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1.  Introduction

Radiated noises from mechanical systems do not often pro-
vide benefits, and therefore it is necessary to identify the 
sources of these radiated noises [1, 2]. However, this can 
often be a difficult task in practice since the signals measured 
by sensors are often a mixture of multiple sources, and thus 
signal processing is required to obtain pure source informa-
tion. Furthermore, if a radiated noise source is moving—for 
example, a navigating underwater vehicle—the measured 

signals will be time-varying, which is likely to cause some 
stationary signal processing methods to fail. Therefore, source 
separation methods are needed in engineering applications not 
only for time-invariant but also for time-varying cases.

In pioneering research, some methods have been proposed 
to extract components from measured signals, such as wavelet 
transform, empirical mode decomposition (EMD), and varia-
tional mode decomposition (VMD) [3–5]. Wavelet transforms 
are based on the inner product transformation principle, which 
depends largely on the selection of basic functions. EMD is 
often used to analyze non-stationary data, which are common 
in many practical situations [6]. However, EMD suffers from a 
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lack of mathematics or interpolation choice, and attracts criti-
cism for being too sensitive to noise and sampling [7, 8]. In 
addition, EMD is likely to fail given that the signal contains 
components with some cross-frequency bins. As for VMD, it 
is an entirely non-recursive variational model from which the 
modes are extracted concurrently [6]; however, it is still dif-
ficult to process signals that contain components with cross-
frequency bins.

In the past decades, blind source separation (BSS) has 
been a prominent issue in the field of signal processing and 
neural networks [9], and has been widely used in many prac-
tical applications [10–14]. In addition, BSS aims to recover 
statistically independent source signals from mixed signals 
without any prior knowledge of the source signals or the 
transmission channel characteristics [15]. Therefore, BSS 
can almost completely recover source information even for 
sources with cross-frequency bins. BSS can be roughly clas-
sified into two categories: online methods and offline methods 
[16]. Generally, all data are used in offline methods at each 
iteration, so that faster convergence rates can be achieved as 
a result. The well-known fixed-point algorithm [17] usually 
obtains satisfactory results after a few iterations in separa-
tion procedures. However, one unsatisfactory aspect of offline 
BSS methods is that they need large storage capacity and so 
are not suitable for time-varying cases. In contrast, online 
methods only need a small amount of data storage and deal 
with newly updating data in real time. Some classical online 
BSS methods have often been applied to practice, such as 
the natural gradient algorithm [18], the equivariant adaptive 
separation via independence (EASI) algorithm [19] and the 
iterative inversion independent component analysis (ICA) 
algorithm [20]. In fact, online BBS methods can dynamically 
update the unmixing matrix with current data, and therefore 
they have been successfully used in time-varying cases.

There are many important indicators for evaluating the per-
formance of online BSS methods, among which the param
eters of convergence rate and steady-state error are frequently 
used and observed. Step size is a key parameter that signifi-
cantly influences convergence performance [21]. Generally, 
a faster convergence rate is required to quickly track the 
changes of the system, and a smaller steady-state error is also 
necessary to accurately recover source signals for satisfac-
tory results. However, traditional online BSS methods usu-
ally cannot effectively balance the convergence rate and the 
steady-state error due to the limitation of fixed step size [22]. 
An alternative approach is to adjust the step size according 
to the exponential decay form [23], and in this way, better 
results can be obtained as anticipated. However, when the 
source signals have not been well recovered and the step size 
has been reduced to a small value, the convergence rate can 
become very slow accordingly. To address such problems, 
Zhang et al suggested adjusting the step size in accordance 
with the correlation coefficients of the separated signals [24], 
which can reveal the separation degree of mixed signals. At 
different stages, different step sizes are used for each output 
component. However, this method is relatively complex and 
unsuitable for signals with high sampling frequency. Based on 
the orthogonal constraint of the separating matrix, Tang et al 

proposed an adaptive-step-size natural-gradient ICA method 
[25] that regards the convergence condition as the controller 
of the step size; however, Tang’s method did not combine the 
convergence condition of the natural gradient with the orthog-
onal constraint to adjust the step size. As a result, the effective-
ness of this method could not be as well ensured as suggested. 
Xu et  al introduced a variable-step-size method based on a 
reference separation system [26], with the step size controlled 
by the mean square error between the main separation system 
and the reference separation system. However, the results are 
still not satisfactory when the mixing matrix is time-varying.

Summarizing the achievements of previous studies and 
current shortages in the field of signal processing, this paper 
introduces an online blind source separation method with 
adaptive step size based on an EASI algorithm in an attempt 
to address problems in both time-invariant and time-varying 
cases. First, to reveal the separation degree of mixed signals, 
an effective separation indicator (SI) is constructed with the 
convergence condition of the EASI algorithm. Second, recur-
sive updating equations of the SI are derived using a forgetting 
factor that can reduce the error accumulation of previous data. 
The SI can then be adaptively updated during the separation 
process. Third, a sigmoid function is adopted to adjust the step 
size according to the SI, and therefore the step size can be also 
adjusted according to the separation degree of mixed signals. 
Some numerical and experimental studies are carried out to 
verify the effectiveness of the proposed method. According to 
the results, the proposed method tends to perform better than 
the contrast methods in both time-invariant and time-varying 
cases.

