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Abstract.  Via molecular dynamics simulations of a generic glass former in 
the supercooled and normal liquid states, it is shown that spatial correlations 
of strain fluctuations exhibit a crossover from the well-established power-
law  ∼1/r3-decay at long wavelengths to an exponential behavior, ∼exp(−r/lc) 
at intermediate distances. The characteristic length of the exponential decay 
grows both with temperature and time via, l2c ∝ D(T ) t, with D(T ) being the 
temperature-dependent diusion coecient. This suggests that the crossover 
between the power-law and exponential decays is governed by a diusion 
process.
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1.  Introduction

Based on their properties such as high corrosion resistance and strength, glass formers 
and in particular glassy alloys have attracted substantial attention among physicist 
and material scientists1. One of the intriguing features of glassy systems is their non-
ane response, which is at the same time a challenging issue to explore mostly due 
to their structure, incorporating no long-range translational order. Glass transition 
is characteristically very dissimilar to crystallization since it involves no significant 
change in the fluid-like structure in the quench process, however it slows down consid-
erably the dynamics of particle rearrangements. With the slowed dynamics, the par-
ticles can carry forces in their cages, resulting in an elastic response, during which the 
lack of symmetry in the structure of the glass results in non-ane motions of particles 
to conserve momentum [1–3].

Due to the lack of crystalline order, concepts such as dislocations and glide planes 
are not applicable in the case of amorphous materials. In this context, the study of 
non-ane response provides an interesting alternative. In this regard, spatio-temporal 
correlations of local deviations from the ane response, quantified by D2

min parameter 
[2], under continuous loading have provided insight on the accommodation of defor-
mation around plasticity carriers (shear transformation zones or STZs), which control 
the macroscopic failure of glasses via shear banding [4–10]. The study of the correla-
tions has been further confirmed by the quasi-static athermal simulations, where the 
dynamics are slow enough to capture the deformation associated with each stress drop 
[11–15]. Both approaches reveal a deformation pattern with quadrupolar symmetry 
and a power-law decay in long distances.

1 As an example, in multiscale material modeling (MMM) conference 2018 in Osaka, which is a diverse multi-
disciplinary conference, two (out of six) of the plenary talks were on the mechanics of deformation in amorphous 
materials.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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The qualitative resemblance of the deformation around each local shear event 
and the Eshelby inclusion problem has been suggested by numerous experiments and 
simulations [16–20]. This resemblance highlights the role of elasticity in mediating 
the deformation around each event. In contrary to this presumption about the role of 
elasticity, there have been reports on the long-range strain correlations in supercooled 
liquids, where no high-frequency elasticity could be defined, under shear [21] and also 
in quiescent condition [22]. Recent theoretical development via mode coupling theory 
(MCT) and generalized hydrodynamics (GH) have proposed that a wave-length-and-
frequency-dependent response in liquids results in a solid-like region around a local 
shear perturbation, expanding up to a length which a wave traverse with the speed of 
sound during the corresponding structural relaxation time [22, 23]. Moreover, similar 
spatial characteristics have been also reported in correlations of stress fluctuations 
[24, 25].

While the developed theories, simulations and experiments mostly have addressed 
strain [21–23] and stress [26–28] correlations in the asymptotic limit of large distances, 
in the present work, a distinction is made between the response at long distances 
and the one in the intermediate range. Most importantly, we show that, in the liquid 
state, the well-established power-law decay of the correlations of non-ane strain at 
long distances crosses over to an exponential behavior at intermediate lengths. For all 
the temperatures investigated, the characteristic length associated with this new type 
of decay approaches a diusive growth with time, lc ∝ D(T ) t, with D(T ) being the 
temperature-dependent diusion coecient.

2. Method

The Kob–Andersen model [29], as a generic model for glass formers, is used in our 
three dimensional molecular dynamics (MD) simulations. Via this model, various 
issues have been investigated, such as non-Newtonian rheology [30, 31], heterogeneous 
plastic deformation and flow [8, 32] and structural relaxation under shear [30, 33]. 
The model contains two types of atoms, A and B (80 : 20), which interact with the 
Lennard–Jones (LJ) potential (6–12) and have diameters of dAA = 1, dBB = 0.8, and 
dAB = 0.88. The interaction energy between the two types of particles are εAA = 1., 
εBB = 0.5, εAB = 1.5. The total mass density of ρ = ρA + ρB = 1.2 results in  ∼1.2× 106 
particles (mA = mB = 1) in a cubic box with sides of L  =  100. The simulation box is 
periodic in all three spatial directions. All the quantities are normalized with the attri-
butes of particle A and ‘A− A’ LJ interaction, such as dAA, mA, and εAA. The simula-
tions are performed using LAMMPS [34] with a time step of δt = 0.005.

