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Abstract
We consider the expectation value of the stress–energy tensor for a massless 
quantum scalar field near the Cauchy horizon interior to the Reissner–
Nordström black hole spacetime. We construct the quantum state by 
considering the two-point function on a negative definite metric obtained by 
a double analytic continuation from the Lorentzian manifold, complexifying 
both the t and polar coordinates. We enforce periodicity in the Euclideanized 
t coordinate with periodicity equal to the reciprocal of the temperature of the 
Cauchy horizon, a necessary condition for avoiding a conical singularity at 
the inner horizon. We show by explicit construction that our quantum state 
satisfies the Hadamard condition on the Cauchy horizon. The expectation 
value of the quantum stress–energy tensor on the Cauchy horizon is given in 
closed form.

Keywords: quantum field theory in curved spacetime, black hole 
thermodynamics, Hawking radiation, stability of Cauchy horizon,  
Hadamard states, semi-classical approximation

(Some figures may appear in colour only in the online journal)

1.  Introduction

The Reissner–Nordström spacetime is a static spherically-symmetric solution of the 
Einstein–Maxwell field equations representing an electrically charged black hole. Unlike the 
Schwarzschild black hole, there are two coordinate singularities, one corresponding to the 
black hole event horizon and the other the Cauchy horizon inside the black hole. It is well 
known that this Cauchy horizon is unstable to classical perturbations [1–11] where the inner 
horizon forms a null (weak) singularity, resulting in a metric which is continuous but not dif-
ferentiable. This instability also holds more generally for perturbations inside rotating black 
holes [12–16].
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Less studied is the quantum back-reaction on the Cauchy horizon. Indeed, whether or 
not quantum effects significantly alter the classical instability remains an open problem. 
Assuming the Cauchy horizon is sufficiently far from the essential singularity, one can expect 
that the problem can be addressed in the semi-classical regime, treating the perturbations from 
quantum fields on the classical Reissner–Nordström spacetime. Even still this is a notoriously 
difficult problem, in part because the stress–energy tensor of the quantum fields, which act 
as the source in the semi-classical equations, is formally divergent and requires a suitable 
regularization prescription. While several authors have considered quantum fields near the 
inner horizon inside a black hole, as far as this author is aware, in all the prior body of work 
the field is taken to be in a quantum state that is singular on the Cauchy horizon, that is a state 
which does not satisfy the Hadamard condition there (see, for example [17], for a discus-
sion of Hadamard states in quantum field theory in curved spacetimes). For example, in a 
2D analogue of the Reissner–Nordström black hole, Birrell and Davies [18] showed that the 
regularized stress–energy tensor in the Hartle–Hawking state diverges on the Cauchy horizon. 
Similarly, in [19], it is shown that the stress–energy tensor in the Unruh state diverges on the 
Cauchy horizon of a slowly rotating black hole, assuming the rotation parameter is continu-
ous. More recently, a detailed analysis of the asymptotic behaviour of the divergence of the 
stress–energy tensor near the Cauchy horizon of the Reissner–Nordström black hole in both 
the Unruh and Hartle–Hawking states have been performed [20] as well as a numerical com-
putation of the vacuum polarization on the interior [21].

In this paper, we compute the regularized stress–energy tensor for a massless scalar 
field which is arbitrarily coupled to the background curvature near the Cauchy horizon of a 
Reissner–Nordström black hole. Importantly, we construct the field in a quantum state that 
is regular on this horizon, that is, a quantum state that satisfies the Hadamard condition on 
the inner horizon. It is widely accepted that only states that satisfy the Hadamard condi-
tion are physically meaningful so we believe that any meaningful conclusions drawn about 
the quantum back-reaction on the Cauchy horizon must be based on consideration only of 
Hadamard states. Moreover, the assumptions that underpin the semi-classical approximation 
are clearly violated near the Cauchy horizon for states which are singular there.

Our construction of a regular state involves employing Euclidean techniques, though in a 
novel way. In the usual approach to constructing the Hartle–Hawking state in a static black 
hole spacetime, it is convenient to perform a Wick rotation, which corresponds to complexi-
fying the t coordinate, and then imposing periodicity in the Euclidean time [22]. This results 
in a state which is thermal on the exterior, which has the same symmetries as the underlying 
spacetime and which is regular on the event horizon. On the black hole interior, the t coordi-
nate is spacelike and complexifying this coordinate results in a metric with a neutral signature. 
However, if in addition to complexifying the t coordinate, we also complexify the polar coor-
dinate θ → iΘ, then we retrieve a metric with a Euclidean signature (in fact, a negative definite 
metric but the overall sign is irrelevant). Like the standard Euclidean procedure, we impose 
periodicity in τ , now the periodicity is related to the temperature of the Cauchy horizon rather 
than the event horizon. We show, by explicitly computing the regularized stress–energy tensor 
on the Cauchy horizon, that this state satisfies the Hadamard condition. Calculating the stress–
energy tensor exactly on the horizon can be tricky since the numerical mode-sum methods 
typically employed (see, e.g. [24–29]) are not applicable there. Instead, in order to analyse the 
stress–energy tensor near the horizon, a uniform asymptotic analysis of the radial field modes 
is required. We develop such a uniform asymptotic series for these radial modes which enables 
us to compute the stress–energy tensor in closed form.

The layout of the paper is as follows: in section 2, we briefly review the construction of 
the Euclidean two-point function for a scalar field in the Hartle–Hawking state on the exterior 
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of the Reissner–Nordström spacetime. In section 3, we construct the two-point function for a 
scalar field on the interior. The quantum state is defined by working on the negative definite 
spacetime obtained by a double analytic continuation. In section 4, we compute the vacuum 
polarization for the field in this quantum state and in section  5, we compute the regular-
ized stress–energy tensor in the state defined on this Euclidean section. The computation is 
completely analytical (modulo an arbitrary constant which encodes information about the 
quantum state and is calculated numerically) resulting in a closed form expression for the 
stress–energy tensor. This is made possible by a uniform asymptotic expansion for the radial 
modes which we discuss in detail in the appendix.

2.  Review of the Hartle–Hawking state on the exterior

The Reissner–Nordström spacetime in spherical coordinates (t, r, θ,φ) has line element

ε ds2 = −(1 − 2M/r + Q2/r2)dt2 + (1 − 2M/r + Q2/r2)−1dr2 + r2dθ2 + r2 sin2 θdφ2.� (1)

This spacetime has two coordinate singularities at

r± = M ±
√

M2 − Q2,� (2)

and one essential curvature singularity at r  =  0. Assuming M  >  Q, the outer coordinate singu-
larity r+ represents a black hole event horizon while the inner coordinate singularity r− repre-
sents a Cauchy horizon. Before discussing how to construct the two-point function for a scalar 
field in a quantum state that is regular on the Cauchy horizon, let us first briefly review how 
to construct the two-point function in the Hartle–Hawking state [22] on the exterior r � r+. 
This is not a pure state on the exterior, but a thermal state corresponding to the black hole in 
a thermal bath of radiation at the same temperature as the black hole. Since this is a thermal 
state, it is convenient to work with the Euclidean Green function, performing a Wick rotation 
of the temporal coordinate t → −iτ  and eliminating the conical singularity at r  =  r+ by mak-
ing τ  periodic with period 2π/κ+ where κ+ = 1/(2r+) is the surface gravity of the black hole 
event horizon. Note that the signature of the metric is Euclidean only on the exterior.

