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Abstract
We consider thermal phases of holographic lattices at finite chemical potential 
in which a continuous internal bulk symmetry can be spontaneously broken. In 
the normal phase, translational symmetry is explicitly broken by the lattice and 
the only conserved quantities are related to time translations and the electric 
charge. The long wavelength excitations of the corresponding charge densities 
are described by incoherent hydrodynamics yielding two perturbative modes 
which are diffusive. In the broken phase an additional hydrodynamic degree 
of freedom couples to the local chemical potential and temperature and we 
write an effective theory describing the coupled system at leading order in a 
derivative expansion.
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1.  Introduction

The AdS/CFT correspondence provides a consistent framework to study universal features of 
large classes of strongly coupled field theories with a holographic dual. In the limit of classi-
cal gravity in particular, we can carry out straightforward computations in the bulk which are 
of high physical significance for the conformal field theory. Strong coupling is a fundamental 
difficulty arising in the theoretical understanding of certain classes of condensed matter sys-
tems such as the cuprate superconductors. The reduced amount of symmetry in those systems 
makes the field theoretical approach even less constrained. From this perspective, holography 
is an invaluable source of information as the duality makes possible the study of RG flows of 
strongly coupled theories with little or no symmetry through their gravity duals.
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Having in mind applications in condensed matter physics [1–3], we will consider classes 
of strongly coupled theories at finite chemical potential and temperature. In order to eliminate 
momentum from the conserved charges of the system, spatial translations will be explicitly 
broken by a holographic lattice. This is necessary for the heat current to relax and the zero 
frequency transport coefficients to be finite. In order to make the analysis more tractable, we 
will implement the lattice via a Q-lattice construction which requires the presence of global 
U(1) symmetries in the bulk [4] .

At low temperatures, the systems we consider can spontaneously break these global sym-
metries in the bulk, giving rise to additional hydrodynamic degrees of freedom [5, 6]. This 
setup will allow us to model holographic transport which captures the effects of the coupling 
between the currents and the sliding density wave. Moreover, we can add a small source which 
breaks the internal symmetry, gapping the sliding mode of the density wave in a controlled 
manner. Such a scenario has been considered before [7–12] , the advantage of our setup is 
that we can have control over the separation between the momentum and the phase relaxation 
times. The effect of this small pinning parameter on the finite frequency transport properties 
is of interest in condensed matter physics because of the transfer of spectral weight to energy 
scales set by the gap. Such effects are expected to play a prominent role in systems that 
include the pseudogap region of the hight-Tc phase diagram and bad metals [13–15].

One of the key concepts in condensed matter systems is the dynamics of excitations at 
wavelengths much bigger than any other scale of the system. In general, such excitations are 
captured by hydrodynamics which provides an effective description in a derivative expan-
sion. In that regime, one can argue that late time dynamics is governed by conserved charges 
and potential gapless modes emerging from broken symmetries. Understanding the dominant 
mechanisms in such processes is of physical significance as they will also determine the low 
frequency transport properties when the system is driven by external sources.

At temperatures higher than then critical one, hydrodynamics is dictated by the only con-
served quantities of the system which are related to time translations and the electric charge. 
In this regime, the long wavelength excitations are effectively described by incoherent hydro-
dynamics [16, 17]. A good set of local variables which capture the dynamics of these excita-
tions are the local temperature and chemical potential. At the level of linear response, the 
system is then dominated by two thermoelectric modes which are diffusive. Note in particular 
that relativistic systems with weak momentum relaxation can be described by using relativis-
tic hydrodynamics with perturbative deformations which break translations [17, 18]. In that 
context, the local fluid velocity can be integrated out as a result of momentum relaxation; this 
was discussed in [17] from the field theory perspective and in [19] within holography. The 
advantage of the class of models we will consider in our paper is that the momentum relaxa-
tion mechanisms will not have to be perturbatively small. Nevertheless, we will still be able to 
capture the physics of depinning of density waves.

In the broken phase, incoherent hydrodynamics needs to be supplemented by an additional 
variable which captures the dynamics of the emergent gapless mode due to symmetry break-
ing in the bulk. As shown in [6], when the order parameter does not itself break translations, 
this mode decouples from the other gapless modes of the system and is diffusive. However, in 
the system we will consider in this paper, this novel mode will couple to the heat and electric 
currents and for this reason we will call it ‘sliding’ in the present context. One therefore antici-
pates that below the critical temperature two thermoelectric modes and the extra mode due to 
symmetry breaking will mix in to yield three diffusive ones.
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By carefully examining our holographic system through techniques very similar to those 
of [19], we will manage to extract the dispersion relations of the three anticipated modes4. 
However, here we will technically approach the same problem in two different but equivalent 
ways. In both cases we will use the bulk solutions generated by varying the thermodynamic 
backgrounds with respect to the global temperature, chemical potential and phase of the bro-
ken bulk U(1) as seed solutions to build our derivative expansion. As one might expect for 
a relativistic system, in building the hydrodynamic description we will encounter a vector 
variable, which can be seen as a fluid velocity on the event horizon and three scalars which 
are the local temperature, chemical potential and phase of the VEV of a complex scalar which 
has condensed. However, with translations being broken in our system, we will manage to 
integrate out the vector variable from the description ending up with the three scalars that will 
be our variables for the incoherent hydrodynamics. As we will see in the main text, by inte-
grating one of the radial equations, we will obtain a Josephson-type equation for the phase of 
the complex scalar. We will therefore need to identify two additional scalar equations that will 
fully determine the time evolution of the local temperature and chemical potential.

From the classical gravity point of view, the most effective and natural way to obtain a 
closed set of equations for the three scalar variables is to impose the diffeomorphism and Gauss 
constraints close to the horizon of the black hole [19–21]. This will be our first approach. An 
equivalent but field theoretically more telling way to view the same constraints is to impose 
them close to the boundary of the spacetime. In this limit, they have the interpretation of the 
Ward identities of the stress tensor and the global U(1) charge conservation. To do this, we 
will give the constitutive relations for the electric and heat currents in terms of gradients of 
our three scalar hydrodynamic variables and a number of transport coefficients which will be 
determined by the black hole horizon.

Moreover, we will introduce finite frequency boundary sources that correspond to temper
ature gradient and electric field that will also enter our hydrodynamic description. Even more 
interestingly, we will include a perturbative source on the boundary which pins down the 
sliding density wave and which will also appear in our theory [5, 6]. Using our results we will 
obtain an analytic formula for the transport coefficients that were numerically computed in [5] 
up to frequencies set by the pinning scale.

Finally, we perform non-trivial numerical checks of our analytic results for a specific 
Q-lattice model which realises the breaking of a global bulk symmetry. More specifically, 
for small wavelengths we will numerically identify the three diffusive modes we anticipate 
from our analysis. This will allow us to extract the corresponding diffusion constants and 
match them with our analytic expressions. As a further check, for relatively weak lattices we 
will confirm that as we take wavelengths short enough to be comparable to the momentum 
relaxation time scale, one of our diffusive poles collides with the momentum relaxation pole 
to produce two sound modes [18, 22]. Finally, we confirm our results for the gap and the 
low-frequency AC thermoelectric conductivities by comparing with the numerical data of [5].

Our paper is organised as follows. In section 2 we present the class of holographic models 
that capture the physics we are interested in and we give some details about the phase transition 
and thermodynamics. In section 3 we take the system to be in its broken phase and we study 
the three hydrodynamic modes we described earlier in the introduction. An essential element 
of our analysis will be the infinitely long wavelength solutions which we generate by varia-
tions with respect to the thermodynamic variables of the backgrounds we describe in section 2. 
The analysis in this section  is based on imposing the gravitational constraints on the black 

4 Here we will consider only longitudinal excitations with wavevectors parallel to the thermal and electric currents. 
Transverse modes can be studied by using very similar techniques and we will leave that for future work.
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hole horizon. Section 4 is devoted to deriving the constitutive relations for the currents of the 
boundary theory and introducing appropriate sources. This will help us develop to the enlarged 
version of incoherent hydrodynamics describing our system. In section 5 we will introduce a 
pinning parameter for the density wave and we will compute the frequency dependent retarded 
Green’s functions for our system by using standard techniques. This will allow us to quantita-
tively explain the transfer of spectral weight due to the gapped mode in our system and explain 
the optical conductivities that were computed numerically in [5]. Finally, in section 6 we will 
perform a number of numerical checks for the analytic formulae for the diffusion constants we 
will derive in section 3 and the gap. We conclude in section 7 with a discussion.

2.  Set-up

In this section we will discuss a class of four dimensional holographic models in which we 
can introduce a chemical potential, momentum relaxation and global bulk symmetries in the 
simplest way possible.

We wish to use 2 complex scalars YI, I = 1, 2, dual to either marginal or relevant operators, 
as a Q-lattice to explicitly break translations [4]. As we will later see, each one of those com-
plex scalar will be used to break translations in each of the spatial direction, x1, x2. Moreover, 
we want to realise the spontaneous breaking of global U(1)’s in the bulk, for which we use 
2 complex scalars ZI, I = 1, 2. The only restriction on the conformal dimensions of the field 
theory duals of ZI that we need will come when we consider the effects of pinning later in our 
paper where we will need to introduce a perturbative static source for ZI. Similarly to the YI’s, 
each one of ZI’s will spontaneously break translations in a spatial different direction.

The bulk action which captures all the necessary ingredients is

Sbulk =

∫
d4x

√
−g

(
R − V − 1

2

∑
I

(GI ∂ZI∂Z̄I + WI ∂YI∂ȲI)−
τ

4
F2

)
.

� (2.1)
If we demand that the functions V , GI, WI and τ  only depend on the squares of the moduli 
bI = ZIZ̄I  and nI = YIȲI  of the complex scalars, our theory will realise the four global U(1)’s 
that we will need for our construction. Under this restriction, the variation of (2.1) yields the 
equations of motion

Lµν ≡ Rµν − τ

2
(FµρFν

ρ − 1
4

gµνF2)− 1
2

gµνV − 1
2

∑
i

(
GI ∂(µZI∂ν)Z̄I + WI ∂(µYI∂ν)ȲI

)
= 0,

∂µ (GJ∂µZJ)− ∂bJ V ZJ −
∑

I

(∂bJ GI ∂ZI∂Z̄I + ∂bJ WI ∂YI∂ȲI) ZJ −
∂bJτ

4
ZJ F2 = 0 ,

∂µ (WJ∂µYJ)− ∂nJ V YJ −
∑

I

(∂nJ GI ∂ZI∂Z̄I + ∂nJ WI ∂YI∂ȲI) YJ −
∂nJτ

4
YJ F2 = 0 ,

Cµ ≡ ∇µ (τ Fµν) = 0.
�

(2.2)

Moreover, by requiring that for small values of the scalars the functions appearing in our 
action (2.1) behave as,

V = −6 +
1
2

∑
I

(
m2

ZI
ZIZ̄I + m2

YI
YIȲI

)
+ · · ·

GI = 1 + · · · , WI = 1 + · · · , τ = 1 + · · · ,

�
(2.3)

A Donos et alClass. Quantum Grav. 37 (2020) 045005



5

the equations of motion (2.2) admit as a solution the unit radius AdS4 metric

ds2
4 = r2(−dt2 + dx2

1 + dx2
2) +

dr2

r2 , ZI = YI = Aµ = 0.� (2.4)

Given the above restrictions, the field theory duals of ZI and YI will correspond to operators of 
dimensions ∆ZI  and ∆WI  with ∆ZI (∆ZI − 3) = m2

ZI
 and ∆YI (∆YI − 3) = m2

YI
.

In the rest of the paper we will find it convenient to parametrise the scalars in polar coor-
dinates according to5

YI = ψI eiσI , ZI = φI eiχI ,� (2.5)

bringing the action (2.1) to the form

Sbulk =

∫
d4x

√
−g

(
R − V − 1

2

∑
I

(
GI (∂ψI)

2 + WI (∂φI)
2)

− 1
2

∑
I

(
ΨI (∂σI)

2 +ΦI (∂χI)
2)− τ

4
F2

)
,

ΨI ≡ GI ψI
2, ΦI ≡ WI φI

2.

