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Abstract
A Kantowski–Sachs model with a modified quantization prescription is 
considered. Such quantization rules, inspired by the so-called generalized 
uncertainty principle, correspond to a modified commutation relation between 
minisuperspace variables and their conjugate momenta. For a wide range of the 
modification parameter, this approach differentiates from the standard results 
by the presence of a potential well in the corresponding Wheeler–DeWitt 
equation. This then produces the appearance of a set of wave functions, with 
corresponding discrete energy spectrum.
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1.  Introduction

Among the most tenacious efforts in fundamental physics is the seek for a theory of quantum 
gravity (QG), that is, a theory that could give a quantum description of gravity. As of now, 
several candidates have been proposed, and the debate on the validity of one over the others is 
open. Despite the various theoretical possibilities to realize a theory of QG, no experimental 
evidence can direct us, nor any evidence of deviations from general relativity or quantum 
theories can help us in this task. Nonetheless, there are a series of features that we expect from 
a quantum theory of gravity. On of these features, when translated to low energy systems, 
consists in the existence of a minimal measurable length [1]. In fact, such a minimal length 
arises in different contexts, for example from string theory [2, 3], loop quantum gravity [4–6], 
and thought experiments in black hole physics [7, 8]. These common characteristics of several 
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theories of quantum gravity led to a phenomenological model consisting in a modification 
of the uncertainty principle. Such a model is known as the generalized uncertainty principle 
(GUP). It has been the subject of many studies, in the attempt to use it as a signature of QG, 
and has been compared with known phenomena and theories of modified gravity (see, e.g. 
[9–17]). A version of this model considers a modification of the Heisenberg algebra [18–21] 
to reproduce, via the Schrödinger–Robertson uncertainty relation, the desired minimal length. 
Notice that this modification can also be thought of as a modified quantization rule.

These effects are predicted to be important in systems with energies near the Planck scale. 
A particularly relevant example of such systems is the very early universe, in which quantum 
effects of gravity are expected to be dominant [22–24]. A special branch of this line of invest
igation is loop quantum cosmology, developed in the past years, where the framework of loop 
quantum gravity has been applied to cosmology [25, 26]. Therefore, Quantum Cosmology is 
the appropriate playground where this modified quantization rule is expected to be influential. 
Previous approaches to this field using the tools of canonical quantum gravity have investi-
gated various aspects of this construction with the purpose of studying quantum cosmologi-
cal models. In the past, several quantization procedures have been considered regarding this 
approximation (see, e.g. [27]). In particular, recent attempts have been directed towards a 
noncommutative deformation of quantum cosmology [28, 29], that is, descriptions in which 
variables do not commute. This resulted from proposals of noncommutativity in spacetime 
and from developments in M theory and string theory [30–32].

In the present work, thus, we implement a different perspective, proposing a quantization 
rule for the minisuperspace approximation [33, 34] in which the corresponding variables are 
considered to obey a similar commutation relation as in GUP. This will imply a modifica-
tion of the Wheeler–DeWitt equation (WDWE), governing the quantum cosmological model, 
characterizing a modified dynamics of the solution. Previous approaches from a different 
viewpoint have been pursued in [35–37]. It is worth noticing that this procedure does not 
directly implies a physical minimal length. Rather, it can be understood as imposing a minimal 
uncertainty in the minisuperspace variables.

As a particular case for this proposal, we will consider its effects on the Kantowski–Sachs 
model. As it is known, at the classical level it describes a homogeneous but anisotropic cos-
mological model, thus not relatable with the current description with the observable universe 
[38]. However, its relevance arises as well from the fact that it can describe a Schwarzschild 
black hole [39]. The wave function of the corresponding quantum model thus represents a 
quantum cosmology or a quantum black hole. The minisuperspace coordinates, at the present 
quantum stage, are not affected by their classical dependence on the time t or the radius r 
[38]. Thus, from now on, we will refer our analysis only at the level of the minisuperspace 
Kantowski–Sachs variables and their quantum evolution. This metric can be written as [34]

ds2 = −N2dt2 + e2
√

3βdr2

+ e−2
√

3βe−2
√

3Ω(dθ2 + sin2 θdφ2).
� (1)

