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1.  Introduction

Planetary gearboxes are widely used in rotating machinery for 
motion and torque transmission owing to their compact struc-
ture and the ability to handle large torque loads [1]. Under the 
tough working environment, failures are easily generated on 
the key components, which may give rise to catastrophic acci-
dents and enormous economic losses [2, 3]. To keep the reli-
ability of the planetary gearbox, the acquisition and analysis 

of status information via effective measurement approaches 
for health monitoring have long been a hotspot in the research 
field.

Vibration analysis, as a conventional monitoring approach 
of mechanical equipment, has reached remarkable achieve-
ments in the past several decades [4–6]. However, limited by 
the installation mode of accelerometers, vibration analysis is 
not always a reliable and effective way for the diagnosis of 
a planetary gearbox in industrial applications. The primary 
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Abstract
To keep the reliability of the planetary gearbox, anomaly detection has been widely 
investigated for its health monitoring. To this end, a novel approach is presented in this paper 
to extract fault features based on the merits of built-in encoder signals. Considering that 
collected encoder data is accumulated in angular positions, instantaneous angular acceleration 
(IAA) is firstly calculated to highlight the characteristic components. And then time 
synchronization average (TSA) is applied on an estimated multi-period for denoising, which 
improves the robustness of the TSA to the feature attenuation effect caused by the round-off 
error of the basic period. In this paper, we explore the distinguishing properties of regular 
components and the fault anomaly to impose different restraints on them, which is embodied 
as a periodicity-enhanced model of robust principle analysis. And objective features are 
further separated by solving this optimization model. The validation analysis of the proposed 
framework is applied on both the simulation and experimental cases. The results show that 
the proposed method is of good performance to deal with encoder signals from the planetary 
gearbox for fault diagnosis.
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reason is that the accelerometer as an external device is prone 
to the influence of the long transfer path during the measure-
ment, especially in the scenarios of monitoring large-scale 
machinery. And due to the revolution of planet gear around 
the sun gear, the gear mesh location is time-varying relative to 
the fixed vibration sensor, which brings a lot of difficulties for 
subsequent signal processing.

Along with the development of sensing techniques, a lot 
of new measurement means have been explored for the health 
assessment of the gearbox [7–9]. Among them, the rotary 
encoder has received considerable attention relying on its 
outstanding advantages: (1) compared with the translational 
vibration information sampled by the accelerometer, encoder 
data places more emphasis on the torsional behavior, which 
is more sensitive to the weak oscillations induced by fault 
[10–12]; (2) the rotary encoder as a built-in device has easier 
accessibility than other measuring methods of torsional infor-
mation, such as a laser torsional vibrometer [13] and torque 
sensor [14]; and (3) the direct collection of torsional informa-
tion by a rotary encoder avoids the amplitude modulation effect 
caused by the changes of transfer path. Motivated by these 
merits, some approaches of fault detection based on encoder 
signals have been reported in the literature. For example, by 
analyzing the shape of rotating speed fluctuations, Bourdon 
et al [15] presented the basic signal processing techniques to 
quantify taper roller bearing outer race faults according to the 
instantaneous angular speed (IAS) acquired from the encoder. 
Li et al [16] proposed a new IAS estimation approach and fur-
ther employed the empirical mode decomposition (EMD) and 
autocorrelation local cepstrum to extract fault features from 
IAS for the assessment of a sophisticated multistage gearbox 
[17]. In [18], Zhou et al studied the condition monitoring way 
of feed-axis gearbox using a built-in motor encoder and linear 
scale combined with the ensemble EMD method. Zeng et al 
[19] analyzed the IAS signal estimated by an encoder for the 
diagnosis of the planetary gear fault. In order to explore the 
intrinsic features of the encoder signal, Jiao et al [20] fused 
multivariate encoder information as the input of convolutional 
neural network (CNN) for intelligent diagnosis and proved 
the effectiveness. Besides, in [21–23], researchers have also 
studied the application of encoder signal on transmission error 
measurements for the rotating shaft.

The above research achievements have proved that a rotary 
encoder is qualified to be a valid information source for the 
health monitoring of rotating machinery. However, some 
issues are required to be further considered. Firstly, most of 
the researches focus on the analysis of IAS instead of the 
instantaneous angular acceleration (IAA), and the latter is lin-
early related to the torque variation, which can be more effec-
tive to detect the torsional anomaly. Secondly, the studies of 
encoder signal on the planetary gearbox diagnosis are limited, 
thus further exploration is necessary to be carried out in view 
of its complex structure and the dispersion of torque trans-
mission. In addition, the existing approaches mainly employ 
the conventional spectrum analyzing methods or decomposi-
tion methods like EMD for fault detection, which is easily 
disturbed by various interfering components generated in a 
planetary gearbox. Although [20] introduced an advanced 

CNN-based method, it is confined to the difficulty of acquiring 
enormous training data in practical applications. Therefore, 
aiming at enhancing the practicality of encoder information 
for the anomaly detection of the planetary gearbox, this paper 
provides an alternative approach through a way of matrix 
decomposition. In this work, the IAA signal is denoised by 
time synchronization average (TSA) on an estimated multi-
period to enhance the component with target period. And then 
a periodicity-enhanced robust principal component analysis 
(PRPCA) model is constructed and solved to separate the 
anomaly induced by local fault. The main contributions can 
be summarized as follows.

