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Abstract
In the paraxial regime of Newtonian optics, propagation of an ensemble 
of rays is represented by a symplectic ABCD transfer matrix defined on a 
reduced phase space. Here, we present its analogue for general relativity. 
Starting from simultaneously applied null geodesic actions for two curves, 
we obtain a geodesic deviation action up to quadratic order. We achieve this 
by following a preexisting method constructed via Synge’s world function. 
We find the corresponding Hamiltonian function and the reduced phase space 
coordinates that are composed of the components of the Jacobi fields projected 
on an observational screen. Our thin ray bundle transfer matrix is then obtained 
through the matrix representation of the Lie operator associated with this 
quadratic Hamiltonian. Moreover, Etherington’s distance reciprocity between 
any two points is shown to be equivalent to the symplecticity conditions of 
our ray bundle transfer matrix. We further interpret the bundle propagation as 
a free canonical transformation with a generating function that is equal to the 
geodesic deviation action. We present it in the form of matrix inner products. A 
phase space distribution function and the associated Liouville equation is also 
provided. Finally, we briefly sketch the potential applications of our construction. 
Those include reduced phase space and null bundle averaging; factorization of 
light propagation in any spacetime uniquely into its thin lens, pure magnifier 
and fractional Fourier transformer components; wavization of the ray bundle; 
reduced polarization optics and autonomization of the bundle propagation on 
the phase space to find its invariants and obtain the stability analysis.

Keywords: general relativity, geometric optics, cosmology, symplectic, 
phase space, reciprocity
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1.  Introduction

Reciprocity relations in physics signal the existence of potentiality of a system [1, 2]. Maxwell–
Betti reciprocity for virtual work in elasticity [3], Onsager’s reciprocity in thermodynamics 
[4] or quantum mechanical reciprocity of the received signal [5] all state that the observables 
are unchanged when the input and output agents are traversed. Those distinct systems share 
a similar property: they can be linked to some well-defined symplectic potential. The work 
we present here grew out of questioning what kind of potentiality Etherington’s distance reci-
procity in relativity [6] corresponds to. The outcome of such an investigation turns out to be a 
symplectic phase space reformulation of first order geometric optics in relativity.

Observationally viable studies of optics in general relativity are usually investigated under 
two main branches: (i) gravitational lensing studies, (ii) cosmological light propagation. For 
gravitational lensing calculations, one chooses an approximate stationary metric and an appro-
priate 3  +  1 decomposition of the spacetime. The equations of object and image distances can 
be derived all the way from Fermat’s principle. Then, potentials and refractive indices analo-
gous to the ones of the Newtonian theory can be obtained [7]. On the other hand, such analo-
gies between the Newtonian and the general relativistic Fermat’s principle cannot be formed 
for distance calculations in cosmology as the underlying metric is far from being stationary. 
For instance, angular diameter and luminosity distances can be obtained via the Jacobi fields 
[8] whose relation to an analogue refractive index is not clear.

Our aim here is to propose a method in order to study the phase space propagation of a thin 
ray bundle defined within any spacetime. While doing this, we consider a reduced phase space, 
as in the case of paraxial regime of Newtonian optics, such that the propagation of the bundle 
within a spacetime and a classical optical device are analogous up to first order. Therefore, in 
section 2, we summarize the paraxial ray optics of the Newtonian theory and remind how sym-
plectic ray transfer matrices emerge on a reduced phase space. Most of the notation used in our 
construction is introduced there. In section 3, main ideas behind our work are presented. We 
start by the application of geodesic actions simultaneously for two null curves. Then follow-
ing the method of [9] which involves a bilocal function known as the Synge’s world function 
[10], we obtain a geodesic deviation action up to quadratic order. This is applicable for nearly 
parallel, neighboring null geodesics and hence analogous to the Newtonian paraxial regime. A 
corresponding Hamiltonian formalism for a 4D phase space is obtained once we consider the 
observational screen projections of the Jacobi fields as phase space coordinates. Hence, sym-
plectic ray bundle transfer matrices are constructed. In section 4, we show that Etherington’s 
distance reciprocity indeed follows from the symplecticity conditions of this transfer matrix. 
In section 5, we provide the generating function of the linear canonical transformation corre
sponding to the symplectomorphism of our phase space. Moreover, a phase space distribution 
function for the ensemble of rays and its corresponding Liouville’s equation is provided in 
section 6. In the end, in section 7, we propose certain potential applications of symplectic 
ray bundle transfer matrices for astrophysical and cosmological scenarios. These include: (i) 
phase space and null bundle averaging of scalars which can then be used to average Einstein 
equations; (ii) factorizing the light propagation effect in any spacetime into its thin lens, pure 
magnifier and fractional Fourier transformer components; (iii) wavization of a ray bundle; 
(iv) investigating the evolution of polarization states and (v) determining the invariants and 
stability analysis of a null bundle by considering some autonomization techniques. The last 
section 8 gives a summary and conclusion of the work.

We choose the (−,+,+,+) signature for our spacetime metric and also use natural units 
through out the paper so that c,G,h,kB are set to 1.
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2.  First order Newtonian ray optics

In this section, we will remind the first order Newtonian optics by giving a brief summary of 
[11–13]. Our aim is to re-present the reader how symplectic transfer matrices emerge from 
Fermat’s principle, as a similar construction for general relativity will be developed later. 
Even though we claim no new results in this section, note that most of the notation and con-
cepts relevant for the paper is introduced here.

2.1.  Fermat’s principle and paraxial approximation

Let us consider a stationary, inhomogeneous and isotropic medium. According to Fermat’s 
principle, the path of a ray is the one that extremizes the following action between points P1 
and P2

A =

∫ P2

P1

n(�r) ds.� (1)

Here, �r(s) ∈ R3 is the position vector, n(�r) = c/V  is the refractive index of the medium with 
c being the speed of light in vacuum and V , the one in the medium. The Euclidean arc length 
is denoted by ds2 = d�r · d�r .

In order to obtain the eikonal equation, i.e. the equations of motion, one is free to pick 
more than one parameterization and/or degree of the Lagrangian function associated with the 
action A. In the literature, however, one of the common approaches is to write the equations of 
motion, with respect to the Euclidean arc length, so that the solution of

δA =

∫ P2

P1

δ
(

n(�r)
√
�̇r · �̇r

)
ds = 0,� (2)

gives the equations of motion

d
ds

(
∂L̃

∂�̇r

)
− ∂L̃

∂�r
= 0,� (3)

with

L̃ = n(�r)
√
�̇r · �̇r� (4)

being the Lagrangian function and the overdot denotes a total derivative with respect to the arc 
length s. Note that we have the normalization |�̇r| = 1 here and the Lagrangian is a homoge-
neous function of degree one with respect to �̇r . Then the eikonal equation is written as

d
ds

[
n (�r) · d�r

ds

]
= ∇n (�r) ,� (5)

where ∇ is the gradient operator defined with respect to the Euclidean metric.
One can switch from the Lagrangian formulation to a Hamiltonian formulation, by consid-

ering {�r,�̇r} as the canonical coordinates and velocities respectively, so that

H̃ =
∂L̃

(
�r,�̇r

)

∂�̇r
· �̇r − L̃ = �p · �̇r − L̃.� (6)
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Note that this is the total, conserved Hamiltonian of the system which is equivalent to 
H̃ = |�p| − n = 0 on shell.

In order to get to the paraxial approximation, it is a common practice to start the pro-
cedure by reparameterizing the optical equations  with respect to one of the configura-
tion space coordinates. Let us pick it to be the y   −  coordinate of the Euclidean distance 

ds =
(
du2 + dv2 + dy2

)
1/2 = βdy with β =

(
u′2 + v′2 + 1

)
1/2. Here, prime denotes the 

total derivative with respect to the new evolution parameter y . Then Fermat’s action in (2) can 
be recast in the following form [11]

A =

∫ P2

P1

L(q, q′; y) dy

=

∫ P2

P1

n(q; y)
(
1 + |q′|2

)1/2
dy,

� (7)

if we pick our optical canonical coordinates via dq = (du, dv) that lies on a screen orthogo-
nal to some optical axis for each value of y . The Lagrangian function defined in (7) is often 
referred to as the optical/reduced/screen Lagrangian.

Once we apply a Legendre transformation on the reduced Lagrangian L we get the reduced 
Hamiltonian

H = p · q′ − L = −
[
n(q; y)2 − |p|2

]1/2
,� (8)

where p = (n/β) q′  and the Hamilton–Jacobi equations read as

q′ =
∂H
∂p

, p′ = −∂H
∂q

.� (9)

Note that unlike the total Hamiltonian H̃ , the reduced Hamiltonian H is not conserved through-
out the evolution.

In the paraxial approximation, the angle ∆θ between the propagation vector of light and the 
optical axis is assumed to be small1, i.e. ds ≈ dy or β ≈ 1. In that case, the optical momen-
tum p is a measure of the angle in question, i.e. |p| = n∆θ. Again, it is a common practice to 
Taylor expand the reduced Hamiltonian, (8), with respect to the optical momentum only and 
obtain the Hamiltonian for the first order ray propagation as [12, 13]

H = −
(

n − |p|2

2n
− |p|4

8n3 − |p|6

16n5 − ...
)

≈ |p|2

2n
− n.� (10)

The so-called ABCD ray transfer matrices in optics are very much related to quadratic 
Hamiltonians. Those transfer matrices take the optical system from one set of solutions, 
(q, p), to another one, (Q, P). In order to obtain them, one further expands the refractive index 
n(q; y) around its value on the optical axis, i.e. at (0; y), up to quadratic order. We will show 
this in the next section.

1 For practical purposes, angles smaller than 15 degrees are well within this approximation in the Newtonian theory.
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2.2.  Symplectic geometry and ABCD matrices

Let us expand (10) with respect to the canonical coordinates q of a centered system, for 
instance. Then, the first order terms vanish, as they represent the tilts and misalignments with 
respect to the optical axis. Moreover, the zeroth order term will not be essential when we 
introduce the Lie operator and thus we omit it. Then one rewrites the Hamiltonian (10) as [12]

H =
1

2n0
δabpapb −

1
2

nabqaqb,� (11)

where {a, b} = {û, v̂}, δab is the Kronecker delta function in 2-dimensions, n0 = n(0; y) 
and nab(0; y) represents the second order variation of the refractive index with respect to the 
canonical coordinates.

