 
maximum error Emax(S,S′) and the mean error Emean(S,S′) can 
be defined as

Emax(S, S′) = max
p∈P

d( p, S′),� (7)

Emean(S, S′) =
1
N

∑
p∈P

d( p, S′),� (8)

where N is the cardinality of the origin point set, and d(p ,S′) is 
the error distance, defined as the distance between point p  and 
its projection point p ′ on the surface S′. For the mesh surface 
S′, the simplified point cloud is triangulated using the surface 
reconstruction method of Delaunay triangulation.

3.  Experiment and analysis

In this section, we design several experiments to present the 
simplification result of the proposed method and compare it 
with other simplification methods. We program the proposed 
algorithm in Visual Studio 2013 on a desktop computer with 
3.6 GHz CPU and 8 GB RAM. In this paper, we use three 
point clouds as experiment models. The sheet metal part 
model, cast part model and blade model are acquired using the 
XTOP system, which is a structured light scanning system, as 
shown in figure 5.

3.1.  Results of our method

Figure 6 is an example of the proposed simplification pro-
cess. The point cloud is a sheet metal part with edge regions 
and noticeable burrs and flash. More edge and flash features 
should be preserved, because these features are crucial infor-
mation for the analysis of the blanking process. It can be seen 
that the initial clusters in the edge regions and flash regions 
are subdivided into a few small sub-clusters, resulting in a 
denser distribution in the high-curvature areas. Figure  6(d) 
shows that the final simplification result preserves more points 
in the edge regions and flash regions. Figure 6(e) illustrates 
that the number of initial clusters determines the number of 
points in planar regions. Figure 6(f) shows that the threshold 

Figure 6.  Simplification of a sheet metal part using the proposed method: (a) the input point cloud (361 760 points) (the sheet metal part 
has noticeable flash and burrs, such as the region in the red box); (b) initial k-means clustering result (k  =  1000); (c) final clustering result 
(ε  =  0.0001); (d) final simplification result of (c) (30 430 points); (e) final simplification result (39 798 points, k  =  5000, ε  =  0.0001); (f) 
final simplification result (18 023 points, k  =  1000, ε  =  0.0005).
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ε determines the degree of subdivision. With the increase of ε, 
fewer points in high-curvature regions are preserved and the 
details of edge and flash feature are more vague. Meanwhile, 
the distribution of preserved points is more uniform and bal-
anced. Therefore, the number of points in the final simplified 
point cloud is determined by the two input parameters.

Figure 7 shows a cast part model with edge regions and 
rounded corners. The original model was reduced to approxi-
mately 7.5%, 5%, and 2% after simplification. There are two 
edge types in this model. The rectangular step shown in the 
red box in figure 7(a) is an obscure edge feature, the height of 
which is less than 1.0 mm, and the rounded corner in the blue 

Figure 7.  Simplification of a cast part model using the proposed method: (a) the input point cloud (951 301 points) (a rectangular step in 
the red box and a rounded edge with a thick contour in blue box); (b)–(d) simplification results by reducing the original number to 70 771, 
49 518, and 19 473.

Figure 8.  Comparison of four simplification methods on preservation of edge features: (a) the proposed method (70 273 points); (b) Shi 
et al (69 495 points); (c) the HC method (71 386 points); (d) Han et al (70 396 points).
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box is an edge with a thick contour. Both types of edge feature 
should be preserved after simplification. Figures 7(b) and (c) 
show that the edge features and rounded corners are well pre-
served by applying the proposed method when the simplifica-
tion ratio is lower than 10%. The two types of edge feature are 
both recognized and preserved. Figure 7(d) shows that when 
the simplification ratio is too low, although the density of the 
edge areas is still higher than the planar areas, some features 
have been missed. As a result, the original model should not 
be simplified excessively.

These examples show that the proposed method is capable 
of simplifying scanned industrial parts, preserving the more 
crucial feature details while reducing the original number to 
5%.

3.2.  Comparison with other methods

To illustrate the simplification effect of the edge area, we 
compare the proposed method with three other simplifica-
tion methods on edge features. The two edge types shown 
in figure 7(a) in section 3.1 are crucial features for industrial 

parts and should be preserved. All four simplification methods 
reduce the original number to similar simplified numbers. The 
simplification results are shown in figure 8. The hierarchical 
clustering (HC) method [12] produces the most uniform and 
smoothest simplification result; however, both the small edge 
feature and the rounded corner features are lost. Although the 
method of Shi et al [14] preserves rounded corner features, 
the small edge feature is vague because this method does not 
take the local geometrical characteristic into consideration. 
Conversely, the method of Han et al [17] preserves the small 
edge feature, but cannot recognize the rounded corner because 
it treats the feature as a planar area due to the thick edge con-
tour. The proposed method retains both the small edge and the 
edge with a thick contour, so preserving more edge feature 
information. It can be seen that the proposed method is edge-
sensitive for the scanned point cloud.

