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Abstract. We estimate the 𝑘-error linear complexity of some interleaved sequences with period 

4𝑁 over the finite field of order 𝑁 (𝑁 an odd prime). Furthermore, we obtain the exact value of 

the 𝑘-error linear complexity for small value of 𝑘 of the interleaved sequences obtained from the 

cyclotomic sequences. In particular, we study the interleaved sequences obtained from Legendre 

sequences and Hall’s sextic residue sequences, respectively. Our results show that these 

sequences are quite stable. 

1. Introduction 

1.1. Motivications and Objects 

Let 𝑀 and 𝑁 be positive integers. An 𝑁𝑀-periodic sequence 𝑢, written as 𝑢 = (𝑢0, … , 𝑢𝑁𝑀−1), can be 

read row by row from the following 𝑁 ×𝑀 matrix 

 

[
 
 
 
 
𝑢0 𝑢1 ⋯ 𝑢𝑀−1
𝑢𝑀 𝑢𝑀+1 ⋯ 𝑢2𝑀−1
⋮ ⋮ ⋮ ⋮
𝑢(𝑁−1)𝑀 𝑢(𝑁−1)𝑀+1 ⋯ 𝑢𝑁𝑀−1

]
 
 
 
 

. 

Sometimes 𝑢 is also called an interleaved sequence [1]. If we write the 𝑖-th column of the matrix 

above as 𝑎(𝑖) = (𝑢𝑖, 𝑢𝑖+𝑀 , … , 𝑢𝑖+(𝑁−1)𝑀) for 0 ≤ 𝑖 < 𝑀, which forms an 𝑁-periodic sequence, then the 

following notation is used to denote 𝑢:  𝑢 = ℐ(𝑎(0), 𝑎(1), … , 𝑎(𝑀−1)), where ℐ is called the interleaved 

operator. 

In particular in the past several years, for an odd prime 𝑁 and an 𝑁-periodic binary sequence 𝑣 =

(𝑣0, 𝑣1, …, 𝑣𝑁−1) over the finite field 𝔽2 = {0,1}, a special family of interleaved binary sequences of 

the form  

 𝑢 = ℐ(𝑣, 𝐿𝑚(𝑣), 𝐿(𝑁+1)/2(𝑣), 𝐿𝑚+(𝑁+1)/2(𝑣)⊕ 1),0 ≤ 𝑚 < 𝑁,  (1) 

was investigated in the literature, see [2-4] for details, where ⊕ is the addition in 𝔽2 and 𝐿 denotes the 

left cyclic shift operator of a sequence, i.e., 𝐿𝑚(𝑎) = (𝑎𝑚, 𝑎𝑚+1, … , 𝑎𝑚−1) for 𝑎 = (𝑎0, 𝑎1, … , 𝑎𝑁−1). 
In [2], Tang and Gong proved that the sequence of form 𝑢 has optimal autocorrelation value {0,−4} 

if 𝑣 is a sequence of period 𝑁 ≡ 3(mod 4) with optimal autocorrelation value {𝑁,−1}. It is well known 
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that binary Legendre sequences and Hall's sextic residue sequences have optimal autocorrelation value. 

The linear complexity over 𝔽2 of 𝑢 has been investigated in [5,6]. In this work, we turn to consider the 

𝑘-error linear complexity of 𝑢. 

We will view the binary 𝑢 as a sequence over 𝔽𝑁 and consider its 𝑘-error linear complexity over 𝔽𝑁. 

In Section 2 we prove some general results. In Section 3, we give some results when 𝑣 is a cyclotomic 

sequence, in particular if 𝑣 is Legendre sequence or Hall sequence. 

1.2. Notion of 𝑘-error linear complexity 

We conclude this section by introducing the notions of the linear complexity and the 𝑘-error linear 

complexity of periodic sequences. 

Let 𝔽 be a field. For a 𝑇-periodic sequence 𝑠 = (𝑠0, 𝑠1, … , 𝑠𝑇−1) over 𝔽, we recall that the linear 

complexity over 𝔽, denoted by 𝐿𝐶𝔽(𝑠), is the least order ℒ of a linear recurrence relation over 𝔽  

𝑠𝑢+ℒ = 𝑐ℒ−1𝑠𝑢+ℒ−1 +⋯+ 𝑐1𝑠𝑢+1 + 𝑐0𝑠𝑢    for   𝑢 ≥ 0, 
which is satisfied by 𝑠 and where 𝑐0 ≠ 0, 𝑐1, … , 𝑐ℒ−1 ∈ 𝔽. Let  𝐺𝑠(𝑋) = 𝑠0 + 𝑠1𝑋 + 𝑠2𝑋

2 +⋯+

𝑠𝑇−1𝑋
𝑇−1 ∈ 𝔽[𝑋], which is called the generating polynomial of 𝑠. Then the linear complexity over 𝔽 of 

𝑠 is computed by  

 𝐿𝐶𝔽(𝑠) = 𝑇 − deg(gcd(𝑋𝑇 − 1,𝐺𝑠(𝑋))),   (2) 

see, e.g. [7] for details. For integers 𝑘 ≥ 0, the 𝑘-error linear complexity over 𝔽 of 𝑠, denoted by 𝐿𝐶𝑘
𝔽(𝑠), 

is the smallest linear complexity (over 𝔽) that can be obtained by changing at most 𝑘 terms of the 

sequence per period, see [8-10], and see [11] for the related even earlier defined sphere complexity. 

Clearly 𝐿𝐶0
𝔽(𝑠) = 𝐿𝐶𝔽(𝑠) and  

𝑇 ≥ 𝐿𝐶0
𝔽(𝑠) ≥ 𝐿𝐶1

𝔽(𝑠) ≥ ⋯ ≥ 𝐿𝐶𝑛
𝔽(𝑠) = 0 

when 𝑛 equals the number of nonzero terms of 𝑠 per period, i.e., the Hamming weight of 𝑠 denoted by 

𝑤𝑡(𝑠). Define the Hamming weight of polynomial 𝐺𝑠(𝑋), denoted by 𝑤𝑡(𝐺𝑠(𝑋)), as the number of its 

nonzero coefficients. It can be easily seen that 𝑤𝑡(𝐺𝑠(𝑋)) = 𝑤𝑡(𝑠). 

Linear complexity and 𝑘-error linear complexity are important cryptographic characteristics of 

sequences and provide information on the predictability and thus unsuitability for cryptography. For a 

sequence to be cryptographically strong, its linear complexity should be large, but not significantly 

reduced by changing a few terms. And according to the Berlekamp-Massey algorithm [12, 13], the linear 

complexity should be at least a half of the period. 

2. Bounds on error linear complexity 

We always suppose that 𝑣 is a binary sequence of least period 𝑁, i.e., 𝑣 is not (0,0, … ,0) or (1,1,… ,1). 

Our main results are the lower and upper bounds for 𝐿𝐶𝑘
𝔽𝑁(𝑢) presented in the following two theorems. 

Theorem 1. Let 𝑁 > 3 be an odd prime and 𝑣 an 𝑁-periodic binary sequence. Let 𝑢 be the interleaved 

binary sequence defined in (1). If we view 𝑢 as a sequence over 𝔽𝑁, we have for any integer 𝑘 ≥ 0 

𝐿𝐶𝑘
𝔽𝑁(𝑢) ≥ 4𝐿𝐶𝑘

𝔽𝑁(𝑣). 

In particular, 𝐿𝐶𝔽𝑁(𝑢) = 𝐿𝐶0
𝔽𝑁(𝑢) = 4𝑁. 

Theorem 2. Let 𝑁 > 3 be an odd prime and 𝑣 an 𝑁-periodic binary sequence. Let 𝑢 be the interleaved 

binary sequence defined in (1). If we view 𝑢 as a sequence over 𝔽𝑁, we have for any integer 𝑘 ≥ 0 

𝐿𝐶𝑘
𝔽𝑁(𝑢) ≤ min

2𝑘1+2𝑘2≤𝑘
2(max(𝐿𝐶𝑘1

𝔽𝑁(𝑣),1) + max(𝐿𝐶𝑘2
𝔽𝑁(𝑣),1)). 

We divide the proofs of Theorems 1 and 2 into following several lemmas. 

Lemma 3. Let 𝑎 be an 𝑁-periodic sequence over 𝔽𝑁 and 𝐺𝑎(𝑋) ∈ 𝔽𝑁[𝑋] be the generating 

polynomial of 𝑎. Then the generating polynomial of 𝑏 = 𝐿𝑚(𝑎) is  

𝐺𝑏(𝑋) = 𝑋
𝑁−𝑚𝐺𝑎(𝑋)(mod 𝑋

𝑁 − 1). 