�

(2.6)

Notice that in this parametrisation the functions V , τ , GI, WI, and therefore ΨI  and ΦI do not 
depend on σI  and χI. The global U(1)’s in the bulk are captured by the shift symmetries of σI  
and χI and by the fact that we should make the identifications σI ∼ σI + 2π and χI ∼ χI + 2π 
for the target space of the sigma model to be regular. The equations of motion coming from 
(2.6) are equivalent to those coming from (2.1); for later reference we write here the ones com-
ing from a variation with respect to χI,

∇µ (ΦI∇µχI) = 0.� (2.7)

Introducing a chemical potential and lattice deformation to our boundary theory will mod-
ify the background bulk metric from that of AdS4 in (2.4). However, with our Q-lattice con-
struction we will be able to maintain homogeneity and therefore avoid the problem of having 
to solve PDEs. As we will consider thermal states, finite temperature will require the existence 
of an event horizon which we assume to be of planar topology. These black holes will describe 
the normal phase of our system. In addition, we will consider a density wave state that will 
appear spontaneously for T  <  Tc and will also implement it through a Q-lattice construction. 
An ansatz which captures all the necessary ingredients, including the spontaneous breaking of 
the U(1) related to shifts of χI is given by

ds2 = −U(r) dt2 +
1

U(r)
dr2 + e2V1(r) dx1dx1 + e2V2(r) dx2dx2,

A = a(r) dt,

φI = φI(r), χI = kIixi + cI ,

ψI = ψI(r), σI = ksIixi,

�

(2.8)

where we shall take the case kIi = ki δ
i
I  and ksIi = ksi δ

i
I  (no summation). This particular choice 

of wavevectors associates each of the four complex scalars to a spatial direction. As we can 
see, the constants cI that we can freely choose in (2.8) represent the Goldstone modes in 

5 For our purposes, we will not need the full non-linear transformation (2.5). An equivalent way to derive all the 
results in our paper is to consider perturbations for the complex scalar fields of the form δZ = φbeiχb i δχ+ eiχb δφ 
around backgrounds with Zb = eiχbφb.

A Donos et alClass. Quantum Grav. 37 (2020) 045005
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the bulk due to symmetry breaking and cannot be fixed by boundary conditions. Since these 
modes shift the density wave, they can be interpreted as sliding modes. In order to introduce 
the appropriate sources and accommodate the right VEVs we demand the near conformal 
boundary expansion

U → (r + R)2 + · · ·+ W (r + R)−1 + · · · , V1 → log(r + R) + · · ·+ Wp(r + R)−3 + · · · ,

V2 → log(r + R) + · · · , a → µ+ Q (r + R)−1 + · · · ,

ψI → ψIs (r + R)−3+∆YI + · · ·+ ψIv (r + R)−∆YI + · · · , φI → φIv (r + R)−∆ZI + · · · .
� (2.9)

The constant of integration R that appears in the above expansion represents the part of repa-
rametrisation invariance which is left unfixed by the ansatz (2.8), given by constant shifts of 
the radial coordinate. We will choose R so that the horizon of the black hole is located at r  =  0. 
The expansion (2.9) reflects the chemical potential µ while the constants ψIs represent the 
strength of the explicit breaking of translations due to the Q-lattice and they are all meant to 
be fixed as deformation parameters of the theory. Moreover, the internal U(1)s associated with 
ZI are spontaneously broken whenever our solutions have φIv �= 0 which we expect to hap-

pen generically at temperatures below a critical one. It is useful to note that the VEVs 〈OZI 〉 
of the duals of ZI are 〈OZI 〉 = (∆ZI − 3/2)φIv eikixi+i cI  implying that ki are not to be fixed by 
hand. Most importantly, for the background with ki �= 0, the order parameter which breaks 
the internal U(1)’s also breaks translations incommensurately to the background lattice. They 
are fixed in such a way that the system minimises its free energy and as we will also show, 
the thermodynamically preferred black holes have ki  =  0. However, for our purposes it is still 
useful to consider the black hole backgrounds in which ki �= 0. Finally, we note that even 
though our black holes (2.8) will in general break all internal U(1)’s and spatial translations, 
the combination of transformations

xi → xi + ξi, χI → χI − kIiξ
i, σI → σI − kIsiξ

i� (2.10)

is still a symmetry of our solutions.
At this point it is helpful to define the bulk field

SI =
1
2i

(
e−i(kIixi+cI)ZI − ei(kIixi+cI)Z̄I

)
,� (2.11)

corresponding to the uncondensed component OSI  of the boundary operator OZI and for which 
it is easy to check that 〈OSI 〉 = 0 in the broken phase. As we will see, this operator will play an 
important role in our discussion of hydrodynamics in sections 4 and 5 as it will couple to the 
gapless mode due to the symmetry breaking in the bulk. To see this, we perform a small U(1) 
transformation ZI → ZI(1 + i ε) to yield 〈OSI 〉 = |〈OZI 〉| ε. The technical point we would like 
to make at this point is that the bulk fluctuations δχI are intimately related to the operator OSI . 
More specifically close to the boundary we will in general have the expansion

δSI = φI δχI = ζSI (r + R)∆ZI −3 + · · ·+ 〈OSI 〉
2∆ZI − 3

(r + R)−∆ZI + · · · ,� (2.12)

and ζSI will be the source from the field theory point of view. This source will make its appear-
ance again in later sections when we consider the driven hydrodynamics of our system in its 
broken phase.

In the IR, we demand the presence of a regular Killing horizon at r  =  0 by imposing the 
expansion

A Donos et alClass. Quantum Grav. 37 (2020) 045005
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U (r) = 4π T r + · · · , Vi = V(0)
i + · · · , a = a(0) r + · · · ,

φI = φ
(0)
I + · · · , ψI = ψ

(0)
I + · · · .

�
(2.13)

According to this notation, T will be the Hawking temperature of the black hole horizon. In the 
end we will have a set of black hole backgrounds labeled by ki, ksi,ψIs,µ, T and cI of which all 
the thermodynamic charges of the system are independent.

2.1. Thermodynamics

In this section we will take the opportunity to discuss aspects of thermodynamics which will 
let us highlight quantities that will play a role later in our paper. In order to discuss thermody-
namics we need to add appropriate counterterms Sbdr to our bulk action (2.1) that will make it 
finite and also end up with a well defined variational problem in which we will keep fixed the 
right sources. At leading order in their divergence in a near conformal boundary expansion, 
the counterterm action will include the terms6 [24, 25]

Sbdr =

∫

∂M
d3x

√
−γ (−2K + 4 + Rbdr)

− 1
2

∫

∂M
d3x

√
−γ

∑
I

[(3 −∆ZI )Z̄IZI + (3 −∆YI )ȲIYI ]

+
1
2

∫

∂M
d3x

√
−γ

∑
I

[
1

2∆ZI − 5
∂aZ̄I∂

aZI +
1

2∆YI − 5
∂aȲI∂

aYI ] + · · · .

�

(2.14)

The counterterms are to be evaluated on a hypersurface ∂M  of constant holographic radius, 
γµν  is the induced metric on that surface and a labels its coordinates. The precise form of 
the terms we have omitted in (2.14) will depend on the details of the functions that appear in 
our bulk action (2.1). However, the ingredients we will need for our analysis are not going to 
depend on these details.

In order to discuss thermodynamics we analytically continue to imaginary time t = −iτ  
and consider the renormalised Euclidean action IE = −iStot with Stot = Sbulk + Sbdr. The total 
free energy of the system is then simply WFE = T IE which is of course infinite since we are 
dealing with an infinite system. For our model, the free energy density wFE will be constant 
in the boundary coordinates xi since we are dealing with a homogeneous system and the con-
served charges of the system are invariant with respect to the bulk U(1) symmetries.

If ε is the energy density, s is the entropy density, and ρ  is the electric charge density we 
have

wFE = ε− T s − µ ρ.� (2.15)

We note that our solutions are functions of ki, ksi,ψIs,µ, T and cI. All the thermodynamic 
quantities are going to depend on all of them except for cI. In the forthcoming derivations 
we will encounter the electric charge and entropy densities written in terms of the black hole 
horizon data as

ρ = eV(0)
1 +V(0)

2 τ (0) a(0), s = 4π eV(0)
1 +V(0)

2 .� (2.16)

6 Here we are listing all the terms which are relevant for scalar operator with dimensions ∆ � 9/4. More gener-
ally there is additional terms needed to render the variational problem well posed [23]. Moreover, for ∆ > 5/2 the 
derivative terms we have already listed in (2.14) need to be multiplied by U(1)4 invariant functions which depend 
on the complex scalars. At the order we are working in our derivative expansion the treatment of section 4 would 
remain valid after dropping the contribution of potential contact term contributions from one point functions.

A Donos et alClass. Quantum Grav. 37 (2020) 045005



8

From thermodynamics we also know that ρ = −∂µwFE and s = −∂TwFE and therefore a varia-
tion of the free energy density with respect to the solution parameters that will matter later 
gives

δwFE = −ρ δµ− s δT + wi δki.� (2.17)

After plugging our ansatz (2.8) in our total Euclidean action I and using the equations of 
motion we can easily show that

wi = ∂ki wFE =

∫ ∞

0
dr eV1+V2−2Vi ki ΦIδ

Ii,� (2.18)

which is convergent as long as the scaling dimensions of our complex scalars ZI satisfy the 
unitarity bound ∆ZI > 1/2. Notice that we do not pick up any contribution from explicit vari-
ations of the counterterms with respect to ki in the absence of explicit sources for φI in (2.9).

In the later sections the second variations of the free energy will show up in the calculation 
of the diffusion constants. It is useful to define the susceptibilities through

δs = T−1cµ δT + ξ δµ+ ν i δki,

δρ = ξ δT + χq δµ+ βi δki,

δwi = −ν i δT − βi δµ+ wij δkj.

�

(2.19)
At this point we note that for the susceptibilities ν i, βi  and wij, we would have to either take a 
second derivative of wFE or vary the bulk integral in (2.18) which is evaluated on-shell.

3.  Hydrodynamic perturbations

In this section we will study perturbations of our bulk theory around the black hole back-
grounds (2.8) in a hydrodynamic expansion of long wavelengths. For clarity, we have split the 
presentation into two smaller subsections. The first one contains general statements about our 
perturbations which are independent of the hydrodynamic limit and which will be useful for 
section 4 as well. In the second one we give a description of our derivative expansion along 
with the final result for our diffusive modes. The interested reader can find the more technical 
aspects of our construction in appendix A.

3.1.  Perturbations

To study perturbations with frequency ω and a non trivial wavenumber q along the x1 direc-
tions, we consider perturbations δX  of the background black hole solution (2.8) with 
δX ≡ {δgtt, δgt1, δgrr, δgr1, δgii, δat, δar, δa1, δψI , δσ1, δφI , δχ1} corresponding to the longitu-
dinal sector for perturbations with wavevectors parallel to the x1 direction. All our functions 
depend on the bulk coordinates (t,r,x1). The homogeneity of the background allows us to Fourier 
transform along the spatial direction x1 and the time t, leading to the separation of variables

δX(t, r, x1) = e−iω vEF+iqx1
δX(r)� (3.1)

where we have introduced

vEF = t + S(r),� (3.2)

with S(r) → 0 as r → ∞ and S(r) → ln r
4πT + S(1) r + · · · as we approach the horizon at 

r → 0. The advantage of introducing vEF  comes from the fact that close to the horizon the time 

A Donos et alClass. Quantum Grav. 37 (2020) 045005
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coordinate t combines with the radial coordinate r to form the ingoing Eddington–Finkelstein 
coordinate. This simplifies the boundary conditions we need to impose on the radial functions 
in order to achieve regular ingoing boundary conditions. We impose the expansions

δgtt(r) = 4πT r δg(0)
tt + · · · , δgrr(r) =

δg(0)
rr

4πT r
+ · · · ,

δgt1(r) = δg(0)
t1 + r δg(1)

t1 + · · · , δgr1(r) =
δg(0)

r1

4πT r
+ δg(1)

r1 + · · · ,

δgii(r) = δg(0)
ii + · · · , δgtr(r) = δg(0)

tr + · · · , δa1(r) = δa(0)
1 + · · · ,

δat(r) = δa(0)
t + δa(1)

t r + · · · , δar(r) =
1

4πT r
δa(0)

r + δa(1)
r + · · · ,

δψI(r) = δψ
(0)
I + · · · , δφI(r) = δφ

(0)
I + · · · , δχ1(r) = δχ

(0)
1 + · · · , δσ1(r) = δσ

(0)
1 + · · · ,

� (3.3)
which are compatible with the equations of motion. In order to achieve regularity, need to be 
supplemented by

−2πT(δg(0)
tt + δg(0)

rr ) = −4πT δg(0)
rt ≡ p,

δg(0)
t1 = δg(0)

r1 ≡ −v,

δa(0)
r = δa(0)

t ≡ �.

