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Abstract

The spectral, imaging, and polarimetric behavior of Fabry–Pérot etalons have an influence on imaging vector
magnetograph instruments based on these devices. The impact depends on the optical configuration (collimated or
telecentric), on the relative position of the etalon with respect to the polarimeter, on the type of etalon (air-gapped
or crystalline), and even on the polarimetric technique to be used (single-beam or dual-beam). In this paper, we
evaluate the artificial line-of-sight velocities and magnetic field strengths that arise in etalon-based instruments,
attending to the factors mentioned. We differentiate between signals that are implicit to telecentric mounts due to
the wavelength dependence of the point-spread function and those emerging in both collimated and telecentric
setups from the polarimetric response of birefringent etalons. For the anisotropic case, we consider two possible
locations of the etalon—between the modulator and the analyzer or after it—and we include the effect on different
channels when dual-beam polarimetry is employed. We also evaluate the impact of the loss of symmetry produced
in telecentric mounts due to imperfections in the illumination and/or to a tilt of the etalon relative to the
incident beam.

Unified Astronomy Thesaurus concepts: Polarimeters (1277); Spectrometers (1554); Spectropolarimetry (1973);
Polarimetry (1278); Spectroscopy (1558); Solar instruments (1499)

1. Introduction

Some solar magnetographs are based on the combination of a
polarimeter with a tunable bidimensional filter, typically a Fabry–
Pérot etalon. The final goal of these instruments is to precisely infer
the solar magnetic field and plasma velocities from the spectrum
and state of polarization of light. Hence, it is mandatory to have
control over the polarimetric influence of all optical elements on
the polarization measurement process. Usually, the whole system
is calibrated in such a way that the Mueller matrix of the
instrument contains information on the modulator, the analyzer,
and the remaining elements in the optical setup. This way, it is not
necessary to pay much attention to the polarimetric behavior of the
particular optical elements. However, etalons used as monochro-
mators have an impact on the measurement of the Stokes vector
even if they are perfectly isotropic. Their influence into real
observations is such that it cannot be calibrated using standard
techniques (i.e., with flat illumination) and depends on the manner
they are illuminated: collimated or telecentric. For a detailed
discussion on the imaging performance of etalons in collimated
and telecentric configurations, we refer the reader to the following
works: Beckers (1998), von der Lühe & Kentischer (2000),
Scharmer (2006), Righini et al. (2010) and Bailén et al. (2019a),
the first in our series of papers.

In particular, etalons mounted in a telecentric configuration
(ideally) keep the same transmission profile across the field of
view (FoV), at the expense of leading to artificial signals in the
measured Stokes vector, due to asymmetries induced in the point-
spread function (PSF) over the spectral profile (Beckers 1998).
Moreover, irregularities on the etalon and deviations from perfect
telecentric illumination further degrade the measurements.1 For

example, strictly speaking, no PSF can be defined for the
system since translational invariance is lost and the spatial
response of the etalon is different for each point over the FoV
(see Bailén et al. 2019a, hereafter Paper I). Instead, we can only
speak of a local PSF to stick to known and simple concepts.
Departures of the chief ray from normal incidence produce

an asymmetrization of the spectral transmission profile and of
the spatial shape of the local PSF of the instrument. It also
introduces a widening of the transmission profile and of the
local PSF, as well as a shift of their peaks (Paper I). Defects
associated with deviations of the flatness of the reflecting
surfaces can also modify the local PSF and the spectral
transmission pixel to pixel.
In collimated setups, the effects associated with fluctuations

of the optical path due to roughness errors average over the
area of the etalon that is illuminated. In addition, the PSF
dependence on wavelength over the passband is nonexistent,
but other problems can arise. For instance, we can no longer
speak of PSF, much like in the imperfect telecentric case,
because of the loss of space invariance associated with a
transmission factor that appears in the PSF and which depends
on the image plane coordinates (Paper I). Moreover, the
monochromatic transmission can be reduced drastically if
defects on the etalon are not kept low enough.
In both collimated and telecentric configurations, the

response of the instrument depends on the object itself. Hence,
the inferred Stokes vector can be altered simply because of the
polychromatic nature of the observations, no matter which
configuration is employed. This is of special importance for
telecentric mounts, because of the strong spectral dependence
their PSFs suffer from. Naturally, changes of the cavity errors
during the spectral scan can also have an impact on the
measurement of the Stokes vector for both mounts. Such a
change on the defects distribution has been confirmed recently
in piezo-stabilized etalons (Greco et al. 2019).
Examples of instruments based on etalons illuminated with a

telecentric beam include the Italian Panoramic Monochromator
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1 We use the term “perfect telecentrism” when referring to telecentric
illumination in which the chief ray impinges the etalon perpendicularly to its
reflecting surfaces. We consider that any deviation from such a situation is an
imperfection because it degrades the spectral transmission and the PSF of the
instrument. Thus, we refer to those cases as “imperfect telecentrism,” even if
the deviation is only caused by a tilt of the etalon while keeping the
telecentrism over the FoV.
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at THEMIS (Bonaccini et al. 1989, and references therein), the
TESOS spectrometer at the VTT (Kentischer et al. 1998), the
CRisp Imaging SpectroPolarimeter instrument at the Swedish
1 m Solar Telescope (Scharmer et al. 2008; van Noort &
Rouppe van der Voort 2008), the PHI instrument on board the
Solar Orbiter mission (Solanki et al. 2015), and the Visible
Tunable Filter at the upcoming DKIST (Schmidt et al. 2016).
Solar instruments equipped with etalons mounted in a
collimated setup include the Interferometric Bidimensional
Spectrometer at the Dunn Solar Telescope of the Sacramento
Peak Observatory (Cavallini 1998), the GFPI at GREGOR
(Puschmann et al. 2013), and the IMaX instrument aboard
SUNRISE (Martínez Pillet et al. 2011).