The organization of this paper is as follows: In section 2, the 
basic theory of the online BSS method is briefly introduced. In 
section 3, the proposed adaptive-step-size online BSS method 
is given. In section 4, some numerical case studies are pro-
vided to assess the effectiveness of the proposed method. In 
section 5, a test bed is built and BSS algorithms are compara-
tively studied with real acoustic signals. In section 6, conclu-
sions of this study are drawn.

2.  Online BSS methods

2.1.  System model

Assume that sk = [s1k, s2k, · · · , smk]
T  and xk = [x1k, x2k,

· · · , xmk]
T  are the source signal vector and the mixed signal 

vector, respectively, where k = 1, 2, · · · , K  represents the 
discrete time; m  is the source number, and the number of 
mixed signals is also assumed to be m; and [·]T  denotes the 
matrix transpose operator. The linear instantaneous mixing 
model of the online BSS method is typically formulated as

xk = Ask� (1)

where A is the full-rank m × m mixing matrix. Generally, 
source signals are assumed to be statistically independent, 
and without any loss of generality, they are also assumed to 
have zero means, unit variances and at most one of them has 
a Gaussian distribution. The ultimate objective of the online 
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BSS method is to recover unknown sources from their mix-
tures, i.e. to find an optimal separating matrix W that yields 
the following function:

yk = Wxk� (2)

where yk = [y1k, y2k, · · · , ymk]
T represents the separated 

signal vector. If A is an invertible matrix and W = A−1, then 
yk = Wxk = A−1Ask = sk is an estimation of a source signal 
vector. The objective of the online BSS method is to obtain 
the estimated source signals yk by optimizing the separating 
matrix.

2.2. Typical online BSS algorithms

In BSS, the independence of separated signals is often used as 
the objective function to update the separating matrix. Mutual 
information is an effective tool to evaluate the interdepend
ence degree between separated signals. Based on mutual 
information, the natural-gradient method [18] can be used to 
update the separating matrix by

W (k + 1) = W (k) + µ
[
I − Φ (yk) yT

k

]
W (k)� (3)

where W (k) is the kth iteration of the separating matrix; µ is 
the step size; I is a unit matrix; Φ (·) = [φ1 (·) , · · · , φn (·)]T  
is the score function; and φk (·) is an odd nonlinear function 
that acts upon the elements of yk. The choice of score function 
depends on the probability distributions of source signals. The 
pre-whitening of mixed signals is necessary to make separa-
tion simpler and more effective, thus making the separated 
signals uncorrelated as well. Similar to equation (3), the pre-
whitening of mixed signals can be achieved by updating the 
separating matrix with

W (k + 1) = W (k) + µ
(
I − ykyT

k

)
W (k) .� (4)

Combining equations  (3) and (4), the EASI algorithm  
[27–29] can be expressed as

W (k + 1) = W (k) + µ
[
I − ykyT

k + ykΦ
T (yk)− Φ (yk) yT

k

]
W (k) .

� (5)

3.  Proposed online BSS method with adaptive  
step size

3.1.  Separation indicator

As mentioned previously, step size is an important parameter 
that influences the convergence performance of online BSS 
methods. Obviously, step size should be adjusted according 
to the separation degree of mixed signals. Therefore, the SI is 
constructed first from the convergence condition of EASI, and 
can reveal the separation degree of mixed signals.

According to equation  (5), when the convergence condi-
tion of EASI is reached, we can obtain

E
[
I − ykyT

k + ykΦ
T (yk)− Φ (yk) yT

k

]
= 0� (6)

where E[�] represents mathematical expectation and 0 is a zero 
matrix. Let

B1 = E
[
I − ykyT

k

]
and B2 = E

[
ykΦ

T (yk)− Φ (yk) yT
k

]
.

� (7)
From equation (7), we have BT

1 = B1 and BT
2 = −B2, that 

is, B1 and B2 are a symmetric matrix and a skew symmetric 
matrix, respectively. It is worth noting that the diagonal ele-
ments of B2 equal zero. Then, B1 and B2 can be rewritten as

B1 =




b1
11 b1

12 . . . b1
1N

b1
12 b1

22 . . . b1
2N

...
...

. . .
...

b1
1N b1

2N . . . b1
NN


 and B2 =




0 b2
12 . . . b2

1N
−b2

12 0 . . . b2
2N

...
...

. . .
...

−b2
1N −b2

2N . . . 0




� (8)
where bl

mn represents the (m, n) element of Bl. Combining 
equations (7) and (8) with (6), we obtain

b1
ii = 0 i = 1, 2, · · · , N� (9)

ß
b1

ij + b2
ij = 0

b1
ij − b2

ij = 0 ⇒
ß

b1
ij = 0

b2
ij = 0 i, j = 1, 2, · · · , N and i �= j .

