
J. S
tat. M

ech. (2020) 013209

Order by disorder: saving collective 
motion from topological defects  
in a conservative model

Mathias Casiulis1, Marco Tarzia1, Leticia F Cugliandolo2 
and Olivier Dauchot3

1  Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la 
Matière Condensée, LPTMC, 4 place Jussieu, Couloir 12-13, 5ème étage, 
F-75005 Paris, France

2  Sorbonne Université, CNRS, Laboratoire de Physique Théorique et Hautes 
Énergies, LPTHE, 4 place Jussieu, Couloir 13-14, 5ème étage, F-75005 Paris, 
France

3  UMR Gulliver 7083 CNRS, ESPCI Paris, PSL Research University,  
10 rue Vauquelin, 75005 Paris, France

E-mail: casiulis@lptmc.jussieu.fr

Received 22 May 2019
Accepted for publication 30 October 2019  
Published 16 January 2020

Online at stacks.iop.org/JSTAT/2020/013209
https://doi.org/10.1088/1742-5468/ab5702

Abstract.  Using analytic and numerical methods, we study a 2d Hamiltonian 
model of interacting particles carrying ferro-magnetically coupled continuous 
spins which are also locally coupled to their own velocities. This model has 
been characterised at the mean field level in a parent paper. Here, we first 
obtain its finite size ground states, as a function of the spin-velocity coupling 
intensity and system size, with numerical techniques. These ground states, 
namely a collectively moving polar state of aligned spins, and two non-moving 
states embedded with topological defects, are recovered from the analysis of 
the continuum limit theory and simple energetic arguments that allow us to 
predict their domains of existence in the space of control parameters. Next, 
the finite temperature regime is investigated numerically. In some specific 
range of the control parameters, the magnetisation presents a maximum at 
a finite temperature. This peculiar behaviour, akin to an order-by-disorder 
transition, is explained by the examination of the free energy of the system 
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and the metastability of the states of minimal energy. The robustness of our 
results is checked against the geometry of the boundary conditions and the 
dimensionality of space.

Keywords: active matter, metastable states, molecular dynamics, defects
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1.  Introduction

Collective motion, the macroscopic ordering of velocities in a many-body system, is 
a key feature of assemblies of self-propelled particles. This phenomenon has recently 
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drawn a lot of attention from the statistical physics community [1, 2], and has been 
reported and extensively studied in a variety of systems, both natural, like flocks of 
birds [3] or bacterial colonies [4], and artificial, like active colloids [5] or vibrated grains 
[6]. Interacting systems of self-propelled particles have also been the focus of many 
theoretical studies, starting with the celebrated Vicsek model [7], and branching into 
many more recent analytical and numerical works [8].

In typical Vicsek-like models moving individuals are represented as polar self-pro-
pelled particles, i.e. particles set in motion by a driving force directed along the heading 
vector of the particle. Assuming, that the speed is always constant leads to minimal 
spin models where particles move along the direction of their spin and interact with 
their neighbours so as to align their velocity vectors, giving rise to collective motion. 
An important simplification of Vicsek-type models is to identify the direction of motion 
with that of the spin of the particles. However, as soon as the particles experience other 
types of interactions, as simple as rigid body repulsion, it is a priori relevant to consider 
the spins and velocities as distinct dynamical variables. It can also be the case that the 
dynamics of the spin be coupled to that of the velocity, in such a way that, not only the 
particle aligns its velocity on its spin, but also it aligns its spins on its velocity. This has 
been exemplified as the cause for collective motion in the case of self-propelled granular 
disks [9, 10], for which the steric interaction alone does not ensure alignment of the 
velocities, and more recently in the eective dynamics of topological defects in active 
nematics [11]. It was also demonstrated as being a necessary condition for describing 
the dynamics of a motorised polar particle in a harmonic potential [12].

Coupling spin to velocity is expected to induce new physics, not only in the realm of 
active matter, but also in the context of usual Hamiltonian dynamics. Such couplings 
break Galilean invariance. Broken Galilean invariance is also a hallmark of active sys-
tems. One may thus wonder if some of the remarkable features of active matter could 
also occur in conservative systems. Such questions have been recently discussed in the 
context of a conservative two-dimensional particle model [13], in which particles carry 
a continuous and classical spin. The model, defined in equations (1) and (2), is char-
acterised by ferromagnetic interactions between spins of two dierent particles, and 
a ferromagnetic coupling between the spin and velocity of the same particle. Because 
of this coupling, not only Galilean invariance is broken, but also the conserved linear 
momentum associated to translation invariance is not proportional to the velocity of 
the centre of mass and the dynamics are not invariant under a global rotation of the 
spins alone. This, in principle, leaves room for collective motion. A preliminary study 
of the model has shown that a transition to collective motion does indeed take place in 
the mean-field (fully-connected) limit, in spite of momentum conservation [13].

In the present paper, using molecular dynamics simulations and analytic calcul
ations, we characterise the 2d behaviour of this model in states such that the system 
is homogeneous, focusing on the eects of the size, dimensionality, temperature, and 
spin-velocity coupling intensity. We report a finite-size magnetisation crossover that is 
accompanied by a collective ordering of the velocities at low enough temperatures and 
low enough values of the spin-velocity coupling constant, hereafter defined as K. This 
ordering breaks down at a finite value of K, that depends on the size of the system, as 
accurately predicted using simple energetic arguments. The resulting non-magnetised 
ground states feature topological defects that, by suppressing the magnetisation, enable 
the system to avoid a high kinetic energy cost. The crossover between magnetised and 
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non-magnetised states resembles a first-order phase transition, as both families of states 
are metastable close to the critical value of the spin-velocity coupling. When heated 
up, systems prepared in a non-magnetised ground state display a maximum of the 
modulus of their magnetisation at a finite temperature. This feature is reminiscent of 
an ‘order by disorder’ [14, 15] (ObD) transition, in which a system develops a sponta-
neous magnetisation upon heating, and can be explained by the examination of the free 
energies of the various states of the system. Finally, the magnetised states are charac-
terised by a collective ordering of the instantaneous velocities, which is however rapidly 
destroyed by thermal fluctuations. The above results are rather general. On one hand 
the choice of the spin-velocity coupling is highly constrained by the structure of the 
Hamiltonian dynamics. On the other hand neither the geometry nor the dimensionality 
seem to play a major role in our observations.

The paper is organised as follows. In section 2 we introduce the model, emphasise 
the unusual features of its conservative dynamics, and describe the numerical simula-
tions used thereafter. In section  3 we characterise the low-temperature equilibrium 
states and predict their location in parameter space with simple energetic arguments, 
as well as their nature, resorting to a coarse-grained continuous theory. In section 4 we 
consider the finite temperature regimes and describe an ObD phenomenon for a subset 
of values of the parameters. The crossover towards order is studied, and proved to 
behave much like a first-order phase transition. In section 5 we discuss the alignment 
of velocities in collectively moving phases. Finally, we discuss the generality of our 
results, show that the choice of a spin-velocity coupling is highly constrained and pres-
ent our conclusions regarding the link between this model and usual collective motion 
in section 6.

2. The model

The model, introduced in [13], describes the dynamics of N interacting particles that 
carry continuous planar spins of norm equal to 1. The particles are confined to move in 
2d, in a periodic square box of linear size L. Their motion is described by the Lagrangian

L =
N∑
i=1

m

2
ṙ2
i +

N∑
i=1

I

2
ṡ2i +

N∑
i=1

Kṙi · si −
U0

2

∑
k �=i

U(rik) +
J0
2

∑
k �=i

J(rik) cos θik ,

�

(1)

that depends on position and spin variables. The position of the ith particle is denoted 
ri and its velocity vi = ṙi, while rik = |ri − rk| is the distance between the centers 
of particles i and k;θi is the angle that the spin forms with a reference axis and fully 
parametrises the continuous 2d spin si of unit modulus. The time derivative of the spin 
vector is indicated by ṡi; θik is the angle between the spin of particle i and the one of 
particle k. Furthermore, m is the mass of each particle and I its moment of inertia. U 
is a short-ranged, isotropic and purely repulsive two-body interaction potential and J 
is a short-ranged and isotropic ferromagnetic coupling between the spins. We charac-
terise these two potentials below. For future convenience we made explicit the typical 
amplitudes of the two-body potential, U0, and the ferromagnetic coupling, J0. K is the 
parameter that controls the strength of the spin-velocity coupling, the term that yields 
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the special properties to the model. Throughout this paper, we will only consider the 
case K � 0 as the case K � 0 can be recovered by simply flipping all the spins. In the 
following, we will introduce dimensionless variables according to the transformations 

r/
√

I/m → r, t/
√

I/J0 → t, K/
√
mJ0 → K, L/J0 → L, U0/J0 → U0 and, in the nota-

tion hereafter, we absorb U0 in the definition of the two-body potential U.
In the Hamiltonian formalism the Lagrangian (1) transforms into the Hamiltonian

H =
N∑
i=1

1

2
p2
i +

N∑
i=1

1

2
ω2
i −

N∑
i=1

Kpi · si +
1

2

∑
k �=i

U(rik)−
1

2

∑
k �=i

J(rik) cos θik ,

�

(2)

where we defined the canonical momenta ωi = θ̇i and pi = ṙ +Ksi. As already stressed 
in [13], this specific form of the momentum turns into a direct relation between the 
velocity of the centre of mass and the total magnetisation in the micro-canonical 
ensemble. In particular, setting the total momentum P =

∑
i pi to zero, the system 

spontaneously develops collective motion, whenever it magnetises. Its centre of mass 
velocity then satisfies vG +Km = 0, where

m =
1

N

N∑
i=1

si , and vG =
1

N

N∑
i=1

ṙi ,� (3)

are the intensive magnetisation and the velocity of the centre of mass, respectively. 
Note that although free particles would tend to align their velocity on their own spin 
[13], the collectively moving states at low energy that satisfy P = 0 anti-align the par-
ticle velocities with their spins. Also, because the velocity of a magnetised state grows 
linearly with K, low potential energy moving states become very expensive in terms of 
kinetic energy as K increases. As a result, for high enough values of K non-magnetised 
states featuring topological defects were suggested as candidate ground states [13]. We 
study this hypothesis in detail in the body of the paper and will indeed validate it.