Note that the Hamiltonian in (11) is quadratic with respect to both p a’s and qa’s. Those 
polynomials are very important in many areas of physics as they are closed under the Poisson 
bracket and thus form a Lie algebra. Our aim here is to introduce the Lie operator corre
sponding to the reduced Hamiltonian. Its matrix representation is a Hamiltonian block matrix 
that evolves the first order system in question.

In order to show this, let us introduce a 2n dimensional symplectic phase space 
M(R2n). We will denote the phase space coordinates as zi = (qa, pb)

ᵀ where {a, b} = {1...n}, 
{i, j} = {1...2n} and ᵀ refers to the transpose operator. In the current section n  =  2, however, 
the following construction is valid for any dimensions.

Poisson bracket of two functions f  and g is given by

{ f , g} =
∂f
∂zi Ω

ij ∂g
∂z j ,� (12)

where Ω is the fundamental symplectic matrix2 defined through

{zi, z j} = Ωij, Ωij =

[
0n In
−In 0n

]
,� (13)

where In and 0n are identity and zero matrices, respectively, of dimension n. The matrix Ω has 
the following properties3

Ωᵀ = Ω−1 = −Ω, Ω2 = −I2n, detΩ = 1,� (14)

in which −1 denotes the inverse operator and det  refers to determinant of the matrix. With this 
notation Hamilton–Jacobi equations (9) can be recast into

dzi

dy
= Ωij ∂H

∂z j = −{H, zi}.� (15)

Let us denote the Lie operator corresponding to the Hamiltonian (11) as

L̂H [•] = −{H, •} =
1
n0

δabpb
∂

∂qa + nabqb ∂

∂pa
.� (16)

Note that since, L̂H is a Lie operator associated with a quadratic polynomial on a 2n-dimen-
sional phase space, there exists a 2n × 2n matrix representation of it [14, 15]. We will denote 
it as

2 In the literature, Ω is sometimes denoted as J or ω. The reader should also be careful about the sign convention 
chosen here.

3 With lowered indices components of Ω follows as Ωij =

[
0n − In
In 0n

]
.

N Uzun﻿Class. Quantum Grav. 37 (2020) 045002
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LH =

[
0 n0

−1

n2 0

]
,� (17)

in which n2 and n0 have the components nab and δabn0 respectively. Then, for this linear sys-
tem, (15) can be rewritten as

dz
dy

= LH z.� (18)

Let us consider the simplest case for now and assume that the refractive index is y -indepen-
dent. Then the evolution of the system between any initial and arbitrary points is given by

z = T(y, y0)z0,� (19)

with

T(y, y0) = exp [LH(y, y0)] =

∞∑
m=0

(y − y0)
m

m!
Lm

H,� (20)

such that T represents a Lie transformation.
As exponential maps of Hamiltonian matrices are symplectic matrices [16], the ray transfer 

equation (19) is a linear symplectic transformation that preserves the Poisson bracket structure 
(13). Then the symplectic matrix T satisfies

Tᵀ ΩT = Ω, det T = 1.� (21)

Note that it can be put in a block form

T =

[
A B
C D

]
,� (22)

with A, B, C and D being all n-dimensional square matrices. That is why T is usually referred 
to as an ABCD matrix in the literature.

Now, let us substitute (19) back in (18). Then we obtain

dT
dy

= LH T,� (23)

as the initial phase space vector is fixed. Also, for the convenience of the next section, let 
us pick a symmetric optical system so that, the refractive index is also v-independent. Then 
matrices n2 and n0 reduce to scalars n2 and n0

4. Likewise the set {A, B, C, D} reduces to a set 
of scalars {A, B, C, D} which define the transfer matrix of a 2D phase space vector. In that case 
(23) can be cast into a set of four first order differential equations [12, 13]

dA
dy

=
C
n0

,
dB
dy

=
D
n0

dC
dy

= n2A,
dD
dy

= n2B,
� (24)

4 Note that, previously, when we Taylor expanded the refractive index, we actually assumed that it varies within the 
medium smoothly. That is why the corresponding medium is usually referred to as graded index (GRIN) medium 
in the literature. For the design of optical instruments or fibers, researchers often assume an elliptic profile for the 
refractive index in which the second order term n2 plays the major role in its identification. For more details see 
chapters 2 and 3 of [17] or section 5.3 of [18]. We believe n2 having such a major role will be more clear in sec-
tion 3, within the differential geometric language.

N Uzun﻿Class. Quantum Grav. 37 (2020) 045002
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with initial conditions

A(y0) = 1, B(y0) = 0,
C(y0) = 0, D(y0) = 1.
� (25)

Hence, in order to obtain the phase space vector z at a given y value, all one should do is to 
solve the equation set (24) for the unknowns {A, B, C, D} and substitute into (19) by consider-
ing (22).

2.3.  Observables

Now we want to demonstrate the physical relevance of the {A, B, C, D} scalars. In this sec-
tion, we will adopt Torre’s viewpoint, in which two types of rays are identified by their ini-
tial conditions [12]. Axial rays are defined as those with {qin = 0, θin = 1/n0} and field rays 
have {qin = 1, θin = 0}. Therefore, B and D are representatives of the evolution of axial rays; 
whereas, A and C represent the the evolution of field rays. Thus, at any point of evolution, the 
ABCD matrix represents a ray transformation which is a superposition of the propagation of 
an axial and a field ray.

For the design of an optical system, one is usually interested in the magnification provided 
by the system, its primary and secondary focal lengths, power of the system etc. Here we will 
point some of those properties that will be relevant for our investigation in the relativistic 
case. For instance, there are two types of magnifications associated with an optical system: (1) 
ray-coordinate magnification, Mq = q/qin and (ii) momentum magnification, Mp = p/pin. In 
terms of the elements of the ray transfer matrix, they are given by [12]

Mq = A + B
pin

qin
, Mp = D + C

qin

pin
.� (26)

For an axial ray, for example, Mp  is solely determined by the scalar D and for a field ray Mq 
is determined by A only.

Let us say we have an optical system in between two mediums with different refractive 
indices n� and n�. Primary and secondary focal lengths are defined with respect to primary 
and secondary principal points respectively for the axial rays. The primary focal length is 
given by

f� =
qout

tan θ
≈ qout

θ
=

qout

pin/n�
0

,� (27)

where qout and pin are the position and momentum variables at the output and input planes 
respectively. In order to obtain qout consider the symplectic transfer matrix

[
qout

pout

]
=

[
A(yout, yin) B(yout, yin)

C(yout, yin) D(yout, yin)

] [
qin = 0

pin

]
.� (28)

Then through (27)

f� = B(yout, yin)n�
0 .� (29)

Likewise, the magnitude of the secondary focal length is given by

f� = − qin

pout/n�
0

= −n�
0 [−B(yout, yin)] ,� (30)

N Uzun﻿Class. Quantum Grav. 37 (2020) 045002
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which follows from taking the inverse of the transfer matrix given in (28). Then,

f�

f�
=

n�
0

n�
0

.� (31)

If the two mediums are the same, then of course f� = f� holds. We will refer to this result in 
section 4 when we discuss Etherington’s distance reciprocity in the relativistic case.

3.  First order phase space ray optics for curved background

3.1.  Main idea

The following are the guidelines for our construction of reduced phase space optics.

	 (i)	�Our aim is to construct a phase space analogous to the one of Newtonian optical phase 
space in the paraxial regime. The Newtonian limit of our construction holds at the first 
order approximation. This is the regime which is mostly relevant for the cosmological and 
astrophysical distance calculations.

	(ii)	�We do not directly refer to a 3  +  1 decomposition of the underlying spacetime geometry. 
This is the approach, for example, that is used in order to find an analogue refractive index 
for the gravitational lensing spacetime which recovers the Newtonian limit up to full 
order. However, as it is seen at the previous section, only the up to second order Taylor 
expansion of the refractive index is relevant for Newtonian ray transfer matrices.

	(iii)	�In relativity, physically meaningful quantities are obtained once a fiducial worldline is 
introduced in the problem. In fact, this is not different for Newtonian optics: the eikonal 
equation  (5), which results from Fermat’s principle, is nothing but the geodesic equa-
tion of the optical metric, ds2

opt. = n2ds2; and the reduced phase space coordinates are 
defined with respect to the optical axis. The fact that the optical axis is indeed another 
solution of the geodesic equation of the optical metric is usually overlooked. Thus, we 
apply null geodesic actions for two neighboring ray trajectories one of which serves as an 
optical axis, though, not an absolute one in the relativistic case.

	(iv)	�The methodology we follow here is constructed on Vines’ derivation of geodesic devia-
tion equation  for high orders [9]. According to his work, a neighboring curve can be 
covariantly defined by making use of a fiducial geodesic and its exponential map5. This is 
done by introducing geodesic deviation bivectors defined through Synge’s world function 
[10]. We aim to construct a phase space relevant for observations. Moreover, physical 
sizes of the objects on the sky are estimated by the proper sizes. Therefore, the world 
function, being the measure of proper distance between two spacetime points, is the most 
relevant tool for our construction.

	(v)	�We pick a tetrad approach so that the underlying equations of motion are written in terms 
of the observables themselves.

	(vi)	�Vines’ action, up to quadratic order, is used to define a tetrad screen action that generates 
the underlying Lagrangian formalism. This quadratic Lagrangian allows us to pick physi-
cally relevant phase space (Darboux) coordinates. Note that this is inherently different to 
other constructions in relativistic optics in which the spatial spacetime coordinates are 
chosen as phase space coordinates and the ray momentum itself is chosen as the phase 
space canonical momentum (see [21]).

5 Actually, this idea was previously triggered by Aleksandrov and Piragas [19]. Also Bażański [20] had a similar 
construction for nonnull curves.
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	(vii)	�We switch to a Hamiltonian formalism, define a quadratic Hamiltonian function and its 
corresponding Lie operator that evolves the system. Lie operators that are constructed via 
quadratic polynomials have matrix representations. That is how we obtain a symplectic 
ray bundle transfer matrix that takes an initial phase space vector to a final one.

The next section 3.2, will essentially be a brief summary of Vines’ work [9] applied to our 
investigation which does not intend to recover his results fully.

3.2.  Null geodesic actions with Synge’s world function

As an analogous construction to the Newtonian ray optics, our aim in this section is to develop 
an action principle for null bundles within general relativity. The action in question will be our 
starting point in the formulation of symplectic transfer matrices of thin ray bundles. For this 
purpose, now we introduce Synge’s world function.