The corresponding WDWE in the standard theory of quantum gravity is given by

e
√

3β+2
√

3Ω
[
−P2

Ω + P2
β − 48e−2

√
3Ω
]
ψ(Ω,β) = 0,� (2)

where

PΩ = −i
∂

∂Ω
, Pβ = −i

∂

∂β
,� (3)
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are the conjugate momenta to the variables Ω and β, respectively, and such that

[Ω, PΩ] = i, [β, PΩ] = 0, [Ω, Pβ ] = 0, [β, Pβ ] = i.� (4)

The solutions of equation (2) are given in terms of the modified Bessel function Kiν as follows

ψ±
ν (Ω,β) = e±iν

√
3βKiν(4e−

√
4Ω).� (5)

In what follows, we will revise the model above modifying the quantization relations in 
equation  (4). In particular, we will consider a different commutation relation between the 
variables {Ω,β} and the conjugate momenta. In fact, we will consider the model inspired by 
[18], for which

[qj, pk] = iδjk{1 + γ2plpl},� (6)

with

q1 = Ω, q2 = β, p1 = PΩ, p2 = Pβ ,� (7)

where γ  is some parameter with units of inverse PΩ and Pβ, and where we considered 
Einstein’s summation convention. For a more convenient treatment, we will introduce coordi-
nates q′

j  such that [q′j , pk] = iδjk, i.e. q′
j  and p k fulfill the same relations as those in equations (4). 

The momentum-space representation of the coordinate operators obeying equations (6) is

qj = i(1 + γ2pkpk)
∂

∂pj
= (1 + γ2pkpk)q′j .� (8)

Notice that in this model, the two coordinates do not commute

[qj, qk] = 2iγ2(1 + γ2plpl)( pjq′k − pkq′j) = 2γ2εjkpjqk,� (9)

where εjk  is the two-indices Levi-Civita symbol. Furthermore, in position-space we can write

qj = q′j(1 + γ2pkpk).� (10)

As we will see next, this modification is directly related with the form of the wave function 
ψ(Ω,β) in equation (2) introducing, for a particular range of values for the parameter γ , a 
well in the potential in equation (2). The effect of this modification is to modify the uncer-
tainty relation for the minisuperspace variables. In fact, it imposes a minimal uncertainty in 
these variables, thus resulting in a fuzy metric. As a consequence, this furthermore results in a 
notion of distance with a minimal uncertainty and, therefore, a minimal length.

This paper is structured as follows: in section 2, we will revise the WDWE for the Kantowski–
Sachs model with a modified quantization rule; in section 3, we will focus on a particular 
region of the variables, in which the modified potential associated with the Kantowski–Sachs 
model produces a more noticeable difference with the usual quantum behavior equation (5); 
finally, section 4 is devoted to conclusions and outlook.

2.  Kantowski–Sachs model with GUP

Following [28] and using the relations above, the potential term in equation (2) can be rewrit-
ten as

V = −48e−2
√

3Ω = −48e−2
√

3Ω′[1+γ2(−P2
Ω+P2

β)]

� −48e−2
√

3(1−4γ2)Ω′
e−2

√
3γ2Ω′(−P2

Ω+P2
β)e12iγ2Ω′PΩ ,

�
(11)
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where Zassenhaus formula

eA+B = eAeBe−
1
2 [A,B]e

1
6 ([A,[A,B]]+2[B,[A,B]]) · · · ,�

(12)

has been used and where only terms up to exponentials in γ2  have been retained. Using the 
substitution Ω′ = ex we find

−iΩ′ ∂

∂Ω′ = −i
∂

∂x
.� (13)

Therefore, assuming the following representation for the momentum operators

PΩ = −i
∂

∂Ω′ , Pβ = −i
∂

∂β′ ,� (14)

the last exponential above, equation (11), acts as a translation operator for the coordinate x, 
corresponding to a scaling of the coordinate Ω′

e12iγ2Ω′PΩψ(Ω′,β) = ψ(e12γ2
Ω′,β).� (15)

The potential above then becomes

Vψ(Ω′,β′) = −48e−2
√

3(1−4γ2)Ω′

× e−2
√

3γ2Ω′(−P2
Ω+P2

β)ψ(e12γ2
Ω′,β′).

