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Abstract.  There is considerable theoretical and experimental support to the 
proposal that tissue homeostasis in the adult skin can be represented as a critical 
branching process. The homeostatic condition requires that the proliferation 
rate of the progenitor (P) cells (capable of cell division) is counterbalanced by 
the loss rate due to the dierentiation of a P cell into dierentiated (D) cells, 
so that the total number of P cells remains constant. We consider the two-
branch and three-branch models of tissue homeostasis to establish homeostasis 
as a critical phenomenon. It is first shown that some critical branching process 
theorems correctly predict experimental observations. A number of temporal 
signatures of the approach to criticality are investigated based on simulation 
and analytical results. The analogy between a critical branching process and 
mean-field percolation and sandpile models is invoked to show that the size and 
lifetime distributions of the populations of P cells have power-law forms. The 
associated critical exponents have the same magnitudes as in the cases of the 
mean-field lattice statistical models. The results indicate that tissue homeostasis 
provides experimental opportunities for testing critical phenomena.
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1.  Introduction

A characteristic feature of adult mammalian tissues is that of homeostasis implying 
steady state conditions [1, 2]. During the developmental stage of an organism, a tis-
sue increases in size as a function of time due to a proliferation in the number of cells, 
constituting the tissue, through repeated rounds of cell division. In the adult tissue, the 
number of cells capable of undergoing cell division, designated as progenitor (P) cells, 
remains constant giving rise to an unchanging tissue size. A pioneering experiment on 
the fate of cells in the tail epidermis of mice provides the basis for a simple model of 
homeostasis [3, 4]. The epidermis is the outermost of the three layers of tissues that 
make up the skin. It consists of a basal layer and a few supra-basal layers. Two types of 
cells are present in the basal layer: the P cells and the dierentiated (D) cells, with only 
the P cells undergoing cell division. The P cells undergo cell division with three possible 
outcomes: PP (both daughter cells are P cells), PD (one daughter is a P cell while the 
other is a D cell) and DD (both the daughters are D cells). The probabilities for these 
three outcomes are a, b and c respectively with a  +  b  +  c  =  1. The D cells migrate from 
the basal to the supra-basal layers and are finally shed from the surface of the skin. 
The condition for homeostasis in the basal layer is a  =  c, i.e. the proliferation rate of 
the P cells is counterbalanced by the loss rate of P cells due to dierentiation so that 
the total number of P cells remains constant. We designate the model of homeostasis 
as the three-branch model (figure 1(a)). A simpler version of the model with the same 
qualitative behaviour is the two-branch model (figure 1(b)) in which the probability of 
asymmetric cell division, b  =  0. These models are similar to the models studied earlier 
to investigate the dynamics of early tumour growth [5].

The colony of P cells that grows from a single progenitor defines a branching process 
(figure 2) [6, 7]. The theory of branching processes has largely been developed by math-
ematicians with several powerful theorems and rigorous results proved and derived 
over the years [8–10]. The applications of the theory are wide-ranging, from cosmic 
ray showers and nuclear chain reactions to the growth of reproducing populations. 
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Examples of the latter include animals, plants, bacteria, royal families etc. In fact, the 
branching process model was originally conceived to determine the number of genera-
tions in which the British royal family name, with inheritance passing from the father 
to the son, would possibly become extinct. In the branching process model, there are 
three distinct dynamical regimes: subcritical (a < c), critical (a = c) and supercritical 
(a > c). In the subcritical case, the population of P cells becomes extinct, i.e. no P cells 
are left in the course of time. The probability q for eventual population extinction is 
given by q  =  1 in this case. In the supercritical case, the probability q is non-zero but 
less than one, opening up the possibility of indefinite growth of the population. At the 
critical point, a  =  c, the time evolution of the population has features distinct from 
those of the subcritical and supercritical regimes. The variance of the distribution of 
the population size of a critical branching process grows linearly as a function of time 
and the large fluctuations are responsible for population extinction with probability 

Figure 1.  Schematic representation of a (a) three-branch and a (b) two-branch 
process. The parameter associated with each branch gives the probability of cell 
division via that branch.

Figure 2.  Lineage of a single progenitor (P) cell represented as a branching process. 
The dierent branches progress independent of each other. The type of division 
(symmetric or asymmetric) at each branching point is a probabilistic process.

https://doi.org/10.1088/1742-5468/ab5707
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q  =  1 in the limit of large times. The state in which the number of P cells is zero is 
the so-called absorbing state from which revival of the population is not possible. In 
section 2 of the paper, we describe the Galton–Watson (GW) model of a branching 
process [8–10] and state a few theorems and results relevant for our study of tissue 
homeostasis. We point out the utility of the theorems in providing an understanding of 
experimentally observed phenomena on tissue homeostasis. Using one of the theorems, 
we show that the cumulative distribution function (CDF) of the colony of P cells is that 
of a gamma distribution in the case of the critical branching process a  =  c.