The investigation of the correlations is performed via quiescent simulations, where 
the non-ane rearrangements of particles are due to thermal fluctuations [35]. Glassy 
state of T  =  0.2, supercooled state of T  =  0.7, and liquid states of T  =  1.5, 2.0, and 
4.0 are studied. The mode coupling critical temperature of the model is Tc = 0.435 [36] 
and the glass transition temperature, Tg ∼ 0.4 [31]. The high-temperature liquid states 
are chosen for this study so that with the help of higher diusion, the dynamics of 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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the proposed crossover from the intermediate to long-distance correlations are better 
highlighted.

2.1. Correlations of strain fluctuation

To calculate the local strain, at a position r0 and a time t0, accumulated over a time 
interval of t, ε(r0, t0, t), the trajectories of the particles in a neighborhood are analyzed. 
The displacement of each particle (e.g. i), ui(t) = ri(t0 + t)− ri(t0) is coarse grained 
(CG), on its neighborhood via a distance-dependent exponential weighting function of 
φ(||r0 − ri||), to uCG(r0) [1].

In our quiescent simulations, the displacement, ui is per se non-ane 
and is due to thermal fluctuations. The resulting local strain is obtained via 

ε(r0, t0, t) =
1
2

[
∇uCG +

(
∇uCG

) �].
The spatial correlations of the accumulated strain, between the points r0 and r + r0 

are obtained by Cεxz(r, t) = 〈εxz(r0 + r, t0, t)εxz(r0, t0, t)〉. In our three dimensional MD 
box, the correlations are calculated within thin layers of one particle diameter thick-
ness. If the thin layer used for this calculation is in the corresponding shearing plane 
(e.g. in the case of εxz, xz-planes), one can expect an angular anisotropy like the pat-
terns in figure 1. Therefore, in order to focus only on the distance and time depend
ence of the correlations, one can use the spherical harmonic projection, defined as 

C4
4(r, t) =

1
π

∫ 2π

0
Cεxz(r, t) cos(4θ)dθ. Here, r and θ are chosen as r = r (cos(θ), 0, sin(θ)). 

In the quiescent simulations, by taking the advantage of the isotropy of the system 
in the absence of external deformations, all the three non-diagonal components of the 
strain tensor (i.e. εxy, εxz, and εyz) are exploited to evaluate C4

4(r, t) in their corre
sponding shear plane.

3. Results and discussion

In this section, we first review the behavior of correlations at long distances and then 
switch to the novel aspect which deals with the crossover behavior at intermediates 
lengths.

3.1. Power-law behavior at large distances

For large distances (small wave vectors), the GH theory provides predictions for the 
correlation of strain fluctuations (equations (5) and (6) in [23]) as,

Cεxz(r, t) =
3

8π

(
vth
vs

)2
JM(t)

r3
r2(x2 + z2)− 10x2z2

r4
; amicro. < r < ξ,� (1)

where vth and vs are thermal velocity and sound speed, respectively, and JM is creep 
compliance. The correlations are predicted within an elastic domain of size ξ, and for 
distances large compared to a microscopic length size, amicro.; the extent of the latter 
will be discussed in the next section.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Equation (1) reveals a power-law decay of 1/r3, where the term 10x2z2 expresses the 
four-fold symmetry in the correlations. This strongly resembles the strain field around 
a pre-sheared spherical inclusion in continuum elasticity (Eshelby problem) [16, 17].

By applying the spherical harmonic projection operator to equation (1) and assum-
ing the vector r to be parallel to xz-plane, one obtains

C4
4(r, t) =

1

π

∫ 2π

0

Cεxz(r, t) cos(4θ)dθ =
Cs(t)

r3
,� (2)

where the amplitude Cs(t), by asymptotic analysis of JM(t), reads [23],

Cs(t) =



15ρkBT

32πm

( 1

G⊥
∞

− 1

G
‖
∞

)
, t � τ

15ρkBT
32πm

t
η
, t � τ .

� (3)

In equation (3), η represents the shear viscosity of the liquid; G⊥
∞ and G

||
∞ corre-

spond to the transverse and longitudinal shear moduli of the glass at intermediate fre-
quencies (the frequencies associated with the time intervals of the plateau in the mean 
squared displacement).