	(1)	�The IAA derived from the encoder signal is used as the 
analysis object, which contributes to saving the cost on 
measurement and providing a more reliable analysis 
result.

	(2)	�In order to improve the performance of TSA in the situa-
tion that the number of points in each target period is not 
the integer, a multi-period estimation strategy is designed 
to avoid the attenuation effect on the useful component.

	(3)	�By transforming the denoised IAA into a matrix form, the 
constructed PRPCA model makes full use of the essential 
difference of the components from different origins, i.e. 
low-rank property of regular part and sparse property of 
the abnormal part, which leads to an accurate detection of 
the failure.

The layout of this article is organized as follows. Section 2 
elaborates on the framework and details of the proposed 
approach. In section 3, the guidance for selecting several key 
parameters is illustrated and verified by a simulation model. In 
section 4, signals from a planetary gearbox with different fault 
types are analyzed to prove the validity of the new method. 
And section 5 finally draws some conclusions.

2.  Proposed approach

2.1.  Preprocessing of the encoder signal

The rotary encoder records the discrete position series along 
with the rotation of shaft, so that the magnitude of fluctuation 
caused by fault will be of an extremely small quantity com-
pared with the current sampling value. Thus, it is imperative 
to firstly convert the original encoder signal into some more 
sensitive variables like IAS, IAA or other higher difference 
of angular displacement. Among these variables, IAA is lin-
early related to the torque and directly reflects the dynamic 
behavior of the shaft. On this account, it is employed as the 
preliminary feature in this work for anomaly detection of 
planetary gearboxes.

The calculation of IAA from the sampled encoder signal 
can be expediently solved by the central difference method 
(CDM) as

ak =
ϕk+1 − 2ϕk + ϕk−1

∆t2� (1)

where ϕk donates the angular position, ak is the corresponding 
IAA and Δt represents the sampling interval. It is worth noting 
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that sampling rate has some influence on the accuracy of IAA 
estimation, which will be discussed in section 4.

2.2.  Denoising by multi-period time synchronization average 
(MTSA)

Due to the fact that the encoder signal is usually influenced 
by meshing fluctuation, shaft rotation variation, fault anomaly 
and noise, it is meaningful to heighten the components with a 
desired period, i.e. the rotation period of the fault gear, and sup-
press the others. Taking the particularity of the encoder signal 
into consideration, rotational speed is easily obtained from the 
control system or estimated via regression approaches such as 
the least square method (LSM). With this a priori knowledge, 
time synchronous averaging (TSA) is effective to maximize 
periodic components specifically from the mixture [24]. The 
expression of TSA in time domain is formulated as

ãn =
1
N

N−1∑
i=0

an+iL� (2)

where N denotes the total number of periods to be averaged, 
and L presents the number of points within each period, which 
can be approximatively obtained according to the rotational 
frequency f r and sample frequency f s, i.e.

L0 =
fs
fr

� (3)

however, f s is usually not divisible exactly by f r in practical 
scenarios, hence L0 is not guaranteed to be an integer. In fact, 
TSA is essentially a comb filter extracting the fundamental fre-
quency as well as its multiples [25]. Hence small deviation on 
the averaging period will cause a large attenuation in the high-
frequency section. Figure 1 presents the attenuation effect on 
objective frequencies when the deviation of the period is set 
as 0.02%, 0.05% and 0.1% for TSA. It is obvious that the 
objective components in the high frequency band are sharply 
reduced along with the deviation increasing. Considering that 
high frequency response is crucial to describe the transient 
characters, traditional TSA accordingly loses too much useful 
information when the round-off error of L0 is large.

Given this issue, we tactfully extend L as an appropriate 
multiple of L0 to meet an integer approximatively. This 

extension may reduce the effectiveness of TSA a little but 
makes up for the round-off error. With this trade-off, the high 
frequency components can be retained adequately. Literally, 
this method is called multi-period TSA (MTSA) in this paper, 
and L is fixed with the following formulation:

L = min
r

round(rL0) s.t.
∣∣∣∣
L
r
− L0

∣∣∣∣ <
ξ

N� (4)

where round(·) denotes round-off operation and r represents 
the smallest integer satisfying the condition. ξ is a margin to 
control the synchronism deviation between the first and last 
period to be averaged, which is suggested to be around one-
tenth of the number of sampling points in one meshing. Note 
that the increasing period length also enlarges the bandwidth 
of the comb filter, thereby enhancing its robustness to slight 
speed fluctuation.

2.3.  Construction of the PRPCA model

Despite MTSA eliminating most of the noise, some chal-
lenges still exist. The deficiency of the gear mainly causes the 
variations of meshing stiffness, which is insufficient to evoke 
the distinct amplitude impulses among the rest interferences 
in the initial stage, hence further analysis is required to sepa-
rate the abnormal part. And the complex structure of the plan-
etary gearbox also gains the coupling of various components. 
Further, sometimes the occurrence of multi-fault will disturb 
the regularity of the frequency spectrum. Taking all of these 
into consideration, the commonly used time and frequency 
domain analysis methods are incompetent to separate the dis-
criminating information.