Synge’s world function σ(r, s) depends on two spacetime points r and s which are con-
nected by a unique geodesic, Γ, such that [10]

σ(r, s) =
1
2




(proper distance)2, Γ : spacelike
0, Γ : null
−(proper time)2, Γ : timelike.

Our initial aim here is to define a curve Λ via a fiducial geodesic Σ and an exponential map 
that is defined on Γ. In Synge’s formalism, one introduces bitensors which depend on two 
spacetime points as connecting Σ, to a curve Λ via Γ is essentially nonlocal. In our invest
igation, Γ is spacelike and the length of Γ is not assumed to be infinitesimally small in general. 
Therefore, one uses different coordinate indices for different spacetime points. Namely, for 
tensors defined at point r we will use indices {α,β, γ, δ} and for the ones defined at point s 
we will use {µ, ν, ρ}.

Let us define the tangent vectors of Γ defined at points r and s respectively as

tα =
dxα

dλ

∣∣∣∣∣
λ=λr

and tµ =
dxµ

dλ

∣∣∣∣∣
λ=λs

,� (32)

where λ is an affine parameter which puts the geodesic equation of Γ into the ∇�t�t = 0 form 
and subscripts assigned to λ refers to its value at a given point. Our proper length is then

σ =
1
2
(∆λ)

2 t2,� (33)

where ∆λ is not necessarily small and t2 = tαtα = tµtµ as the tangent vector is parallel trans-
ported on Γ.

Now, we will pick a fiducial geodesic, Σ, which can have any causal character in Vines’ 
construction but will be null in our case. We will identify point r as the intersection of Γ(λ) 

and Σ(v), in which v is the affine parameter that puts the geodesic equation  into ∇�k
�k = 0 

form for the tangent vector, �k , of Σ (See figure 1.). Moreover, we will define another curve Λ, 
which can, again, have any causal character and does not even have to be a geodesic in Vines’ 
work but will be a null geodesic in our case. We pick an isochronous correspondence such that 

Λ = Λ(v) and the tangent vector, �k′, satisfies ∇�k′
�k′ = 0. Similarly, we will identify the point 

s as the intersection of Γ(λ) and Λ(v).

N Uzun﻿Class. Quantum Grav. 37 (2020) 045002
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Next, we define an exponential map

ξα(v) = −σα (r(v), s(v)) ,� (34)

on Γ(v) and consider a null fiducial geodesic, Σ(v), in order to specify another null geodesic 
Λ(v). Note that, due to its nonlocal nature, ξα acts as a vector with respect to the tensorial opera-
tions conducted at xβ, however, it acts as a scalar with respect to those operations conducted at 
xµ [22]. The term σα = ∇ασ = −∆λ tα is simply the covariant derivative of the world function 
at point r. Similarly, σµ = ∇µσ = ∆λ tµ is its covariant derivative at point s, such that

σµσµ = 2σ = σασα.� (35)

We would like to know how ξα changes with respect to the parameter v. The nonlocal nature 
appears in the definition of the total covariant v−derivative as well. The derivation is taken with 
respect to the spacetime covariant derivatives defined both at xβ and at xµ. It is given by

ξ̇α =
Dξα

dv
= −

(
kβ∇β + k′µ∇µ

)
σα.� (36)

Moreover, we want to write (36) in terms of a given set {�ξ,�k, �k′}. For this, Vines considers the 
following analogy. In flat space, an ordinary function defined at a point can be written in terms 
of the powers of the coordinate displacement vector via an ordinary Taylor expansion. Similarly, 
one can covariantly expand (36) in powers of σα(r, s) at the coincidence limit r → s as it acts 
like a nonlocal displacement vector in general. Then, one writes the expanded ξ̇α as [9]

ξ̇α = −kβ
(
δαβ − 1

3
Rα

�ξβ�ξ

)
+ k′µgβµ

(
δαβ +

1
6

Rα
�ξβ�ξ

)
+ O(�ξ3).

�
(37)

Here gβ
µ is the parallel propagator6 and Rα

�ξβ�ξ
= Rα

γβδξ
γξδ  with Rα

γβδ being the Riemann 

curvature tensor. The terms in the parenthesis follow from the second variation of the world 

Figure 1.  The fiducial null geodesic Σ(v) is plotted in blue. The green curve represents 
the spacelike Γ(λ) given by Synge’s world function. The null geodesic Λ(v) is in red 
which can be uniquely obtained through Σ(v) and Γ(λ).

6 Parallel transport, Vµ, of an arbitrary vector Vα defined at point r along Γ is given by

Vµ = gµα (s, r)Vα.

Here gµ
α is defined by [22]

gµα (s, r) = eµA(s)e
A
α(r),

in which eµA(s) and eαA (r) are the local orthonormal tetrad fields defined at points s and r respectively, such that

gµνeµA eνB = ηAB = gαβeαA eβB ,

with ηAB = diag (−1, 1, 1, 1).
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function conducted at points r and s, respectively. Now, as claimed before, one can write k′µ 
in terms of the deviation vector variables and the tangent vector of a fiducial null geodesic, kα. 
This is obtained by solving (37) via a perturbative approach in ξα for k′µ, i.e.

k′µ = gµα

(
kα + ξ̇α − 1

2
Rα

�ξ�k�ξ

)
+ �̇ξ · O(�ξ2) + O(�ξ3).� (38)

Let us now write the null geodesic action [7] for the curve Λ by using (38)

SΛ =

∫
1
2

k′2dv

= SΣ +

∫
1
2

[
2�k · �̇ξ + �̇ξ · �̇ξ − R�ξ�k�ξ�k

+ O(�ξ, �̇ξ)3
]

dv,
� (39)

where SΣ =
∫ 1

2 k2dv is the geodesic action for the null curve Σ.
As mentioned in the previous subsection, in relativity, physically meaningful quantities are 

obtained once the fiducial motion is introduced into the problem. Therefore, we claim that null 
geodesic action should be applied more than once, as we do here for SΛ and SΣ, in order to 
get a well defined action principle for physically relevant optical quantities. In the relativistic 
case, it is the integral curves of the null vector �k , i.e. the central geodesic Σ, that plays the role 
of the optical axis. The neighboring null vector �k′ can then be interpreted as the tangent vector 
of the outermost ray of a null congruence.

Recall that our aim is to define the first order ray propagation in relativity with transfer 
matrices analogous to the case in the Newtonian paraxial regime. Therefore, from now on, we 
will assume that Λ and Σ are nearly parallel neighboring null geodesics such that ∆λ is small. 
Accordingly, we will keep the terms up to quadratic order in the action (39). As δSΣ = 0 and 

the �k · �̇ξ  term in SΛ is a total derivative, Vines chooses to omit these terms in the action. In the 
next section, we will show that �k · �̇ξ  term is indeed zero for our physical problem. Therefore, 
we write the geodesic action for �k′ with respect to the neighboring null geodesic and up to 
quadratic order as

S =

∫ (
1
2
�̇ξ · �̇ξ + 1

2
R�ξ�k�k�ξ

)
dv,� (40)

where we have we made use of Riemann tensor symmetries on the second term and omit the 
subscript Λ in the notation for convenience. Note that for the case of bilocal objects in general, 
one considers taking successive symmetrized covariant derivatives in order to obtain the local, 
observable characteristic of a tensor field [19]. We follow this common practice here and the 

overdot now represents the covariant derivative with respect to �k , i.e. �̇ξ = D�ξ/dv = ∇�k
�ξ  due 

to our small deviation assumption.
Following (40) we will take

L̃ =
1
2
�̇ξ · �̇ξ + 1

2
R�ξ�k�k�ξ� (41)

as our Lagrangian function and v as our evolution parameter. Then varying (40) with respect 

to both �ξ  and �̇ξ  yields the equations of motion

ξ̈α = Rα
�k�k�ξ

,� (42)
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which is just the first order approximation of the geodesic deviation equation  that is often 
mistakenly referred to as the geodesic deviation equation in the literature.

3.3.  Reduced Lagrangian and the screen basis

Recall from section 2 that in order to obtain the ray transfer matrix of first order Newtonian 
optics in the paraxial regime, one reduces the system by one order. In this subsection, we will 
demonstrate how the Lagrangian (41) can naturally be reduced in the general relativistic set-
ting. This will allow us to transform to a Hamiltonian formulation in a reduced phase space 
in which one can represent an observed thin ray bundle evolution by a first order symplectic 
transformation.

Assume that the central ray of an observed null bundle is given by kα = ω (uα + rα). Here 
ω = −�k ·�u is the value of the frequency of light measured by an observer with 4-velocity uα. 
Vector rα is along the spatial direction of the null ray that satisfies �u ·�r = 0. Such a decompo-
sition of �k  is typical within studies that involve the investigation of observed null bundles [23]. 
We will also set the value of the frequency as ωo = 1 at the measurement point as it is done in 
various applications in the literature.

Note that in the first order limit of the geodesic deviation, the geodesic vector �k  and the 
corresponding Jacobi field �ξ  are assumed to be Lie dragged along the integral curves of each 

other, i.e. ∇�k
�ξ = ∇�ξ

�k . This condition, first order geodesic deviation equation and the fact 
that �k  is null, guarantee that �k · �ξ = constant . Since we are interested in a physical problem in 
which there is always an observation point on the bundle, �k · �ξ = 0 holds initially and, given 
the argument above, throughout the propagation of the bundle. Then, our deviation vector 
swipes the null cone throughout the evolution [24] and it can be decomposed into components 
with respect to the degrees of freedom of the thin bundle as

�ξ = ξk�k + ξ,� (43)

in which

ξ = ξ1�s1 + ξ2�s2.� (44)

Those are the sαa  basis components of the deviation vector that live on our observational screen 
with {a, b} = {1, 2}. This dyad is assumed to be C∞ along the null geodesic. For our con-
struction, we pick such a basis that

�sa ·�sb = δab, �u ·�sa = 0, �r ·�sa = 0, ∇�k�sa = 0,

are satisfied. Then sαa  forms the Sachs basis [25] that is parallel propagated along the central 
light ray. This guarantees that the 2D spatial screen, on which the observables are projected, 
refers to the same screen at each point of the light propagation. Sachs basis is defined uniquely 
up to rotations around the spatial vector �r . That means, for a constant orthogonal matrix, Ob

a, 
the basis transforms as �sa = Ob

a�sb with Ob
aOd

cδbd = δac [21].
We should also mention that under such a construction, ∇�k�u = 0 needs to be satisfied in 

order for the Sachs basis to remain orthogonal to the null ray throughout the evolution. Note 
that we are free to pick such set of observers as the bundle morphology is independent of the 
choice of the observers [7]7.

