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Abstract. The trace representation of sequences is a powerful tool for the analysis and for the 

design of pseudorandom sequences. Z. Dai et al. (2011) reduce the problem of determining 

trace representation of series of binary 𝑒th power residue sequences to that of determining the 

values of generating polynomials of cyclotomic classes. We derive the values of generating 

polynomials of cyclotomic classes of order 4, 6, 8 and consequently solve three problems 

pointed by Z. Dai et al. In fact, we study the discrete Fourier transform of cyclotomic 

sequences of order 4, 6, 8. 

1. Introduction 

A trace representation of a sequence gives very specific insight on its “easy” generation using one or 

more linear feedback shift registers for engineering applications [12]. In their paper, Z. Dai et al. [2] 

investigated the trace representation and the linear complexity of series of binary eth power residue 

sequences of period 𝑝 generalizing results from [3, 4, 5, 6]. Authors reduce the problem of 

determining trace representation of above-mentioned sequences to that of determining the values of 

generating polynomials of cyclotomic classes of order e. In conclusion authors pointed out four open 

problems. In this paper we solve first three of these problems. 

First of all, we briefly repeat the basic definitions from [2] and some general information. Let 𝑝 =
1 + 𝑒𝑓 be an odd prime for 𝑒 = 4,6,8, and let 𝔽𝑝 be the finite field of order 𝑝 which we identify with 

the set of integers {0,1, … , 𝑝 − 1}. Denote by u a generator of the cyclic group 𝔽𝑝
∗ = {1,2, … , 𝑝 − 1}. 

Put, by definition 𝐻𝑒 = {𝑥𝑒|𝑥 ∈ 𝐹𝑝
∗}. Then 𝐻𝑒 consists of the eth power residues mod 𝑝 and cosets 

𝑢𝑖𝐻𝑒 , 0 ≤ 𝑖 ≤ 𝑒 − 1 form a partition 𝔽𝑝
∗ , i.e. 𝔽𝑝

∗ =∪𝑖=0
𝑒−1 𝑢𝑖𝐻𝑒. Cosets 𝑢𝑖𝐻𝑒 are also called the 

cyclotomic classes of order 𝑒 with respect to 𝑝 [7]. 

The following definitions were presented in [2]. 

Definition 1 (Generating Polynomials of Cosets): Given 𝑘 ∈ 𝔽𝑝
∗ , the generating polynomial of the 

coset 𝑘𝐻𝑒 is defined as  

 ∑𝑖∈𝑘𝐻𝑒
𝑥𝑖(mod(𝑥𝑝 − 1)) 

which will be denoted by 𝑐𝑘(𝑥). 

Let 𝛼 be a primitive root pth power of unity in 𝔽2𝑛, where 𝑛 is an order of 2 mod 𝑝. It is well 

known that it exists [8]. Let 𝛽 = 𝛼𝑗, 1 ≤ 𝑗 ≤ 𝑝 − 1. 
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Definition 2 ( 𝑒-Tuples and Matrices Related to Cosets): The 𝑒 elements 𝑐𝑢𝑖(𝛽),0 ≤ 𝑖 < 𝑒, which 

are values of 𝑐𝑢𝑖(𝑥) at 𝑥 = 𝛽, will be ordered as an 𝑒-tuple over 𝔽2𝑛 according to any given generator 

u of 𝔽𝑝
∗ , and written as a vector  

 𝑐𝑢(𝛽) = (𝑐𝑢0(𝛽), 𝑐𝑢1(𝛽), … , 𝑐𝑢𝑒−1(𝛽)). 
Let 𝑑 = 𝑔𝑐𝑑((𝑝 − 1)/𝑛, 𝑒). The values 𝑐𝑢(𝛽) were obtained in [2] for 𝑒 = 4, 𝑝 ≡ 5 (mod 8), and 

𝑒 = 6, 𝑝 ≡ 7 (mod 12), and 𝑒 = 8, 𝑝 ≡ 9 (mod16), 𝑑 = 8. But for all that in the first and the second 

cases for 𝑑 = 1 were offered two possible 𝑒-tuples. At the end of the article, the authors noted that 

some problems remain open. 

1. When 𝑒 = 4 or 𝑒 = 6 with 𝑑 = 1, any 𝑐𝑢(𝛽) must be equivalent to only one of two possible 𝑒-

tuples (not both). It is not known so far whether any one can be ruled out completely, or both occur as 

𝑝 changes. 