And yet for that, a new way is explored to extract the fault 
feature by focusing on the peculiar attribute of different comp
onents. Specifically, it is well understood any two sections of 
the regular interferences, such as meshing oscillation, within 
a period are usually of a strong correlation. From the matrix 
perspective, this correlation can be mathematically described 
as the low-rank property. As for the fault features, they are just 
individual transients distributed in each period, which can be 
conveniently constrained as a sparsity term. On this basis, an 
operator R is firstly defined to transform the denoising signal 
into its matrix form:

M = R(ã) =




ã1 ã2 · · · ãN−m+1
ã2 ã3 · · · ãN−m+2
...

...
. . .

...
ãm ãm+1 · · · ãN


� (5)

where each column of M is a portion of the result from MTSA 
with length m. To reduce variability, M is normalized by 
dividing its Frobenius norm.

Based on above descriptions, the components from dif-
ferent sources are able to be specifically restricted, and then 
M can be divided into two distinct matrices, i.e. the regular 
components L and sparse components S, by the following 
optimization model:

min
L,S

rank(L) + λ‖S‖0 s.t. M = L + S� (6)

Figure 1.  Attenuation effect on objective frequencies with different 
deviation.
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where ‖·‖ denotes the l0-norm and λ  >  0 is a trade-off 
parameter.

Regarding equation (6), it is a typical form of robust prin-
cipal component analysis (RPCA) model, which is widely 
researched on background modeling and shadow removing 
[26]. Despite that the optimization of low-rank and l0-norm 
has been proven to be NP-hard, it is proved that the rank and 
l0-norm restrictions can be relaxed to their convex envelopes 
under rather broad conditions [27], which is expressed as 
follows:

min
L,S

‖L‖∗ + λ‖S‖1, s.t. M = L + S� (7)

where ‖·‖∗ is the nuclear norm equaling the sum of singular 
values of the input matrix and ‖·‖1 is the sum of the absolute 
values of matrix entries. It should be paid attention that the 
above convex relaxation operation also increases the tolerance 
of this model to residual noise since L is not strictly limited as 
a low-rank matrix. And in order to extract the fault anomaly 
more purely, a periodicity-enhanced model named PRPCA is 
further proposed, which rewrites equation (7) as

min
L,S0

‖L‖∗ + λ‖CS0‖1, s.t. M = L + CS0� (8)

where C  =  [E,…,E]T and E ∈ RL̃0×L̃0 is an identity matrix. 
L̃0 represents the rounded L0. Compared with equa-
tion  (7), equation  (8) replaces S as a repeating extension of 
S0 ∈ RL̃0×(N−m+1), i.e.

S =




S0

...

S0


� (9)

where m = NcL̃0 is adopted and Nc is an integer suggested as 
2 or 3 in order not to be influenced by the round-off error of 
the period. By this, the sparse features in each column of S is 
constrained to be strictly periodic in the local, which is con-
ducive to the better separation of fault anomaly in calculation.

2.4.  Solution to PRPCA model

Many approaches have been proposed to solve the RPCA 
model [27–29]. Among these, the augmented Lagrange mul-
tipliers (ALM) method is widely used due to its superior per-
formance on both the convergence speed and precision [29]. 
As a variant of the RPCA model, the proposed PRPCA model 
can be also solved by ALM, which converts equation (8) as

min
L,S0

‖L‖∗ + λ‖CS0‖1 + 〈Λ, M − L − CS0〉+
µ

2
‖M − L − CS0‖2

F

� (10)
where Λ is the Lagrangian operator matrix, 〈·, ·〉 is the sum 
of product of the corresponding elements. ‖·‖F denotes 
Frobenius norm and µ signifies the regularization term param
eter. In order to find the minima for L and S0, the alternating 
optimization is adopted, and then equation (10) can be divided 
into the following two subproblems.

Lk = argmin
Lk

‖Lk‖∗ +
µ

2
‖Lk − (M − CS0,k−1 +Λk−1/µ)‖2

F

� (11)

S0,k = argmin
S0,k

λ‖CS0,k‖1 +
µ

2
‖CS0,k − (M − Lk +Λk−1/µ)‖2

F

� (12)

Λk = Λk−1 + µ(M − CS0,k − Lk).� (13)

The detailed derivative process of equations (11) and (12) is 
given in the appendix. Regarding the periodicity operator C 
in equation (12), another matrix A ∈ RL̃0×m is constructed for 
the computational convenience:

A =
1

Nc
[E, ..., E].� (14)

It is easily obtained that AC  =  E. Then equation (12) can be 
rewritten as

S0,k = argmin
S0,k

λ‖S0,k‖1 +
µ

2
‖S0,k − A(M − Lk +Λk−1/µ)‖2

F .

� (15)
The translation from equation  (12) to (15) can be demon-
strated by focusing on their element-wise computation, i.e.

