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Abstract

In this work, we propose a new nonparametric approach for reconstructing a function from observational data
using an Artificial Neural Network (ANN), which has no assumptions about the data and is a completely data-
driven approach. We test the ANN method by reconstructing functions of the Hubble parameter measurements H
(z) and the distance-redshift relation D;(z) of Type Ia supernovae. We find that both H(z) and D;(z) can be
reconstructed with high accuracy. Furthermore, we estimate cosmological parameters using the reconstructed
functions of H(z) and D;(z) and find the results are consistent with those obtained using the observational data
directly. Therefore, we propose that the function reconstructed by ANN can represent the actual distribution of
observational data and can be used for parameter estimation in further cosmological research. In addition, we
present a new strategy for training and evaluating the neural network, and a code for reconstructing functions using

ANN has been developed and will be available.

Unified Astronomy Thesaurus concepts: Observational cosmology (1146); Computational methods (1965);
Astronomy data analysis (1858); Cosmological models (337); Neural networks (1933); Cosmological

parameters (339)

1. Introduction

The accelerating expansion of the universe is a major
discovery in modern cosmology. Many dynamic mechanisms
have been proposed to explain this phenomenon, such as dark
energy, modified gravity, and violation of the cosmological
principle. However, the nature of this phenomenon is still
unknown. The expansion of the universe can be quantitatively
studied through various cosmological observations. It is an
important issue to obtain information on the universe directly
from observational data without introducing any hypotheses
(such as a cosmic model), which is also very important for
understanding the nature of cosmic evolution and the theory of
gravity. However, the dependence of the result obtained from
observations on cosmological models is a thorny problem in
cosmological research.

A Gaussian Process (GP) is a fully Bayesian approach that
describes a distribution over functions and is a generalization of
Gaussian distributions to function space (Seikel et al. 2012a). It
is a powerful nonlinear interpolating tool without assuming a
model or parameterization and is widely used in cosmology
literature, such as the construction of the dark energy equation
of state (Seikel et al. 2012a, 2012b; Seikel & Clarkson 2013;
Yahya et al. 2014; Yang et al. 2015; Wang et al. 2019), the
reconstruction of cosmic expansion (Montiel et al. 2014; Li
et al. 2016b; Zhang & Xia 2016; Wang & Meng 2017), the test
of cosmic curvature (Cai et al. 2016; Li et al. 2016a; Yu &
Wang 2016; Rana et al. 2017; Wei & Wu 2017; Yu et al. 2018;
Wang et al. 2019), the estimation of the Hubble constant (Busti
et al. 2014; Gomez-Valent & Amendola 2018), the tests of
cosmic growth and matter perturbations (Shafieloo et al. 2013;
Gonzalez 2017), and the test of the distance duality relation
(Zhang 2014; Santos-da-Costa et al. 2015; Li & Lin 2018;
Melia 2018; Yang et al. 2019). In these papers, functions of the
Hubble parameter with respect to the redshift and the distance—
redshift relation are frequently reconstructed from expansion

rate measurements and Type Ia supernovae (SNe Ia),
respectively. Moreover, the derivatives and integrals of these
functions are obtained for other applications, such as studying
the evolution of dark energy and the constraint on the cosmic
curvature.

However, Zhou & Li (2019) recently proposed that GP
should be used with caution for the reconstruction of the
Hubble parameter and SNe la. Moreover, Wei & Wu (2017)
and Wang et al. (2017) also found that GP is sensitive to the
fiducial Hubble constant H,, and the results are greatly
influenced by Hy, which may imply the unreliability of the
GP in the reconstruction of H(z). In the analysis of GP, the
errors in the observational data are assumed to obey a Gaussian
distribution (Seikel et al. 2012a). However, the actual
observations might not obey Gaussian distributions. Thus, this
may be a strong assumption for reconstructing functions
from data.

An artificial neural network (ANN) is a machine learning
method and has been proven to be a “universal approximator”
that can represent a great variety of functions (Cybenko 1989;
Hornik 1991). This powerful property of neural networks
makes it widely used in regression and estimation tasks. With
the development of computer hardware in the last decade, ANN
is now capable of containing deep layers and training with a
large amount of data. Recently, methods based on ANNs have
shown outstanding performance in solving cosmological
problems in both accuracy and efficiency. For example, it
performs excellently in analyzing gravitational waves (GWs; Li
et al. 2017; George & Huerta 2018), estimating parameters of
the 21 cm signal (Shimabukuro & Semelin 2017; Schmit &
Pritchard 2018), discriminating cosmological and reionization
models (Schmelzle et al. 2017; Hassan et al. 2018), estimating
cosmological parameters (Fluri et al. 2018, 2019; Ntampaka
et al. 2019; Ribli et al. 2019), searching and estimating
parameters of strong gravitational lenses (Hezaveh et al. 2017;
Jacobs et al. 2017; Petrillo et al. 2017; Pourrahmani et al. 2018;
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Schaefer et al. 2018), classifying the large-scale structure of the
universe (Aragon-Calvo 2019), researching the background
evolution of the universe (Wang & Zhang 2017; Arjona &
Nesseris 2019), and studying the evolution of dark energy
models (Escamilla-Rivera et al. 2019).

An ANN is a collection of processing units designed to
identify underlying relationships in input data, which is a
completely data-driven method; hence, there are no assump-
tions of Gaussian distribution for the data. Therefore, the model
established by ANN can describe the distribution of the input
data correctly if an appropriate network is selected. In this
work, based on ANN, we propose a new nonparametric method
to reconstruct functions from data. We test this method by
reconstructing functions of the Hubble parameter H(z) and the
distance—redshift relation D;(z) of SNe Ia.