2. Computations of 𝑐𝑢(𝛽) for the values of d other than those covered in the subsection for 𝑒 = 4 

or 𝑒 = 8 also remain as future research. 

3. So do those for the case 𝑒 = 6 with even 𝑓. 

4. So do the cases with 𝑒 > 12. 

In this paper, we propose a solution of the first three problems. For computing the values 𝑐𝑢𝑖(𝛼) we 

will use the method considered in [9]. 

2. The values of generating polynomials of cyclotomic classes 

Let (𝑚, 𝑘)𝑒 be cyclotomic numbers of order 𝑒 [10]. The following lemma was proved in [11]. 

Lemma 1. Let 𝑘, 𝑗 = 0,1, … , 𝑒 − 1. Then in  𝔽2𝑛 we have  

 𝑐𝑢𝑗(𝛼)𝑐𝑢𝑘(𝛼) = ∑𝑚−1
𝑖=0 (𝑘 − 𝑗, 𝑖)𝑒𝑐𝑢𝑖+𝑗(𝛼) + 𝛿. 

Here 𝛿 = {
1, 𝑖𝑓 𝑓 ≡ 1(mod 2), |𝑗 − 𝑘| = 𝑒/2,
0, 𝑒𝑙𝑠𝑒.                                                  

   

2.1. Case 𝑒 = 4 

Let 𝑒 = 4. Since 𝑝 ≡ 1(mod 4), 𝑝 can be expressed as 𝑝 = 𝑥2 + 4𝑦2; 𝑥 ≡ 1(mod 4), here y is two-

valued, depending on the choice of the primitive root. 

Denote by 𝑖𝑛𝑑𝑢2 a discrete logarithm of 2 base 𝑢 in the field 𝔽𝑝. If 𝑓 = (𝑝 − 1)/4 is odd then 

𝑖𝑛𝑑𝑢2 ≡ 1(mod 2) [12]. 

Theorem 1. Let 𝑝 = 𝑥2 + 4𝑦2, 𝑒 = 4, and 𝑓 is an odd and a generator 𝑢 of 𝔽𝑝
∗  such that 2 ∈ 𝑢𝐻4. 

Then 𝑐𝑢(𝛼) = (𝜃, 𝜃2, 𝜃4, 𝜃8) where 𝜃4 + 𝜃3 + 𝜃2 + 𝜃 + 1 = 0 if 𝑥 ≡ 1(mod 8) and 𝜃4 + 𝜃3 + 1 =
0 if 𝑥 ≡ 5 (mod 8).   

Proof. By Theorem 11 [2] it follows that 𝑐𝑢(𝛼) = (𝜃, 𝜃2, 𝜃4, 𝜃8) where 𝜃 is a root of 𝑓(𝑥), where 

either 𝑓(𝑥) = 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 or 𝑓(𝑥) = 𝑥4 + 𝑥3 + 1(but not both). 

We consider the cyclotomic numbers of order 4 when 𝑓 is an odd. By [10]  
                         (1,0)4 = (1,1)4 = (𝑝 − 3 − 2𝑥)/16,
(1,2)4 = (𝑝 + 1 + 2𝑥 + 8𝑦)/16,    (1,3)4 = (𝑝 + 1 + 2𝑥 − 8𝑦)/16.

          (1) 

By assumption of Theorem 1, 𝑥 = 1 + 4𝑠 and 𝑓 = 1 + 2𝑡 where 𝑠, 𝑡 are integers. Using Lemma 1 

and (1) we obtain that  

 𝑐𝑢0(𝛼)𝑐𝑢1(𝛼) = 𝑠𝑐𝑢0(𝛼) + 𝑠𝑐𝑢1(𝛼) + (1 + 𝑡)𝑐𝑢2(𝛼) + 𝑡𝑐𝑢3(𝛼) 

or 𝜃3 = 𝑠𝜃 + 𝑠𝜃2 + (1 + 𝑡)𝜃4 + 𝑡𝜃8. Hence, 𝑡 ≡ 1(mod 2) and  

 𝜃3 = 𝑠𝜃 + 𝑠𝜃2 + 𝜃8.  (2) 

The conclusions of this theorem then follow from (2). 

We note that if 𝜃 is a root of 𝑓(𝑥) = 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 then 𝜃 + 1 is a root of 𝑓(𝑥) = 𝑥4 +
𝑥3 + 1 and vice versa. 