The field on the exterior satisfies the Klein–Gordon equation  with respect to the 
Euclideanized metric

�ϕ(τ , r, θ,φ) = 0,� (3)

where � denotes the wave operator with respect to the Euclidean metric. Note that the cou-
pling of the field to the background curvature is irrelevant since the Ricci scalar vanishes on 
the Reissner–Nordström spacetime. The Klein–Gordon equation can be solved by a separation 
of variables by writing

ϕ(τ , r, θ,φ) ∼ einκ+τ+imφP(θ)χ(r)� (4)

where P(θ) is regular and satisfies

{ 1
sin θ

d
dθ

(
sin θ

d
dθ

)
− m2

α2 sin2 θ
+ λ(λ+ 1)

}
P(θ) = 0� (5)

while χ(r) satisfies

{ d
dr

(r2 − 2Mr + Q2)
d
dr

− λ(λ+ 1)−
n2κ2

+r4

r2 − 2Mr + Q2

}
χ(r) = 0.� (6)
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The λ(λ+ 1) term arises as the separation constant. The choice of λ is arbitrary for ϕ to sat-
isfy the wave equation but is constrained by a choice of boundary conditions. In the exterior 
spacetime, one chooses regularity on the poles which implies λ = l ∈ N, i.e the separation 
constant is l(l + 1). With this choice of λ, the angular functions are the standard associated 
Legendre function of integer degree and order, viz.,

P(θ) = Pm
l (cos θ),� (7)

satisfying the normalization,
∫ 1

−1
P−m

l (cos θ)P−m
l′ (cos θ)d(cos θ) =

2
(2l + 1)

Γ(l − m + 1)
Γ(l + m + 1)

δll′ .� (8)

The periodicity of the Green function with respect to (τ − τ ′) and (φ− φ′) with periodic-
ity 2π/κ+ and 2π, respectively, combined with equation (8) imply the following mode-sum 
expression for the Green function

G(x, x′) =
κ+

8π2

∞∑
n=−∞

einκ+(τ−τ ′)
∞∑

l=0

(2l + 1)Pl(cos γ)gnl(r, r′),� (9)

where cos γ = cos θ cos θ′ + sin θ sin θ′ cos∆φ and gnl(r, r′) satisfies the inhomogeneous 
equation,

{ d
dr

(r2 − 2Mr + Q2)
d
dr

− l(l + 1)−
n2κ2

+r4

r2 − 2Mr + Q2

}
gnl(r, r′) = −δ(r − r′).

� (10)
It is convenient to introduce a new dimensionless radial variable

η =
r − M
α

, α =
√

M2 − Q2.� (11)

In terms of this new coordinate, the event horizon is located at η = 1 while the Cauchy horizon 
is located at η = −1. The curvature singularity is at η = −M/α < −1. Now the radial Green 
function in terms of η assumes the form

{ d
dη

(
(η2 − 1)

d
dη

)
− l(l + 1)−

α2n2κ2
+(η + M/α)4

(η2 − 1)

}
gnλ(η, η′) = − 1

α
δ(η − η′).� (12)

For n  =  0, the two solutions of the homogeneous equation are the Legendre functions of the 
first and second kind, which we denote by Pl(η) and Ql(η), respectively. For n �= 0, the homo-
geneous equation cannot be solved in terms of known functions and must be solved numer
ically. We denote the two solutions that are regular on the horizon and infinity (or some outer 

boundary) by p|n|
l (η) and q|n|

l (η), respectively. A near-horizon Frobenius analysis for n �= 0 
shows that the indicial exponent is ±|n|/2, and so we have the following asymptotic forms:

p|n|
l (η) ∼ (η − 1)|n|/2 η → 1,

q|n|
l (η) ∼ (η − 1)−|n|/2 η → 1.

� (13)

Using these asymptotic forms in the Wronskian condition yields the appropriate normaliza-
tion of the radial Green function:

gnl(η, η′) =




1
α

Pl(η<)Ql(η>) n = 0,

1
2|n|α

p|n|l (η<)q
|n|
l (η>) n �= 0.

� (14)
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3.  Green function on the interior

Turning now to the calculation of the two-point function on the interior of the black hole. In 
particular, we will consider the region between the Cauchy horizon and the event horizon. 
Like the Hartle–Hawking state, we will define the quantum state by employing Euclidean 
techniques. However, complexifying the t coordinate results in a neutral signature metric on 
the interior between the Cauchy and event horizons. We can retrieve a metric of definite sig-
nature by further complexifying the polar coordinate by θ → iΘ. This results in a negative 
definite metric, though the overall sign is irrelevant. The quantum state on this spacetime is 
defined by constructing the two-point function for the scalar field on this double analytically 
continued metric and imposing regularity boundary conditions on the Cauchy horizon. We 
should note that this double analytic continuation was adopted by Candelas and Jensen [23] to 
discuss the Feynman Green function on the interior of the Schwarzschild black hole. In prac-
tice, however, the authors constructed the two-point function on the interior by analytically 
continuing the exterior two-point function. This approach applied to the Reissner–Nordström 
back hole would result in a quantum state which is regular on the event horizon but singular 
on the Cauchy horizon.

Working again with the dimensionless variable η defined by equation (11), the analytically 
continued Reissner–Nordström metric is

ε ds2 = − (1 − η2)

(η + M/α)2 dτ 2 − α2 (η + M/α)2

(1 − η2)
dη2 − α2(η + M/α)2(dΘ2 + sinh2 Θ dφ2),� (15)

where we are concerned with quantum effects on −1 � η < 1 and specifically effects very 
close to the Cauchy horizon η = −1. In order to avoid a conical singularity at η = −1, we 
must enforce a periodicity on τ , namely, τ = τ + 2π/κ−, where κ− is the surface gravity on 
the Cauchy surface. Assuming a separable basis,

ϕ ∼ einκ−τeimφP(Θ)χ(η),� (16)

for solutions to the wave equation requires that P(Θ) satisfies

{ 1
sinhΘ

d
dΘ

(
sinhΘ

d
dΘ

)
− m2

sinh2 θ
− ν(ν + 1)

}
P(Θ) = 0.� (17)

The solutions of this equations  regular at Θ = 0 are the associated Legendre functions 
Pm
ν (coshΘ). However, the only choice of ν  for which these functions are square-integrable 

for all Θ is ν = −1/2 + iλ for λ real (we can see this by looking at the asymptotics of Pm
ν (z) 

for |z| � 1, see, equation (8.776.1) in [30]). For this choice, the mode functions are the conical 
(also referred to as Mehler or hyperboloidal) functions,

P(Θ) = Pm
−1/2+iλ(coshΘ).� (18)

These satisfy the orthogonality relation
∫ ∞

1
Pm
−1/2+iλ(z)P

m
−1/2+iλ′(z)dz =

(−1)mΓ(iλ+ 1
2 + m)

λ tanhπλΓ(iλ+ 1
2 − m)

δ(λ− λ′).