Proof. It comes from [14].  
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Lemma 4. Let 𝑎 be an 𝑁-periodic binary sequence over 𝔽2. Write 𝑏 = 𝑎⊕ 1, i.e., 𝑏 is the 

complement sequence of 𝑎 over 𝔽2. If we view 𝑎 and 𝑏 as sequences over 𝔽𝑁, then the generating 

polynomial (over 𝔽𝑁) of 𝑏 is  

𝐺𝑏(𝑋) = (𝑋 − 1)
𝑁−1 − 𝐺𝑎(𝑋) ∈ 𝔽𝑁[𝑋](mod 𝑋

𝑁 − 1), 

where 𝐺𝑎(𝑋) ∈ 𝔽𝑁[𝑋] is the generating polynomial of 𝑎 over 𝔽𝑁.   

Proof. Indeed, the generating polynomial of 𝑏 (as a sequence over 𝔽𝑁) is  

𝐺𝑏(𝑋) =
𝑋𝑁 − 1

𝑋 − 1
− 𝐺𝑎(𝑋) ∈ 𝔽𝑁[𝑋](mod 𝑋

𝑁 − 1). 

Then the fact that 𝑋𝑁 − 1 = (𝑋 − 1)𝑁 over 𝔽𝑁 helps us to reduce the fraction above. 

Lemma 5. Let 𝑎 be an 𝑁-periodic sequence over 𝔽𝑁 with the 𝑘-error linear complexity 𝐿𝐶𝑘
𝔽𝑁(𝑎) for 

𝑘 ≥ 0. Then there always exists an 𝑁-periodic sequence 𝑒 over 𝔽𝑁 with 𝑤𝑡(𝑒) ≤ 𝑘 such that  

(𝑋 − 1)𝑁−𝐿𝐶𝑘
𝔽𝑁(𝑎)|(𝐺𝑎(𝑋) − 𝐺𝑒(𝑋)). 

Proof. By (2) we can get the desired result. 

In fact, (𝑋 − 1)𝑁−𝐿𝐶𝑘
𝔽𝑁(𝑎)+1 ∤ (𝐺𝑎(𝑋) − 𝐺𝑒(𝑋)). So we refer such 𝑒 as to a reference error-

sequence with respect to the value 𝐿𝐶𝑘
𝔽𝑁(𝑎). 

Let 𝛽 be a primitive 4-th root of unity in 𝔽𝑁, which is the spilt field of 𝔽𝑁. We have 

 𝑋4 − 1 = (𝑋2 − 1)(𝑋2 + 1) = (𝑋 − 1)(𝑋 + 1)(𝑋 − 𝛽)(𝑋 − 𝛽3) ∈ 𝔽𝑁[𝑋]. 

We remark that 𝛽 ∈ 𝔽𝑁 if 𝑁 ≡ 1(mod 4), and 𝛽 ∈ 𝔽𝑁\𝔽𝑁 if 𝑁 ≡ 3(mod 4). 

Let 𝑒 be an error-sequences with respect to the value 𝐿𝐶𝑘
𝔽𝑁(𝑢). For 𝐺𝑢(𝑋) and 𝐺𝑒(𝑋) over 𝔽𝑁, the 

generating polynomials of 𝑢 and 𝑒, respectively, then there must exist 𝑛𝑖 ∈ ℕ, 𝑖 = 0,1,2,3 such that  

 𝐺𝑢(𝑋) − 𝐺𝑒(𝑋) ≡ 0(mod (𝑋 − 1)
𝑛0(𝑋 − 𝛽)𝑛1(𝑋 + 1)𝑛2(𝑋 − 𝛽3)𝑛3)  (3) 

and 

 𝑛0 + 𝑛1 + 𝑛2 + 𝑛3 = 4𝑁 − 𝐿𝐶𝑘
𝔽𝑁(𝑢).     (4) 

 

Lemma 6. Let 𝑁 > 3 be an odd prime and 𝑣 an 𝑁-periodic binary sequence. Let 𝑢 be the interleaved 

binary sequence defined in (1). Let 𝑒 be an error-sequences with respect to the value 𝐿𝐶𝑘
𝔽𝑁(𝑢) over 𝔽𝑁 

of period 4𝑁. Then we have  

max{𝑛0, 𝑛1, 𝑛2, 𝑛3} ≤ 𝑁 − 𝐿𝐶𝑘
𝔽𝑁(𝑣) 

when 𝑒 takes over all possible sequences with at most 𝑘 ≥ 0 many non-zero entries in one period and 

𝐿𝐶𝑘
𝔽𝑁(𝑣) > 1. 

Proof. Write 𝑏 = 𝐿𝑚(𝑣), 𝑐 = 𝐿(𝑁+1)/2(𝑣) and 𝑑 = 𝐿𝑚+(𝑁+1)/2(𝑣)⊕ 1. From the structure of 𝑢 

(over 𝔽𝑁), we have  𝐺𝑢(𝑋) = 𝐺𝑣(𝑋
4) + 𝑋𝐺𝑏(𝑋

4) + 𝑋2𝐺𝑐(𝑋
4) + 𝑋3𝐺𝑑(𝑋

4). 

Let 𝐾 = 4𝑁 − 4𝑚 + 1. Then after simple calculations we get  

𝐺𝑢(𝑋) ≡ ((𝑋
2 + 1)𝑁 − 𝑋𝐾(𝑋2 − 1)𝑁)𝐺𝑣(𝑋

4) + 𝑋3(𝑋4 − 1)𝑁−1(mod 𝑋4𝑁 − 1)  (5) 

by Lemmas 3 and 4. From above we see that  

 𝐺𝑢(𝑋) ≡ 2𝐺𝑣(𝑋
4)(mod (𝑋2 − 1)𝑁−1) and  𝐺𝑢(𝑋) ≡ 2𝑋

𝐾𝐺𝑣(𝑋
4)(mod (𝑋2 + 1)𝑁−1). 

So according to the known conditions, we have  

 0 ≡ 𝐺𝑢(𝑋) − 𝐺𝑒(𝑋) ≡

{
 
 

 
 
2𝐺𝑣(𝑋

4) − 𝐺𝑒(𝑋)(mod (𝑋 − 1)
min{𝑛0,𝑁−1}),

2𝐺𝑣(𝑋
4) − 𝐺𝑒(𝑋)(mod (𝑋 + 1)

min{𝑛2,𝑁−1}),

2𝑋𝐾𝐺𝑣(𝑋
4) − 𝐺𝑒(𝑋)(mod (𝑋 − 𝛽)

min{𝑛1,𝑁−1}),

2𝑋𝐾𝐺𝑣(𝑋
4) − 𝐺𝑒(𝑋)(mod (𝑋 − 𝛽

3)min{𝑛3,𝑁−1}).

 

Let ℓ ∈ ℕ satisfy 2ℓ ≡ 1(mod 𝑁). Replacing 𝑋 by 𝑋2
ℓ−2

 in the first comparison above, we get  

2𝐺𝑣(𝑋
2ℓ) − 𝐺𝑒(𝑋

2ℓ−2) ≡ 0(mod (𝑋2
ℓ−2

− 1)min{𝑛0,𝑁−1}). 
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Due to the fact 𝐺𝑣(𝑋
2ℓ) ≡ 𝐺𝑣(𝑋)(mod 𝑋

𝑁 − 1), we derive  

𝐺𝑣(𝑋) − 2
−1𝐺𝑒(𝑋

2ℓ−2) ≡ 0(mod (𝑋 − 1)min{𝑛0,𝑁−1}), 

which means that  

(𝑋 − 1)min{𝑛0,𝑁−1}|gcd(𝐺𝑣(𝑋) − 2
−1𝐺𝑒(𝑋

2ℓ−2), (𝑋 − 1)𝑁), 

from which we derive  

𝐿𝐶𝑘
𝔽𝑁(𝑣) ≤ 𝑁 −min(𝑛0, 𝑁 − 1) 

by (2). Since 𝐿𝐶𝑘
𝔽𝑁(𝑣) > 1, we derive 𝑛0 ≤ 𝑁 − 𝐿𝐶𝑘

𝔽𝑁(𝑣). 

Now, replacing 𝑋 by −𝑋 in the second comparison above, we get  

 2𝐺𝑣(𝑋
4) − 𝐺𝑒(−𝑋) ≡ 0(mod(𝑋 − 1)

min{𝑛2,𝑁−1}). 