�

(3.4)

It is useful to note that at the current stage of the discussion, the fifteen constants δg(0)
tt , δg(1)

tt , 
δg(0)

ii , δa(0)
1 , δa(1)

t , δψ(0)
I , δφ(0)

I , δχ(0)
1 , δσ(0)

1 , �, p  and v are constants of integration and there-

fore free.
Our functions δX(r) satisfy a system of differential equations, twelve of which contain 

second order derivatives of our functions in the radial coordinate r. At the same time, we 
need to impose a set of four independent constraints originating from diffeomorphism and 
gauge invariance. In a radial foliation of spacetime by hypersurfaces orthogonal to the form 
n = dr , these constraints contain only first order derivatives in the radial coordinate r and we 
can choose to impose them on any slice of constant r. The functions δgrµ and δar are sim-
ply Lagrange multipliers which can be chosen freely up to the boundary conditions that we 
gave in (3.3) and (3.4) and which guarantee regularity of the foliation. In more precise terms, 
using the notation of equation  (2.2) the constraints take the form Lµ = nλEλ

µ = 0 where 
Eµν = Lµν − 1

2 gµνLρ
ρ and C = nλ Cλ = 0. These can be imposed on any constant r hyper-

surface since ∇λEλ
µ = 0 and ∇λCλ = 0.

In this section we will choose the hypersurface we impose our constraints on to be infini-
tesimally close to the background event horizon at r  =  0. For purposes which will become 
more clear in section 4 we define the horizon electric and heat currents through

Q(0) = 4πTeV(0)
2 −V(0)

1 v,

J(0) = eV(0)
2 −V(0)

1 τ (0)
(

iq� + a(0)v + iωδa(0)
1

)
.

�
(3.5)

After these definitions, the aforementioned constraints can be written as [19]

iq Q(0) = i2πωTeV(0)
1 +V(0)

2

(
e−2V(0)

1 δg(0)
11 + e−2V(0)

2 δg(0)
22

)
,� (3.6a)

A Donos et alClass. Quantum Grav. 37 (2020) 045005



10

iq J(0) = iωeV(0)
1 +V(0)

2

[
τ (0)

(
a(0)

(
δg(0)

tt +
p

4πT

)
+ δa(1)

t − iω
4πT

(
δa(1)

t − δa(1)
r

))

+
1
2
τ (0)a(0)

(
e−2V(0)

1 δg(0)
11 + e−2V(0)

2 δg(0)
22

)
+ ∂φIτ (0)a(0) δφI(0) + ∂ψIτ (0)a(0) δψI(0)

]
,

�

(3.6b)
2q2e−2V(0)

1 v − iτ (0)a(0)
(

q� + ωδa(0)
1

)
+ iq(1 +

iω
4πT

) p

+Ψ
(0)
1 ks1

(
e−2V(0)

1 ks1v − iωδσ(0)
1

)
+Φ

(0)
1 k1

(
e−2V(0)

1 k1v − iωδχ(0)
1

)

= iω
(
δg(1)

t1 − iω
4πT

(δg(1)
t1 − δg(1)

r1 ) + 2V(1)
1 v − iq δg(0)

tt − iqe−2V(0)
1 δg(0)

11

)
.

�

(3.6c)

We have omitted the ‘Hamiltonian’ constraint, as it is implied by those listed above.
Close to the conformal boundary, the asymptotic expansion of functions reads

δgtt(r) = O(r0), δgrr(r) = O(r−4), δgt1(r) = r2 ζ

iω
+O(r0), δgr1(r) = O(r−3),

δgii(r) = O(r0), δgtr(r) = O(r−2),

δa1(r) =
E − µ ζ

iω
, δat(r) = O(r−1), δar(r) = O(r−2),

δψI(r) = O(r−∆YI ), δφI(r) = O(r−∆ZI ),

δχ1(r) =
ζS1

φ1v
r2∆Z1−3 +O(r2∆Z1−4), δσ1(r) = O(r−∆YI ),

�

(3.7)

where we have included a time dependent thermal gradient source ζ, external electric field E 
and scalar source ζS1. Since in this section we are looking for the quasinormal modes of our 
black holes, we will set them equal to zero. We will switch them back on in section 4 where 
we will consider the driven hydrodynamics of our system. In order to complete our discussion 
on the systematics of our solution for the perturbation, we note that there is another twelve 
constants of integration that we have not listed in the expansion (3.7) and which are not fixed 
by the equations of motion. Put together with the fifteen constants of integration we have listed 
below the near horizon expansion (3.3), there is a total of twenty seven constants.

When the sources are set to zero, and nothing set sets a scale for our linear system, the equa-
tions and the boundary conditions are scale invariant and we can set any one of the constants 
equal to one. This suggests that we have twenty six constants to solve the twelve second order 
equations and the three constraints. Therefore, in the source free case we can find solutions 
only for discrete values of the frequency ω for a fixed wavelength q which are precisely the 
quasinormal modes of our black hole backgrounds. In the next section we will consider the sys-
tematics of quasinormal modes which represent the hydrodynamic excitations of our system.

3.2.  Hydrodynamic modes

The hydrodynamic modes that we will consider in this section have ω → 0 as q → 0 and 
therefore they become static, source free modes in the infinite wavelength limit. In order 
to understand their structure, we will construct them perturbatively by taking q ≈ O(ε) and 
expanding

ω = ε ω[1] + ε2 ω[2] + · · ·
δX(r) = δX[0](r) + εδX[1](r) + ε2δX[2](r) + · · · .
� (3.8)
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Identifying the static source free perturbations of our black hole backgrounds (2.8) is therefore 
a key ingredient in constructing the above hydrodynamic series. The two universal modes for 
a system in which translations are broken explicitly are related to thermodynamic energy and 
charge perturbations [19]. However, for our system in which a continuous global symmetry is 
spontaneously broken there is an additional mode related to shifts of the constants cI in (2.8), 
the Goldstone mode.

For the thermal states with k1  =  0 in (2.8) the order parameter of spontaneous symmetry 
breaking does not break translations in the x1 direction. In this case the perturbation δχ1 com-
pletely decouples from the rest of the system and one can sharply divide the hydrodynamic 
modes in the ε → 0 limit to the ones that have their origin in thermoelectric perturbations 
[19] and the ones which are long wavelength excitations of the Goldstone modes [6]. In this 
paper we will consider the case with k1 �= 0 and study in detail the mixing these two types 
of modes which describe different physics. In the k1  =  0 case the thermoelectric fluctuations 
are captured by incoherent hydrodynamics. We are going to give an enlarged framework of 
hydrodynamics in order to capture fluctuations of the gapless mode emerging from the sym-
metry breaking.

The most effective way to construct the static modes associated to energy and charge fluc-
tuations is to simply start by varying the backgrounds (2.8) with respect to the temperature 
T and the external chemical potential µ. A naive perturbation variation T → T + δT[0] and 
µ → µ+ δµ[0] in the functions that appear in (2.8) would certainly produce solutions of the 
equations of motion. However, it is easy to see from the asymptotics (2.9) and (2.13) that this 
would generate perturbations which are not compatible with our ingoing boundary conditions 
(3.3) and (3.4), and moreover would introduce a boundary source for the gauge field. To rem-
edy this, one can simply perform bulk diffeomorphisms and gauge transformations, as out-
lined in appendix A. The aim is to bring our solution (2.8) in a class of coordinate systems and 
gauge choices such that a straightforward variation with respect to temperature and chemical 
potential has the desired asymptotics (2.9) and (2.13).

In addition to varying T and µ, we use the broken bulk symmetry to generate the small 
static shift δχ1 = δcg[0]. The resulting static solution is then

δX[0] =
∂Xb

∂T
δT[0] +

∂Xb

∂µ
δµ[0] +

∂Xb

∂c1
δcg[0],� (3.9)

where Xb is the transformed background according to our previous discussion. By construc-
tion, this is going to be a perturbative solution of our equations of motion at ε = 0 and with 
δT[0], δµ[0], δcg[0] independent of each other. For the case with k1  =  0, we would be able to 
study the modes generated by the temperature δT[0] and chemical potential δµ[0] perturbations 
independently from the bulk Goldstone perturbation generated by δcg[0].

When we take ε to be small, the derivatives of the exponential of our total perturbation 
(3.1) will produce terms that are of order O(ε) and are specified by the functions δX[0]. The 
resulting equations  will be an inhomogeneous system of equations  that δX[1] will have to 

satisfy. As a generalisation of (3.9), we can split off from δX[n] the solution δX̃[n] of the corre
sponding inhomogeneous system,

δX[n] = δX̃[n] +
∂Xb

∂T
δT[n] +

∂Xb

∂µ
δµ[n] +

∂Xb

∂c1
δcg[n].� (3.10)

Such a split is meaningful as long as we impose that the inhomogeneous piece δX̃[n] has 

p̃[n] = �̃[n] = δχ̃
(0)
1[n] = 0, according to the definitions in (3.3) and (3.4).
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As we explain in appendix A, when solving the constraints (3.6) and the radial equa-
tion (2.7) at order O(ε), we obtain a set of relations between δT[0], δµ[0], δcg[0] and ω[1]. That 
system of equations gives that δT[0] = δµ[0] = ω[1] = 0 as long as k1 �= 0 such that the order 
parameter breaks translations. We therefore see that temperature and chemical potential 
perturbations will mix at higher order in ε with the spatially dependent Goldstone mode. 
This is intuitively expected, since the constant δcg[0] only shifts the Goldstone mode, the 
system is going to be energetically affected only through its gradient which is of order 
O(ε). We therefore expect that the variations with respect to the temperature and the chem-
ical potential will start mixing at order O(ε) and the first non-zero contributions will be 
δT[1] and δµ[1].

A further point which lets us make progress in appendix A is the observation that after set-
ting δT[0] = δµ[0] = ω[1] = 0 in (3.9), we can think of the approximation

δχ1(t, x1) ≈ δcg[0] + iq x1 δcg[0] +O(ε2),� (3.11)

for any finite value of x1. This is telling us that at order O(ε), all that δcg[0] does is the shifts 

cI → cI + δcg[0] and k1 → k1 + i q δcg[0] in (2.8). We therefore conclude that δX̃[1] has to be 
such that when we expand the full pertubation (3.1) at O(ε), we will obtain a perturbation of 
the background Xb respect to k1. As we just saw, the part of the perturbation containing the 

charged fields under the bulk U(1)’s is already contained in δX[0]. This suggests that δX̃[1] can 
only contain the variation of the background fields XN

b  which are neutral under the U(1)’s. 

More generally we found it useful to further split the n-th solution δX̃[n] of the inhomogeneous 
systems according to

δX̃[n] = δX[n] + iq
∂XN

∂k1
δcg[n−1],� (3.12)

and according to our discussion we have δX[1] = 0.
Finally, in appendix A we examine the radial equation (2.7) at order O(ε2) and the con-

straints (3.6) at order O(ε3). This gives us a homogeneous system of linear equations that the 
constants δT[1], δµ[1] and δcg[0] have to satisfy. Written in a matrix form, the system reads

(XH −ΣH)




q δcg[0]

δT[1]

δµ[1]


 = 0� (3.13)

where

XH ≡



−iq2 w11 q2 ν1 q2 β1

−ω[2] ν
1 iω[2]T−1cµ iω[2]ξ

−ω[2] β
1 iω[2]ξ iω[2]χq


 ,� (3.14)

and

ΣH ≡



ω[2]

(
ϑ̄− �Hλ̄

)
q2 T−1λH q2 γH

−ω[2] T−1λH q2T−1κ̄H q2ᾱH

−ω[2] γH q2αH q2σH


 .� (3.15)
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In the above expressions we are using the notation of section 2.1 along with the definitions

αH = ᾱH =
4πρ
B

, σH =
s e−2V(0)

1 τ (0)

4π
+

4πρ2

sB
,

κ̄H =
4πTs
B

, λH =
k1Φ

(0)
1 Ts
B

, γH =
k1Φ

(0)
1 ρ

B
,

ϑ̄ =
Φ

(0)
1

4πT

(
Ts + k1w1) , �H =

k1Φ
(0)
1

4πT
, λ̄ = λH + w1,

B = k2
1 Φ

(0)
1 + k2

s1 Ψ
(0)
1 .