Among the instruments mentioned, IMaX and PHI use
Fabry–Pérots based on lithium niobate crystals to allow for
spectral scanning without the need to use piezo-actuators. The
birefringent properties of this crystal also contribute to modify
the incident Stokes vector. In particular, the polarimetric
behavior depends on the etalon geometry, wavelength, angle of
the incident wavefront, birefringence of the crystal, and on the
orientation of the optical axis angle of the crystal with respect
to the wavefront normal in the way described by Bailén et al.
(2019b; hereafter Paper II). Of course, birefringence can also
appear locally within the etalon due to local surface defects
created during the polishing and to the polarization-dependent
response of the coating of the etalon (Doerr et al. 2008).

Fortunately, the etalon is never positioned at the beginning
of the optical setup when doing full polarimetric measurements.
Rather, it is usually illuminated by a polarimetric modulated
intensity signal if the etalon is located before the analyzer or
just with linearly polarized light when it is at the very end of
the optical path, following the analyzer. The influence of the
etalon in the polarimetric behavior of polarimeters has been
addressed already (Del Toro Iniesta & Martínez Pillet 2012).
These authors considered the effect of typical optical elements
and included a birefringent Fabry–Pérot, concluding that the
optimum polarimetric efficiencies can still be reached no matter
the retardance introduced by the etalon. However, they did not
take into account either the real Mueller matrix of the etalon
nor the influence of the optical configuration; rather, they just
represented the etalon as an additional retarder plus a mirror
within the optical path.

In a more realistic situation, the birefringent effects brought
about by the etalon depend on the optical setup, i.e., on how the
etalon is illuminated within the optical path. In collimated
setups, the coefficients of the Mueller matrix of the etalon are
reduced to four independent terms that vary with the
parameters mentioned above (Paper II). The spectral depend-
ence of the coefficients is particularly strong and plays an
important role in quasi-monochromatic observations. More-
over, the Mueller matrix shape changes with the principal plane
orientation, which is determined by the plane formed by the
wavefront vector and the optical axis of the crystal. This
implies that the impact of the birefringence of the etalon is
different for each direction of the wavefront—and thus for each
pixel. In perfect telecentric mounts, off-diagonal terms on the
Mueller matrix are null and the effect of the birefringence is
translated only into the transmission profile (Paper II). In real
instruments in which illumination differs from perfect tele-
centrism and/or local deviations of the optical axis appear
during the process of manufacturing (local domains), the
Mueller matrix no longer remains diagonal and the effect on the

polarimetric measurements is more pronounced since cross-
talks between different Stokes components can appear, just like
in the collimated case.
This paper is a continuation of the work presented in Bailén

et al. (2019a, 2019b), where we reviewed the spectral, imaging,
and birefringent properties of Fabry–Pérot etalons when
located in solar magnetographs. Here we evaluate the influence
of etalons in the process of measuring physical solar quantities
from the observations, i.e., we assess their imprints in the
inferred line-of-sight (LoS) velocities and the magnetic field
strengths from solar vector magnetographs. We begin with an
evaluation of artificial signals in isotropic telecentric mounts
for both perfect and imperfect illumination of the etalon
(Section 2). Next, we study the effects of birefringence on the
measurements (Section 3). We consider two possible locations
of the etalon: after the polarimeter and between the modulator
and the analyzer. We also differentiate between collimated and
telecentric setups and we include the effects of imperfect
illumination of the etalon.

2. Artificial Signals in Isotropic Telecentric Mounts

Beckers (1998) was the first to predict that the spectral
dependence of the PSF implicit to etalons in telecentric
configuration gives rise to artificial signals in the LoS
velocities. He also warned that these signals are expected to
arise in images with velocity structure. The origin of the
spurious LoS velocities comes from the fact that observations
are not purely monochromatic, but rather quasi-monochromatic
(Equation (61) of Paper I). The wavelength dependence
induces asymmetries in the observed profile even if the original
is completely symmetric. Obviously, magnetic field measure-
ments are also influenced by these asymmetries, although they
are not mentioned by Beckers (1998); what is more important,
the induced signals cannot be mitigated unless the PSF is
completely characterized. The latter is almost impossible in
practice.
A proper evaluation of these false signals requires a careful

comparison between a reference case where the spectral PSF is
assumed to be invariant in wavelength and a real observation in
which the PSF varies over the spectral bandwidth. Of course,
the modulation scheme of the instrument and the position of the
etalon in the optical train must be considered as well, especially
for etalons that are anisotropic. In this section we will address
only the case of etalons that are isotropic (see Section 3 for a
discussion on the impact of birefringent etalons). To evaluate
the spurious signals, we have compared the expected LoS
velocities and magnetic field strength when taking into account
the spectral dependence originated in the telecentric case
(Paper I) with the results obtained with an ideal wavelength-
independent reference PSF. The ideal PSF we have chosen
is simply the monochromatic telecentric PSF at its peak
transmission wavelength, modulated spectrally by the transmis-
sion profile that corresponds to the same telecentric configura-
tion. This PSF of reference does not show any spatial variation
across the passband of the etalon. Rather, it shows only a
modulation of intensity, like in a collimated case, and, hence, it
does not introduce spurious signals when measuring the Stokes
vector.
For the test, we assume a polarimeter consisting of a pair of