From the quiescent three dimensional MD simulations, the spatio-temporal correla-
tions of strain fluctuations are evaluated. Figure 1 illustrates a color-scale plot of the 
thus obtained results both for the glassy (T  =  0.2) and supercooled (T  =  0.7) states. 
In both cases shown, correlations display quadrupolar symmetry. However, while the 
four-fold correlations in the glassy state do not change noticeably with time, growth is 
visible in the supercooled state.

For an analysis of the distance dependence and of the temporal evolution of 
these correlations, we project the two-dimensional data onto a spherical harmonics, 

Figure 1.  Temporal evolution of the correlations Cε(r, t) in the bulk at the glassy 
state (T  =  0.2, top row), and supercooled state (T  =  0.7, lower row). In both states 
and in all the time intervals shown, the quadrupolar symmetry is preserved. At the 
glassy state, as the time intervals increase, correlations hardly change, while in the 
supercooled state, the correlations grow in time (please note the dierent scales for 
the color map in the two cases).

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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equation (2). This averaging over the angles allows a more telling quantitative survey 
of the data. The thus obtained curves are shown in figure 2.

At the glassy state (figure 2(a)), for all the time intervals, correlations follow a 
master curve with a power-law decay of 1/r3. Note that the data are not rescaled here, 
indicating that correlations do not substantially change with time in the glass. This 
is consistent with the stationary quadrupolar patterns in figure 1. The amplitude of 
these correlations, Cs(t), is obtained via fits of the form Cs/r

3 to the simulation results 
on C4

4(r, t) for each individual value of time, t. In this fit, we focus on the asymptotic 
behavior and neglect the part of the data at too short distances, with a cut-o roughly 
of the order of the decay range of pair correlation function. As shown in the inset of 
figure 2(a), the thus obtained Cs(t) agrees well with the prediction of the generalized 

hydrodynamic theory, equation  (3). It is noteworthy that G⊥
∞ and G

‖
∞ used in this 

comparison are not treated as free fit parameters but are found to be G⊥
∞(T = 0.2) = 15 

and G
‖
∞(T = 0.2) = 86 from independent simulations of oscillatory shear and then used 

without any modification [23]. This underlines the physical consistency of the test.
Similar to the glassy state, C4

4(r, t) evaluated in the supercooled state shows a 
1/r3 power-law decay for large distances, figure 2(b). There is, however, an important 
dierence. While the amplitude of correlations remains essentially constant with time 
in the glass, it grows linearly with time in the supercooled liquid state. This linear 
growth is quantified in the inset of figure 2(b) and agrees well with the prediction of 

Figure 2.  Spatio-temporal correlation of strain fluctuations, C4
4(r, t), obtained from 

MD simulations of a generic binary LJ glass former at temperatures of (a) T  =  0.2 
(glassy state) and (b) T  =  0.7 (supercooled liquid). For both states, the correlations 
depict a power-law decay of 1/r3, at large distances. Growing correlations in the 
supercooled state and non-evolving correlations in the glassy state in the two 
panels are consistent with the patterns in figure 1. In the insets of both panels, the 
amplitude of the correlations, Cs(t) is displayed and compared with the predictions 
from generalized hydrodynamic theory (GH), equation  (3). In quantitative 
agreement with GH, the amplitude in the glassy state depicts a quasi-plateau with 
time, whereas a linear growth of the amplitude is observed in the supercooled state. 
The parameters used in the evaluation of theoretical predictions, equation (3), are 

G⊥
∞(T = 0.2) = 15, G

‖
∞(T = 0.2) = 86, η(T = 0.7) = 42, and ρ/m = 1.2.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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generalized hydrodynamics. Again, the viscosity used in this comparison is not a fit 
parameter but obtained from independent steady shear simulations (η(T = 0.7) = 42).

3.2. Exponential decay at intermediate lengths

It is shown above that, for long distances, the correlations of non-ane strain obtained 
from our simulations, support quantitatively the existence of a long-range power-law 
decay, characteristic of an elastic body. Here, we show that the same correlation func-
tions exhibit a qualitatively dierent behavior for intermediate distances and that the 
size of this ‘intermediate range’ is temporally-evolving and temperature-dependent. 
There thus is a crossover between two dierent spatial and temporal dependencies of 
the correlations of non-ane strain.

As a first piece of evidence for the existence of a crossover, figure 3 shows the nor
malized correlation function, C4(r, t)/Cs(t), versus distance for a time interval of t  =  50 
but dierent temperatures, all belonging to the liquid state. In order to highlight the 
dierent decay-laws at intermediate and long distances, the same data are plotted 
in two dierent ways. While a logarithmic plot help to identify a possible power-law 
behavior easily, a semilogarithmic representation makes it easier to judge about a pos-
sible exponential decay. As seen from the corresponding panels of figure 3, the correla-
tion of non-ane strain first follows an exponential decay and then switches over to the 
well-known power-law at longer distances [9, 23].

