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Abstract
A Kantowski—Sachs model with a modified quantization prescription is
considered. Such quantization rules, inspired by the so-called generalized
uncertainty principle, correspond to a modified commutation relation between
minisuperspace variables and their conjugate momenta. For a wide range of the
modification parameter, this approach differentiates from the standard results
by the presence of a potential well in the corresponding Wheeler—-DeWitt
equation. This then produces the appearance of a set of wave functions, with
corresponding discrete energy spectrum.
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1. Introduction

Among the most tenacious efforts in fundamental physics is the seek for a theory of quantum
gravity (QQG), that is, a theory that could give a quantum description of gravity. As of now,
several candidates have been proposed, and the debate on the validity of one over the others is
open. Despite the various theoretical possibilities to realize a theory of QG, no experimental
evidence can direct us, nor any evidence of deviations from general relativity or quantum
theories can help us in this task. Nonetheless, there are a series of features that we expect from
a quantum theory of gravity. On of these features, when translated to low energy systems,
consists in the existence of a minimal measurable length [1]. In fact, such a minimal length
arises in different contexts, for example from string theory [2, 3], loop quantum gravity [4-6],
and thought experiments in black hole physics [7, 8]. These common characteristics of several
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theories of quantum gravity led to a phenomenological model consisting in a modification
of the uncertainty principle. Such a model is known as the generalized uncertainty principle
(GUP). It has been the subject of many studies, in the attempt to use it as a signature of QG,
and has been compared with known phenomena and theories of modified gravity (see, e.g.
[9-17]). A version of this model considers a modification of the Heisenberg algebra [18-21]
to reproduce, via the Schrodinger—Robertson uncertainty relation, the desired minimal length.
Notice that this modification can also be thought of as a modified quantization rule.

These effects are predicted to be important in systems with energies near the Planck scale.
A particularly relevant example of such systems is the very early universe, in which quantum
effects of gravity are expected to be dominant [22-24]. A special branch of this line of invest-
igation is loop quantum cosmology, developed in the past years, where the framework of loop
quantum gravity has been applied to cosmology [25, 26]. Therefore, Quantum Cosmology is
the appropriate playground where this modified quantization rule is expected to be influential.
Previous approaches to this field using the tools of canonical quantum gravity have investi-
gated various aspects of this construction with the purpose of studying quantum cosmologi-
cal models. In the past, several quantization procedures have been considered regarding this
approximation (see, e.g. [27]). In particular, recent attempts have been directed towards a
noncommutative deformation of quantum cosmology [28, 29], that is, descriptions in which
variables do not commute. This resulted from proposals of noncommutativity in spacetime
and from developments in M theory and string theory [30-32].

In the present work, thus, we implement a different perspective, proposing a quantization
rule for the minisuperspace approximation [33, 34] in which the corresponding variables are
considered to obey a similar commutation relation as in GUP. This will imply a modifica-
tion of the Wheeler—DeWitt equation (WDWE), governing the quantum cosmological model,
characterizing a modified dynamics of the solution. Previous approaches from a different
viewpoint have been pursued in [35-37]. It is worth noticing that this procedure does not
directly implies a physical minimal length. Rather, it can be understood as imposing a minimal
uncertainty in the minisuperspace variables.

As a particular case for this proposal, we will consider its effects on the Kantowski—Sachs
model. As it is known, at the classical level it describes a homogeneous but anisotropic cos-
mological model, thus not relatable with the current description with the observable universe
[38]. However, its relevance arises as well from the fact that it can describe a Schwarzschild
black hole [39]. The wave function of the corresponding quantum model thus represents a
quantum cosmology or a quantum black hole. The minisuperspace coordinates, at the present
quantum stage, are not affected by their classical dependence on the time ¢ or the radius r
[38]. Thus, from now on, we will refer our analysis only at the level of the minisuperspace
Kantowski—Sachs variables and their quantum evolution. This metric can be written as [34]

ds? = —N2dP? + e2V3B4,2

ey
+e Ve 2V32(49? 4 sin? d?).
The corresponding WDWE in the standard theory of quantum gravity is given by
eVIHVAY [P 4 P} — 4872V (0, 8) =0, )
where
0 0
P =—i—, Pg=—i—,
STV T ©
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are the conjugate momenta to the variables (2 and 3, respectively, and such that
[Q, Po] =1, (8, Pa] =0, [Q,Pg] =0, (B, Pg] = i. )