� (10)
Thus, equations  (9) and (10) can be expressed in matrix 

form as

B1 = 0 and B2 = 0.� (11)

Therefore, when the method comes to the convergence 
conditions, we can obtain

‖B1‖ = 0 and ‖B2‖ = 0� (12)

where ‖·‖ represents a matrix norm that can be 1-norm, 2-norm 
or ∞-norm. Thus, the SI can be defined as

ζ = max (‖B1‖ , ‖B2‖)� (13)

where max(·) represents the maximum of elements in the 
bracket.

According to equation (13), ζ is nonnegative, and ζ = 0 if 
and only if equation (12) holds. At the initial stage, the separa-
tion degree of mixed signals is low and ζ will be large. As the 
separation process goes on, the separated signals are increas-
ingly similar to the source signals, i.e. the separation degree 
of mixed signals is increasing. At this time, ζ will become 
extremely small because equation  (12) is nearly satisfied 
when the EASI algorithm approaches the anticipated conv
ergence degree. As a result, ζ will gradually decrease during 
the separation process, and therefore can reveal the separation 
degree of mixed signals.

3.2.  Online updating of separation indicator

In online BSS methods, parameters should be updated recur-
sively to reduce the computational complexity at each itera-
tion. From equation  (13), to obtain ζ, B1 and B2 should be 
adaptively updated. Let

®
RL = E

[
ykyT

k

]
RH = E

[
Φ (yk) yT

k

] , k = 1, 2, · · · , K.� (14)

To obtain B1 and B2, the adaptive updates of RL and RH 
need to be acquired in advance. The separated signals at the 
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initial stage are largely different from the source signals. As 
the separation process goes on, the separation error will be 
gradually reduced to a small value. Therefore, a forgetting 
factor [24, 30] is usually used to reduce error accumulation 
at the initial stage. The mean of a stationary discrete signal ht  
t = 1, 2, · · · , can be updated [24] using a forgetting factor 
according to

h̄ (k) = ηh̄ (k − 1)/k + hk/k
=

(
hk + ηhk−1 + · · ·+ ηk−1h1

)
/k� (15)

where 0 < η < 1 is the forgetting factor. In equation (15), ht  
must be a stationary signal; however, the elements of RL and 
RH often vary a lot during the separation process. Therefore, it 
is not suitable to update RL and RH using equation (15).

The method used in this study is that, after being updated, 
the previous data are weighted by η and the total number of 
previous data is also weighted by η, that is, R̄L and R̄H are 
adaptively updated by
ß

R̄L (k) =
[
ykyT

k + ηΓη (k − 1) R̄L (k − 1)
]
/Γη (k)

R̄H (k) =
[
Φ (yk) yT

k + ηΓη (k − 1) R̄H (k − 1)
]
/Γη (k)

� (16)
where Γη (k) represents the kth total number and 
Γη (k) = 1 + η + · · ·+ ηk−1. Γη (k) can be adaptively 
updated by

Γη (k) = 1 + ηΓη (k − 1) .� (17)

The smooth method [25] is adopted considering the effect 
of the previous step by
®

RL (k) = [1 − µ (k − 1)]RL (k − 1) + µ (k − 1) R̄L (k − 1)
RH (k) = [1 − µ (k − 1)]RH (k − 1) + µ (k − 1) R̄H (k − 1) .

� (18)
From equation (7), B1 and B2 can be updated to

®
B1 (k) = I − RL (k)
B2 (k) = RT

H (k)− RH (k) .� (19)

3.3.  Adaptive update of the step size

The step size is important in controlling the updating mag-
nitudes of the separating matrix [25, 29]. Therefore, an 
appropriate step size has a great effect on the separation per-
formances of online BSS methods. When the step size is large, 
a fast convergence rate can be obtained as a result, but it may 
lead to a large steady-state error. Too large a step size can 
even give rise to the possibility that online BSS algorithms 
do not converge as expected. However, if the step size is too 
small, the slow convergence rates will lead to poor tracking 
performance. Therefore, the step size should be adaptively 
adjusted with the SI ζ to obtain a faster convergence rate and a 
smaller steady-state error simultaneously. In this study, a non-
linear mapping is presented to dynamically adjust the step size 
according to ζ.

Since the separated signals are significantly different 
from the source signals at the initial stage, it is reasonable to 
choose a larger step size to speed up the separation process. 
As the separation goes on, the step size should be gradually 

decreased with ζ. Therefore, to describe the trend of the step 
size, the hyperbolic tangent function is adopted as

µ̄ (k) = βtanh {α [ζ (k)− δ]}+ γ� (20)

where α represents the shape factor and β is the scale factor. 
Their effects on the performance of the proposed method 
will be investigated in section 4.1. δ represents the position 
with maximum variance rate of ζ. Satisfactory results can be 
obtained when δ is equal to about half of the maximum ζ; γ  
is used to ensure that µ̄ (k) = 0 for ζ (k) = 0. Therefore, from 
equation (20), we can get

γ = −βtanh (−α · δ) .� (21)

Since the current step size is also affected by the previous 
step size [31], µ is adaptively updated by

µ (k) = υµ (k − 1) + (1 − υ) µ̄ (k) .� (22)

The framework of the proposed online BSS method with 
adaptive step size is shown in figure 1.