The soft interaction potentials are given by

J(r) = (σ − r)2Θ(σ − r) ,� (4)

U(r) = U0(σ − r)4Θ(σ − r) ,� (5)

where Θ is a Heaviside step function, σ is the range of the interactions, that we fixed 
to 1, and we took U0  =  4 so that both potentials are equal at half range.

The numerical analysis is carried out using ‘microcanonical’ molecular dynamics 
(MD) simulations of the dynamics defined by the Hamiltonian in equation (2), which 
conserves energy and momentum, and we restrict ourselves to initial conditions such 

that P = 0. We use random initial states with uniformly distributed {ri, θi}i=1,...,N  and 
{pi,ωi}i=1,...,N drawn from centered reduced Gaussian distributions. Such configurations 

are placed in a square box with periodic boundary conditions and, after giving some 
time for the dynamics to settle in, they are subjected to either a numerical annealing 
or a high-rate quench. We assume that the outputs of these microcanonical simulations 
can be interpreted from the point of view of canonical-ensemble statistical mechanics 
when sampling over initial conditions. This equivalence supposes that the dynamics 
defined by the Hamiltonian (2) are ergodic in phase space. This ergodic hypothesis is 
often made in suciently interacting Hamiltonian systems, since the structure of their 
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dynamics guarantees that Liouville’s theorem applies, and that a flat distribution of 
microstates in phase space is stable when the dynamics are run [16]. While Liouville’s 
theorem is not sucient to guarantee ergodicity, here the hypothesis is supported 
by the results of [13], where it is shown that mean-field canonical predictions for the 
magnetisation as a function of the energy and momentum qualitatively reproduce the 
numerical results obtained with MD simulations. Further details on the simulation 
and numerical methods are provided in appendix A. The phase diagram of this model 
has been fully characterised in the case K  =  0 [17]. Because aligned spins also attract 
each other, the spin fluid undergoes a liquid-gas phase separation at suciently low 
temperature and density [17]. In the present paper we concentrate on the physics of 
homogeneous phases and therefore set the density to ρ = N/L2 ≈ 2.81 (or, equivalently, 
φ ≈ 0.55 in terms of the packing fraction defined as φ = ρπσ2/16).

3. Finite-size ground states

3.1. The parameter space

In order to fully understand the conditions for the observation of moving states or 
topological defects, we start by focusing on equilibrium states in the lowest attain-
able energy configuration. They correspond to minima of the potential energy, which 
we interpret as states at very low temperatures and therefore call ‘ground states’. As 
shown in figure 1, we find three kinds of ground states depending on the values of K 
and N:

	 (i)	� Polar states: These are fully magnetised states with m  =  1, with collective motion 
taking place in the direction opposite to the magnetisation as imposed by the 
momentum conservation, vG = −Km.

	 (ii)	� Solitonic states: These are non-moving states with m ≈ 0, characterised by a 
continuous rotation of spins in one direction.

	 (iii)	� Vortex states: These are non-moving states with m ≈ 0, characterised by 4 topo-
logical point defects, 2 vortices and 2 anti-vortices.

Importantly enough, neither local nor global ordering of velocities is observed in the 
solitonic and vortex states. The reason for this is the high kinetic energy cost of the 
magnetised states, which increases with K and N like NK2. As these parameters are 
increased starting from a polar state, the system produces topological defects as a 
way of setting the global magnetisation to zero and therefore escape the collective 
motion imposed by momentum conservation. The strong frustration induced by the 
high kinetic energy cost associated to magnetised states with a finite velocity of the 
centre of mass has thus the eect of generating topological defects in the equilibrium 
ground states. Note that these defects are not thermal excitations and should not be 
confused with the vortices observed at the BKT transition in lattice models of XY spins 
[18, 19]. In fact we have shown in [17] that no BKT transition occurs in the K  =  0 limit 
of the model (2).

https://doi.org/10.1088/1742-5468/ab5702
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3.2. Continuum theory

The nature of the observed ground states, can be further confirmed by considering 
the solutions of a coarse-grained continuum theory for the magnetic properties of the 
model. We define Lkin, Lsv and Lint, the kinetic, spin-velocity and interaction contrib
utions to the Lagrangian. They read

Lkin =
N∑
i=1

(
1

2
v2i +

1

2
ω2
i

)
,� (6)

Lsv = K
N∑
i=1

vi · si ,� (7)

Lint = −1

2

∑
k �=i

U(rik) +
1

2

∑
k �=i

J(rik)si · sk ,� (8)

respectively, with vi = ṙi and ωi = θ̇i. The symbol 
∑

k �=i
 indicates a double sum over i 

and k from 1 to N with no repeated indices included. Focusing first on the interaction 

term Lint, we assume that the spins are locally well aligned, so that si · sk ≈ 1− θ2ik/2, 
where θik = θi − θk, in the neighbourhood defined by the range of J(r). Therefore,

Lint ≈ −1

2

∑
k �=i

U(rik) +
1

2

∑
k �=i

J(rik)−
1

4

∑
k �=i

J(rik)θ
2
ik .� (9)

The main eect of the first two terms is to ensure the uniformity of the density profile 
ρ(r) ≈ ρ0. Accordingly, we will discard them in the following and concentrate on the 
last term, that we henceforth call V , and want to approximate using a continuum 
description. To do so, we assume that there exists a discrete mesh of allowed positions 
for the particles [20], with arbitrarily small spacing, so that we may define coarse-
grained fields on this mesh as:

V ≡
∑
k �=i

J(rik)θ
2
ik =

∑
r

∑
r′

∑
k �=i

J(r, r′)(θ(r′)− θ(r))2δ(r − ri)δ(r
′ − rk)

�

(10)

with δ being Kronecker symbols. First, rewriting the sum over r′ after the transfor-
mation r′ → r + d, and using the rotational and translation invariances of J; second 
expanding the dierence of θ to the first order, we obtain

V ≈
∑
r

∑
r+d

∑
k �=i

J(d) (∇θ(r) · d)2 δ(r − ri)δ(r + d− rk) .� (11)

We now take the continuum limit by taking the mesh size to zero and find that in the 
absence of singular values of ∇θ:

V a→0−−→
∫

d2r ρ(r)

∫
d2x ρ(r + x)J(x)(∇θ(r) · x)2 .� (12)

For J(r) = J0Θ(λ− r), with Θ a step function, and recalling that ρ(r) ≈ ρ0, we finally 
obtain, after integration of the second integral:

https://doi.org/10.1088/1742-5468/ab5702
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V ≈
∫

d2r ρ20πJ0
λ4

4
(∇θ(r))2 .� (13)

The two other contributions to the Lagrangian, namely, Lkin and Lsv are local, so that 
the same procedure as above can be trivially applied. Finally, we can write a continuum 
Lagrangian theory of the form

Lc =

∫
d2r ρ0

[
1

2
θ̇2(r)− c2

2
(∇θ(r))2 +

1

2
v2(r) +Kv · ê(θ(r))

]
,� (14)

where c2 ≡ J0Nλλ
2/16 with Nλ ≡ ρ0πλ

2 the number of particles in one interaction 
volume, and ê(θ(r)) is a unit vector pointing in the direction given by θ. This form 
of the Lagrangian clearly shows that Kv plays the role of a field, and creates a non-
perturbative term even in the low-temperature expansion which otherwise gives a free 
theory for the XY model at low temperatures [18].

We can now write the Euler–Lagrange equations for θ and v to describe the low-
energy regime of this theory,

v = −Kê(θ(r)) ,� (15)
(

∂2

∂t2
− c2�

)
θ = v · ê

(
θ(r) +

π

2

)
,� (16)

Figure 1.  Zero-temperature homogeneous states. (a) Nature of the ground states 
found numerically in the K-N plane: polar states (red triangles), solitonic state 
(yellow squares), vortex states (blue disks). Only the polar state is a collectively 
moving state. The nature of each point was determined using a majority rule 
over 1 to 10 dierent realizations of the annealing procedure. The crossover lines 
correspond to equations (23), (25) and (27). (b) Snapshots of a polar state obtained 
for N  =  128, and K  =  0.2, showing both the spins (top) and the corresponding 
velocities (bottom). The unit length for spin arrows is K  =  0.2 times the one used 
for the velocities. (c) Snapshot of a vortex state (top), obtained for N  =  768, and 
K  =  0.4, and of a solitonic state (bottom), obtained for N  =  128, and K  =  0.5.

https://doi.org/10.1088/1742-5468/ab5702
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where the additional π/2 comes from the derivative of ê(θ(r)) with respect to θ. 
Interestingly, at this level of description, equation (15) selects solutions such that the 
local momentum is zero. When injecting this zero-momentum condition into the equa-
tion on θ, we simply recover a wave equation on θ: this is the usual spin-wave regime 
[18] at low temperatures, that describes magnetised low-temperature states in finite 
size. To describe states that are close in energy to a finite-size polar moving state, we 
set θ(r) = θ0 + δθ(r), and v = −Kê(θ0) + δv(r) corresponding to a small perturbation 
around a polar state aligned along θ0, say θ0 = 0. The Lagrangian evaluated for such 
states reads,

Lc =

∫
d2r ρ0

[
1

2
δ̇θ

2
(r)− c2

2
(∇δθ(r))2 +

1

2
v2(r)−K2 cos δθ(r) +Kδv(r) · ê(δθ(r))

]
,� (17)

and contains a field term K2 cos δθ that is independent of the amplitude of the veloc-
ity perturbation. In particular, it yields a term of order one, contrary to the other 
terms in the Lagrangian that are vanishingly small for δv ∼ δθ � 1. Therefore, close to 
low-temperature polar ground states, the eective theory describing spin alignment is 
essentially a sine-Gordon theory with a field of amplitude K2.