The solutions of equation (2) are given in terms of the modified Bessel function Kj,, as follows
E(Q, B) = eFVVIPK,, (40 VA, (5)

In what follows, we will revise the model above modifying the quantization relations in
equation (4). In particular, we will consider a different commutation relation between the
variables {2, 8} and the conjugate momenta. In fact, we will consider the model inspired by
[18], for which

[gj-pi) = i {1 +~*pipi} (©6)
with
q =9, ¢ =B, p1 = Pq, p2 = Pg, 7

where ~ is some parameter with units of inverse Pq and Pg, and where we considered
Einstein’s summation convention. For a more convenient treatment, we will introduce coordi-
nates q]’. such that [ql’ Pi) = iy, i.e. q]’. and py, fulfill the same relations as those in equations (4).
The momentum-space representation of the coordinate operators obeying equations (6) is

. 0
g =1i(1 + Vzpkpk)afp =1+ Vzpkpk)qj/w (8)
J

Notice that in this model, the two coordinates do not commute

g5 i) = 21> (1 + ¥’pip1) (pidi — Pid}) = 27 €ipjds )

where € is the two-indices Levi-Civita symbol. Furthermore, in position-space we can write

g = qj(1 +Vpep). (10)

As we will see next, this modification is directly related with the form of the wave function
¥(£, 8) in equation (2) introducing, for a particular range of values for the parameter -, a
well in the potential in equation (2). The effect of this modification is to modify the uncer-
tainty relation for the minisuperspace variables. In fact, it imposes a minimal uncertainty in
these variables, thus resulting in a fuzy metric. As a consequence, this furthermore results in a
notion of distance with a minimal uncertainty and, therefore, a minimal length.

This paper is structured as follows: in section 2, we will revise the WDWE for the Kantowski—
Sachs model with a modified quantization rule; in section 3, we will focus on a particular
region of the variables, in which the modified potential associated with the Kantowski—Sachs
model produces a more noticeable difference with the usual quantum behavior equation (5);
finally, section 4 is devoted to conclusions and outlook.

2. Kantowski—-Sachs model with GUP
Following [28] and using the relations above, the potential term in equation (2) can be rewrit-
ten as

V = _48e2V3Q _ 480 2V3Q (147 (—P4+PY)]

~ _486—2\/5(1—472)9’6—2\/5729'(—P§2+P§3 12i4%Q' Po (11D

Je
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where Zassenhaus formula

AHB A Be— b ABl o L(AABIH2(BAB]) . (12)

)

has been used and where only terms up to exponentials in 7> have been retained. Using the
substitution ' = ¢* we find

0 0
—iQ = —i—. 13
o T lox (1)
Therefore, assuming the following representation for the momentum operators
.0 .0
Pq = *1@, Pg = *1876,, (14)

the last exponential above, equation (11), acts as a translation operator for the coordinate x,
corresponding to a scaling of the coordinate '

e]Zi’yZQ/PQw(QI’ 5) — w(eIZ’yZQI’ 5) (]5)
The potential above then becomes

V(Y B) = —48e2V3(I—47)
Y (P > (16)
% 672\6’7 Q (7PQ+PE),(/}(6127 Q/,ﬁl)-

We can further expand the second exponential in the previous expression up to second order
in momentum, obtaining

V o —4ge— 2314 [1 ~ V3 (—PY + Pé)] . a7
We can then rewrite the modified equation (2) as
2 —2V3(1—4yH) 2 2
[(1 1 96V/372 Qe 2V3I=4) ) (—P% + P2)

18
—48e’2*/§(1’4"’2m/} z/J(equQ’,ﬁ’) -0 (18)

It is interesting to notice that the region in which the modification terms are relevant depends
on . In fact, the closer + is to the value 1/2, the more extended this region is and the more
relevant the correction terms are, as shown in figure 1. We will focus on the interval of ' in
which the modification is not negligible, since outside this region the same results as in [34]
apply.