4.  Numerical case study

4.1.  Parameter selection

To illustrate the effectiveness of the proposed forgetting factor 
method in section 3.2, a mean tracking case is studied in this 
research. A segmented function f (t) is used as the original signal, 
the mean of which needs to be tracked, and is in the form of 
f (t) =

{
5e−10t, t ∈ [0, 1] ; 3e−5(t−2), t ∈ [2, 3] ;5e−10(t−4), 

t ∈ [4, 5] ; 0, Otherwise}. The sampling frequency is 5000 Hz.  
Gauss white noise is added to f (t) and the signal-to-noise 
ratio (SNR) is 20 dB.

Figure 2 shows the comparison of the tracking speed and 
the tracking error of the proposed forgetting factor method 
with the conventional forgetting factor method when η = 0.98. 
As shown in figure 2(a), the tracking speed of the proposed 
method is much faster than that of the conventional method at 
the initial stage. Moreover, the proposed method can quickly 
track f (t) when it abruptly changes. From figure  2(b), the 
error of the proposed method is a little larger only at the initial 
stage and when f (t) abruptly changes, but the error is quickly 
reduced to a small value. The error of the conventional method 
is larger than that of the proposed method, which illustrates 
the effectiveness of the proposed forgetting factor method in 
non-stationary cases.

To show the influence of α and β on the perfor-
mance of the proposed method, the following numerical  
studies are conducted using six source signals and six  
mixtures of them. The source signals are s = {s1t; s2t; s3t; 
s4t; s5t; s6t; } = {sin [cos (310πt)] ; , sin (1600πt) ; sin (18πt) ; 
sin [600πt + 6cos (120πt)] ; sin (18πt) sin (600πt) ; r and n (−1, 
1), which are a square-wave signal, high-frequency sinusoidal 
signal, low-frequency sinusoidal signal, phase-modulation 
signal, amplitude-modulation signal, and white-noise signal, 
respectively. The sampling frequency and sampling length 
are set as 10 000 Hz and 1 s, respectively. In the experiments, 
100 Monte Carlo trials are carried out to evaluate the average 
convergence performances of the proposed method. s6t is 
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randomly generated for each trial. Furthermore, the mixing 
matrix A, also randomly generated for each trial, is subject to 
normal distribution N(0, 1) .The average performance index 
(API) of 100 Monte Carlo trials [25], as a function of the 
global matrix C  =  WA, is mainly used to test performances 
of the proposed method:

PI =
∑

i

Å∑
j

|Cij|
maxk |Cik|

− 1
ã
+
∑

j

Å∑
i

|Cij|
maxk |Ckj|

− 1
ã

� (23)
where Cij  is the (i, j) element of the global matrix C. The per-
formance index (PI) ideally attains its minimum value, zero, 
when the separation is achieved.

In this numerical study, φ(x) = x3 is used as the score func-
tion and δ is set as 0.7. Figure 3 reveals the convergence per-
formances with different α and β. As shown in figure 3(a), α 

has a great effect on the steady-state error, which decreases 
as α decreases. From figure 3(b), the initial convergence rate 
is mainly affected by β, mainly because β controls the initial 
step size. The larger β is, the larger the initial step size will be, 
leading to a larger initial convergence rate. In the following 
part of this study, α and β are set as 4 and 0.005, respectively.

4.2.  Numerical case studies in time-invariant cases

4.2.1.  Harmonic signals.  To show the effectiveness 
and stability of the proposed method, the following 
numerical studies are performed in time-invariant cases.  
Four typical signals s = {s1t; s2t; s3t; s4t}  =  {sin (1600πt) ;
sin (180πt) ; sin (18πt) sin (600πt) ; 1 − 2rand (1, 10 000)} are  
used as source signals. Source signal s4t is used to simulate 
environmental noise, and Gauss white noise with a different 

Figure 1.  Framework of the proposed online BSS method with adaptive step size.

Figure 2.  Tracking performance comparison between the conventional forgetting factor method and the proposed forgetting factor method. 
(a) Tracking speed; (b) tracking error.
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SNR is added to the mixed signals to simulate the measured 
noise. The proposed method is compared with two fixed-
step-size methods, i.e. the natural-gradient method with fixed 
step size (FS-NG) and the EASI method with fixed step size 
(FS-EASI), and two variable-step-size methods, i.e. the expo-
nential-decay-step-size method (EDS) [23] and the adaptive-
step-size method with weighted orthogonalization (AS-WO) 
[25]. The sampling frequency and the sampling length are 
10 000 Hz and 1 s, respectively.