S0,k ← argmin
S0,k

L̃0∑
i=1

N−m+1∑
j=1

{
Ncλ |sij|+

µ

2

Nc−1∑
r=0

(
sij − e(i+r) j

)2

}

= argmin
S0,k

L̃0∑
i=1

N−m+1∑
j=1


λ |sij|+

µ

2

(
sij −

1
Nc

Nc−1∑
r=0

e(i+r) j

)2



� (16)
where sij and e(i+r)j  represent the elements of S0,k and 
Ek  =  M  −  Lk  +  Λk−1/µ respectively. The right part of equa-
tion (16) is exactly the expansion of equation (15).

Although equations  (11) and (15) cannot to be directly 
solved in a derivative way because that nuclear norm and l1-
norm are not strictly differentiable, [30] provides a particular 
path to solve this problem by introducing a shrinkage opera-
tion Tτ to achieve the convex optimization. Referring to [30], 
the closed-form solution of equations  (11) and (15) can be 
respectively expressed as

Lk = UT1/µ(Σ)VT� (17)

S0,k = Tλ/µ(A(M − Lk +Λk−1/µ))� (18)

where UΣVT is the singular value decomposition (SVD) of 
M  −  CS0,k−1  +  Λk−1/µ and Tτ is a soft thresholding operator 
defined as

Tτ (a) =





a − τ ifx > τ

a + τ ifx < −τ

0otherwise
.� (19)

The algorithm flow of solving the PRPCA model is visualized 
in Algorithm 1, where the model parameters will be discussed 
in section 3.
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Algorithm 1: The algorithm of solving the PRPCA model via the 
ALM method

Input: Signal matrix M
1: Initialize L0  =  0; S0,0  =  0; Λ0  =  0; µ  >  0; γ  >  1; k  =  1.
2: Repeat until the end condition is satisfied:
3:    U, Σ, V  =  SVD(M  −  CS0,k−1  +  Λk−1/µ).
4:    Lk   =   UT1/µ(Σ)VT.
5:    S0,k  =  T1/µ(A(M  −  Lk  +  Λk−1/µ)).
6:    Update Λk  =  Λk−1  +  µ(M  −  Lk  −  CS0,k).
7:    k  =  k  +  1.
Output: Sk  =  CS0,k.

A satisfying solution for the optimized sparse matrix Ŝ can 
be adaptively obtained through implementing Algorithm 1. 
Thereafter, an inverse process of R, named R−1, is carried out 
to recover Ŝ into sequence form.

x = R−1(Ŝ) = R−1

á


x1 x2 · · · xN−m+1
x2 x3 · · · xN−m+2
...

...
. . .

...
xm xm+1 · · · xN




ë

= [x̄1, x̄2, x̄3, ..., x̄N ]

� (20)
where x̄j, j ∈ [1, N] represents the averaged value of the variables 
with the same subscript and x is the reformed sparse feature.

2.5.  General framework of the proposed approach

In order to achieve the monitoring of each target gear, the 
framework of the proposed method is presented in this sec-
tion for the separation of fault anomaly. As stated previously, 
MTSA is employed to denoise IAA, then PRPCA is carried 
out and solved by an iterative algorithm to extract periodic 
transients. The flowchart of the proposed approach is shown in 
figure 2 and the general procedure is summarized as follows:

Step1:	 The encoder signal is sampled and converted to IAA 
signal by taking its second-order difference.

Step2:	 By estimating the multi-period for synchronous 
average according to equation (4) for each gear, MTSA 

is employed for enhancing the target components, and 
the results are then transformed as a matrix.

Step3:	 PRPCA is implemented to separate the sparse fault 
features and recover it back to the time series form.

3.  Simulation analysis

3.1.  Simulation signal generation

A simulation model of the encoder signal is constructed in 
this section to investigate the validity of the proposed method 
for gearbox transmission monitoring. Different from vibration 
data, the angular positions collected by the rotary encoder are 
cumulative in the sampling process. In the case of keeping 
revolving speed constant, the encoder signal is expected to 
be an approximate linear curve that is disturbed by meshing 
oscillation, transient impulses and noise, etc. Therefore, the 
encoder signal could be generally expressed as the following 
form [31]:

ϕ(t) = v0t +
∑

k
Ak cos(2πfkt + φk) +

∑
i

g(t − iT0) + wσ(t)

g(t) = B exp(−t2/2τ 2)
� (21)
where the first term denotes cumulative angular positions 
of rotating shaft under a constant speed v0. The second term 
includes position oscillation due to load variation and the 
interference caused by rotating parts as well as gear meshing, 
where Ak denotes the amplitude, f k and φk are the frequency 
and phase respectively. The third term represents the periodic 
anomaly during the transmission induced by the mechanical 
deficiency with a period of T0, where g(t) is a Gaussian func-
tion as presented in figure 3, which is employed to simulate 
the anomaly caused by fault. The last part wσ(t) stands for the 
background noise with the standard deviation of σ.