So, as earlier, we obtain that  

 (𝑋 − 1)min{𝑛2,𝑁−1} | gcd(𝐺𝑣(𝑋) − 2
−1𝐺𝑒(−𝑋

2ℓ−2), (𝑋 − 1)𝑁), 

and 

𝐿𝐶𝑘
𝔽𝑁(𝑣) ≤ 𝑁 −min(𝑛2, 𝑁 − 1) 

or 𝑛2 ≤ 𝑁 − 𝐿𝐶𝑘
𝔽𝑁(𝑣). 

Now we consider the cases of 𝑛1 and 𝑛3. 

(i). Suppose 𝑁 ≡ 1(mod4); then 𝛽 ∈ 𝔽𝑁 and replacing 𝑋 by 𝛽𝑋 in the third equation above, we have 

2𝛽𝑋𝐾𝐺𝑣(𝑋
4) − 𝐺𝑒(𝛽𝑋) ≡ 0(mod (𝛽𝑋 − 𝛽)

min{𝑛1,𝑁−1}) 

or  

𝐺𝑣(𝑋
4) − (2𝛽)−1𝑋4𝑚−1𝐺𝑒(𝛽𝑋) ≡ 0(mod (𝑋 − 1)

min{𝑛1,𝑁−1}). 

It means that 

 (𝑋 − 1)min{𝑛1,𝑁−1}|gcd(𝐺𝑣(𝑋) − (2𝛽)
−1𝑋4𝑚−1𝐺𝑒(𝛽𝑋

2ℓ−2), (𝑋 − 1)𝑁), 

and 

𝐿𝐶𝑘
𝔽𝑁(𝑣) ≤ 𝑁 −min(𝑛1, 𝑁 − 1) 

by (2) or 𝑛1 ≤ 𝑁 − 𝐿𝐶𝑘
𝔽𝑁(𝑣). 

Inequality 𝑛3 ≤ 𝑁 − 𝐿𝐶𝑘
𝔽𝑁(𝑣) may be proved similarly. 

(ii). Suppose 𝑁 ≡ 3(mod4); then 𝛽 ∈ 𝔽𝑁, 𝑛1 = 𝑛3 and  

2𝑋𝐾𝐺𝑣(𝑋
4) − 𝐺𝑒(𝑋) = 0(mod (𝑋

2 + 1)min{𝑛1,𝑁−1}). 

Write 

 𝐺𝑒(𝑋) = 𝐺𝑒,0(𝑋
2) + 𝑋𝐺𝑒,1(𝑋

2).   (6) 

Then we have 

2𝑋𝐾𝐺𝑣(𝑋
4) − 𝐺𝑒,0(𝑋

2) − 𝑋𝐺𝑒,1(𝑋
2) ≡ 0(mod (𝑋2 + 1)min{𝑛1,𝑁−1}). 

Replacing 𝑋 by −𝑋 in the equation above, we obtain  

−2𝑋𝐾𝐺𝑣(𝑋
4) − 𝐺𝑒,0(𝑋

2) + 𝑋𝐺𝑒,1(𝑋
2) ≡ 0(mod (𝑋2 + 1)min{𝑛1,𝑁−1}). 

From the last two congruences above, we get 

2𝑋𝐾−1𝐺𝑣(𝑋
4) − 𝐺𝑒,1(𝑋

2) ≡ 0(mod (𝑋2 + 1)min{𝑛1,𝑁−1}) 

or 

2𝑋𝐾−1𝐺𝑣(𝑋
4) − 𝐺𝑒,1(−𝑋

2) ≡ 0(mod (𝑋2 − 1)min{𝑛1,𝑁−1}) 

So, as before, we obtain that 

(𝑋 − 1)min{𝑛1,𝑁−1}|gcd(𝐺𝑣(𝑋) − 2
−1𝑋4𝑚𝐺𝑒,1(−𝑋

2ℓ−2), (𝑋 − 1)𝑁), 

and 

𝐿𝐶𝑘
𝔽𝑁(𝑣) ≤ 𝑁 −min(𝑛1, 𝑁 − 1) = 𝑁 −min(𝑛3, 𝑁 − 1) 

by (2) or 𝑛1 = 𝑛3 ≤ 𝑁 − 𝐿𝐶𝑘
𝔽𝑁(𝑣). 

We note that we carry the operations in the field of characteristic 𝑁. 
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Now we turn to prove Theorems 1 and 2. 

Proof. (proof of Theorem 1.) For 𝐿𝐶𝑘
𝔽𝑁(𝑣) = 0 the statement of this theorem is obvious. Otherwise, 

we consider two cases. 

(i). First, we suppose that 𝐿𝐶𝑘
𝔽𝑁(𝑣) > 1. Then by Lemma 6 we obtain 

𝑛0 + 𝑛1 + 𝑛2 + 𝑛3 ≤ 4𝑁 − 4𝐿𝐶𝑘
𝔽𝑁(𝑣). 

So, by (4) 4𝑁 − 𝐿𝐶𝑘
𝔽𝑁(𝑢) ≤ 4𝑁 − 4𝐿𝐶𝑘

𝔽𝑁(𝑣) or 𝐿𝐶𝑘
𝔽𝑁(𝑢) ≥ 4𝐿𝐶𝑘

𝔽𝑁(𝑣). 

(ii). Now, we suppose that 𝐿𝐶𝑘
𝔽𝑁(𝑣) = 1, so 𝑘 < 𝑁. We prove the case by contradiction. Let 

𝐿𝐶𝑘
𝔽𝑁(𝑢) < 4. Then by (4) there exist 𝑖: 𝑛𝑖 = 𝑁, 0 ≤ 𝑖 ≤ 3. 

First, let 𝑛0 = 𝑁. Then, by (5), we obtain that  

2𝐺𝑣(𝑋
4) − 𝐺𝑒(𝑋) + 𝑋

3(𝑋4 − 1)𝑁−1 ≡ 0(mod (𝑋 − 1)𝑁). 

Denote by 𝐺𝑣(𝑋
4), 𝐺𝑒(𝑋) the remainders of dividing the polynomials 𝐺𝑣(𝑋

4), 𝐺𝑒(𝑋) by 𝑋𝑁 − 1, 

respectively. Since 𝑋3(𝑋4 − 1)𝑁−1 = 𝑋3 + 𝑋3+4 +⋯+ 𝑋3+4(𝑁−1) and {(3 + 4𝑛)(mod𝑁): 𝑛 =

0,… ,𝑁 − 1} = {0,1… ,𝑁 − 1}, then we have  𝐺𝑒(𝑋) = 2𝐺𝑣(𝑋
4) + 𝑋𝑁−1 +⋯+ 𝑋 + 1. 

By condition 𝑣 is the binary sequence with the period 𝑁, hence 𝐺𝑣(𝑋
4) = ∑𝑁−1𝑖=0 𝑓𝑖𝑥

𝑖 where 𝑓𝑖 ∈

{0,1}. So, we see that 𝐺𝑒(𝑋) = ∑
𝑁−1
𝑖=0 (1 + 2𝑓𝑖)𝑥

𝑖 and 1 + 2𝑓𝑖 ≠ 0 in 𝔽𝑁 for 𝑁 > 3. Hence, 

𝑤𝑡(𝐺𝑒(𝑋)) = 𝑁 and 𝑤𝑡(𝑒) = 𝑘 ≥ 𝑁. We get a contradiction. Cases when 𝑛𝑖 = 𝑁, 𝑖 = 1,2,3 can be 

considered similarly. 

By Theorem 1, if 𝑣 is a ``good" sequence so is 𝑢. Now we give an upper bound for the 𝑘-error linear 

complexity of 𝑢. 

Proof. (proof of Theorem 2) To prove this theorem, we will construct the sequence 𝑓 for 𝑢 in a 

special way. Let 𝑘1, 𝑘2: 2𝑘1 + 2𝑘2 ≤ 𝑘. Applying Lemma 5, we get that there must exist reference error-

sequences 𝑒1 and 𝑒2 such that 

𝐺𝑣(𝑋) − 𝐺𝑒𝑖(𝑋) ≡ 0(mod (𝑋 − 1)
𝑁−𝐿𝐶

𝑘𝑖

𝔽𝑁(𝑣)
), 𝑖 = 0,1 

where 𝑤𝑡(𝑒𝑖) ≤ 𝑘𝑖. Hence, there exist polynomials 𝐸𝑖(𝑋) ∈ 𝔽𝑁[𝑋], 𝑖 = 1,2 such that 

𝐺𝑣(𝑋
4) − 𝐺𝑒𝑖(𝑋

4) = (𝑋4 − 1)
𝑁−𝐿𝐶

𝑘𝑖

𝔽𝑁(𝑣)
𝐸𝑖(𝑋

4), 𝑖 = 0,1. 