The values of 𝑐𝑢(𝛼) when 𝑓 is an even were obtained in [9]. If 𝑓 is an even then 𝑦 ≡ 0(mod 2) 

[12]. Further, without loss of generality, we can choose α such that 𝑐𝑢0(𝛼) ≠ 0. 

(i) 𝑐𝑢(𝛼) = (1,0,0,0) if 𝑥 ≡ 1(mod 8) and 𝑦 ≡ 0(mod 4); 

(ii) 𝑐𝑢(𝛼) = (1,1,0,1) if 𝑥 ≡ 5(mod 8) and 𝑦 ≡ 0(mod 4); 
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(iii) 𝑐𝑢(𝛼) = (𝜔, 1,1 + 𝜔, 1) if 𝑥 ≡ 1(mod 8) and 𝑦 ≡ 2(mod 4). Here ω satisfies the equation 

𝜔2 + 𝜔 + 1 = 0; 

(iv) 𝑐𝑢(𝛼) = (𝜔, 0,1 + 𝜔, 0) if 𝑥 ≡ 5(mod 8) and 𝑦 ≡ 2(mod 4). 

2.2. Case 𝑒 = 6 

Let 𝑒 = 6. Since 𝑝 ≡ 1(mod 6), 𝑝 can be expressed as 𝑝 = 𝐴2 + 3𝐵2; 𝐴 ≡ 1(mod 3). The 

cyclotomic numbers of order 6 can be found through 𝐴 and 𝐵, where 𝐵 ≡ −𝑖𝑛𝑑𝑢2(mod 3) [10]. 

First of all, we study a case when 𝑓 is an odd and 𝑑 = 1. Since 𝑑 = 1, we see that 𝑖𝑛𝑑𝑢2 ≡
±1(𝑚𝑜𝑑 6). Without loss of generality, we can assume that 2 ∈ 𝑢𝐻6. 

Theorem 2. Let 𝑝 = 𝐴2 + 3𝐵2, 𝑒 = 6, and 𝑓 is an odd and a generator 𝑢 of 𝔽𝑝
∗  such that 2 ∈ 𝑢𝐻6 

(in this case 𝐵 ≡ 2 (mod 3)). Then 𝑐𝑢(𝛼) = (𝜗, 𝜗2, 𝜗4, 𝜗8, 𝜗16, 𝜗32) where 𝜗6 + 𝜗5 + 𝜗2 + 𝜗 + 1 =
0 if 𝐵 ≡ 11(mod 12) and 𝜗6 + 𝜗5 + 1 = 0 if 𝐵 ≡ 5 (mod 12). 

Proof. By [2] it follows that 𝑐𝑢(𝛼) = (𝜗, 𝜗2, 𝜗4, 𝜗8, 𝜗16, 𝜗32). Here 𝜗 is a root of 𝑓(𝑥), where 

either 𝑓(𝑥) = 𝑥6 + 𝑥5 + 𝑥2 + 𝑥 + 1 or 𝑓(𝑥) = 𝑥6 + 𝑥5 + 1(but not both). 

Let 𝐴 = 1 + 3𝑘, 𝐵 = 2 + 3𝑙, 𝑘, 𝑙 ∈ ℤ. In this case 𝑝 = 13 + 6𝑘 + 9𝑘2 + 36𝑙 + 27𝑙2. Since 𝑝 ≡
7 (mod 12), it follows that 𝑘, 𝑙 are odds, i.e., 𝐴 = 4 + 6𝑡, 𝐵 = 5 + 6𝑠;  𝑠, 𝑡 ∈ ℤ. Further, 2 ∉ 𝐻2, 

hence 𝑝 ≡ ±3 (mod 8)[12]. So, 𝑡 ≡ 0 (mod 2). From this we can establish that [10]  

 
(1,0)6 ≡ 1 + 𝑠 (mod 2),    (1,1)6 ≡ 𝑠 (mod 2),
(1,2)6 = (1,5)6 ≡ 1 (mod 2),    (1,3)6 = (1,4)6 ≡ 0 (mod 2).