Figure 4 displays the waveforms of the simulated encoder 
signal within 2 s. The sampling rate is set as 5000 Hz and the 
other parameters are listed in table 1. It can be found that the 
original encoder signal in figure 4(a) is almost linear where no 
useful information can be directly observed. After taking the 
second-order difference as presented in figure 4(b), the IAA of 
the mixed signal is still chaotic because some of the interferences 
are magnified simultaneously along with fault anomaly, which 
requires further processing to extract distinguishing features.

Figure 2.  The flowchart of the proposed approach.

Figure 3.  Fault anomaly formulated by the Gaussian function.
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3.2.  Parameters analysis

3.2.1.  Estimation of model parameters.  In the implementa-
tion of PRPCA, there are two key model parameters, i.e. µ and 
λ should be carefully considered because they are important 
to the convergence speed and discrimination of the result. The 
value of µ is fixed differently in various applications [26, 29, 
32]. Despite this fact, [29] had verified that the RPCA algo-
rithm will converge faster with growing µ in a geometrically 
speed. Based on this conclusion, we get

µk = βkµ0� (22)

where β is a factor to control the growth rate, µ0 is set as the 
initial value and k is the current iteration number. Since µ is 
growing geometrically, the value of β and µ0 is suggested as 
1.1 and 1.25/‖M‖2 respectively.

The selection of λ is also important since it balances the 
proportion between te low-rank part and sparse part. A large 
λ will apparently increase the sparsity of S and even lead to 
a null matrix. In most of aforementioned achievements, this 
parameter is either fixed by experience or approximatively 
chosen as

λ =
1√

max(m, N − m + 1)� (23)

however, concluding from redundant assumptions and a com-
plicated proving process, it is hard to understand why equa-
tion (23) works in the applications. In light of this, a suggested 
value of λ is deduced from the solving process of PRPCA in 
this paper, which also provides a brief guidance to suitably 
adjust its assignment in practice.

In view of the iterative calculation of equations  (17) and 
(18), the latter can be rewritten as

S0,k = Tλ/µ(AG + S0,k−1)� (24)

where G  =  M  −  CS0,k−1  +  Λk−1/µ  −  Lk is an intermediate 
matrix in the alternate iteration between Lk and Sk. Combined 
with equation (17), it is easily obtained that

‖G‖2
F = α

min(m, N − m + 1)
µ2 .

�

(25)

where α is a scale factor decided by the distribution of singular 
values within Σ. The concrete value of α is hard to compute 
in the iteration, and it equals 1 only when all these singular 
values are no less than 1/µ. Experimentally, a value close to  
1 but a little smaller is available for α in most cases.

Assume that all the entries of G share a common value 
under the constraint of equation (25) only, it is readily obtained 
that the elements of G can be expressed as

η =

√
α

µ
√

max(m, N − m + 1)
�

(26)

however, for the reason that G is never a matrix as the assump-
tion, the sparse entries with high amplitude in G are naturally 
larger than η.

Then, equation (24) can be focused to find the best estima-
tion of λ. After the averaging of A, the elements in G with 
local periodicity and high amplitude will be kept beyond η, 
where most of the rest are expected to be less than η. Thus it is 
reasonable to assign the soft threshold λ/µ in equation (24) as 
η, which will reserve the periodic sparse features into S0,k and 
eliminate the small disturbances simultaneously. Thus,

λ =
γ√

max(m, N − m + 1)� (27)

Figure 4.  (a) Original encoder signal. (b) IAA of mixed signal and fault anomaly.

Table 1.  The parameters for encoder signal simulation.

Parameters Value Parameters Value

v0 (rpm) 270 f 2 (Hz) 4.5
B (degree) 0.5 A2 (degree) 0.8
τ (s) 0.0003 φ2 (rad) π/4
T0 (s) 1/13 f 3 (Hz) 273
f 1 (Hz) 20 A3 (degree) 0.3
A1 (degree) 1 φ3 (rad) 0

φ1 (rad) π/2 σ (degree) 0.02

Figure 5.  The MAV, HNR and kurtosis of the extracted sparse 
feature under different γ.
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where γ is an adjustment factor that is selected a little larger 
than 

√
α to improve the sparsity of the result.

The proposed MTSA-PRPCA method is then analyzed 
based on the parameters and simulation model discussed 
above. In this simulation, γ is set in the range from 0.1 to 
4 with an interval of 0.1 and three indicators, i.e. kurtosis, 
harmonic-to-noise ratio (HNR) [33] and maximum absolute 
value (MAV), are employed to reflect the properties of the 
results. All the three indicators are plotted in figure  5 after 
a normalization by dividing their maximum. Obviously, with 
the increase of γ, the sparsity of the results becomes more 
significant, which can be realized by observing the tendency 
of MAV and kurtosis. On the other hand, the change of HNR 
shows the weight variation of the periodic component. Since 
the desired result is expected to be periodic and sparse but 
with a relatively large amplitude, the value of γ is suggested 
in the range of 1.3–2.3 and 1.5 is finally adopted.

3.2.2.  Stopping criterion for iteration in PRPCA.  As for the 
stopping criterion of PRPCA, two ways are available in tra-
ditional RPCA to provide the alternatives, i.e. the threshold 
value of relative reconstruction error (RRE) and the total 
number of iterations. RRE is actually a normalized variable 
defined as

ε =
‖M − Lk − Sk‖F

‖M‖F
.