We will take 𝑓:𝐺𝑓(𝑋) = (𝑋
2 + 1)𝑁𝐺𝑒1(𝑋

4) + 𝑋𝐾(1 − 𝑋2)𝑁𝐺𝑒2(𝑋
4), where 𝐾 = 4𝑁 − 4𝑚 + 1. 

Then 𝑤𝑡 (𝑓) ≤ 2𝑘1 + 2𝑘2 ≤ 𝑘. By (5) we see that  𝐺𝑢(𝑋) − 𝐺𝑓(𝑋) ≡ 

(𝑋2 + 1)𝑁 (𝐺𝑣(𝑋
4) − 𝐺𝑒1(𝑋

4)) − 𝑋𝐾(𝑋2 − 1)𝑁 (𝐺𝑣(𝑋
4) − 𝐺𝑒2(𝑋

4)) (mod (𝑋4 − 1)𝑁−1) 

or 

 
𝐺𝑢(𝑋) − 𝐺𝑓(𝑋) ≡ (𝑋

2 + 1)𝑁(𝑋4 − 1)
𝑁−𝐿𝐶𝑘1

𝔽𝑁(𝑣)
𝐸1(𝑋

4) +

𝑋𝐾(1 − 𝑋2)𝑁(𝑋4 − 1)
𝑁−𝐿𝐶

𝑘2

𝔽𝑁(𝑣)
𝐸2(𝑋

4)(mod (𝑋4 − 1)𝑁−1).

 

So, we obtain 

𝐺𝑢(𝑋) − 𝐺𝑓(𝑋) ≡ 0 (mod (𝑋
2 + 1)

𝑁−max(𝐿𝐶𝑘2
𝔽𝑁(𝑣),1)

(𝑋2 − 1)
𝑁−max(𝐿𝐶𝑘1

𝔽𝑁(𝑣),1)
). 

Hence, there exists an error-sequences 𝑒 such that 

𝑛0 + 𝑛1 + 𝑛2 + 𝑛3 ≥ 2(2𝑁 −max(𝐿𝐶𝑘2
𝔽𝑁(𝑣),1) − max(𝐿𝐶𝑘1

𝔽𝑁(𝑣),1). 

This completes the proof of Theorem 2. 

Thus, by Theorems 1 and 2, if 𝑣 is a “good” sequence so is 𝑢 and vice versa. 

Remark 7. Let 𝑁 = 3 and 𝑣 = 0,0,1 then 𝑢 = 0,0,1,0,0,0,0,1,1,1,0,1 for 𝑚 = 0. Let 𝑘1 = 𝑘2 =

1, 𝑘 = 4. Then we have 𝐿𝐶1
𝔽𝑁(𝑣) = 0 and 𝐿𝐶4

𝔽𝑁(𝑢) = 3 ≥ 0 = min
2𝑘1+2𝑘2≤𝑘

2(𝐿𝐶𝑘1
𝔽𝑁(𝑣) + 𝐿𝐶𝑘2

𝔽𝑁(𝑣)). 
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3. Some applications 

In this section we determine the exact values for the 𝑘-error linear complexity of 𝑢 in (1) when 𝑣 is a 

cyclotomic sequence of period 𝑁 > 3. 

Let 𝑁 be an odd prime. If 𝑑 > 1 is a divisor of 𝑁 − 1 and 𝑔 is a fixed element of 𝔽𝑁, then the 

cyclotomic classes of order 𝑑 give a partition of 𝔽𝑁
∗ = 𝔽𝑁\{0} defined by 

 𝐷0 = {𝑔
𝑑𝑛: 0 ≤ 𝑛 ≤ (𝑁 − 1)/𝑑 − 1} and  𝐷𝑗 = 𝑔

𝑗𝐷0, 1 ≤ 𝑗 ≤ 𝑑 − 1. 

For fixed 𝑐0, 𝑐1, … , 𝑐𝑑−1 ∈ 𝔽𝑁 a cyclotomic sequence of order 𝑑 is the 𝑁-periodic sequence 𝑣 =

(𝑣0, 𝑣1, … , 𝑣𝑁−1) defined by 

𝑣𝑖 = {
0, if 𝑝|𝑖,                                            

𝑐𝑗 , if 𝑖(mod 𝑁) ∈ 𝐷𝑗, 𝑖 = 0,1,2,…
 

We consider two examples. 

Let 𝑑 = 2, 𝑁 ≡ 3(mod4). The Legendre sequence 𝑙 = {𝑙𝑖} of period 𝑁 is defined by  

𝑙𝑖 = {
1, if 𝑖(mod𝑁) ∈ 𝐷0,
0, otherwise.           

 

Let 𝑑 = 6, 𝑁 = 𝐴2 + 27, 𝐴 ≡ 1(mod3) and let 𝐷 = 𝐷0 ∪ 𝐷1 ∪ 𝐷3 be a Hall's difference set [15] 

(3 ∈ 𝐷1). Denote by ℎ a Hall's sextic residue sequence, i.e.  

ℎ𝑖 = {
1, if 𝑖(mod𝑁) ∈ 𝐷,
0, otherwise.           

 

Earlier, the linear complexity and the 𝑘-error linear complexity over 𝔽𝑁 of the Legendre sequences 

and series of other cyclotomic sequences were investigated in [16, 17]. 

Lemma 8. [17] Let 𝑣 be a cyclotomic sequence of order 𝑑 of least period 𝑁. If 𝐿𝐶𝔽𝑁(𝑣) = 𝑁, then 

there exist 𝑡: 1 ≤ 𝑡 < 𝑑 such that 𝐿𝐶𝑘
𝔽𝑁(𝑣) = 𝑁 − 𝑡(𝑁 − 1)/𝑑 for 1 ≤ 𝑘 < 𝑡(𝑁 − 1)/𝑑. Moreover, 

𝑡 = 1 for Legendre sequences and Hall's sextic residue sequences. 

In the following we always suppose (𝑁 − 1)/𝑑 is large, or at least (𝑁 − 1)/𝑑 > 3. 

Theorem 9. Let 𝑣 be a cyclotomic sequence of order 𝑑 of least period 𝑁 and 𝑢 the interleaved binary 

sequence defined in (1). Let 𝑡 be determined in Lemma 8. 

(i). For 4 ≤ 𝑘 < 𝑡(𝑁 − 1)/𝑑, we have 𝐿𝐶𝑘
𝔽𝑁(𝑢) = 4𝐿𝐶𝑘

𝔽𝑁(𝑣). 

(ii). For 𝑘 ≥ 𝑡(𝑁 − 1)/𝑑, we have  

𝐿𝐶𝑘
𝔽𝑁(𝑢) ≤ {

2𝐿𝐶1
𝔽𝑁(𝑣) + 2max(𝐿𝐶𝑘−4

𝔽𝑁 (𝑣),1), if 𝑚 ≠ (𝑁 + 1)/4,

𝐿𝐶1
𝔽𝑁(𝑣) + 3max(𝐿𝐶𝑘−4

𝔽𝑁 (𝑣), 1), if 𝑚 = (𝑁 + 1)/4.
 

Proof. (i). It follows from Theorem 1 that 4𝐿𝐶𝑘
𝔽𝑁(𝑣) ≤ 𝐿𝐶𝑘

𝔽𝑁(𝑢). Then by Theorem 2 we get that 

𝐿𝐶𝑘
𝔽𝑁(𝑢) ≤ 4𝐿𝐶1

𝔽𝑁(𝑣). On the other hand, using 𝐿𝐶𝑘
𝔽𝑁(𝑣) = 𝐿𝐶1

𝔽𝑁(𝑣) for 4 ≤ 𝑘 < 𝑡(𝑁 − 1)/𝑑 by 

[17], we prove the desired result. 

(ii). By Lemma 5 there exist 𝑒𝑖, 𝑖 = 1,2, with 𝑤𝑡(𝑒1) = 1 and 𝑤𝑡(𝑒2) ≤ 𝑘 − 4, such that  

𝐺𝑣(𝑋) − 𝐺𝑒1(𝑋) = (𝑋 − 1)
𝑁−𝐿𝐶1

𝔽𝑁(𝑣)𝐻1(𝑋) and 𝐺𝑣(𝑋) − 𝐺𝑒2(𝑋) = (𝑋 − 1)
𝑁−𝐿𝐶𝑘−4

𝔽𝑁 (𝑣)𝐻2(𝑋), 

where gcd(𝐻𝑖(𝑥), 𝑥 − 1) = 1. 