 (3) 

In this case, by Lemma 1 and (3) we obtain that  

 𝑐𝑢0(𝛼)𝑐𝑢1(𝛼) = (1 + 𝑠)𝑐𝑢0(𝛼) + 𝑠𝑐𝑢1(𝛼) + 𝑐𝑢2(𝛼) + 𝑐𝑢5(𝛼) 

or 

 𝜗3 = (1 + 𝑠)𝜗 + 𝑠𝜗2 + 𝜗4 + 𝜗32. 
To conclude the proof, it remains to note that 𝜗32 = 𝜗4 + 𝜗3 + 𝜗2 if 𝜗 is a root of 𝑓(𝑥) = 𝑥6 +

𝑥5 + 𝑥2 + 𝑥 + 1 and 𝜗32 = 𝜗4 + 𝜗3 + 𝜗 if 𝜗 is a root of 𝑓(𝑥) = 𝑥6 + 𝑥5 + 1. Theorem 2 is proved. 

 We note that if 𝜗 is a root of 𝑓(𝑥) = 𝑥6 + 𝑥5 + 𝑥2 + 𝑥 + 1 then 𝜗 + 1 is a root of 𝑓(𝑥) = 𝑥6 +
𝑥5 + 1 and vice versa. 

Further, we investigate the values 𝑐𝑢(𝛼) for an even value of 𝑓. Let 𝑝 = 𝐴2 + 3𝐵2, 𝐴 ≡ 1(mod 3). 

We consider two cases, when 𝑖𝑛𝑑𝑢2 ≡ 0(mod 3) and 𝑖𝑛𝑑𝑢2 ≢ 0 (mod 3). 

1. Suppose 𝑖𝑛𝑑𝑢2 ≡ 0 (mod 3); then 𝐵 ≡ 0 (mod 3) and 𝐴 = 1 + 6𝑡, 𝐵 = 6𝑠, 𝑡, 𝑠 ∈ ℤ and 𝑝 ≡
1 − 24𝑡 + 36𝑠 (mod 72). In this case, we obtain by [10] 

(3,0)6 ≡ (3,3)6 ≡ 𝑠 (mod 2),
(3,1)6 ≡ (3,2)6 ≡ (3,4)6 ≡ (3,5)6 ≡ 𝑠 + 𝑡 (mod 2).

                                      (4) 

From [2] it follows that in this case 𝑐𝑢(𝛼) = (1,0,0) for 𝑒 = 3. Since 𝐻3 = 𝐻6 ∪ 𝑢3𝐻6, we see by 

Lemma 1 and (4) that 

 
𝑐𝑢0(𝛼) + 𝑐𝑢3(𝛼) = 1,    𝑐𝑢0(𝛼)𝑐𝑢3(𝛼) = 𝑠,

𝑐𝑢𝑗(𝛼) + 𝑐𝑢𝑗+3(𝛼) = 0,    𝑐𝑢𝑗(𝛼)𝑐𝑢𝑗+3(𝛼) = 𝑠 + 𝑡, 𝑗 = 1,2.
 

From this we can establish that: 

(i) 𝑐𝑢(𝛼) = (1,0,0,0,0,0) if 𝐴 ≡ 1 (mod 12) and 𝐵 ≡ 0 (mod 12); 

(ii) 𝑐𝑢(𝛼) = (1,1,1,0,1,1) if 𝐴 ≡ 7 (mod 12) and 𝐵 ≡ 0 (mod 12); 

(iii) 𝑐𝑢(𝛼) = (𝜔, 1,1, 𝜔 + 1,1,1) if 𝐴 ≡ 1 (mod 12) and 𝐵 ≡ 6 (mod 12). Here ω is a root of 

𝑥2 + 𝑥 + 1 as before; 

(iv) 𝑐𝑢(𝛼) = (𝜔, 0,0, 𝜔 + 1,0,0) if 𝐴 ≡ 7 (mod 12) and 𝐵 ≡ 6 (mod 12). 

2. If 𝑖𝑛𝑑𝑢2 ≡ 2 (mod 3) then 𝑖𝑛𝑑𝑢−12 ≡ 1 (mod 3). Hence, without loss of generality, we can 

assume that 𝑖𝑛𝑑𝑢2 ≡ 1 (mod 3). Since 𝐵 ≡ 2 (mod 3), we obtain that 𝐴 = 1 + 6𝑡, 𝐵 = 2 + 6𝑠, 𝑡, 𝑠 ∈
ℤ and 𝑝 ≡ 13 − 24𝑡 + 36𝑠 (mod 72). In this case, for 𝑒 = 3 by [2] we have that 𝑐𝑢(𝛼) =
(𝜀, 𝜀2, 𝜀2 + 𝜀 + 1), where ε is a root of 𝑓(𝑥) = 𝑥3 + 𝑥2 + 1.Therefore, using the formulae for 

computation of the cyclotomic numbers and Lemma 1, we can write 
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𝑐𝑢0(𝛼) + 𝑐𝑢3(𝛼) = 𝜀,    𝑐𝑢0(𝛼)𝑐𝑢3(𝛼) = 𝑡𝜀2 + (1 + 𝑡 + 𝑠)(𝜀2 + 𝜀 + 1),