This paper is organized as follows: in Section 2, we take the
Hubble parameter as an example to illustrate the process of the
ANN method that is used to reconstruct functions from data.
We first introduce the ANN method used in this work, then the
method of simulating the Hubble parameter, and finally the
process of reconstructing functions of H(z) with the ANN
method. In Section 3, we reconstruct functions of H(z) from the
observational data with the ANN method. Section 4 presents
the application of the ANN method in the reconstruction of the
distance—redshift relation of SNe Ia. In Section 5, we compare
the ANN method with other neural networks. In Section 6, a
discussion about the ANN method is presented. Finally, a
conclusion is shown in Section 7.

2. Methodology

In this section, we first introduce the ANN method that is
used in this work and then takes the Hubble parameter as an
example to illustrate the process of reconstructing a function
from data. Based on PyTorch,” an open source optimized
tensor library for deep learning, we have developed a code for
reconstructing functions from data called Reconstruct Func-
tions with ANN (ReFANN). It can be used to reconstruct a
function from a given data set using CPUs or GPUs.

2.1. Artificial Neural Networks

An ANN, also called a Neural Network (NN), is a
mathematical model that is inspired by the structure and
functions of biological NNs. The main purpose of an ANN is to
construct an approximate function that associates input data
with output data. An NN generally consists of an input layer,
hidden layers, and an output layer. The general structure of an
ANN with one hidden layer used in this work is shown in
Figure 1. Each layer accepts a vector, the elements of which are
called neurons, from the previous layer as input, then apply a
linear transformation and a nonlinear activation on the input,
and finally propagates the current result to the next layer.
Formally, in vectorized style,

Ziv1 = XiWip1 + biy1, (1)
X1 = f(ziv 1), 2)

where x; is the input row vector of the ith layer, W;,; and b;
are linear weights and biases to be learned, z;.; is the
intermediate vector after linear transformation, and f the
elementwise nonlinear function. The output layer only takes

3 https://pytorch.org/docs /master/index.html
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Figure 1. The general structure of the ANN used in this work. The input is the
redshift z of a Hubble parameter H(z), and the outputs are the corresponding
value and error of H(z).

linear transformations. In real implementation, for n inputs of x
with shape 1 x n and m neurons, the matrix W has shape
n x m and b has shape 1 x m. Thus, z has the shape 1 x m. In
this work, we take the Exponential Linear Unit (ELU; Clevert
et al. 2015) as the activation function, which has the form

X x>0
f“):{a@mxmn x <0, @)

where « is the hyperparameter that controls the value to which
an ELU saturates for negative net inputs. In our network model,
« is set to 1.

NNs are usually designed to process a batch of data
simultaneously. Consider a matrix X € R"*" where m is the
batch size and each row of X is an independent input vector,
then Equations (1) and (2) are replaced by the following batch-
processed version:

Ziy1=XiWi1+ By, 4

Xi+1 :f(ZiH), ()

where B, is the vertically replicated matrix of b;,; in
Equation (1). An NN equals a function fy, on input X. In
supervised learning tasks, every input data is labeled corresp-
onding to a ground-truth target Y € R”*?. The training process
of a network is to minimize the difference between the
predicted result ¥ = Jw.p,(X) and the ground truth, which is
quantitatively mapped with a loss function £, by optimizing the
parameters W and b. The least absolute deviation is used as the
loss function in this work and has the following form:

1
L=—|Y =Yl (6)
mp

Following the differential chain rule, one could backward-
manipulate gradients of parameters in the ith layer from the
(i + Dyth layer, which is well recognized as the backpropaga-
tion algorithm. Formally, in vectorized batch style (LeCun
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et al. 2012),
oL , oL
=1 (Ziz) ——, 7
9z, f' i) S (N
oL — X7 oL ’ ®)
OWiy 0Z;
oL r OL
= =wl ==, 9
8Xi t+lazi+1 ( )
oL oL
= Trow; , (10)
by 1 ; ’(8Zi+1)

where the operator 0L/0- represents elementwise partial
derivatives of £ on corresponding indices, and f’ is the
derivative of the nonlinear function f. The network parameters
are then updated by a gradient-based optimizer in each
iteration. Here, we adopt Adam (Kingma & Ba 2014) as the
optimizer, which can accelerate the convergence.

Batch normalization, which was proposed by Ioffe &
Szegedy (2015), is implemented before every nonlinear layer.
Batch normalization is tested to stabilize the distribution among
variables, hence it benefits the optimization and accelerates the
convergence. It also enables us to use higher learning rates and
care less about initialization.

2.2. Simulation of H(z)

The network model that is used to reconstruct the
observational Hubble parameter is optimized by using the
mock H(z), which is simulated in the framework of the flat
ACDM model using

H@E) = Ho\JQu(1 + 23 + 1 — Q,, (11)

with the fiducial Hy = 70 km s~! Mpc~! and Q,, = 0.3. We
assume the redshift of the observational H(z) (Table 1) subject
to a Gamma distribution,

(e}

a—1,—\x 12
T (12)

px; a, A) =

where o and A are parameters, and the gamma function is
I'(a) = f e 1o, (13)
0

The distribution of the observational H(z) and the assumed
distribution function of the redshift z are shown in the left panel
of Figure 2.

In the right panel of Figure 2, we plot errors with respect to
the redshift z. The error of H(z) obviously increases with
redshift. Following Ma & Zhang (2011), we assume that the
error of H(z) increases linearly with the redshift. We first fit
om ~ with  first  degree  polynomials and  obtain
oy = 9.72z + 14.87 (the red dashed line). Here we assume that
0o is the mean value of oy, at a specific redshift. Then, two
lines (the blue solid lines) are selected symmetrically around
the mean value line to ensure that most data points are in the
area between them, and these two lines have functions of
0. =292z + 446 and o, = 16.52z + 25.28. Finally, the
error &(z) is generated randomly according to the Gaussian
distribution MV(0y(z), €(2)), where €(z) = (o — 0_)/4 is set
to ensure that 5(z) falls in the area with a 95% probability.