Critical point transitions in the equilibrium and non-equilibrium are characterized 
by a number of features, collectively known as critical phenomena, exhibited close to 
criticality and at the critical point itself [11, 12]. In section 3, we present Monte Carlo 
(MC) simulation results for some quantitative signatures of the approach to the critical 
point. These include the variation of the mean time to extinction and the mean time 
to reach a threshold population size as a function of the ratio of parameters c/a, with 
c/a  =  1 at the critical point. We further study the distributions of the time to extinc-
tion and the time to reach the threshold population size, as well as the variances of the 
distributions as a function of a. We show that the simulation results, obtained in the 
case of the discrete-time (DT) GW process, are in qualitative agreement with the ana-
lytical results derived by treating the branching process as continuous-time (CT). In 
the case of the two-branch model, a quantitative comparison, made possible due to the 
property of embeddability, is also carried out. Statistical physics models like the sand-
pile model of self-organised criticality (SOC) and the percolation model exhibit critical 
phenomena which, in the mean-field limit (fluctuations ignored) can be described in 
terms of a critical branching process [13–15]. Keeping this equivalence in mind, tis-
sue homeostasis, an example of a critical branching process, provides experimental 
opportunities for testing critical phenomena predictions. In section 4, we make use of 
the generating function for the total number of P cells (branching events) produced to 
illustrate critical phenomena similar to those exhibited by the sandpile and percolation 
models. Section 5 contains a summary of the main results obtained in the paper and 
some concluding remarks.

2. Branching process theorems and experimental validation

We first provide a brief description of the GW branching process [8, 9]. One assumes 
that a single individual is present at time t  =  0. The individual lives for one unit of 
time (time advances in discrete steps). At time t  =  1, the individual produces a family 
of ospring and immediately dies. The number of ospring is a random variable and 
defines the family size Y. The family size/ospring probability distribution is given by

P (Y = k) = pk, k = 0, 1, 2, ...� (1)
The general rule is that each individual, existing at time, t− 1, (t = 1, 2, 3, ...) lives for 
one unit of time, produces its own family of ospring at time t and immediately dies. 
One assumes that all individuals reproduce independently of each other and the family 
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sizes of dierent individuals are independent random variables with the probability 
distribution given in equation (1).

We next introduce the concept of the probability generating function (PGF), useful 
to deal with probability distributions and their moments. Let X be a random variable 
taking non-negative integral values {0, 1, 2, ...} with a specific probability distribution. 
The PGF of X is given by

GX(s) = E(sX) =
∞∑
k=0

skP (X = k)� (2)

where E(..) denotes the expectation value or average. Some well-known properties of 
the PGF are:

GX(1) = 1,

E(X) = G′
X(1),

E[X(X − 1)] = G′′
X(1)

� (3)

where the prime symbol denotes dierentiation with respect to s. In the case of the 
three-branch model of tissue homeostasis, the PGF of the family size Y of each progeni-
tor is

G(s) = as2 + bs+ c� (4)

with G(1) = a+ b+ c = 1. From equation (3), the mean family size distribution, i.e. the 
average number of P cells produced per progenitor, m is given by

m = G′(1) = 2a+ b = a+ 1− c.� (5)
The condition for homeostasis is a  =  c (critical branching process) yielding m  =  1. Also, 
for a  >  c (supercritical branching), m is  >1 and for a  <  c (subcritical branching), m 
is  <1. Let σ2 be the variance of the family size distribution and Zt be the size of the 
population, i.e. the total number of individuals at time t. One can then derive the fol-
lowing results for the mean and variance of Zt:

E(Zt) = mt

Var(Zt) = σ2t if m = 1

Var(Zt) = σ2mt−11−mt

1−m
otherwise.

� (6)

An issue of interest in branching process dynamics is that of the extinction of the popu-
lation. The population of P cells becomes extinct at time t if Zt  =  0 but the size of the 
population is non-zero at earlier time points. Once extinction occurs, the population 
size continues to remain zero at all future times. We define q to be the probability of 
population extinction. A branching process theorem states [8] that the probability q is 
the smallest non-negative solution of the equation:

G(s) = s� (7)
where G(s) is the PGF of the family size distribution, which for the three-branch model 
is given by equation (4). The solutions of equation (7) turn out to be
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q =
c

a
for c < a (m > 1)

q = 1 for c > a (m < 1)

q = 1 for c = a (m = 1).