The sine-Gordon theory is known to feature solitonic solutions and vortex patterns, 
as reported in previous numerical works [21, 22]. We shall here briefly discuss both 
families of states. Solitons are propagative solutions of the sine-Gordon theory whose 
functional form can be shown to be [21]

ϑ(ξ) = 4χ arctan exp
(
γ
√

hsG(ξ − ξ0)
)
− χπ,� (18)

where ϑ is the orientation of the local magnetisation field, ξ = x− ct is the usual vari-
able of propagative solutions, with a propagation velocity c, ξ0 is an oset for this vari-
able that sets the position of the centre of the soliton, χ = ±1 is the so-called polarity 
of the soliton, γ = 1/

√
1− c2 is a Lorentz factor associated to the propagation velocity, 

and hsG is the in-plane magnetic field of the sine-Gordon theory. This function repre-
sents a localised rotation of 2π of the magnetisation field along the x direction. Noticing 
that in simulations we only ever see one such rotation over the size of the whole box, 
we plot in figure 2(a) the magnetic field with a constant amplitude and an orientation 
defined by the following function of position r = (x, y),

ϑΛ(x, y) = π − 4 arctan exp (x− x0)− 4 arctan exp [x− (x0 − 2Λ)]− 4 arctan exp [x− (x0 + 2Λ)] ,
� (19)

where 2Λ is the range of the box in which we plot the field, that is centered on (0, 0). 
This field is a perfect reproduction of the arched states that we observe at low temper
atures in the numerical simulations, as shown in figure 2(b), thus justifying the name 
‘solitons’ that we give them. As there is neither damping nor forcing in the present 
model, the soliton propagation velocity is a priori free to select any value [23]. In prac-
tice, as demonstrated by the video shown in the supplementary material (available 
online at stacks.iop.org/JSTAT/2020/013209/mmedia), we find that solitonic patterns 
do move in simulations, and that their propagation velocity fluctuates.

The sine-Gordon equation also features vortex solutions, but their exact functional 
shape is in general hard to derive. It is customary to consider vortex structures that 
are solutions of the Laplace equation, and to assume that they are little deformed by 

https://doi.org/10.1088/1742-5468/ab5702
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the addition of the non-linear term in the sine-Gordon equation [24, 25]. One-defect 
solutions can then be written as

ϑ±(x, y) = ± arctan

(
y − y0
x− x0

)
+

R

2
log

[
(y − y0)

2 + (x− x0)
2
]
,� (20)

where (x0, y0) are the coordinates of the centre of the defect, R is a parameter that 
tunes the twist of the spiral surrounding the defect, and the sign in front of the arctan 
determines whether the defect is a vortex (+) or an antivortex (−). An example of a 
4-vortex configuration obtained with this functional form is shown in figure 2(c), and 
compared to a 4-vortex numerical ground state shown in figure 2(d). In this example, 
we chose the positions of the centers of the defects as well as the value of R to best fit 
the numerical observations.

Altogether the low energy magnetic excitations of the continuous theory perfectly 
match the very low temperature magnetic states obtained numerically, confirming the 
intuition of the mechanism whereby the system escapes the kinetic energy cost of the 
moving polar state, when K or N are too large. Note, however, that this description 
fails to capture the velocity configuration. Indeed, in the continuum theory, we assume 
that the velocities (like the spins) are essentially all aligned. While this perturbative 
approach enables us to predict topological magnetic excitations, that are quite dierent 
from a perfect polar state, it still predicts that the velocities should be opposed to the 
magnetisation field everywhere, whereas in simulations soliton and vortex patterns do 
not display any velocity alignment, as we further discuss in section 5.

3.3. Energetic arguments

One can further estimate the energy of these states and thereby obtain the range of 
parameters in which each state is observed. The total kinetic and magnetic energy per 
particle in a moving polar state is

Epol =
1

2
K2 − 1

2
zJ̄ + EU

� (21)
where the velocity is everywhere assumed to be −Km, z is the number of neighbours 
of each particle, and J  is the mean value of the ferromagnetic coupling for the inter-
particle distances r̄ in the considered configuration. The energy contribution due to 
the repulsive interaction EU is likely to be very similar in the three dierent states of 
interest and therefore does not need to be evaluated.

The energy of a solitonic state can be approximated as follows. Let us consider that 
the rotation is smooth, so that two neighbours along the direction of the rotation (on 
average half the neighbours) are misaligned by an angle 2πr̄/L, while spins are per-
fectly aligned along the other direction. Then, the total energy of a solitonic state can 
be approximated by

Esol ≈ −zJ̄

2

[
1

2
cos

(
2πr̄

L

)
+

1

2

]
+ EU .� (22)

In both cases, we set the number of magnetic neighbours to 6 (in agreement with the 
numerical observations at the density used in the simulations), and compute the typical 
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value of the ferromagnetic coupling by taking J̄ = J(r̄). For a triangular lattice one has 
that r̄ = σ/2

√
φ.

Equating now the two energies Epol and Esol yields an equation for the line separat-
ing polar and soliton ground states,

Kpol−sol
c =

√
zJ̄

2

(
1− cos

2πr̄

Lc

)
=

√
zJ̄

2

(
1− cos

[
2πr̄

√
ρ

Nc

])
,� (23)

which is the lower dashed black line reported in figure 1. It captures remarkably well 
the crossover between the two kinds of states. Note that approximating the cosine by 

its Taylor expansion up to second order, yields Kpol−sol
c Lc ≈

√
π2zJ̄ r̄2 , and stresses that 

K and L play a similar role in breaking the magnetic order.
To predict the curve that separates the solitonic and vortex states, we use an exact 

expressions for the excess energy of a vortex-antivortex pair compared to a fully mag-
netised configuration in an on-lattice XY model [18]. Taking into account only nearest-
neighbour pairs of defects, this excess energy can be written as

∆E2dXY
4D-pol = E2dXY

4D − E2dXY
pol ≈ 8πJ̄ ln

d

a
,� (24)

where d is the distance between the two defects and a is the size of the centre of the 
defect. Here d  =  L/2 and the vortex core diameter is of the order of the particle-particle 

spacing a � r̄. We then equate ∆E2dXY
4D-pol to Esol − Epol in its Taylor-expanded form and 

find a critical value for the number of particles above which four vortices states are 
more favorable than the solitonic ones:

N sol-vor
c = exp (2φz) .� (25)

This corresponds to the vertical line in figure 1. While it does correspond to the size 
above which we mostly observe vortices, we note that K also plays a role in the change 
between soliton and vortex states that is not explained by this crude estimate of the 
energy. A way to take into account the eect of K on the vortex state energy is to 
reckon that K plays the same role as an in-plane field in the magnetic model analog, 
and to use the expression for the energy of a vortex-antivortex pair in a field [22]:

Figure 2.  sine-Gordon solitons and vortices. (a) sine-Gordon soliton found in 
the continuum theory, equation (19), with Λ = 1, x0  =  0.5, plotted in [−1;1]2. (b) 
Ground state for N = 512,K = 0.3 found in numerical simulations. (c) Laplace 
vortex-antivortex state in the continuum theory, equation (20), with R  =  0.295, 
repeated over periodic boundary conditions and centered on the same points as in 
panel (d). (d) Ground state for N = 768,K = 0.4 found in numerical simulations.
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∆Eh
4D-pol ≈ E2dXY

4D (h)− Epol(h) = ∆E2dXY
4D-pol + 8π2

√
h

(√
d

a
− 1

)
.� (26)

In the magnetic analogue h is the amplitude of an external in-plane field, while here 
it is an eective field due to the spin-velocity coupling K. According to the eective 
sine-Gordon theory (see section 3.2), h  =  K2. An alternative and more intuitive man-
ner to obtain the quadratic dependence on K is to recall that equation (26) gives the 
excess energy of vortex-antivortex pairs with respect to a magnetised configuration 
under the same field. As a consequence, both energies should in principle be written 
in the same frame. In our case, however, we are comparing the energy of a non mov-
ing vortex configuration to that of a moving polar phase. We should therefore trans-
late all velocities by vG = −Km. This change of reference frame creates, however, a 

new K-dependent term in the Lagrangian LGal = −K2m ·
∑N

i=1 si, which contains an 
eective field on spins of magnitude K2. Finally, replacing the field in the expression 
of the in-field excess energy of vortices and equating E2dXY

4D  to Esol yields the following 
equation with a K dependence:

K4D-pol
c =

2φz − ln
√
Nc

π
(√

Nc − 1
) .� (27)

The resulting line is shown, when it is higher than the zero-field one, in figure 1. It fits 
numerical observations well, even though the crossover between solitons and vortices 
is rather broad as we are working with finite and moderately small system sizes. Note 
that equations (23) and (27) predict that the soliton states disappear at a finite value 
of N: this is expected as solitons carry a non-zero topological charge (the vector field 
winds once around one direction of the Euclidean torus), and should not survive in the 
thermodynamic limit, unlike pairs of vortices and antivortices (the total winding num-
ber of which is 0). Furthermore, the number of vortices or solitons, is a priori indepen-
dent of the size of the system. Indeed, while defects usually appear in equilibrium due 
to local frustration, such structures here develop only because the total magnetisation 
should be zero for the kinetic energy to be low, resulting in a global frustration between 
the conservation of the momentum and the one of the energy. As a result, there is no 
typical length scale associated to frustration smaller than the size of the system itself, 
and the m  =  0 patterns are scale-free. One can also reason from the point of view of 
energetic costs: additional vortices or solitons would only create more local curvature, 
leading to an increased magnetic cost, but no kinetic energy gain. Finally, one could a 
priori circumvent defect formation by scaling K with N, in the same way that one usu-
ally rescales interaction constants in mean-field couplings. Here, the right choice would 
be K ∼ N−1/2 so that the kinetic energy of a magnetised state remains unchanged when 
increasing N. However, we choose not to discuss such scalings at length in this paper, 
for two dierent reasons. First, since the collective speed in this system scales like K, 
such a coupling would still lead to vanishingly small velocities. Second, such interac-
tions, while they are used in fully-connected descriptions, are rather artificial, and 
would take this model even further from realistic microscopic models.
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4. Finite temperature states

4.1. Magnetisation as a function of temperature

Since we are performing microcanonical simulations, statistics can only be obtained at 
one value of the energy by sampling initial conditions. Rather than using the energy 
as a control parameter, we assume ergodicity and treat the system as one of statistical 
mechanics, as explained in section 2. In particular, we introduce the statistical temper
ature T, which is usually measured using velocity fluctuations. In the present case the 
coupling between the velocities and the spins modifies, however, the usual equipartition 
relations [13]:

T =
1

N

N∑
i=1

ω2
i −

(
1

N

N∑
i=1

ωi

)2

,� (28)

2T =
1

N

N∑
i=1

p2
i −

(
1

N

N∑
i=1

pi

)2

−K2


 1

N

N∑
i=1

s2i −

(
1

N

N∑
i=1

si

)2

 .� (29)

The latter expression shows that the fluctuations of momenta and spins are coupled as 
long as K �= 0, in such a manner that the temperature is not directly proportional to 
the translational kinetic energy. The former, on the other hand, shows that the temper
ature is proportional to the rotational kinetic energy, which is thus the most natural 
thermometer. Having checked that both definitions yielded the same mean value of 
the temperature, we heretofore only refer to the mean temperature over independent 
configurations at the same energy, 〈T 〉, as T.