Using the same factorization as in [28],

¢(elzfyzﬂl, ﬁl) — e\/guﬂ,X(Q/)’ (19)

we can write the previous equation up to second order in ~y as

& :
{dm =307 = (1= 96v/3y2 e 240

X486—2\/§(1—472)Q/i| X(Q/)

d? ~
= [_dglz = Vyw — 'YZV] x(©) =0, (20)
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Figure 1. Functions ©/e~2V3(1-4")2’ Notice that the interval of values of €’ in which
the corrections are not negligible depends on the value of . In particular, the closer v
is to the value 1/2, the more extended and large in magnitude the modification is. The

pick of this function is for Q' = WI*‘WZ)'

where
V., =302 + 48e 2V3(1-49)0" 2la)
V = —4608v/30 e +V3(1-4")9 21b)

The function V, ., in the limit v — 0, represents the potential of the standard WDWE equa-
tion (2). On the other hand, V represents the correction due to the modified commutation

relation. Notice that V is relevant only in an interval about the value Q' = m,
extension depends on the value of ~. In what follows, thus, we will focus our attention

whose

around this value. It is also interesting to notice that the correction does not depend on the
parameter v.
In this interval of values, the parameter v has a very interesting role. In fact, for values

7K %\/ 3 4’;/; 7 =~ 0.198, the potential is mainly dominated by the standard part, V.. On
the other hand, for values v > %, / 2413%, the term V dominates, introducing a well. This

is shown in figure 2. For the same reason, the position of the local minimum of the potential
shifts with ~y. It is given by the expression

()
min = 12(1 — 492) ’

where W(z) is the Lambert W function, solution of the equation z = we" with respect to

(22)

the variable w. This function admits real values only for z > —i. This motivates the bound
v > %, / 2433_% , as observed also in figure 3.

3. Harmonic oscillator approximation

It is worth now to investigate further on the behavior of the solution of equation (20) in the well

described above, that is for v > %\ / ﬁﬁ/z To do this, let us consider an expansion of the the
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Figure 2. Dependence of V, , + 42V on ~. Four cases are reported, namely for the
values v = 0, i.e. the standard case, v = 0.1, v = 0.3, v = 0.49. This last case is shown
also in figure (b), compared with the standard case, for clarity. Notice the well for this
last case, due to the predominance of 42V over A

potential about €/ . up to second order. In this case, with the substitution y = Q' — Q. . we
find an equation that clearly resembles that of a harmonic oscillator
d? )
{—@—lﬂ'ay }X(y)z(), (23)
with
2
3(1 — 4+2)? [W (_ \/6(916;?7 )> + 1]
a= — 4y ) (24a)
~2W2 (_ \/5(9]6;42172))
1 — 442
b=-3|v—
T 2w (-¥62) e
1 — 442
- ) (24¢)
Ve(1—-4+?)
24’}/2W2 <_ 69672')’ )
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Figure 3. Value of /. with respect to . The horizontal line, Qi ~ 0.28597,

min
corresponds to the smallest value for Q. The vertical line correspond to the bound
v = % \/ zﬁ% , related with the appearance of the well in equation (20). The asymptote
aty = 1/2 is due to the factor I — 442 in equation (22).

where b has the role of an energy. Notice that this analogy is more appropriate the smaller
b is, as long as it is positive. In other words, we require b > 0 to obtain a bound state or, in
terms of v,

\/(1 —42) [12W (—Vg(g’é;j”z)) + 6}

V(L)
129w (¥

v < — (25)

Notice that the rhs is not necessarily real. To obtain a real value for v, we need to impose the
following further condition on ~y

1 ;
T\ 121e (26)

Furthermore, this value for ~y is greater than the minimal value necessary to form a well in the

potential.
Continuing in this analogy, and using the following redefinitions
b
E=2, w=a, 27)

and, furthermore, considering an harmonic oscillator with & = m = 1, we have the following
relation for the energy levels

E:w(n—i—;) = b=+al2n+1), neN. (28)
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Figure 4. Argument of the square root in equation (29) for several values of n. The
vertical line corresponds to the value y = % A/ %Z/Z , while the dashed line corresponds
toy = % 1o - Notice that, for large n, the square root is real only for values v — 1 /2.
In other words, for values of « approaching 1/2, arbitrarily large numbers of bound
states are allowed.