7 For less strict conditions on an observational screen see for example [26].
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Then, given such a Sachs basis, it is easy to show that the �k · �̇ξ  term that appears in the 
geodesic action (39) becomes �k · �̇ξ = �k · ξ̇ = 0. Moreover, the first term that appears in the 
Lagrangian (41) can be written as

�̇ξ · �̇ξ = δab ξ̇
aξ̇b.� (45)

Likewise, the second term in (41) follows as

R�ξ�k�k�ξ
= R

a�k�kb
ξaξb ≡ R

ξ�k�kξ
,� (46)

due to R�k�k�k�k
 and R�k�k�ka

 being zero. Then, only two degrees of freedom survive in L̃  and we 
write the reduced Lagrangian as

L =
1
2
δab ξ̇

aξ̇b +
1
2

R
a�k�kb

ξaξb.� (47)

The term R ab := R
a�k�kb

 is usually referred to as optical tidal matrix in cosmological light 
propagation studies [24, 27]. The overdot that appears in (47) now denotes a simple total 
derivative with respect to the affine parameter v as we consider the dyad components of the 
deviation vector here.

3.4.  Reduced Hamiltonian and ABCD matrices

Let us define a 4D symplectic phase space M(R4). We will denote the phase space coordinates 
and the momenta canonically conjugate to them that follow from the reduced Lagrangian (47) 
as

qa = ξa

pa =
∂L
∂q̇a = ξ̇a.

� (48)

Then we can define a reduced Hamiltonian function via

H = paq̇a − L =
1
2
δabξ̇aξ̇b −

1
2

R ab ξ
aξb.� (49)

Note that the reduced Hamiltonian (49) is analogous to the Newtonian one given in (11) with 
R ab being analogous to nab, i.e. second variation of the refractive index. This is no surprise 
as light propagation within a medium of refractive index n with Euclidean metric components 
δµν, in fact corresponds to a propagation through a curved background with the optical metric 
components gµν = n2δµν. Then, second variation of gµν are given by the Riemann tensor 
components.

We would also like to emphasize that in the Newtonian case that we presented in section 2, 
the propagation vector �k  is spacelike and R

ξ�k�kξ
 indeed represents the Gaussian curvature, K0, 

of a 2D subspace defined by �k  and ξ—up to the squared area of the corresponding parallelo-
gram, i.e.

K0 =
−R

ξ�k�kξ[
g (ξ, ξ) g

(
�k,�k

)
− g

(
ξ,�k

)
g
(
�k, ξ

)] .� (50)

This explains why nab (or n2) term has such fundamental importance in the GRIN profiles for 
light propagation or fiber-optics studies as we discussed in footnote (4). For the case of gen-
eral relativity, �k  is null and the corresponding 2D subspace is referred to as the half light-like 

N Uzun﻿Class. Quantum Grav. 37 (2020) 045002



14

surface [28]. In that case, R
ξ�k�kξ

 is a measure of null sectional curvature, K�k , that is given by 
[29]

K�k =
−R

ξ�k�kξ

g (ξ, ξ)
.� (51)

Let us now return to our original problem and write the Hamilton–Jacobi equations in the 
following form

dzi

dv
= Ωij ∂H

∂z j = −{H, zi},� (52)

in which the phase space vector components are

z =

[
qa

pb

]
=




ξ1

ξ2

ξ̇1

ξ̇2


 ,� (53)

and Ω is the fundamental symplectic matrix defined in (13) and (14) before.
Now we will define a Lie operator associated with the reduced Hamiltonian (49) as

L̂H [•] = −{H, •} = −∂H
∂zi Ω

ij ∂

∂z j

= δabξ̇b
∂

∂ξa + R ab ξ
b ∂

∂ξ̇a
,

� (54)

which is analogous to the Lie operator of an attractive or a repulsive harmonic oscillator 
depending on the sign of R ab.

Note that our Hamiltonian vector field Hi = Ωij∂H/∂z j is curl-free, i.e. ∂iH j − ∂ jHi = 0 
and it represents a linear Hamiltonian flow. This is possible due to: (i) H  being written up to 
quadratic order with respect to phase space coordinates, (ii) the Riemann tensor having certain 
symmetries, namely R ab = R ba. Therefore, we can define a 4 × 4 Hamiltonian matrix, LH, 
which is the representation of the Lie operator (54) that we write as

LH =

[
02 δab

R ab 02

]
.� (55)

Our Lie operator (54) and its matrix representation (55) applicable for a curved background 
are analogous to (16) and (17) given in the Newtonian case.

Next, we rewrite the Hamilton–Jacobi equations (52) in the matrix form

ż = LH z.� (56)

The matrix LH is the generator of the infinitesimal evolution, i.e.

z(v + dv) = exp [LHdv]z(v).� (57)

The evolution of the system between any initial and final points is then obtained by the linear 
transformation of the phase space vector, i.e.

z = T (v, v0) z0,� (58)

in which T is the ray bundle transfer matrix. As in section 2.2, it is determined by substituting 
(58) into (56) so that we have
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Ṫ = LH T.� (59)

Its solution is

T (v, v0) = OE
[∫ v

v0

LHdv
]

T (v0, v0) ,� (60)

with initial conditions T (v0, v0) = I4. Note that the optical tidal matrix, R , is v-dependent for 
a generic spacetime and the corresponding Lie operators do not commute at different points 
unless the underlying spacetime has some nice symmetry properties. Therefore, determination 
of T involves an ordered exponentiation (OE) with respect to the affine parameter v.

We will write the ray bundle transfer matrix in an ABCD block form

T =

[
A B
C D

]
.� (61)

Note that T is a symplectic matrix which satisfies (21). Then substitution of (61) into (59) 
gives us a set of 16 equations

Ȧ = C, A (v0, v0) = I2,

Ḃ = D, B (v0, v0) = 02,

Ċ = R A, C (v0, v0) = 02,

Ḋ = R B, D (v0, v0) = I2,

� (62)

to solve in order to construct the ray bundle transfer matrix.

4.  Distances, reciprocity and symplecticity

4.1.  Cosmological distances and reciprocity

We will now link our construction with certain definitions and methods that already exist in 
the literature. Recall that in section 2.3, we mentioned two types of rays: axial rays and field 
rays [12]. For standard cosmological calculations, for example, one is usually interested in the 
solutions for axial rays such that the observation point is a vertex. In that case, one usually 
determines the angular diameter distance, DA, and the luminosity distance, DL, between the 
source and the observer which are respectively given by

DA =

(
dSs

dΘo

)1/2

and DL =

(
dSo

dΘs

)1/2

.� (63)

Here dS  is the cross sectional area of the ray bundle evaluated at the source, s, or at the obser-
vation point, o, and likewise dΘ’s are the solid angles. Those are obtained by [8]

dSs :=
∣∣ξ1 ∧ ξ2

∣∣
s , dSo :=

∣∣∣ξ̃1 ∧ ξ̃2
∣∣∣
o

,

dΘo :=
∣∣∣∣
dξ1

d�
∧ dξ2

d�

∣∣∣∣
o

, dΘs :=

∣∣∣∣∣
dξ̃1

d�
∧ dξ̃2

d�

∣∣∣∣∣
s

,
� (64)
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in which ∧ denotes the exterior product and d� is the proper length. The Jacobi fields �ξ  and 
�̃
ξ  correspond respectively to the bundles that are sent from point o to s and s to o. We assume 
that these two bundles share the same central null geodesic. Note that the relation between d� 
and the proper time dτ  to the affine parameter v is given by

|d�| = |dτ | = (−kaua) dv = ωdv.� (65)

Now considering points o and s to be the respective measurement points, our ray bundle trans-
fers follow as

[
ξ

ξ̇

]

s

=

[
A B
C D

]

(vs,vo)

[
0
ξ̇

]

o

,� (66)

and
[
ξ̃
˙̃
ξ

]

o

=

[
A B
C D

]

(vo,vs)

[
0
˙̃
ξ

]

s

.� (67)

Then following (63), (64) and (66), (67), one writes

DA = ωodet |B (vs, vo)|1/2 , o − fixed

DL = ωsdet |B (vo, vs)|1/2 , s − fixed
� (68)

such that Etherington’s distance reciprocity [6]

DL = (1 + z)DA� (69)

is satisfied with z = ωs/ωo − 1 being the redshift. Note that matrix B is referred to as the 
Jacobi matrix and it is usually denoted as D  or J in the literature. This is a good enough 
naming for light propagation with initial point being a vertex. However, for light propagation 
between any two points along the null path, it is the symplectic matrix T which is indeed the 
full Jacobi matrix. We observe that (68) and (69) are analogous to (29)–(31) such that angular 
diameter and luminosity distances are analogous to the primary and secondary focal lengths 
of an optical system in the paraxial regime given in section 2.3.

Note that, in the literature, one way of proving that (69) follows from (68) is shown by 
[24, 30]

Ḃ (v, vo)Bᵀ (v, vs)− Bᵀ (v, vo) Ḃ (v, vs)� (70)

being a constant along the ray such that

B (vs, vo) = −Bᵀ (vo, vs)� (71)

holds and the determinants in (68) have the same value.
The discussions above are relevant for light propagation within a single spacetime between 

a vertex (observation) point and a source. Let us now consider light propagation within a uni-
verse that cannot be modeled by a single geometry. As an example, consider light propagation 
between three regions, R�, R� and R� which are modeled by different spacetime metrics 
that are not isometric to each other. We locate our observer in R� and the source in R� with 
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an arbitrary intervening region R�. (See figure 2.) Then, in order to find the distance between 
the observer and the source, one has to propagate light throughout multiple geometries and 
solve for the Jacobi fields with non-vertex initial conditions within each region.

In fact, this was investigated by Fleury et al in [31] in order to calculate distances in a 
Swiss-cheese universe. The authors consider a Wronski matrix (W ) method to solve the first 
order geodesic deviation equation  throughout the propagation of light in the cheese and in 
the holes. Note that their Wronski matrix is exactly equal to our transfer matrix T when our 
Hamiltonian equations (62) are imposed. The usefulness of this method was proven in many 
applications including [30, 32, 33].