We start by studying the eects of the finite temperature on the magnetic proper-
ties of the homogeneous phases of the system using the (intensive) magnetisation modu-
lus m = 〈|m|〉, which is the order parameter of the polar phase. Figure 3(a), displays 
the equilibrium value of m against T for increasing values of K at fixed N (main panel) 
or increasing values of N at fixed K (inset). When varying K, we observe three types 
of behaviours.

	 (i)	� For small K, when the ground state is the moving polar state, we observe a 
finite-size crossover between a (moving) ferromagnetic state at low temperatures 
and a non moving paramagnetic state at high temperatures (red-to-orange curves 
of figure 3(a)). This is the same crossover as the one reported in the case K  =  0 
between the magnetised ground state and the paramagnetic high temperature 
phase: the polar state does not survive in the thermodynamic limit in 2d due 
to low energy spin waves excitations [17]. The eect of K is to decrease the 
value of the magnetisation modulus at finite temperatures with respect to the 
K  =  0 case. This can be understood by analyzing the spin waves excitations at 
low temperature within the framework of the continuum-limit theory described 
in section 3.2. Indeed, close to T  =  0 these spin-waves are described by a free 
Gaussian theory, that comes from the Taylor expansion of the spin-spin interac-
tion terms in the Hamiltonian at second order [26]. Spin waves suppress global 
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magnetisation as the temperature increases. Furthermore, the eective spin-spin 
coupling decreases with temperature when taking into account higher-order terms 
in the Taylor expansion. In the K �= 0 case, an eective field is generated on top 
of the spin-spin interaction term. The direction of this eective field is opposite 
to the one of global magnetisation, and its amplitude grows with K. As a result, 
the eective spin-spin coupling is further decreased by the addition of K, leading 
to stronger spin-wave suppression of the magnetisation as K increases. In short K 
favors the bending of the magnetisation field.

	 (ii)	� For large K, when the ground state has zero magnetisation modulus because of 
its topological structure, the magnetisation modulus crosses over from m � 0, to 
a high-temperature paramagnetic regime where m ∼ 1/

√
N .

	 (iii)	� When K takes moderately large values, although the ground state remains non 
polar (m(T = 0) = 0), the magnetisation grows to a maximum at a finite temper
ature, before it crosses over to the paramagnetic regime at high temperatures. We 
shall focus on this intriguing phenomena in the next section 4.2.

When increasing N at a fixed K, as shown in the inset of figure 3(a), the same three sce-
narii are observed. This is another sign of the qualitative similarity between the roles 
played by K and N, that was already pointed out in section 3.

It is also customary in the study of XY spins to introduce a ‘reduced’ susceptibility 
associated to m [17, 19, 27],

X|m| = N
(
〈m2〉 − 〈|m|〉2

)
.

� (30)
While it is not the usual response function of a magnetic system to an external field, 
this quantity captures the broadening of the distribution of |m| that occurs at the finite-
size paramagnetic–ferromagnetic crossover with a peak that grows and narrows with 
the system size [27] In figure 3(b), we plot the ‘reduced’ susceptibility per particle, 
χ|m| = X|m|/N against the temperature T defined in equation (28), corresponding to the 
magnetisation curves shown in figure 3(a). Upon increasing K at a fixed N (main panel), 
the susceptibility peak observed in the case of a polar ground state grows with K and 
is shifted towards lower temperatures. The same behaviour is observed upon increasing 
N at K  =  0 [17]. A peak is also observed in cases in which the magnetisation features a 
local maximum (green curve in figure 3(b)), and it is even higher and shifted to lower 
temperatures compared to the peak observed for polar states. Finally, the peak is sup-
pressed at K large enough, when the magnetisation simply crosses over from the one of 
a topological ground state to that of a paramagnet. Likewise, when varying N at a fixed 
value of K (inset), the same scenario is observed: the peak of the extensive susceptibil-
ity X|m| = Nχ|m| grows, is shifted to lower temperatures, and is then suppressed. This 
behaviour is in sharp contrast with the smooth, algebraic evolution of the height of the 
peak reported in the case K  =  0 [17].

4.2. Unusual order-by-disorder scenario

As described in section 4.1, a surprising feature of the model is that, for some finite 
value of K or N, the magnetisation exhibits a local maximum at a finite temperature. 
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In other words, the order parameter grows when thermal fluctuations are switched 
on. This behaviour is akin to order-by-disorder transitions [14, 15, 28] observed in 
frustrated magnets, whereby a system with a non-trivially degenerate ground states 
develops long-range order by the eect of classical or quantum fluctuations. In such 
geometrically frustrated spin models, the ObD phenomenon is due to a huge dispropor-
tion in the density of low-energy excitations associated with a specific ground state. 
Here the mechanism must be of a dierent nature.

In fact, in the present case the growth of a spontaneous magnetisation upon increas-
ing the temperature is essentially due to the fact that the kinetic energy cost associated 
to collective motion in polar states decreases with T. The reason is that, as already 
discussed in section  3, the magnetisation modulus decreases as the temperature is 
increased due to spin waves fluctuations, and so does the kinetic energy cost induced by 
momentum conservation. Hence, at moderately large K magnetised states become less 
and less costly compared to the soliton or vortex ones upon increasing the temperature, 
until a point where the free energy of the (moving) polar states crosses the one of the 
(non moving) soliton or vortex states and become the preferred minimum, in a way 
similar to a first-order phase transition. When the temperature is further increased, 
the topological states become unstable, and the polar minima continuously merge into 
a single paramagnetic minimum, as in the K  =  0 case [17]. This scenario is pictorially 
sketched in figures 4(a) and (b) in terms of a Landau-like free energy representation. 
The fact that the system develops a spontaneous magnetisation and exhibits collective 
motion with a finite velocity of the centre of mass, upon increasing the temperature 
starting from a topological ground state with zero magnetisation, is thus due to the re-
entrant shape of the surface separating the polar states from the solitonic ones in the 
extended phase diagram of figure 1, when a vertical axis corresponding to temperature 
is added.

Figure 3.  Finite-temperature behaviour and Order by Disorder. (a) Magnetisation 
modulus versus temperature for K = 0, 0.05, 0.06, 0.07, 0.1, 0.2 at N  =  2048 (main 
plot), and for N = 128, 256, 512, 1024, 2048, 4096, 8192 at K  =  0.1 (inset). (b) The 
reduced susceptibility per particle versus temperature for the same parameters as 
in panel (a).
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Note that this interpretation relies on the existence of metastable states, corre
sponding to local stable minima of the free energy at finite temperature. In the ther-
modynamic limit, metastablity is forbidden in finite dimensional systems due to the 
convexity of the free energy. The ObD-like transition described here is in fact only a 
smooth crossover, and is continuously suppressed as the system size is increased. Yet, 
at finite N one can explicitly check in numerical simulations that both the topologi-
cal and polar states are indeed locally stable at low enough temperature, as explained 
below. First, we fine-tune K and N to get a system very close to the polar-soliton 
ground-state crossover, and we choose N to be rather small (here N = 128,K = 0.25). 
We then let the dynamics run at a finite but low temperature, T  =  0.03. As shown 
in figure 4(c), switches between low- and high-magnetisation states can be observed, 
proving that both states are indeed local minima of the free energy. However, even for 
such small systems, one must wait very long times for switches to happen: this is an 
indication that the energy barrier between the two states is rather high compared to 
thermal fluctuations. One indeed expects that the energy barrier between a solitonic 
pattern and a polar state should scale linearly with the system size, since a collective 
reorganization of the spin degrees of freedom is necessary to switch between them.

Another indication of the existence of topological non-magnetised states beyond the 
range of parameters for which they are the equilibrium configurations is provided by 
the following observation. Consider a system with K and N such that at zero temper
ature the ground state is the polar one, and quench it from a high-temperature to a 
very low temperature. The result, shown in figures 4(d)–(g), shows that because non-
equilibrium vortices appear during such quenches (as already observed for K  =  0 [17]), 
the system often ends up in a 4-vortex state (whose centers being located at the equi-
distant points where red, yellow, green and blue regions meet).