This relation imposes a quantization rule for the parameter v for a given value of ~

Ve(l-4v?)
Vi [ ()

2v6 W (7%7472))

\/(1 a2 [ W (-G ) 1]

—4~2
’)’W (_ \/6(9167‘2w ))

1/2

+8V3(2n + 1) (29)

Also in this case, looking for real values of v gives constraints on y and the number of possible
bounds states, as seen in figure 4. Numerically, one finds that a first bound state is allowed for
v > 0.268 593, two bound states appear when v > 0.343 239, three for v > 0.379 114, and so
forth. In general, a larger number of bound states are allowed for larger values of -y, provided
that v < 1/2. In the limit v — 1/2, an infinite ladder of bound states is present.

Perturbing the approximation

For a better study of the effects of the proposed quantization rule, we will retain terms up to
fourth order in €’ in equation (20). Using the same substitution above, we can write

d2
{zb+ay2+cy3+dy4}x(y)—0, (30)
dy
with
Ve(l-4%)
3w (U Ly
c=—2V3(1 — 42)* { ( l ) ) } , (3la)

— 2
A2W2 (_ x/5(916742w )
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Figure 5. Energies and corresponding corrections to bound states described by
equations (23) and (30) for v = 0.449. Horizontal lines describe the energy levels
for 4 particular values of the occupation number (indicated on the plot.) Thin lines
correspond to the energy as computed via equation (27), while thicker lines are the
corrected energy, considering the term in equation (32). Finally, in the plot, the blue
line corresponds to the full potential in equation (20), the orange line correspond to
the second order expansion in ' about €, . and the green one is the fourth order
expansion.

_V/e(1-44%)
d=3(1 — 42 [W:ZEVZ (96\;;9167;:)12} . (31b)

When these extra terms are small compared to the one already analyzed, one can use perturba-
tion theory to compute the correction to the energy levels.

In general, when n bound states are allowed, the energy of the nth state will be corrected
by a term

Ve(—47)
6n* + 6n + 3 , W (_ 5oy ) +12

2
ey = ——— (1 =477
4 W (=) 41

(32)

Notice that, for \/24+73/2 < 27 < 1, these corrections are always positive and their magnitude

increase quadratically with the occupation number 7, as shown in figure 5.
Moreover, in general, if n bound states are allowed, the correction to the mth state is

nml
2

" (s]ex® 4 dx|m) (m 4 2u 4 1|x*|m) (m 4 20|x*|m)
= E —_— = E c—————|m+2u+1 E d + 20
Inm(1)> =0 E, — E: _ I_ Em - Em+2u+] ‘ o Em - Em+2v ‘ >
s#Em -

N\+

v#()

() ] o ()

BV W (V) 1}5/4

= (1-4%)
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vm3 A/ (m+1 3
e \m—3>—3m3/2|m—1)+3(m+1)3/2|m+1>+¥|m+3>

1773 3

—(1 —492)? {7W (_\/6(916;742”2)) + 12] AW (_\/6(916;7421»%))

s [w () 1)

m 4
x *@‘mfﬁ72\/rﬁ(2m72+1)\m*2>+2 (m+1>2lm+2>+\/(zT1)""+4> '

(33)

4. Conclusion and outlook

Summarizing what has been found in this work, we have considered the Kantowski—Sachs
model in the context of quantum cosmology with a modified quantization rule. In doing so,

one of the most interesting results is that, for v < 1/2 but v > %\ / zﬁ%, this modification
has a deep impact only on a relatively restricted region of the coordinate space. Furthermore,
it is interesting to observe that this region, for a wide range of values of -, is very close to or
includes the most probable value for the variable (2 as found in [28]. Therefore, it has a con-
crete influence on the considered model. Furthermore, we have noticed that, for a particular
interval of the modification parameter, a well appears in the quantum potential character-
izing the system. The presence of this well is a completely novel aspect of the application
of this modification with respect to the standard quantum analysis of the Kantowski—Sachs
minisuperspace model. Because of this feature, the solution in that particular region and for
given values of the parameter ~ can be expressed in terms of harmonic oscillator states, the
number of which depends on + itself.

The importance of these results goes well beyond the cosmological aspects of Kantowski—
Sachs model. In fact, as mentioned above, this model would represent a possible quantum
description of a spherically symmetric black hole [39]. Therefore, continuing the works in
[40—42], it would be possible to use the results presented in this paper to further study these
effects on quantum black hole models. In particular, the application of GUP in this context
results in a minimal uncertainty for €. In turn, it would result in a minimal uncertainty for the
radial coordinate of the black hole. This and further analyses will be pursued in future works.
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