Wang et al.
Table 1

31 CC H(z) Measurements Obtained from the Differential Age Method
z H(z) (km s~ Mpc’l) References
0.09 69 + 12 Jimenez et al. (2003)
0.17 83 +£8
0.27 77 + 14
0.4 95 + 17
0.9 117 £ 23 Simon et al. (2005)
1.3 168 + 17
1.43 177 + 18
1.53 140 + 14
1.75 202 + 40
0.48 97 £ 62 Stern et al. (2010)
0.88 90 + 40
0.1791 75 +4
0.1993 75 +5
0.3519 83 + 14
0.5929 104 + 13 Moresco et al. (2012)
0.6797 92 +8
0.7812 105 + 12
0.8754 125 + 17
1.037 154 £+ 20
0.07 69 £+ 19.6
0.12 68.6 + 26.2 Zhang et al. (2014)
0.2 72.9 + 29.6
0.28 88.8 £+ 36.6
1.363 160 + 33.6 Moresco (2015)
1.965 186.5 + 50.4
0.3802 83 + 13.5
0.4004 77 +10.2
0.4247 87.1 £ 11.2 Moresco et al. (2016)
0.4497 92.8 £ 12.9
0.4783 809 +9
0.47 89 £ 49.6 Ratsimbazafy et al. (2017)

Note. The Hubble parameter obtained from Ratsimbazafy et al. (2017) is
89 + 23(stat) & 44(syst) km s~! Mpc~!; here we consider their total error
89 4 49.6(tot) km s~! Mpc~! in our analysis.

The fiducial values of the Hubble parameter Hfq(z)
generated using Equation (11) are simulated randomly by
adding AH subject to N(0, 5(z)). Thus, the final simulated
Hubble parameter is Hgy, (z) = Hiq(z) + AH with the uncer-
tainty &(z). Therefore, one can simulate samples of Hubble
parameter in the flat ACDM model with the assumed
distribution of redshift and errors. We note that the mock H
(z) is used to optimize the network model, and the assumption
of the error of H(z) increasing linearly with the redshift does
not affect the reconstruction of the observational H(z); thus, the
error model of H(z) is acceptable in our analysis.

2.3. Optimize ANN Model

In this section, we illustrate the process of reconstructing
functions and find the optimal network model that can be used
for the reconstruction of the observational H(z), by using the
simulated Hubble parameter. The data used to train the network
are simulated according to the redshift distribution of the
observational H(z) under the flat ACDM model with the
method of Section 2.2. The sample has the same number as that
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Figure 2. Left: redshift distribution of the observational H(z). Right: errors of the observational H(z).

of the observational Hubble parameter, and it is shown in
Figure 3 (red dots with error bars).

The NN aims to make a mapping from the input data to the
output data to construct an approximate function. Specifically,
it constructs an approximate function that associates the
redshift z with the Hubble parameter H(z) and its uncertainty
according to the H(z) data. Thus, the input of the NN is the
redshift z, and the output is the corresponding H(z) and error
oney (see Figure 1). Parameters of the NN (W and b in
Equation (1)) need to be learned by training the network with
data. In supervised learning tasks, the data is commonly
divided into three parts: training set, validation set, and test set.
The training set is used to train the network model, the
validation set is used to tune the hidden parameters (or
hyperparameters, such as learning rate, the number of hidden
layers, and the number of neurons), and the test set is used to
test the accuracy of the NN. However, all of the H(z) data
should be used to train the network to construct an approximate
function in this task. Thus, there are no validation and test sets
in this task, and the evaluation strategy of the NN is different
from that of other tasks. Therefore, we present a new strategy to
train and evaluate the NN.

The reconstructed function of H(z) should be able to
represent an H(z) and its uncertainty at a specific redshift.
Thus, an optimal network model should be adopted to learn an
approximate function. To illustrate our training and evaluation
strategy, we only consider finding the optimal number of
hidden layers and the number of neurons in the hidden layer.
The initial learning rate is set to 0.01 and decreases with the
number of iterations, and the batch size is set to half the number
of the H(z) data. Then, the network model can be trained after
multiple iterations by minimizing the loss function of
Equation (6). In each iteration, a subsample with the number
of batch size is randomly selected and is fed to the network;
after passing the network, the loss is calculated using the loss
function, and it is transmitted backwards to update the weight
vectors and bias according to gradient descent. Here we set the
number of iterations to be 3 x 10%, which is large enough to
ensure the loss function no longer decreases.

We first estimate the optimal number of hidden layers of the
NN using the simulated H(z) data. We train the network with
the simulated H(z) sample. The number of hidden layers of the
network we consider varies from one to four, and eight network

models are trained with the number of neurons in the range of
[128, 16,384] for each network structure. Thus, 32 network
models are trained in total. We note that these 32 network
models are trained independently with the same samples of H
(z) shown in Figure 3. To choose the optimal number of hidden
layers of the network, the statistically correct thing to do is to
minimize the risk (Wasserman et al. 2001):

N
risk = Y Bias? + Z Variance;
i=1
B N
[H(z) — H@)P + ) o*(H (),
i=1

M=

I
M=

(14)

Il
-

where N is the number of H(z) data points, and H(z) is the
fiducial value of H(z). We calculate the average of the risk of
eight models for each network structure and obtain four values
of the risk: 23,218, 25,326, 26,851, and 26,782 for networks
where the number of hidden layers equal one, two, three, and
four, respectively. Thus, the network structure that contains one
hidden layer should be chosen as the optimal one. In order to
visualize the effect of the number of hidden layers on the H(z)
reconstruction, we show an example of reconstructed H(z) with
different network structures in Figure 3. The red dashed lines
represent the fiducial ACDM model. From left to right, the
number of hidden layers of the corresponding network is one,
two, three, and four, respectively. Obviously, with the increase
of the hidden layers, the reconstructed H(z) will gradually
deviate from the fiducial model.