We compare our algorithm with the other three methods in 
accuracy and running time. The comparison of the preserved 
number and computation efficiency is shown in table 1 and 
the comparison of error estimation is shown in table 2. It can 
be seen that the proposed algorithm provides a more accurate 

Table 1.  Comparison of preserved number and simplification time.

Models
Original 
number

Proposed method Shi et al HC Han et al

Preserved 
number

Running 
time (s)

Preserved 
number

Running 
time (s)

Preserved 
number

Running 
time (s)

Preserved 
number

Running 
time (s)

Sheet metal part 361 760 30 423 7.146 30 580 6.416 30 426 6.612 30 749 9.460
Cast part 951 301 41 274 18.027 45 455 22.697 42 361 18.583 42 808 30.948
Blade 117 5978 34 933 22.368 34 732 24.737 35 146 20.822 35 279 33.184

Table 2.  Comparison of simplification error (unit: mm).

Models

Proposed method Shi et al HC Han et al

Emax Emean Emax Emean Emax Emean Emax Emean

Sheet metal part 0.0969 0.003 22 0.114 0.003 36 0.173 0.006 94 0.102 0.005 14
Cast part 0.262 0.008 81 0.579 0.0101 0.673 0.0180 0.371 0.0132
Blade 0.101 0.007 85 0.142 0.0121 0.184 0.0154 0.126 0.0146

Figure 9.  Error estimation results and the edge area enlargement of four simplification methods: (a) the proposed method; (b) the method 
of Shi et al; (c) the HC method; (d) the method of Han et al.
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simplification result when the four algorithms preserve similar 
simplified numbers. The HC method produces the smoothest 
results with the highest efficiency, but it gives the largest edge 
feature loss among the four methods. For the sheet metal 
model, the proposed algorithm is time-consuming compared 
with the method proposed by Shi et al because it spends time 
creating a geometrical domain. However, it is computationally 
efficient when applied to the cast part model and blade model 
because the proposed algorithm gathers points with both sim-
ilar geometrical characteristics and similar spatial positions 
into the same cluster, leading to a smaller iteration number. 
Taking the cast part model as an example, the maximum 
iteration number of the proposed algorithm is 2, whereas the 
maximum iteration number of the algorithm proposed by Shi 
et al is 6. As a result, the new clustering scheme can produce 
an accurate result efficiently at edge areas, due to its low itera-
tion number. The maximum error produced by the method of 
Han et al is lower than that of Shi et al and the HC method, 
which illustrates that it has an ability to preserve small and 
sharp edge features due to retaining edge points. However, 
the mean error is high in the method of Han et al because it 
removes points in rounded corners. In addition, this method is 
time-consuming. Experimental results show that the proposed 
algorithm is more accurate when the model has more edge 
features, and has good time efficiency.

Figure 9 shows the error estimation results intuitively. In 
each figure, the edge region in the red box is enlarged and 
shown below the blade model. The HC algorithm produces 
the smoothest result among the four methods and it produces 
the best result in relative planar areas. However, it blurs the 
edge features and produces the worst result among the four 
methods in edge area regions. The proposed method and the 
method proposed by Shi et  al produce similar simplifica-
tion results in the planar areas, due to their similar k-means 
clustering processes. In the edge areas, the proposed method 
produces a result with less feature loss, due to partitioning 
clusters according to geometrical characteristics. The method 
of Han et  al preserves more edge features than that of Shi 
et al and the HC method, but performs the worst in rounded 
corner areas. Among the four methods, the proposed method 
provides the best simplification result, with mean error and 
maximum error the lowest. In addition, the distribution of the 
simplification error is uniform, which indicates that even in 
the edge regions, the simplification error is also low.

These experimental results demonstrate that the proposed 
method is edge-sensitive and performs well in simplifying 
scanned industrial parts.

4.  Conclusion

This paper proposes an edge-sensitive, point-based sim-
plification method by designing a clustering scheme using 
k-means clustering and FCM clustering algorithms. The pro-
posed method is capable of splitting edge regions from planar 
regions and eliminating redundant points effectively.

A geometrical descriptor is created to describe the local 
geometrical characteristic of each point by building a matrix 

based on the normal vectors of neighboring points. A new 
metric of FCM is then created to avoid an inaccurate fuzzy 
clustering result by introducing normal vector direction 
restriction, making full use of the descriptor’s sensitivity to 
edge regions. The clustering scheme is designed by extending 
k-means clustering and FCM clustering algorithms to split 
the point cloud in the spatial domain and local geometrical 
domain respectively. The FCM clustering algorithm is used 
to partition clusters based on geometrical feature, and the 
k-means clustering algorithm provides an initial coarse clus-
tering result and splits the FCM results into smaller sub-clus-
ters in the spatial domain. In order to distinguish edge points 
from outliers, a merging strategy is designed to improve the 
clustering result after each iteration.

Experimental results using three industrial part models 
show that our simplification method can be applied to scanned 
point clouds with edge features, and is especially suitable for 
industrial parts with small edge regions or big rounded corners, 
such as sheet metal and cast parts. It is a reliable and robust 
simplification method with high simplification accuracy.
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