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Abstract
The Kiselev black hole spacetime is an extremely popular toy model, with 
over 200 direct and indirect citations as of 2019. Unfortunately, despite 
repeated assertions to the contrary, this is not a perfect fluid spacetime. The 
relative pressure anisotropy and average pressure are easily calculated, and 
the relative pressure anisotropy is generally non-zero, (except for the special 
case where Kiselev’s model degenerates to Schwarzschild-(anti)–de Sitter 
spacetime). Kiselev’s original paper was very careful to point this out in the 
calculation, but then in the discussion made a somewhat unfortunate choice 
of terminology which has (with very limited exceptions) been copied into the 
subsequent literature. Perhaps worse, Kiselev’s use of the word ‘quintessence’ 
does not match the standard usage in the cosmology community, leading 
to another level of unfortunate and unnecessary confusion. Very few of the 
subsequent follow-up papers get these points right, so a brief explicit comment 
is warranted.
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1.  Introduction

Kiselev’s black hole spacetime, in its most straightforward single-component form, is speci-
fied by the metric [1]:

ds2 = −
(

1 − 2m
r

− K
r1+3w

)
dt2 +

dr2

1 − 2m
r − K

r1+3w

+ r2 dΩ2
2.� (1)

This is a remarkably popular toy model. Directly and indirectly, Kiselev’s model has accumu-
lated over 200 citations, with over 150 of the citing articles being published. One reason for 
this model’s popularity is its generality: w  =  0 corresponds to Schwarzschild, w  =  1/3 cor-
responds to Reissner–Nordström, and w  =  −1 corresponds to Schwarzschild-(anti)-de Sitter 
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(Kottler). Unfortunately a very large fraction of the subsequent follow-up papers discussing 
Kislev’s model get basic aspects of the physics wrong. Despite (very) many assertions to the 
contrary, the Kiselev spacetime is not a perfect fluid spacetime, neither does it have anything 
to do with the cosmologist’s notion of quintessence.

Perhaps the fastest way to see something is wrong with the terminology (without having 
to do a calculation) is to consider the special case w  =  1/3 with K  =  −Q2 (that is, Reissner–
Nordström), and note that the electromagnetic field is not a perfect fluid, nor can the electro
magnetic field meaningfully be described as quintessence.

Despite these terminological issues, the Kiselev black hole does have some interesting 
physical and mathematical properties, and does merit investigation—as long as one does so 
carefully, and uses terminology in a manner consistent with the broader astrophysical and 
general relativity communities.

2.  Stress–energy for the single-component Kiselev black hole

Working in an orthonormal frame it is easy to see that for the spacetime specified in equa-
tion (1) one has

Gt̂̂t = −Gr̂r̂ = − 3Kw
r3(1+w) ; Gθ̂θ̂ = Gφ̂φ̂ = −3Kw(1 + 3w)

2r3(1+w) .� (2)

Therefore

ρ = −pr = − 3Kw
8πr3(1+w) ; pt = −3Kw(1 + 3w)

16πr3(1+w) .� (3)

This is not isotropic, so it is not a perfect fluid. For the average pressure we have

p̄ =
pr + 2pt

3
= − 3Kw2

8πr3(1+w) ;
p̄
ρ
= w.� (4)

While such an average pressure can always be defined, doing so does not magically convert 
an anisotropic stress–energy into a perfect fluid. Indeed for the pressure ratio and relative pres
sure anisotropy we explicitly have

pt

pr
= −1 + 3w

2
; ∆ =

∆p
p̄

=
pr − pt

p̄
= −3(1 + w)

2w
.� (5)

Note that this basic Kiselev spacetime has the interesting feature that both of the ratios pt/pr 
and ∆ are position-independent constants. However, since for w �= −1 we have both pt/pr �= 1 
and ∆ �= 0, this is certainly not a perfect fluid spacetime.

Unfortunately, mistakenly mis-identifying anisotropic stress-energies as perfect fluids has 
a distressingly long history in general relativity [2]. (This was unfortunate but perhaps under-
standable in the days before computer-based symbolic algebra packages, when all curvature 
calculations had to be done by hand [2], it is considerably less understandable in the present 
day.) In the present context, very few of the follow-up papers to Kiselev’s original result [1] 
have been careful in this regard—for a notable exception see [3] where the authors very care-
fully and explicitly specify the stress–energy tensor being used, and pointedly do not refer to 
this spacetime as a perfect fluid spacetime.

Note that because the Kiselev spacetime is static and spherically symmetric it will be pos-
sible to model the matter distribution by some linear combination of perfect fluid plus scalar 
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field (with spacelike gradient) and electromagnetic field [4, 5], but that is a very different state-
ment from the assertion that it is a perfect fluid spacetime.