�

(3.16)

In order for the linear system (3.13) to have non-trivial solutions, we must demand that the 
matrix of coefficients is non-invertible. The vanishing of the determinant of XH −ΣH then 
fixes the dispersion relations of the three modes we are after. It is clear from the form of the 
matrices XH and ΣH that we obtain three diffusive modes of the form

ωi = −i Di q2, i = 1, 2, 3,� (3.17)

with diffusion constants Di expressed in terms of thermodynamic susceptibilities and the coef-
ficients in (3.16). In section 4, we will derive a hydrodynamic theory which precisely repro-
duces these modes. There, we will find the quantities (3.16) appearing as transport coefficients 
in the constitutive relations for the currents along with a Josephson-type relation for the gap-
less mode of the spontaneous breaking.

Here we note that setting k1  =  0 gives λH = γH = β1 = ν1 = 0, bringing the matrix of 
coefficients in (3.13) in a block diagonal form. This demonstrates the decoupling between the 
thermoelectric and the bulk Goldstone modes. In this limit, the coefficients σH , αH, ᾱH and 
κ̄H  coincide with the DC thermoelectric transport coefficients of the boundary theory. The 
relevant diffusion constants then satisfy a generalised version of Einstein’s relations [16, 17, 
19]. This makes clear that the extra diffusive mode that appears in our theory has nothing to do 
with the spontaneous breaking of translations, it describes the same physics with the setup of 
[6]. At finite k1 though, we see that the two different types of modes mix with each other. This 
will become much clearer in the next sections where we give a hydrodynamics description 
and we include external sources and a gap. In this framework, one can also use the standard 
formalism of hydrodynamics in order to derive the linear system of equation (3.13) which fix 
the dispersion relations of the diffusive modes.

4.  Incoherent hydrodynamics and density waves

In this section we wish to derive a theory of hydrodynamics which captures the physics of long 
wavelength excitations in our system. In the infinite wavelength limit, we have seen that our gap-
less modes describe fluctuations in temperature, the chemical potential and phase shifts for the 
dual operators of the bulk fields ZI. In order to give a complete description of the system, we need 
to identify the correct conservation laws and effective description of the bulk Goldstone mode.

The conserved currents we will be interested in are the electric current Jµ associated to 
charge conservation and the heat current Qµ we can construct in perturbation theory associ-
ated to time translations of the background (2.8). To see how this works we note that the global 
U(1) and diffeomorphism symmetries of the boundary theory imply the current and stress 
tensor Tµν Ward identities
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∇aJa = 0

∇aTa
b = FbaJa +

1
2
(∇bȲIsOYI +∇bZ̄IsOZI + c, c.),

�
(4.1)

with F = dA the field strength of the external source one-form Aa and ȲIs, Z̄Is are the sources 
for the complex scalar operators. Contracting the stress tensor Ward identity with a vector kµ 
gives

∇a
[
(Ta

b + AbJa) kb] = 1
2

Tab Lkgab + JaLkAa +
1
2
(LkȲIsOYI + LkZ̄IsOZI + cc).

In contrast to section 3, we will add the thermal gradient ζ and electric field E perturbations 
which will enter the boundary metric gab and external field Aa according to

δds2 = 2 (iω)−1 ζ e−iω t+iqx1
dt dx1, δA = (iω)−1 (E − µ ζ) e−iω t+iqx1

dx1,
� (4.2)

along with the source δZ1s for the scalar field

δZ1s =
i
2

ei(k1x1+c1) ζS1 e−iω t+iqx1
.� (4.3)

We are now going to make the choice k = ∂t  and perturbatively expand the contracted Ward 
identity to give the electric current and heat conservation

∂aδJa =0
∂aδQa =0
� (4.4)

with δQa = −δTa
t − µ δJa.

In order to obtain a closed system of equations, apart from the conservations laws (4.4) we 
need two additional ingredients. The first is to express the boundary theory currents δJa  and 
δQa in a derivative expansion of the local variations δµ̂(t, x1), δT̂(t, x1) and δĉg(t, x1). At lead-
ing order in our derivative expansion we identify them as the Fourier modes

δµ̂ = e−iωt+iqx1
δµ[1], δT̂ = e−iωt+iqx1

δT[1], δĉg = e−iωt+iqx1
δcg[0].

� (4.5)
The second ingredient is to find an effective description for the dynamics of the phase δĉg. 
Following closely the techniques of [6], in our holographic model this is going to come from 
correctly identifying the sources for the field theory dual of SI as defined in (2.11). The physi-
cal interpretation of δĉg(t, x1) comes after reminding the reader that at leading order in epsilon 
we have

〈OS1〉 = 2 |〈OZ1〉| δĉg.� (4.6)

Since we are going to study holographic models, it is useful to note that the continuity 
equation (4.4) are equivalent to the constraints Lµkµ = 0 and C  =  0 when evaluated at infin-
ity with k = ∂t . At this point we see that the philosophy of this section is going to be slightly 
different from that of section 3 and appendix A. As we explained there, the system of the final 
equation (3.13) that fixed the dispersion relations, is the constraints which we chose to impose 
on a hypersurface close to the black hole horizon (3.6) along with the equation of motion 
(2.7). Of course we had to make sure that all our other radial equations admitted a solution and 
this was guaranteed by the way we constructed our ε-expansion.

Here we will choose to impose the Gauss and time component Lt of the momentum 
constraints on a constant r surface at infinity. The other components Lµ of the momentum 
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constraints with µ �= t  will still be imposed close to the horizon, just as we did in section 3. 
This is in general not possible since all the momentum constraints need to be imposed at the 
same hypersurface. We therefore need to show that ∂r(δLt) = 0 independently of the other 
constraints. For any vector in the bulk ξµ we have that

∇µ(Eµ
νξ

ν) = ∇(µξν)Eµν .� (4.7)

We therefore see that if ξµ is a Killing vector for the background and the background satisfies 
Einstein’s equations, we must have

∇µ(δEµ
ν ξ

ν) = 0� (4.8)

at leading order in perturbation theory from where we see that ∂r(δLt) = 0 as long as 
δEa

νξ
ν = 0 with a �= r  are satisfied. Moreover, if nµξ

µ = 0, then we have that all of 
δEa

νξ
ν = 0 that we need to impose on the hypersurface are just a linear combination of 

the second order in r equations of motion which should be imposed everywhere in the bulk. 
Therefore, for such a ξ = ∂t we have that ∂r(δEr

t) = 0 independently of the other constraints 
being satisfied on the hypersurface.

The above argument shows that in our situation we are allowed to independently impose 
the momentum constraints (3.6c) on the horizon which is a very efficient way to integrate out 
the horizon fluid velocity v at the energy scales we are interested in.

Before making this step, it is now a good point to describe how we are going to turn on 
the external sources (4.2) in the bulk. For the electric field and temperature gradient, the most 
efficient to do this is to add the zeroth order terms

δgt1 = · · ·+ e−iωvEF+iqx1
(
ζ U
iω

)
,

δa1 = · · ·+ e−iωvEF+iqx1
(

E
iω

− a ζ
iω

)
,

�

(4.9)

to the discussion of section  3. The source for the complex scalar will appear later in our 
analysis when implementing the boundary conditions (3.7). This will happen at second order 
in the ε-expansion as ζS1 ∼ O(ε2). One can see that these extra terms are regular on the black 
hole horizon and that they correctly introduce the sources according to (3.7). Moreover, they 
automatically satisfy all the equations of motion up to second order in ε if we take ζ and E 
to scale like O(ε2). The easiest way to see this is to also perform the regular coordinate and 
gauge transformations given by

t → t − ζ

(iω)(iq)
e−iωvEF+iqx1

,� (4.10)

A → A + dδΛ, δΛ = − ζ

(iω)(iq)
e−iωvEF+iqx1

.� (4.11)

The resulting perturbation is then of order ε and it trivially satisfies the equations of motion 
up to order O(ε). To see this one needs to just strip off the oscillating exponential and notice 
that after these transformations, the new perturbative terms are just a rescaling of the time 
coordinate in (2.8) and the addition of a regular exact form to the background gauge field. 
This shows that it is only terms coming from derivatives of the exponentials that will violate 
the equations of motion.

The interested reader can see how the vector constraint is modified by the sources in appen-
dix C. An important ingredient we import from section 3 and which enters our analysis, is that 
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we should take the scaling δĉg ∼ O(1), δµ̂, δT̂ , q ∼ O(ε) and ω ∼ O(ε2). It is worth men-
tioning that the necessity for these scalings can be derived using the formalism of this section. 
The other important step we chose to focus there is to show that the boundary electric and heat 
currents can be expressed as

δJ1 = σH

(
Ê − ∂1δµ̂

)
+ αH

(
T ζ̂ − ∂1δT̂

)
− γH ∂tδĉg,� (4.12)

δQ1 = T ᾱH

(
Ê − ∂1δµ̂

)
+ κ̄H

(
T ζ̂ − ∂1δT̂

)
− λ̄ ∂tδĉg,� (4.13)

with the transport coefficients exactly as defined in (3.16). From the above expressions we 
see that the currents themselves are of order O(ε2) implying that we should take the charge 
densities δJt and δQt  up to order O(ε) in order to solve the constraints (4.4) up to order O(ε3). 
Remembering the structure of our derivative expansion (3.8), we see that the zeroth order 
perturbation δX[0] does not have an effect on the thermodynamic quantities of our system. The 
first non-trivial corrections come from the first correction δX[1] which simply gives

δJt = δρ = ξδT̂ + χqδµ̂+ β1∂1δĉg,

δQt = −δTt
t − µ δJt = δε− µ δρ = cµδT̂ + Tξ δµ̂+ Tν1∂1δĉg.

�
(4.14)

The equations we would then get from (4.4) are equivalent to the ones we would get from

∂tρ̂+ ∂1δJ1 = 0,� (4.15)

T ∂t ŝ + ∂1δQ1 = 0,� (4.16)

where we have defined the hatted thermodynamic quantities as e.g. ρ̂ ≡ ρ(µ+ δµ̂, T +  
δT̂ , k1 + ∂1δĉg).

Finally, we need to state the Josephson-type equation which fixes the time derivative of δĉg. 
This can be simply obtained by following the treatment of appendix C and in particular from 
the asymptotics of the solution of δχ1[2] in equation (C.3). In combination with the asymptotic 
expansion for the background field φ1 we can identify the source ζS

ϑ̄ ∂tδĉg + �H δQ1 − ∂1ŵ1 + w1 ζ̂ = 2 |〈OZ1〉| ζ̂S1 ,� (4.17)

where we have used the boundary expression for the heat current (C.10) to eliminate v[2] and 
with the relevant transport coefficients as defined in (3.16).

In order to verify that we are reproducing the same diffusive modes with section 3, we 
now set the sources Ê , ζ̂ and ζ̂S1 to zero. It is a simple matter to check that the conservation 
laws (4.15) along with the constitutive relations (4.12) and (4.13) and the Josephson relation 
(4.17) reproduce the linear system of equation (3.13). Since we have kept the sources in our 
description, we could also compute the AC thermoelectric conductivities of our system. We 
will postpone this until the end of the next section where we will also introduce a pinning 
parameter which relaxes the phase δĉg. The aim will be to give a quantitative explanation of 
the AC conductivities of the setup of [5] up to frequencies set by the scale of the gap.