liquid crystal variable retarders (LCVRs) as modulator and a
linear polarizer as analyzer, similarly to the PHI and IMaX
instruments. Application of different voltages to each of the
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LCVRs translates into different retardances—and conse-
quently, in a modulation of the signal recorded by the
instrument cameras. A linear combination of four different
modulations is enough to obtain the four Stokes parameters.
Furthermore, a proper choice of the retardances optimizes the
polarimetric efficiencies in the sense of minimizing error
propagation in the measurement of the Stokes vector (Del Toro
Iniesta & Collados 2000). Table 1 shows the retardances for
both LCVRs, δ1 and δ2, and for the four modulations in
sequential order (from PM1 to PM4) employed to obtain an
optimum modulation scheme in the mentioned instruments. In
imaging instruments, this process is done at each of the
wavelengths of interest. Once the Stokes parameters have been
determined, it is possible, using different diagnostic techniques,
to infer the LoS velocity and the vector magnetic field of the
plasma.

We have simulated the effect of a telecentric etalon in the
inferred LoS velocities and magnetic field strength on a set of
synthetic spectral images of the four Stokes parameters obtained
through magnetohydrodynamical (MHD) simulations (Vögler
et al. 2005). The spatial sampling of the synthetic data is 0″0287
and the size of our image is 256×256 pixels2. The spectral range
goes from −40 to 40 pm in steps of 1 pm and is centered about
the 525.02 nm FeI line observed by IMaX.2 We have modulated
the Stokes vector monochromatically with the set of retar-
dances presented in Table 1 assuming the etalon is placed after
the analyzer. This choice of the etalon position is irrelevant,
however, because it is considered to be isotropic. Figure 1(a)
shows the simulated Stokes I parameter at the continuum (top),
as well as the LoS velocity structure (middle) and the magnetic
field strength (bottom) corresponding to the input data. A solar
pore with an intense magnetic field can be appreciated,
covering an area of approximately 100×100 pixels2.

The different observed intensity maps at each wavelength of
the spectral range are obtained over the range ±20 pm with
respect to the center of the line by tuning the transmission
profile of the etalon over the target spectral line and applying
Equation(62) of Paper I. The PSF considered corresponds to a
perfect telecentric f/40 isotropic etalon with n=2.3,
h=250 μm, R=0.92, and A=0.3 Next, we have obtained
the Stokes parameters at each wavelength with the proper
demodulation matrix (Del Toro Iniesta & Martínez Pillet 2012).
Finally, we have compared the corresponding LoS velocities
and magnetic field strengths with the ones obtained with the
reference PSF mentioned above.

For the sake of simplicity, the LoS velocities and magnetic
field strength signals have been calculated using the center of
gravity (CoG) method (Semel 1967). Figure 1(b) shows the
spurious signals obtained for the LoS velocities (left) and
magnetic fields strength (right) in the telecentric case when
compared to the reference case, labeled as ideal, defined above.

We have focused on “perfect telecentrism,” that is, to normal
incidence of the chief ray on the etalon surfaces for the whole
FoV. It can be seen that the difference between signals reach
values up to ∼110m s−1 for the LoS velocity, δvLOS, and as
much as ∼50 Gauss for the field strength, δBLOS, both in
absolute value. The artificial LoS velocity map shows consider-
able small-scale fluctuations associated with the presence of
granules, intergranular lanes, and a pore. Of course, this is
because the Stokes parameters have changed after passing
through the etalon. Although not shown, it is pertinent to
observe that the artificial signals obtained for Stokes V are
always below ∼5% in the wing of the 525.02 nm FeI line,
where the Stokes V reaches a maximum. The rms and maximum
values of the spurious signals can be found in Table 2.
In the case that the cone of rays is inclined at a small angle with

respect to the normal of the etalon, the loss of symmetry with
respect to the normal causes both the spectral transmission of the
etalon and the spatial PSF to become asymmetric (Paper I). Such
an effect happens locally in imperfect telecentric mounts, where
the chief ray deviates gradually from the center of the image plane
to its borders. It also occurs when the etalon is tilted to suppress
ghost images on the focal plane originated by multiple reflections.
Since the effects are equivalent, we will refer hereafter to these
two cases indistinctly as “imperfect telecentrism.” The induced
asymmetries are expected to further introduce false LoS velocities
and magnetic field signals. Naturally, asymmetries in the
instrumental profile can also arise from an unsymmetrical spatial
distribution of cavity errors (e.g., Reardon & Cavallini 2008).
Figure 1(c) shows the map of artificial LoS velocities (left)
and magnetic signals (right) that appear in an imperfect
isotropic telecentric configuration with a chief ray angle of 0°.5.
As reference, a perfect isotropic telecentric etalon has been
considered. Differences between the perfect and imperfect
telecentric mounts are as large as ∼140 G in δBLOS,
∼280m s−1 in δvLOS and ∼18% in V (Table 2). Such high
signals are caused by a large shift and a significant asymmetriza-
tion of the observed spectral profile. The PSF is shifted and loses
its spatial symmetry (see Paper I), thus displacing the profiles and
introducing an offset in the velocities (∼80m s−1). The rms value
of the artificial velocities is probably better suited for comparison
purposes with perfect telecentrism. In this case, the rms velocity is
∼37.5m s−1, whereas for the velocities in Figure 1(b) it is
approximately half this value, ∼18m s−1. Note that typical
tolerances in real instruments usually keep deviations below 0°.5.
Moreover, this value corresponds to a maximum deviation and
mostly effects to the borders of the image while here we have
assumed that the whole image suffers from such a deviation.
So far, we have focused on a telecentric configuration with