�

(28)

Obviously, RRE is directly relevant to the degree of conv
ergence. And by contrast, the fixed number of iterations seems 
to be inflexible. In this subsection, the simulated signals with 
different levels of noise are studied to find the applicable stop-
ping criterion. In order to observe the convergence process, 
we firstly define the normalized value of the objective optim
ization function in equation (8) as F(k):

F(k) =
‖M − CS0,k‖∗ + λ‖CS0,k‖1

‖M‖F
.

�
(29)

The convergence process of simulated signals is illustrated in 
figure 6, where F is plotted by subtracting its minimum value 
under each σ for the convenience of comparison. It can be 
found that F nearly converges to the minimum after 30 itera-
tions for all the signals, which means that the satisfied results 
are already obtained and further calculation is meaningless. 
From the curves of RRE as presented in figure 6(b), the mag-
nitudes of RRE at 30 iterations are around 10−2. Since the 

noise used in the simulation is in a fairly wide range, the stop-
ping criterion can be accordingly set as 0.01 of RRE in the 
execution of PRPCA.

3.3.  Performance of MTSA-PRPCA

To show the robustness of the proposed approach to random 
noise, the simulated signals with different standard deviation 
of noise are further analyzed. Figure  7 depicts the analysis 
results obtained by CDM, MTSA and MTSA-PRPCA under 
three representative levels of noise, i.e. the standard deviation 
of 0.005, 0.015 and 0.04. It can be seen from figure 7(a) that 
the fault anomaly is difficult to identify after CDM due to the 
existence of noise. In figure 7(b), even that most of the noise is 
removed by MTSA, the useful features are still not evident in 
figures 7(b)-2 and (b)-3. And yet for that, by virtue of PRPCA, 
the fault anomaly is faultlessly separated under all the three 
levels of noise as shown in figure  7(c), which validates its 
excellent performance for periodic anomaly extraction.

4.  Experimental validation

In order to present the validity of the proposed method in 
practical applications, different types of tooth defect on a 
planetary gearbox are introduced for the analysis in this 
experiment. The experimental setup is shown in figure 8(a), 
which consists of a servo motor, a magnetic break for loading 
and a planetary gearbox with an internal structure as given 
in figure 8(b). Besides, two Heidenhain rotary encoders with 
5000 pulses per revolution are equipped on this experiment 
rig to measure the angular displacements of input shaft and 
output shaft respectively. In this paper, the output encoder sig-
nals were collected for analysis by an IK220 counter card at a 
sampling rate of 5000 Hz.

The computational formulas of characteristic frequen-
cies (CFs) are listed in table 2, where Np   =  3 is the number 
of planet gears equally spaced in the gearbox, f i represents 
input frequency and Zp , Zs, Zr denote the number of teeth on 
planet gear, sun gear and ring gear, respectively. The data 
was acquired in 2 s with the input frequency of 30 Hz and 
corresponding CFs are displayed in table 3, where the corre
sponding periods of planet gear, sun gear, ring gear and gear 
meshing are presented in table  4. The total deviation ξ is 
calculated as 1.037 point in order not to lose too much fault 

(a) (b)

Figure 6.  The indicators of convergence process under different levels of noise: (a) F  −  Fmin, (b) RRE.
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σ = 0.005 

σ = 0.015 

σ = 0.04 

(a)-1 (b)-1 (c)-1

(a)-2 (b)-2 (c)-2

(a)-3 (b)-3 (c)-3

 

Figure 7.  The analysis results under a different level of noise: (a) IAA obtained by CDM, (b) IAA denoised by MTSA, (c) fault anomaly 
separated by MTSA-PRPCA.

Figure 8.  (a) Experimental setup, (b) schematic structure of the planetary gearbox.

Table 2.  Computational formulas of CFs.

Terms Formulas

Output frequency f o  =  f i/Tr

Meshing frequency fm= fi · ZrZs
Zr+Zs

Characteristic frequency of planet gear f p   =  f m/Zp 

Characteristic frequency of sun gear f p   =  f m/Zs · Np 

Characteristic frequency of ring gear f r  =  f m/Zr · Np 

Table 3.  The CFs with input frequency of 30 Hz.

CFs f i f o f m f p  f s f r

Values (Hz) 30 5.88 482.35 15.56 72.35 17.65

Table 4.  Basic periods of characteristic components.

Periods
Gear mesh-
ing (Tm)

Planet 
gear (Tp )

Sun gear 
(Ts)

Ring 
gear (Tr)

Values (points) 10.37 321.34 69.10 283.33

 

Figure 9.  The cracked tooth on planet gear.
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information. Derived from equation (4), the extensional multi-
ples of Tp , Ts, Tr in MTSA are 3, 10 and 3, respectively.

4.1.  Case 1: cracked tooth on the planet gear

Due to the harsh working conditions and periodic alternating 
load, tooth crack is a common failure type, which usually 
occurs at the root of the gear. The development of crack will 
eventually cause the breakage of teeth or even the entire gear. 
To detect this fault, the proposed approach is first validated 
on a planet gear as illustrated in figure 9 where an artificial 
cracked tooth is introduced to generate fault signatures.