� (16)

We can further expand the second exponential in the previous expression up to second order 
in momentum, obtaining

V � −48e−2
√

3(1−4γ2)Ω′
[
1 − 2

√
3γ2Ω′(−P2

Ω + P2
β)
]

.� (17)

We can then rewrite the modified equation (2) as
[(

1 + 96
√

3γ2Ω′e−2
√

3(1−4γ2)Ω′
) (

−P2
Ω + P2

β

)

−48e−2
√

3(1−4γ2)Ω′
]
ψ(e12γ2

Ω′,β′) = 0.
� (18)

It is interesting to notice that the region in which the modification terms are relevant depends 
on γ . In fact, the closer γ  is to the value 1/2, the more extended this region is and the more 
relevant the correction terms are, as shown in figure 1. We will focus on the interval of Ω′ in 
which the modification is not negligible, since outside this region the same results as in [34] 
apply.

Using the same factorization as in [28],

ψ(e12γ2
Ω′,β′) = e

√
3νβ′

χ(Ω′),� (19)

we can write the previous equation up to second order in γ  as
[

d2

dΩ′2 − 3ν2 −
(

1 − 96
√

3γ2Ω′e−2
√

3(1−4γ2)Ω′
)

×48e−2
√

3(1−4γ2)Ω′
]
χ(Ω′)

=

[
− d2

dΩ′2 − Vγ,ν − γ2Ṽ
]
χ(Ω′) = 0,

�

(20)
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where

Vγ,ν = 3ν2 + 48e−2
√

3(1−4γ2)Ω′
,� (21a)

Ṽ = −4608
√

3Ω′e−4
√

3(1−4γ2)Ω′
.� (21b)

The function Vγ,ν, in the limit γ → 0, represents the potential of the standard WDWE equa-
tion (2). On the other hand, Ṽ  represents the correction due to the modified commutation 

relation. Notice that Ṽ  is relevant only in an interval about the value Ω′ = 1
4
√

3(1−4γ2)
, whose 

extension depends on the value of γ . In what follows, thus, we will focus our attention 

around this value. It is also interesting to notice that the correction does not depend on the 
parameter ν .

In this interval of values, the parameter γ  has a very interesting role. In fact, for values 

γ � 1
2

√
e3/2

24+e3/2 � 0.198, the potential is mainly dominated by the standard part, Vγ,ν. On 

the other hand, for values γ � 1
2

√
e3/2

24+e3/2 , the term Ṽ  dominates, introducing a well. This 

is shown in figure 2. For the same reason, the position of the local minimum of the potential 
shifts with γ . It is given by the expression

Ω′
min =

√
3
[

1 − 2W
(
−

√
e(1−4γ2)

96γ2

)]

12 (1 − 4γ2)
,

� (22)

where W(z) is the Lambert W function, solution of the equation  z  =  wew with respect to 
the variable w. This function admits real values only for z > − 1

e. This motivates the bound 

γ > 1
2

√
e3/2

24+e3/2 , as observed also in figure 3.

3.  Harmonic oscillator approximation

It is worth now to investigate further on the behavior of the solution of equation (20) in the well 

described above, that is for γ > 1
2

√
e3/2

24+e3/2 . To do this, let us consider an expansion of the the 

Figure 1.  Functions Ω′e−2
√

3(1−4γ2)Ω′
. Notice that the interval of values of Ω′ in which 

the corrections are not negligible depends on the value of γ . In particular, the closer γ  
is to the value 1/2, the more extended and large in magnitude the modification is. The 

pick of this function is for Ω′ = 1
2
√

3(1−4γ2)
.
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potential about Ω′
min up to second order. In this case, with the substitution y = Ω′ − Ω′

min, we 
find an equation that clearly resembles that of a harmonic oscillator

{
− d2

dy2 − b + ay2
}
χ(y) = 0,� (23)

with

a = 3(1 − 4γ2)3

[
W

(
−

√
e(1−4γ2)

96γ2

)
+ 1

]

γ2W2
(
−

√
e(1−4γ2)