We already mentioned that one needs to satisfy condition (71) in order for the distance reci-
procity to hold within any setting. However, this is not immediately obvious for our example 
as

B (vs, vo) �= B� (vs, vg)B� (vg, vh)B� (vh, vo) ,

B (vo, vs) �= B� (vo, vh)B� (vh, vg)B� (vg, vs) .
� (72)

Rather, one needs to (i) obtain the overall ray bundle transfer matrices T (vs, vo) and T (vo, vs) 
in both directions, (ii) read off the upper right corners of those transfer matrices in order to 
check whether the condition (71) holds or not.

Note that, for light propagation from o to s, one can define the overall ray bundle transfer 
matrix as

T (vs, vo) = T� (vs, vg)T� (vg, vh)T� (vh, vo)
[

A B
C D

]
=

[
A� B�

C� D�

][
A� B�

C� D�

][
A� B�

C� D�

]
.

� (73)

This follows from the fact that the space of 4D symplectic matrices, Sp(4,R), forms a group 
under matrix multiplication. Thus, multiplication of two symplectic matrices is another sym-
plectic matrix. Therefore, it is natural to expect the symmetry (71) to hold for the entire light 
propagation as the fact that B (vf , vi) = −Bᵀ (vi, vf ) is true for any initial and final points fol-
lows from the symplectic symmetries of the transfer matrix. We will demonstrate this in the 
next subsection in more detail.

Figure 2.  Sketch of light propagation within three different spacetime geometries. The 
observer is located at region �. The source is located at region �. The points h and g 
are the identifiers, on the central null ray, of the boundaries between regions � − � and 
� − � respectively.
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4.2.  Reciprocity and symplectic symmetries

Consider the composition map given in (73) for light propagation from point o to s. Reading 
the upper right corner of the overall transfer matrix gives

B (vs, vo) = A� (vs, vg)
[
A� (vg, vh)B� (vh, vo) + B� (vg, vh)D� (vh, vo)

]

+ B� (vs, vg)
[
C� (vg, vh)B� (vh, vo) + D� (vg, vh)D� (vh, vo)

]
.

� (74)
Likewise for light propagation from point s to o,

B (vo, vs) = A� (vo, vh)
[
A� (vh, vg)B� (vg, vs) + B� (vh, vg)D� (vg, vs)

]

+ B� (vo, vh)
[
C� (vh, vg)B� (vg, vs) + D� (vh, vg)D� (vg, vs)

]
.

� (75)
Then one raises the question: Under which conditions the matrix (74) is equal to minus trans-
pose of the matrix given in (75), so that the distance reciprocity is satisfied? 

Note that every symplectic matrix T has an inverse

T−1 = Ω−1 TᵀΩ,� (76)

which is also symplectic. This corresponds to
[

A B
C D

]−1

(vf , vi) =

[
Dᵀ −Bᵀ

−Cᵀ Aᵀ

]
(vf , vi) .� (77)

Moreover, as T (vf , vi) takes zi set of solutions to zf  by a symplectic transformation, its inverse 
should take zf  to zi for any initial and final point, i.e.

[
A B
C D

]−1

(vf , vi) =

[
A B
C D

]
(vi, vf ) .� (78)

Then, through (77) and (78) we have

A (vi, vf ) = Dᵀ (vf , vi) ,
B (vi, vf ) = −Bᵀ (vf , vi) ,
C (vi, vf ) = −Cᵀ (vf , vi) ,
D (vi, vf ) = Aᵀ (vf , vi) .

� (79)

Then, for the equations  (74) and (75), one can show that B (vs, vo) = −BT (vo, vs) is true 
either (i) on account of the second relation of the equation set (79) holding for any initial and 
final points or (ii) by making use of the equation set (79) within each region. Then the distance 
reciprocity (69) is satisfied. This is true for light propagation through arbitrary number of 
regions, each region being modeled by an arbitrary spacetime. The only restriction we have is 
the continuity of the phase space vector throughout its evolution.

We would also like to emphasize the fact that (77) also imposes certain symmetry condi-
tions on submatrices. Namely, treating T as any block matrix on the left hand side of (77) and 
taking its inverse gives
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Dᵀ =
(
A − BD−1C

)−1

−Bᵀ = −
(
A − BD−1C

)−1 BD−1

−Cᵀ = −D−1C
(
A − BD−1C

)−1

Aᵀ = D−1 + D−1C
(
A − BD−1C

)−1 BD−1.

�

(80)

Those constraints are equivalent to the so called symplectic conditions in the literature which 
are given by

ABᵀ, AᵀȦ, BᵀḂ and ȦḂᵀ are symmetric,

AḂᵀ − BȦᵀ = I2,�
(81)

when we impose the ray bundle transfer matrix evolution equation  (62). Indeed, it is easy 
to check that those follow from the very definition of a symplectic matrix given in (21). In 
our case, those symmetries essentially follow from the symmetries of the Riemann curvature 
tensor. For a generic curvature tensor which includes the torsion term, neither the first order 
action (40) nor the reduced Lagrangian (47) takes the functional form we presented in this 
work. Accordingly, the equations of motion for generic deviation of curves are more involved 
[34]. Therefore, for alternative gravitation theories, that include torsion, the concept of dis-
tance reciprocity is questionable.

Thus, we conclude that the distance reciprocity in general relativity follows from the sym-
plectic symmetries of the underlying first order light propagation system.

5.  Canonical transformations and generating functions

Our ray bundle transfer matrices create linear symplectomorphisms on the phase space which 
are known as linear canonical transformations in physics. Canonical transformations preserve 
the form of the Hamiltonian equations by leaving the Poisson bracket invariant up to a con-
stant. Then it is natural to look for the generating function of this transformation.

For our canonical transformation f : R4 → R4 with

ξ′ → ξ = ξ(ξ′, ξ̇′; v),� (82)

ξ̇′ → ξ̇ = ξ̇(ξ′, ξ̇′; v),� (83)

there exists an associated 1-form

dS̃(ξ̇′, ξ′; v) = ξ̇′dξ′ − ξ̇dξ,� (84)

which is exact.
For the time being, we are interested in those transformations in which

det
∂ (ξ, ξ′)

∂
(
ξ̇′, ξ′

) = det
∂ξ

∂ξ̇′
= detB �= 0,� (85)

so that the angular diameter and luminosity distances given in (68) can be computed. A trans-
formation characterized by the condition (85) is known as a free canonical transformation in 
the literature [35]. In this case, the function S̃  can be locally expressed as

S̃(ξ̇, ξ; v) = S(ξ, ξ′; v),� (86)
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with S(ξ, ξ′; v) being the generating function of our free canonical transformation. It is given 
by

S(ξ, ξ′; v) =
∫ ξ,v

ξ′,0
ξ̇dξ − Hdv,� (87)

and is equal to our quadratic geodesic deviation action, (40), derived via Synge’s world 
function.

For a linear, free canonical transformation, represented by a symplectic ABCD block 
matrix, one can write S(ξ, ξ′; v) by matrix inner products [36]

S =
1
2
(DB−1ξ, ξ)− (B−1ξ, ξ′) +

1
2
(B−1Aξ′, ξ′).� (88)

In the Appendix, we show that S(ξ, ξ′; v) satisfies

ξ̇ =
∂S
∂ξ

, ξ̇′ = − ∂S
∂ξ′

,
∂S
∂v

+ H = 0,� (89)

as one would expect from a generating function of a free canonical transformation [36]. We 
should note that writing our geodesic deviation action S(ξ, ξ′; v) in the form of (88) is para-
mount for switching back to wave optics picture from paraxial ray bundles as we discuss in 
section 7.3.

6.  Density function and Liouville’s equation

Our 4D symplectic phase space is endowed with a volume element

dV = dξ1 ∧ dξ2 ∧ dξ̇1 ∧ dξ̇2.� (90)

Accordingly, we define the total number of light rays within the bundle as

N =

∫

V
n(ξ, ξ̇; v)dV ,� (91)

in which n(ξ, ξ̇; v) is the phase space density function, i.e. number of photons per unit phase 
space volume.

The phase space volume element is an invariant of the symplectic phase space. This fol-
lows from the invariance of the underlying symplectic structure8 [35] . Moreover, if we have a 
lossless/gainless system then the number of light rays piercing the observational screen is con-
served. In that case, the phase space density is invariant throughout the evolution, with respect 
to the affine parameter of the null geodesic. Then, the Liouville equation is as follows [12]

dn(ξ, ξ̇; v)
dv

= 0

=
∂n
∂v

+
∂n
∂ξ

dξ
dv

+
∂n
∂ξ̇

dξ̇
dv

=
∂n
∂v

+
∂n
∂ξ

∂H

∂ξ̇
+

∂n
∂ξ̇

(
−∂H
∂ξ

)

=
∂n
∂v

+ {H, n} ,

�

(92)

8 For more details see our accompanying paper [37] which, in addition, focuses on invariance of phase space vol-
ume under some virtual Hamiltonian flow to prove Etherington’s distance reciprocity in an abstract form.
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in which the third line follows from the Hamilton’s equation (52); and the fourth line from the 
definition of the Poisson bracket, (12). Then, we can simply write

∂n
∂v

= L̂H[n ],� (93)

where L̂H[•] is the Lie operator defined in (54).

7.  Potential applications of reduced phase space optics

In the Newtonian case, applications of symplectic phase space optics for ABCD systems are 
vast. In this section, we will briefly sketch the potential applications of our construction rel-
evant for cosmological and astrophysical observations.

7.1.  Phase space averaging

As light propagates within the universe it carries information about the averaged footprints 
of the phenomena that affect its propagation. Some of those footprints are assumed to cancel 
out throughout the propagation in the standard, perturbative scheme of standard cosmology.

On the other hand, inhomogeneous cosmological models have become more popular than 
ever over the past few decades. Recognition of the fact that the inhomogeneities in the uni-
verse might not average out to define a spatially flat universe at late times [38], lead research-
ers in this field to address the following question. Can the late time inhomogenities in the 
universe be responsible for (at least some portion of) the apparent accelerated expansion of 
the universe, rather than the so called dark energy? 

Accordingly, averaging techniques on spatial hypersurfaces [39, 40] have been investigated 
in many papers [41–49] to determine their consequences on cosmological distances and the 
Hubble parameter. In some of these works, it is assumed that light propagates on a spacetime 
with smoothed out 3D spatial hypersurfaces, effectively. Thus, the main idea is to study the 
effect of light propagation via the averaging of the 3D configuration space. The hypersurface 
average of a function f (xµ) on a spatial domain, D, is given by

〈 f 〉D(xµ) =

∫
D f (xµ)

√
hijd3x∫

D

√
hijd3x

,� (94)

in which 
√

hij  corresponds to the square root of the determinant of the three—metric induced 
on the spatial hypersurfaces and d3x is the coordinate volume element. Accordingly, the 
denominator of (94) can be interpreted as the spatial (proper) volume of the domain measured 
by the observers depending on their foliation four-velocity. Note that the averaged dynamics 
is then foliation dependent [50].