For further determination of the number of neurons in the
hidden layer, we plot the risk of the eight network models that
contain one hidden layer, shown in Figure 4. We can see that
the risk decreases first and then increases with the increase in
the number of neurons, and it has minimal risk when the
number of neurons is 4096. Therefore, we choose a network
that contains 4096 neurons in the hidden layer as the optimal
one, and apply it to the reconstruction of the observational H
(z). We note that the hyperparameters of the optimal model are
the only things that are adopted in the reconstruction of the
observational H(z), and the method of simulating the Hubble
parameter of Section 2.2 has no effect on the reconstruction of
the observational data. To reconstruct functions from other
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Figure 3. An example of the reconstructed function of H(z) (black lines) and the corresponding 1o error (gray areas) with the neural network. The red dots with error
bars represent the simulated H(z) data, while the red dashed lines correspond to the fiducial flat ACDM model with Hy = 70 km s~! Mpc~! and ©,, = 0.3. From left

to right, the network contains one, two, three, and four hidden layers, respectively.
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Figure 5. Three reconstructed functions of H(z) and the corresponding 1o error
with neural networks that have one hidden layer. These functions are
reconstructed with networks that have different neurons in the hidden layer.
The red dots with error bars represent the simulated H(z) data, while the red
dashed lines correspond to the fiducial flat ACDM model with
Hy=70km s~! Mpc~! and Q,, = 0.3.

data, the strategy illustrated in this section can also be used to
find the optimal network model.

We further visualize the effect of the number of neurons in
the hidden layer on the reconstruction of H(z), shown in
Figure 5. In this figure, we plot three reconstructed functions of
H(z) that are trained with three different network models that
have one hidden layer. The number of neurons in the hidden
layer of these models is 128, 4096, and 16,384, respectively.

We can see that these three functions of H(z) are almost the
same, which is different from the effect of the number of the
hidden layer (see Figure 3). This weak effect of the number of
neurons in the hidden layer on the reconstruction of H(z) makes
it safe to find the optimal model in eight kinds of network
models with the number of neurons in the hidden layer lying in
the range of [128, 16,384].

3. Reconstruction of H(z)

In this section, we first introduce the Hubble parameter
measurements H(z), then utilize the optimal network model
selected in Section 2.3 to reconstruct functions of the
observational H(z).

3.1. Hubble Parameter H(z)

The Hubble parameter measurements H(z), which have been
used to explore the evolution of the universe and the nature of
dark energy, describe the expansion rate of the universe. H(z)
can be obtained in two ways. One method to obtain H(z) is
based on the detection of the radial BAO features (Gaztafiaga
et al. 2009; Blake et al. 2012; Samushia et al. 2013). However,
the H(z) data obtained using this method are based on an
assumed fiducial cosmological model. Thus, these H(z) data are
not considered in our analysis. Another method is to calculate
the differential ages of passively evolving galaxies at different
redshifts, which provides H(z) measurements that are model-
independent (Jimenez & Loeb 2002). In this method, a change
rate Az/At can be obtained, then the Hubble parameter H(z)
could be written as

1 Az

H(z) ~ — .
@ 1+ 2z At

5)

This method is usually called cosmic chronometers (CCs), and
the H(z) data based on this method are referred to as CC H(z).
On the basis of the CC H(z) data used in Wang et al. (2017), we
add another new H(z) measurement taken from Ratsimbazafy
et al. (2017) to achieve our model-independent analysis. Hence,
the H(z) sample has 31 data points totally within the redshift
range of [0.07, 1.965], which are correctly summarized in
Table 1. Note that the H(z) taken from Ratsimbazafy et al.
(2017) is 89 & 23(stat) & 44(syst) km s~! Mpc~!; thus, the H
(z) with total error 89 & 49.6(tot) km s~! Mpc~! is considered
in our analysis.

3.2. Functions of CC H(z)

The minimum redshift of the CC H(z) is 0.07, which is larger
than most of the current SNe Ia data. Thus, if we want to



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 246:13 (12pp), 2020 January

Case (a)

H(z)[km s~ Mpc~1]

T
0.0 0.4

0‘.8 112 1.6
redshift z

Case (b)

Case (c)

Wang et al.

0.0 0.4

018 1.‘2
redshift z

T
1.6 0.0

T
0.4

018 1.2
redshift z

T
1.6

Figure 6. Reconstructed function of H(z) with ANN. The red dots with error bars represent the H(z) data, while the red dashed lines correspond to the best-fit flat
ACDM models with Hy = 67.4 km s~! Mpc~! and 2, = 0.315 (Planck2018 result). The left panel corresponds to the result of case (a) (no Hy, prior), the middle panel
represents that of case (b) (with a prior of Hy = 67.4 & 0.5 km s~! Mpc~'), and the right panel is for case (c) (with a prior of Hy = 73.24 & 1.74 km s~' Mpc™)).
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Figure 7. Reconstructed function of D¢ /Dy with ANN, where Dy is obtained by integrating functions of H(z) in Figure 6 using Equation (17), and Dy = cHy . The
red dashed lines correspond to the best-fit flat ACDM models with Hy = 67.4 km s~! Mpc~! and ©,, = 0.315 (Planck2018 result).