Besides API, the SNR [32] of the separated signals is also 
used to evaluate the performances of these methods, and is 
defined as

SNR = 10log10
(
σ2/MSE

)
� (24)

where σ2 denotes the variances of the source signals and MSE 
denotes the mean square errors between the source signals and 
separated signals. Because of the scale indeterminacy of the 
BSS method, it is necessary to normalize the separated signals 
and source signals while calculating σ2 and MSE. When the 
separated signals are similar to the source signals, MSE tends 
to become small accordingly in the ongoing process. Hence, 
the performance of the method is better if it has greater SNR.

The initial parameters are set as follows: the step sizes 
of both FS-NG and FS-EASI are set as µ = 0.01; and the 
parameters of EDS are set as µ0 = 1.4 × 10−2, K0 = 5 × 102, 
and Kd = 1.5 × 10−3, which are widely used in [24, 25]. In 
AS-WO, the error matrix is in the form of

H2 = I − BRXBT� (25)

where H2 is the error matrix, I is the identity matrix, B is the 
separating matrix and RX is the correlation matrix of mixed sig-
nals. The reason why we chose H2 is that the results obtained 
using H2 are better than when using H1 (k) = I − Φ (yk) yT

k  
(the other error matrix in [25]). Other parameters in AS-WO 
are set as µ0 = 1 × 10−2, β = 0.998, and ρ = 0.002. In the 
proposed method, α = 4, β = 0.005, δ = 0.7, η = 0.98, and 
the norm form in equation (13) is the 1-norm.

Source signals and mixed signals of a separation example 
with SNR  =  20 dB are presented in figures  4(a) and (b), 

respectively. The separated signals recovered by the pro-
posed method are shown in figure  4(c) and their order has 
been adjusted according to the source signals. Comparing fig-
ures 4(c) and (a), we find that the source signals have been 
well recovered, indicating the effectiveness of the proposed 
method.

Figure 5 shows the performance comparison of the different 
methods. Figure 5(a) shows the API obtained from FS-NG, 
FS-EASI, EDS, AS-WO, and the proposed method. From 
figure 5(a), the convergence speed of FS-EASI is faster than 
that of FS-NG because of the use of the orthogonal constraint 
of the separating matrix in FS-EASI. However, the steady-
state errors of FS-NG and FS-EASI are relatively large and 
have large fluctuation due to the limitation of fixed step size. 
The proposed method has smaller steady-state error compared 
with FS-NG and FS-EASI. Compared with EDS and AS-WO, 
the proposed method has faster convergence speed and smaller 
steady-state error. Figure  5(b) shows the standard deviation 
(STD) of the PI of the 100 Monte Carlo trials. As revealed 
in figure 5(b), although the STD of the proposed method is 
slightly larger than that of FS-EASI at the initial stage, it 
reaches the minimum value after only 0.1 s, indicating that the 
proposed method has better numerical robustness. The above 
results show that the proposed method can perform better than 
the contrast methods. It should be noted that the convergence 
speed in this paper is not presented by the computational time 
but by the sample points. The method has faster convergence 
speed, which means that it requires fewer sampling points for 
the PI to reach the same value.

Figure 6 shows the variations of the average SI and average 
step size of the proposed method, and reveals that the vari-
ation of both the SI and the step size can be divided into 
three stages: (I) Initial stage. The SI increases from zero to 
the maximum, so the step size increases rapidly to accelerate 
the convergence; (II) Estimation stage. The separated sig-
nals are increasingly similar to the source signals, so the SI 
decreases quickly, and therefore the step size decreases as the 
SI decreases; (III) Stabilization stage. The separated signals 
have been well recovered, so the SI and the step size remain at 

Figure 3.  Convergence performances with different parameters. (a) Different α; (b) different β.
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Figure 4.  Separation example of the proposed method using harmonic signals in a time-invariant case. (a) Source signals; (b) mixed 
signals; (c) separated signals.

Figure 5.  Performance comparison using harmonic signals in time-invariant cases. (a) API; (b) STD of PI.

Meas. Sci. Technol. 31 (2020) 045102



J Lu et al

8

Figure 6.  Variation of the SI and the step size of the proposed method in time-invariant cases. (a) SI; (b) step size.

Figure 7.  SNR comparison using harmonic signals in time-invariant cases. (a) Comparison with online methods; (b) comparison with 
offline methods.

Figure 8.  Separation example of the proposed method using wide-band signals in time-invariant cases. (a) Source signals; (b) mixed 
signals; (c) separated signals.
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a small, nearly constant value. Therefore, the step size of the 
proposed method can be adaptively adjusted in the separation 
process.