On the other hand, the necessity of null cone averages in cosmology have been discussed 
by many authors [51–54] as the observables are averaged via the propagation of light, not over 
the spatial domains. Accordingly, we propose an alternative, covariant averaging method on 
our reduced phase space. Consider the following classical phase space average of a function 
f (ξ, ξ̇; v)

f̄ (ξ, ξ̇; v) =
1

N

∫
f (ξ, ξ̇; v)n(ξ, ξ̇; v)dξdξ̇,� (95)
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where n(ξ, ξ̇; v) is the phase space distribution function, namely the number density function 
defined through (91). For a lossless/gainless system n(ξ, ξ̇; v) is conserved due to Liouville’s 
theorem as outlined in section 6. Then the commutation relation between the evolution opera-
tor and the phase space averaging follows as

df̄ (ξ, ξ̇; v)
dv

=
df (ξ, ξ̇; v)

dv
.� (96)

This indicates that averaging of a scalar on the phase space commutes with its evolution with 
respect to the affine parameter v.

Furthermore, we can consider a v-average of the ensemble average of a function to get

f∨ =

∫
f̄ (ξ, ξ̇; v) dv∫

dv
,� (97)

which gives us a null bundle average of the function in question. Note that for most of the 
scalar averaging techniques within a 3  +  1 decomposition of the spacetime, the evolution and 
constraint equations have three main ingredients: (i) the Hamiltonian constraint, (ii) scalar 
projection of the energy-momentum conservation equation and (iii) contracted Raychaudhuri 
equation for a timelike worldline. Therefore, an observed null bundle average could indeed be 
more promising as it allows one to average, the full set of Einstein equations in principle, say, 
under the spin field formalism of Newman and Penrose [55].

7.2.  Spacetime ≡ thin lens, pure magnifier and fractional Fourier transformer

Any symplectic matrix belonging to Sp(2,R) can be decomposed uniquely into three matrices 
that belong to a maximally compact subgroup, an abelian subgroup and a nilpotent subgroup. 
Such a decomposition is named after Iwasawa [56]. This fact is used in Newtonian optics for 
a system whose ray transfer is given by a symplectic matrix such that the optical system can 
be decomposed into a fractional Fourier transformer, a pure magnifier and a thin lens [57].

For symplectic matrices that belong to Sp(4,R), as in our case, one defines a modified 
Iwasawa factorization9 as the following [13, 58, 59]

[
A B
C D

]
=

[
I2 02
−G I2

] [
S 02
02 S−1

] [
ReU ImU
−ImU ReU

]

= L(G) M(S) F(U)

=
Thin
lens

Pure
magnifier

Fractional
Fourier

transformer.

�

(98)

Here the 2 × 2 matrices that appear in (98) are given by

G = −
(

ȦAᵀ + ḂBᵀ
)
(AAᵀ + BBᵀ)

−1
= Gᵀ

S = (AAᵀ + BBᵀ)
1/2

= Sᵀ

U = (AAᵀ + BBᵀ)
−1/2

(A + iB) ∈ U(2),

�

(99)

9 In higher dimensions this is a factorization, i.e. a parameterization of the group, rather than a decomposition. This 
is due to the fact that symmetric matrices which appear in the pure magnifier component do not form a group under 
multiplication [13].
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once we impose the thin ray bundle evolution equation (62). This means that light propagation 
in any spacetime between any initial and final points can be uniquely factored into its thin 
lens, pure magnifier and fractional Fourier transformer components. The thin lens component 
is responsible for a shearing effect in the ξ̇ direction on the phase space. The matrix S provides 
a magnification in ξ direction and a demagnification in ξ̇. The fractional Fourier component 
[60], on the other hand, is a generalization of phase space rotations [61].

In particular, consider our canonical pairs {ξ, ξ̇} to be ordinary Fourier pairs. Then an ordi-
nary integral Fourier transform can be written which takes a function, f (ξ; v), in a ξ domain 
to a function, f̃ (ξ̇; v) in a ξ̇ domain by

f̃ (ξ̇; v) =
∫

f (ξ; v) exp [−2πiξ̇ · ξ]dξ.� (100)

Indeed, such a transformation takes ξ → ξ̇ and ξ̇ → −ξ. Its discreet version is given by a 
specific form of the generalized matrix F(U) in (98), i.e. when U = iI2

10.
The fractional Fourier transformation, being a generalization of the ordinary Fourier trans-

form, serves as an important tool in the Newtonian wave optics [62]. The analysis of the trans-
formation of the quasiprobability distribution of the wavized phase space is closely related to 
fractional Fourier transformations. Accordingly, it can serve as a means to identify whether 
Gaussian wave packets remain Gaussian [57] throughout the propagation in a given space-
time. Moreover, fractional Fourier transforms are important for the phase space tomography 
techniques of the Newtonian theory [63] in which the intervening optical system properties 
are derived in an inverse problem. It is an interesting, open question whether or not such a 
spacetime tomography method can be developed for segmented portions of our line of sight, 
given the initial and final forms of our phase space vector z at each point.

7.3.  Wavization of a ray bundle

Even though astrophysical objects are too large for the wave effects to be observed and that 
the ray picture is a good approximation for many applications, wave optics is still relevant 
for many areas in relativity. For instance, polarization optics is important for extraction of 
cosmological parameters via the cosmic microwave background (CMB) radiation. Likewise, 
polarization of the radio emission of pulsars and active galaxies are important for extraction 
of properties of the interstellar medium, emission processes, etc. Detection of black holes via 
their shadows is well within the wave optics regime as the apparent sizes of the shadows are 
very small and diffraction effects are crucial for their identification.

Note that just as classical mechanics agree with quantum mechanics in the � → 0 limit 
for linear systems; geometric optics agree with wave optics in the small wave length limit, 
up to first order. In order to recover wave optics from the ray picture in the paraxial regime, 
however, one needs to use certain quantization techniques [64, 65]. Such an argument follows 
from the analogy between quantum mechanics and classical paraxial optics. The phase space 
of classical mechanics is the one of the geometric optics and the phase space of quantum 
mechanics is the same as the one of the wave optics for first order light propagation [66].

Let us be more specific. It is known that the symplectic group Sp(2n,R) has a unique dou-
ble cover known as the metaplectic group, Mp(2n,R) [13, 59]. Accordingly, linear canonical 
transformations have unitary representations [67]. Following this, the idea of wavization of an 

10 In a 2D phase space, we have U  =  i and the ordinary Fourier transform corresponds to a π/2 rotation of the phase 
space coordinates.
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observed ray pencil of a curved background should in principle follow from finding operator 
representations of our projected Jacobi fields and their derivatives, namely,

ξ → ξ̂ ξ̇ → ˆ̇
ξ.� (101)

The evolution of the operators can be then given by similarity transformations,

ξ̂(v) = T̂−1(v, vi)ξ̂(vi)T̂(v, vi),
ˆ̇
ξ(v) = T̂−1(v, vi)

ˆ̇
ξ(vi)T̂(v, vi).

�
(102)

Here, T̂(v, vi) is the unitary operator associated with the ray bundle transfer matrix T(v, vi), 
(60). Now, let us consider the plane that is transverse to the null vector �k  and spanned by the 
Sachs basis components of �ξ . Instead of covering the full solutions of Maxwell’s equations on 
a given spacetime, one can consider only the transverse components of electromagnetic wave 
function that are most relevant for the observations. Those solutions would be then analogous 
to the parabolic wave equations of Newtonian optics. These are the approximate solutions 
of spherical wave functions in the paraxial regime [12]. Then the initial transverse electro
magnetic wave function, or the complex amplitude, E(ξ′; v′), is advanced to a final complex 
amplitude by E(ξ; v) = T̂(v, v′)E(ξ′; v′). Following Moshinsky and Quesne’s seminal work 
[68, 69], such a transformation can be written as an integral transform [12, 70, 71]

E(ξ; v) =
∫

1√
(2πi)2detB

K (ξ, ξ′; v)E(ξ′; v′)dξ′,� (103)

for each component of the transverse wave function aligned with the Sachs basis. Here, the 
kernel K (ξ, ξ′; v) is given by

K (ξ, ξ′; v) = exp [iS(ξ, ξ′; v)],� (104)

and S(ξ, ξ′; v) is given by (88), which is the generating function of the underlying free canoni-
cal transformation. It is written in terms of the elements of the transfer matrix T as we dis-
cussed in section 5. Then equation  (103) is the most generic form of Huygens diffraction 
integral which is also known as Collins integral [72], for first order light propagation in a given 
spacetime. Note that in section 5 we mentioned that the generating function S(ξ, ξ′; v), which 
shows up as a phase factor here, is indeed our geodesic deviation action up to quadratic order. 
It defines v = constant planes. Here, in the wave picture, it serves a tool to identify stationary 
phase surfaces which analogously approximates Huygen’s principle in paraxial wave optics.

We plan to elaborate on the wavization of an observed ray bundle in a forthcoming paper 
via a rigorous quantization technique. For the current section, all we wanted demonstrate are 
the links between our geodesic deviation action, the generating function of the corresponding 
linear symplectomorphism and the kernel of the wave function transformation when the ray 
bundle is quantized. This means that for light bundle propagation for first order optics, our 
quadratic deviation action is preeminent both for ray and wave optics pictures.

7.4.  Polarization optics and its evolution

In Newtonian optics, there has been much work to investigate how the polarization state of 
a light beam changes as it passes through a generic first order ABCD system. Those invest
igations can indeed shed light on certain problems relevant for astrophysics and cosmology.

Given a 3  +  1 decomposition of the spacetime in general relativity, the optical phase 
space is 6D with a volume element d3x d3p where x are the induced spatial coordinates of the 
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underlying spacetime metric and p are the three-momenta of the photon. In cosmology, for 
example, one considers a polarization tensor to investigate the polarization states of the CMB 
radiation. However, it is the screen-projected linear polarization tensor that is composed of 
the Stokes parameters, that incorporates the observable effects and which removes the residual 
gauge freedom in the problem [23, 73]. Therefore, we advocate that a polarization matrix 
defined within our 4D reduced phase space would be as valuable as the screen-projected 
polarization tensor given in the literature. Let us now introduce the idea of a Wigner quasi
probability distribution in quantum mechanics, Wqn, which can then be used to construct a 
covariant polarization matrix.