Let us turn now to the word ‘quintessence’ as used within the cosmology community. At 
its most basic ‘quintessence’ refers to a scalar field with a timelike gradient, see for instance 
[6–11]. In particular, the stress–energy tensor associated with quintessence is that of a zero-
vorticity perfect fluid. Therefore the Kiselev spacetime does not represent quintessence in the 
sense that this word is normally used within the cosmology community. Even those cosmo-
logical models that seek to break quintessence away from the scalar field framework [12], still 
retain a perfect fluid stress–energy tensor, and so are intrinsically incompatible with the matter 
distribution in the Kiselev spacetime.

Now on the one hand this is just a matter of terminology, on the other hand terminology 
matters—only if there is widespread agreement on the meaning of the words being used can 
useful scientific communication take place.

3.  Generalized N-component Kiselev black holes

Kiselev also introduced a generalized N-component model [1], and a significant fraction of 
the literature related to Kiselev black holes is based on this multi-component generalization. 
Consider the spacetime metric

ds2 = −

(
1 −

∑N
i=0 Ki r−3wi

r

)
dt2 +

dr2

1 −
∑N

i=0 Ki r−3wi

r

+ r2 dΩ2
2.� (6)

Any Schwarzschild mass term that might be present has been absorbed into K0  =  2m, setting 
the corresponding w0 to zero. Effectively one is defining a position-dependent mass function 
m(r) by setting

2 m(r) =
N∑

i=0

Ki r−3wi ,� (7)

so that the Misner–Sharp quasi-local mass is assumed to have a Puiseux expansion [13]. 
Hence one is considering a metric of the form

ds2 = −
(

1 − 2m(r)
r

)
dt2 +

dr2

1 − 2m(r)
r

+ r2 dΩ2
2.� (8)

Spacetime metrics of this specific form have very special properties [14], and it is then an 
utterly standard calculation to show

ρ = −pr =
m′(r)
4πr2 , and pt = −m′′(r)

8πr
.� (9)

For the average pressure we now have

p̄ =
pr + 2pt

3
= −m′(r) + rm′′(r)

12πr2 ; weffective :=
p̄
ρ
= −1

3
− rm′′(r)

3m′(r)
.

�

(10)

For the ratio of pressures we now have

pt

pr
=

r m′′(r)
2m′(r)

= −3weffective + 1
2

,� (11)
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and so for the relative pressure anisotropy

∆ =
∆p
p̄

=
pr − pt

weffectiveρ
= −1 − ( pt/pr)

weffective
= −3(1 + weffective)

2weffective
.

� (12)
In general weffective, the ratio of pressures pt/pr, and the relative pressure anisotropy ∆ are now 
all position dependent. Note that these key properties follow directly from the general form 
of the metric as given in (8) and do not need the explicit form of the mass function m(r) as 
given in (7).

However, if one wishes to be explicit and keep all the individual Ki and (non-zero) wi vis-
ible, then it is easy to see that for the stress–energy

ρ = −pr = −
3
∑N

i=1 Ki wi r−3wi

8πr3 ,� (13)

and

pt = −
3
∑N

i=1 Ki wi (1 + 3wi) r−3wi

16πr3 .� (14)

For the average pressure we now have

p̄ =
pr + 2pt

3
= −

3
∑N

i=1 Ki w2
i r−3wi

8πr3 ,� (15)

and

weffective :=
p̄
ρ
=

∑N
i=1 Ki w2

i r−3wi

∑N
i=1 Ki wi r−3wi

.� (16)

Note that weffective can now be viewed as a position-dependent weighted average of all the wi. 
Finally for the anisotropy parameter ∆ one has

∆ = −3
2

(
1 +

∑N
i=1 Ki wi r−3wi

∑N
i=1 Ki w2

i r−3wi

)
.� (17)

So while one can still easily do various straightforward explicit calculations in this 
N-component generalized Kiselev model, one has lost many of the more compelling features 
of the simple one-component model.

4.  Rastall gravity version of the Kiselev black hole

A significant sub-theme in the Kiselev-related literature is the effort to merge Kiselev’s black 
hole model with Rastall’s ideas on modified gravity. Rastall gravity was introduced in 1972, 
some 47 years ago [15]. Unfortunately modern implementations of Rastall’s original idea 
have evolved into what is merely a physically empty redefinition of parameters [16]. These 
issues become particularly acute when one attempts to construct a Rastall gravity version 
of the Kiselev black hole [17]. Effectively, the central idea of Rastall gravity is to split the 
ordinary conserved stress energy tensor (satisfying the ordinary Einstein equations) into two 
individually non-conserved pieces:

[Tconserved]
ab = [TRastall]

ab +
1
4

λ

1 − λ
[TRastall] gab.� (18)
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Equivalently

[TRastall]
ab = [Tconserved]

ab − 1
4
λ [Tconserved] gab.

� (19)
As long as the Rastall parameter λ is not equal to unity, λ �= 1, this procedure can always be 
carried out, but it is merely a redefinition of what one chooses to call the stress–energy [16]. In 
particular if the usual stress–energy is zero, [Tconserved]

ab = 0, then the Rastall stress–energy is 
zero, [TRastall]

ab = 0. So in vacuum Rastall gravity is utterly identical to Einstein gravity [16]. 
If one is not in vacuum then Rastall gravity is merely a book-keeping exercise [16].