explore a lower redshift universe with the Hubble parameter,
one possible way is to extend the reconstructed H(z) function to
a lower redshift. However, it should be noted that this
extension is completely an approximation, which may
introduce bias when having few H(z) data in the vicinity of
the redshift interval. Therefore, we consider a prior of the
Hubble constant H; in the reconstruction of H(z) to make the
reconstructed function of H(z) more reliable. We adopt two
recent measurements of H, in the reconstruction of H(z):
Hy = 67.4 £ 0.5 km s~! Mpc~! with 0.7% uncertainty (Agha-
nim et al. 2018), and Hy = 73.24 £ 1.74 km s~! Mpc~! with
2.4% uncertainty (Riess et al. 2016). Further, for comparison,
we also reconstruct H(z) with no H prior. Thus, there are three
cases when reconstructing H(z):

(a) with no H, prior;
(b) with a prior of Hy = 67.4 £ 0.5 km s~! Mpc~!; and
(c) with a prior of Hy = 73.24 + 1.74 km s~! Mpc~".

For case (a), the training set has 31 observational Hubble
parameters listed in Table 1, and for cases (b) and (c), the
training set contains an additional data point at the redshift
z = 0, thus, the training set has 32 data points for cases (b)
and (c).

Using the optimal network model obtained in Section 2.3,
we reconstruct functions of H(z) by training the network for the
three cases of the H(z) sample. After training the NN, one can
feed a sequence of redshifts to the network model and obtain a
series of Hubble parameters with errors. Thus, the output
Hubble parameter and corresponding errors, as well as the
input redshift sequence, constitute a function of H(z). The

reconstructed functions of H(z) for the three cases are shown in
Figure 6. The red dots with error bars represent the
observational H(z), and the red dashed lines are the flat ACDM
model with Hy= 67.4km s~ ! Mpc™! and £, = 0.315
(Planck2018 result; Aghanim et al. 2018). The black lines
and gray areas are the best values and lo errors of the
reconstructed functions of H(z). Obviously, the reconstructed
functions are consistent with those of the flat ACDM model
within a 1o confidence level for all three cases. Moreover, we
can see that the functions of H(z) for these three cases are very
similar to each other. Obviously, they are consistent with each
other within a 1o confidence level. For the best values of the
reconstructed H(z) (the black solid lines in Figure 6), the
relative deviation of case (b) with respect to case (a) is <0.8%,
and the relative deviation of case (c) with respect to case (a) is
<1.6%. We note that, for case (a), the reconstructed Hubble
constant is

Hy = 67.33 + 15.74 km s~ Mpc~!, (16)

where the best-fit value is similar to the latest Planck CMB
result: Hy = 67.4 + 0.5 km s~! Mpc~!. Then, we obtain the
total line-of-sight comoving distance D (Hogg 1999) by using

z !/
DC:Cf d—Z
0o H()

The error of D is obtained by integrating the error of the H(z)
functions. The corresponding reconstructed D¢ /Dy are shown
in Figure 7, where Dy = cHy .

a7
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Figure 8. One-dimensional and two-dimensional marginalized distributions with 1o and 20 contours of H, and €2, constrained from Hubble parameter H(z). The blue
solid lines show the results of fitting the ACDM model with H(z) data directly, and the red dashed lines refer to the results of fitting the ACDM model with the
reconstructed H(z) using the ANN method. The left panel shows the result of case (a) (no Hy prior), the middle panel refers to the result of case (b) (with a prior of
Hy = 67.4 + 0.5 km s~! Mpc™!), while the right panel stands for case (c) (with a prior of Hy = 73.24 4+ 1.74 km s~! Mpc~'). See the text for details.

To quantify the reliability of the reconstructed functions of H
(2), we fit the flat ACDM model using the data generated by
these functions of H(z) by comparing the distance modulus.
The NN learns complex relationships between the redshift and
the corresponding Hubble parameter and its error. Specifically,
the black lines in Figure 6 represent the evolution of the Hubble
parameter with the redshift, and the gray areas refer to the
distribution of the errors of the Hubble parameter with the
redshift. Thus, the reconstructed error of H(z) is entirely
determined by the observational data standing in for the error
level of the Hubble parameter at a specific redshift. It should be
noted that any number of Hubble parameters can be obtained
by feeding a sequence of redshifts to the network model.
Therefore, this will lead to the cosmological parameters being
constrained to an arbitrary precision when using much more
samples than the observational data, which is unreasonable. To
avoid this, the covariance between any two different points
should be considered. However, the covariance cannot be
generated by the ANN model of Figure 1, and we will discuss
this issue in Section 6.2. Therefore, in order to mitigate the
effect of covariance, we generate the same number of H(z) as
the training set from the reconstructed function of H(z) and
assume the data points are independent. Thus, the approximate
x* here takes the form of

(e zi5 How Q) — piy ()P
XA(Hy, Q) = S HoZe T ol — PHEDL (1)
i O—/I,H,i
where
Dy
iy = Slog +25, Dp=(1+2)Dc, (19)
Mpc

and the corresponding errors can be propagated by using

o 5 O'DL
" 1010 D,

p, = (1 + 2)op,. (20)

The Hubble constant H, is needed for the integral of
Equation (17); thus, for case (a), we adopt the Hubble constant
reconstructed using the ANN method (Equation (16)).