an f/40 aperture. Such wide apertures are not common in solar
instruments. Rather, the f-numbers are typically larger than
f/100, especially for ground-based telescopes. Examples
include the beams illuminating the etalons of THEMIS
( f/192), TESOS ( f/125 and f/265), and of the Visible Tunable
Filter ( f/200). In addition, deviations from perfect telecentrism
in these instruments are not as large as the one assumed here.
However, tilt of the etalon to suppress ghost images is common
and it affects the relative inclination of the cone of rays over the
whole FoV. Fortunately, tilts applied are typically far below
0°.5. PHI is an exception since its etalon is illuminated by an
f/56 or by an f/63 beam depending on the configuration. In
addition, tolerances in this instrument allow for a maximum
deviation of the chief ray over the FoV of 0°.23. Nonetheless,

Table 1
Optimum Retardances Used for the LCVRs in the IMaX and PHI Instruments

PM1 PM2 PM3 PM4

[ ]d 1 225 225 315 315

[ ]d 2 234.736 125.264 54.736 305.264

2 Although we will concentrate our tests in this spectral line, the results are of
the same order for other lines, such as the FeI 617.3 nm observed by PHI.
3 The reader is referred to Paper I for the missing definitions.
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the impact on the measurements is more benign than those
shown in Sections 2, 3.1.2, and 3.2.2, because of the larger
aperture and the better telecentrism.

Figure 2 shows the maximum and rms values of the spurious
signals obtained for a perfect telecentric configuration with
f-numbers 40, 60, 80, 100, and 120. Fitting of the data to a
curve of the type ( ) ( )+ # + #- -a a f a f0 1

1
2

2 is also displayed
for each subfigure, where a0, a1, and a2 are the adjusted
coefficients. We observe that artificial signals decay roughly in
a quadratic way with the inverse of the #f . Consequently, we
can safely disregard the mentioned effects in etalons illumi-
nated by the slow beams associated with ground-based
instruments. For PHI, undesired signals are still expected to
be seen, although less than half the values presented here for an
f/40 telecentric configuration. The use of such a “fast” beam
and such a large deviation of the chief ray in our simulations
simply serves to illustrate more clearly the possible artificial
signals that can appear in telecentric mounts. In any case, a
careful assessment is required for the future generation of space
instruments, which will probably require “small” f-numbers
(<f/60) for compactness purposes.

3. Effects of Etalon Birefringence on the Polarimetric
Modulation

In Paper II, we showed that the Mueller matrix of a
birefringent etalon is a combination of both a retarder and a
mirror modulated by a wavelength-dependent gain factor.

Thus, any deviation from normal illumination has an impact on
the optimum polarimetric efficiencies and on the measured
Stokes parameters. The presence of the etalon can be evaluated
easily if the polarimetric response of the etalon is included in
the Mueller matrix of the polarimeter. A distinction between
the next two cases is mandatory: either (1) the etalon is located
after the analyzer (Figure 3(a)) or (2) the etalon is placed at an
intermediate position between the modulator and the analyzer
(Figure 3(b)). The second configuration is common in dual-
beam polarimeters, such as IMaX, whereas the first is used in
single-beam instruments, like PHI. Both use also a birefringent
etalon made of lithium niobate.
The illumination of the etalon (collimated or telecentric) is

also important in the analysis since it changes the functional
shape of the Mueller matrix coefficients. We will consider each
case separately in the next sections assuming the same
polarimeter as in the previous section.

3.1. Etalon Located after the Analyzer

3.1.1. Collimated Configuration

The Mueller matrix of a polarimeter formed by a pair of
LCVRs and an analyzer is given by =M LR Rpol 2 1, where
L,R2, andR1 correspond to the Mueller matrices of a linear
polarizer with its transmission axis at 0°, a retarder with fast
axis at 45°, and a retarder with fast axis at 0° (all angles
measured with respect to the +Q direction). The Mueller

Figure 1. (a) Synthetic input maps from MHD simulations: Stokes I (top), LOS velocities (middle), and LOS magnetic field (bottom). Panels (b) to (e) present a
comparison of observed LOS velocities (left) and magnetic fields (right) by a telecentric etalon for different situations, considering both the isotropic ((b) and (c)) and
the birefringent cases ((d) and (e)). Panel (b) shows the residual signal after subtracting the one obtained when employing the reference wavelength independent PSF,
labeled as ideal, and the signals that appear using the isotropic PSF that considers the wavelength dependence. Panel (c) illustrates the difference between the “perfect”
isotropic telecentric configuration, where the chief ray is perpendicular to the etalon surfaces, with respect to an “imperfect” isotropic telecentric configuration in which
the chief ray has an incidence angle on the etalon of 0 . 5. Panel (d) shows the difference between the signals arising for a perfect birefringent and an isotropic mount.
Panel (e) is the same as (c), but considering a birefringent etalon.
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matrix of the polarimeter can be cast in such a case as