� (19)
Using these (appropriately normalized) basis modes to expand the Green function, and after 
employing a standard addition theorem for the conical functions [30], we obtain,

G(x, x′) =
κ−

4π2

∞∑
n=−∞

einκ−∆τ

∫ ∞

0
dλλ tanhπλP−1/2+iλ(cosh Γ)gnλ(η, η′),

� (20)
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where coshΓ = coshΘ coshΘ′ − sinhΘ sinhΘ′ cos∆φ. The radial Green function 
gnλ(η, η′) satisfies

{
d

dη

(
(1 − η2)

d
dη

)
− λ2 − 1

4
−

α2n2κ2
−(η + M/α)4

(1 − η2)

}
gnλ(η, η′) =

δ(η − η′)

α
.

� (21)
For n  =  0, the independent solutions to the homogeneous equation are P−1/2+iλ(±η) with

P−1/2+iλ(−η) =
2
π
coshπλ�{Q−1/2+iλ(η)}� (22)

being the solution regular on the Cauchy horizon since P−1/2+iλ(−η) → 1 as η → −1. The 
appropriate normalization for these solutions is

N = (1 − η2)W
{
P−1/2+iλ(−η),P−1/2+iλ(η)

}
= − 2

π
coshπλ,� (23)

where W{u1, u2} = u̇1 u2 − u̇2 u1 is the Wronskian. For n �= 0, the solutions cannot be given 
in terms of known functions but must be solved numerically. We will denote the solution 

regular on the Cauchy horizon by q|n|λ (η) and the solution which diverges there by p|n|λ (η). 
Analysis of the Frobenius series about η = −1 yields the following asymptotic behaviour for 
these solutions

q
|n|
l (η) ∼ (1 + η)|n|/2 η → −1,

p
|n|
l (η) ∼ (1 + η)−|n|/2 η → −1.

� (24)

The solution to the inhomogeneous equation is the normalized product,

gnλ(η, η′) =
q
|n|
λ (η<)p

|n|
λ (η>)

αNn
� (25)

where Nn = (1 − η2)W{q, p}. Using the asymptotic forms above to compute the Wronskian 
gives Nn  =  −2|n|. Finally, we can write the solution for all n as

gnλ(η, η′) =




− π

2α coshπλ
P−1/2+iλ(−η<)P−1/2+iλ(η>) n = 0,

− 1
2|n|α

q
|n|
λ (η<)p

|n|
l (η>) n �= 0.

� (26)

4.  Vacuum polarization on the cauchy horizon

In this section, we compute the vacuum polarization for a massless scalar field on the Cauchy 
horizon of the Reissner–Nordström black hole. The field is assumed to be in the quantum 
state defined by the double analytic continuation procedure described in the previous section. 
The vacuum polarization for the field in this state is defined to be the coincidence limit of the 
regularized two-point function,

〈ϕ̂2〉 = lim
x′→x

[G(x, x′)− GS(x, x′)]� (27)

where GS(x, x′) is a parametrix for the wave operator, symmetric in x and x′ and is constructed 
only from the geometry through the metric and its derivatives (see, for example [17]). We 
take GS(x, x′) to be a Hadamard parametrix which we define below. Since we are interested 
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in computing the vacuum polarization exactly on the Cauchy horizon, consideration of the 
asymptotic forms (24) implies that taking one point on the horizon means that all the n �= 0 
modes vanish. Therefore the Green function with one point on the Cauchy horizon is indepen-
dent of τ  and reduces to

G(η,Ω;−1,Ω′) = − κ−

8π2α

∫ ∞

λ=0
λ
π tanhπλ

coshπλ
P−1/2+iλ(cosh Γ)P−1/2+iλ(η),

� (28)
where Ω = (Θ,φ). This integral is essentially an analytic continuation of the Heine identity 
and can be performed in closed form [23] yielding,

∫ ∞

λ=0
λ
π tanhπλ

coshπλ
P−1/2+iλ(z)P−1/2+iλ(y) =

1
z + y

.� (29)

Applying this result gives

G(η,Ω;−1,Ω′) = − κ−

8π2α

1
(cosh γ + η)

.� (30)

This, of course, diverges in the coincidence limit η → −1 and Ω′ → Ω, as expected.
To regularize, we adopt the Hadamard regularization prescription. This relies on the uni-

versal Hadamard singularity structure of the two-point function for x and x′ sufficiently close 
together that they are connected by a unique geodesic. The singularities are encoded in the 
so-called Hadamard parametrix

GS(x, x′) =
1

4π2

(
∆1/2(x, x′)
2σ(x, x′)

+ V(x, x′) log(2σ(x, x′)/�2)

)
,� (31)

where 2σ(x, x′) is the squared geodesic distance between x and x′ with respect to the 
Euclideanized spacetime, ∆(x, x′) is the Van Vleck-Morrette determinant, V(x, x′) is a regular, 
symmetric biscalar which satisfies the same Klein–Gordon equation satisfied by our scalar 
field, and � is an arbitrary lengthscale required to make the log term dimensionless. Not all 
quantum states have a corresponding two-point function with this universal Hadamard struc-
ture, though only those that satisfy this Hadamard condition are generally considered physi-
cally meaningful [17]. A key problem addressed in this paper is how to construct a quantum 
state that satisfies the Hadamard condition near the Cauchy horizon.

Each of the biscalars in (31) can be covariantly Taylor expanded about one of the points 
(for high-order covariant expansions in arbitrary dimensions, see for example [31]). Treating 
the separation between the points as formally O(ε) = O(∆x) = O(σ;a), for the Van Vleck-
Morrette determinant, we get

∆1/2 = 1 +
1

12
Ra′b′σ

;a′σ;b′ +O(ε3).� (32)

Considering massless fields on a background geometry with vanishing scalar curvature implies 
V = O(ε2) and hence the tail term does not contribute in the coincidence limit. There are also 
standard coordinate expansions for these biscalars but they turn out to be useless in this con-
text since the metric in the coordinates we have adopted is singular on the Cauchy horizon. 
Though coordinates exist in which the metric is regular on this horizon, the transformation 
cannot be given explicitly. Regardless, since we are ultimately interested in computing these 
biscalars in the coincidence limits, we can simplify things considerably by separating only in 
the radial direction whence the terms in the covariant expansion can be computed exactly. For 
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the world function σ(x, x′), we can compute this for radial separation by directly integrating 
the line-element with dτ = dΘ = dφ = 0. Assuming −1 < η′ < η < 1, this gives

√
−2σ = s =

∫ η

η′

(αη′′ + M)√
1 − η′′2

dη′′.� (33)

Moreover, since we are only interested in the separation along radial directions, we have 
σ;a′ ≡ 0 except

σ;η′
=

√
1 − η′2

(αη′ + M)
s.� (34)

Putting this together gives

GS(η, η′) =
∆1/2

8π2σ
+O(ε2 ln ε) = − 1

4π2s2 − 1
48π2 Rη′η′

(σ;η′
)2

s2 +O(ε)

= − 1
4π2s2 − Q2

48π2(αη′ + M)4 +O(ε).