4.3. Qualitative free energy expression

To go beyond the sketchy description of the free energy used in figure 4, we introduce 
simple expressions for the free energy densities of both families of states at low temper
atures and in spatially homogeneous states, in the same spirit as the discussion of the 
energy of the dierent ground states (section 3). First, the energy per particle of a soli-
ton will be considered to be unaltered by temperature, and to remain of the same form 
Esol as in equation (22). Then, we approximate the associated entropy per particle, Ssol, 
by considering that it is only associated to the number of ways in which one can draw 
a soliton pattern of size L with N particles, separated from their nearest neighbours by 
a typical distance r̄,

Ssol =
1

N
ln

(
L

r̄

)
.� (31)

The energy of a polar moving state at finite temperature should depend on the total 
magnetisation of the system to reflect the momentum conservation constraint. Therefore, 
we modify the expression of Epol introduced in section 3 to include this eect,

Epol = −1

2
zJ̄ +

1

2
K2m(K,N ;T )2 ,� (32)
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temperatures and for all values of K below Kc is not known exactly. We thus choose to 
drop the K dependence and to approximate m by the exact expression obtained within 
a spin-wave approximation [19, 27],

m(N ;T ) = exp

(
− T

8πJ̄
ln(bN)

)
,� (33)

where b is a constant that was evaluated from finite-size scaling [17] in the case K  =  0, 
yielding the value b ≈ 5.5. Finally, assuming that the system is well described by the 
spin-wave approximation in the considered domain of temperatures, we approximate 
the entropy per particle of magnetised states by counting how many ways there are to 
fit waves with a typical wave-length in an L× L box,

Figure 4.  Coexistence and metastability. (a) Sketch of the evolution of the free 
energy as a function of the magnetisation (along a particular direction) with 
increasing temperature (bottom to top) for low values of K: the low-temperature 
global minima are polar (Pol) and simply follow a Mexican hat scenario until 
they merge into a paramagnetic (Para) state, while soliton and vortex (Sol,V or) 
states are only metastable at low temperatures. (b) Free energy for K � Kc: the 
topological states are now global minima of the free energy until they cross the 
locally stable polar states at a finite temperature. At an intermediate temperature, 
when the Pol and Sol,V or states have about the same free energy, switches between 
the two minima are observed in the Hamiltonian dynamics, as shown in (c). (c) 
Switches between low- and high- magnetisation regimes in the course of time for 
N = 128,K = 0.25,T = 0.03. (d)–(g) snapshots after a quench of N  =  8192 particles 
at K  =  0.03 from T ≈ 2 to T ≈ 0.04, at times t = 50, 150, 250, 4000 after the quench, 
respectively. The dierent colours represent dierent local magnetic orientations.
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Spol =
1

N
ln

(
L

ξsw(N ;T )

)2

,� (34)

where we took the typical wave-length to be the spin-wave correlation length ξsw, that 
itself is well approximated, at low temperatures, by [19]

ξsw = Lm(N ;T ) .� (35)
We then have simple approximations for the free energies per particle Fpol and Fsol 
associated to polar and soliton states at low temperatures:

Fpol = −1

2
zJ̄ +

1

2
K2m(K,N ;T )2 +

2T

N
lnm(N ;T ) ,� (36)

Fsol = −1

2
zJ̄

[
1

2
cos

(
2πr̄

L

)
+

1

2

]
− T

N
ln

(
L

r̄

)
.� (37)

We can also approximate the free energy per particle of paramagnetic states by assum-
ing that their magnetic energy averages to 0, and that their entropy is simply given by 
the choice of random angles for all particles, so that

Fpara = −T ln 2π .� (38)
The expressions (36)–(38) for the dierent branches of interest of the free energy den-
sity can be used to estimate which state is favoured at a given temperature for a given 
value of K and N. In particular, we can determine parameters such that Fsol = Fpol for 
K � Kc. Indeed, at the temperature such that these two branches cross, the system 
goes from a low-magnetisation soliton to a magnetised state. The crossing between Fsol 
and Fpol therefore corresponds to the temperature Tmax at which a maximum of the 
magnetisation is reached, with height mmax. The results obtained when varying K for 
N  =  128, as in figure 3, are shown in figure 5. As discussed in section 4, the main eect 
of K is to bring magnetic states higher up in energy at very low temperatures, so that 
they cross the solitonic branch at a finite temperature below the one at which it crosses 
the paramagnetic branch. From these simple arguments, one also predicts that the 
soliton branch directly crosses the paramagnetic branch for all values of K larger than 
the value Kmax for which Fsol, Fpol and Fpara meet at a single point (here, Kmax ≈ 0.36). 
These simple arguments thus allow us to rationalise the finite temperature results pre-
sented above.

5. Ordering of velocities

We are yet to describe how velocities order in polar moving states. Because of the 
conservation of the total momentum, any state with a macroscopic magnetisation also 
moves with a collective velocity vG = −Km. Therefore, one expects velocity vectors to 
align together (and to select the same speed) as the temperature is lowered. It is thus 
interesting to define an order parameter that reflects the alignment properties of the 
velocities,
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µ =

〈∣∣∣∣∣
1

N

N∑
i=1

v̂i

∣∣∣∣∣

〉
,� (39)

which reflects the alignment of unit velocities regardless of the velocity moduli, and is 
often called the polarity in the context of active matter [3]. We furthermore define an 
observable that measures the alignment of unit velocities onto the spins,

ν =

〈
1

N

N∑
i=1

v̂i · si

〉
.� (40)

The variations of µ and ν with temperature, obtained for increasing K at fixed N or 
increasing N at fixed K are shown in figures 6(a)–(d).

For low values of K and N, such that the system has a polar ground state, both µ 
and ν grow to 1 at low temperatures. However, these curves do not behave like the 
magnetisation: µ and ν become significantly larger than zero only at very low temper
atures (note the logarithmic scale of the µ and ν axis). This is even more striking when 
comparing the magnetisation and velocity fields at low temperatures, as illustrated by 
the snapshots in figures 6(f)–(i). In particular, in the snapshots figures 6(f) and (g), we 
observe that even deep in the magnetised phase, where the system moves with a col-
lective velocity, both the orientations (colours) and moduli (lengths and thicknesses) 
of the velocity arrows seem to vary a lot across the system. This comparatively weak 
ordering of the velocities compared to that of the spins can be explained by focusing on 
the distribution of velocity vectors. Rewriting the equipartition equation (29) associ-
ated to momenta in terms of the velocities, one finds that

2T =
〈
v2i
〉
− 〈vi〉2 + 2K (〈vi · si〉 − 〈vi〉 · 〈si〉) .� (41)

In particular, deep in the magnetised phase, one can assume that all spins are essen-
tially aligned and equal to the (unit) magnetisation vector, si ≈ m. In this simple case, 
the spin-velocity terms in equation ( 41) cancel out, so that the usual equipartition rela-

tion, 2T = 〈v2i 〉 − 〈vi〉2, is recovered. Consequently, at very low temperatures, the veloc-
ity vectors are essentially drawn from a Gaussian distribution centered at vG = −Km, 
and with an isotropic variance T. This distribution is sketched as a density plot in 
figure 6(e), with values growing from gray to yellow. From this sketch, it is immediately 
visible that, as long as the standard deviation of the velocity distribution is larger than 
K, meaning that T � K2, there is a significant probability for velocities to be pointing 
in any direction other than that of vG. Their moduli, however, are skewed towards 
larger values. Hence the aspect of the snapshot in figure 6(g), in which velocities dis-
play a low polar order, but are biased towards larger, red arrows. In practice, for polar 
order to be visible, like in snapshot figure 6(i), one needs to reach temperatures such 
that T � K2, thus ensuring that the Gaussian distribution of the velocities does not 
take significant values close to v = 0. This constraint on the value of the temperature 
to observe polar order of the velocities is usually absent in models that feature collec-
tive motion. The reason for this is two-fold. First, in abstract models of self-propelled 
particles like the Vicsek model [29], the speed of particles is often fixed to a nominal 
value, so that the distribution of the velocities is naturally o-centered and very sharp. 
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In that sense, a conservative setting makes it harder to observe a polar order of the 
velocities, since it imposes constraints on the width of the speed distribution. Second, 
in order to stabilise the polar state, K needs to be small enough, so that the velocity of 
the centre of mass is never that large and µ can only grow at very low temperatures.

For very large values of K or N, such that the ground state is not polar and no ObD 
is observed at finite temperatures, µ remains low at all temperatures. This is expected, 
since no collective velocity develops in this case. Furthermore, ν also remains small, 
thus indicating that the velocities do not locally align on the spins either. In other 
words, in vortex and soliton structures, the velocities do not draw solitons or vortices 
themselves, but simply remain disordered at low temperatures: velocity alignment is 
destroyed. This is proof that there is no true microscopic source of velocity alignment. 
At first sight, one would have expected the introduction of the self-alignment of the 
velocity on the spin in the Lagrangian to be responsible for a transfer of the ferromagn
etic alignment of the spins to the velocities, even in vortex or soliton states. This is not 
the case because the alignment of the velocities is actually entirely driven by the con-
straint imposed by the momentum conservation: vG = −Km = 0. This constraint is 
only global and promotes local alignment between the velocities in a very indirect way.

Finally, for intermediate values of K or N, however, a macroscopic magnetisation 
is observed at finite temperatures, following the ObD scenario described in section 4.2. 
As a consequence, a collective velocity is also observed at finite temperatures, and it is 
accompanied by a local maximum of both µ and ν. In other words, the ObD phenom
enon saves collective motion from a total extinction caused by topological defects at 
finite temperatures in a finite range of the parameters. Furthermore, in the range of K 
and N such that we observe switches between polar and soliton states, such as those 
described in figure 4, the collective velocity itself also switches between low and high 

Figure 5.  Low-temperature free energies of magnetic and solitonic branches. Free 
energies Fsol (dashed blue line) and Fpara (dashed gray line) and Fpol (full lines with 
dierent values of K between 0 (yellow) and 0.35 (red)) defined in the text versus 
temperature, for N  =  128.
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values. This spontaneous intermittent motion is highly unusual in a conservative set-
ting, as such behaviours are usually expected in systems with friction, like granulars 
[30], or activity, such as Escherichia coli bacteria that alternate between ‘runs’, i.e. 
ballistic motion along straight lines, and ‘tumbles’, i.e. pauses in the motion during 
which they re-orient themselves [31].

Figure 6. Ordering of velocities. (a) Polarity of the velocities versus temperature, in 
log scale, for N  =  2048 and varying K = 0, 0.05, 0.06, 0.07, 0.1, 0.2. (b) Polarity versus 
temperature, this time fixing K  =  0.1 and taking N = 128, 256, 512, 1024, 2048, 4096, 8192. 
(c) Spin-velocity alignment versus temperature, in log scale, corresponding to (a). (d) 
Spin-velocity alignment versus temperature, in log scale, corresponding to (b). The 
colours are the same as in figure 3. (e) Sketch of the distribution of velocity vectors in 
magnetised phases, shown as a density plot, with values growing from grey to yellow. 
The distribution is centered on vG, at a distance Km from the origin (red line), and 
has a standard deviation of the order of 

√
T  (blue circle). (f)–(g) Snapshots of the 

magnetisations and velocities, respectively, for N  =  512 and K  =  0.1 at T ≈ 7 · 10−3. 
The colour of each vector represents its orientation, while its thickness is proportional 
to its length. (h)–(i) Snapshots of the same system at T ≈ 3 · 10−6.
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6. Discussion and conclusion

We studied a 2d Hamiltonian model of interacting particles that carry continuous 
spins. The latter interact ferro-magnetically with their neighbours, and are locally 
coupled to their velocities. The homogeneous phases exhibit a rich behaviour, including 
the existence of frustration-induced topological defect configurations as ground states, 
ObD-like transition, and collective motion. Topological defects appear as a consequence 
of a classical spin–orbit coupling, which is reminiscent of the so-called topological phase 
transitions observed in quantum models when a spin–orbit coupling is added [32], and 
could have deeper links with active matter, as parallels between quantum theories with 
a spin–orbit coupling and flocking have recently been proposed [33]. In appendix C, 
we show that our results are unchanged when moving from d  =  2 to d  =  3, or when 
changing the geometry of the boundary conditions. Our results can therefore be seen 
as robust.