Figure 10(a) presents the original raw encoder signal from 
the setup. Similar to the simulation, it is clearly found that the 
accumulation of angular displacements is predominant due 
to its character of monotonically increasing, while the other 
features are totally indiscernible. To highlight distinguishing 
details, CDM is implemented to compute the second-order 
difference signal, which is shown in figure 10(b). However, 
since the noise is synchronously magnified as well as the 
meshing variation, slight fluctuations originated from the 
crack are intractable to be identified from original IAA. To 
cope with this issue, MTSA is employed on the estimated 
multi-period for denoising, and direct TSA on rounded basic 
period is performed as a comparison. From the result in 

figure  10(c), one can find that the denoised signal by TSA 
is mussy. Comparatively, the result of MTSA, as presented 
in figure 10(d), exhibits clear meshing impulses on the loca-
tion of each tooth even that the round-off error of the basic 
period exists. And TSA on the single period apparently fails 
to achieve this. Moreover, amplitudes of the results also reveal 
that MTSA reserves a more objective component than direct 
TSA. Note that the result of MTSA is still dominated by the 
irrelevant components where the weak fault features can 
hardly be seen. Thus further operation is required to recognize 
the fault characteristics.

FFT is firstly used to analyze the frequency-domain char-
acteristics of IAA. In figure 11(a), the frequency band from 
0 to 1500 Hz is shown to present the clear spectrum, where 
the large amplitudes can be observed around the meshing 
frequency as well as its multiples. However, these promi-
nent frequencies are irrelevant with the fault signature, and 
figure 11(b) reveals that fault information is deeply buried in 
the meshing components. In order to highlight the superiority 
of the proposed algorithm, PRPCA and original RPCA are both 
employed to analyze the denoising signal from MTSA in this 
case. Figures 12(a) and (b) plot the analysis results by MTSA-
RPCA and MTSA-PRPCA, where the matrix is constructed 
with Nc  =  2. As discussed previously, PRPCA enhances the 
local periodicity in the computation, which means it focuses 

(d)(c)

(a) (b)

Figure 10.  (a) Raw encoder signal, (b) IAA obtained by CDM, (c) IAA denoised by TSA, (d) IAA denoised by MTSA.

fm 2 fm 3 fm(a)

24 Hz

fm 2 fm 3 fm 4 fm 5 fm(b)

Figure 11.  The frequency spectrum of (a) IAA obtained by CDM and (b) IAA denoised by MTSA.
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more on identifying periodic sparse transients rather than the 
ones only with sparsity. This is well validated from the result 
in figure  12(b) that the equally spaced sparse transients are 
distinctly viewed. And the internal of 31 teeth coincides with 
the local fault on the planet gear. For comparison, the result 
from original RPCA suffers from the residual interferences, 
which shows the advantage of PRPCA on extracting target 
fault signatures.

4.2.  Case 2: surface wear on two teeth

Surface wear of the tooth is another common failure contributing 
to the insufficient fatigue strength. In the manufacturing industry, 

31 teeth 31 teeth 31 teeth 31 teeth
(a) (b)

Figure 12.  Sparse feature obtained by (a) MTSA-RPCA and (b) MTSA-PRPCA.

Figure 13.  The worn surfaces with interval of 13 teeth on the planet gear.

Figure 14.  IAA denoised by (a) TSA, (b) MTSA and sparse features obtained by (c) MTSA-RPCA and (d) MTSA-PRPCA.

 

Figure 15.  The spalled tooth on the ring gear.
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surface wear will affect machining accuracy, which may cause 
the scrap of parts. In this case, two teeth with an interval of 13 
teeth on the gear are artificially worn to validate the applicability 
of the proposed method. The gear is shown in figure 13.

Figures 14(a) and (b) present the results of TSA and 
MTSA, from which we can find that MTSA reserves much 
more information about the gear meshing no matter on the 
amplitude or the regularity. Then, PRPCA and RPCA are both 
used to extract the anomaly as a comparison. Theoretically 
two distinct impulses are expected to appear within each 
cycle, however, this is not completely achieved by RPCA 
from figure 14(c) where interferences disturb the recognition 
of fault impulses of small amplitude. By embedding the local 
periodicity, PRPCA presents its superior ability on extracting 
complete fault information, which can be seen in figure 14(d). 
The three pairs of impulse spaced by 13 teeth coincide with the 
defects on the gear. This provides the evidence that PRPCA is 
prone to periodic anomaly only.

4.3.  Case 3: spalled tooth on ring gear

Ring gear is usually an integrated part in the gearbox casing 
and it is non-replaceable during the whole life cycle of the 
gearbox. In this subsection, an experiment in terms of spalled 
tooth failure on the ring gear is invested. The damaged ring 

gear is exhibited in figure 15. After the difference operation, 
some abnormal components can be observed from the IAA 
signal, which is shown in figure 16(a). However, we can hardly 
conclude that the ring gear is broken according to these excep-
tions because of the existence of environmental factors, such as 
the fluctuation of load and external knocks. Figure 16(b) dis-
plays the result obtained by MTSA-PRPCA, there is no doubt 
that the anomaly induced by fault is detected successfully. 
Since there are three planet gears in the gearbox, the spalled 
tooth is meshed three times within a cycle and each generates 
an impulse, which validates the correctness of the result.