�

(35)

Now taking one point on the horizon, η′ = −1, and taking η = −1 + ε for some ε > 0 gives

s =
∫ −1+ε

−1

(αη + M)√
1 − η2

dη = −α
√
ε(2 − ε) + M arccos(1 − ε).� (36)

Substituting this into (35) and expanding in ε gives, after some algebra,

GS = − 1
8π2r2

−ε
+

κ−

24π2r−
+O(ε),� (37)

where we note that κ− = −f ′(r−)/2 = α/r2
−. Taking Ω′ → Ω and η = −1 + ε in equa-

tion (30) gives simply

G = − κ−

8π2αε
= − 1

8π2r2
−ε

.� (38)

Finally, subtracting the Hadamard parametrix (37) from this and taking the coincidence limit 
ε → 0 gives the vacuum polarization

〈ϕ̂2〉 = − κ−

24π2r−
.� (39)

It is worth noting that the sign of the vacuum polarization on the Cauchy horizon is negative, 
in contrast to the vacuum polarization on the event horizon for a scalar field in the Hartle–
Hawking state. Furthermore, we note that the vacuum polarization is regular on the Cauchy 
horizon in this quantum state, and hence this state satisfies the Hadamard condition. We still 
need to show that the same is true for the stress–energy tensor in this state, a significantly more 
involved calculation. This is computed in the following section.

5. The Regularized stress–energy tensor on the cauchy horizon

In this section, we calculate the regularized expectation value of the stress–energy tensor for a 
massless, arbitrarily coupled scalar field on the Cauchy horizon. This is the quantity of physi-
cal interest in obtaining the back-reaction on the spacetime geometry via the semi-classical 
field equations.
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For a massless scalar field propagating in a Ricci-flat background, we have the following 
expression for the classical stress–energy tensor

Ta
b = (1 − 2ξ)gacϕ;cϕ;b + (2ξ − 1

2
)δa

bgcdϕ;cϕ;d − 2ξgacϕϕ;cb + 2ξδa
bϕ�ϕ+ ξ Ra

bϕ
2.

� (40)
In the point-splitting approach to regularization [32], of which the Hadamard prescription is a 
variant, we write this tensor as a coincidence limit of a bi-tensor,

Ta
b = [D̂a

b(ϕ(x)ϕ(x′))] ≡ lim
x′→x

D̂a
b(ϕ(x)ϕ(x′))

�
(41)

where D̂a
b = D̂a

b(x, x′) is a differential operator which may be defined in any way provided it 
gives (40) in the coincidence limit. We shall adopt the following definition,

D̂a
b = (1 − 2ξ)gac′∇b∇c′ + (2ξ − 1

2
)δa

bgcd′
∇c∇d′ − 2ξgac∇c∇b + 2ξδa

b∇c∇c + ξ Ra
b� (42)

where gab′ are the bivectors of parallel transport. A well-known problem with adopting this 
definition is that the renormalized quantum stress–energy tensor is no longer conserved, 
though this is easily remedied by adding an appropriate factor of v1(x) = [V1(x, x′)]. This 
corresponds to a redefinition of the arbitrary lengthscale � in the Hadamard parametrix (31). 
Taking this into consideration, we define the quantum expectation value of the stress–energy 
tensor for the field in our quantum state to be [33]

〈T̂a
b〉 = lim

x′→x
D̂a

b (G(x, x′)− GS(x, x′)) +
1

4π2 v1(x)δa
b,� (43)

where G(x, x′) is the Green function given by (20) and (26) while GS(x, x′) is the Hadamard 
parametrix given by (31).

We focus first on the D̂a
bG(x, x′) term. Since we are concerned with calculating the stress–

energy tensor exactly on the Cauchy horizon, it is most convenient to split in the radial direc-
tion as we did for the vacuum polarization above. In what follows, we assume, without loss 
of generality that x′ < x  and then we consider taking the inner point x′ to lie on the horizon. 
Things are more complicated than in the calculation of the vacuum polarization however since 
we must now consider derivatives of the Green function, and taking x′ to the horizon or taking 
partial coincidence limits must be postponed until the derivatives have been performed. We 
will also need expansions of the bivectors of parallel transport. Fortunately, for radial separa-
tion, these are trivially obtained in closed form; in (τ , η,Θ,φ) coordinates, we have:

gττ ′ = −
√

1 − η2
√

1 − η′2

(η + M/α)(η′ + M/α)
gηη′ = −α2 (η + M/α)(η′ + M/α)√

1 − η2
√

1 − η′2

gΘΘ′ = −α2(η + M/α)(η′ + M/α) gφφ′ = −α2(η + M/α)(η′ + M/α) sinh2 Θ.
�

(44)

Examination of (42) reveals that there is essentially two types of terms we need to evalu-
ate in order to compute D̂a

bG(x, x′): those of the form gac′G;c′b  and those of the form gacG;cb.
Considering the latter case first. For such terms, we have two derivatives at the same spa-

cetime point, which will involve the Christoffel symbols,

G;ab = G,ab − Γc
abG,c,� (45)
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where the Christoffel symbols in these coordinates are

Γτ
τη = − α+ M η

(M + α η)(1 − η2)
Γη
ττ = α2 (α+ M η)(1 − η2)

(M + α η)5

Γη
ηη =

α+ M η

(M + α η)(1 − η2)
Γη
φφ = sinh2 ΘΓη

ΘΘ = −α sinh2 Θ
(1 − η2)

M + α η)

ΓΘ
ηΘ = Γφ

ηφ =
α

M + α η
ΓΘ
φφ = − sinh2 ΘΓφ

Θφ = − sinhΘ coshΘ,

� (46)
with all other coefficients being zero. Notwithstanding the extra term involving the Christoffel 
symbols, things are significantly easier when the two derivatives are taken at the same space-
time point since only the zero frequency mode contributes in the limit where one point is taken 
to the Cauchy horizon. To see this, note that we can always choose the derivative to act on 
the outer point, which we have chosen to be x without loss of generality, and it is clear that 
this will not affect the asymptotics (24) at the inner spacetime point x′. In particular, taking 
η′ → −1 and using the asymptotic forms (24) immediately implies that all the modes vanish 
except the n  =  0 term. Since we have a closed form representation of the n  =  0 mode, each 
of the terms of the form [gacG;cb] can be obtained by directly differentiating (30). Performing 
the derivatives and using the appropriate Christoffel symbols, followed by taking the partial 
coincidence limits and expanding about the Cauchy horizon, we obtain

[gττG;ττ ]r− =
1

8π2r4
−

{
− 1
(η + 1)2 +

(M + 3α)
r−(η + 1)

− 3α(2α+ M)

r2
−

}
+ O(η + 1),

� (47)

[gηηG;ηη]r− =
1

8π2r4
−

{
3

(η + 1)2 − (M + 3α)
r−(η + 1)

+
α(2α+ M)

r2
−

}
+ O(η + 1),

� (48)

[gΘΘG;ΘΘ]r− = [gφφG;φφ]r− =
1

8π2r4
−

{
− 1
(η + 1)2 +

α(M + 2α)
r2
−

}
+ O(η + 1),� (49)

where we have adopted square bracket notation [..]r− to indicate that we have taken the partial 
coincidence limit (τ ′ → τ , η′ → −1,Θ′ → Θ,φ′ → φ). As a simple check of these expan-
sions, one can see that adding these gives �G = 0 up to the order of our expansions.