Figure 7(a) shows SNR comparison with the online 
methods. In figure  7(a), the SNRs of AS-WO and EDS are 
larger than those of FS-NG and FS-EASI. We can see that the 
SNR of VS-SI is about 13.5 dB, while the largest SNR of the 
other online methods is only 11.35 dB. Compared with the 
contrast methods, the SNR of VS-SI increases by more than 
18.94%, which indicates that the separation accuracy of VS-SI 
is better than that of the contrast methods.

The proposed method is also compared with some classical 
offline methods, using the ICALAB Ver. 3 toolbox available 
at [33]. The references for the offline algorithms are available 
in the Help section of the toolbox. SNR comparison between 
the proposed method and the offline methods is shown in 
figure  7(b), where the SNR of VS-SI is nearly the same as 

those of FPICA and SOBI, and is larger than those of JADEop 
and EVD2. Therefore, compared with offline methods, VS-SI 
still has better performance as anticipated.

4.2.2.  Wide-band signals.  Three swept-frequency signals 
are used to test the estimation performance of wide-band sig-
nals of the proposed method. The three source signals are a 
linear swept-frequency signal, a quadratic swept-frequency 
signal, and a logarithmic swept-frequency signal, and their 
frequency ranges are (10 Hz, 1000 Hz), (600 Hz, 1400 Hz), 
and (10 Hz, 1500 Hz), respectively. The sampling frequency 
is 4096 Hz and the sampling length is 3 s. Waveforms of the 
source signals and their Fourier spectra are shown in fig-
ure 8(a). In the test, the mixing matrix is randomly generated. 
Waveforms and Fourier spectra of the mixed signals are given 
in figure 8(b). Gaussian white noise is independently added to 
each mixed signal with SNR  =  20dB. The separated signals 

Figure 9.  SNR comparison using wide-band signals. (a) Comparison with online methods; (b) comparison with offline methods.

Figure 10.  Separation example of the proposed method in time-varying cases. (a) Source signals; (b) mixed signals; (c) separated signals.
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Figure 11.  Performance comparison using harmonic signals in time-varying cases. (a) API; (b) STD of PI.

Figure 12.  Variation of the SI and the step size of the proposed method in time-varying cases. (a) SI; (b) step size.

Figure 13.  SNR comparison using harmonic signals. (a) Comparison with online methods; (b) comparison with offline methods.

Figure 14.  SNR comparison using wide-band signals. (a) Comparison with online methods; (b) comparison with offline methods.
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of the proposed method are shown in figure 8(c). Comparing 
figures 8(c) and (a), we can see that the source signals have 
been well recovered except for the amplitude and order of the 
separated signals.

Figure 9 shows SNR comparison with other methods. 
Figures 9(a) and (b) show the SNR comparison with online 
and offline methods, respectively. It can be seen in figure 9 
that, when compared with online and offline methods, the 

SNR of VS-SI is the largest. Therefore, the proposed method 
could outperform the contrast methods while dealing with 
wide-band signals.

4.3.  Numerical case studies in time-varying cases

4.3.1.  Harmonic signals.  This section explores the performance of 
the proposed method in time-varying cases. The source signals are 

Figure 15.  Structural diagram and experimental images. (a) Structural diagram in time-invariant cases; (b) structural diagram in time-
varying cases; (c) images of the test bed.

Figure 16.  Mixed signals in time-invariant cases. (a) Waveforms; (b) Fourier spectra.
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s = {s1t; s2t; s3t} = {sin (1000πt) ; sin (40πt) sin (600πt) ; 
randn (−1, 1)}. The sampling frequency and the sampling 
length are 10 000 Hz and 3 s, respectively. Similar to the time-
invariant cases, 100 Monte Carlo trials are also carried out 
in time-varying cases. The mixing matrix A is also randomly 
generated for each trial. The mixing matrices A in 0 s–1 s, 1 
s–2 s and 2 s–3 s are denoted as A1, A2 and A3, respectively. A1 
is randomly generated and A3 is defined as

A3 = A1 +



−0.12 0.27 −0.35
−0.34 0.24 0.20
0.21 −0.13 −0.27


 .� (26)

A2 linearly varies from A1 to A3 in 1 s–2 s. Therefore, the 
mixing matrix in each trial is fixed from 0 s to 1 s and from 
2 s to 3 s, and the mixing matrix is time-varying from 1 s 
to 2 s. Gauss white noise is added to mixed signals with  
SNR  =  20 dB.

An example of the proposed method in time-varying cases 
is provided in figure  10. The source signals, mixed signals 
and separated signals are shown in figures 10(a)–(c), respec-
tively. From figure 10(b), the mixed signals between the two 
red dotted lines are time-varying. Only partial signals of the 
separated signals in 0.95 s–1.05 s, 1.45 s–1.55 s, and 1.95 s– 
2.05 s are given to clearly observe the details. Comparing fig-
ures 10(c) and (a), we can see that the separated signals are 
similar to the source signals and the signals in 1 s–2 s have 
also been well recovered.