4.4.  Case 4: healthy gearbox

The encoder signal collected during the operation of a healthy 
gearbox is also analyzed as a comparison. The IAA denoised 
by MTSA and final analysis results on the target periods of 
each gear are presented in figure  17. It is noticed that the 
sparse features are mainly the random interferences with tiny 
amplitude and the distinct feature with target period is hardly 
to be observed, which indicates that the planetary gearbox is 
under a healthy condition. Therefore, it can be concluded that 
MTSA-PRPCA is an effective approach for the health identi-
fication of the planetary gearbox.

Figure 16.  (a) IAA denoised by MTSA, (b) sparse feature obtained by MTSA-PRPCA.

Figure 17.  (a) IAA denoised by MTSA, and extracted sparse feature for (b) planet gear, (c) sun gear and (d) ring gear.
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4.5.  Discussion

The experiment conducted in our work is under the sam-
pling rate of 5000 Hz where the ratio between sampling 
rate and meshing frequency (SMR), i.e. the number of sam-
pling points on each tooth meshing, is 10.37 on average. 
Although the selection of sampling rate will make some 
difference on IAA due to the discreteness of data, a suf-
ficient analytical accuracy can be obtained by the merits 
of MTSA-PRPCA in this work, which provides a basic 
reference that SMR is suggested to be no less than 10.37 
to guarantee a reliable result. And if conditions permit, a 
relatively higher SMR is preferred in practical scenarios. 
On the other hand, the approach presented in this paper 
is to highlight the fault anomaly of the planetary gearbox 
instead of the automatic identification of the fault source. 
Actually, the gears with different rotating frequencies are 
separately analyzed to achieve the overall monitoring of 
the planetary gearbox. In this process, due to the inhibiting 
effect of MTSA to asynchronous components, the extracted 
feature can uniquely indicate the health status of its associ-
ated gear, which enables the MTSA-PRPCA to diagnosis 
the planetary gearbox.

5.  Conclusion

Based on the encoder signals, a novel anomaly detection algo-
rithm is presented and validated in this work for the health 
monitoring of the planetary gearbox. The built-in rotary 
encoder provides an alternative information source for the 
condition assessment of the planetary gearbox and presents 
its advantage on low-costing and weak features extracting. 
According to the low-rank property of the regular component 
as well as the sparsity of fault anomaly, the RPCA model 
can be employed for anomaly separation, and the constraint 
of local periodicity in PRPCA further enhances its ability to 
extract a periodic anomaly. Besides, the discussed parameters 
have achieved good results on both simulation and practical 
signals, which provides a guidance for the further research 

on the applications of RPCA. However, it should be noticed 
that the presented approach is under the assumption of a sta-
tionary condition. When the machine is operated under the 
non-stationary condition, appropriate order tracking methods 
are expected to be constructed firstly to accurately transform 
the signal into an angular domain.
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Appendix

The optimal solution of equation  (10) can be obtained by 
alternately optimizing L and S0, which is also known as alter-
nating direction method of multipliers (ADMM). Firstly, S0 is 
fixed to update L as

L̂ = argmin
L

‖L‖∗ + 〈Λ, M − L − CS0〉+ µ
2 ‖M − L − CS0‖2

F

= argmin
L

‖L‖∗ + tr
(
ΛT (M − L − CS0)

)
+ µ

2 tr
Ä
(M − L − CS0)

T
(M − L − CS0)

ä

= argmin
L

‖L‖∗ − tr
(
ΛTL

)
+ µ

2 tr
Ä

LTL − (M − CS0)
TL − LT (M − CS0)

ä

= argmin
L

‖L‖∗ +
µ
2 tr
Ä

LTL − (M − CS0)
TL − LT (M − CS0)− 2

µΛ
TL
ä

= argmin
L

‖L‖∗ +
µ
2 tr
Ä

LTL − (M − CS0 +Λ/µ)
TL − LT (M − CS0 +Λ/µ)

ä

= argmin
L

‖L‖∗ +
µ
2 tr
Ä
(L − (M − CS0 +Λ/µ))

T
(L − (M − CS0 +Λ/µ))

ä

= argmin
L

‖L‖∗ +
µ
2 ‖L − (M − CS0 +Λ/µ)‖2

F
�

(A.1)

where tr(∙) represents the trace of a matrix. Note that some 
constant terms are added or removed in this process, which 
makes no difference to the final result. Similarity, S0 can be 
updated as

Ŝ0 = argmin
S0

λ‖CS0‖1 + 〈Λ, M − L − CS0〉+ µ
2 ‖M − L − CS0‖2

F

= argmin
S0

λ‖CS0‖1 +
µ
2 ‖L − (M − CS0 +Λ/µ)‖2

F

= argmin
S0

λ‖CS0‖1 +
µ
2 ‖CS0 − (M − L +Λ/µ)‖2

F .

� (A.2)
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