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟ ( )

d d d d d
d d d d d=

-
-M

1

2

1 cos sin sin cos sin
1 cos sin sin cos sin
0 0 0 0
0 0 0 0

, 1pol

2 1 2 1 2

2 1 2 1 2

where δ1 and δ2 are the retardances associated to the LCVRs at
0° and 45°, respectively. If we assume that the etalon is in a
collimated configuration and is placed after the analyzer
(Figure 3(a)), then the Mueller matrix of the system is given
byMtot=MetMpol, whereMet is the Mueller matrix of the
etalon. The Mueller matrixMet can be cast as (Equation(32) in
Paper II)

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

( )
( )=

+ -

- + -
-

a bC bS

bC aC cS a c S C dS

bS a c S C aS cC dC
dS dC c

M

0

0

, 2et

2 2

2 2
2

2
2

2 2 2

2 2 2 2
2

2
2

2

2 2

where a, b, c, and d are defined in Equation(10) from Paper II
and depend on the etalon geometry, wavelength, angle of the
incident wavefront, birefringence of the crystal, and on the
orientation of the optical axis angle of the crystal. Coefficients

aºC cos 22 and aºS sin 22 arise from a rotation of an angle
α about Z that is introduced to take into account the orientation

of the etalon principal plane.4 The multiplication of Met by
Mpol yields

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

d d d d d
d d d d d
d d d d d
d d d d d

=

L L L -L
X X X -X
P P P -P
S S S -S

M
1

2

cos sin sin cos sin
cos sin sin cos sin
cos sin sin cos sin
cos sin sin cos sin

,

3

tot

2 1 2 1 2

2 1 2 1 2

2 1 2 1 2

2 1 2 1 2

where

( )
( )

L = +
X = + +
P = + -
S=-

a bC

bC aC cS
bS a c C S

dS

,

,
,

. 4

2

2 2
2

2
2

2 2 2

2

The instrument modulation matrix is then given by

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
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( )

( )

( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( )
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2
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where

( ) ( ) ( ) ( )( ) l
l l a

=
++g

a b cos 2

2
. 6

The superscript in d1 and d2 enumerates the sequential order of the
modulation, i.e., ( )d 1 corresponds to the retardance for modulation
PM1 in Table 1, ( )d1

2 refers to modulation PM2, etc. The
superscript ( )+ has been introduced to emphasize that the etalon
is illuminated with linear polarization along the +Q direction.
The modulation scheme is the same as that of a polarimeter

in which the presence of the etalon is neglected, except for a
gain factor that depends on both the wavelength and on the
direction of the wavefront normal. This factor also varies across
the etalon whether the illumination is not homogeneous or the
optical axis is deviated from the Z direction, which occurs in
local domains, i.e., in regions that suffer from local imperfec-
tions that change the crystal optical axis. In any case, the gain
factor is absorbed in what is known as “flat fielding” of the
instrument, a correction factor that takes into account
inhomogeneities in the distribution of intensity on the detector
because of local changes in the transmission. Therefore, the

Table 2
Summary of Results of the Artificial Signals Found in Telecentric ( f/40) and Collimated Configuration

Configuration δvrms (m s−1) δvmax (m s−1) δBrms (G) δBmax (G) δVrms (%) δVmax (%)

Isotropic perfect telecentric vs. isotropic monochromatic telecentric 18.3 110 5.0 50 0.4 4.9
Isotropic imperfect telecentric vs. isotropic perfect telecentric 37.6 278 22.9 139 2.2 18
Birefringent perfect telecentric vs. isotropic perfect telecentric 4.1 36 1.4 11 0.09 0.8
Birefringent perfect telecentric (channel 1 vs. channel 2) L L L L L 0.006
Birefringent imperfect telecentric vs. birefringent perfect telecentric 29.0 263 17.0 121 2.3 20
Birefringent collimated before analyzer (channel 1 vs. channel 2) L L L L L 0.3
Birefringent collimated before analyzer vs. birefringent collimated after

analyzer
3 15 0.07 0.7 0.03 0.45

Figure 2. Maximum and rms value calculated from the maps of artificial LoS
velocities ((a) and (b), respectively) and magnetic field ((c) and (d),
respectively) arising in a telecentric setup vs. the f-number of the beam.
Values obtained directly from simulations are displayed as dots, whereas the
corresponding fitting is shown as a dashed line.

4 The principal plane is the one formed by the wavefront vector with the
optical axis. Its orientation must be taken into account in the analysis because it
determines the propagation properties of orthogonal electric fields.
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modulation scheme of Table 1 remains optimal at each
particular monochromatic wavelength even when considering
the birefringence of the etalon. Also note that the PSF in this
configuration is the same as that of an ideal circular aperture
modulated by the transmission factor ( )( ) l+g . Hence, the
measured Stokes parameters are expected to be insensitive to
birefringence whenever the etalon is positioned after the
polarimeter and illuminated by a collimated beam.

3.1.2. Telecentric Configuration

Let us assume now that the etalon is illuminated, not with
collimated light, but with a telecentric beam. In this config-
uration, Equation (2) does not hold and we need to use
Equation (48) from Paper II. Therefore, the Mueller matrix of
the etalon, M̃et, is now given by

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
˜

˜ ˜
˜ ˜

˜ ˜
˜ ˜

( )=

¢ ¢
¢ ¢

¢ - ¢
¢ ¢

a b
b a

c d
d c

M

0 0
0 0

0 0
0 0

, 7et

where coefficients ˜¢a , ˜¢b , ˜¢c , and ˜¢d are defined in Equation (49)
of Paper II.5 These coefficients vary in a different manner when
compared to the collimated case with the wavelength, etalon
geometry, birefringence, etc. The modulation matrix remains
the same as in Equation (5), except for the gain factor, which is
given in this case by