From the point of view of magnetism, despite the fact that the model is at first sight 
a bit peculiar, one can think of it as an ecient dynamics to prepare topological defect 
configurations, for instance in dimension d � 3, in which case observing and describing 
topological excitations is notoriously challenging [34]. From the point of view of collec-
tive motion, the model seems limited in terms of the amplitude of the velocities it gives 
access to, especially for large systems. A solution would be to choose K such that it 
scales with the size of the system, but this rather unphysical choice would also lead to a 
vanishingly small collective speed in the large N limit. One could also in principle think 
of other coupling scheme between the spins and velocities, and hope for stronger eects. 
However, we show in appendix B that the proposed spin-velocity coupling is, in fact, 
one of the only two ones that are compatible with well-defined Hamiltonian dynamics: 
adding coupling terms beyond the quadratic order in velocity, leads to a situation in 
which the Hamiltonian dynamics can not be obtained from the Legendre transform of 
the Lagrangian [35]. We have also checked that adding a quadratic coupling to the 
model with a linear coupling K �= 0 leads to the same phenomenology. The present 
model is therefore the only reasonable conservative model in which a spin-velocity 
coupling leads to collective motion. Yet, the case of a model with only a quadratic cou-
pling but no linear coupling, K  =  0, can be of interest to describe a situation in which 
a nematic ordering of the velocities onto the direction of the spin should be favoured, 
as in a recent model of Vicsek-like particles with velocity reversals [36].

Finally, in the context of assemblies of self-propelled particles, regular arrangements 
of vortices [37, 38] and soliton-like structures [39–41] have been described in experi-
ments, simulations, and microscopic models. This could be an indication that such 
structures are generally less costly than homogeneous motion in models of collective 
motion, regardless of the presence or absence of activity.
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Appendix A. Numerical methods

In this appendix we motivate the choice of molecular dynamics as an ecient simula-
tion method to study the model on which we focus. In particular, we give details on the 
precise strategy leading to the figures shown in the main text. Moreover, we describe 
the additional diculties encountered when simulating the same system in 3d but with 
continuous 3d (Heisenberg) spins, as described in appendix C.

A.1. Choice of molecular dynamics

Simulating a system with a spin-velocity coupling presents several unusual aspects, 
both fundamental and practical. On the fundamental side, the fact that the system 
is not Galilean invariant implies that the Gibbs measure should take its full, frame-
dependent form [13, 42, 43]

Pβ,vG
[C] ∝ e−β(H[C]−vG·P [C]) .

� (A.1)
β and vG are, respectively, the inverse temperature and the velocity of the centre 
of mass, and are both fixed through an external bath in the canonical ensemble. H 
and P  are the Hamiltonian and the total momentum of the configuration C, respec-
tively. Therefore, because of the non-Galilean character of the model, in the canonical 
ensemble, the variables imposed by the bath are the temperature and the velocity. As 
a consequence, usual canonical ensemble sampling via a Monte Carlo-like scheme is not 
expected to be the most interesting setting since the aim of the model is to demonstrate 
the emergence of a spontaneous vG as a response to a lowering of the temperature or 
energy. It seems more natural, instead, to impose a total momentum P . A possibility 
would then be to impose a temperature and a total momentum, that is to say, to work 
in an intermediary ensemble that lies between the microcanonical (conserved energy 
and momentum) and the canonical (conserved temperature and momentum). However, 
little is known on the peculiarities of non-Galilean statistical mechanics, so that we 
choose the simpler setting of the microcanonical ensemble, that also enables us to see 
the actual dynamics of the system, for instance, the propagation of solitons.

In practice, we therefore integrate the Hamiltonian equations of motion,

ṙi = pi −Ksi,� (A.2)

ṗi =
∑
k( �=i)

(
∂J(rik)

∂ri

cos θik −
∂U(rik)

∂ri

)
,� (A.3)

θ̇i = ωi,� (A.4)

ω̇i = Kpi · s⊥,i +
∑
k( �=i)

J(rik) sin θik,� (A.5)
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where ŝ⊥ is the unit vector obtained by rotating the spin of an anticlockwise π/2 angle, 
and we choose a total momentum P = 0. A technical issue, however, still remains. In 
Molecular Dynamics, the equations of motion are usually integrated using numerical 
tricks like the Verlet algorithm [44], that ensure ‘symplecticity’, meaning that the 
momentum and the energy are rigorously conserved. These tricks, however, usually rely 
on updating the two sets of conjugate Hamiltonian variables at dierent times. Here, 
these methods are inapplicable due to the coupling between the velocity and the spin. 
Instead, we simply reproduced the simulation strategy used in [13], namely, a fourth-
order Runge–Kutta scheme that conserves the total momentum only approximately. 
However, the latter always remains small and fluctuates with a typical magnitude of 
10−17–10−14 in simulations, and is therefore much smaller than any other observable 
we considered.

A.2. Simulation strategy

In the main text, we simulate the dynamics starting from random states with uniformly 
distributed {ri, θi}i=1..N  and {pi,ωi}i=1..N drawn from centered, reduced Gaussian dis-
tributions. Such initial states were placed into a square box with periodic boundary 
conditions and, after giving some time for the dynamics to settle in, are subjected either 
to a numerical annealing or to a high-rate quench. These procedures are implemented 
as follows.

Numerical annealing is performed by multiplying all rotational velocities by 
λA = 0.9999 every 100 time units in our adimensional variable, with an integration time 
step equal to δt = 10−3 in the same units. This method enables us to reach low-energy 
states which, if the cooling is slow enough, should be equilibrium states.

Quenches are carried out by multiplying all rotational velocities and momentum 
components by λQ = 0.10 once, at some initial time. This method violently takes the 
system away from equilibrium, thereby enabling us to study the subsequent equilibra-
tion dynamics.

Whenever curves represent observable mean values, we mean that we averaged the 
results over 102–103 independent configurations obtained by sampling initial condi-
tions and recording states at times that are far enough from each other that the corre
sponding configurations can be considered to be independent.

A.3. Variant: 3d case

In order to simulate the system in three dimensions, we also used the Runge–Kutta 
molecular dynamics method. In this higher dimensional case the proper Hamiltonian 
dynamics are given by

ṙi = pi −K1si ,� (A.6)

ṗi =
1

2

∑
k �=i

( j′(rik)si · sk − u′(rik)) r̂i ,� (A.7)

θ̇i = pθi ,� (A.8)
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ṗθi =
p2φi

cos θi

sin3 θi
− ∂Hint

∂θi
,� (A.9)

φ̇i =
pφi

sin2 θi
,� (A.10)

ṗφi
= −∂Hint

∂φi

,� (A.11)

where we called Hint the interaction part of the Hamiltonian. These equations pose a 
major problem to their numerical integration, as divergences at the poles appear in the 
evolution equations for φi and pθi, at each time step. This problem, which is usual for 
simulations of rotors on spheres, is here rather tricky to solve [45], and a variety of 
strategies can be tested. In our case, we chose to write modified evolution equations in 
which we consider spins to be arbitrary Cartesian vectors, but that should (within 
numerical accuracy) conserve the spin normalisation. The idea, adapted from previous 
works on Heisenberg spins [46] and dynamics in a spherical geometry [45] consists in 
writing

H ≡
N∑
i=1


pi

2

2
+

Li
2

2
−K1pi · si −

1

2

∑
k( �=i)

( j(rik)si · sk − u(rik))


 ,

where Li = si ∧ psi is the usual angular momentum of the spins. For unit spins, 
L2
i = psi

2 = ṡi
2, as their time derivative should be perpendicular to them. We then 

write the evolution equations:

ṡi = Li ∧ si ,� (A.12)

L̇i = si ∧
(
−∂H

∂si

)
.� (A.13)

These equations are natural consequences of the definition of Li with respect to psi, the 
actual canonical momentum associated to the spins. The advantage of this way of writ-
ing the evolution is that, even though it is not strictly symplectic in three dimensions, 
it does conserve the modulus of the spins up to numerical errors.

Appendix B. The spin-velocity coupling

B.1. Breakdown of the Lagrangian-to-Hamiltonian transformation

As mentioned in the main text, it is tempting to explore various forms of the spin-
velocity coupling, in the hope that they may influence the phenomenology of the ground 
states in dierent ways.

A first remark is that due to the rotational invariance of the spins and velocities, 
any linear spin-velocity coupling with a shape

Lsv = Kvi · Rϕ [si] ,� (B.1)
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where vi = ṙi is a short-hand notation for the velocity of the particle i, and Rϕ is a 
rotation by an angle ϕ, would be equivalent to the definition we used. The momentum 
conservation would now impose a fixed angle determined by ϕ between the velocities 
and spins at low energies.