Figure 11 shows the performance comparison in time-
varying cases. Figures  11(a) and (b) present the API and 

STD of PI of the 100 Monte Carlo trials, respectively. As 
shown in figure 11(a), the API of the proposed method is the 
smallest, though it increases a little in 1 s–2 s. Since FS-NG 
and FS-EASI have fixed step size, their APIs are larger and 
have a larger degree of fluctuation. The step size of EDS at 
1 s has decreased to a small value, so the API increases after 
1 s. The forgetting factor in AS-WO is only suitable for station 
cases, and thus AS-WO seems to have worse separation per-
formance than the proposed method in non-stationary cases. 
In figure 11(b), the STD of the PI of the proposed method is 
also the smallest, indicating that the proposed method could 
have better numerical robustness.

Figure 12 shows the variations of the average SI and average 
step size of the proposed method in time-varying cases. From 
this figure, the variation of both the SI and the step size can be 
divided into three stages: (I) At the first stage, the trends of the 

Figure 17.  Separated signals in time-invariant cases. (a) Waveforms; (b) Fourier spectra.

Figure 18.  Source signals in time-invariant cases. (a) Waveforms; (b) Fourier spectra.

Figure 19.  Envelope spectrum of y1 separated by the proposed 
method.
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SI and the step size are similar to those of time-invariant cases. 
(II) At the second stage, the mixing matrix is time-varying, so 
the SI increases, leading to an increase in step size. (III) At the 
third stage, the mixing matrix is fixed, so the trends of SI and 
step size are similar to in the first stage. Therefore, the step 
size of the proposed method can be dynamically adjusted in 
time-varying cases.

Figure 13(a) presents SNR comparison with online 
methods in time-varying cases. Seen from figure  13(a), 
the SNRs of VS-SI, AS-WO, EDS, FS-NG and FS-EASI 
are 18.63 dB, 13.25 dB, 12.5 dB, 14.62 dB, and 12.9 dB, 

respectively. Compared with these four methods, the SNR of 
VS-SI increases by 5.38 dB, 6.13 dB, 4.01 dB, and 5.73 dB, 
respectively.

We also compare the proposed method with classical offline 
methods, i.e. FPICA, JADEop, SOBI and EVD2. Figure 13(b) 
shows SNR comparison with the classical offline methods in 
time-varying cases. It shows that the SNR of VS-SI increases 
by more than 8.57 dB compared with those of offline methods.

From figure 13, the SNRs of online methods are larger than 
those of offline methods, which means the separation perfor-
mances of online methods are better than those of offline 

Figure 20.  SNR comparison in time-invariant cases. (a) Comparison with online methods; (b) comparison with offline methods.

Figure 21.  Mixed signals in time-varying cases. (a) Waveforms; (b) Fourier spectra.

Figure 22.  Separated signals in time-varying cases. (a) Waveforms; (b) Fourier spectra.
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methods in time-varying cases. The mixing matrix varies in 
time-varying cases, but a fixed mixing matrix is used to sepa-
rate the source signals in offline methods, which is likely to 
bring about errors in the source signals. Therefore, although 
FPICA and SOBI can show excellent estimation performance 
and sometimes are even better than the proposed method in 
time-invariant cases, they are not suitable for time-varying 
cases.

4.3.2.  Wide-band signals.  The swept-frequency signals in 
section 4.2.2 are used as source signals to test the estimation 
performance of the proposed method for wide-band signals in 
time-varying cases. The sampling frequency and the sampling 
length are 4096 Hz and 3 s respectively. In addition, the mix-
ing matrix is the same as in section 4.3.2, that is, it is fixed in 
(0 s, 1 s) and (2 s, 3 s), and varies linearly from 1 s to 2 s. In this 
process, Gaussian white noise is added to each mixed signal 
with SNR  =  20 dB.

Figure 14 shows the performance comparison with online 
methods and classical offline methods. From figure 14, we 
can also see that the SNR of VS-SI is the largest compared 
with not only online methods but also offline methods. 
Compared with the largest SNRs of online and offline 
methods, the SNR of VS-SI increases by 1.38 dB and  
5.68 dB, respectively.

5.  Experimental case analysis

5.1.  Experimental setup

A test bed is constructed to evaluate the performance of the 
proposed method. The schematic diagram and pictures of the 
test bed are displayed in figure 15. In the test bed, two loud-
speakers placed at A and B (or C, see figures 15(a) and (b)) are 
used as source signals. Two arbitrary waveform generators are 
used to produce two different source signals that are inputs 
of the loudspeakers. Loudspeaker s1 is fixed to simulate the 
fixed source and loudspeaker s2 is installed in a mobile trailer 
model to simulate the moving source. Three sound pressure 
sensors, placed in D1, D2 and D3, are installed to collect the 
mixed sound signals. A GEN2i high-speed data recorder is 
used to record the mixed signals.