Turning now to terms of the form gac′G;bc′. Such terms involve a covariant derivative at 
each spacetime point but since G(x, x′) is a scalar at both x and x′, we are in fact only dealing 
with partial derivatives. For the angular terms gΘΘ′

G;ΘΘ′ and gφφ′
G;φφ′, it is clear from the 

asymptotic forms (24) that taking x′ to lie on the horizon means that only the n  =  0 terms will 
contribute in the limit η′ → −1. Therefore, we can differentiate directly equation (30), take 
partial coincidence limits and expand about the horizon to obtain

[gΘΘ′
G;ΘΘ′ ]r− = [gφφ′

G;φφ′ ]r− =
1

8π2r4
−

{
1

(η + 1)2 − α

r−(η + 1)
+

α2

r2
−

}
+ O(η + 1).� (50)

For gττ ′
G;ττ ′ and gηη′

G;ηη′, we must differentiate the full Green’s function given by equa-
tions (20) and (26) before we can take x′ to lie on the Cauchy horizon. Considering gττ ′

G;ττ ′ 
first, differentiating and splitting only in the radial direction gives

[gττ ′
G;ττ ′ ]r = − (η + M/α)(η′ + M/α)√

1 − η2
√

1 − η′2
κ−

4π2

∞∑
n=−∞

n2κ2
−

∫ ∞

0
dλλ tanhπλ gnλ(η, η′).� (51)
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Trivially, the n  =  0 term will vanish. Moreover, using the asymptotic forms equation (24), we 
see that

[gττ ′
gnλ(η, η′)]r ∼

r−
2
√

2α2|n|
(η + M/α)p

|n|
λ (η)√

1 − η2
(1 + η′)|n|/2−1/2, η′ → −1,

� (52)
so that only the n = ±1 modes will be non-zero in the limit η′ → −1. Hence, taking this limit 
yields,

[gττ
′
G;ττ ′ ]r− =

κ3
−r−

8
√

2π2α2

(η + M/α)√
1 − η2

F(η),� (53)

where

F(η) ≡
∫ ∞

0
2λ tanhπλ p1

λ(η) dλ.� (54)

We require a series expansion of F(η) about the Cauchy horizon η = −1. To achieve this, 
however, involves a uniform asymptotic analysis of the radial solution p1

λ(η), uniformly valid 
for both η ∼ −1 and arbitrarily large λ. The precise details of this analysis are somewhat 
technical and are deferred to the appendix where it is shown that,

F(η) =
2

(1 + η)3/2 − (M + 3α)
2r−(1 + η)1/2 −

(
(M + 3α)2

16r2
−

− B
)
(1 + η)1/2

+ O
(
(η + 1)3/2 ln(1 + η)

)
,

�

(55)

where B is, as of yet, an unspecified constant. To interpret this constant, note that F(η) requires 
some input about the quantum state, or equivalently, about the boundary conditions imposed 
on the radial modes. In our asymptotic series which we outline in the appendix, information 
about the choice of boundary conditions is encoded in this constant B. For now, we make no 
particular choice. Substituting (55) into (53) gives

[gττ
′
G;ττ ′ ]r− =

1
8π2r4

−

{
1

(η + 1)2 +

(
B
2
− α(M + 2α)

2r2
−

)}
+ O(η + 1).

� (56)
A similar argument to the one above can be employed to obtain an expansion for 

[gηη
′
G;ηη′ ]r−. We have

[gηη′
G;ηη′ ]r =

√
1 − η2

√
1 − η′2

α2(η + M/α)(η′ + M/α)

κ−

4π2

∞∑
n=−∞

∫ ∞

0
dλλ tanhπλ

∂2

∂η∂η′
gnλ(η, η′).� (57)

Now the n  =  0 mode vanishes when we take η′ on the Cauchy horizon by merit of the fact that

√
1 − η′2

dP−1/2+iλ(−η′)

dη′
= P1

−1/2+iλ(−η′) → 0 as η′ → −1.� (58)

Moreover, using the asymptotic forms equation (24), we have for n �= 0,
[

gηη
′ ∂

∂η∂η′
gnλ(η, η′)

]

r
∼ |n|

2
√

2α2r−

√
1 − η2

(η + M/α)

∂p
|n|
λ (η)

∂η
(η′ + 1)|n|/2−1/2, η′ → −1,� (59)

which implies that all but the n = ±1 terms vanish in the limit where one point is taken to the 
Cauchy horizon. Taking this limit yields
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[gηη
′
G;ηη′ ]r− =

κ−

8
√

2π2α2r−

√
1 − η2

(η + M/α)

dF(η)
dη

,� (60)

where the expansion for F(η) about the Cauchy horizon is given by equation (55). Putting 
these together gives
[
gηη

′
G;ηη′

]
r−

=
1

8π2r4
−

{
− 3
(1 + η)2 +

M + 3α
r−(1 + η)

+

(
B
2
− 3α(M + 2α)

2r2
−

)}
+ O(1 + η).� (61)

Now, defining 〈T̂a
b〉unreg ≡

[
D̂a

bG
]

r−
, with D̂a

b defined by equation (42), we can compute

〈T̂τ
τ 〉unreg =

1
8π2r4

−

{
1

(η + 1)2 +
M(2ξ − 1)− α(6ξ + 1)

2 r−(η + 1)

+

(
B ξ +

αM(1 + 6ξ) + 20α2ξ

2r2
−

)}
+ O(1 + η)

〈T̂η
η〉unreg =

1
8π2r4

−

{
− 3

(η + 1)2 +
M(6ξ + 1) + α(6ξ + 5)

2 r−(η + 1)

+

(
B ξ − αM(1 + 6ξ) + 4α2(1 + ξ)

2r2
−

)}
+ O(1 + η)

〈T̂Θ
Θ〉unreg = 〈T̂φ

φ〉unreg =
1

8π2r4
−

{
1

(η + 1)2 +
(M + 3α)(2ξ − 1)

2 r−(η + 1)

+

(
B
2
(4ξ − 1) +

αM(1 − 6ξ) + 2α2(1 − 5ξ)
r2
−

)}
+ O(1 + η).