Another possibility is to add an additional non-linear spin-velocity term to the 
Lagrangian. By doing so, one could hope to find an additional velocity dependence in 
the Hamiltonian, and possibly a reduction of the cost of kinetic energy. Let us first 
discuss the term that is perhaps the most natural to add, a quadratic coupling. The 
spin-velocity interaction terms in the Lagrangian would then be

Lsv =
N∑
i=1

K1vi · si −
N∑
i=1

K2 (vi · si)2 ,� (B.2)

where we called K1 the coupling constant of the linear term and K2 the one in front of 
the quadratic coupling for clarity. This coupling looks interesting, as for positive values 
of K2 it decreases the kinetic cost of velocities aligned with the spins. With this cou-
pling, the canonical linear momentum reads

pi = ṙi +K1si − 2K2 (ṙi · si) si .� (B.3)
An issue with this expression is that, as it is not linear in ṙi, it is not easy to invert it 
and write explicitly the velocity in terms of pi and si only. Moreover, this fact poses a 
problem in the Hamiltonian formalism,

H =
N∑
i=1

[
vi · pi + ω2

i

]
− L

=
N∑
i=1

[
1

2
ω2
i + vi · pi −

1

2
v2i −K1vi · si +K2 (vi · si)2

]
− Lint ,

�

(B.4)

Figure B1.  The magnetisation density at the saddle point. K1 is taken equal to 1 
and we plotted several values of the modulus of the velocity of the centre of mass 
vG = 0, 0.1, 0.3, 0.5, 1. The red curves are obtained for K2  =  0.49. The black curves 
are a reference, and represent the magnetisation in the case K2  =  0.
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where Lint is the interaction part of the Lagrangian. The Hamiltonian above can be 
easily rewritten in terms of the vi’s and si’s only, and reads

H =
N∑
i=1

[
1

2
ω2
i +

1

2
v2i −K2 (vi · si)2

]
− Lint .� (B.5)

As hoped when defining the quadratic term in the Lagrangian, this term decreases the 
cost of the kinetic energy, even in the Hamiltonian. However, one can clearly see that 
problems arise for K2 � 1/2, since in this range of values the energy can be made arbi-
trarily low for vi → ∞. In fact, in this regime, the dynamics themselves are ill-defined, 
because the Lagrangian is no longer convex with respect to the velocities, and this leads 
to unphysical results like infinite accelerations or velocities even for a single particle 
system. While there are ways to exploit such theories using path integral formulations 
[35] as well as interpretations of their peculiarities in quantum models, we will here 
restrict ourselves to K2  <  1/2. Note that the convexity condition imposed by K2  <  1/2 
would lead to similar restrictions for other non-linear couplings, with several forbidden 
intervals for their corresponding coupling constants.

Another issue is to rewrite the Hamiltonian in terms of its canonical variables. It is 
here more complicated than usual, as the only way to do so is to project the canonical 
momentum onto the vectors of interest, vi, si, and pi. After some algebra we obtain

vi · si =
pi · si −K1

1− 2K2

,� (B.6)

vi · pi = v2i +K1vi · si − 2K2 (vi · si)2 ,� (B.7)

v2i = p2i + Api · si + B (pi · si)
2 + C ,� (B.8)

where we defined the constants

A = − 2K1

(1− 2K2)
2 , B =

4K2(1−K2)

(1− 2K2)
2 , C =

K2
1

(1− 2K2)
2 .

�

(B.9)

Using these projections, after some more algebra, we can finally rewrite the Hamiltonian 
as a function of the canonical variables only

H =
N∑
i=1

[
1

2
ω2
i +

1

2
p2i − K̃1pi · si + K̃2 (pi · si)

2

]
− Lint ,� (B.10)

where the Hamiltonian coupling constants K̃1 and K̃2 are, interestingly, defined 
dierently from the Lagrangian ones,

K̃1 =
K1

1− 2K2

, K̃2 =
K2

1− 2K2

,� (B.11)

and where we discarded a constant term E0 defined as

E0 =
K2

1

2(1− 2K2)
.� (B.12)
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It is a priori much more dicult and maybe even impossible to perform this inversion 
for any other non-linear couplings, as the vector projections used here no longer yield 
linear equations between the terms of interest. In particular, as tempting as a coupling 
of the form v̂i · si, where v̂i = vi/vi looks, it yields a system of equations that do not 
allow to write a Hamiltonian in terms of the corresponding canonical momentum. Also 
note that higher order polynomials in vi · si yield, instead of equation (B.6), polynomial 
equations in vi · si with degree higher or equal to two, so that several roots exist.

Therefore, the only two reasonable couplings one can imagine to get unequivocal 
Hamiltonian dynamics with a spin-velocity coupling are the linear and quadratic cou-
plings. An important message is that velocity terms in a conservative model are very 
constrained, so that it is in general necessary to take the system out of equilibrium by 
breaking energy or momentum conservation if one wants to act arbitrarily on velocities. 
Any other non-linear term will lead either to convexity or to p ↔ v inversion issues.

Regarding the quadratic coupling introduced in this part, it does not seem to make 
the system simpler nor to lead to new physics relevant to collective motion for K1  >  0. 
Indeed, if we reproduce the logic of the first study of the model with K1 only, and con-
sider only cases with P = 0, we expect collective motion only for magnetised states. 
In these states, assuming that we only consider states with si = m, ∀i the momentum 
conservation constraint is now vG = −K̃1m, so that the velocity of the centre of mass 
will just be rescaled in the same way as the coupling constants in the Hamiltonian. 
Therefore, we roughly expect to observe the same states as in the case K2  =  0. Further 
proof that we do not expect any huge qualitative change when adding K2 can be 
obtained by computing the partition function and observables in a mean-field approx
imation. The full calculation is reported in section B.2, and shows that the results are 
essentially the same as those obtained with K1 only [13]. In particular, the magnet
isation curves remain almost unaltered by the addition of K2.

The case K1 = 0,K2 > 0, however, might be interesting to study on its own, as 
it favours nematic order between the velocity and the spins. This is reminiscent of a 
recent model of active matter in which velocities are allowed to switch between align-
ment and anti-alignment with an internal spin degree of freedom [36]. It however looks 
like a dierent problem than the one of collective motion, as we do not expect any 
spontaneous flow of particles to arise in the case K1  =  0, whatever the value of K2. In 
light of these results, we are confident that the model with a single K1 should contain 
all the physics linked to the addition of a conservative, and polar spin-velocity coupling.

B.2. Mean-field calculation with K2

We report in this section  the mean-field study of the Hamiltonian written in 
equation (B.10),

H =
N∑
i=1

[
1

2
ω2
i +

1

2
p2i − K̃1pi · si + K̃2 (pi · si)

2

]
− Lint ,

� (B.13)
where

Lint =
∑
i �=j

[J(rij)si · sj − U(rij)] .

� (B.14)
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In order to get a mean-field description, we follow the same strategy as in [13] where 
case K2  =  0 was dealt with in detail: we set U  =  0 and we take the fully-connected limit 
for the ferromagnetic coupling by setting

J(rij) =
J

N
,

� (B.15)
with J a constant. Then, discarding a constant term, the Hamiltonian can be rewritten 
as

H =
N∑
i=1

[
ωi

2

2
+

pi
2

2
− K̃1 (pi · si) + K̃2 (pi · si)2 −

J

2
si ·m

]

�

(B.16)

and, recalling that the Gibbs measure is altered by the fact that this system is not 
Galilean invariant, the mean-field partition function reads

Z ≡
∫

d2NR d2NP dNΘ dNΩ exp [−β (H− vG · P )] ,

�

(B.17)

where we used the short-hand notations d2NR =
∏N

i=1 d
2ri, d2NP =

∏N
i=1 d

2pi, 
dNΘ =

∏N
i=1 dθi, and dNΩ =

∏N
i=1 dωi. The integrals over the positions and angular 

velocities factorise and can be easily computed, yielding

Z =

(
2π

β

)N/2

V N

∫
dNΘ

N∏
i=1

Zpi(θi) exp

(
βJ

2
si ·m

)
,� (B.18)

Zpi(θi) ≡
∫

d2pi exp

[
−β

(
pi

2

2
− pi ·

(
vG + K̃1si

)
+ K̃2 (pi · si)2

)]
.� (B.19)

Calling six,y the projections of spins onto the x, y direction, the exponent in the last 
expression can be rewritten in a more compact form by using a vector notation:

Zpi(θi) ≡
∫

d2pi exp

(
−1

2
tpAp+ tB · p

)
� (B.20)

with

A ≡ 2β

(
1
2
+ K̃2six

2 sixsiyK̃2

sixsiyK̃2
1
2
+ K̃2siy

2

)
and tB ≡ β

(
vG + K̃1si

)
,� (B.21)

and the integration over pi readily calculated to obtain

Zpi(θi) =

√
4π2

detA
exp

(
1

2
tBA−1B

)
.� (B.22)

Moreover, using the fact that si is a unit vector, one finds

detA = β2
(
1 + 2K̃2

)
,� (B.23)
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1

2
tBA−1B =

1

2 detA

(
B2

1A22 + B2
2A11 − 2A21B1B2

)
,

=
β

1 + 2K̃2

[
K̃2

1 + v2G
2

+ K̃1vG · si − 2K̃2vG,xsxvG,ysy + K̃2

(
s2xv

2
G,y + s2yv

2
G,x

)
]
.

� (B.24)
Note that in the case K2  >  1/2, that was already flagged as non-physical right from 
the definition of the quadratic term, one finds that detA becomes negative; and in the 
limit K2 → 1/2, this determinant goes through an infinite value. The last results can 
be used to write

Zpi(θi) =
2π

β
√

1 + 2K̃2

exp

{
β

1 + 2K̃2

[
K̃2

1 + v2G
2

+ K̃1vG · si − 2K̃2vG,xsxvG,ysy + K̃2

(
s2xv

2
G,y + s2yv

2
G,x

)]}
.