𝑐𝑢1(𝛼) + 𝑐𝑢4(𝛼) = 𝜀2,    𝑐𝑢1(𝛼)𝑐𝑢4(𝛼) = (1 + 𝑡 + 𝑠)𝜀 + 𝑡(𝜀2 + 𝜀 + 1),

𝑐𝑢2(𝛼) + 𝑐𝑢5(𝛼) = 𝜀2 + 𝜀 + 1, 𝑐𝑢2(𝛼)𝑐𝑢5(𝛼) = 𝑡𝜀 + (1 + 𝑡 + 𝑠)𝜀2.
Under the condition of 2 ∈ 𝑢𝐻6 ∪ 𝑢4𝐻6 we have that:

(i) 𝑐𝑢(𝛼) = (𝜀, 0, 𝜀2 + 𝜀 + 1,0, 𝜀2, 0) if 𝐴 ≡ 1 (mod 12) and 𝐵 ≡ 8 (mod 12);

(ii) 𝑐𝑢(𝛼) = (𝜀 + 1,1, 𝜀2 + 𝜀, 1, 𝜀2 + 1,1) if 𝐴 ≡ 7 (mod 12) and 𝐵 ≡ 8 (mod 12);

(iii) 𝑐𝑢(𝛼) = (𝛾, 𝛾2, 𝛾4, 𝛾8, 𝛾16, 𝛾32) if 𝐴 ≡ 1 (mod 12) and 𝐵 ≡ 2 (mod 12). Here 𝛾 is a root of

𝑥2 + 𝜀𝑥 + 𝜀4 or 𝑓(𝑥) = 𝑥6 + 𝑥5 + 𝑥4 + 𝑥 + 1 = (𝑥2 + 𝜀𝑥 + 𝜀4)(𝑥2 + 𝜀2𝑥 + 𝜀)(𝑥2 + 𝜀4𝑥 + 𝜀2);

(iv) 𝑐𝑢(𝛼) = (𝛾 + 1, 𝛾2 + 1, 𝛾4 + 1, 𝛾8 + 1, 𝛾16 + 1, 𝛾32 + 1) if 𝐴 ≡ 7 (mod 12) and 𝐵 ≡
2(mod 12). Here 𝛾 + 1 is a root of 𝑓(𝑥) = 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 + 1 = (𝑥2 + 𝜀𝑥 + 𝜀2)(𝑥2 + 𝜀2𝑥 +
𝜀4)(𝑥2 + 𝜀4𝑥 + 𝜀).

So, in this section we determine all the values of generating polynomials of cyclotomic classes of 

order six. For Hall’s sextic sequence these values were studied in [13]. 

2.3. Case 𝑒 = 8 

Let 𝑒 = 8 and 𝑝 = 1 + 8𝑓. Then 𝑝 = 𝑥2 + 4𝑦2 = 𝑎2 + 2𝑏2; 𝑥 ≡ 𝑎 ≡ 1(mod 4) where 𝑥, 𝑎, 𝑦, 𝑏 are

integers. The formulae for cyclotomic numbers depend on the values 𝑓, 𝑦. There exist four cases [10, 

13]. We consider only case when 𝑓 is odd. 

2.3.1. Let 𝑓 be an odd and 𝑦 ≡ 0(mod 4). If 𝑦 ≡ 0(mod 4) then  𝑦 = 4𝑔, 𝑔 ∈ ℤ. In this case from 

our definitions and Section 1 it follows that 

𝑐𝑢𝑗(𝛼) + 𝑐𝑢𝑗+4(𝛼) = 1, 𝑗 = 0,1,3  𝑎𝑛𝑑  𝑐𝑢2(𝛼) + 𝑐𝑢6(𝛼) = 0.                       (5)

Since 𝑓 is odd, under the condition of 𝑦 = 4𝑔 we have 𝑥 = 5 + 8ℎ, 𝑎 = 1 + 8𝑠, 𝑏 = 2 +
4𝑡, ℎ, 𝑠, 𝑡 ∈ ℤ and 𝑝 ≡ 25 + 16ℎ + 64𝑔(mod128). By [10] we obtain that  

(4,0)8 = (4,4)8 = 𝑔,    (4,1)8 = (4,5)8 = 1 + 𝑔 + ℎ,
(4,2)8 = (4,6)8 = (4,3)8 = (4,7)8 = 1 + 𝑔 + ℎ.