We first integrate the observational H(z) to obtain the
corresponding distance modulus and then fit the ACDM model
using the Markov Chain Monte Carlo method by minimizing

the x> of Equation (18). The results are shown in Figure 8 (blue
lines), and these results are taken as the ground truth. Then, we
simulate 10 sets of samples of the redshift z randomly
according to the redshift distribution of the observational H(z)
(Equation (12)), where the sample has the same number of
redshifts as the training set. The corresponding H(z) values and
errors can be obtained from the reconstructed functions of H(z).
Thus, 10 simulated samples of H(z) can be obtained for cases
(a), (b), and (c), respectively. We fit the ACDM model using
these samples and obtain the distributions of the parameters,
shown in Figure 8 (red dashed lines). These results are almost
the same as the ground truth (blue solid lines) obtained using
the observational H(z) data. Thus, this may indicate the
reliability of the functions of H(z) reconstructed using the NN.
Moreover, we note that the results of the ANN method and the
ground truth are similar for all three cases. Therefore, the ANN
method is not sensitive to the prior of the Hubble constant.

4. Reconstruction of D;(z)

In cosmology literature, except for the Hubble parameter, the
distance-redshift relations are also frequently reconstructed
from SNe Ia (Seikel et al. 2012a; Yahya et al. 2014; Yang et al.
2015; Wang et al. 2019) and GW measurements (Liao 2019).
Here we test the feasibility of the ANN method in reconstruct-
ing the luminosity distance obtained from SNe Ia. The data
used here are from Union2.1 (Suzuki et al. 2012), which
contains 580 SNe Ia in the redshift range of [0.015, 1.414]. The
distance modulus of Union2.1 SNe Ia is

Mg + o X x; — ﬂ X c
m};hreshold) , (2 1 )

MSNe(a’ 5’ o, Mp) = m* -
+ 5 P(mtrue

where Mp is the absolute B-band magnitude of SNe Ia; and a,
0, and ¢ are nuisance parameters of SNe Ia. We only want to
test the feasibility of ANN in reconstructing functions with SN
Ia data; thus, «, &, 6, and My are set to 0.122, 2.466, —0.036,
and —19.318, respectively (Suzuki et al. 2012). The error of the
distance modulus is

O = |2 + (@0)? + (F00)?. (22)



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 246:13 (12pp), 2020 January

—— Union2.1
---- ANN

Qm
o o o o
‘V)O ‘?)6\ .\’)0 ‘\’)\5\

Figure 9. One-dimensional and two-dimensional marginalized distributions
with 1o and 20 contours of Hy and 2,,, constrained from Union2.1 SNe Ia. The
blue solid lines show the results of fitting the ACDM model with Union2.1 SNe
Ia directly, and the red dashed lines refer to the results of fitting the ACDM
model with the reconstructed SNe Ia using the ANN method.

Then, the luminosity distance can be obtained by using
DLSNe _ 10(/1,SN8725)/5’ (23)
and the corresponding error is

10®sne=29/5 . 1n 10
5 : o—l‘SNe'

(24)

O'DENe =

The luminosity distance of Union2.1 is shown in Figure 10
(the red dots with error bars). We first fit the flat ACDM model
using the Union2.1 SNe by minimizing the y*:

(D G Ho Q) = DIG@IP

X*(Ho, Q) =)

i U%)LSNE,I‘

Note that the absolute magnitude Mgz of SNe Ia is fixed; thus,
the Hubble constant H, can be constrained by the SN Ia data.
The constraints on H, and §2,, are

Hy= 69984 £+ 0347, Q, = 0.280 £ 0.020, (26)

and one-dimensional and two-dimensional distributions of the
parameters are shown in Figure 9 (the blue solid lines).

Then, using the method illustrated in Section 2.3, we obtain
the optimal network model for the reconstruction of D;(z). The
optimal model for reconstructing D;(z) has one hidden layer,
with 4096 neurons in the hidden layer. We note that batch
normalization is not used in this model. The reconstructed
function of D, is shown in the upper panel of Figure 10, where
the solid black line with the gray area represents the function of
D, and the corresponding lo error, and the red dashed line
stands for the best-fit flat ACDM model of Union2.1 SNe Ia
(Equation (26)). Residuals with respect to this model are shown
in the lower panel. We can see that the function of Dy
reconstructed with the ANN method completely coincides with
the best-fit flat ACDM model. This indicates that the ANN is
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Figure 10. Reconstructed functions of D;(z) using ANN. In the upper panel,
the red dots with error bars represent the D;(z) of Union2.1 SNe Ia, and the red
dashed line refer to the best-fit flat ACDM model of Union2.1 SNe Ia with
Hy = 68.984 and (2, = 0.280 (Equation (26)). Residuals with respect to this
model are shown in the lower panel.

capable of reconstructing functions for the distance-redshift
relation.

In order to test the reliability of the reconstructed function of
D;(z), we fit the flat ACDM model using 10 sets of samples of
SNe Ia generated randomly from the function of D;(2)
according to the redshift distribution of Union2.1 SNe Ia.
These samples has the same number of SNe Ia as the Union2.1
SNe Ia. Note that the covariance between any two different
points is not considered; thus, the data points are assumed to be
independent, and Equation (25) is an approximate form for
these samples. The mean values of parameters for these 10 sets
of samples are

Hy=70.015 £ 0.334, £, = 0.280 + 0.023, 27)

and the distributions of parameters are shown in Figure 9 (the
red dashed lines). This constraint on parameters is almost the
same as that obtained from the Union2.1 SNe Ia directly, which
further indicates the reliability of the reconstructed function of
D;(z) and makes the ANN a promising method for future
cosmological research.

5. Comparing with Other Networks

For comparison, we also reconstruct functions of H(z) with
other NNs. Specifically, we consider the Elman Recurrent
Neural Network (RNN, Elman 1990), Long Short Term
Memory (LSTM, Hochreiter & Schmidhuber 1997), and Gated
Recurrent Unit (GRU, Cho et al. 2014). In our analysis, the
network models built in PyTorch are adopted, and all processes
are carried out on the simulated Hubble parameter.