To make this fully explicit we shall now calculate the Rastall stress–energy for the 
N-component Kiselev spacetime in terms of the usual stress–energy. We first note that

T = −ρ+ 3p̄ = −ρ(1 − 3weffective).� (20)

Using this we obtain

ρRastall = ρ− 1
4
λ ρ (1 − 3weffective) = ρ

(
1 − λ(1 − 3weffective)

4

)
;� (21)

( pr)Rastall = pr +
1
4
λ ρ (1 − 3weffective);� (22)

( pt)Rastall = pt +
1
4
λ ρ (1 − 3weffective).� (23)

Consequently the absolute pressure anisotropy is invariant under the Rastall redefinition 
process

( pr)Rastall − ( pt)Rastall = pr − pt,� (24)

while for the average pressure there is a simple shift

(p̄)Rastall = p̄ +
1
4
λρ(1 − 3weffective)

= ρ

(
weffective +

λ(1 − 3weffective)

4

)
.

�

(25)

Furthermore

wRastall =
(p̄)Rastall

ρRastall
=

weffective +
λ(1−3weffective)

4

1 − λ(1−3weffective)
4

.� (26)

Finally

∆Rastall =
( pr)Rastall − ( pt)Rastall

(p̄)Rastall
=

pr − pt

(p̄)Rastall
= ∆× p̄

(p̄)Rastall

= ∆× weffective

weffective +
λ(1−3weffective)

4

.
�

(27)

It is easy to check that the limit λ → 0 where the Rastall parameter is set to zero is well-behaved.
Note that the Kiselev spacetime, being anisotropic (not a perfect fluid) before one applies 

the Rastall redefinition process, will remain anisotropic (not a perfect fluid) after the Rastall 
redefinition process. (As an aside, note that in [16] I had performed a similar calculation for 
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perfect fluid spacetimes; the calculation above now applies to any static spherically symmetric 
spacetime, including the Kiselev spacetime.)

The key physics point here is that while these formulae might superficially look somewhat 
impressive, they amount merely to a redefinition of parameters—a choice as to how to split up 
the conserved stress–energy into two individually non-conserved pieces. If one starts with any 
spacetime satisfying the usual Einstein equations, then the Rastall redefinition process does 
not change the geometry, it is merely a book-keeping exercise applied to the stress–energy 
tensor.

Specifically, since the Rastall stress–energy tensor and the usual stress–energy tensor differ 
only by a term proportional to the metric, the Rastall redefinition process cannot ever affect 
the Hawking–Ellis classification (types I–II–III–IV) of the stress–energy tensor. (See for 
instance [18–21].) In the current context, for the spherically symmetric static Kiselev space-
time the type I stress–energy tensor remains type I. Similarly the Rainich conditions [22, 23], 
and related Rainich classification of stress–energy tensors [24–26], are only trivially modified 
by an overall shift in the Lorentz-invariant eigenvalues, leaving the eigenvectors invariant.

Further afield, the null energy condition (NEC) is never affected by the Rastall redefini-
tion process. However the weak, strong, dominant, flux, and trace energy conditions (WEC, 
SEC, DEC, FEC, TEC) are modified by a constant book-keeping offset, proportional to the 
trace of the stress–energy tensor. (For a general discussion see [18, 27–31].) Similarly the null 
Raychaudhuri equation and its generalizations are never affected by the Rastall redefinition 
process, though the timelike Raychaudhuri equation and its generalizations pick up a book-
keeping offset proportional to the trace of the stress–energy [32–35]. No physics is modified 
by the Rastall redefinition process, merely book-keeping.

5.  Discussion and conclusions

Terminology is important—only when there is widespread agreement in terminology can use-
ful scientific progress be made. Having some 200 articles (over 150 of them published) use 
such basic concepts as ‘perfect fluid’ and ‘quintessence’ in a manner that is at best completely 
orthogonal to the usage in the bulk of the scientific community is somewhat alarming. While 
the Kiselev spacetime is an interesting toy model that does have some attractive physical and 
mathematical properties, the presentation is quite often seriously deficient. Specifically:

	 •	�Do not refer to the Kiselev spacetime as perfect fluid; it is not.
	 •	�Do not refer to the matter in the Kiselev spacetime as quintessence; it is not.
	 •	�Do not try to read more into Rastall gravity than a redefinition of parameters.

I reiterate: the fastest way to see something is wrong with the terminology typically used to 
describe the Kiselev spacetime (without having to do a calculation) is simply to consider the 
special case w  =  1/3 with K  =  −Q2, (where it reduces to Reissner–Nordström spacetime), and 
then to note that the electromagnetic field is not a perfect fluid, nor can the electromagnetic 
field meaningfully be described as quintessence.
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