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Abstract
The recently published GWTC-1 (Abbott B P et  al (LIGO Scientific 
Collaboration and Virgo Collaboration) 2019 Phys. Rev. X 9 031040)—a 
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journal article summarizing the search for gravitational waves (GWs) from 
coalescing compact binaries in data produced by the LIGO-Virgo network of 
ground-based detectors during their first and second observing runs—quoted 
estimates for the rates of binary neutron star, neutron star black hole binary, and 
binary black hole mergers, as well as assigned probabilities of astrophysical 
origin for various significant and marginal GW candidate events. In this paper, 
we delineate the formalism used to compute these rates and probabilities, 
which assumes that triggers above a low ranking statistic threshold, whether 
of terrestrial or astrophysical origin, occur as independent Poisson processes. 
In particular, we include an arbitrary number of astrophysical categories by 
redistributing, via mass-based template weighting, the foreground probabilities 
of candidate events, across source classes. We evaluate this formalism on 
synthetic GW data, and demonstrate that this method works well for the kind 
of GW signals observed during the first and second observing runs.

Keywords: gravitational waves, LIGO, rates of compact binary mergers

(Some figures may appear in colour only in the online journal)

1.  Introduction

The detection of gravitational waves from a coalescing black hole binary, on September 14, 
2015, by the Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory) network 
of ground based detectors, announced the arrival of gravitational-wave astronomy [2, 3]. Since 
then, a number of additional gravitational-wave detections have been made. These include 10 
from merging binary black holes (BBHs) [1, 4–7] and 1 from a coalescing binary neutron star 
[8] that also produced an electromagnetic counterpart amply identified by a number of tele-
scopes worldwide [9]. All of these detections are reported in ‘GWTC-1: a gravitational-wave 
transient catalog of compact binary mergers observed by LIGO and Virgo during the first and 
second observing runs’ [1]. We will refer to these observing runs as O1 and O2.

A plethora of interesting astrophysical questions can now be asked, and answered with 
appropriately quantified uncertainties. Among them is the question: how many compact binary 
coalescence (CBC) events, of a specific astrophysical source class, occur per unit spacetime 
volume? The determination of these coalescence rates is a high-profile science target of the 
LIGO-Virgo collaboration, and for good reason. Prior to the first gravitational-wave detection, 
estimates of BBH merger-rates spanned many orders of magnitude [10]. These were based on 
population models that remained unconstrained due to a paucity of electromagnetic observa-
tions. GW events allow these rates to be better constrained in a largely model-independent 
manner. Using the results from O1 and O2, credible intervals and upper limits on the rate of 
binary black hole (BBH), neutron star—black hole (NSBH) binary, and binary neutron star 
(BNS) mergers have been previously published in [5, 8, 11–14].

The rates (at 90% confidence) for the same astrophysical source classes were re-estimated 
after O2, details of which may be found in [1], which we shall hereafter call the ‘cata-
log’. The BNS merger rate was updated to 110–3840 Gpc−3 yr−1, the BBH merger rate to 
9.7–101 Gpc−3 yr−1, and a rate upper limit for NSBH mergers was placed at 610 Gpc−3 yr−1. 
The goal of this write-up is to serve as a complement to the catalog. In particular, we delineate 
the formalism and method used to determine the rates of compact binary mergers, and prob-
abilities of astrophysical origin for various highly significant events in O1 and O2, quoted in 
the catalog for the GstLAL search [15].
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The method we present in this paper is a non-trivial extension of one that was developed in 
the context of gravitational wave data analysis by Farr, Gair, Mandel and Cutler (henceforth 
FGMC) [16]. (Note that a related formalism was developed earlier, in the context of gamma-
ray burst data analysis [17]). The FGMC formalism itself is an application of Poisson statistics 
to determine the rate of astrophysical events when supplied with a mixture of foreground and 
background events, given that the foreground and background models are known (or assumed) 
even though the membership of each event to either one of these classes is unknown.

The FGMC formalism was employed in the determination of BBH rates using data from 
O1 [11]. The scarcity of confirmed BBH detections prompted the use of a method prescribed 
by Kim et al [18] where each BBH detected was assumed to be a distinct astrophysical source. 
On the other hand, the rate upper limits of BNS and NSBH mergers were computed by for-
mally assuming that exactly zero BNS and NSBH events occurred during observation time, 
and then employing the Poisson distribution for zero events [14]. This assumption is based on 
the fact that no BNS and NSBH events, with a false alarm rate (FAR) of less than 1/100 years, 
were found. While changing the threshold by a few orders of magnitude does not vastly alter 
the results [14], the choice of threshold is in itself somewhat arbitrary.

What we propose, as an alternative to what was done in O1, is a self consistent, threshold-
independent, counting method that simultaneously estimates the rates of BNS, NSBH and 
BBH mergers. In essence, this method extends the FGMC formalism by constructing a joint 
posterior on the Poisson expected counts for an arbitrary choice of foreground categories by 
redistributing, via mass-based template-weighting, the foreground probabilities of candidate 
events across astrophysical source classes. Thus, the method presented here, while used in 
the catalog paper to handle the three astrophysical categories mentioned above, can handle 
any number of categories. For example, it could set limits on the rates of BBH mergers in the 
proposed mass gaps [19] and possibly including a higher mass black hole region too.

The template-weights themselves are computed from simulation runs (software injec-
tion campaigns), each targeted at a distinct astrophysical source type. An injection campaign 
involves adding synthetic signals pertaining to a source class with clearly defined mass and 
spin distributions, into the detector data, and recovering them via a detection pipeline. To 
construct the weights, we count how many times injections of a given category are recovered 
in a given template bin and divide this by the total number of recovered injections pertaining 
to that category.

In the following sections, we describe this ‘multi-component’ extension of the FGMC 
method, by first constructing the joint posterior on the Poisson expected counts for each 
source category, followed by details on how to estimate the spacetime volume sensitivities 
of the detectors to each of the source categories and how to incorporate uncertainties in their 
measurements into the rates posterior. We then apply this extension to synthetic data, in order 
to assess its ability to accurately categorize and count a mixture of CBC signals. We end by 
summarizing the multi-component FGMC method, evaluating its performance, and suggest-
ing other applications of the method.