5.1. ANN

Using the method of Section 2.2, we first simulate a set of
samples of the Hubble parameter that has the same number as
the observational data, shown in the upper panel of Figure 11
(the red dots with error bars). Note that the best values of H(z)
are on the fiducial cosmological model. Then we reconstruct
functions of H(z) with the ANN method. The reconstructed
functions with 1o errors are shown in the upper panel of
Figure 11, where the black solid line with the gray area
represents the reconstructed function of H(z). In the lower panel
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Figure 11. Reconstructed functions of H(z) with 1o errors using ANN. In the
upper panel, the red dots with error bars represent the simulated H(z), and the
red dashed line refers to the fiducial flat ACDM model with
Ho = 70km s~! Mpc™! and 2, = 0.3. Residuals with respect to this model
are shown in the lower panel.

of this figure, we show the residual with respect to the fiducial
model. The red dashed lines in this figure stand for the fiducial
ACDM model. Obviously, the function of H(z) reconstructed
with the ANN method coincides completely with the
fiducial one.

We further constrain the parameters of the ACDM model
using the same procedure in Section 3.2 with 10 sets of samples
generated randomly by the reconstructed function of H(z). One-
dimensional and two-dimensional distributions of Hy and €2,
constrained from H(z) are shown in Figure 12, where the blue
lines represent the result constrained from the mock H(z)
directly, and the values of the parameter are

Hy, = 68.885 + 4.626, ), = 0.351 + 0.174. (28)

Here, we take this result as the ground truth. The red dashed
lines correspond to the results constrained from the H(z) data
generated randomly according to the redshift distribution of the
observational H(z) from the functions of H(z) reconstructed by
ANN. The mean values of H, and €2,, for these 10 sets of
samples are

Hy = 69.067 + 5.289,
Obviously, the result is consistent with the ground truth, and

the values of the parameters of the fiducial model are covered
by this result within the 1o confidence level.

Q, = 0.361 £ 0.221.

5.2. RNN, LSTM, and GRU

With the same procedure as in Section 2.3, we first find the
optimal network models for RNN, LSTM, and GRU,
respectively, by using the simulated Hubble parameter of
Figure 3. The optimal models have one hidden layer and
contain 128, 128, and 1024 neurons in the hidden layer for
RNN, LSTM, and GRU, respectively. Then, we reconstruct
functions of H(z) from the simulated Hubble parameter of
Figure 11. The reconstructed functions of H(z) with RNN,
LSTM, and GRU are shown in Figure 13. The black dashed
line with shaded areas refer to the result of RNN, the green
dashed line with shaded areas stand for the result of LSTM, and
the blue dashed line with shaded areas are for that of GRU. We
can see that the reconstructed functions for all three networks
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Figure 12. The same as Figure 8, except now using the simulated H(z). The
black dot stands for the fiducial values of the parameters.
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Figure 13. The same as Figure 11, except now using the RNN, LSTM, and
GRU network to reconstruct the Hubble parameter.

are consistent with the fiducial cosmological model (the red
dashed line) within a 1o confidence level. Moreover, the mean
values of the reconstructed function are almost the same as the
fiducial cosmological model for both RNN and LSTM, which
is similar to that of the ANN method (see Figure 11). These
may indicate that RNN, LSTM, and GRU are capable of
reconstructing functions from data.

However, the reconstructed functions are greatly influenced
by the number of neurons in the hidden layer. In Figure 14, we
draw three reconstructed functions of H(z) for RNN, LSTM,
and GRU. These three functions of H(z) are reconstructed with
three network models that have different numbers of neurons in
the hidden layer. For the RNN method (the left panel of
Figure 14), we can see that the reconstructed function of H(z)
will deviate from the fiducial cosmological model with the
increase in the number of neurons in the hidden layer. This can
also happen with the LSTM method (the middle panel of
Figure 14). Furthermore, when the number of neurons in the
hidden layer is 1024, the reconstructed function of H(z) using
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Figure 14. The same as Figure 5, except now using RNN, LSTM, and GRU to reconstruct the Hubble parameter.

the LSTM method is slightly opposite in trend to the mock
data, which is totally unreasonable. For the GRU method (the
right panel of Figure 14), the number of neurons in the hidden
layer also affects the reconstructed functions of H(z), even
though the effect is slightly reduced.

The effect of the number of neurons in the hidden layer on
the reconstructed functions of H(z) indicates that it is not safe to
reconstruct functions from the observational data with the
optimal network model. Thus, this makes it difficult to
reconstruct functions from observational data with RNN,
LSTM, and GRU. Therefore, the ANN method is more reliable
than RNN, LSTM, and GRU in the reconstruction of functions
from observational data.

6. Discussions
6.1. The ANN Method

In this work, the NN is designed to reconstruct functions of
the Hubble parameter H(z) and the luminosity distance D;(z) of
SNe Ia. However, we note that it is mathematically proven that
an NN with only one hidden layer can approximate any
function with any accuracy if we use enough neurons
(Cybenko 1989; Hornik et al. 1989). Therefore, the ANN is a
general method that can reconstruct functions for any kind
of data.

There are many hidden parameters (or hyperparameters) in
the NN, which should be selected before using ANN for the
reconstruction of functions. In the process of supervised
learning, the data are generally divided into three parts: the
training set, the validation set, and the test set. The network
models are trained on the training set, and the hidden
parameters are optimized using the validation set. However,
this training and evaluation strategy is not suitable in the task of
reconstructing functions because all the data should be used to
train the network to construct an approximate function, which
means that the data cannot be divided to evaluate the network
models. Thus, we present a new strategy to train and evaluate
the network models in Section 2.3, by using simulated data.