Let 𝐺𝑓(𝑋) = (1 + 𝑋
2)𝑁(1 − 𝑋𝐾)𝐺𝑒1(𝑋

4) + 2𝑋𝐾𝐺𝑒2(𝑋
4). Then 𝑤𝑡(𝑓) ≤ 𝑘. By (5) we obtain 

 

𝐺𝑢(𝑋) − 𝐺𝑓(𝑋)     ≡     (𝑋
2 + 1)𝑁(1 − 𝑋𝐾) (𝐺𝑣(𝑋

4) − 𝐺𝑒1(𝑋
4))

    +    2𝑋𝐾 (𝐺𝑣(𝑋
4) − 𝐺𝑒2(𝑋

4)) + 𝑋3(𝑋4 − 1)𝑁−1

    ≡     (𝑋2 + 1)𝑁(1 − 𝑋𝐾)(𝑋4 − 1)𝑁−𝐿𝐶1
𝔽𝑁(𝑣)𝐻1(𝑋

4) +     2𝑋𝑀(𝑋4 − 1)𝑁−𝐿𝐶𝑘−4
𝔽𝑁 (𝑣)𝐻2(𝑋

4)

    +    𝑋3(𝑋4 − 1)𝑁−1(mod (𝑋4 − 1)𝑁)

 

Since 

 𝐺𝑢(𝑋) − 𝐺𝑓(𝑋) ≡ 0(mod (𝑋
2 + 1)min(𝑁−𝐿𝐶𝑘−4

𝔽𝑁 (𝑣),𝑁−1)(𝑋2 − 1)𝑁−𝐿𝐶1
𝔽𝑁(𝑣)) 
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if 𝑚 ≠ (𝑁 + 1)/4, and 

 𝐺𝑢(𝑋) − 𝐺𝑓(𝑋) ≡ 0(mod((𝑋
2 + 1)(𝑋 − 1))min(𝑁−𝐿𝐶𝑘−4

𝔽𝑁 (𝑣),𝑁−1)(𝑋 + 1)𝑁−𝐿𝐶1
𝔽𝑁(𝑣)) 

if 𝑚 = (𝑁 + 1)/4, so we have 𝐿𝐶𝑘
𝔽𝑁(𝑢) ≤ 2𝐿𝐶1

𝔽𝑁(𝑣) + 2max(𝐿𝐶𝑘−4
𝔽𝑁 (𝑣),1), if 𝑚 ≠ (𝑁 + 1)/4, and 

𝐿𝐶𝑘
𝔽𝑁(𝑢) ≤ 𝐿𝐶1

𝔽𝑁(𝑣) + 3max(𝐿𝐶𝑘−4
𝔽𝑁 (𝑣),1) if 𝑚 = (𝑁 + 1)/4. 

However, for 1 ≤ 𝑘 ≤ 3, we have following two theorems. 

Theorem 10. Let 𝑣 be a cyclotomic sequence of order 𝑑 of least period 𝑁 and 𝑢 the interleaved binary 

sequence defined in (1). If 𝑚 ≠ (𝑁 + 1)/4, we have  

𝐿𝐶𝑘
𝔽𝑁(𝑢) = {

2𝑁 + 2𝐿𝐶𝑘
𝔽𝑁(𝑣) − 1, if 𝑘 = 1,2,   

2𝑁 + 2𝐿𝐶𝑘
𝔽𝑁(𝑣) − 2, if 𝑘 = 3.      

 

Theorem 11. Let 𝑣 be a cyclotomic sequence of order 𝑑 of least period 𝑁 and 𝑢 the interleaved binary 

sequence defined in (1). If 𝑚 = (𝑁 + 1)/4. we have for 1 ≤ 𝑘 ≤ 3 

𝐿𝐶𝑘
𝔽𝑁(𝑢) = 𝑁 + 3𝐿𝐶𝑘

𝔽𝑁(𝑣). 
To prove Thereoms 10 and 11, we need following discussion. 

By formula (2.2) in [17], there exists 𝐹(𝑋) ∈ 𝔽𝑁[𝑋], 𝐹(1) ≠ 0 such that 

𝐺𝑣(𝑋) = 𝐺𝑣(1) + (𝑋 − 1)
𝑡(𝑁−1)/𝑑𝐹(𝑋). 

So, by (5), we get 

 𝐺𝑢(𝑋) ≡ 𝐺𝑣(1)((𝑋
2 + 1)𝑁 − 𝑋𝐾(𝑋2 − 1)𝑁)(mod (𝑋4 − 1)𝑡(𝑁−1)/𝑑).  (7) 

Also, there exists 𝑇(𝑋) ∈ 𝔽𝑁[𝑋], 𝑇(1) ≠ 0 such that  

𝐺𝑢(𝑋) ≡ 𝐺𝑣(1)((𝑋
2 + 1)𝑁 − 𝑋𝐾(𝑋2 − 1)𝑁) + (𝑋4 − 1)𝑡(𝑁−1)/𝑑𝑇(𝑋4)(mod (𝑋4 − 1)𝑡(𝑁−1)/𝑑+1) 

Lemma 12. If α is a root of the polynomial 𝑄(𝑋) with the multiplicity 𝑛 < 𝑁, then 𝑤𝑡(𝑄(𝑋)) ≥ 𝑛 +
1. 

Proof. Let 𝑄(𝑋) = ∑𝑖 𝑎𝑖𝑋
𝑘𝑖. Without loss of generality, we can assume that 𝛼 = 1. Denote 

∑𝑖 𝑎𝑖𝑋
𝑘𝑖(mod 𝑁) by 𝑄̅(𝑋). Then 𝑄(𝑥) ≡ 𝑄̅(𝑋)(mod(𝑋 − 1)𝑁) and 𝑤𝑡(𝑄(𝑋)) ≥ 𝑤𝑡(𝑄̅(𝑋)). 

Now we show that 𝑤𝑡(𝑄̅(𝑋)) ≥ 𝑛 + 1 by contradiction. Let 𝑄̅(𝑋) = ∑
𝑓
𝑖=0 𝑏𝑖𝑋

𝑙𝑖 with 𝑏𝑖 ≠ 0 , 𝑓 <

𝑛 and 0 ≤ 𝑙𝑖 ≤ 𝑁 − 1. Let 𝑄(𝑗)(𝑋) be a formal derivative of order 𝑗 of the polynomial 𝑄(𝑋) and 

𝑄(0)(𝑋) = 𝑄(𝑋). Since 𝑄̅(𝑗)(1) = 0 for 0 ≤ 𝑗 ≤ 𝑓 − 1 and (𝑋𝑙)(𝑗)|𝑋=1 = 𝑙(𝑙 − 1)(𝑙 − 2)… (𝑙 − 𝑗 +

1) for all 1 ≤ 𝑗 ≤ 𝑙, then we have ∑
𝑓−1
𝑖=0 𝑏𝑖𝑙𝑖

𝑗
= 0, for all 𝑗 = 0,1,… , 𝑓 − 1. 

Thus we obtain the linear system of 𝑓-equations over the field 𝔽𝑁, and the Vandermonde determinate 

|𝑙𝑖
𝑗
|𝑖,𝑗=0
𝑓−1

≠ 0. Hence, 𝑏𝑖 = 0 for all 0 ≤ 𝑖 ≤ 𝑓 − 1. This contradicts the fact that 𝑄(𝑋) ≢ 0(mod(𝑋 −

1)𝑁).  
The following lemma is useful for us to investigate 𝐺𝑒(𝑋) in (6) in the proof of Lemma 6. 

Lemma 13. Let 𝐺𝑢(𝑋) and 𝐺𝑒(𝑋) satisfy (3). Let 𝑚0 = 𝑚𝑖𝑛{𝑛0, 𝑛2} and 𝑚1 = 𝑚𝑖𝑛{𝑛1, 𝑛3}. Then 

we have 

(1) 𝑤𝑡(𝐺𝑒,0) ≥ 𝑚1 + 1 if 𝐺𝑒,0(𝑋
2) ≢ 0(mod (𝑋2 + 1)𝑁); 

(2) 𝑤𝑡(𝐺𝑒,1) ≥ 𝑚0 + 1 if 𝐺𝑒,1(𝑋
2) ≢ 0(mod (𝑋2 − 1)𝑁); 

(3) 𝑤𝑡(𝐺𝑒,0) ≥ 𝑚0 if 2𝐺𝑣(1) − 𝐺𝑒,0(𝑋
2) ≢ 0(mod (𝑋2 − 1)𝑁); 

(4) 𝑤𝑡(𝐺𝑒,1) ≥ 𝑚1 if 2𝐺𝑣(1)𝑋
𝐾−1 − 𝐺𝑒,1(𝑋

2) ≢ 0(mod (𝑋2 + 1)𝑁) 

where 𝐺𝑒(𝑋) = 𝐺𝑒,0(𝑋
2) + 𝑋𝐺𝑒,1(𝑋

2) with 𝑤𝑡(𝐺𝑒,𝑖(𝑋)) < 𝑡(𝑁 − 1)/𝑑, 𝑖 = 0,1. 