�

(62)

The geometrical subtraction terms are found by obtaining a series expansion for the differ
ential operator (42) acting on the Hadamard parametrix and taking appropriate partial coin-
cidence limits with one point placed on the Cauchy horizon. These are independent of the 

quantum state under consideration. Defining 〈T̂a
b〉S ≡

[
D̂a

bGS(x, x′)
]

r−
, the results are

〈T̂τ
τ 〉S =

1
8π2r4

−

{
1

(η + 1)2 +
M(2ξ − 1)− α(6ξ + 1)

2r−(η + 1)

+
1

360r2
−

(
51M2 − 2Mα(180ξ − 673) + α2(1080ξ + 2171

)}
+ O(η + 1),

〈T̂η
η〉S =

1
8π2r4

−

{
− 3

(η + 1)2 +
M(6ξ + 1) + α(6ξ + 5)

2 r−(η + 1)

− 1
360r2

−

(
141M2 + 2Mα(540ξ + 1811) + α2(360ξ + 7189)

)}
+ O(1 + η)

〈T̂Θ
Θ〉S = 〈T̂φ

φ〉S =
1

8π2r4
−

{
1

(η + 1)2 +
(M + 3α)(2ξ − 1)

2 r−(η + 1)

+
1

360r2
−

(
51M2 − 10Mα(108ξ − 145)− α2(1080ξ − 2707)

)}
+ O(1 + η).

�

(63)
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We note the absence of logarithmic singularities in these expressions. The coefficient of the 
logarithmic term in the Hadamard parametrix is the biscalar V(x, x′) which for a massless 
scalar field in Reissner–Nördstrom spacetime possesses a coordinate expansion of order ∆x2 
for x near x′. Thus, it would appear that the stress–energy tensor should possess logarithmic 
singularities since the stress–energy tensor involves taking two derivatives of V . However, the 
coefficient of the logarithmic term in the expansion of D̂a

bGS vanishes on the Cauchy horizon.
Finally, subtracting equations (63) from (62), taking the limit η → −1 and adding the fac-

tor of v1 according to the definition (43), we arrive at the renormalized stress–energy tensor 
for a massless scalar field in our quantum state on the Cauchy horizon inside the Reissner–
Nordström black hole:

〈T̂τ
τ 〉 =

1
8π2r4

−

{
B ξ − 47M2 − 6Mα(240ξ − 193)− α2(2520ξ − 2119)

360r2
−

}

〈T̂η
η〉 =

1
8π2r4

−

{
B ξ +

145M2 + 3450Mα− α2(360ξ − 6521)
360r2

−

}

〈T̂Θ
Θ〉 = 〈T̂φ

φ〉 =
1

16π2r4
−

{
B (4ξ − 1)− 47M2 + 2Mα(540ξ + 541) + 45α2(56ξ + 43)

180r2
−

}
.

� (64)
This is the main result. We have a closed-form representation for the stress–energy tensor on 
the Cauchy horizon. The components of this tensor are manifestly finite in the quantum state 
we have defined on the Euclidean section of the interior.

As a simple check of these results, we note that the trace for general coupling is

〈T̂a
a〉 =

1
8π2r4

−

{
B (6ξ − 1) +

M2 − 4Mα(45ξ − 8) + α2(133 − 720ξ)
90r2

−

}
.

� (65)
We can see that for conformally coupled fields ξ = 1/6, the first term vanishes and we obtain

〈T̂a
a〉conf =

M2 + 2Mα+ 13α2

720π2r6
−

=
v1(r−)

4π2 .� (66)

This corresponds to the standard trace anomaly [33], as expected. A non-trivial check of our 
results is provided by checking that the conservation equation ∇a〈T̂a

η〉 = 0 is satisfied (the 
other conservation equations being trivially satisfied because of the symmetries of the space-
time), which is indeed the case.

6.  Conclusions and discussion

In this paper, we compute the regularized expectation value of the stress–energy tensor for a 
scalar field on the inner horizon of a Reissner–Nordström black hole. Numerical calculations 
of the vacuum polarization on the black hole interior for the field in the Unruh and Hartle–
Hawking state have been considered in [21], and they show that these states are singular on the 
inner horizon. If one is interested in the quantum back-reaction near the inner horizon, then 
it is necessary to consider the quantum field in a state that satisfies the Hadamard condition, 
otherwise the semi-classical approximation is violated. With this in mind, we construct the 
field in a quantum state that is explicitly regular on the Cauchy horizon in the sense that the 
Hadamard condition is satisfied for the two-point function when one of the points is on the 
horizon. The construction of the state involved working on a negative definite metric obtained 
by analytically continuing the t coordinate and the polar coordinate θ. Surprisingly, an exact 
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closed-form representation of the regularized stress–energy tensor is tractable for the field in 
this quantum state for any value of the coupling constant.

There remains some interesting open questions about the calculation we present, in particular, 
about the quantum state we construct. For example, we have not offered any insights into what 
this state corresponds to physically. Is it a thermal state, for example? Presumably, this state is 
singular on the event horizon, though we have made no attempt to prove this. There are also some 
unresolved issues with the formal analysis of the double analytical continuation that we adopt and 
whether the two-point function has a unique continuation back to the two-point function on the 
Lorentzian spacetime. Certainly, there is some further work needed in these directions.

Notwithstanding the need for deeper insights into the physical interpretation of the quantum 
state under consideration, it is perfectly reasonable to solve the problem of computing the 
regularized stress–energy tensor in whatever Hadamard state is most convenient and to use 
the fact that differences between Hadamard states is regular to compute the stress–energy ten-
sor in any other state. In other words, the regularization problem need only be solved in one 
quantum state and oftentimes the states which are most convenient to do so are those which 
employ Euclidean techniques. This provides a strong motivation for the approach adopted in 
this paper, regardless of the physical interpretation of the state.
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Appendix A.  Uniform asymptotic series for F(η)

In order to calculate the stress–energy tensor on the Cauchy horizon, we required a series 
expansion for the function we have called F(η) (54) about η = −1, which in turn requires 
a uniform asymptotic series for the radial solution p1

λ(η). In this appendix, we outline our 
method for achieving this; the approach is similar to a uniform asymptotic approximation 
developed by Candelas [34] for the exterior of the Schwarzschild spacetime. The standard 
development of uniform asymptotics for differential equations with a large parameter is the 
Green–Liouville approach [35]. This has been extended by Breen and Ottewill [36] to include 
the radial functions on black hole spacetimes with two horizons but this method does not 
result in closed form representations for derivatives of the Green function near the horizon.