In Section 2.3, we only consider optimizing the number of
hidden layers and that of neurons in the hidden layer for the
reconstruction of the Hubble parameter H(z). The optimal
network model selected in this work is applicable to both
current and near-future observations of the Hubble parameter.
However, we propose that the hidden parameters of the
network should be optimized with the strategy in Section 2.3
when the ANN method is used in other observational data sets.
Furthermore, other hidden parameters of the network, such as

10

batch normalization, learning rate, and batch size, can also be
optimized using this strategy if one applies the ANN method to
other similar tasks.

The ANN method proposed in this work can perform a
reconstruction of a function from data without assuming a
parameterization of the function, which is a completely data-
driven approach. Moreover, the ANN method has no assump-
tions of Gaussian distribution for the random variables and can
be used for any kind of data. We test the ANN method using
both observational and simulated data in Sections 3.2, 4 and 5.
The results indicate that the ANN method is reliable and
unbiased, for both the best-fit values and errors of the
reconstructed function. In addition, the reconstructed functions
can be used to estimate cosmological parameters unbiasedly.
Moreover, the results of Section 3.2 show that the ANN
method is not sensitive to the input cosmology. Therefore, we
propose that the ANN method will be a very promising method
in the reconstruction of functions from data.

6.2. Covariance Matrix

The analysis in Sections 3.2 and 4 shows that the function
reconstructed by the ANN method can be used for further
parameter estimation. Here, we illustrate a problem that should
be noted when estimating parameters using the reconstructed
function. For the given sample of observational Hubble
parameters, we can train a network model to learn complex
relationships between the redshift z and H(z) and its error.
Then, any number of Hubble parameters can be obtained by
feeding a sequence of redshifts to the network model.
Obviously, this will lead to cosmological parameters being
constrained to arbitrary precision when using many more
samples than the observational data, which is unreasonable.
Therefore, the number of samples generated by the recon-
structed function should be similar to that of the observational
data. We point this out to draw the attention of the reader if one
uses the data generated from the reconstructed function in
future research on parameter estimation.

The covariance matrix should be considered when using any
number of samples in the parameter estimation. However, it is
not easy to calculate the covariance matrix via the theory of
ANNSs. Therefore, here we provide a statistical method to
calculate the covariance matrix. We take the Hubble parameter
H(z) as an example to illustrate the process of calculating the
covariance matrix. Specifically, the key steps of this pro-
cess are:
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Figure 15. 100 functions of H(z) reconstructed by ANN.

1. Generate 1000 realizations of a data-like sample by
drawing n H(z) measurements via the Gaussian distribu-
tion N(H (2), on)), where H(z) and oy, are the
observational Hubble parameter and corresponding
errors, and n is the number of data points in our
observational data.

2. For each realization, train an ANN model using the
corresponding samples of H(z). Then, a function of H(z)
can be reconstructed using the trained ANN model. Note
that errors of H(z) are not reconstructed in this method,
and thus there is only one neural in the output layer of the
ANN model.

3. Obtain 1000 functions of H(z) by repeating step 2. In
Figure 15, we show an example of 100 functions of H(z).

4. For two Hubble parameters at the redshift z; and z,, the
covariance between them can be calculated by comparing
the 1000 H (z;) and 1000 H(z,) values using

Cov(H (z:), H(z)))

N
= %Z [(H (zi) — H@))(H (zj) — H(@))], (29)
k=1

where N = 1000 is the number of H(z) data points at the
redshift z; or z,, and H(z) is the average value of the
1000 H(z) data points.

5. Using the method of step 4, the covariance between any
two Hubble parameters with different redshifts can be
calculated. Therefore, the covariance matrix can be
further obtained.

Using this method, we reconstructed the Hubble parameter H
(z) and further obtained the corresponding covariance matrix.
Here we normalize the covariance matrix to obtain the
correlation coefficient

b= Cov(H (zi), H(z)))
JD(H @) (DH )

(30)

where D(H(z;)) is the variance of H(z;). We plot an example of
the normalized covariance matrix in the left panel of Figure 16.
At the same time, we also reconstruct the Hubble parameter
using GP and the commonly used squared exponential
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Figure 16. An example of the normalized covariance matrix of one set of
samples of H(z) reconstructed by ANN (left) and GP (right).

covariance function is adopted:

€19

k(x, X)) = ofl- exp(M),
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where oy and ¢ are two hyperparameters that should be
optimized. The corresponding normalized covariance matrix is
further obtained, and an example is shown in the right panel of
Figure 16. We can see that the covariance matrix obtained by
ANN is similar to that of GP, which may indicate the
rationality of the covariance matrix obtained by ANN.
Therefore, this method may provide a possibility of calculating
the covariance matrix for the function reconstructed by ANNSs.
However, the covariance matrix obtained in this way needs to
be further researched in the parameter estimation, which will be
shown in our future work.

7. Conclusions

We propose that ANNs can be used to reconstruct functions
from data. In this work, we test the ANN method using the
Hubble parameter and SN Ia data by reconstructing functions
of H(z) and D;(z). We find that both H(z) and D;(z) can be
reconstructed with high accuracy, which indicates that the
ANN method is a promising method in cosmological research.
Furthermore, we also estimate parameters using the recon-
structed functions of H(z) and D;(z), and find the results are
consistent with those obtained using the observational data
directly. Therefore, we propose that the functions reconstructed
by ANN can represent the actual distribution of observational
data and can be used for parameter estimation in cosmological
research. We will investigate these interesting issues in future
works.

The ANN used in this work is a general method that could
reconstruct a function from any kind of data without assuming
a parameterization of the function, which is a completely data-
driven approach. Moreover, this method has no assumptions of
Gaussian distribution for the observational random variables;
hence, it can be widely used in other observational data.
Therefore, data-driven modeling based on the NN has the
potential to play an important role in future cosmological
research. Based on the ANN, a code for reconstructing
functions from data was developed and can be downloaded
freely.
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