2.  Constructing the multi-component counts posterior from candidate events

2.1.  Posterior on terrestrial and astrophysical counts

The original FGMC method [16] constructs a two-component likelihood on the expected 
number of astrophysical (Λ1) and terrestrial (Λ0) counts, per experiment, assuming that the 
foreground and background triggers above a low ranking statistic threshold where background 

S J Kapadia et alClass. Quantum Grav. 37 (2020) 045007



4

triggers15 dominate, occur as independent Poisson processes. More specifically, the expected 
counts (Λ) referred to here are the Poisson means for the duration of the experiment (the total 
observing time), given which one can compute the discrete probability distribution on the 
number k of occurrences of events :

p(k|Λ) ∝ Λk exp(−Λ).� (1)

The two-component FGMC likelihood has the following form [16]:

p(�x|Λ0,Λ1) = e−Λ0−Λ1

N∏
j=1

[Λ0b(xj) + Λ1f (xj)]� (2)

where �x = {xj}, j = 1, 2, 3, ..., N , are the ranking statistics of the triggers above threshold, and 
b(xj), f (xj) are the background and foreground distributions (normalized density functions, 
also called the background and foreground models), evaluated at xj  (b(xj) ≡ p(xj|noise) and 
f (xj) ≡ p(xj|signal)). It is worth noting here that the foreground count Λ1 is directly propor-
tional to the astrophysical rate of mergers R, which can be determined if the population aver-
aged spacetime volume sensitivity 〈VT〉 of the detector is known:

Λ1 = R · 〈VT〉.� (3)

The FGMC likelihood may therefore also be written in terms of R and 〈VT〉. One is thus at 
liberty to choose a prior, either on Λ1, or on R and VT  jointly. We will come back to this in 
an upcoming section where we discuss incorporating uncertainties in the measurement of the 
spacetime volume sensitivity into the rates posteriors. For the moment, we proceed by choos-
ing a prior on Λ0,Λ1, and writing the FGMC posterior [11, 16]:

p(Λ0,Λ1|�x) ∝ p(Λ0,Λ1)e−Λ0−Λ1

N∏
j=1

[Λ0b(xj) + Λ1f (xj)]� (4)

where p(Λ0,Λ1) is the prior on the counts. We wish to extend this method to include an arbi-
trary number of astrophysical components (BNS, NSBH, BBH, possibly others), in place of a 
single aggregated astrophysical component.

2.2.  Multi-component counts posterior

To a very good approximation, the foreground distribution of ranking statistics is independent 
of source category [12, 20, 21]. Symbolically:

p(x|α) ≈ p(x|signal)� (5)

where α is an astrophysical source category. However, it is necessary to re-weight the fore-
ground distribution with source-category specific weights Wα(x). This re-weighting would 
allow us to split the foreground distribution into multiple, source-specific foreground distribu-
tions fα(x), where x could now encapsulate multiple properties of a trigger, and not necessar-
ily only the ranking statistic. The general mathematical form of the posterior becomes:

p(Λ0, �Λ1|�x) ∝ p(Λ0, �Λ1)e−Λ0−�Λ1·�u ·
N∏

j=1

[Λ0b(xj) +�f (xj) · �Λ1]� (6)

15 A trigger is a gravitational wave candidate event acquired during a templated matched-filtering based analysis of 
detector strain data. A background trigger is one that was most likely produced by terrestrial processes.
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where �f (x) ≡ {fα(x)} (for α = {BNS, NSBH, . . .}) is a vector of source-specific foreground 
distributions, �Λ1 ≡ {Λα} (for α = {BNS, NSBH, . . .}) is a vector of source-specific Poisson 
expected counts, and �u  is a vector of 1s (see appendix A).

Gravitational waves from different CBC sources are expected to activate (ring-up) tem-
plates from different (though not necessarily disjoint) regions of a template-bank’s parameter 
space. By dividing the template bank into multiple bins (which we denote as m), we can assign 
to each trigger source-specific template-weights based on the bin in which the template lives. 
As derived in appendix A, the source-specific foreground distributions are constructed using 
template-weights and bin-dependent foreground distributions:

fα(x) ≡ p(L, m | α) ≈ p(L | m, signal) · Wα(m).� (7)
Assuming that the detector data was analyzed with the GstLAL detection pipeline [15, 22], L 
is the log-likelihood-ratio ranking statistic [23], m is the bin number, Wα(m) ≡ p(m | α) are 
the bin-dependent template weights, and p(L | m, signal) are the bin-dependent foreground 
distributions. On the other hand, the background distribution is given by:

b(x) ≡ p(L, m | noise) = p(L | m, noise) · W0(m)� (8)

where W0(m) ≡ p(m | noise).
It is convenient to define source-specific Bayes-factors for a trigger x, using the foreground 

and background distributions evaluated at x’s ranking statistic value L, as well as the template 
weights:

�K(x) ≡
�f (x)
b(x)

=
p(L |m, signal)
p(L | m, noise)

�W1(m)

W0(m)
� (9)

where �W1(m) = {WBNS(m), WNSBH(m), . . .}. The multi-component counts posterior can now 
be written more compactly as:

p(Λ0, �Λ1|�x) ∝ p(Λ0, �Λ1)e−Λ0−�Λ1·�u ·
N∏

j=1

[Λ0 + �Λ1 · �K(xj)].� (10)

2.3.  Useful approximations to the multi-component counts posterior

In this section, we recast the counts posterior (10) in approximate forms that make it compu-
tationally efficient to marginalize out the terrestrial count Λ0.

If the number of candidate events is sufficiently large (N � 1), and the number of back-
ground events vastly exceeds the number of foreground events, then, using the method of 
Laplace:

ΛN
0 e−Λ0 ≈ NNe−Ne−(Λ0−N)2/(2N).� (11)

The multi-component counts posterior then assumes the form:

p(Λ0, �Λ1|�x) ∝ NNe−Ne−(Λ0−N)2/(2N)p(Λ0, �Λ1)e−
�Λ1·�u ·

N∏
j=1

[1 +
�Λ1

Λ0
· �K(xj)].

� (12)
From the perspective of determining astrophysical rates, the posterior on the terrestrial counts 
is generally not of much interest, and is usually marginalized out. Writing the multi-component 
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posterior in the above form makes the marginalization over terrestrial counts amenable to 
Gauss-Hermite quadrature.

A further simplification to the counts posterior can be written down, again in the limit of 
large N dominated by background events. In this simplification, the posterior on the terrestrial 
count is modeled as a Dirac-delta function centered on N. Thus, when marginalizing out the 
terrestrial count, the multi-component counts posterior assumes the form:

p(�Λ1|�x) ∝ p(N, �Λ1)e−
�Λ1·�u ·

N∏
j=1

[1 + �Λ1 ·�k(xj)]� (13)

where �k(x) ≡ �K(x)
N  is the reduced Bayes factor for trigger x.

Note that kα(xj) � 1 for the majority of triggers, since the majority are background events. 
Conversely, kα(xj) � 1 for certain highly significant foreground events, i.e. events that are 
almost unambiguously of astrophysical category α.