We start by noting that the equation satisfied by p1
λ(η), in some sense, asymptotes to the 

equation satisfied by the conical function P1
−1/2+iλ(η) as η → −1. And in particular, we have 

that

p1
λ(η) ∼

π√
2 coshπλ

P1
−1/2+iλ(η), η → −1.� (A.1)

We look for a formal solution of the form

p1
λ(η) =

π√
2 coshπλ

{
P1
−1/2+i λ(η) + g(η)P−1/2+iλ(η)

}
+ ελ(η),� (A.2)

where g(η) does not depend on λ. We wish to estimate the contribution of the error term ελ(η) 
in the integral that defines F(η) near the horizon. With the particular choice

g(η) =
∫ η

−1

Ψ(x)
2(1 − x2)3/2 dx, ψ(η) = 1 −

(
α η + M

r−

)4

,� (A.3)
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it can be shown that the error term satisfies
{

d
dη

(
1 − η2) d

dη
− λ2 − 1

4
− 1

1 − η2

}
ελ(η) = − ψ(η)

1 − η2 ελ(η)

− π√
2 coshπλ

P−1/2+i λ(η) h(η)

� (A.4)
where

h(η) =
{

d
dη

(
1 − η2) d

dη
− 1 − ψ(η)

1 − η2

}
g(η) =

4
√

2α2r+
5 r3

−
(1 + η)3/2 + O(1 + η)5/2.� (A.5)

Importantly, ψ(η) has a simple zero at the Cauchy horizon so that ψ(η)/(1 − η2) is regular 
there. Moreover, h(η) is bounded on a neighbourhood of this point. This equation  can be 
solved formally by the method of variation of parameters

ελ(η) =

∫ η

0
Kλ(η, x)

(
ψ̃(x) ελ(x) + P̃λ(x) h(x)

)
dx,� (A.6)

where the kernel Kλ(η, x) is defined by

Kλ(η, x) =
|Γ(− 1

2 + iλ)|2

2

{
P1
−1/2+i λ(η)P

1
−1/2+i λ(−x)− P1

−1/2+i λ(x)P
1
−1/2+i λ(−η)

}
,� (A.7)

and we have simplified the notation by identifying

ψ̃(η) =
ψ(η)

1 − η2 , P̃λ(η) =
π√

2 coshπλ
P−1/2+i λ(x).� (A.8)

It is straightforward to show that (A.6) is a solution to equation (A.4) using the Wronskian

(1 − η2)W
{
P1
−1/2+iλ(η),P

1
−1/2+iλ(−η)

}
=

2
Γ(− 1

2 + iλ) Γ(− 1
2 − iλ)

.� (A.9)

Now uniqueness and boundedness of the solution (A.6) is guaranteed for general integral 
equations  of the type (A.4) (see theorem 10.1, chapter 6 of [35]) provided the following 
assumptions hold:

	 (i)	�The functions P̃λ(x), h(x) and ψ̃(x) are continuous on x ∈ (−1,β) save for a finite number 
of discontinuities or infinities.

	(ii)	�The kernel Kλ(η, x) and its first two partial η derivatives are continuous functions of both 
x and η on (−1,β).

	(iii)	�Kλ(η, η) = 0.
	(iv)	�For η ∈ (−1,β) and x ∈ (−1, η], there exists positive continuous functions P( j)

λ (η) and a 
continuous function Qλ(x) such that

|Kλ(η, x)| � P(0)
λ (η)Qλ(x),

∣∣∣∣
∂Kλ(η, x)

∂η

∣∣∣∣ � P(1)
λ (η)Qλ(x),

∣∣∣∣
∂2Kλ(η, x)

∂η2

∣∣∣∣ � P(2)
λ (η)Qλ(x).

	(v)	�When η ∈ (−1,β), the following integrals converge

Φ(η) =

∫ η

−1
|h(x)|dx, Ψ(η) =

∫ η

−1
|ψ̃(x)|dx,� (A.10)
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		 and the following suprema are finite

δ ≡ sup{Qλ(η)|P̃λ(η)|}, δ0 ≡ sup{P(0)
λ (η)Qλ(η)}.� (A.11)

These conditions do indeed hold in our case for −1 < β < 1 though it remains to find explicit 

P( j)
λ (η) and Qλ(η) satisfying condition (iv). Let us derive explicitly only the first bound 

in (iv), the others following a similar route. We start by noting that, for fixed η, the prod-

uct P1
−1/2+iλ(x)P

1
−1/2+iλ(−η) is a monotonically decreasing function of x tending to ∞ as 

x → −1, while P1
−1/2+iλ(η)P

1
−1/2+iλ(−x) is monotonically increasing over (0,∞) as x ranges 

over (−1, η). This implies that

P1
−1/2+iλ(η)P

1
−1/2+iλ(−x)− P1

−1/2+iλ(x)P
1
−1/2+iλ(−η) > 0, x < η.

This trivially implies a positive kernel K(η, x) > 0 for x < η. Moreover, since each product in 
this difference is positive, we have

0 < K(η, x) <
|Γ(− 1

2 + iλ)|2

2
P1
−1/2+iλ(η)P

1
−1/2+iλ(−x), x < η.� (A.12)

Hence, the first inequality in condition (iv) above is satisfied with

P(0)
λ (η) =

π√
2 coshπλ

P1
−1/2+iλ(η) = P̃λ(η), Qλ(x) =

1√
2 (λ2 + 1/4)

P1
−1/2+iλ(−x),� (A.13)

where we have used the fact that |Γ(−1/2 + iλ)|2 = π sech(πλ)/(λ2 + 1/4). Bounding 

derivatives of the kernel is identical except the P( j)
λ (η) ( j = 1, 2) involve derivatives of the 

conical functions.
With these particular choices, it is now also a straightforward matter to explicitly compute 

the suprema δ and δ0. In particular, using the monotonicity of the conical functions and the 
asymptotic forms

P1
−1/2+i λ(η) ∼

√
2
π

coshπλ (1 + η)−1/2, η → −1,

P1
−1/2+i λ(−η) ∼ 1√

2
(λ2 + 1/4)(1 + η)1/2, η → −1,

�
(A.14)

we obtain δ = δ0 = 1/2.
Finally, the theorem which guarantees uniqueness and boundedness of the error also gives 

the explicit bound

|ελ(η)|
P(0)
λ (η)

� δΦ(η) exp{δ0Ψ(η)}.� (A.15)

Hence, we get the following uniform estimate for the contribution of the error near the Cauchy 
horizon,

ελ(η) ∼ P̃λ(η)(1 + η)5/2, η → −1,� (A.16)

using the fact that Φ(η) ∼ (1 + η)5/2 for η → −1. From this we can estimate the contribution 
of this error to the function F(η) defined by (54), that is,
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∫ ∞

0
2λ tanhπλ ελ(η)dλ ∼ (1 + η)5/2

∫ ∞

0

πλ tanhπλ

coshπλ
P1
−1/2+i λ(η) dλ η → −1

= (1 + η)(1 − η)1/2,
�

(A.17)

where the last line follows by differentiating the identity (29). Hence the error term does not 
contribute to (1 + η)−1/2F(η) in the limit as the Cauchy horizon is approached. Only the first 
two terms in (A.2) contribute and are easily calculated again from the identity (29). The result 
is

F(η) =
2

(1 + η)3/2 − (M + 3α)
2 r− (1 + η)1/2 − (M + 3α)2

16r2
−

(1 + η)1/2 + O(1 + η).