5.  Pinning and AC transport

In this section we will introduce a pinning parameter δφ1s which adds a small explicit break-
ing to the global U(1) associated to Z1 in the case where its dual OZ1 is not irrelevant with 
∆Z1 � 3. This will modify the expansion of the bulk field φ1 close to the conformal boundary 
according to
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φ1 = δφ1s r∆Z1−3 + · · ·+ φ1v r−∆Z1 + · · · .� (5.1)

This small pinning parameter introduces a small gap to one of the diffusive modes we 
studied in sections 3 and 4. In order to quantitatively extract its effects on the physics at long 
wavelengths, we will incorporate it in the hydrodynamic description we discussed in sec-
tion 4. We will follow closely the discussion of [6] in order to do this and we will take δφ1s to 
be of order O(ε2). At the order we are working, the only effect of the pinning parameter will 
be to modify (4.17) which is essentially the identification of the sources for OS1.

At second order in ε, the solution of the bulk equations of motion for our fields and in par
ticular of (2.7) remains the same with what we had in sections 3 and 4. However, as in the pre-
vious section, the correct interpretation of the sources comes from examining the asymptotics 
of φ1 δχ1 after having introduced the perturbative background source δφ1s. At the order we are 
working in ε, the asymptotics of δχ1 is still given by (C.3) where we once again substitute v[2] 
from (C.10). We also note that equation (4.6) still holds for the VEV of OS1 at the order we are 
working in ε. Identifying the source for S1 we find

ϑ̄ (Ω δĉg + ∂tδĉg) + �H δQ1 − ∂1ŵ1 + w1 ζ̂ = 2 |〈OZ1〉| ζ̂S1 ,� (5.2)

where we have defined

Ω =
(2∆Y1 − 3)φv

ϑ̄
δφ1s =

2 |〈OZ1〉|
ϑ̄

δφ1s.� (5.3)

As one might had expected, after introducing the pinning parameter δφ1s, there is a restor-
ing force for the the phase of the complex scalar VEV c1 which wants to bring it back to its 
thermal phase value. We see that Ω plays the role of a phase relaxation time but it is not quite 
equal to the gap of the would be diffusive mode. In order to find the gap ωg we look for an 
exponentially decaying mode of our hydrodynamics by writing

δT̂ = zT e−ωg t, δµ̂ = zµ e−ωg t, δĉg = zg e−ωg t,� (5.4)

and setting all the sources to zero. We find that we can have a non-trivial solution for (5.2) with

ωg =
ϑ̄Ω

ϑ̄− �Hλ̄
=

2B |〈OZ1〉|
√g(0) k2

s1Ψ
(0)
1 Φ

(0)
1

δφ1s.� (5.5)

If we were looking for a spatially dependent mode, we would find the spectrum (3.17) with 
one of the modes acquiring a gap e.g.

ω1 = −iωg − i D1 q2.� (5.6)

Note that there exists another gapped mode in the system corresponding to the momentum 
relaxation pole. This mode has a gap which is much larger than the characteristic scales of 
the fluctuations which are captured by our hydrodynamics and therefore does not show up in 
our system.

Apart from the interesting dynamics, this energy scale would show up in finite frequency 
transport experiments. One can think of it as the energy scale at which the density wave will 
be activated and contribute to transport. In order to demonstrate this we will now compute the 
AC transport coefficients by turning on the sources for the temperature gradient ζ̂ = e−iωtζ , 
electric field Ê = e−iωtE  and scalar source ζ̂S1 = e−iωtζS1. It is easy to see that in this situation 
our hydrodynamics can be solved by simply setting δT̂ = δµ̂ = 0 and δĉg = zg e−iωt. After 
eliminating zg from the currents (4.12) and (4.13) as well as from the VEV (4.6) by using (5.2) 
we obtain
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σ (ω) = (iω)−1 GJJ(ω, 0) = σH +
TᾱHγH�H

ϑ̄− �Hλ̄

ω

ω + iωg
,

Tα (ω) = (iω)−1 T GJQ(ω, 0) = TαH +
γH

(
Tκ̄H�H + w1

)

ϑ̄− �Hλ̄

ω

ω + iωg
,

Tᾱ (ω) = (iω)−1 T GQJ(ω, 0) = TᾱH +
TᾱHλ̄ �H

ϑ̄− �Hλ̄

ω

ω + iωg
,

Tκ̄ (ω) = (iω)−1 T GQQ(ω, 0) = Tκ̄H +
λ̄
(
Tκ̄H�H + w1

)

ϑ̄− �Hλ̄

ω

ω + iωg
,

GJS(ω, 0) = −2 |〈OZ1〉| γH

ϑ̄− �Hλ̄

ω

ω + iωg
, GQS(ω, 0) = −2 |〈OZ1〉| λ̄

ϑ̄− �Hλ̄

ω

ω + iωg
,

GSJ(ω, 0) =
2 |〈OZ1〉| T ᾱH�H

ϑ̄− �Hλ̄

ω

ω + iωg
, GSQ(ω, 0) =

2 |〈OZ1〉| (Tκ̄H�H + w1)

ϑ̄− �Hλ̄

ω

ω + iωg
,

GSS(ω, 0) =
4 |〈OZ1〉|

2

ϑ̄− �Hλ̄

i
ω + iωg

.

�

(5.7)

Here we note that since J and Q are odd and S is even under time reversal, our retarded Green’s 
functions have to satisfy the Onsager relations GJQ(ω, 0) = GQJ(ω, 0), GSJ(ω, 0) = −GJS(ω, 0) 
and GSQ(ω, 0) = −GQS(ω, 0). In general this would put constraints on the transport coeffi-
cients in our theory of hydrodynamics. However, since our theory is coming from a consistent 
framework these are guaranteed by the specific form of our transport coefficients (3.16). Note 
also that, for k1  =  0, GSS matches exactly the result of [6] for q  =  0. In that case we also have 
GSJ = GSQ = 0 demonstrating the decoupling of the diffusive phase mode from the transport 
currents of the system.

As we might had expected, since the sliding mode couples to the heat and electric currents, 
the gap appears as a pole in the Green’s functions relevant to transport properties. At low 
frequencies ω � ωg the sliding mode is fully pinned and all transport happens through inco-
herent processes and momentum relaxation in the system. In other words, by keeping ωg �= 0 
and taking ω → 0 we reduce to the case studied in [21], with the DC conductivities given by 
the horizon ‘conductivities’, because we have gapped the bulk Goldstone mode that couples 
to the heat current. An equivalent way to think about this by observing that when Ω �= 0 and 
the sliding mode is gapped, for frequencies ω � ωg one can integrate out δĉg by using (5.2). 
At such frequencies, the sliding mode is a higher derivative effect in the constitutive relations 
(4.12)–(4.14). On the other hand, by taking ω � ωg we are fully exciting the sliding mode 
and we see its effects of the transport properties of our thermal state; one can think of this cor-
responds as a frequency dependent depinning of the density wave. This is equivalent to first 
taking ωg → 0 in the above formulas reducing to the results of [5], which included the effects 
of the sliding mode already at zero frequency.

Another point that comes out of the form of the Green’s functions (5.7) is that even though 
there is a pole which is parametrically close to the origin at ω = −iωg, the thermoelectric 
transport coefficients can be arbitrarily small. The reason for this is that the effective light 
degree of freedom responsible for the pole δĉg couples only through its time derivative to the 
transport currents in (4.12) and (4.13). This coupling gives a residue which is parametrically 
small, putting the overall contribution of the degree of freedom at the same level with the dif-
fusive terms of the local temperature and chemical potential.
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6.  Numerical checks

The aim of this section to is perform numerical checks on the results of sections 3 and 4. To 
achieve this, we need to specify the precise action we will be working with and construct the 
thermal states of interest. Following [5], we consider a four-dimensional Einstein–Maxwell 
theory coupled to six real scalars, φ, ψ, χi  and σi with i = 1, 2,

S =

∫
d4x

√
−g

(
R + V(φ)− 3

2
(∂φ)

2 − 1
2
(∂ψ)

2 − 1
2
θ(φ)

[
(∂χ1)

2
+ (∂χ2)

2
]

− 1
2
θ1(ψ)

[
(∂σ1)

2
+ (∂σ2)

2
]
− τ(φ,ψ)

4
F2

)
,

�

(6.1)

where

V(φ,ψ) = −6 coshφ,

θ(φ) = 12 sinh2(δ φ),

θ1(ψ) = ψ2,
τ(φ,ψ) = cosh(γ φ).

� (6.2)

Although this model would appear to be outside the class (6.1) in the main text, it is related to 
them by a field redefinition of φ. The variation of the above action gives rise to the following 
field equations of motion

Rµν +
τ

2
(FµρFν

ρ − 1
4

gµνF2)− 1
2

gµνV − 3
2
∂µφ∂νφ− 1

2
∂µψ∂νψ

−
∑

i

(
θ

2
∂µχi∂νχi +

θ1

2
∂µσi∂νσi) = 0,

3√
−g

∂µ
(√

−g ∂µφ
)
− ∂φV − 1

4
∂φτ F2 − 1

2
θ′

∑
i

(∂χi)
2 = 0,

1√
−g

∂µ
(√

−g ∂µψ
)
− ∂ψV − 1

4
∂ψτ F2 − 1

2
θ′1

∑
i

(∂σi)
2 = 0,

1√
−g

∂µ
(
θ1
√
−g ∂µσi

)
= 0,

1√
−g

∂µ
(
θ
√
−g ∂µχi

)
= 0,

∂µ(
√
−g τFµν) = 0.

�

(6.3)

We now move on to discuss solutions of this theory. The above equations of motion admit 
a unit radius AdS4 solution with vanishing matter fields, dual to the vacuum of a d  =  3 CFT 
with a conserved U(1) charge. Placing the CFT at finite temperature and chemical poten-
tial corresponds to considering the Reissner–Nordstrom black hole in the bulk. However, as 
explained in section 2 in this work we are interested in density wave states in the presence of 
a background lattice. Such states are described by the ansatz

ds2 = −U(r) dt2 +
1

U(r)
dr2 + e2V1(r) dx1dx1 + e2V2(r) dx2dx2,

A = a(r) dt,

φ = φ(r), χi = kixi,

ψ = ψ(r), σi = ksixi,

�

(6.4)
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where i = 1, 2 (no summation). We now move on to specify boundary conditions. In the IR, 
we demand the presence of a regular Killing horizon at r  =  0 by imposing the following 
expansion

U (r) = 4π T r + · · · , Vi = V(0)
i + · · · , a = a(0) r + · · · ,

φ = φ(0)(x) + · · · , ψ = ψ(0)(x) + · · · ,
�

(6.5)

which is specified in terms of 6 constants. In the UV, we demand the conformal boundary 
expansion

U → r2 + · · ·+ W (r + R)−1 + · · · , V1 → log(r + R) + · · ·+ Wp(r + R)−3 + · · · ,

V2 → log(r + R) + · · · , a → µ+ Q (r + R)−1 + · · · ,

φ → φs (r + R)−1 + φv (r + R)−2 + · · · , ψ → ψs + · · ·+ ψv (r + R)−3 + · · · .

�

(6.6)

Note, in particular, that we will take ψs �= 0, and thus the scalar fields (ψ,σ) constitute an 
anisotropic Q-lattice in which both translational invariance and U(1)ψ are explicitly broken. 
In the majority of this section, we will also demand that φs = 0 in order for the density wave 
phase that is supported by (φ,χ) to break the U(1)φ spontaneously. Thus, this expansion is 
parametrized by 8 constants, as well as ki, ksi , which makes 12 constants in total. Overall we 
have 18 constants, in comparison to the 11 integration constants of the problem. Thus, for 
fixed γ, δ and temperatures below a critical one T  <  Tc, we expect to find a 7 parameter family 
of solutions, labelled by ki, ksi,ψs,µ, T . These thermal states realise the scenario discussed in 
the previous sections and consequently, we expect all the results of sections 3 and 4 to apply.

In figure 1 we plot the critical temperature, Tc, as a function of k for a particular choice of 
parameters. This is obtained by considering linearised fluctuations around the normal phase of 
the system (φ = 0,χ = 0) and exhibits the usual ‘Bell Curve’ shape.