2.4.  Bin-dependent template weights

The key to constructing the multi-component counts posterior is to determine the weights 
Wα(m) ≡ p(m|α), which is a measure of how the astrophysical signals of a specific source 
category distribute themselves in the template bank. This subsection outlines how these 
weights are approximately computed for the GstLAL detection pipeline.

The GstLAL pipeline splits the template bank into sub-banks (which we simply refer to 
as bins) [24], in the ‘M− χeff’ space, where M is the template’s chirp mass, and χeff  is the 
template’s effective spin parameter. The chirp mass is defined as:

M =
(m1m2)

3/5

(m1 + m2)1/5� (14)

and the effective spin parameter is defined as:

χeff =
m1χ1 + m2χ2

m1 + m2
� (15)

with m1, m2,χ1,χ2 as the component masses and spin angular momenta (or more precisely, 
their components parallel to the orbital angular momentum) of the binary.

While this binning was originally designed to speed-up the extraction of GW signals from 
detector data, one can also exploit it for the construction of template-weights and the multi-
component counts posterior.

These bins can be thought of as coarse-grained templates; when a template is ‘rung-up’, the 
corresponding bin in which it lives is said to be ‘activated’. Thus, during a run, we can count 
the number of times each bin gets activated, and thus determine an ‘activation count’ for each 
bin. Intuitively, one can see that signals from a specific astrophysical source-class will tend 
to predominantly activate only a subset of all the bins. BNS signals for example will tend to 
activate low-mass bins, whereas BBH signals will tend to activate high-mass bins.

Now, suppose we run distinct injection campaigns targeted at specific source categories 
(BNS, NSBH, BBH, ...). In other words, we inject simulated waveforms of a specific source 
class, and recover these injections using the binned template bank. Considering only those 
injections that were recovered with false alarm rate (FAR) of less than 1/30 days, we deter-
mine activation counts Aα, (α = 1, 2, ..., Q, where Q is the total number of astrophysical cat-
egories) corresponding to these injections, and construct a set of weights as follows:

S J Kapadia et alClass. Quantum Grav. 37 (2020) 045007
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Wα(m) =
Aα(m)∑Nbins−1

m=0 Aα(m)
� (16)

where m is the bin number and Nbins is the total number of bins. (Note that GstLAL-based 
CBC rate estimations quoted in the catalog paper were computed with analyses that split the 
template bank into 686 bins. A visual representation of these weights is shown in figure 1.)

To define specific source categories, injection campaigns were designed to reflect the 
choices made for parameter boundaries of the astrophysical sources in the catalog paper. The 
BNS source category included neutron stars with component masses mi distributed uniformly 
in lnmi  between 1 � mi/M� � 3.0 such that the total mass M was less than 6.0M�. The 
lower mass limit is motivated by a 6σ deviation from masses of components in double neutron 
star systems [25] while the upper mass limit is motivated by certain models and observations 
which allow neutron stars to form up to 3M� [26–30]. Spin vectors for BNS components 
were allowed to be isotropic in direction and uniform in magnitude, with a maximum allowed 
spin magnitude of 0.4. This maximum magnitude constraint is motivated by observations of 
the fastest spinning pulsar with χ � 0.4 [31]. The BBH source category included black holes 
with component masses distributed uniformly in lnmi  between 5 � mi/M� � 50 such that 
M � 100M�. The lower mass limit is motivated by the possible existence of a minimum 
black hole mass [32–34] while the upper mass limit is motivated by evidence of an upper cut-
off in the BBH mass spectrum based on the first few LIGO detections [35–37]. Spin vectors 
for BBH components were allowed to be isotropic on the sphere with a maximum allowed 
spin magnitude of 0.99. The relativistic Kerr bound provides a theoretical constraint on black 
hole spin magnitude of 1.0 although we are also constrained by the limit of the waveform 
approximant. The NSBH source category included neutron stars with component masses dis-
tributed uniformly in lnm1 between 1.0 � m1/M� � 3.0 and black holes with component 
masses distributed uniformly in lnm2 between 5.0 � m2/M� � 100.0. The total mass for the 
NSBH category was constrained to M � 103.0M�. Both the NS and BH components were 
allowed to be isotropic on the sphere with maximum allowed spin magnitudes of 0.4 and 0.99, 
respectively. These mass and spin limits are motivated by the NS and BH observations and 
theoretical constraints already mentioned16.

Injections in each source category were distributed uniformly in co-moving volume out to 
redshift of 0.2 for BNS and NSBH and out to 0.7 for BBH. In order to maximize the number 
of recoverable injections included in the injection campaign, an initial cut on expected signal-
to-noise ratio less than 3.0 was applied to exclude injections that would be too far away or in 
a poor sky location for either of the Hanford or Livingston detectors. The parameters of these 
injections were tabulated and stored as unrecoverable.

2.5.  Probability of astrophysical origin

From the original, two-component, FGMC counts posterior, one can compute the posterior 
probability that an event, with foreground and background distribution values f (x) and b(x), 
evaluated at the event’s ranking statistic x, is of astrophysical origin, given the data �x  [11]:

16 To ensure appropriate coverage of the component mass space, an additional injection set where at least one of 
the components lies in the range 3–5M�, was constructed. The masses were distributed uniformly in ln mi , with the 
other component spanning 1–100M�. The spins were assumed to be isotropic, with a maximum value of 0.4 for the 
first component, and 0.99 for the latter.

S J Kapadia et alClass. Quantum Grav. 37 (2020) 045007
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P1(x |�x) =
∫ ∞

0
p(Λ0,Λ1 |�x)

Λ1f (x)
Λ0b(x) + Λ1f (x)

dΛ0dΛ1.� (17)

Its complementary quantity is the posterior probability P0(x | �x) that the same event origi-
nated from the Earth, with P0(x) + P1(x) = 1.

These posterior probabilities can be straightforwardly extended to the case when we have a 
multi-component counts posterior. The source-specific foreground distributions of the multi-
component posterior allow one to compute posterior probabilities pertaining to specific astro-
physical source categories:

Pα(x|�x) =
∫ ∞

0
p(Λ0, �Λ1|�x)

ΛαKα(x)

Λ0 + �Λ1 · �K(x)
dΛ0d�Λ1.� (18)

The complementary terrestrial posterior probability is once again related to the astrophysi-
cal probabilities via P0(x|�x) +

∑
α Pα(x | �x) = 1, where α is summed over all astrophysical 

source categories corresponding to the multi-component posterior.
Astrophysical probabilities of candidate events are of considerable interest, from the per-

spective of following up gravitational wave events with telescopes sensitive to various parts of 
the electromagnetic spectrum. For instance, if PBNS were high, the probability that this event 

Figure 1.  The panels in this figure show how often each of the 686 non-overlapping 
regions of the template bank, denoted by a bin number, get ‘rung up’ when recovering 
BNS, NSBH, and BBH signals. An estimate of how background events distribute 
themselves in the template bank is also given; this estimate is evaluated by GstLAL 
when analyzing real detector data devoid of synthetic signals. The weights Wα(m), 
α = { BNS, NSBH, BBH, 0 }, m = {0, 1, . . . , 685} (see equation (16)) are determined 
from these histograms. (a) BNS. (b) NSBH. (c) BBH. (d) Background.
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would produce an electromagnetic counterpart also becomes high; such information could 
therefore be of great value to astronomers interested in hunting for electromagnetic signals 
associated with GWs, if reported with a sufficiently low latency from the time of occurrence 
of a GW candidate event.