� (A.18)
As a final note in this appendix, we point out that (A.2) is not the most general asymptotic 

form for p1
λ(η) and in particular, there is a freedom to add multiples of the subdominant solu-

tion βλ q
1
λ(η). The βλ coefficients are chosen in such a way that p1

λ(η) satisfies the desired 
boundary conditions at the event horizon η = 1. In the next appendix, we outline how to cal-
culate the βλ which correspond to p1

λ(η) → 0 at the event horizon. In any case, for unspecified 
boundary conditions, we have

F(η) =
2

(1 + η)3/2 − (M + 3α)
2 r− (1 + η)1/2 −

(
(M + 3α)2

16r2
−

− B
)
(1 + η)1/2 + O(1 + η),� (A.19)

where

B =

∫ ∞

0
2λ tanhπλβλ dλ.� (A.20)

For the state to be regular, we require that the constant B be finite, that is, βλ ∼ o(λ−2) for 
large λ.

Appendix B.  Evaluating the βλ coefficients

We describe how to evaluate the βλ coefficients appearing in the definition of the constant B 
for the case where we impose the boundary condition p1

λ(η) → 0 at the event horizon.
We begin with the Wronskian relation between the n = ±1 radial functions of the first and 

second kind,

q1
λ(η)

d
dη

p1
λ(η)− p1

λ(η)
d

dη
q1
λ(η) = − 2

1 − η2 .� (B.1)

Dividing across by (q1
λ)

2 and integrating we obtain the following integral expression for p1
λ(η)

p1
λ(η) = 2 q1

λ(η)

∫ 1

η

dx
(1 − x2)[q1

λ(x)]2
,� (B.2)

where we have used the boundary condition p1
λ(η) → 0 as η → 1 to fix the upper bound of the 

integral. A standard Frobenius series expansion for q1
λ(x) about x  =  −1 yields

q1
λ(x) = (x + 1)1/2 +

(
5M + 3α

16 r−
+

λ2

4

)
(x + 1)3/2 + O(x + 1)5/2� (B.3)
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and therefore we have

1
[q1

λ(x)]2
=

1
x + 1

−
(

5M + 3α
8 r−

+
λ2

2

)
+ O(x + 1).� (B.4)

We wish to subtract and add this singular behaviour from the integrand (B.2) so that we isolate 
the divergences at η = −1. However, we do not subtract the terms on the right-hand side of 
(B.4) over the entire integration range since (B.4) has a non-integrable singularity at the upper 
bound η = 1. Instead we write (B.2) as

p1
λ(η) = q1

λ(η)

∫ 0

η

2
(1 − x2)

(
1

[q1
λ(x)]2

− 1
(x + 1)

+

(
5M + 3α

8 r−
+

λ2

2

))
dx

+ q1
λ(η)

∫ 0

η

2
(1 − x2)

(
1

(x + 1)
−
(

5M + 3α
8 r−

+
λ2

2

))
dx

+ q1
λ(η)

∫ 1

0

2
(1 − x2)[q1

λ(x)]2
dx.

�

(B.5)

The first integral on the righthand side above converges and is amenable to a Taylor series 
about η = −1 while the second term can be integrated explicitly. Using (B.3), we obtain

p1
λ(η) =

1
(η + 1)1/2 +

(
M + 7α

8 r−
+

λ2

2

)
(η + 1)1/2 ln

(
η + 1

2

)

+

{
Iλ + Jλ − (1 − 1

4
λ2) +

5M + 3α
16 r−

}
(η + 1)1/2 + O((η + 1)3/2 ln(η + 1)),

�
(B.6)

Figure B1.  Plot of βλ with M  =  1 as a function of α =
√

1 − Q2 .

Table B1.  The integral B corresponding to boundary condition p1
λ(η) → 0 as η → 1, 

with black hole parameters M  =  1 and various α =
√

M2 − Q2  values.

α 1/10 1/5 3/10 2/5 1/2 3/5

B 0.0723 0.2107 0.4684 0.9524 1.9002 3.9137
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where

Iλ =

∫ 0

−1

2
(1 − x2)

(
1

[q1
λ(x)]2

− 1
(x + 1)

+

(
5M + 3α

8 r−
+

λ2

2

))
dx,

Jλ =

∫ 1

0

2
(1 − x2)[q1

λ(x)]2
dx.

�

(B.7)

Recall that we also have an alternate expression for p1
λ(η) which effectively defines the βλ 

coefficients we are trying to compute,

p1
λ(η) =

π√
2 coshπλ

{
P1
−1/2+i λ(η) + g(η)P−1/2+iλ(η)

}
+ ελ(η) + βλ q

1
λ(η).

� (B.8)
Each term here is straightforward to expand about η = −1 resulting in an equivalent series 
for p1

λ(η),

p1
λ(η) =

1
(η + 1)1/2 +

(
M + 7α

8 r−
+

λ2

2

)
(η + 1)1/2 ln

(
η + 1

2

)

+

(
βλ +

1 − 4λ2

8
+

(
M + 7α

8 r−
+

λ2

2

)
(H−1/2+i λ + H−1/2−i λ)

)
(η + 1)1/2

+ O((η + 1)3/2 ln(η + 1)),

�

(B.9)

where Hz is the Harmonic number.
Comparing our two equivalent series expansions (B.6) and (B.9) yields an expression for 

βλ that is numerically tractable:

βλ = Iλ + Jλ − 3
4

(
3
2
− λ2

)
+

5M + 3α
16 r−

−
(

M + 7α
8 r−

+
λ2

2

)
(H−1/2+i λ + H−1/2−i λ).� (B.10)

The integral Iλ is most effectively calculated by employing a high-order series solution to 
q1
λ(η) in order to cancel the divergences explicitly in the integrand at the lower bound of the 

integral. The integral can then be performed accurately and efficiently. Computing the integral 
Jλ requires the full numerical solution for q1

λ(η). Nevertheless, given the numerically com-
puted modes, the integral is straightforward to compute numerically modulo some numerical 
instability very close to the upper bound of the integral. However, this does not present a prob-
lem since the integral cuts off exponentially as the upper bound is approached. In practice, we 
cut off the numerical integral at x = 1 − ε with ε = 10−6 with little loss of accuracy.

We find numerically that βλ ∼ λ−4 for large λ and so the integral (A.20) converges 
quickly, though the speed of convergence is sensitive to the black hole parameters. In par
ticular, for fixed M, the convergence is slower for increasing α =

√
M2 − Q2 . We compute βλ 

for λ ∈ [0, 5] with a mesh size of 0.1, λ ∈ [5, 40] with a mesh size of unity and λ ∈ [40, 100] 
with a mesh size of 5. We then use Mathematica’s inbuilt Interpolation routine to generate an 
interpolating function for βλ. Finally we numerically integrate this interpolating function (cut-
ting off the integral at λ = 100) to obtain B to 3–5 decimal places of accuracy. Table B1 above 
shows our computed values for M  =  1 and a range of α values, rounded to 4 decimal places. 
One can fit these computed values to plot βλ as a function of α for all α values. This is plotted 
in figure B1. Note that βλ becomes negative only near extremality α = 0.
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