Wigner introduced a quantum mechanical analogue of the classical phase space density 
function in order to find the expectation values of operators on the phase space [74]. For our 
canonical pair {ξ, ξ̇} such an ensemble average would look like

〈f̂ 〉qn. =

∫
Wqn.(ξ, ξ̇; v) f (ξ, ξ̇; v)dξdξ̇� (105)

which is analogous to the classical phase space average given in (95). Here, the correspon-
dence between the operator f̂  and the function f  is proposed by Weyl [75] and shown by 
Moyal [76]11.

The fact that a quantum mechanical quasiprobility distribution function is adopted by the 
classical optics community follows from the analogy between quantum mechanics and clas-
sical optics in the paraxial regime that we mentioned in the previous section. In this pic-
ture, mixed states of quantum mechanics are analogous to partially coherent light beams. 
Accordingly the density matrix that appears in the original definition of Wigner is replaced 
by a coherency matrix. Following this, an optical Wigner distribution function was intro-
duced into classical optics to study partially coherent light [78–80]. An optical Wigner matrix  
[70, 81–83] can be written in our case as the following

Wab(ξ, ξ̇; v) =
( κ

2π

)2
∫

Γab

(
ξ − ξ′

2
, ξ +

ξ′

2
; v
)
exp [iκξ′ · ξ̇]dξ′� (106)

where

Γab(ξA, ξB; v) = 〈Ea(ξA; v), Eb(ξB; v)〉� (107)

is a v-dependent cross-spectral density matrix, {a, b} = {1, 2} refers to components of the 
field in the Sachs basis and κ is a constant.

Generalized Stokes parameters are then constructed from this optical Wigner matrix as the 
following [84, 85]

S0(ξ, ξ̇; v) = W11(ξ, ξ̇; v) + W22(ξ, ξ̇; v),

S1(ξ, ξ̇; v) = W11(ξ, ξ̇; v)− W22(ξ, ξ̇; v),

S2(ξ, ξ̇; v) = W12(ξ, ξ̇; v) + W21(ξ, ξ̇; v),

S3(ξ, ξ̇; v) = i
[
W12(ξ, ξ̇; v)− W21(ξ, ξ̇; v)

]
.

�

(108)

Note that these generalized Stokes parameters accommodate information about both of the 
Fourier pairs, i.e. position on the screen and frequency weighted direction. This makes its 
Poincaré sphere representation fairly simple [85]. Wigner matrix components are invariant 
throughout a symplectic ABCD propagation, i.e.

11 See, for example, [77] for a detailed review on the Wigner distribution in quantum mechanics.
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Wab(Aξ + Bξ̇, Cξ + Dξ̇; v) = Wab(ξ, ξ̇; v0).� (109)

Therefore, the invariance applies for the Stokes vector, s = (S0, S1, S2, S3)  T as well. This 
allows one to investigate the evolution of the two-point generalized Stokes vector s̃(ξA, ξB; v) 
[84, 86, 87] through out an ABCD system via Mueller matrices [85]. We believe such meth-
odologies developed for optical devices in the Newtonian theory can be adopted to investigate 
the change of the polarization states of light beams in astrophysical and cosmological sce-
narios12. For instance, curvature induced gravitational lensing or late time integrated Sachs–
Wolfe effects on the polarization of the CMB can be examined in such a manner without 
introducing pertubative schemes within alternative cosmological models.

7.5.  Invariants, autonomization and stability analysis

Following the early paper of Lewis on time-dependent harmonic oscillators in the classical 
theory [88], there has been considerable amount of work on finding the invariants and autono-
mization of nonautonomous systems [89–95].

This is particularly of interest for the current investigation as our quadratic, oscillator-like 
Hamiltonian is also a function of the evolution parameter, v. Note that this creates a techni-
cal difficulty in estimating the ordered exponentials in (60) in order to obtain the ray bundle 
propagation matrix T. Moreover, the stability analysis of the observed light bundles under per-
turbations might be challenging as a well-defined theory of stability analysis exists either for 
linear autonomous or periodic systems only [96]. Therefore, autonomization of our first order 
system is relevant for (i) reducing the ordered exponentials into simple Lie transformations 
and (ii) finding the answer to the question: under which conditions and in what kind of space-
times, a ray bundle which is perturbed along its pathway diverges and ceases to be observable? 

One of the techniques of autonomization follows from extending the phase space of the 
physical system by two degrees of freedom. Consider the phase space coordinates, {ξ, ξ̇}, 
evolution parameter, v, and the Hamiltonian H(ξ, ξ̇; v) of our system. Following the method-
ology outlined in [94] one can apply a v-dependent canonical transformation

(ξ, ξ̇) −→ (q, p) ,� (110)

and reparameterize the evolution by

v → s,� (111)

such that a canonically equivalent system can be defined with a transformed, autonomous 
Hamiltonian function, H̃ ,

H(ξ, ξ̇; v) −→ H̃(q, p),� (112)

namely,

1
2
δabξ̇aξ̇b −

1
2

R ab (v)ξ
aξb −→ 1

2
[
p2 + V(q)

]
,� (113)

12 Note that the polarization state corresponding to a single ray is unaffected by the spacetime curvature as the 
components of the electromagnetic vector potential are parallely propagated with respect to the corresponding tan-
gent vector of the null curve, in the geometric optics limit. However, we observe ray bundles rather than individual 
rays. Therefore, it is natural to expect a change in the polarization state of an electromagnetic field with respect to 
its fiducial null neighbor. This information should be carried by the corresponding geodesic deviation variables.
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in which V(q) acts like a s-independent potential in the transformed system. The physical 
equivalence of the original system and the transformed one then relies on the uniqueness of 
the underlying canonical transformation.

Whether or not such a unique transformation can be found and a reparameterization of 
the evolution of the system, v → s, can be obtained via an affine transformation, at least for 
certain types of spacetimes, is an interesting question not only for mathematical but also 
for physical aspects. Note that under the physical equivalence, H̃(q, p) corresponds to the 
invariant of the underlying system [93, 94]. Moreover, if one can write V(q) as a quadratic 
function of q and follow the same procedure that we outlined in section 3.4, then the propaga-
tion matrix is obtained via Lie transformations as we mentioned. This reduces the first order 
light propagation problem into a very simple form. Furthermore, the eigenvalues of the corre
sponding Hamiltonian matrix can be used to plot phase portraits and to obtain stability and 
bifurcation analysis. We leave these questions for further investigations.

As a final note, we would like to emphasize that even though the extended phase space 
technique seems to be promising, it is the symmetries of the underlying spacetime that simpli-
fies the problem. The existence and uniqueness of the solutions can be investigated once the 
explicit form of the optical tidal matrix is obtained.

8.  Summary and conclusion

The use of symplectic methods in Newtonian optics became popular only after the 1980s. 
By that time, there were almost no open problems left in the general relativistic community 
in terms of light propagation in the geometric optics limit. On the other hand, after late the 
1990s, the amount of cosmological data and the precision of experiments increased exponen-
tially, revealing a highly inhomogeneous universe at late times. Whether or not the universe 
can be modeled by a unique geometry [97] or backreaction effects are significant for cosmo-
logical light propagation have been the subject of debate [98]. Accordingly, light propagation 
for more complex, realistic scenarios and its effect on the observables have become of interest 
[31, 99–101].

In this work, our aim was to construct the general relativistic analogue of the paraxial 
regime of Newtonian optics in a Machian setting. We believe that under such a construc-
tion, the improvements of the symplectic methods introduced to Newtonian optics, especially 
after the mid-1990s, can be adopted and implemented to the cosmological light propagation 
problems.

In order to achieve this, we considered the geodesic action for two neighboring null curves 
simultaneously. The equivalent, geodesic deviation action is then obtained via the method 
introduced in [9] by Synge’s world function. Under the thin ray bundle approximation, we 
considered the terms up to quadratic order only and obtained the action with respect to the 
tetrad components of the geodesic deviation variables. This allowed us to define a 4D reduced 
phase space and a corresponding quadratic Hamiltonian function. Note that in the conven-
tional approach of cosmology, the optical phase space is 6D. It is composed of three spatial 
components of spacetime coordinates and the three-momentum of the photon. In our reduced 
phase space, however, it is the Sachs basis components of the deviation vector and its total 
derivative with respect to the affine parameter are the ones that compose the phase space vec-
tor. This makes our approach Machian in nature. In addition, having an optical phase space 
composed of the tetrad components of the variables directly links the ray bundle evolution to 
the observables in question.
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Quadratic Hamiltonians are encountered in many areas of physics, whose associated flows 
are given by linear Hamilton–Jacobi equations. The advantage of quadratic polynomials is 
that the Lie operators constructed through them have matrix representations. Moreover, as the 
exponential maps of Hamiltonian matrices are symplectic matrices, the corresponding phase 
space transformations are then represented by symplectic transfer matrices. In our case, the 
symplectic ray bundle transfer matrix is written as a 4 × 4 block matrix composed of 2 × 2 
submatrices A, B, C and D as it is usually referred to as ABCD matrices in the Newtonian 
optics community.

Etherington’s distance reciprocity, which follows from the first order geodesic deviation 
equation, is then shown to hold for light propagation from any initial and final points, not just 
when the initial point is a vertex. This follows from the symplectic conditions imposed on the 
ray bundle transfer matrix and holds within any spacetime.

Symplectomorphisms on our reduced phase space are linear canonical transformations. 
Generating function of such ABCD canonical transformations were discussed in the literature 
previously. We showed that it corresponds to our quadratic geodesic deviation action and we 
wrote it in the form of matrix inner products of initial and transformed phase space coordi-
nates. We also introduced a phase space distribution function and the corresponding Liouville 
equation.

In the end, we proposed some potential applications of our formalism to show its full 
power. In particular, we suggested that:

	 (i)	�The reduced phase space averaging, that leads us to a null bundle average, is a relevant 
tool to estimate the averaged observables in our past null cone. It can be used to average 
the full set of scalar spin field equations in the Newman–Penrose formalism to study the 
average effect of the full set of the Einstein equations.

	(ii)	�Iwasawa factorization, or other types of decomposition techniques of symplectic matrices, 
can be used to identify the unique elements of an optical system which, in our case, is 
the spacetime. Then light ray propagation in any spacetime between any initial and final 
points can be factored into its thin lens, pure magnifier and fractional Fourier transformer 
components for the case of thin bundles.