With low-latency in mind, it is possible to re-write astrophysical probabilities as a function 
of the mean values of the Poisson expected counts. We define the mean values in the standard 
way:

〈Λα〉 =
∫ ∞

0
Λαp(Λ0, �Λ1|�x)dΛ0d�Λ1.� (19)

Suppose now we have a set of N candidate events �xN = {x0, x1, . . . , xN−1}, from which we 
compute the mean value for the terrestrial Poisson count 〈Λ0〉N and astrophysical Poisson 
counts 〈�Λ1〉N = {〈Λ1〉, 〈Λ2〉, . . . , 〈ΛQ〉}. The astrophysical probability, for category α, of a 
new candidate event xN+1 can now be computed as (see appendix B):

Pα(xN+1|�xN+1) =
〈Λα〉NKα(xN+1)

〈Λ0〉N + 〈�Λ1〉N · �K(xN+1)
.� (20)

The above expression can be readily derived using equations  (18) and (B.7). Thus, if the 
mean values 〈Λ0〉N and 〈�Λ1〉N are pre-computed, then the the astrophysical probabilities 
Pα(xN+1|�xN+1) for a new candidate event can be computed almost instantaneously using only 
a handful of floating point operations. (Of course, the mean values would then need to be 
updated using equation (B.12)).

3.  Determining the spacetime-volume sensitivity 〈VT 〉

In order convert the posterior on counts to a posterior on rates, we need to determine the popu-
lation averaged spacetime volume sensitivity 〈VT〉α of the detectors, for every astrophysical 
source category α. This sensitivity is written as [1]:

〈VT〉α = T
∫

dzdθ
dVc

dz
1

1 + z
pα(θ) f (z, θ)� (21)

where T is the duration over which the sensitivity is estimated, z is the redshift, Vc  is the co-
moving volume, pα(θ) is an assumed distribution of source-parameters θ for source-category 
α, and f (z, θ) is a selection function that estimates how likely it is to detect sources with 
parameters θ at redshift z.

The above quantity is typically estimated using Monte-Carlo integration. Simulated signals 
(injections), with parameters drawn from pα(θ) and placed in redshift assuming standard cos-
mology, are added to the detector data. They are then searched for by the GstLAL pipeline, 
and assigned Bayes factors �K(x). An estimate is then made of the number of injections that 
were recovered, Nrec. Since the number that was injected, N inj

α , and the spacetime volume into 
which the injections were made, 〈VT〉inj

α , are both known, the measured spacetime volume is 
simply the injected spacetime volume re-scaled by the ratio of number-recovered to number-
injected [38]:

〈VT〉α =
Nrec

N inj
α

〈VT〉inj
α .� (22)

S J Kapadia et alClass. Quantum Grav. 37 (2020) 045007
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The crucial step then in the evaluation of the sensitive spacetime volume is the determina-
tion of Nrec. In order to be consistent with the way the multicomponent counts posterior was 
constructed, we choose the same low-ranking statistic threshold when counting the number of 
recovered injections. However, it is not trivial to map a given trigger to an injection, and count 
that trigger as a recovered injection, given the low ranking statistic threshold used and the 
resulting preponderance of background triggers. We therefore propose the following method. 
(Note that a similar method, using the two-component counts posterior, was used for the 
determination of 〈VT〉, in [5].)

Let [x1, ..., xN ] be the list of triggers produced during a search, and let [γ1, γ2, ..., γI ] be the 
list of triggers produced during the injection campaign. Suppose now we include one trigger 
from the injection campaign, to the list of triggers from the search. We now have the follow-
ing list [x1, x2, ..., xN , γi]. The contribution of γi  to the mean value of the count for category 
α can be computed using equation (B.10). We also compute the contributions to the mean 
values pertaining to all the other astrophysical source categories, due to γi , and determine an 
aggregated contribution:

∆Λγi =
∑
α

covN(Λ0,Λα) +
∑

β covN(Λα,Λβ)Kβ(γi)

〈Λ0〉N +
∑

β Kβ(γi)〈Λβ〉N
� (23)

where both α and β are summed over astrophysical source categories, and covN  is defined in 
appendix B.

We repeat this procedure for all triggers from the injection campaign, adding each one 
separately (with replacement) to the triggers from the search, and determining the change in 
the mean due to each addition. Nrec is estimated as the sum of the contributions to the mean 
due to all γis in [γ1, γ2, ..., γI ]:

Nrec =

I∑
i=1

∆Λγi .� (24)

4.  Rates posterior with uncertainties

As such, going from the counts posterior to the rates posterior is a trivial change of variables. 
Thought of in another way, rates and counts are essentially the same quantity expressed in 
different units:

�R =

{
Λα

(VT)α

}
,α = 1, 2, ..., Q

�
(25)

where, as before, Q is the total number of astrophysical components.
There are, however, uncertainties associated with the determination of the spacetime vol-

ume sensitivity, arising from calibration errors when measuring the detector strain h17:

Scal ≈ 3
∆h
h

� (26)

as well as statistical Monte Carlo errors when evaluating equation (21):

17 The uncertainty in the GW amplitude h measured from detector data gets translated to an uncertainty in the 
detector range d at leading order (d ∼ h), or equivalently, an uncertainty in volume (V ∼ h3 ⇒ dV

V ∼ 3 dh
h );(see [12], 

specifically section 5 therein.)
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Sstat =
1√
Nrec

.� (27)

Let S be the total fractional error associated with these uncertainties:

S =
√

S2
stat + S2

cal.� (28)

One can then model the measurement distribution on VT  as a log-normal:

p(VT | 〈VT〉, S) =
1

VT · S
√

2π
exp

[
−1

2

(
lnVT − ln〈VT〉

S

)2
]

� (29)

where 〈VT〉 is assumed to be the same as the measured population-averaged spacetime vol-
ume in equation (21).