96γ2

) ,� (24a)

b = −3


ν2 − 1 − 4γ2

12γ2W
(
−

√
e(1−4γ2)

96γ2

)� (24b)

− 1 − 4γ2

24γ2W2
(
−

√
e(1−4γ2)

96γ2

)

 ,� (24c)

Figure 2.  Dependence of Vγ,ν + γ2Ṽ  on γ . Four cases are reported, namely for the 
values γ = 0, i.e. the standard case, γ = 0.1, γ = 0.3, γ = 0.49. This last case is shown 
also in figure (b), compared with the standard case, for clarity. Notice the well for this 
last case, due to the predominance of γ2Ṽ  over Vγ,ν.
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where b has the role of an energy. Notice that this analogy is more appropriate the smaller 
b is, as long as it is positive. In other words, we require b  >  0 to obtain a bound state or, in 
terms of ν ,

|ν| < −

√
(1 − 4γ2)

[
12W

(
−

√
e(1−4γ2)

96γ2

)
+ 6

]

12γW
(
−

√
e(1−4γ2)

96γ2

) .� (25)

Notice that the rhs is not necessarily real. To obtain a real value for ν , we need to impose the 
following further condition on γ

γ �
1
2

√
e

12 + e
.� (26)

Furthermore, this value for γ  is greater than the minimal value necessary to form a well in the 
potential.

Continuing in this analogy, and using the following redefinitions

E =
b
2

, ω =
√

a,� (27)

and, furthermore, considering an harmonic oscillator with � = m = 1, we have the following 
relation for the energy levels

E = ω

(
n +

1
2

)
⇒ b =

√
a(2n + 1), n ∈ N.� (28)

Figure 3.  Value of Ω′
min with respect to γ . The horizontal line, Ωmin � 0.285 97, 

corresponds to the smallest value for Ωmin. The vertical line correspond to the bound 

γ = 1
2

√
e3/2

24+e3/2 , related with the appearance of the well in equation (20). The asymptote 

at γ = 1/2 is due to the factor 1 − 4γ2 in equation (22).
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This relation imposes a quantization rule for the parameter ν  for a given value of γ

ν =

√
1 − 4γ2

2
√

6




2W
(
−

√
e(1−4γ2)

96γ2

)
+ 1

γ2W2
(
−

√
e(1−4γ2)

96γ2

)

+8
√

3(2n + 1)

√
(1 − 4γ2)

[
W

(
−

√
e(1−4γ2)

96γ2

)
+ 1

]

γW
(
−

√
e(1−4γ2)

96γ2

)




1/2

.

�

(29)

Also in this case, looking for real values of ν  gives constraints on γ  and the number of possible 
bounds states, as seen in figure 4. Numerically, one finds that a first bound state is allowed for 
γ > 0.268 593, two bound states appear when γ > 0.343 239, three for γ > 0.379 114, and so 
forth. In general, a larger number of bound states are allowed for larger values of γ , provided 
that γ < 1/2. In the limit γ → 1/2, an infinite ladder of bound states is present.

Perturbing the approximation

For a better study of the effects of the proposed quantization rule, we will retain terms up to 
fourth order in Ω′ in equation (20). Using the same substitution above, we can write

{
− d2

dy2 − b + ay2 + cy3 + dy4
}
χ(y) = 0,� (30)

with

c = −2
√

3(1 − 4γ2)4

[
3W

(
−

√
e(1−4γ2)

96γ2

)
+ 4

]

γ2W2
(
−

√
e(1−4γ2)

96γ2

) ,� (31a)

Figure 4.  Argument of the square root in equation  (29) for several values of n. The 

vertical line corresponds to the value γ = 1
2

√
e3/2

24+e3/2 , while the dashed line corresponds 

to γ = 1
2

√
e

12+e . Notice that, for large n, the square root is real only for values γ → 1/2. 

In other words, for values of γ  approaching 1/2, arbitrarily large numbers of bound 
states are allowed.
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d = 3(1 − 4γ2)5

[
7W

(
−

√
e(1−4γ2)

96γ2

)
+ 12

]

γ2W2
(
−

√
e(1−4γ2)

96γ2

) .� (31b)

When these extra terms are small compared to the one already analyzed, one can use perturba-
tion theory to compute the correction to the energy levels.