Proof. Using 𝐺𝑢(𝑋), 𝐺𝑢(−𝑋) as in the proof of Lemma 6, then by (5) we get that 

 {
𝐺𝑣(𝑋

4)(𝑋2 + 1)𝑁 − 𝐺𝑒,0(𝑋
2) ≡ 0(mod (𝑋2 − 1)𝑚0(𝑋2 + 1)𝑚1)

𝑋𝐾𝐺𝑣(𝑋
4)(1 − 𝑋2)𝑁 − 𝑋𝐺𝑒,1(𝑋

2) − 𝑋3(𝑋4 − 1)𝑁−1 ≡ 0(mod(𝑋2 − 1)𝑚0(𝑋2 + 1)𝑚1).
 

From this and (7) we can establish that 
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{
 
 

 
 
𝐺𝑒,0(𝑋

2) ≡ 0(mod (𝑋2 + 1)𝑚1)

2𝐺𝑣(1) − 𝐺𝑒,0(𝑋
2) ≡ 0(mod (𝑋2 − 1)min(𝑡(𝑁−1)/𝑑,𝑚0))

𝐺𝑒,1(𝑋
2) ≡ 0(mod (𝑋2 − 1)min(𝑚0,𝑁−1))

2𝐺𝑣(1)𝑋
𝐾−1 − 𝐺𝑒,1(𝑋

2) ≡ 0(mod (𝑋2 + 1)min(𝑡(𝑁−1)/𝑑,𝑚1))

  (8) 

Then the assertions of this lemma follow immediately from (8) and Lemma 12. 

Lemma 14. Let 𝐺𝑢(𝑋) and 𝐺𝑒(𝑋) satisfy (3). Then we have 

    • 𝑛0 = 𝑛2 if 𝐺𝑒,1(𝑋
2) = 0; 

    • 𝑛1 = 𝑛3 if 𝐺𝑒,0(𝑋
2) = 0. 

Proof. By (7), we have 𝐺𝑢(1) = 𝐺𝑢(−1) and 𝐺𝑢(𝛽) = −𝐺𝑢(−𝛽). Thus we can get the desired result. 

Proof. (proof of Theorem 10) (i). Suppose that 𝑘 = 1,2. Since (𝑋2 − 1)𝑁 + 2 = (𝑋2 + 1)𝑁 in 

𝔽𝑁[𝑋], then by (7) we have 

𝐺𝑢(𝑋) ≡ 𝐺𝑣(1)((𝑋
2 + 1)𝑁(1 − 𝑋𝐾) + 2𝑋𝐾)(mod(𝑋4 − 1)𝑡(𝑁−1)/𝑑), 

where 𝐾 = 4𝑁 − 4𝑚 + 1, that is, 

𝐺𝑢(𝑋) − 2𝑋
𝐾𝐺𝑣(1) ≡ 𝐺𝑣(1)(𝑋

2 + 1)𝑁(1 − 𝑋𝐾)(mod(𝑋4 − 1)𝑡(𝑁−1)/𝑑). 

So, (𝑋2 + 1)𝑡(𝑁−1)/𝑑(𝑋 − 1)|(𝐺𝑢(𝑋) − 2𝑋
𝐾𝐺𝑣(1)). Hence, by (4) and Lemma 8, we have 

𝐿𝐶𝑘
𝔽𝑁(𝑢) ≤ 2𝑁 + 2𝐿𝐶𝑘

𝔽𝑁(𝑣) − 1. 

Now we show that 𝐿𝐶𝑘
𝔽𝑁(𝑢) = 2𝑁 + 2𝐿𝐶𝑘

𝔽𝑁(𝑣) − 1. Conversely, suppose that 𝐿𝐶𝑘
𝔽𝑁(𝑢) < 2𝑁 +

2𝐿𝐶𝑘
𝔽𝑁(𝑣) − 1. Then there exists 𝐺𝑒(𝑋) with 𝑤𝑡(𝐺𝑒(𝑋)) ≤ 2 such that (3) holds and 𝑛0 + 𝑛1 + 𝑛2 +

𝑛3 ≥ 2𝑁 − 2𝐿𝐶𝑘
𝔽𝑁(𝑣) + 2, that is 

 𝑛0 + 𝑛1 + 𝑛2 + 𝑛3 + 2𝐿𝐶𝑘
𝔽𝑁(𝑣) ≥ 2𝑁 + 2.  (9) 

It follows from Lemma 6 that 𝑚0 +𝑚1 ≥ 2. So we obtain 𝐺𝑒,0(𝑋
2) ≡ 0(mod(𝑋2 + 1)𝑁) or 

𝐺𝑒,1(𝑋
2) ≡ 0(mod(𝑋2 − 1)𝑁) by Lemma 13(1). 

We consider four cases. 

(1.1). Let 𝐺𝑒,0(𝑋
2) = 0. Lemmas 13(3) and 14 lead to that 𝑚0 = 0 and 𝑚1 = 𝑛1 = 𝑛3. By Lemma 

8, we have 𝑛1 + 𝑛3 ≥ 𝑁 − 𝐿𝐶𝑘
𝔽𝑁(𝑣) + 2 > 𝑘 + 2. It follows from Lemma 13(4) that  

𝐺𝑒,1(𝑋
2) = 2𝐺𝑣(1)𝑋

𝐾−1 + 𝐴(𝑋2)(𝑋2 + 1)𝑁, 

where 𝐴(𝑋2) = 𝑎𝑋𝐾−1 or 𝐴(𝑋2) = 𝑎𝑋𝐾−1−2𝑁 with 𝑎 ∈ 𝔽𝑁 and deg𝐴(𝑋2) < 2𝑁. So, by (8) we have  

𝐺𝑢(𝑋) − 𝐺𝑒(𝑋) ≡ 𝐺𝑣(1)(𝑋
2 + 1)𝑁(1 − 𝑋𝐾 − 𝑋𝐴(𝑋2)) +

(𝑋4 − 1)𝑡(𝑁−1)/𝑑𝑇(𝑋4)(mod(𝑋4 − 1)𝑡(𝑁−1)/𝑑+1).
 

Here, 𝑛1 = 𝑛3 = 𝑡(𝑁 − 1)/𝑑,    max(𝑛0, 𝑛2) = 1 for 𝐾 ≢ 0(mod𝑁), i.e., 𝑚 ≠ (𝑁 + 1)/4. Then 

we have 𝑛0 + 𝑛1 + 𝑛2 + 𝑛3 + 2𝐿𝐶𝑘
𝔽𝑁(𝑣) = 2𝑁 + 1 by Lemma 8. This is in contradiction with (10). 

(1.2). Let 𝐺𝑒,0(𝑋
2) ≡ 0(mod(𝑋2 + 1)𝑁) and 𝐺𝑒,0(𝑋

2) ≠ 0. Then we have 𝐺𝑒,1(𝑋
2) = 0. Thus by 

Lemmas 13(4) and 14, we have 𝑚1 = 0 and 𝑚0 = 𝑛0 = 𝑛2. Lemma 13(3) leads to that 𝐺𝑒,0(𝑋
2) =

2𝐺𝑣(1) + 𝑏(𝑋
2 − 1)𝑁 with 𝑏 ∈ 𝔽𝑁. So we obtain that 

𝐺𝑢(𝑋) − 𝐺𝑒,0(𝑋
2) ≡ 𝐺𝑣(1)(𝑋

2 − 1)𝑁(1 − 𝑋𝐾) − 𝑏(𝑋2 − 1)𝑁 +

(𝑋4 − 1)𝑡(𝑁−1)/𝑑𝑇(𝑋4)(mod(𝑋4 − 1)𝑡(𝑁−1)/𝑑+1)
 

by (8). Thus, 𝑛0 = 𝑛2 = 𝑡(𝑁 − 1)/𝑑, max(𝑛1, 𝑛3) ≤ 1 for 𝐾 ≢ 0(mod𝑁). Similar to the proof of 

(1.1), we have a contradiction. 

(1.3). Let 𝐺𝑒,1(𝑋
2) = 0. Similar to the proof of (1.2), we get a contradiction. 