There are now two ways in which the distributions on the Poisson counts, and the distri-
bution on the spacetime volume sensitivity, can be combined to evaluate the posterior on the 
rates.

The first method is a direct application of the ratio distribution: given two positive random 
variables, y 1 and y 2, with joint distribution f (y1, y2), the distribution on the ratio of these two 
variables goes as:

p(u ≡ y2/y1) =

∫ ∞

0
y1f (y1, uy1)dy1.� (30)

Using the ratio in equation (25), we identify y 1 as VT  and y 2 as Λ, with y 1 distributed as given 
in equation (29) and y 2 distributed as given in equation (10). And assuming the joint distribu-
tion f (y1, y2) is the product of equations (29) and (10), we can put down a distribution on the 
rate:

p(Rα |�x, 〈VT〉α, Sα) =
1

Sα
√

2π

∫ ∞

−∞
p(Rα · evα |�x, 〈VT〉α) exp

[
−1

2

(
vα
Sα

)2

+ vα

]
dvα� (31)

where vα = ln
(

(VT)α
〈VT〉α

)
, and p(Rα · eνα | �x, 〈VT〉α) is the marginalized counts posterior (see 

equation (10)) for source-category α with the change of variable Λα → Λα/ < VT >α= Rαeνα, 
given a measured spacetime volume sensitivity 〈VT〉α.

The second method starts by asserting that R and VT  are independent random variables, 
and the joint probability distribution on these two variables (we have dropped the subscript α 
for notational simplicity):

p(R, VT | 〈VT〉, S) = p(R) · p(VT | 〈VT〉, S)� (32)

acts as the prior for the joint posterior on R and VT :

p(R, VT |�x, 〈VT〉, S) ∝ p(R, VT | 〈VT〉, S) · p(�x | R, VT).� (33)

Here, p(�x | R, VT) is the FGMC likelihood, and p(VT | 〈VT〉, S) is modeled with the log-
normal distribution as in equation (29). Marginalizing out VT  from the above equation gives 
the sought after rate posterior. Assuming further that the prior on the rate p(R) follows a power 
law, the rate posterior becomes up to a normalization constant (re-introducing the subscript α 
to simplify comparing the equation below with (31)):
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p(Rα |�x, 〈VT〉α, Sα) ∝
∫ +∞

−∞
p(Rα · evα |�x, 〈VT〉α ) exp

[
−1

2

(
vα
Sα

)2

− avα

]
dvα� (34)

where a is the exponent of the power-law priors on R. The rate posteriors in the catalog either 
use a uniform prior (a  =  0) for categories with no confirmed detections (viz. NSBH), and a 
Jeffreys prior (a  =  −0.5) for the other categories (viz. BNS, BBH, Terrestrial).

Figure 2.  The corner plot provides a visual representation of the multi-component 
posterior on the Poisson counts for BNS, NSBH, BBH, Terr (Background/Terrestrial) 
events; this plot also contains the median values (with 90% symmetric confidence 
intervals as error bars) of the Poisson counts. Time-slid O1 and O2 data, injected with 
30 BNS, 30 NSBH and 100 BBH signals, were used. The median BNS and and BBH 
counts are approximately equal to the numbers of BNS and BBH signals injected in the 
data, and these numbers are well within the error bars. However, the posterior on the 
NSBH has a median value much lower than the number of injected NSBH signals. This 
results from a combination of factors: low-mass NSBH signals being partially confused 
as BNS signals, high mass NSBH signals being partially confused as BBH signals, 
and NSBH signals that were not recovered by the pipeline with high significance 
being confused as background. The Sankey diagram—with the number of injected 
signals depicted on the left hand side, and the aggregated categorical astrophysical 
probabilities on the right hand side—also illustrates this. It further reveals that the few 
low-significance BNS and BBH signals classified as noise are being compensated for 
by high-significance NSBH signals and terrestrial events counted as BNS and BBH 
signals, resulting in BNS and BBH signals being counted as their appropriate categories 
on average.
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5.  Illustrative results

As a proof of principle, we apply this multi-component extension of the FGMC method to a 
mixture of synthetic BNS, NSBH and BBH signals added to real detector data from O1 and 
O2 devoid of astrophysical GW signals. Making the data free from GW signals is achieved by 
a method referred to as ‘time-sliding’: the detector strain time series from one of the detectors 
is translated in time, with respect to the strain time series in another detector, by an amount 
greater than the light-travel time between the detectors; coincident events post this time-shift-
ing are then used.

The BNS, NSBH and BBH signals were injected into O1 and O2 detector data, and recov-
ered with the GstLAL pipeline, separately. From those injections that were recovered, as 
determined by whether a trigger exists within a 1 second time window of the injections, 30 
BNS injections, 30 NSBH injections, and 100 BBH injections were selected at random. Their 
corresponding triggers were then added to the list of triggers produced when analyzing the 
time-slid data.

The set of CBC signals used for the injection campaigns were selected as follows:
BNS signals were drawn at random from a ‘broad’ distribution of synthetic BNS signals. 

The component masses mi were distributed uniformly between 0.8 � mi/M� � 2.3. The 
component spins were isotropically distributed on the sphere with a maximum spin magni-
tude of 0.4.

NSBH signals were drawn at random from each of three delta-function distribu-
tions of synthetic NSBH signals. The delta-functions were centered at component masses 
(1.4M�, 5M�) (low-mass NSBHs), (1.4M�, 10M�), (1.4M�, 30M�) (high-mass NSBHs), 
and the spins for each of these sets were aligned with the orbital angular momentum of the 
binary, with a maximum allowed spin magnitude of 0.05 for the neutron star component, and 
0.99 for the black hole component.

BBH signals were drawn at random from a ‘broad’ distribution of synthetic BBH signals. 
The component masses mi were distributed uniformly in lnmi , between 5 � mi/M� � 100, 
and a total mass cutoff at 100M�. The component spins were aligned with the orbital angular 
momentum of the binary, with a maximum allowed spin magnitude of 0.99.

All sets from which the various synthetic signals were drawn, ensured that the binary sys-
tems were distributed uniformly in co-moving volume.

Employing the GstLAL detection pipeline, this time-slid data added with synthetic sig-
nals was analyzed and candidate events were assigned foreground (p(L|m, signal)) and back-
ground (p(L|m, noise)) distribution values. Furthermore, using software injection campaigns 
described in section 2.4, bin-dependent template weights Wα(m) ({α = BNS, NSBH, BBH}) 
were estimated (see equation (16) and figure 1).