˜ ( ) ˜ ( ) ˜ ( ) ( )( ) l
l l

=
¢ + ¢

+g
a b

2
. 8

Hence, the modulation scheme of Table 1 remains optimal
monochromatically in a telecentric birefringent configuration,

as for collimated setups. However, the PSF is different compared
to that of the isotropic telecentric configuration. In particular, an
asymmetry on the spatial shape of the “birefringent” PSF is
induced along two perpendicular directions even for perfect
telecentrism, i.e., it becomes elliptic. This is shown in the
Appendix. Differences between the isotropic and the birefringent
PSFs can be interpreted as spurious signals in the measured
Stokes parameters that must be added to those presented in
previous sections. Figure 1(d) shows the artificial LoS velocities
(left) and magnetic field strength (right) when comparing the
telecentric isotropic case against the telecentric birefringent case.
Note that the maps have been multiplied by a factor ´10 to
maintain the same color scale in all subfigures from (b) to (e). This
means that signals are about an order of magnitude lower than the
ones obtained in the other cases. In particular, the maximum
difference at the wing of the line in V is ∼0.8%, and about 10 G
and 35m s−1 in the LoS magnetic field and velocities (Table 2).6

Obviously, deviations of the chief ray angle from normal
illumination can also contribute to the emergence of artificial
signals, as in the isotropic case. Figure 1(e) shows the
difference between the observed LoS velocities and magnetic
field strength compared to the perfect birefringent telecentric
case. Differences in the magnetic field are as much as 120 G
and 260 m s−1 for the LOS velocities (Table 2). The maximum
value of the artificial V at the wing of the line is about 20%.
Note that the results are comparable to those obtained for the
isotropic case in Figure 1(c), which indicates that the impact on
the measurements due to the anisotropy of the etalon is small
compared to the effect of the wavelength dependence of the

Figure 3. Layout of the transmission of the electric field components of the incident light: (a) when the etalon is located after the analyzer (left), and (b) when the
etalon is located between the LCVRs and the analyzer (right).

5 Note that tildes are employed to allude to the telecentric configuration. This
notation is consistent with that of Paper II.

6 We have employed ordinary and extraordinary refraction indices no=2.3
and ne=2.2, corresponding to lithium niobate, for the simulations of the
birefringent Fabry–Pérot. The remaining parameters of the etalon are the same
as in previous sections, and are consistent with the simulations presented in
Paper II.
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PSF intrinsic to these mounts, whether the Fabry–Pérot is
birefringent or not.

3.2. Etalon Located between the Modulator and the Analyzer

3.2.1. Collimated Configuration

In dual-beam instruments, the etalon is never placed after the
polarimeter. Instead, it is located between the modulator and the
analyzer (Figure 3(b)) in order to avoid the use of two etalons,
i.e., one for each orthogonal beam in which light is split. A good
example of a dual-beam instrument is IMaX, which employs a
beam splitter as an analyzer to record orthogonal polarizations,
Q, in two different cameras. In this type of configuration,
etalon anisotropies are expected to have a stronger impact on the
measured Stokes vector than when located after the polarizer—
and thus illuminated with linear polarization. In particular, the
optimum modulation scheme presented in Table 1 can no longer
be optimal (Del Toro Iniesta & Martínez Pillet 2012), and the
measured Stokes vector can differ for orthogonal channels only
because of the birefringence of the etalon.

Assuming that the etalon is in a collimated configuration and
following the notation of Section 3.1, the Mueller matrix is
given by =M LFpol , where we have definedF as M R Ret 2 1.
Given that only the coefficients of the first two rows and
columns ofL are different from zero, we only need to calculate
the coefficients of the first two rows ofF in order to derive the
modulation matrix of the instrument:

( )
( )

( )
( ) ( )

( ) ( )

( )

d
d d d

d d d

d d

d d d
d d

d d d
d d

=
=
= -
= -
=
= + +

= + + -
-

= - + + -
+

a
bC
b C S
b S C
bC

aC cS dS

aC cS a c S C
dS

aC cS a c S C
dS

F ,
F cos ,
F sin sin cos ,
F sin sin cos ,
F ,

F cos sin ,

F sin sin cos
sin cos ,

F sin cos sin
cos cos .

9

11

12 2 2

13 2 2 1 2 1

14 2 1 2 2 1

21 2

22 2
2

2
2

2 2 2

23 2
2

2
2

2 1 2 2 1

2 1 2

24 2
2

2
2

2 1 2 2 1

2 1 2

When dual-beam techniques are employed, we must differ-
entiate between the Mueller matrices corresponding to the Q
channels. For the +Q channel:

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
( )

( ) =

+ + + +
+ + + ++

F F F F F F F F
F F F F F F F FM

1

2 0 0 0 0
0 0 0 0

.

10

pol

11 21 12 22 13 23 14 24

11 21 12 22 13 23 14 24

For the -Q channel, the Mueller matrix is just

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
( )

( ) =

- - - -
- - - --

F F F F F F F F
F F F F F F F FM

1

2 0 0 0 0
0 0 0 0

.