(1.4). Let 𝐺𝑒,1(𝑋
2) = 𝐶(𝑋2)(𝑋2 − 1)𝑁, where 𝐶(𝑋) ≠ 0 and 𝐶(𝑋) ∈ 𝔽𝑁[𝑋]. Then we have 

𝐺𝑒,0(𝑋
2) = 0. Similar to the proof of (1.1), we get a contradiction. 
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(ii). Let 𝑘 = 3. Consider  

 
𝐺𝑓(𝑋)     ≡     2𝐺𝑣(1)(𝑋

(𝑁+𝐾)/2+2𝑁 + 𝑋(𝑁+𝐾)/2 − 𝑋𝐾+2𝑁)

    ≡     2𝐺𝑣(1)(𝑋
𝐾 + (𝑋(𝑁+𝐾)/2 − 𝑋𝐾)(𝑋2 + 1)𝑁)(mod(𝑋4 − 1)𝑁),

 

then we have 

𝐺𝑢(𝑋) − 𝐺𝑓(𝑋) ≡ 𝐺𝑣(1)(𝑋
2 + 1)𝑁(1 + 𝑋𝐾 − 2𝑋(𝑁+𝐾)/2)(mod(𝑋4 − 1)𝑡(𝑁−1)/𝑑). 

Hence (𝑋2 + 1)𝑡(𝑁−1)/𝑑(𝑋 − 1)2|(𝐺𝑢(𝑋) − 𝐺𝑓(𝑋)). Thus, there exists an error sequence 𝑒 such that 

𝐿𝐶𝑘
𝔽𝑁(𝑢) ≤ 2𝑁 + 2𝐿𝐶𝑘

𝔽𝑁(𝑣) − 2 by Lemma 8 and (4). 

The assertion that 𝐿𝐶𝑘
𝔽𝑁(𝑢) = 2𝑁 + 2𝐿𝐶𝑘

𝔽𝑁(𝑣) − 2 can be proved similarly to that of (i) of this 

Lemma, so we only give a sketched proof. 

If 𝐿𝐶𝑘
𝔽𝑁(𝑢) < 2𝑁 + 2𝐿𝐶𝑘

𝔽𝑁(𝑣) − 2, then we obtain that  

 𝑛0 + 𝑛1 + 𝑛2 + 𝑛3 ≥ 2𝑁 − 2𝐿𝐶𝑘
𝔽𝑁(𝑣) + 3,   (10) 

and 𝑚0 +𝑚1 ≥ 3 by Lemma 8, and 𝐺𝑒,0(𝑋
2) ≡ 0(mod(𝑋2 + 1)𝑁) or 

 𝐺𝑒,1(𝑋
2) ≡ 0(mod (𝑋2 − 1)𝑁) by Lemma 13. 

Again, we consider four cases. 

(2.1). Let 𝐺𝑒,0(𝑋
2) = 0. Then by Lemmas 13(3) and 14 we get 𝑚0 = 0 and 𝑚1 = 𝑛1 = 𝑛3. Lemma 

8 leads to that 𝑛1 + 𝑛3 ≥ 𝑁 − 𝐿𝐶𝑘
𝔽𝑁(𝑣) + 3 > 𝑘 + 3 and Lemma 13(4) leads to that 𝐺𝑒,1(𝑋

2) ≡

𝐺𝑣(1)𝑋
𝐾−1(mod(𝑋2 + 1)𝑁). Therefore, we obtain 

𝐺𝑒,1(𝑋
2) = 2𝐺𝑣(1)(𝑋

𝐾−1 + (𝑎𝑋𝑙 − 𝑋𝐾−1)(𝑋2 + 1)𝑁) 

or 

𝐺𝑒,1(𝑋
2) = 2𝐺𝑣(1)(𝑋

𝐾−1 + (𝑎𝑋𝑙 − 𝑋𝐾−1−2𝑁)(𝑋2 + 1)𝑁) 

where 𝑎 ∈ 𝔽𝑁, 0 ≤ 𝑙 < 2𝑁. So we have by (8) that 

𝐺𝑢(𝑋) − 𝑋𝐺𝑒,1(𝑋
2) ≡ 𝐺𝑣(1)(𝑋

2 + 1)𝑁(1 + 𝑋𝐾 − 2𝑎𝑋𝑙) +

(𝑋4 − 1)𝑡(𝑁−1)/𝑑𝑇(𝑋4)(mod (𝑋4 − 1)𝑡(𝑁−1)/𝑑+1),
 

or 

𝐺𝑢(𝑋) − 𝑋𝐺𝑒,1(𝑋
2) ≡ 𝐺𝑣(1)(𝑋

2 + 1)𝑁(1 − 𝑋𝐾 − 2𝑎𝑋𝑙 + 2𝑋𝐾−2𝑁) +

(𝑋4 − 1)𝑡(𝑁−1)/𝑑𝑇(𝑋4)(mod (𝑋4 − 1)𝑡(𝑁−1)/𝑑+1).
 

So, 𝑛1 = 𝑛3 = 𝑡(𝑁 − 1)/𝑑,    max(𝑛0, 𝑛2) = 2 for 𝐾 ≢ 0(mod 𝑁) for both case, which is in 

contradiction with (10). 

(2.2). Let 𝐺𝑒,0(𝑋
2) ≡ 0(mod (𝑋2 + 1)𝑁) and 𝐺𝑒,0(𝑋

2) ≠ 0. Then 𝑤𝑡(𝐺𝑒,1(𝑋
2)) ≤ 1. 

If 𝑤𝑡(𝐺𝑒,1(𝑋
2))) = 1, then 𝐺𝑒,0(𝑋

2) = 𝑎𝑋𝑙(𝑋2 + 1)𝑁, 𝑎 ∈ 𝔽𝑁 , 0 ≤ 𝑙 < 2𝑁. By Lemma 13 (2) and 

(4), 𝑚0 = 0 and 𝐺𝑒,1(𝑋
2) = 2𝐺𝑣(1)𝑋

𝐾−1 or 𝐺𝑒,1(𝑋
2) = 2𝐺𝑣(1)𝑋

𝐾−1−2𝑁. Thus  

𝐺𝑢(𝑋) − 𝐺𝑒(𝑋) ≡ 𝐺𝑣(1)(𝑋
2 + 1)𝑁(1 − 𝑋𝐾) − 2𝑎𝑋𝑙(𝑋2 + 1)𝑁 +

(𝑋4 − 1)𝑡(𝑁−1)/𝑑𝑇(𝑋4)(mod (𝑋4 − 1)𝑡(𝑁−1)/𝑑+1)
 

or 

𝐺𝑢(𝑋) − 𝐺𝑒(𝑋) ≡ 𝐺𝑣(1)(𝑋
2 + 1)𝑁(1 − 𝑋𝐾) − 2𝑎𝑋𝑙(𝑋2 + 1)𝑁

−2𝐺𝑣(1)𝑋
𝐾−2𝑁(𝑋2𝑁 − 1) + (𝑋4 − 1)𝑡(𝑁−1)/𝑑𝑇(𝑋4)(mod (𝑋4 − 1)𝑡(𝑁−1)/𝑑+1).

 

So, 𝑛0 + 𝑛1 + 2𝑛2 ≤ 2𝑁 − 2𝐿𝐶𝑘
𝔽(𝑣) + 2 for 𝐾 ≢ 0(mod 𝑁). 

Now, let 𝐺𝑒,1(𝑋
2) = 0. By Lemmas 13(4) and 10, 𝑚1 = 0 and 𝑚0 = 𝑛0 = 𝑛2 ≥ 3. By Lemma 13 

(3), 𝐺𝑒,0(𝑋
2) = 2𝐺𝑣(1) + 𝐶(𝑋

2)(𝑋2 − 1)𝑁 for some 𝐶(𝑋) ∈ 𝔽𝑁[𝑋]. Therefore, since 𝐺𝑒,0(𝑋
2) ≡

0(mod(𝑋2 + 1)𝑁) we get 2𝐺𝑣(1) − 2𝐶(𝑋
2) ≡ 0(mod(𝑋2 + 1)𝑁). So, 𝐺𝑒(𝑋) ≡ 2𝐺𝑣(1)(𝑋

2 −

1)𝑁(mod (𝑋4 − 1)𝑁). We obtain a contradiction since 𝑤𝑡(𝐺𝑒,0(𝑋
2)) = 3. 
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(2.3). Let 𝐺𝑒,1(𝑋
2) = 0. Similarly to that of (2.2), we can get a contradiction. 