We subsequently computed the Bayes factors �Kα(x) and constructed the multi-component 
joint posterior on the Poisson counts for each of the categories. Via a Python implementation 
of Markov-chain-Monte-Carlo described in [39], we sampled the multi-component posterior. 
The corner plot in figure 2, and the median values (with a 90% symmetric confidence interval 
as error bar) of the Poisson counts reveal that while most BNS and BBH signals are being 
categorized, on average, as BNS and BBH signals, respectively, some of the NSBH signals 
are being at least partially confused as BNS or BBH signals. This is perhaps not so surpris-
ing if figure 2 is viewed in light of figure 1. The set of bins in the template bank activated by 
BNS signals is not disjoint from the set activated by NSBH signals. The same is also true 
for NSBH and BBH signals. We would therefore expect to be correlation between BNS and 
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NSBH categories, and NSBH and BBH categories, resulting in signals being partially counted 
in the wrong category.

We also computed categorical astrophysical probabilities (see section  2.5) for each of 
the  ∼4000 triggers in the data set. Rather than tabulate the results for this big list, we depict, 
via the Sankey diagram in figure 2, how the multi-component FGMC formalism is categoriz-
ing and counting these triggers. A priori, we know which ones of these triggers correspond 
to a time-slide event, and which ones correspond to an injection. The thickness of the bands 
on the left hand side of the Sankey diagram is proportional to these numbers. The aggregated 
astrophysical probabilities, by source category, are also represented by a proportionately thick 
band on the right hand side of the Sankey diagram. Figure 2 shows that most BBHs and BNSs 
are counted as BBHs and BNSs, respectively, and there is no confusion between these two 
categories. This can again be understood with the help of figure 1: the regions of the template 
bank activated by BNS and BBH signals are almost disjoint. On the other hand, the overlap 
in the regions activated by BNS and NSBH signals, and BBH and NSBH signals, causes low-
mass NSBH signals to be partially counted as BNS signals, and high-mass NSBH signals to 
be partially counted as BBH signals. There is also some correlation between the Terrestrial 
category and the astrophysical categories, resulting in weaker signals being partially counted 
as noise, and vice versa. These misclassifications are discussed further in the next section.

Note that the aggregated categorical astrophysical probabilities are approximately equal to 
the mean values of the Poisson counts18:

N∑
j=1

Pα(xj |�x) = 〈Λα〉 − a − 1

� (35)
where, like in section 4, a is the exponent on the Poisson count for category α in the joint 
prior for the multi-component FGMC posterior, assuming that the prior has the form 
p(Λ0, �Λ1) = p(Λ0,Λα /∈ �Λ1)Λ

a
α (see appendix D). An identical formula also exists connect-

ing the terrestrial probabilities with the mean of the terrestrial Poisson count. Thus, the right-
hand side values (aggregated astrophysical and terrestrial probabilities) in the Sankey diagram 
of figure 2 may be thought of as mean values on the Poisson counts.

6.  Summary and outlook

Inferring rates of compact binary mergers from gravitational-wave data is an important sci-
ence goal of the LIGO-Virgo Collaboration (LVC). GWTC-1 [1] (or the ‘catalog’, as we have 
been calling it in this paper), quoted rate estimates for the mergers of BNSs, NSBHs, and 
BBHs, using GW data from the LIGO-Virgo network of ground-based interferometric detec-
tors, and analyzed by two separate matched-filter based pipelines (GstLAL and PyCBC). This 
paper serves as a supplement to the catalog, by describing the formalism used to produce 
rate estimates from data analyzed by GstLAL. The formalism itself is inspired by a Poisson-
statistics based counting method developed by Farr, Gair, Mandel, and Cutler (abbreviated 
to ‘FGMC’ in this paper) in the context of GW data analysis [16] (although similar work in 
non-GW contexts was done earlier, e.g.: [17]).

Assuming that candidate events triggered by terrestrial phenomena or astrophysical GWs 
occur as independent Poisson processes, the original FGMC formalism constructs a joint 

18 Equation (35) suggests that the choice of prior becomes increasingly irrelevant as 〈Λα〉 becomes sufficiently 
large. This is simply an indication that, when we have accumulated many events of category α, the counts posterior 
is informed primarily by the data, and not any prior assumption on the distribution of the counts.
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posterior conditional probability distribution from the significance of triggers assigned by a 
detection pipeline (e.g.: GstLAL), as measured by the Bayes-factor (see section 2), above a 
low-ranking statistic threshold, on the Poisson expected counts for astrophysical and terres-
trial CBC events.

The multi-component extension of the FGMC formalism delineated in this paper con-
structs, from the foreground distribution of ranking statistics estimated by GstLAL, an arbi-
trary number of foreground probability distributions, each targeted at a specific astrophysical 
source class. This is achieved by a mass-based template-weighting method. The weights are 
determined via injection campaigns, by studying the distribution of templates, across the tem-
plate bank, that got ‘rung-up’ during the recovery of injections.

A proof-of-principle application of this multi-component extension was conducted on 
time-slid O1 and O2 data, added with synthetic BNS, NSBH and BBH signals, and analyzed 
with the GstLAL detection pipeline. We find that BNS and BBH signals are for the most part 
counted appropriately as BNS and BBH. On the other hand, there exist correlations between 
low-mass NSBH signals and BNS signals, as well as between high mass NSBH signals, and 
BBH signals, causing partial mis-categorization of NSBH signals. There are also correlations 
between the astrophysical categories, and the terrestrial category.

Is the confusion in counting and labeling of triggers a cause for concern? It is worth point-
ing out here that the partial mis-classification of the astrophysical signals as terrestrial signals, 
and vice versa, is not a limitation of this method per se, but rather a consequence of the signifi-
cance assigned to these events by the detection pipeline. Nevertheless,from the perspective of 
computing rates, the partial mis-classification of astrophysical and terrestrial signals is some-
what compensated for by the fact that the same threshold on the ranking statistic is used when 
determining the counts posterior, and the spacetime volume sensitivity. The ratio of these two 
quantities, which gives the astrophysical rate, is largely unaffected by this choice of threshold, 
provided the threshold ensures a preponderance of terrestrial triggers [16].

However, the confusion between low (high) mass NSBH signals and BNS (BBH) sig-
nals, would be a concern, if this significantly changed the counts of these types of signals. 
Nevertheless, the extensive follow-up analysis using the parameter estimation given in sec-
tion 5 and table III of the catalog show that there were no NSBH signals of any sort detected. 
Thus, the misclassification of NSBH events at the border between source categories, is not a 
concern for the data set being analyzed, viz. O1 and O2 data.

Parameter estimation studies show that 10 significant BBH detections and 1 significant 
BNS detection, were uncovered from the data. These findings are consistent with the multi-
component rates results given in the catalog and computed using the methods described in 
this paper. The multi-component rates are also consistent with separate (albeit simpler) rates 
analyses described in the catalog, which serves as a nice sanity check for the method described 
in this paper.