6.1.  Quasinormal modes

We now move on compute the spatially resolved quasinormal modes for the subclass of 
isotropic backgrounds constructed in the previous subsection that are characterised by 
k1 = k2 ≡ k, ks1 = ks2 ≡ ks, V1 = V2. We take perturbations of the form

δds2 = −Uδhttdt2 + 2Uδht x1 dtdx1 + δhxixi dxidxi,� (6.7)

together with (δat, δa1, δφ, δψ, δχ1, δσ1), where the variations are taken to be functions of 
(t,r,x1). We Fourier decompose our perturbations as

f (t, r) = e−iωv(t,r)+iqx1 f (r),� (6.8)

where v is the Eddington–Finkelstein coordinate defined as

v(t, r, x1) = t +
∫ r

∞

dy
U(y)

.� (6.9)

Note that our choice for the momentum q to point in the direction x1 is without loss of general-
ity, because the background is isotropic. Plugging this ansatz in the equations of motion, we 
obtain 4 first order ODEs and 6 second order giving rise to 16 integration constants.

We now outline the boundary conditions for the fields. In the IR, we impose infalling 
boundary conditions at the horizon, which is r  =  0,

A Donos et alClass. Quantum Grav. 37 (2020) 045005



21

δhtt = c1r2 + · · · , δht x1 = c2r + · · · ,
δhx1x1 = −c3 + · · · , δhx2x2 = c3 + · · · ,
δat = c4r + · · · , δa1 = c5 + · · · ,
δφ = c6 + · · · , δψ = c7 + · · · ,
δχ1 = c8 + · · · , δσ1 = c9 + · · · ,

�

(6.10)

where the constants c1, c2 and c4 are not free but are fixed in terms of the others. Thus, for fixed 
value of q, we see that the expansion is fixed in terms of 7 constants, ω, c3, c5, c6, c7, c8, c9. In 
the UV, the most general expansion one can write down is given by

δhtt = δh(s)
tt + · · · , δhtx1 = δh(s)

t x1 + · · · ,

δhx1x1 = δh(s)
x1 x1

+ · · · , δhx2x2 = δh(s)
x2 x2

+ · · ·+ δh(v)
22

(r + R)3 + · · · ,

δat = a(s)
t + · · · , δa1 = a(s)

1 +
a(v)

1

(r + R)
+ · · · ,

δφ =
δφ(s)

(r + R)
+

δφ(v)

(r + R)2 + · · · , δψ = δψ(s) + · · ·+ δψ(v)

(r + R)3 + · · · ,

δχ1 = δχ(v) + · · · , δσ1 = δσ(s) + · · ·+ δσ(v)

(r + R)3 + · · · .

� (6.11)
For the computation of quasinormal modes, we need to ensure that we remove all the sources 
from the UV expansion up to a combination of coordinate reparametrisations and gauge 
transformations

[δgµν + Lζgµν ] → 0,
[δA + LζA + dΛ] → 0
�

(6.12)

Figure 1.  Plot of the critical temperature at which the background Q-lattice becomes 
unstable as a function of k/µ for (ks1/µ, ks2/µ,ψs, γ, δ) = (0.3, 0.3, 4, 3, 1). We see 
that the most unstable mode corresponds to k  =  0—the thermodynamically dominant 
branch.
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where the gauge transformations are of the form

xµ → xµ + ζµ ζ = e−iωt+iqx1 ζµ ∂µ,

Aµ → Aµ + ∂µΛ Λ = e−iωt+iqx1 λ,
�

(6.13)

for ζ, λ constants. This requirement boils down to the sources apppearing in (6.11) taking the 
form

δh(s)
tt = 2iω ζ1 − 2ζ2

δh(s)
tx1 = iq ζ1 + iω ζ3

δh(s)
x1 x1

= −2ζ2 − 2iq ζ3

δh(s)
x2 x2

= −2ζ2

δa(s)
t = iµω ζ1 + iωλ

δa(s)
x1

= −iµ q ζ1 − iqλ

δφ(s) = 0

δψ(s) = 0

δσ(s) = −ks ζ3.

�

(6.14)

We now see that the UV expansion is fixed in terms of 10 constants: ζ1, ζ2, ζ3,λ and 

δh(v)
x2 x2 , a(v)

1 , δφ(v), δψ(v), δσ(v), δχ(v). Overall, for fixed q, we have 17 undetermined constants, 
of which one can be set to unity because of the linearity of the equations. This matches precisely 
the 16 integration constants of the problem and thus we expect our solutions to be labelled by q.

We proceed to solve numerically this system of equations subject to the above boundary 
conditions using a double-sided shooting method. We find our ansatz contains three hydrody-
namic modes as expected, with diffusion constants in quantitative agreement with the analyti-
cal predictions (3.14) and (3.15). Figure 2 displays the dispersion relations of our QNMs at 
k  =  0 and at a moderately higher value of k.

Figure 3 shows how, as q is raised, one of the modes collides with the momentum relaxa-
tion mode to form two modes which behave like sound modes, as expected by the hydrody-
namic crossover. As ks → 0, the q  =  0 momentum mode is lowered until at ks  =  0 it and the 
diffusive mode disappear completely, leaving only sound modes, the mixture of the Goldstone 
mode and the incoherent mode of [26].

Figure 2.  The dispersion relation for our three diffusive modes. Both panels are at 
(ks/µ, T/µ,ψs, γ, δ) = (0.3, 0.04, 4, 3, 1), whilst the left panel is at k/µ = 0 and the 
right panel is at k/µ = 0.15. In the k → 0 limit the blue modes become the U(1) 
Goldstone [6], and the red modes become the incoherent mode described in [26].
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6.2.  AC conductivities and the gap

We begin by comparing the analytic results for the AC thermoelectric conductivi-
ties (5.7) with the full numerical calculation carried out in section  5.2 of [5] in the pres-
ence of pinning in the model (6.1) and (6.2). The results are shown in figure  4, for 
{k/µ, ks/µ, T/µ,ψs, γ, δ} = {0.15, 0.3, 0.01, 4, 3, 0.5}. We see very good quantitative agree-
ment for frequencies ω � ωg.

Let us also compare the analytic formula for the gap to a full numerical calculation in 
the model (6.1) and (6.2). In the numerics, we used the same set up and expansions as in 
section 5.2 of [5] in the presence of pinning, but we set the external sources to zero. In turn, 
this constrains the value of the frequency such that a non-trivial solution could be found. The 
results are shown in figure 5, again for {k/µ, ks/µ, T/µ,ψs, γ, δ} = {0.15, 0.3, 0.01, 4, 3, 0.5}. 
We see that there is good quantitative agreement for small pinning parameter φs, confirming 
our analytic computation. This extends the results of [6] to include the mixing of the bulk 
Goldstone to the heat current.

7.  Discussion

In this paper we considered thermal phases of holographic lattices at finite chemical potential 
which exhibit spontaneous breaking of a global symmetry in the bulk. Even though such a 
symmetry breaking in the bulk does not imply the breaking of a continuous symmetry on the 
boundary, we expect the emergence of a diffusive mode from the field theory point of view.

We took the order parameter to break translations itself, resulting to the coupling of the 
corresponding hydrodynamic sliding mode to the heat and electric currents of the theory. In 
the unbroken phase and with the translations being broken explicitly by the lattice, the long 
wavelength excitations of the conserved charges are well described by incoherent hydrody-
namics. In that regime, late time dynamics at long distances is dominated by two thermoelec-
tric diffusive modes. In section 4 we incorporated the emergent sliding mode in order to give 
an hydrodynamic description which is valid below the critical temeprature.

Our results clarify the role of the horizon thermoelectric coefficients as transport coeffi-
cients appearing in our derivative expansion. We further considered the driven hydrodynamics 
of our system by including a time dependent external electric field and temperature gradient. 
More interestingly, in our description we took into account the effect of a perturbative static 
source which adds a small pinning parameter for our spontaneous density wave. This allowed 

Figure 3.  Plots of Re[ω]/µ and Im[ω]/µ as functions of q/µ for 
(ks/µ, T/µ,ψs, γ, δ) = (0.3, 0.04, 4, 3, 1) and k/µ = 0.15, showing the strongest of our 
diffusive modes and the momentum relaxation mode undergoing a collision to form two 
sound modes as q is raised from zero.
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us to compute the optical conductivities of our system and give explicit formulae demonstrat-
ing the transfer of spectral weight to frequencies set by the gap of the theory.

This explained previous numerical results in the literature [5] for models that realise the 
same mechanism that we are proposing here. One could argue that the theory of hydrodynamics 

Figure 4.  Plot of the electric conductivity as a function of the frequency for 
{k/µ, ks/µ, T/µ,ψs, γ, δ} = {0.15, 0.3, 0.01, 4, 3, 0.5} and for φs = 0 (blue) and 
φs/µ = 10−5 (orange). The black, dashed line corresponds to the analytic result (5.7). 
The orange line corresponds to the numerical result for the conductivities as functions 
of the frequency for φs/µ = 10−5, which yelds ωg = 1.54 · 10−5, while the blue line 
corresponds to the case without pinning, φs = 0.

Figure 5.  Plot of the gap as a function of the pinning parameter φs for 
{k/µ, ks/µ, T/µ,ψs, γ, δ} = {0.15, 0.3, 0.01, 4, 3, 0.5}. The solid blue line corresponds 
to the numerical computation for the gap, while the black dashed line corresponds to 
(5.5) evaluated on the same background black hole.
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presented in sections 4 and 5 is also applicable to systems without a gravitational dual at fre-
quency scales much lower than the momentum relaxation rate. In building such a theory, 
one would have to write a general ‘Josephson relation’ (5.2) which couples the phase δĉg 
to the currents of theory. In the lack of an almost conserved momentum operator, these cur
rents can only be the universal heat and electric currents. It is important to notice that for our 
holographic model, it is only the heat current that appears in our equation (5.2), even in the 
presence of finite chemical potential. We believe that this is an artefact of the simplicity of our 
model (2.1).

A direct comparison of our results with previous holographic computations [7–12, 27] is 
not clear as in those setups the momentum and phase relation rate were governed by the same 
scale. However, we should be able to compare with [28] where the momentum relaxation rate 
Γ was taken to be parametrically small but independent of the phase relaxation rate Ω, in their 
notation. The comparison needs to be done in the limit ω ∼ Ω � Γ and with Γ smaller than 
any other scale such as the temperature and the chemical potential. In this limit, we can obtain 
a version of incoherent hydrodymamics by integrating out the fluid velocity from the theory 
of [28] which we present in appendix D. We compare and contrast to a limit of our theory in 
which the strength of the explicit lattice is parametrically small as compared to all the other 
scales and much greater than the pinning parameter δφ1s.

It is worth examining the behaviour of the gap (5.5) as we approach the critical temperature 
T → Tc where the would be gapless mode makes its appearance. Our approximations remain 
valid as long as (1 − T/Tc)

1/2 � ε. In that case, we have that all the quantities that appear 
in (5.5) remain finite apart from Φ(0) ∼ 1 − T/Tc and |〈OZ1〉| ∼ (1 − T/Tc)

1/2 suggesting 
that ωg ∼ (1 − T/Tc)

−1/2 δφ1s . Close to the critical temperature, this in a sense similar to 
the empirical observation made in [29]. One can imagine that with specific choices of the 
functions that appear the action (2.1), the ground states of our theory will be similar to those 
described in e.g. [30, 31]. For those ground states, our formula (5.5) will be powerful enough 
to predict the behaviour of the gap away from the critical regime, at low temperatures.

We have greatly benefited from the simplicity of our Q-lattice construction. One might 
wonder whether our results can be naturally extended to more general holographic models 
which do not require a global symmetry in the bulk and which involve inhomogeneous black 
holes. This is a natural question to ask and the techniques developed in [17] and here should 
help in making progress towards this direction.
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Appendix A.  Derivative expansion of bulk perturbations

We begin the bulk construction of the hydrodynamic modes of the model (2.1) by analysing 
their long wavelength limit, q → 0, ω → 0. We wish to work in a derivative expansion around 
this seed. We begin by giving more details on the background thermodynamic perturbations 
δXb which were introduced in the main text in equation (3.9).
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If we are to work in Schwarzschild co-ordinates, a naive variation T → T + δT[0], 
µ → µ+ δµ[0] of our background will take us outside the class of zero-source, infalling solu-
tions, as explained in [19]. However, our solution is related to genuine quasinormal modes 

by co-ordinate and gauge transformations. In particular, we can perform the coordinate 

transformation t → t + δT[0]

T g(r) in which g(r) vanishes sufficiently fast as r → ∞ and 
g(r) → ln r/(4πT) + g(1)r + · · · as r → 0, along with the gauge transformation δA = dΛ 
with Λ = − (t + g(r)) δµ[0].