(2.4). Let 𝐺𝑒,1(𝑋
2) = 𝐶(𝑋2)(𝑋2 − 1)𝑁, where 𝐶(𝑋) ≠ 0 and 𝐶(𝑋) ∈ 𝔽𝑁[𝑋]. Since 𝑤𝑡(𝐺𝑒(𝑋)) ≤

3, then 𝑤𝑡(𝐺𝑒,0(𝑋
2)) ≤ 1. 

If 𝑤𝑡(𝐺𝑒,0(𝑋
2)) = 1, then 𝐺𝑒,1(𝑋

2) = 𝑐𝑋𝑟(𝑋2 − 1)𝑁 , 𝑐 ∈ 𝔽𝑁 , 0 ≤ 𝑟 < 2𝑁. By Lemma 13 (1) and 

(3), 𝑚1 = 0 and 𝐺𝑒,0(𝑋
2) = 2𝐺𝑣(1). Thus, by (8) we have  

𝐺𝑢(𝑋) − 𝐺𝑒(𝑋) ≡ 𝐺𝑣(1)(𝑋
2 − 1)𝑁(1 − 𝑋𝐾) − 𝑐𝑋𝑟(𝑋2 − 1)𝑁 +

(𝑋4 − 1)𝑡(𝑁−1)/𝑑𝑇(𝑋4)(mod (𝑋4 − 1)𝑡(𝑁−1)/𝑑+1).
 

So, 𝑛0 + 𝑛1 + 2𝑛2 ≤ 2𝑁 − 2𝐿𝐶𝑘
𝔽(𝑣) + 2 for 𝐾 ≢ 0(mod 𝑁). This is in contradiction with (11). 

Now, let 𝐺𝑒,0(𝑋
2) = 0. By Lemmas 13 (3) and 14 𝑚1 = 0 and 𝑚0 = 𝑛0 = 𝑛2 ≥ 3. By Lemma 9 

(4), 𝐺𝑒,0(𝑋
2) = 2𝐺𝑣(1)𝑋

𝐾−1 + 𝐷(𝑋2)(𝑋2 + 1)𝑁 for some 𝐷(𝑋2) ∈ 𝔽𝑁[𝑋]. Therefore, since 

𝐺𝑒,1(𝑋
2) ≡ 0(mod(𝑋2 − 1)𝑁) we get 2𝐺𝑣(1)𝑋

𝐾−1 − 2𝐷(𝑋2) ≡ 0(mod (𝑋2 − 1)𝑁). So,  

𝐺𝑒(𝑋) ≡ 2𝐺𝑣(1)𝑋
𝐾−1(𝑋2 − 1)𝑁(mod (𝑋4 − 1)𝑁). 

We obtain a contradiction since 𝑤𝑡(𝐺𝑒,0(𝑋
2)) = 3.  

Remark 15. The assertion 𝐿𝐶𝑘
𝔽𝑁(𝑢) = 2𝑁 + 2𝐿𝐶𝑘

𝔽𝑁(𝑣) − 1, 𝑘 = 1,2 is true for any 𝑁 periodic 

cyclotomic sequence 𝑣 with 𝐿𝐶𝑘
𝔽𝑁(𝑣) > 1. 

Proof. (proof of Theorem 11) If 𝑚 = (𝑁 + 1)/4 then 𝐾 = 3𝑁. By (7),  

 𝐺𝑢(𝑋) − 2𝐺𝑣(1)𝑋
3𝑁 ≡ (𝑋2 + 1)𝑁𝐹(𝑋4)(1 − 𝑋3𝑁)(mod (𝑋4 − 1)𝑡(𝑁−1)/𝑑). 

So, (𝑋2 + 1)𝑡(𝑁−1)/𝑑(𝑋 − 1)𝑡(𝑁−1)/𝑑|(𝐺𝑢(𝑋) − 2𝐺𝑣(1)𝑋
3𝑁). Thus, by Lemma 8 and (4),  

𝐿𝐶𝑘
𝔽𝑁(𝑢) ≤ 4𝑁 − 3𝑡(𝑁 − 1)/𝑑  or 𝐿𝐶𝑘

𝔽𝑁(𝑢) ≤ 𝑁 + 3𝐿𝐶𝑘
𝔽𝑁(𝑣). 

If 𝐿𝐶𝑘
𝔽𝑁(𝑢) ≤ 𝑁 + 3𝐿𝐶𝑘

𝔽𝑁(𝑣), then there exists 𝐺𝑒(𝑋) ∈ 𝔽𝑁[𝑋] with 𝑤𝑡(𝐺𝑒(𝑋)) ≤ 𝑘 such that (3) 

holds for 𝑛0 + 𝑛1 + 𝑛2 + 𝑛3 > 3𝑁 − 3𝐿𝐶𝑘
𝔽𝔽𝑁(𝑣). Lemma 6 leads to that 𝑛𝑖 ≥ 1, 𝑖 = 0,1,2,3, and 𝑚0 +

𝑚1 > 𝑘. By Lemma 13 (3) and (4), we get 𝐺𝑒,0(𝑋
2) ≠ 0 and 𝐺𝑒,1(𝑋

2) ≠ 0. Then, by Lemma 13 (1) 

and (2), 𝑤𝑡(𝐺𝑒,0(𝑋
2)) ≥ 2 and 𝑤𝑡(𝐺𝑒,1(𝑋

2)) ≥ 2, which is in contradiction with 𝑘 < 4. 

Thus, we have established the following. 

Corollary 16. (i). Let 𝑣 be the 𝑁 periodic Legendre sequence and 𝑢 be defined by (1). Then 

 𝐿𝐶𝑘
𝔽𝑁(𝑢) = {

3𝑁, if 𝑘 = 1,2 and  𝑚 ≠ (𝑁 + 1)/4,
3𝑁 − 1, if 𝑘 = 3 and  𝑚 ≠ (𝑁 + 1)/4,
(5𝑁 + 3)/2, if 𝑘 = 1,2,3 and  𝑚 = (𝑁 + 1)/4,
2𝑁 + 2, if 4 ≤ 𝑘 < (𝑁 − 1)/2.

 

(ii). Let 𝑣 be the 𝑁 periodic Hall’s sextic residue sequence and 𝑢 be defined by (1). Then 

 𝐿𝐶𝑘
𝔽𝑁(𝑢) = {

(11𝑁 − 2)/3, if 𝑘 = 1,2 and 𝑚 ≠ (𝑁 + 1)/4,
(11𝑁 − 5)/3, if 𝑘 = 3 and 𝑚 ≠ (𝑁 + 1)/4,
(7𝑁 + 1)/2, if 𝑘 = 1,2,3 and 𝑚 = (𝑁 + 1)/4,
(10𝑁 + 2)/3, if 4 ≤ 𝑘 < (𝑁 − 1)/6.

 

In a conclusion, we give an upper bound for 𝑘 ≥ 𝑡(𝑁 − 1)/𝑑. 

Corollary 17. (i). Let 𝑣 be the 𝑁 periodic Legendre sequence, and 𝑢 be defined by (1). If 𝑘 ≥ (𝑁 −

1)/2 + 4, then 

𝐿𝐶𝑘
𝔽𝑁(𝑢) ≤ {

𝑁 + 3, if  𝑚 ≠ (𝑁 + 1)/4,
(𝑁 + 3)/2, if  𝑚 = (𝑁 + 1)/4.

 

(ii). Let 𝑣 be the 𝑁 periodic Hall’s sextic residue sequence, and 𝑢 be defined by (1). If 𝑘 ≥ (𝑁 −
1)/6 + 4, then  

𝐿𝐶𝑘
𝔽𝑁(𝑢) ≤ {

3𝑁 + 1, if  𝑚 ≠ (𝑁 + 1)/4,
(17𝑁 + 7)/6, if  𝑚 = (𝑁 + 1)/4.
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The investigation of the 𝑘-error linear complexity of 𝑢 obtained from Legendre sequence or Hall’s 

sextic residue sequence may be continued in the same way. But for the other values of 𝑘 we have a 

significant decrease of the linear complexity. So, further research is not worth the effort. 

4. Conclusion

In this paper, we first established over the finite field 𝔽𝑁 the relation between the 𝑘-error linear

complexity of the binary interleaved sequences of period 4𝑁 and that of the binary sequences of period 

𝑁 from which the interleaved sequences derived. Then, as applications, we obtained the exact value of 

the 𝑘-error linear complexity for small value of 𝑘 of the series of interleaved sequences derived from 

the cyclotomic sequences. We also studied the 𝑘-error linear complexity of the interleaved sequences 

obtained from Legendre sequences and Hall’s sextic residue sequences, respectively. Our results show 

that these sequences are quite stable. 
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