However, we will need to extend the methods described here in the future to better identify 
astrophysical signals at the boundaries between source-categories. For example, a computa-
tionally intensive method involving a synergy of the formalism delineated in this paper and 
the samples provided by accurate parameter estimation studies, such as the one described in 
[40], might be required.

It is worth noting here that the application of the multi-component extension of FGMC used 
in the catalog is by no means unique. One need not restrict oneself to just BNSs, NSBHs, and 
BBHs. Additional astrophysical source classes could be added, like, for example, CBCs from 
the putative ‘mass-gaps’ (with binary component mass range 3M�–5M� and above 45M� 
[19]), and different categories of black holes. Moreover, the redistribution of foreground 
events need not involve mass-based weighting alone; for example, work on constructing 
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redshift dependent foreground distributions, to study redshift dependent rates of BBHs, is 
expected to be published soon [41].
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Appendix A.  Derivation of the multicomponent FGMC counts posterior

The derivation follows [16, 17].
Consider a time interval T during which gravitational-wave (GW) observations are made. 

We divide this interval into Nt time-fragments:

δt =
T
Nt

.
� (A.1)

We make Nt large enough to ensure that at most one event occurs over time interval δt.
Let us assume that there are N intervals containing exactly one event and Nt  −  N intervals 

containing exactly 0 events. We denote by x the properties of an event. Previously (i.e. in [16]), 
this was simply the ranking statistic. Here, x → {L, m}, where L is the ranking statistic and m 
is a set of template parameters. Thus, xi is the only trigger in the ith time interval, with detec-
tion statistic value Li and template parameters mi. We denote by ∅ a time interval that contains 
no events. Thus, ∅j is the j th time interval that contains no events.

The joint probability of these N propositions gives us the likelihood up to a combinatorial 
constant:

L ∝
N∏

i=1

p(xi|Λ0, �Λ1)×
Nt∏

j=N+1

p(∅j|Λ0, �Λ1).� (A.2)

Computing p(∅j|Λ0, �Λ1) is a straightforward application of the Poisson distribution for 0 
counts in a time interval δt:

p(∅j|Λ0, �Λ1) ∝ exp(−λ)� (A.3)

where λ is the expected number of counts (terrestrial and astrophysical combined) in interval 
δt. Meanwhile:

p(xi|Λ0, �Λ1) = p(xi|1,Λ0, �Λ1) p(1|Λ0, �Λ1)� (A.4)

where p(1|Λ0, �Λ1) is the probability of acquiring exactly 1 event in an interval of duration δt, 
which in turn can be computed via straightforward application of the Poisson distribution:

p(1|Λ0, �Λ1) = λ exp(−λ)� (A.5)

and λ, the mean number of triggers in interval δt is:
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λ =
1
Nt

·

(
Λ0 +

∑
α

Λα

)
.� (A.6)

On the other hand, p(xi|1,Λ, �Λ1) is the fraction of triggers with detection statistic Li in bin mi,

p(xi | 1,Λ0, �Λ1) =
Λ0p(Li, mi|noise) +

∑
α Λαp(Li, mi | α)

Λ0 +
∑

α Λα
.� (A.7)

Therefore, the likelihood becomes:

L ∝ exp

(
−

(
Λ0 +

∑
α

Λα

))
·

N∏
i=1

(
Λ0 · p(Li, mi|noise) +

∑
α

Λα · p(Li, mi|α)

)
.� (A.8)

The multicomponent counts posterior, up to a normalization constant, thus has the following 
general form:

p
(
Λ0, �Λ1 |�x

)
= p

(
Λ0, �Λ1

)
· exp

(
−

(
Λ0 +

∑
α

Λα

))

·
N∏

i=1

(
Λ0 · p(Li, mi|noise) +

∑
α

Λα · p(Li, mi|α)

)
.

�

(A.9)

The distributions (normalized density functions), p(Li, mi|noise) and p(Li, mi|α) in equa-
tion (A.9) can be divided into two pieces each:

p(Li, mi | noise) = p(Li | mi, noise) · W0(mi)� (A.10)

p(Li, mi | α) = p(Li | mi,α) · p(mi | α) ≈ p(Li | mi, signal) · Wα(mi)� (A.11)

where the weights W are defined as:

W0(mi) ≡ p(mi | noise),� (A.12)

Wα(mi) ≡ p(mi | α).� (A.13)

p(Li | mi,α) ≈ p(Li | mi, signal) is a statement of the universality of the ranking statistic dis-
tribution L under the foreground model [12, 20, 21]; in other words, the foreground model is 
not expected to change appreciably for different classes of astrophysical signals.

Appendix B.  Evolution of the counts posterior with the addition of candidate 
events

B.1.  Updating the multicomponent counts posterior

Having constructed the multi-component counts posterior, it is useful to investigate how the 
posterior evolves with the addition of candidate events.

Let pN(�Λ1 | �x) be the counts posterior constructed from a set of N candidate events, appro-
priately normalized. Suppose we now acquire an additional trigger, xN+1. We wish to deter-
mine how the inclusion of this trigger modifies the counts posterior. It is straightforward to 
see, from equation (10), that:
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pN+1(Λ0, �Λ1 |�x) = A · pN(�Λ1 |�x) ·
[
Λ0 + �Λ1 · �K(xN+1)

]
� (B.1)

where A is a constant that we can determine via normalization:
∫ ∞

0
pN+1(Λ0, �Λ1 |�x)dΛ0d�Λ1 = 1.� (B.2)

Writing pN+1(Λ0, �Λ1 | �x) in terms of pN(�Λ1|�x) and carrying out the above integral yields:
∫ ∞

0
pN+1(Λ0, �Λ1 |�x)dΛ0d�Λ1 =

∫ ∞

0
A · pN(Λ0, �Λ1 |�x) ·

[
Λ0 + �Λ1 · �K(xN+1)

]
dΛ0d�Λ1� (B.3)

= A

[
〈Λ0〉N +

∑
α

Kα(xN+1)〈Λα〉N

]
� (B.4)

where the quantities in the angular brackets are the mean values of the counts (whether of ter-
restrial or astrophysical origin), defined as:

〈Λβ〉N ≡
∫ ∞

0
ΛβpN(Λ0, �Λ1)dΛ0d�Λ1.� (B.5)

Thus, from equation (B.2):

A(xN+1) =
1

〈Λ0〉N +
∑

α Kα(xN+1)〈Λα〉N
.� (B.6)

Therefore, the multicomponent counts posterior is updated to be:

pN+1(Λ0, �Λ1 |�x) = pN(Λ0, �Λ1 |�x) ·
Λ0 + �Λ1 · �K(xN+1)

〈Λ0〉N +
∑

α Kα(xN+1)〈Λα〉N
.� (B.7)

B.2.  Updating the mean value of the counts

The change in the posterior due to the addition of an event leads to changes in the mean values 
of the Poisson expected counts for each source category.