By Lemma 1 and (5), using the formulae for cyclotomic numbers of order eight we obtain that 

𝑐𝑢𝑗(𝛼) + 𝑐𝑢𝑗+4(𝛼) = 1 𝑎𝑛𝑑  𝑐𝑢𝑗(𝛼)𝑐𝑢𝑗+4(𝛼) = 𝑔 + 1, 𝑗 = 0,1,3.

So, 𝑐𝑢𝑗(𝛼), 𝑐𝑢𝑗+4(𝛼) ∈ {0,1} if 𝑔 ≡ 1 (mod 2), and 𝑐𝑢𝑗(𝛼), 𝑐𝑢𝑗+4(𝛼) ∈ {𝜔, 𝜔 + 1} if 𝑔 ≡

0(mod 2). 
Similarly, we get that 

𝑐𝑢2(𝛼) = 𝑐𝑢6(𝛼)  𝑎𝑛𝑑  𝑐𝑢2(𝛼)𝑐𝑢6(𝛼) = ℎ + 𝑔.
Thus, 𝑐𝑢2(𝛼) = 𝑐𝑢6(𝛼) = 0 if ℎ + 𝑔 ≡ 0 (mod 2), and 𝑐𝑢2(𝛼) = 𝑐𝑢6(𝛼) = 1 if ℎ + 𝑔 ≡

1 (mod 2). From this by Lemma 1 we can establish as in Theorem 2 that 

(i) 𝑐𝑢(𝛼) = (𝜔, 𝜔 + 1,0, 𝜔 + 1, 𝜔 + 1, 𝜔, 0, 𝜔) if 𝑥 ≡ 5 (mod 16) and 𝑦 ≡ 0 (mod 8) and 𝑏 ≡
2 (mod 8); 

(ii) 𝑐𝑢(𝛼) = (𝜔, 𝜔, 0, 𝜔, 𝜔 + 1, 𝜔 + 1,0, 𝜔 + 1) if 𝑥 ≡ 5 (mod 16) and 𝑦 ≡ 0 (mod 8) and 𝑏 ≡
6 (mod 8); 

(iii) 𝑐𝑢(𝛼) = (𝜔, 𝜔 + 1,1, 𝜔 + 1, 𝜔 + 1, 𝜔, 1, 𝜔) if 𝑥 ≡ 13(mod 16) and 𝑦 ≡ 0(mod 8) and 𝑏 ≡
2(mod 8); 

(iv) 𝑐𝑢(𝛼) = (𝜔, 𝜔, 1, 𝜔, 𝜔 + 1, 𝜔 + 1,1, 𝜔 + 1) if 𝑥 ≡ 13 (mod 16) and 𝑦 ≡ 0 (mod 8) and 𝑏 ≡
6 (mod 8); 

(v) 𝑐𝑢(𝛼) = (1,1,1,0,0,0,1,1) if 𝑥 ≡ 5 (mod 16) and 𝑦 ≡ 4 (mod 8) and 𝑏 ≡ 2 (mod 8);

(vi) 𝑐𝑢(𝛼) = (1,1,1,1,0,0,1,0) if 𝑥 ≡ 5 (mod 16) and 𝑦 ≡ 4 (mod 8) and 𝑏 ≡ 6 (mod 8);

(vii) 𝑐𝑢(𝛼) = (1,0,0,0,0,1,0,1) if 𝑥 ≡ 13 (mod 16) and 𝑦 ≡ 4 (mod 8) and 𝑏 ≡ 2 (mod 8);

(viii) 𝑐𝑢(𝛼) = (1,1,0,1,0,0,0,0) if 𝑥 ≡ 13 (mod 16) and 𝑦 ≡ 4 (mod 8) and 𝑏 ≡ 6 (mod 8).