11

pol

11 21 12 22 13 23 14 24

21 11 22 12 23 13 24 14

Each row of the modulation matrix (O) corresponds to the
first row of Equations (10) or (11) evaluated for the particular
retardances of the LCVRs of the modulation scheme. Note that,

in this case, the optimum modulation scheme depends on
coefficients a, b, c, and d; on the channel (Q), and on the
orientation of the principal plane of light. Hence, it differs in
general from the one showed in Table 1 and varies over the
FoV for each monochromatic wavelength.
Figure 4 shows the dependence of the efficiency vector

(Collados 1999) for the +Q channel as a function of the
orientation of the principal plane, α, when using the
modulation scheme of Table 1. Results are shown for incident
angles θ=0°, 0°.25, and 0°.5 at the corresponding peak
wavelengths of the transmission profile λp=λ0+Δλ1,
λ0+Δλ2, and λ0+Δλ3, where Δλ1=0 pm, Δλ2=
−1.18 pm, and Δλ3=−4.54 pm. It can be observed that
the efficiency decreases from the optimum value whenever
a ¹  0 , 180 . The maximum variation is ∼0.6% for the first
component of the efficiency vector and ∼0.4% for the other
components.
Demodulation with such a nonoptimum scheme in a

collimated etalon can introduce further artificial signals in the
measured Stokes parameters than just those presented above.
Moreover, the spurious signals are different for the two
orthogonal beams. Figure 5 shows the map with the difference
between the measured Stokes V at its wing on the ±, Q
channels for a collimated etalon with maximum incidence
angle 0°.5 (which corresponds to the outermost parts of the
FoV). In IMaX, the maximum incidence angle is 0°.44.
Differences are below ∼0.3% in our simulations, so we can
safely disregard this effect in that instrument.
We have also compared the measured LoS velocities and

magnetic field strengths for a collimated configuration that uses
a dual beam with respect to another where the etalon is placed
after the analyzer. For the dual-beam configuration, the Stokes
parameters have been obtained by averaging the signals
recorded at each channel. The rms difference in magnetic field
strength is below 0.7 Gauss. Velocities differ less than
15 m s−1, and the maximum artificial signal in V is ∼0.45%.

Figure 4. Components of the efficiency vector as a function of the orientation
of principal plane of the etalon, using the modulation scheme of Table 1 for
illumination of the etalon with incident angles θi=0° (red solid line),
θi=0°. 25 (blue solid line), and θi=0°. 5 (green solid line). The wavelengths at
which the transmission profile peaks, λp, have been employed at each incident
angle. The etalon is located between the modulators and the analyzer in this
configuration.
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3.2.2. Telecentric Configuration

When the etalon is mounted on a telecentric configuration,
its Mueller matrix becomes particularly symmetric, as shown in
Equation (7). In fact, the Mueller matrix of the etalon
commutes with that of the analyzer due to their symmetry. It
is equivalent, then, to place the Fabry–Pérot either before or
after the analyzer; the only difference being that dual-beam
techniques can be used only if placed before the analyzer. In
that case, the modulation matrix for the +Q channel is given by
Equation (5), except for the gain factor, which is determined by
Equation (8), as explained in Section 3.1.2. The gain factor
corresponding to the modulation matrix of the -Q channel is
the same except for a minus sign that changes ˜ ˜¢ + ¢a b
by ˜ ˜¢ - ¢a b .

Although monochromatic polarimetric efficiencies remain
optimal, the measured Stokes parameters in each channel are
expected to be somewhat different because the PSFs change
slightly for orthogonal polarizations (Paper II). This effect
induces cross-talk signals in the measured Stokes parameters.
We have obtained that the maximum difference between both
channels is ∼0.006% in V at the wing of the line. This
additional contribution to the spurious signals is insignificant
compared to the previous ones and it naturally disappears in
isotropic etalons.

4. Summary and Conclusions

An evaluation of the artificial LoS velocities and magnetic
field strength signals that arise in magnetographs based on
Fabry–Pérot etalons has been performed. We have distin-
guished between telecentric and collimated illumination of both
crystalline and isotropic etalons. We have also considered
different locations of the etalon within the optical path, in
particular, instruments where the etalon is placed after the
polarimeter and those in which it is positioned in an
intermediate location between the modulator and the analyzer
to allow for dual-beam polarimetry. Our analysis has consisted
in simulating the impact of an etalon-based instrument similar

to IMaX and PHI on the maps of the Stokes components along
the 525.02 nm FeI Zeeman sensitive line.
Regarding isotropic etalons, collimated setups are (ideally)

exempt from the emergence of spurious signal since no spectral
variation of the PSF appears in this configuration. However, in
telecentric mounts, such signals are originated by a severe
dependence of the PSF shape with the wavelength across the
transmission profile. For the particular case of a telecentric f/40
isotropic etalon, spurious velocities obtained through the CoG
method are as large as 110 m s−1, whereas the magnetic field
and Stokes V reach values up to 50 G and 5%, respectively. In
telecentric mounts affected by a departure of the chief ray of
0°.5, signals can be as high as 280 m s−1 for the LoS velocities
and 140 G for the magnetic field strength when compared to the
perfect telecentric configuration. A shift in the map of
velocities also arises in this case because of an asymmetrization
of the transmission profile and of the PSF. Apart from the shift,
the map of artificial velocities shows structures with a
corresponding rms value twice as large as for the perfect
configuration (∼37.5 m s−1).
In relation to birefringent etalons, we have showed that the

ideal modulation scheme derived by Del Toro Iniesta &
Martínez Pillet (2012) still remains optimal for both telecentric
and collimated setups regardless of the birefringence exhibited
by the Fabry–Pérot, as long as the etalon is placed after the
polarimeter. Significant differences arise when comparing the
telecentric and collimated setups, though. In particular, for
the telecentric birefringent configuration, we have shown that:

1. Placing the etalon between the modulator and the
analyzer has the same impact as locating it after the
polarimeter since its Mueller matrix commutes with that
of the analyzer.