From equations (B.5) and (B.7):

〈Λβ〉N+1 ≡
∫ ∞

0
ΛβpN+1(Λ0, �Λ1 |�xN+1)dΛ0d�Λ1� (B.8)

=
〈Λ0Λβ〉N +

∑
α〈ΛαΛβ〉NKα(xN+1)

〈Λ0〉N +
∑

α Kα(xN+1)〈Λα〉N
.� (B.9)

The change in the mean value due to the addition of the N  +  1th trigger is:

〈Λβ〉N+1 − 〈Λβ〉N =
〈Λ0Λβ〉N +

∑
α〈ΛαΛβ〉NKα(xN+1)

〈Λ0〉N +
∑

α Kα(xN+1)〈Λα〉N
− 〈Λβ〉N

=
covN(Λ0,Λβ) +

∑
α covN(Λα,Λβ)Kα(xN+1)

〈Λ0〉N +
∑

α Kα(xN+1)〈Λα〉N

�
(B.10)

where:
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covN(ΛA,ΛB) ≡ 〈ΛAΛB〉N − 〈ΛA〉N〈ΛB〉N� (B.11)

is the covariance. The updated mean may be written in terms of the original mean as:

〈Λβ〉N+1 = 〈Λβ〉N +
covN(Λ0,Λβ) +

∑
α Kα(xN+1)covN(Λα,Λβ)

〈Λ0〉N +
∑

α Kα(xN+1)〈Λα〉N
.� (B.12)

It is interesting to note here that the addition of a highly significant candidate event of a certain 
astrophysical source category could increase the mean values of the count for that category by 
more than unity. Indeed, if Kβ(xN+1) � 〈Λ0〉N , and Kβ(xN+1) � Kα �=β(xN+1), as is the case 
for certain highly significant events of category β, then equation (B.10) is approximated as:

〈Λβ〉N+1 − 〈Λβ〉N ≈ varN(Λβ)

〈Λβ〉
� (B.13)

where varN(Λβ) ≡ covN(Λβ ,Λβ). If the variance exceeds the mean, then the addition of that 
highly significant event would cause an increase in the mean of more than one. This is not 
so surprising, though perhaps counter intuitive at first. In effect, the addition of a highly sig-
nificant event of a certain source-category informs the posterior that the rate of events of that 
source-category is higher than was inferred from the previously available set of triggers.

Appendix C.  Recursive counts posterior

Given distinct chunks of GW data over which the spacetime volume sensitivity is assumed to 
be constant, we can construct FGMC counts posteriors for each chunk separately. However, 
comparing candidate events directly between chunks is not meaningful, because in general the 
spacetime volume sensitivity will differ from chunk to chunk. Therefore, in order to construct 
a posterior with all the events from all the chunks, we require some form of weighting involv-
ing the spacetime volume sensitivities of the chunks.

The key idea here is that while the Poisson expected counts (the Λs), and the spacetime 
volume sensitivities (the 〈VT〉s), will change from chunk to chunk, what is assumed to remain 
constant between chunks is the astrophysical rate of compact binary mergers that we seek to 
determine.

In the following, we put superscripts to various quantities to identify the chunk of data they 
correspond to, and the subscripts label the source-category type, as earlier.

We define the total spacetime-volume sensitivity, across all chunks c, for an astrophysical 
source-category α, as:

〈VT〉tot
α =

∑
c

〈VT〉c
α� (C.1)

and the total Poisson expected counts for category α as:

Λtot
α =

∑
c

Λc
α.� (C.2)

Working with the ‘astrophysical-rate is time-independent’ assumption, the following must be 
true:

Rα =
Λtot
α

〈VT〉tot
α

=
Λc
α

〈VT〉c
α

, ∀c� (C.3)

where Rα is the astrophysical rate for category α.
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An important point to make here is that the background counts Λc
0 across chunks are not 

connected in any way: there is no unchanging R0 corresponding to these counts. We can, how-
ever, resort to the delta-function approximation, and fix the terrestrial counts, for each chunk 
c, to the total number of candidate events for that chunk: Λc

0 → Nc.
One can now combine the likelihoods from different chunks to construct a single posterior 

on the total counts Λtot
α  of each astrophysical source category by making the following change 

of variables:

Λc
α =

〈VT〉c
α

〈VT〉tot
α

Λtot
α .� (C.4)

We can now write the combined counts-posterior as:

p(Λ0, �Λtot|�x) = p(�Λtot)




∏

c

Nc∏
j=1

[Nc + �Λtot · �Kc(xc
j )]



 e−�Λtot·�u� (C.5)

where:

�Kc =

{
Kα × 〈VT〉c

α

〈VT〉tot
α

}
,α = 1, 2, 3, ..., Q� (C.6)

and:

�Λtot =
{
Λtot
α

}
,α = 1, 2, 3, ..., Q� (C.7)

with Q as the number of astrophysical source categories.
It is worth noting here that the Gstlal pipeline incorporates spacetime volume sensitivity 

into its ranking statistic, and therefore the need to employ a method to weight candidate events 
by the sensitive spacetime volume sensitivity, as is done here, is redundant for the Gstlal pipe-
line. This however may not be true for all gravitational wave detection pipelines.

Appendix D.  Connecting terrestrial and astrophysical probabilities with mean 
values of the Poisson counts

Suppose the prior on the multi-component FGMC posterior (see equation (10)) has the form: 
p(Λ0, �Λ1) = p(Λ0,Λα /∈ �Λ1)Λ

a
α. Taking the derivative of Λαp(Λ0, �Λ1 | �x) with respect to Λα 

yields:

d
dΛα

(
Λαp(Λ0, �Λ1 |�x)

)
= (a + 1) p(Λ0, �Λ1 |�x)− Λαp(Λ0, �Λ1 |�x) + p(Λ0, �Λ1 |�x)

N∑
j=1

ΛαKα(xj)

Λ0 + �Kα(xj) · �Λ1
.

� (D.1)
The derivative was chosen so that its antiderivative vanishes at Λα = 0 and ∞ when 
marginalizing.

If the multi-component posterior is appropriately normalized, then, marginalizing out both 
sides of the above equation with respect to Λ0 and �Λ1, yields:

0 = a + 1 − 〈Λα〉+
N∑

j=1

Pα(xj |�x)� (D.2)

which, upon rearranging, gives equation (35).
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