At the horizon, this leaves us with the r-expansion

δds2
[0] = −

δT[0]

T

(
4πTr dt2 +

dr2

4πTr

)
− 2

δT[0]

T
dt dr +

(
∂e2V(0)

1

∂T
δT[0] +

∂e2V(0)
1

∂µ
δµ[0]

)
dx1dx1

+

(
∂e2V(0)

2

∂T
δT[0] +

∂e2V(0)
2

∂µ
δµ[0]

)
dx2dx2 + · · · ,

δa[0]t = −δµ[0] + r

(
∂a(0)

t

∂T
δT[0] +

∂a(0)
t

∂µ
δµ[0]

)
+ · · · , δχ1[0] = δcg[0],

δa[0]r = −δµ[0] (4πT r)−1 +
δT[0]

T
(4πT)−1a(0)

t − g(1)δµ[0] + · · · ,

δφ[0] =
∂φ(0)

∂T
δT[0] +

∂φ(0)

∂µ
δµ[0] + · · · , δψ[0] =

∂ψ(0)

∂T
δT[0] +

∂ψ(0)

∂µ
δµ[0] + · · · .

�

(A.1)

The above is exactly the near horizon limit of the perturbation δX[0] as defined in (3.9).
Turning on ε, and continuing to demand regularity at the horizon, we see that the behaviour 

of the corresponding hydrodynamic modes at the horizon is governed by

ω = ε ω[1] + ε2 ω[2] + · · · ,

p = 4π
(
δT[0] + ε δT[1] + ε2 δT[2] + · · ·

)
,

v = ε v[1] + ε2 v[2] · · · ,

� = −
(
δµ[0] + ε δµ[1] + ε2 δµ[2] + · · ·

)
,

δg(0)
ij =

(
∂g(0)

ij

∂T
δT[0] +

∂g(0)
ij

∂µ
δµ[0] + ε δg(0)

[1]ij + · · ·

)
,

δφ
(0)
I =

(
∂φ

(0)
I

∂T
δT[0] +

∂φ
(0)
I

∂µ
δµ[0] + ε δφ

(0)
I[1] + · · ·

)
,

δψ
(0)
I =

(
∂ψ

(0)
I

∂T
δT[0] +

∂ψ
(0)
I

∂µ
δµ[0] + ε δψ

(0)
I[1] + · · ·

)
,

δχ
(0)
I = δcg[0]δ1I + ε δχ

(0)
I[1] + · · · ,

δσ
(0)
I = ε δσ

(0)
I[1] + · · · ,

�

(A.2)
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where we used the definitions in (3.4) for p , v and �.

A.1. The equations at leading order in ε

We now begin the task of using the constraints (3.6a)–(3.6c), and the eom for χ1 (2.7), to con-
strain the form of our hydrodynamic modes. At O(ε), the vector constraint gives

eV(0)
1 +V(0)

2 B v[1] + iq
(
ρ δµ[0] + s δT[0]

)
− iω[1] k1 eV(0)

1 +V(0)
2 Φ

(0)
1 δcg[0] = 0,

�
(A.3)

in which we use the notation B from (3.16). We will shortly be using this equation to express 
the horizon fluid velocity v[1] in terms of the parameters of the zero mode, δcg[0], δT[0] and 
δµ[0].

Next, let us examine the χ1 eom at O(ε). We find

∂r
[
eV1+V2 Φ1

(
−iω[1]δcg[0] + U∂rδχ1[1] − k1 e−2V1 δgr1[1]

)]

+ iq eV2−V1 k1

(
∂φIΦ1 δφI[0] + ∂ψIΦ1 δψI[0] +

Φ1

2
(
−e−2V1δg11[0] + e−2V2δg22[0]

))
= 0.

� (A.4)

From this equation, we find asymptotic behaviour

δχ1[1] =
r2∆Z1−3

(2∆Z1 − 3)φ2
1v

{
−eV(0)

1 +V(0)
2 Φ

(0)
1

(
iω[1]δcg[0] − k1v[1]

)

−iq k1

∫
dr eV2−V1

[
∂φIΦ1 δφI[0] + ∂ψIΦ1 δψI[0] +Φ1

(
δV2[0] − δV1[0]

) ]}
+ · · · .

Following our discussion on the asymptotics (3.7) and by demanding that ζS1 = 0 we obtain 
the equation

eV(0)
1 +V(0)

2 Φ
(0)
1

(
iω[1]δcg[0] − k1v[1]

)
= −iq k1

∫
dr eV2−V1

[
∂φIΦ1 δφI[0] + ∂ψIΦ1 δψI[0]

+Φ1
(
δV2[0] − δV1[0]

) ]
.

�

(A.5)

Using (2.18), we can express the RHS of (A.5) as −iq times

δT[0]
δ

δT

(
δwFE

δk1

)
+ δµ[0]

δ

δµ

(
δwFE

δk1

)
= − δs

δk1
δT[0] −

δρ

δk1
δµ[0].� (A.6)

After substituting for v[1] from (A.3), the χ1 equation of motion then gives a relation between 
the parameters of the zero mode,

iq
(

k1Φ
(0)
1 s − B δs

δk1

)
δT[0] + iq

(
k1Φ

(0)
1 ρ− B δρ

δk1

)
δµ[0]

+ iω[1]

(
k2

s1 Φ
(0)
1 Ψ

(0)
1 eV(0)

1 +V(0)
2

)
δcg[0] = 0.

�

(A.7)

However, this is not the only relation the horizon constraints give us. The scalar constraints 
at the horizon (3.6a)–(3.6b) read, at O(ε),

A Donos et alClass. Quantum Grav. 37 (2020) 045005



28

0 = iω[1]


δT[0]

∂V(0)
1[0]

∂T
+ δµ[0]

∂V(0)
2[0]

∂µ


 ,

0 = iω[1]

[
τ (0)a(0)


∂V(0)

1[0]

∂T
+

∂V(0)
2[0]

∂T




+ ∂φIτ
(0)a(0) ∂φ

(0)
I

∂T
+ ∂ψIτ

(0)a(0) ∂ψ
(0)
I

∂T
+ τ (0) ∂a(0)

t

∂T

]
δT[0]

+ iω[1]

[
τ (0)a(0)


∂V(0)

1[0]

∂µ
+

∂V(0)
2[0]

∂µ




+ ∂φIτ
(0)a(0) ∂φ

(0)
I

∂µ
+ ∂ψIτ

(0)a(0) ∂ψ
(0)
I

∂µ
+ τ (0) ∂a(0)

t

∂µ

]
δµ[0].

�

(A.8)

As was demonstrated in [19], this system can be expressed in terms of thermoelectric 
susceptibilities,

iω[1]

(
T−1cµ ξ

ξ χq

)(
δT[0]

δµ[0]

)
= 0.

� (A.9)
We now consider the two possibilities for ω[1]:

ω[1] �= 0: Provided the matrix of susceptibilities in (A.9) is invertible, as is generically the 
case, we deduce from (A.9) that δT[0] = δµ[0] = 0. However, when ks1 �= 0 and momentum is 
relaxing, this means (A.7) is no longer solvable, excepting the trivial perturbation δcg[0] = 0.

ω[1] = 0: in this case, (A.9) contributes nothing new. However, at next order in ε, the sca-
lar constraints will lead to another version of (A.9), but with ω[1] → ω[2]. At k1 �= 0, the only 
way this relation can avoid conflicting with (A.7) is if δT[0] = δµ[0] = 0.

To summarise, in the presence of momentum relaxation the hydrodynamic modes gener-
ated by our thermodynamic perturbations are diffusive, and in the presence of spontaneous 
breaking of the bulk global symmetry they are each seeded by a zero mode with δcg[0] �= 0, 
δT[0] = δµ[0] = 0.

A.2. The equations at next-to-leading order in ε

We proceed to constrain all three diffusion constants by use of the horizon vector constraint 
at O(ε2), the equation of motion for χ1 at O(ε2), and the horizon scalar constraints at order 
O(ε3).

Expanding the vector constraint (3.6c) at O(ε2) we obtain

eV(0)
1 +V(0)

2 Bv[2] + iq
(
sδT[1] + ρδµ[1]

)
− iω[2]k1 eV(0)

1 +V(0)
2 Φ

(0)
1 δcg[0] = 0,� (A.10)

while solving the equation of motion (2.7) at the same order yields the asymptotic expansion

δχ1[1] =
r2∆Z1−3

(2∆Z1 − 3)φ2
1v

{
−eV(0)

1 +V(0)
2 Φ

(0)
1

(
iω[2]δcg[0] − k1v[2]

)
+ q2 δcg[0]

∫
dr eV2−V1Φ1

+iq k1

∫
dr eV2−V1

(
∂φIΦ1 δφI[1] + ∂ψIΦ1 δψI[1] +Φ1

(
δV2[1] − δV1[1]

))}
+ · · · .
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Comparing once again with our general asymptotics (3.7), the ζS1 = 0 condition gives

eV(0)
1 +V(0)

2 Φ
(0)
1

(
iω[2]δcg[0] − k1v[2]

)
− q2 δcg[0]

∫
dr eV2−V1Φ1

+ iq k1

∫
dr eV2−V1

(
∂φIΦ1 δφI[1] + ∂ψIΦ1 δψI[1] +Φ1

(
δV2[1] − δV1[1]

))
.

� (A.11)
Like at the previous order in ε, we proceed to eliminate the horizon fluid velocity v[2] by using 
equation (A.10) to obtain

(
eV(0)

1 +V(0)
2 Φ

(0)
1

k2
s1Ψ

(0)
1

B
ω[2] + iq2 δ2wFE

δk2
1

)
δcg[0]

+ q
(

k1Φ
(0)
1

s
B

− δs
δk1

)
δT[1] + q

(
k1Φ

(0)
1

ρ

B
− δρ

δk1

)
δµ[1] = 0.

�

(A.12)

In addition to this, we make use of the scalar constraint equations (3.6a) and (3.6b) at third 
order,

iω[2](T−1cµδT[1] + ξδµ[1])− q2 4π
(
sδT[1] + ρδµ[1]

)
B

+ ω[2]q

(
k1Φ

(0)
1 s
B

− δs
δk1

)
δcg[0] = 0,

− q2eV(0)
2 −V(0)

1 τ (0)δµ[1] − q2ρ e−V(0)
1 −V(0)

2

(
sδT[1] + ρδµ[1]

)
B

+ iω[2]
(
ξδT[1] + χδµ[1]

)

+ ω[2]q

(
k1Φ

(0)
1 ρ

B
− δρ

δk1

)
δcg[0] = 0,

�

(A.13)

where we have already substituted for v[2]. The equations (A.12) and (A.13) form the 3 × 3 
system in the main text, (3.13), which can be solved for three solutions of ω[2] to give the dif-
fusion constants of the three modes.

Appendix B.  Heat current

In this appendix we construct the bulk and boundary heat currents following [21]. Let us con-
sider a general vector kµ. We define the 2-form

Gµν = −2∇[µkν] − τ k[µFν]ρAρ −
1
2
(kρAρ − f ) τFµν ,� (B.1)

where kµFµν = ∂ν f + βν, with β a 1-form and f  a globally defined function. Using the identity

∇µ∇[µkν] = −Rν
ρkρ −∇ν∇ρkρ +∇µ∇(µkν),� (B.2)

the equations of motion (2.2) imply that

∇µGµν = V kν + 2∇ν∇ρkρ − 2∇µ∇(µkν) +
1
2
τFνρβρ −

1
2

AρLk (τ Fνρ)

+
∑

i

(θ ∂νχi∂ρχi + θ1 ∂
νσi∂ρσi) kρ.