It is interesting that this behavior is clearly present at relatively high temperatures 
belonging to the normal liquid state. It is also visible from this figure that the spatial 
range over which the data follow an exponential dependence increases with temper
ature. We will see later below that this is closely related to an increase of diusion 
coecient with T.

Figure 3.  (a) Logarithmic plot of normalized strain correlations, C4
4(r, t)/Cs(t) at 

various temperatures: T = 1.5, 2.0, 4.0 and a single time interval of t  =  50. Despite 
the high temperatures, in large distances, the correlations decay as a power-law 
function of r−3. (b) Semi-logarithmic plot of the same data as in (a) (vertically 
shifted for a better visibility). This plot serves to highlight the fact that, for all 
three temperatures investigated, the correlations exhibit an exponential decay, 
∼exp(−r/lc) at intermediate distances. It is also visible from this plot that the 
characteristic length, lc, grows with temperature.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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To explore this issue further, figure 4(a) focuses on the temporal evolution of the 
exponential decay at a temperature of T  =  2.0 (liquid state). For this purpose, the data 
are shown for time intervals of t  =  50, 100, and 200. It is visible from the shown data 
that the range over which an exponential fit describes the data grows with time. It is 
also noteworthy that the four-fold pattern survives the crossover from power-law to 
exponential behavior as it is clearly present in figure 4(b).

Combining the observations from figures 3 and 4, one sees that the characteristic 
length for the exponential decay, lc, grows both with temperature and time. A closer 
survey of this length is provided in figure 5(a), where lc is plotted versus time and 
seems to follow a diusive time dependence, in a way reminiscent of mean square 
displacements at long times. To check this idea, figure 5(b) represents the same data 
as function of D t, the product between diusion coecient and time, revealing an 
approximate master curve.

Figure 4.  Left panel: spatio-temporal correlations of strain fluctuations, C4
4(r, t), 

plotted in a semi-logarithmic scale at temperature of T  =  2.0, evaluated for three 
time intervals of t = 50, 100, and 200. The correlations in all three time intervals 
depict an initial exponential decay. The size of the exponential region expands 
by time which could reach up to 40 particle diameters for the case of t  =  200. 
Right panel: 2D spatial evolution of the correlations are shown. Even though the 
exponential decay extends up to 40 particle diameters, the four-fold pattern of the 
correlations is preserved.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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4. Conclusion and outlook

For a wide range of temperatures, ranging from the normal liquid to the supercooled 
state of a simple model glass, correlations of strain fluctuations show a cross-over from 
a long-range power-law dependence, 1/r3, typical of a homogeneous and isotropic elastic 
body, to an exponential decay at intermediate distances. The characteristic length asso-
ciated with this new behavior is not constant but grows with time as lc ∝ D(T ) t, where 
diusion coecient D(T ) entails the temperature dependence of lc. This is strongly 
reminiscent of the growth of mean square displacements with time in the diusive 
regime. To date, we are not aware of any theory describing this observation.

The present observation of a crossover in the correlations of strain fluctuations 
from a power-law decay to an exponential behavior both in the normal liquid and 
in the supercooled state is of fundamental importance for a better understanding of 
plastic deformation in amorphous materials and calls for new theoretical work. A pos-
sible route here could be to extend the recently proposed generalized hydrodynamics 
approach [23] to finite wave vectors.
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Figure 5.  (a) Time dependence of the characteristic length, lc, of the exponential 
decay of the non-ane strain correlations, C4

4(r, t), for a number of temperatures 
as indicated. The lowest temperature (T  =  0.7) belongs to the supercooled state, 
while all other temperatures shown here belong to the normal liquid state, where no 
signature of a two-step relaxation exists. The dashed line is a guide to the eye and 
serves to highlight a quasi-diusive growth of lc. (b) The same data as in (a), now 
plotted versus the product of time and diusion coecient. In this representation, 
the data corresponding to dierent temperatures follow approximately a master 
curve. Again, the dashed line indicates diusive behavior. Diusion coecients 
used in this plot are extracted from the slope of mean square displacements 
versus time in the limit of long times. The values of D used here are obtained 
independently from mean square displacements and read D(T = 0.7) = 0.0072, 
D(T = 1.5) = 0.062, D(T = 2.0) = 0.11, and D(T = 4.0) = 0.28.
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