	(iii)	�Wavization of an observed thin null bundle is possible due to the relation between the 
symplectic and metaplectic groups. Following the method outlined in [68] and used in 
Newtonian optics, we showed that the kernel of the diffraction integral is given by the 
generating function of the underlying linear canonical transformation. In our case it is 
exactly equal to our quadratic deviation action.

	(iv)	�Evolution of the polarization states of the CMB can be investigated via the recent tech-
niques developed in Newtonian optics. Those include the evolution of the generalized 
Stokes parameters as the beam propagates through an ABCD system and constructed by 
an optical Wigner distribution function. Those methods can then be adopted to investigate 
the polarization within a generic, nonperturbative spacetime geometry.

	(v)	�The technical difficulty of estimating the ray bundle transfer matrix via ordered exponen-
tials can be overcome by applying an additional canonical transformation on an extended 
phase space to autonomize the system. If such a transformation exists for a given phase 
space then the corresponding evolution can be obtained by Lie transformations. Moreover, 
the stability analysis and phase portraits for observed null bundles can then be determined 
for a given spacetime.

Note that even though current paper focuses on the propagation of light rays, the methods 
introduced here are, in principle, applicable for the propagation of gravitational waves as well. 
In the case of gravitational radiation, the corresponding wave vector follows the null geodesics 
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of a background spacetime [25, 102, 103]. This is especially relevant for the studies of lensing 
and focusing of gravitational waves. In the event that the wavelength is longer than the lensing 
object’s radius, diffraction effects become important which provides information about both 
the source and the lensing object [104, 105]. Those effects can in fact be investigated within 
the wavization procedure we introduced in section 7.3.

Here we acknowledge another work that was introduced into the literature during the prep
aration of this manuscript. In [106], the authors obtain a ray bundle transfer (or Wronskian) 
matrix via bilocal operators, which is similar by construction to our formulation. Their trans-
fer matrix, including higher degrees of freedom, might indeed lead one to the generalization 
of the method and potential applications presented here.

As a final remark we note that when discussions of possible deviations from cosmological 
distance reciprocity is put forward [107–110], it is usually stated that there are three possible 
explanations for such a deviation (if it exists) [111, 112]: (i) light does not propagate on a 
Riemannian geometry; (ii) the geometric optics approximation is broken, i.e. the light does 
not follow null geodesics; (iii) the number of photons is not conserved throughout the propa-
gation due to the coupling of axions, gravitons, etc. Here we state that a potential breakdown 
of distance reciprocity necessarily follows from a deviation of symplecticity of the system. 
Note that this complies with all of the possible explanations of reciprocity breakdown sce-
narios given above.

In conclusion, we stress that in general relativity; (i) physically meaningful quantities are 
obtained through geodesic deviation, (ii) the observables are measured on our local frames. 
Additionally, in the classical theory, symplectic symmetries are closely related to the observa-
bles of a given system. In classic statistical mechanics and in quantum mechanics, for exam-
ple, symplectic symmetries play a major role and the observables are those that are measured 
by the ones that are already in their local frames. Therefore, it is not surprising that our sym-
plectic symmetries emerge once we introduce local projections of the null geodesic deviation 
vector on our observational screen. Note that all of those different constructions in physics can 
be linked via phase space methods for linear systems.
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Appendix.  Derivation of equation set (89)

A.1.  Useful expressions

Here we present certain expressions that will be relevant for our derivation. Note that we are 
using the numerator layout notation in our derivations.
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A.1.1.  ξ′ and ξ̇′.  Let us consider the following ray bundle transfer
[
ξ

ξ̇

]
=

[
A B
C D

]

(v,v′)

[
ξ′

ξ̇′

]
.� (A.1)

Then, through (77) we have
[
ξ′

ξ̇′

]
=

[
Dᵀ −Bᵀ

−Cᵀ Aᵀ

]

(v,v′)

[
ξ

ξ̇

]
,� (A.2)

and together with the evolution equation (62)

ξ′ = Ḃᵀξ − Bᵀξ̇, ξ̇′ = −Ȧᵀξ + Aᵀξ̇.� (A.3)

A.1.2.  Symmetry of ḂB−1 and B−1A.  When we substitute the evolution equation (62) into 
equation set (80), first two lines follow as

Ḃᵀ =
(

A − BḂ−1Ȧ
)−1

� (A.4)

−Bᵀ = −
(

A − BḂ−1Ȧ
)−1

BḂ−1.� (A.5)

Substitution of (A.4) into (A.5) gives (BḂ−1)ᵀ = (BḂ−1), and taking the inverse gives

ḂB−1 =
(
ḂB−1)ᵀ .� (A.6)

Now, consider the first two lines of the equation set (79) and the evolution equation (62). Then 
we have

A (v, v′) = Ḃᵀ (v′, v) , B (v, v′) = −Bᵀ (v′, v) .

With these and (A.6) we have the symmetry of the product B−1A, i.e.

B−1A =
(
B−1A

)ᵀ
.� (A.7)

A.2.  Derivation of ξ̇ = ∂S/∂ξ

Let us substitute the evolution equation (62) into the generating function given in (88) in order 
to get

S =
1
2

[
ξᵀ

(
ḂB−1)ᵀ ξ

]
− ξᵀ

(
B−1)ᵀ ξ′ + 1

2

[
ξ′

ᵀ (B−1A
)ᵀ

ξ′
]

.� (A.8)

Then, due to (A.6), we have the following

∂S
∂ξ

=
1
2
(
2ξᵀḂB−1)− ξ′

ᵀB−1.� (A.9)

Now, let us substitute (A.3) into above so that we get

∂S
∂ξ

= ξᵀḂB−1 − ξᵀḂB−1 + ξ̇
ᵀ

BB−1 = ξ̇
ᵀ

.� (A.10)
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A.3.  Derivation of ξ̇′ = −∂S/∂ξ′

Taking the derivative of S in the form of (A.8) with respect to ξ′ this time gives

∂S
∂ξ′

= −ξᵀ
(
B−1)ᵀ +

1
2

[
2ξ′

(
B−1A

)ᵀ]
,� (A.11)

due to (A.7). Now let us substitute ξ = Aξ′ + Bξ̇′ into above following the transfer (A.1) to 
get

∂S
∂ξ′

= −ξ′
ᵀAᵀ

(
B−1)ᵀ − ξ̇′

ᵀ
Bᵀ

(
B−1)ᵀ + ξ′

(
B−1A

)ᵀ
.

Then,

∂S
∂ξ′

= −ξ̇′
ᵀ

.� (A.12)

A.4.  Derivation of ∂S/∂v + H = 0

Once we substitute (A.3) into (A.8), the partial derivative of S with respect to the affine param
eter, v, follows as

∂S
∂v

=
1
2
ξᵀ� ξ +

1
2
ξᵀ� ξ̇ +

1
2
ξ̇
ᵀ
� ξ +

1
2
ξ̇
ᵀ
� ξ̇,� (A.13)

in which

� = −
[(

B−1)ᵀ]· Ḃᵀ +
(
B−1)ᵀ (B̈)ᵀ + Ḃ

[(
B−1A

)ᵀ]· Ḃᵀ.� (A.14)

Once we substitute the evolution equation B̈ = Ḋ = R B given in equation set (62) into the 
second term on the right hand side of the above, we obtain

� = R ᵀ+
{

Ḃ
[
−(B−1)· +

(
B−1A

)· Ḃᵀ
]}ᵀ

= R ᵀ+
{

Ḃ
[
(B−1)·

(
−I2 + AḂᵀ

)
+ B−1ȦḂᵀ

]}ᵀ
.

Due to the second line of the symplecticity conditions (81), we have

� = R ᵀ+
{

Ḃ
[
(B−1)·BȦᵀ + B−1ȦḂᵀ

]}ᵀ

= R ᵀ+
{

Ḃ
[
−B−1ḂȦᵀ + B−1ȦḂᵀ

]}ᵀ
,

� (A.15)

where we use the generic derivation

(B−1)· = −B−1ḂB−1� (A.16)

to obtain the second line. Then we have

� = R ᵀ,� (A.17)

due to the symmetry of ȦḂ  Tthat is given as a symplectic condition in the first line of equa-
tion set (81).
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The second term in equation (A.13) follows as

� = 2
[
(B−1)ᵀ

]· Bᵀ − Ḃ
[
Aᵀ(B−1)ᵀ

]· Bᵀ

= 2
[
(B−1)·

]ᵀ Bᵀ − Ḃ
[
B−1A

]· Bᵀ

= 2
[
(B−1)·

]ᵀ Bᵀ + ḂB−1
(

ḂAᵀ − ȦBᵀ
)

= 2
(
−B−1ḂB−1)ᵀ Bᵀ + ḂB−1

= −2(B−1)ᵀḂᵀ + ḂB−1,

�

(A.18)

in which we make use of (A.7) and (A.16) to obtain the third line. The fourth line follows from 
the symplectic condition given in the second line of (81) and (A.16). Hence we have

� = −ḂB−1,� (A.19)

due to (A.6).
The third term in (A.13) is as follows.

� = −B
[
Aᵀ(B−1)ᵀ

]· Ḃᵀ

= B
(
B−1ḂB−1)AḂᵀ − ȦḂᵀ

= ḂB−1
(

I2 + BȦᵀ
)
− ȦḂᵀ,

�

(A.20)

in which we use (A.7) to obtain the second line and use the second line of the symplectic con-
ditions (81) to obtain the third. Due to the symmetry of ȦḂ  Tgiven in (81), we have

� = ḂB−1.� (A.21)

The fourth term of (A.13) is

� = B
[
Aᵀ(B−1)ᵀ

]· Bᵀ

= BȦᵀ − BAᵀḂB−1

=
(
AḂᵀ − I2

)
− BAᵀḂB−1

= AḂᵀ − I2 − ABᵀ(B−1)ᵀḂᵀ,

�

(A.22)

where we use (A.16) and (A.6) to obtain the second line. The third line follows from the sec-
ond line of (81). The fourth line is obtained by making use of the first line of the symplectic 
conditions (81) and (A.6). Thus,

� = −I2.� (A.23)

Now, let us substitute the results given in (A.17), (A.19), (A.21) and (A.23) into (A.13). 
Then we have

∂S
∂v

= −
[

1
2

(
ξ̇, ξ̇

)
− 1

2
(R ξ, ξ)

]
= −H,� (A.24)

in which H is our reduced quadratic Hamiltonian given in (49).
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