In general, when n bound states are allowed, the energy of the nth state will be corrected 
by a term

εn,(1) =
6n2 + 6n + 3

4
(1 − 4γ2)2

7W
(
−

√
e(1−4γ2)

96γ2

)
+ 12

W
(
−

√
e(1−4γ2)

96γ2

)
+ 1

.� (32)

Notice that, for 
√

e3/2

24+e3/2 < 2γ < 1, these corrections are always positive and their magnitude 

increase quadratically with the occupation number n, as shown in figure 5.
Moreover, in general, if n bound states are allowed, the correction to the mth state is

|ηm,(1)〉 =
n∑

s=0
s�=m

〈s|cx3 + dx4|m〉
Em − Es

=

� n−m−1
2 �∑

u=−� m+1
2 �

c
〈m + 2u + 1|x3|m〉

Em − Em+2u+1
|m + 2u + 1〉+

� n−m
2 �∑

v=−� m
2 �

v�=0

d
〈m + 2v|x4|m〉
Em − Em+2v

|m + 2v〉

= (1 − 4γ2)3/4

[
3W

(
−

√
e(1−4γ2)

96γ2

)
+ 4

]√
γW

(
−

√
e(1−4γ2)

96γ2

)

33/4
√

2
[
W

(
−

√
e(1−4γ2)

96γ2

)
+ 1

]5/4

Figure 5.  Energies and corresponding corrections to bound states described by 
equations  (23) and (30) for γ = 0.449. Horizontal lines describe the energy levels 
for 4 particular values of the occupation number (indicated on the plot.) Thin lines 
correspond to the energy as computed via equation  (27), while thicker lines are the 
corrected energy, considering the term in equation (32). Finally, in the plot, the blue 
line corresponds to the full potential in equation  (20), the orange line correspond to 
the second order expansion in Ω′ about Ω′

min, and the green one is the fourth order 
expansion.
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×


−

√
m3

3
|m − 3〉 − 3m3/2|m − 1〉+ 3(m + 1)3/2|m + 1〉+

√
(m + 1)3

3
|m + 3〉




−(1 − 4γ2)2

[
7W

(
−

√
e(1−4γ2)

96γ2

)
+ 12

]
γW

(
−

√
e(1−4γ2)

96γ2

)

8
√

3
[
W

(
−

√
e(1−4γ2)

96γ2

)
+ 1

]3/2

×


−

√
m4

2
|m − 4〉 − 2

√
m2(2m − 2 + 1)|m − 2〉+ 2

√
(m + 1)2|m + 2〉+

√
(m + 1)4

2
|m + 4〉


 .

� (33)

4.  Conclusion and outlook

Summarizing what has been found in this work, we have considered the Kantowski–Sachs 
model in the context of quantum cosmology with a modified quantization rule. In doing so, 

one of the most interesting results is that, for γ � 1/2 but γ � 1
2

√
e3/2

24+e3/2 , this modification 

has a deep impact only on a relatively restricted region of the coordinate space. Furthermore, 
it is interesting to observe that this region, for a wide range of values of γ , is very close to or 
includes the most probable value for the variable Ω as found in [28]. Therefore, it has a con-
crete influence on the considered model. Furthermore, we have noticed that, for a particular 
interval of the modification parameter, a well appears in the quantum potential character-
izing the system. The presence of this well is a completely novel aspect of the application 
of this modification with respect to the standard quantum analysis of the Kantowski–Sachs 
minisuperspace model. Because of this feature, the solution in that particular region and for 
given values of the parameter γ  can be expressed in terms of harmonic oscillator states, the 
number of which depends on γ  itself.

The importance of these results goes well beyond the cosmological aspects of Kantowski–
Sachs model. In fact, as mentioned above, this model would represent a possible quantum 
description of a spherically symmetric black hole [39]. Therefore, continuing the works in 
[40–42], it would be possible to use the results presented in this paper to further study these 
effects on quantum black hole models. In particular, the application of GUP in this context 
results in a minimal uncertainty for Ω. In turn, it would result in a minimal uncertainty for the 
radial coordinate of the black hole. This and further analyses will be pursued in future works.
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