� (B.3)
Let us consider kµ = ∂t and a general static background metric of the form

ds2 = −G dt2 + F dr2 + g̃ij dxidx j,� (B.4)
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with the functions G, F and the d  −  1 dimensional metric g̃ij depending an all coordinates 
except for t. The bulk heat current is defined as

δQi
bulk =

√
−gGir =

G3/2

F1/2

√
g̃ g̃ij

d

(
∂r

(
δgjt

G

)
− ∂j

(
δgrt

G

))
− at δJi

bulk,

= G1/2
√

g̃
[
2Ki

t + F−1/2g̃ij ∂tδgrj(t, r, xi)
]
− at δJi

bulk,
� (B.5)

where we have used the result of appendix B of [17] for the extrinsic curvature component

Ki
t =

1
2

G F−1/2g̃ij
[
∂r

(
δgjt

G

)
− ∂j

(
δgrt

G

)
−

∂tδgrj

G

]
.� (B.6)

Note that if we write t̃µν = −2Kµ
ν + Xδµν + Yµ

ν, where X = 2K + · · · and Y are additonal 
terms that come from the counterterms, then t̃µν gives the stress tensor when evaluated on the 
boundary. Thus

δQi
bulk = G1/2

√
g̃
[
Yi

t − t̃i
t + F−1/2g̃ij ∂tδgrj(t, r, xi)

]
− at δJi

bulk.� (B.7)

Evaluated on the boundary, this gives

δQi
bulk

∣∣∣
∞

= −
(

r−2 ti
t + µ δJi

bulk

∣∣∣
∞

)
,� (B.8)

where tµν = r5 t̃µν . Note that the contribution from Yi
t, as coming from (2.14), and contrib

ution from the term involving a time derivative are subleading even in the precense of sources. 
This result matches the expression for the boundary heat current obtained from the variation 
of the action in the presence of the sources (4.9)

δS =

∫
d3x

√
−h

[
1
2

r−5 tµν δgµν + r−3JµδAµ

]
,� (B.9)

where hµν = gµν − nµ nν  and n is the unit norm normal vector. Furthermore, equation (B.3) 
implies the radial dependence

∂rδQi = ∂j
(√

−gG ji)+ ∂t
(√

−gGti)− 1
2
√
−g τFiρ∂tAρ +

1
2
√
−g Aρ∂t

(
τ Fiρ)

− 2
√
−g ∂i∂t log

√
−g + ∂µ

(√
−g∇ikµ

)
−
√
−g

∑
l

(
θ ∂iχl∂tχl + θ1 ∂

iσl∂tσl
)

.
�

(B.10)

One can check that for our choice of kµ, only the last term in (B.10) contributes to order 
O
(
ε2
)
, which leads to the radial evolution for δQ1

bulk presented in (C.9), and the relation 
(C.10) between the boundary and horizon heat currents.

Appendix C.  ε-expansion in the presence of sources

The aim of this appendix is to presence some of the calculations that were omitted in sec-
tion 4. In particular, as it was explained in the main text, we will repeat the ε-expansion of 
section 3 but in the presence of the external sources (4.9). In these computations we keep 
ω[1] = δT[0] = δµ[0] = 0 following the results of appendix A.
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C.1.  Vector constraint and equation of motion for χ1

We start with the ε-expansion of the vector constraint. Evaluating (3.6c) at order O(ε2) we 
obtain

eV(0)
1 +V(0)

2 Bv[2] + iq
(
sδT[1] + ρδµ[1]

)
− iω[2] k1eV(0)

1 +V(0)
2 Φ

(0)
1 δcg − sT ζ − ρE = 0.� (C.1)

The above equation can used to determine v[2] in terms of the sources, δcg and thermodynamic 
quantities.

We now move on to discuss the equation of motion for χ1 (2.7). The first non-trivial terms 
appear at order O(ε2) giving

∂r
[
eV1+V2 Φ1

(
−iω[2]δcg + U∂rδχ1[2] − k1e−2V1 δgr1[2]

)]
+ eV2−V1

[
−q2 Φ1 δcg

+iq ∂φIΦ1φI[1] + iq ∂ψIΦ1 ψI[1] + iq k1
Φ1

2
(
−e−2V1δg11[1] + e−2V2δg22[1]

)
− k1Φ1ζ

]
= 0.

�
(C.2)

The asymptotic behaviour of the solution for δχ1[2] is

δχ1[2] =
r2∆Z1−3

(2∆Z1 − 3)φ2
1v

[
eV(0)

1 +V(0)
2 Φ

(0)
1

(
−iω[2]δcg + k1v[2]

)
+ ζ w1

+ iq
(
ν1 δT[1] + β1 δµ[1] − iq w11 δcg[0]

)]
+ · · · ,

�

(C.3)

where we have used the definition of the susceptibilities. Imposing that ζS1 = 0 gives the 
equation

eV(0)
1 +V(0)

2 Φ
(0)
1

(
iω[2]δcg − k1v[2]

)
− iq

(
ν1δT[1] + δµ[1] β

1 − i q δcg w11)− ζ w1 = 0.� (C.4)

C.2.  Constitutive relation for boundary U(1) current

It is straightforward to show that the bulk U(1) current, defined as δJi
bulk ≡

√
−gτδFir, is 

given by

δJi
bulk = ε2 eV2−V1 τ e−iω[2]vEF+iqx1 [

E − aζ − U∂rδa1[2] − iq U ∂rg δµ[1] − δgt1[2]∂ra
]
+O(ε3),

� (C.5)
where the function g(r) was defined above (A.1). Furthermore, using Maxwell’s equa-
tions (2.2), it can be shown that

∂rδJi
bulk = ∂j

(√
−gτδF ji)+ ∂t

(√
−gτδFti) = 0 +O(ε3).� (C.6)

Thus, the boundary current is related to the horizon current by

δJ1 = lim
r→∞

δJ1
bulk = e−iω[2]vEF+iqx1

J1
(0) +O(ε3).� (C.7)

This gives the constitutive relation (4.12) when we eliminate v[2] using the constraint (C.1).

C.3.  Constitutive relation for boundary heat current

From the definition of the bulk heat current (B.5) in appendix B, it is easy to show that

δQ1
bulk = ε2eV2−V1 e−iω[2]vEF+iqx1 (

−ζ U + U∂rδgt1[2] − δgt1[2] ∂rU − iqU δgrt[1]
)
− aδJi

bulk +O(ε3),
� (C.8)
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where we have used that for our background (2.8) we need to set G  =  F−1  =  U and ̃gij = e2Viδij 
in (B.4). Following from (B.5), this bulk quantity satisfies

∂rδQ1
bulk = ε2eV2−V1 e−iω[2]vEF+iqx1

Φ1 k1 iω[2]δcg +O(ε3)� (C.9)

and thus the boundary heat current is related to the horizon heat current by

δQ1 = lim
r→∞

δQ1
bulk = e−iω[2]vEF+iqx1

(
Q1

(0) + iω[2]δcg w1
)
+O(ε3)

= e−iω[2]vEF+iqx1 (
sT v[2] + iω[2] δcg w1)+O(ε3).

� (C.10)

As before, we can use the constraint (C.1) to eliminate v[2] from the expression above, leading 
to the constitutive relation (4.13).

Appendix D.  Weak momentum relaxation limit

In this appendix we will study the source-free dynamics of the theory we introduced in sec-
tions 4 and 5. We start by eliminating the time derivatives of δĉg from the constitutive rela-
tions for the currents (4.12) and (4.13) by using the Josephson relation (5.2) to obtain the 
expressions,

δQ1 =−
(

T ᾱH +
υ

γ
∆ ρ T s − υ∆ s T k1 β

1
)
∂δµ̂−

(
κ̄H +

υ

γ
∆ T s2 − υ∆ s T k1 ν

1
)
∂δT̂

− υ w11 k2
1 ∆ Ts

(
−∂2 + l2

)
δφ̂,

�
(D.1)

δJ1 =−
(
σH +

1
γ
∆ ρ2 −∆ ρ k1 β

1
)
∂δµ̂−

(
αH +

1
γ
∆ ρ s −∆ ρ k1 ν

1
)
∂δT̂

− w11 k2
1 ∆ ρ

(
−∂2 + l2

)
δφ̂.

�

(D.2)

In the expressions above we have defined

∆ =
4π

s k2
s1 Ψ

(0)
1

, l2 =
2 |OZ | δφ1s

w11 , υ = 1 +
B w1

k1Φ
(0)
1 Ts

γ = 1 +
k2

s1 Ψ
(0)
1

k2
1 Φ

(0)
1

, δĉg = −k1 δφ̂.
�

(D.3)

The Josephson relation (5.2) now reads

∂tδφ̂ = −∆
(
γk2

1w11(−∂2 + l2) δφ̂+ (ρ− k1γβ
1) ∂δµ̂+ (s − k1γν

1) ∂δT̂
)

.
� (D.4)

The advantage of this parametrisation is that at weak momentum relaxation we will have 
γ → 1 and ∆ parametrically large. At this point we stress that even when we take a weak 
momentum relaxation limit, our theory is valid for frequencies and pinning strength much 
smaller than the scale 1/∆. In this limit we have

δQ1 =−∆ υ
(
ρT s − s T k1 β

1) ∂δµ̂−∆ υ
(
T s2 − s T k1 ν

1) ∂δT̂

− υ∆w11 k2
1 Ts

(
−∂2 + l2

)
δφ̂,

�
(D.5)
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δJ1 =−∆
(
ρ2 − ρ k1 β

1) ∂δµ̂−∆
(
ρ s − ρ k1 ν

1) ∂δT̂

−∆w11 k2
1 ρ

(
−∂2 + l2

)
δφ̂,

�
(D.6)

while all the terms on the right hand side of (D.4) are leading order in ∆.
We will now obtain a theory of incoherent hydrodynamics starting from the description of 

[28] which concerns systems with small phase and momentum relaxations rates κnk2
0ξ and Γ 

respectively. As we will see, the main disagreement will arise from issues related to thermo-
dynamics. More specifically, the systems considered there have w1 = β1 = ν1 = 0 which is 
not true in general for holographic theories. This fact has an effect even in the limit of weak 
momentum relaxation as can be seen from equations (D.5), (D.6) and (D.4).

In the limit ω ∼ κnk2
0ξ � Γ we can use the momentum conservation equation to express 

the fluid velocity locally as

v = − 1
Γχππ

(
ρ ∂δµ+ s ∂δT + κn (−∂2 + k2

0) δφ
)

.� (D.7)

Plugging this expression in their constitutive relations for the electric and heat current we find,

δQ1 = −
(
κ0 +

T s2

Γχππ

)
∂δT − T

(
α0 +

sρ
Γχππ

)
∂δµ+ Tκn

(
γ2 −

s
Γχππ

) (
−∂2 + k2

0

)
δφ,

� (D.8)

δJ1 = −
(
σ0 +

ρ2

Γχππ

)
∂δµ−

(
α0 +

sρ
Γχππ

)
∂δT + κn

(
γ1 −

ρ

Γχππ

) (
−∂2 + k2

0

)
δφ,� (D.9)

while for the Josephson relation we have

∂tδφ =

(
γ1 −

ρ

Γχππ

)
∂δµ+

(
γ2 −

s
Γχππ

)
∂δT − κn

(
ξ +

1
Γχππ

)(
−∂2 + k2

0

)
δφ.� (D.10)

We see that the ratio of the coefficient of δφ in (D.8) and the coefficient of ∂δT  in (D.10) is 
the same with ratio of the coefficient of δφ in (D.9) and the coefficient of ∂δµ in (D.10) times 
T. This is true even without taking a limit of small momentum relaxation rate Γ. In general, 
this constraint is not satisfied in the system (D.5), (D.6) and (D.4). As we mentioned earlier, 
the discrepancy comes from thermodynamic factors of β1, ν1 and w1 which are non-zero for 
our holographic theory.

The fact that w1 is non-zero for our model is related to the fact that we are examining 
branches of black holes which are not thermodynamically preferred. Indeed, the thermody-
namically dominant configurations will minimise the free energy of the system and therefore 
they must have w1  =  0. For the specific model we are considering, the preferred branch will 
also have β1 = ν1 = 0 but this point is not true for more general holographic theories which 
exhibit spontaneous breaking of translations, see e.g. [32–35]. For such theories one might 
expect new terms to arise in the constitutive relations but the terms we have identified in sec-
tions 4 and 5 for our minimal model (2.1) will still be present.
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