5.2.  Experimental case studies in time-invariant cases

In this case, two loudspeakers are fixed and placed at A and B, 
as shown in figure 15(a). The mixed signals and their Fourier 
spectra are shown in figure  16. The mixed signals are first 
processed by the proposed method. Waveforms and Fourier 
spectra of the separated signals are shown in figure 17, from 
which we can see that the two separated signals are an oscil-
lating attenuation signal and a sinusoidal signal.

To demonstrate the performance of the proposed method, 
the source signals are also recorded directly from the outputs 
of two arbitrary waveform generators. The source signals and 
their Fourier spectra are shown in figure 18. From figure 18(a), 
the source signals are an oscillating attenuation signal with 
major frequency 20 Hz and a sinusoidal signal with major fre-
quency 253 Hz. Comparing figure 17 and 18, the waveforms 
of the separated signals are similar to those of the source sig-
nals, and the major frequencies of the source signals have also 
been well recovered. It can be seen that y1 has some difference 
from s1 in the low-frequency region and the major frequency 
20 Hz cannot be directly obtained from the Fourier spectrum 
of y1. Therefore, the envelope spectrum of y1 is obtained and 
displayed in figure 19. We can easily obtain the impact fre-
quency 20 Hz and its higher-order harmonic.

The mixed signals are also separated by the contrast 
methods. The SNRs of the separated signals recovered by 
these methods are computed and displayed in figure 20. The 
SNR of VS-SI is about 6 dB, while the largest SNR of the 
other online and offline methods is smaller than 3 dB, which 
reveals that the proposed method can estimate sources more 
accurately than the contrast methods.

Figure 23.  Source signals in time-varying cases. (a) Waveforms; (b) Fourier spectra.

Figure 24.  Envelope spectrum of y1 separated by the proposed 
method.
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The real mixing matrix A is needed to obtain the PI to ana-
lyze the convergence speed and steady-state error. However, 
it is difficult to obtain the real mixing matrix A in the exper
imental cases. Therefore, the convergence speed and steady-
state error are not analyzed in the experimental cases and only 
the SNRs of the methods are given to show the high accuracy 
of the proposed method.

These results may show that the proposed adaptive-step-
size online BSS method can recover source signals effectively 
from mixed signals and retain their major frequencies in time-
invariant cases.

5.3.  Experimental case studies in time-varying cases

In this case, two loudspeakers are placed at A and B. 
Loudspeaker s2 is moved from C to C′ driven by a motor, as 
shown in figure 15(b). Therefore, the mixing matrix is time-
varying in this case. A pulse signal and a sinusoidal signal 
are treated as source signals. The mixed signals and their fre-
quency spectra are shown in figure 21.

Figure 22 displays the separated signals and their spectra 
obtained by the proposed method. Real source signals are also 
recorded and illustrated in figure 23. Comparing figure 22 and 
23, the waveforms of the separated signals are similar to those 
of the source signals, and the major frequencies of the source 
signals are recovered satisfactorily. Though the frequency  
290 Hz still exists in the first separated signal, its amplitude 
has been relatively small. The envelope spectrum of y1 (from 
9 s to 10 s) is obtained and displayed in figure  24. We can 
easily obtain the impact frequency 200 Hz and its higher-order 
harmonic. These results show that the proposed method can 
effectively estimate source signals in time-varying cases.

The SNRs of the separated signals estimated by the pro-
posed method and the contrast methods are also computed 
and displayed in figure 25. It can be seen from this figure that 
the SNR of the proposed method is larger than those of the 
contrast methods, indicating that the proposed method could 
outperform the contrast methods in time-varying cases.

6.  Conclusion

This paper introduced an adaptive-step-size online BSS 
method based on EASI by adjusting the step size with the 
separation degree of the mixed signals. This online BSS 
method was able to balance the convergence speed and the 

steady-state error, and therefore can be used in both time-
invariant and time-varying cases. In numerical case studies, 
the SNR of the proposed method was larger than those of 
other online methods for both harmonic signals and wide-
band signals in time-invariant cases. In time-varying cases, 
the step size of the proposed method adaptively changes in 
accordance with the variation of mixing matrix and therefore 
the separation performance is better than that of the contrast 
online methods. Compared with offline methods, the SNR 
of the proposed method is not especially distinct from those 
of FPICA and SOBI in time-invariant cases. However, these 
offline methods use fixed mixing matrices to recover source 
signals in time-varying cases, which is likely to cause large 
errors in sources. Therefore, the SNR of the proposed method 
increases by more than 8.57 dB and 5.68 dB for harmonic 
signals and wide-band signals, respectively. In the exper
imental case studies, the proposed method tended to satis-
factorily recover the waveforms of source signals and retain 
their major frequencies in not only time-invariant but also 
time-varying cases.

The proposed method can be used to recover the radiated 
noise signal of a moving source, such as a land or underwater 
vehicle, from the mixtures collected by sensors. In addition, in 
the proposed method, the separated signals have the problem 
of order indeterminacy and amplitude indeterminacy when 
compared with the source signals, and therefore some fur-
ther research to solve these problems can be carried out in 
the future.
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