2. The PSF differs from the isotropic case and becomes
elliptic. Compared to the nonbirefringent telecentric case,
artificial signals in the velocities and magnetic field for an
f/40 beam show values up to 40 m s−1 and 9.5 G,
respectively. The Stokes V is 0.8%, at most, in the wings
of the profile. These artificial signals are an order of
magnitude smaller than the ones simply caused by the
wavelength dependence of the PSF.

3. Cross-talks between orthogonal channels appear when
using dual-beam techniques, but are negligible (∼0.006%
in the wing of V ).

On the other hand, for collimated anisotropic mounts, we
have proved that:

1. The measurement of the Stokes parameters is insensitive
to birefringence whenever the etalon is positioned after
the analyzer.

2. The Mueller matrix of the polarimeter is modified when
the etalon is situated before the analyzer. Hence, the
optimum efficiencies and the measurement of the Stokes
vector are affected. In particular:
(a) The efficiencies depend on the incident wavefront

direction and on the wavelength. When the optimum
modulation scheme is employed, monochromatic
efficiencies decrease, although the reduction is only
0.6% at most for a 0°.5 incidence.

(b) The measured Stokes vector is different from the one
corresponding to an etalon located after the polari-
meter. Again, the differences are not dramatic; they
remain under 15 m s−1 for the velocity, 0.7 G for the

Figure 5. Difference between the measured circular polarization in each
channel at the wing of the Fe I 525 line for an anisotropic (uniaxial) collimated
etalon placed between the LCVRs and the analyzer.
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magnetic field and 0.45% for Stokes V compared to a
collimated setup in which the etalon is placed after the
analyzer.

(c) Signals recorded by orthogonal channels in dual-beam
instruments are also different due to the presence of
the etalon, but these are kept below 0.3% at V
Stokes wing.

We have also shown that the expected spurious signals in
telecentric configurations mounted in ground-based instru-
ments are virtually insignificant because of the very slow
apertures employed in such telescopes (?f/40). In particular,
we expect a decrease of the spurious signals with ( )~ # -f 2.
Attention must be paid to etalons aboard space instruments,
though, because size constraints usually lead to apertures much
faster than the ones typical of ground-based instruments.

A careful assessment on the spatial distribution and
magnitude of defects in the optical thickness of the etalon is
also mandatory to evaluate possible additional spurious signals
regardless of the configuration employed. As explained in
Paper I, microroughness errors increase the energy contained in
the wings of the PSF (stray light) with the subsequent loss of
contrast. This is particularly true in collimated mounts and
translates into further contamination of the magnetic field
signals. In telecentric setups, such errors modify the PSF pixel-
to-pixel, which also cause additional artificial signals. Cavity
errors are of special relevance when two or more etalons are
employed to improve either the spectral resolution or the free
spectral range (or both) since defects are amplified in both
collimated and telecentric mounts—and, hence, the corresp-
onding artificial signals. In addition, the Mueller matrix of the
polarimeter is also modified with respect to the one presented
here for each configuration when several birefringent etalons
are used. Therefore, instruments using more than one Fabry–
Pérot require a detailed analysis to take into account the
possible sources of contamination addressed in this paper and
the ones emerging from the magnification of cavity errors.
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56169-C6-1-R and ESP-2016-77548-C5-1-R, and by the
Spanish Science Ministry “Centro de Excelencia Severo
Ochoa” Program under grant SEV-2017-0709 and project
RTI2018-096886-B-C51. D.O.S. also acknowledges financial
support through the Ramón y Cajal fellowship.

Appendix
PSF in Orthogonal Directions: Birefringent Case

Anisotropies in the etalon cause an asymmetry of the PSF on
orthogonal directions even if telecentrism is perfect (and,
hence, the Jones matrix terms only depend on the radial
coordinates of the pupil). Let us consider that the etalon is
illuminated with Stokes components I=Q and U=V=0.
According to Paper II, the PSF is then given by

˜ ˜ ˜ ˜= ¢ + ¢ = ¢ ¢ a b H H11 11
*. For a perfect telecentric configuration,

it was shown in Paper II that the first Jones coefficient is given
by
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Since H11 and H22 only depend on the radial coordinate of the
pupil, we can cast this integral as
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Let us take into account two orthogonal directions in the
image plane. For example, the direction along ξ and the
direction along η. The Jones term for each case is just
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The two integrals differ from the exponent of the complex
exponential. It turns out that
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Similarly, for the second diagonal element of the Jones matrix
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Using Equations (16) and (17), we can see that

˜ ( ) ˜ ( )
˜ ( ) ˜ ( ) ( )

x h x h

x h x h

¢ = = ¢ =
¢ = = ¢ =

H , 0 H 0, ,

H 0, H , 0 . 21
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That is, if ˜ ˜= ¢ + ¢ a b , then ˜ ( ) ˜ ( )x h x h¢ = = ¢ =a a, 0 0, ,
but ˜ ( ) ˜ ( )x h x h¢ = = - ¢ =b b, 0 0, . Therefore, ( )x h = ¹ , 0

( )x h= 0, . In consequence, the PSF varies for orthogonal
directions in birefringent etalons and the symmetry of the PSF
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is no longer preserved. In practice, the loss of spatial symmetry
has a low impact on the measurements because b̃ is much
smaller than ã (Paper II), as shown in Section 3.1.2.
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