� (B.25)
Then, we notice a number of identities:

2vG,xvG,ysxsy − s2xv
2
G,y − v2G,xs

2
y = (vG · s)2 − v2G ,� (B.26)

1

1 + 2K̃2

= 1− 2K2 ,
K̃1

1 + 2K̃2

= K1 ,
K̃2

1 + 2K̃2

= K2 ,� (B.27)

and we define Zθ through

Zθ ≡
∫

dNΘ
N∏
i=1

Zpi(θi) exp

(
βJ

2
si ·m

)
,� (B.28)

so that we can rewrite

Zθ =

(
2π

√
1− 2K2

β

)N

exp

[
βN

2

(
K2

1

1− 2K2

+ v2G(1− 2K2)

)]
I� (B.29)

with

I ≡
∫

dNΘ exp

[
βNm

(
h+

JN

2
m+K1vG

)
− βNK2v

2
Gg(Θ)

]
,� (B.30)

g(Θ) ≡ 1

N

N∑
i=1

cos2(θi − θα)− 1 .� (B.31)

It is now useful to apply a Hubbard–Stratonovich transformation,

exp

(
βJ

2
N2m2

)
=

βN

2π

∫
d2u exp

[
−βN

(
u2

2
− JNu ·m

)]
,� (B.32)

and the definition γ(u) ≡ jNu+ h+K1vG, to derive a more convenient expression for 
I

I =
βN

2π
exp

[
βNK2v

2
G

] ∫
d2u exp

[
−βN

u2

2

]
[J(u)]N� (B.33)
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with

J(u) ≡
∫ 2π

0

dθ exp
[
−βK2v

2
G cos2 (θ − θα) + βγ cos (θ − θγ)

]
.� (B.34)

Therefore, the full partition function reads

Z = V N

(
2π

β

)N/2
βN

2π

(
2π

√
1− 2K2

β

)N

exp

[
βN

(
K2

1

2(1− 2K2)
+

v2G
2

)]∫
d2u e−βN u2

2 J(u)N

=
(
V
√

1− 2K2

)N
(
2π

β

) 3N
2

−1

N exp

[
βN

2

(
K2

1

1− 2K2

+ v2G

)]∫
d2u e−βN u2

2 J(u)N .

� (B.35)
In order to compute J(u), we need to evaluate the integral

f(a, b) =

∫ π

−π

dθ exp[a cos θ + b cos2(θ + θa)] .� (B.36)

With this aim, we use the identities [47]:

exp
[
b cos2(θ + θa)

]
=

∞∑
n=0

(b/4)n

n!

[(
2n

n

)
+ 2

n−1∑
k=0

(
2n

k

)
cos (2 (n− k) (θ + θa))

]
,� (B.37)

cos (2 (n− k) (θ + θa)) = cos (2 (n− k) θ) cos (2 (n− k) θa)− sin (2 (n− k) θ) sin (2 (n− k) θa) .
� (B.38)

Then, integrating out odd terms that involve sines, and after some algebra, we find an 
exact expression for f :

f(a, b) = 2πe
b
2

(
I0(a)I0(

b

2
) + 2

∞∑
j=1

cos(2jθa)Ij(
b

2
)I2j(a)

)
.� (B.39)

Taking advantage of the fact that J(u) = [ f(βγ,−βK2v
2
G)]

N
, we can now move on to 

the computation of the integral over u:

J =

∫

R2

d2u exp

[
−βN

(
u2

2
− 1

β
log

[
f(βγ,−βK2v

2
G)
])]

.� (B.40)

There is no easy way to compute this integral so that we have to resort to a saddle 
point approximation, by minimizing the expression in the exponential with respect to 
u. After some replacements the expression to optimise reads

F(u) =
u2

2
− 1

β
log

(
I0(βγ)I0(−βK2

v2G
2
) + 2

∞∑
j=1

cos(2jθγ)(−1) jIj(βK2
v2G
2
)I2j(βγ)

)
.� (B.41)

Seeking zeros of the gradient of F , first noticing that the 2d minimiser is attained for 
u aligned with vG, which fixes θγ = arccos(γ̂ · v̂G) ≡ 0[π], we obtain an implicit equa-
tion for the optimum u�:
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u� = ±sign(K1)v̂G

I1(βγ)I0(β |K2|
v2G
2
) +

∞∑
j=1

(−1) jIj(βK2
v2G
2
) (I2j−1(βγ) + I2j+1(βγ))

I0(βγ)I0(β |K2|
v2G
2
) + 2

∞∑
j=1

(−1) jIj(βK2
v2G
2
)I2j(βγ)

.� (B.42)

Under a critical temperature, this equation has two branches of minimizing solutions, 
corresponding to two minima of F  that are not at the same height due to the pres-
ence of K1 [13]. One can solve this equation numerically and compare the result to the 
case in which K2  =  0. The results are essentially the same, except that K2 makes the 
magnetisation more impervious to βK1vG, as shown in figure B1. This can be explained 
from the equation itself, as the sums over Bessel functions are naturally perturbative 
because of properties of Bessel functions of growing parameter [47], with larger correc-
tions when βK1α increases.

Appendix C. Changing the geometry and dimensionality

We here discuss the generality of the results described in the main text when changing 
the geometry of the simulation box in 2d, or increasing the dimension to 3d.

C.1. Eect of the geometry

In the main text, every simulation was performed in a periodic square box. Topologically, 
this box is homotopic to a Euclidean (flat) torus [48]. This geometry imposes some con-
straints. For example, the total number of vortices has to be compensated by the total 
number of antivortices. Changing the topology of the simulation box could be interest-
ing, as it would lead to dierent proportions of vortices and antivortices, and perhaps 
to whole new defects. The role of geometry in finite size is less clear: one could wonder 
whether the configurations of two vortices and two antivortices simply come from the 
square shape of the box, for instance. To address this question in a minimal way, we 
simulate our system in a periodic hexagon (which is also equivalent to a Euclidean torus 
[48]) and in a periodic rectangle. Examples of a few ground states obtained under these 
conditions are shown in figure C1. We observe the same phenomenology in hexagonal 
boxes as in square ones: at low (K,N), the observed non-magnetic states are solitons, 
and when K or N increase, two vortices and two antivortices develop. In rectangular 
boxes, the more slender the box becomes, the more solitons are favoured. Indeed, using 
the argument given in the main text for the energy of a soliton, their cost decreases if 
the rotation is made smoother. Therefore, in rectangular boxes, the solitons will select 
the longest side and be favoured with respect to vortex configurations.

In summary, as long as the homotopy class of the simulation box does not change, 
and using the few examples shown in figure C1, we expect the same phenomenology as 
in square boxes. Possibly there will be a shift of the crossover lines in the (K,N) plane 
that can be expected to depend on the precise geometry.
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Figure C1.  Eect of boundary conditions. Numerical ground state with hexagonal 
periodic boundary conditions for (a) N = 512, K = 1.0 and (b) N = 800, K = 1.0. 
(c) Numerical ground state in a periodic rectangle for N = 2048, K = 0.5. In (a) 
and (b), the simulation box is showed as a dashed black line.

Figure C2.  Mean-field magnetisation versus temperature in d  =  3. All the curves 
shown were obtained with K1  =  1, for growing values of α between 0 and 1 by 
steps of 0.1. A ferromagnetic state is still observed, but the transition occurs at a 
temperature lower than 0.5 since we did not rescale the interactions when going 
from two to three dimensions.
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C.2. Eect of dimensionality

In this paper, we mostly worked with the model defined on a 2d space and with, con-
sequently, 2d continuous spins. However, the crossover between magnetic and non-
magnetic ground states, that is only due to an energetic trade-o, should survive in 
higher dimensionality of space and with spins of higher dimension. In order to check 
that dimensionality does not play an important role with respect to this qualitative 
feature, we now focus on the case d  =  3.

First, let us revisit the mean-field calculation in 3d and with Heisenberg spins. The 
main dierence with respect to the 2d case with planar spins comes from the angular 
dependence in the momentum associated to the spins. More precisely, the Hamiltonian 
we want to study now is

H ≡
N∑
i=1



pi

2

2
+

p2θi
2

+
p2φi

2 sin2 θi
−K1 pi · si −

1

2

∑
k(�=i)

[J(rik)si · sk − u(rik)]


 .

�

(C.1)

Let us focus on the angular part of the partition function: the pθi contribution is simply 
a Gaussian integral that gives a constant. However, the integral over pφi looks a bit 
more dangerous for future calculations because of the sin θi factor. The first (Gaussian) 
integral reads:

∫

R
dpφi

exp

(
−β

p2φi

2 sin2 θi

)
=

√
2π sin2 θi

β
.� (C.2)

Then, using the fact that 0 � θi � π, one can simply take the sin out of the square 
root for all values of i. Therefore, for each particle, we simply obtain a sin θi factor that 
should be integrated over θi. In fact, this is simply the factor we were missing in the 
partition function to recover dsi = sin θidθidφi! We thus find that the spins should be 
integrated over a sphere, and not simply over a cube in angular coordinates. In fact, 
the same trick can be reproduced for any higher dimension. In the end, we will simply 
recover the hyperspherical infinitesimal surface element. Therefore, in any d � 3, we 
get, after some usual algebra, the saddle-point solution

Figure C3.  3d frustrated states. (a) Low-temperature polar state in a system 
with N = 2000, K = 0.1. (b) Low-temperature soliton state in a system with 
N = 5000, K = 0.5 (c) and (d) are slices of (b), that make the soliton structure more 
apparent. In the top part of (d), a structure reminiscent of a vortex-antivortex pair 
can also be seen.
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logZd ≈ N

[
−
(
d− 1

2

)
log β + log V +

β

2
α2 − βF(u�) + cst

]
� (C.3)

where, as in the 2d case, we have to minimise a function of u, an intermediate integra-
tion variable, defined through

F(u) ≡ u2

2
− 1

β
log

(
I d

2
−1 (βγ)

(βγ)
d
2
−1

)
with γ ≡ u+K1α .� (C.4)

The value of the minimizing value, u�, is given by an implicit equation, and u� is still 
the value of the mean magnetisation in the saddle-point approximation. The results 
in any dimensionality are essentially similar, except that in the absence of a rescaling 
of interactions with d, the ferromagnetic transition that we observe is sent to lower 
temperatures. We show the particular d  =  3 case in figure C2.

Having checked that, at the mean-field level, results for d  =  3 are qualitatively the 
same as in d  =  2, we now reproduce the same simulations as in the 2d case in 3d, with 
classical Heisenberg spins instead of XY spins, and obtain ground states for a few values 
of K and N and a density such that no phase separation is observed. A few snapshots 

thus obtained in a periodic cubic box, and for a 3d packing fraction φ3d ≡ Nπσ3

48L3 ≈ 0.32, 

are shown in figure C3. and confirm that polar states and solitons are still observed 
in that case when varying K and N. In figure C3(d), which shows a slice of the soliton 
state shown in figure C3(b), a 2d-like vortex-antivortex structure is also seen. A priori, 
we could expect true 3d point defects to arise in 3d as well for larger systems and, pos-
sibly, larger values of K.
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