2.3.2. Let f be an odd and 𝑦 ≡ 2 (mod 4). In this case 𝑦 = 2 + 4𝑔, 𝑔 ∈ ℤ and 2 ∈ 𝑢2𝐻8 ∪ 𝑢6𝐻8.

Without loss of generality, we can assume that 2 ∈ 𝑢2𝐻8. For 𝑦 = 2 + 4𝑔 we see that 𝑝 ≡ 41 +
16ℎ (mod 128), 𝑥 = 5 + 8ℎ, 𝑎 = 5 + 8𝑠, 𝑏 = 4𝑡, ℎ, 𝑠, 𝑡 ∈ ℤ and ℎ + 𝑠 ≡ 1 (mod 2). 

In this case from results of Section 1 we have that 

𝑐𝑢0(𝛼) + 𝑐𝑢4(𝛼) = 𝜔,    𝑐𝑢1(𝛼) + 𝑐𝑢5(𝛼) = 0. (6) 
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Likewise, using Lemma 1 and the formulae for cyclotomic numbers of order eight we obtain as 

before that 

𝑐𝑢0
2 (𝛼) = 𝑔𝑐𝑢2(𝛼) + (1 + 𝑔)𝑐𝑢6(𝛼),

𝑐𝑢0(𝛼)𝑐𝑢4(𝛼) = (1 + ℎ)(𝜔 + 1) + 1,

𝑐𝑢1(𝛼)𝑐𝑢5(𝛼) = 𝜔 + ℎ + 𝑡 + 𝑔 + 1.

                                                  (7)

Hence, if 2 ∈ 𝑢2𝐻8 then 𝑔 ≡ 0 (mod 2), i.e., 𝑦 ≡ 2 (mod 8). Denote by η a root of the

polynomial 𝑥2 + 𝜔𝑥 + 𝜔. From (6) and (7) with similar arguments as above we obtain the following

results: 

(i) 𝑐𝑢(𝛼) = (𝜂, 𝜔 + 1, 𝜔𝜂 + 𝜔, 𝜔, 𝜔 + 𝜂, 𝜔 + 1, 𝜔𝜂 + 1, 𝜔) if 𝑥 ≡ 5 (mod 16) and 𝑦 ≡
2(mod 8), and 𝑏 ≡ 4 (mod 8); 

(ii) 𝑐𝑢(𝛼) = (𝜂, 𝜔, 𝜔𝜂 + 𝜔, 𝜔 + 1, 𝜔 + 𝜂, 𝜔, 𝜔𝜂 + 1, 𝜔 + 1) if 𝑥 ≡ 5 (mod 16) and 𝑦 ≡
2 (mod 8), and 𝑏 ≡ 0 (mod 8); 

(iii) 𝑐𝑢(𝛼) = (𝜂 + 1, 𝜔 + 1, 𝜔𝜂 + 𝜔 + 1, 𝜔, 𝜔 + 𝜂 + 1, 𝜔 + 1, 𝜔𝜂, 𝜔) if 𝑥 ≡ 13 (mod 16) and

𝑦 ≡ 2 (mod 8), and 𝑏 ≡ 0 (mod 8); 

(iv) 𝑐𝑢(𝛼) = (𝜂 + 1, 𝜔, 𝜔𝜂 + 𝜔 + 1, 𝜔 + 1, 𝜔 + 𝜂 + 1, 𝜔, 𝜔𝜂, 𝜔 + 1) if 𝑥 ≡ 13 (mod 16) and

𝑦 ≡ 2 (mod 8), and 𝑏 ≡ 4 (mod 8). 

It is easy to see that 𝑥4 + 𝑥3 + 1 = (𝑥2 + 𝜔𝑥 + 𝜔)(𝑥2 + (𝜔 + 1)𝑥 + 𝜔 + 1), i.e. 𝜂 is a root of

𝑥4 + 𝑥3 + 1.

The case when f is even can be studied in the same way as for odd f. 

3. Conclusion

We derive the values of generating polynomials of cyclotomic classes of order 4, 6, 8, and find the 

solutions of three open problems pointed out by Z. Dai et al. [2]. Using these values and the results 

from [2] we can easily investigate the linear complexity and the trace representation of all binary 

sequences obtained from cyclotomic classes of order four, six or eight. Our method can be useful to 

calculate the values of generating polynomials of cyclotomic classes of order twelve. But, from our 

results, it follows that for 𝑒 = 12 (or 𝑒 > 12) we will have a lot of different cases depending on the 

values of 𝑓, 𝑥, 𝑦, 𝐴, 𝐵 and indexes 2, 3. 
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