� (8)

The results show that population extinction is certain in the subcritical and critical 
cases whereas it has a finite probability (q  <  1) in the supercritical case. The results for 
the subcritical and supercritical processes can be understood from the expression of the 
average population size, E(Zt), at time t (equation (6)). When m is  <1, the term mt → 0 
as t becomes large. When m is  >1, there is a finite probability for indefinite growth of 
population as time progresses. In the critical branching case (m = 1), large fluctuations 
(variance grows linearly as a function of time) are responsible for the eventual extinc-
tion of the population. Thus, irrespective of the nature of the branching process, the 
sequence of population sizes, {Zt}, either goes to zero (extinction) or to ∞ (explosion) 
in the limit of large times, i.e.

lim
t→∞

P (Zt = k) = 0, k = 1, 2, 3, ...� (9)

where k has a finite, non-zero value. The fate of the population in the limit of large time 
is thus between extinction and explosion so that

P (Zt → 0) + P (Zt → ∞) = 1� (10)
with the respective probabilities of the two processes being q and 1  −  q.

We next state three theorems [8, 10] for the critical branching process a  =  c which 
we show to be consistent with the experimental results on tissue homeostasis.

	Theorem 1:	� If m  =  1 and G′′′(1) < ∞, then in the limit of large t:

P (Zt > 0) ≈ 2

tG′′(1)
.� (11)

Since, for the critical branching process, E(Zt) = 1 = E(Zt|Zt �= 0)P (Zt �= 0), we can 
utilize Theorem 1 to write

	Theorem 2:	�

E(Zt|Zt �= 0) ≈ tG′′(1)

2
.� (12)

	Theorem 3:	� If m  =  1 and G′′′(1) < ∞, then in the limit of large t:

P (
Zt

t
> u|Zt > 0) ≈ exp(− 2u

G′′(1)
), u � 0.� (13)

For the two-branch and three-branch models of tissue homeostasis, G′′(1) = 2a = σ2, 
the variance of the family size distribution.

Experimental observations by Clayton et al [3, 4] on tissue homeostasis in adult tail 
epidermis of mice are in agreement with the contents of Theorems 1–3, pertaining to 
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a critical branching process. In the experiment, starting with a single labelled cell and 
using the techniques of genetic lineage tracing, the time evolution of the progeny popu-
lation could be tracked with single cell resolution. Let Pn(t) be the probability that the 
number of P cells present at time t is n. The master equation (ME) for the probability 
distribution is amenable to exact, analytic solution for the two-branch model, b  =  0, and 

with a  =  c  =  1/2 . With the analytic expression for Pn(t) known in this case, the average 

number of P cells at time t is found to be 〈n〉 =
∑

n�1 nPn(t) = 1. At this point, we note 
that the critical branching process theory yields the result 〈n〉 = E(Zt) = mt = 1 (equa-
tion (6) with m  =  1) under the more general conditions, b �= 0 and a  =  c. According to 

Theorems 1 and 2, the survival probability of a progeny population is given by ∼ 1
at
, 

whereas the average size of persisting clones increases as  ∼at at large times. These 
results are true for both the two and three-branch models and are in accordance with 
the experimental observations by Clayton et al [3]. In the case of the two-branch model, 
the ME approach and the critical branching process theorems yield the same results for 
at � 1. The mathematical results lead to the understanding that tissue homeostasis, 
in terms of the average number of P cells remaining constant, is achieved due to the 
compensation of a continual extinction of clonal populations by the steady growth of 
persisting clonal populations.

A noteworthy feature of the clone size distribution, measured experimentally, in 
the mice epidermis, is the collapse of the data onto a single scaling curve in the limit 
of large time. The scaling form of the distribution on persisting clones is given by [1]

P pers
n =

τ

t
f(

nτ

t
)� (14)

with f(x) = e−x. The scaling form implies that the probability of finding a clone size in 
between n

2
 and n cells at time t is the same as that of finding a clone size in between n 

and 2n cells at time 2t. The scaling form is consistent with that provided by Theorem 
3 (equation (13)) with the parameter τ = 1/a. In the experiment, the lineage tracing 
technique implemented through the labelling of cells does not distinguish between the 
P and D cells, with n indicating the total number of cells. We show at the end of sec-
tion 4 that this does not change the basic results obtained by treating n as the number 
of P cells.

The earliest stochastic model of cell proliferation and dierentiation was proposed 
by Till et al [16], based on their pioneering experiment involving spleen colony assay 
in mice. They noticed that the colonies have a heterogeneous distribution of the num-
ber of colony-forming cells (designated as colony forming units or CFUs) with only a 
few colonies containing a large number of CFUs. Till et al analysed the experimental 
data in terms of a model similar to the two-branch model of cell proliferation and 
dierentiation (figure 1(b)) studied in this paper. The experimental data on the CDF 
of the CFUs per colony could be fitted well by that of a gamma distribution, with the 
distribution having the same mean and variance as the experimental data. The data 
also agreed closely with the MC simulation results of the stochastic birth–death model. 
The MC calculations assumed fixed birth and death probabilities and a fixed genera-
tion time, as in the usual branching process model. Based on the literature available at 
the time [17], Till et al had conjectured that the stochastic birth–death model gener-
ates a CDF, well-approximated by that of the gamma distribution, independent of the 

https://doi.org/10.1088/1742-5468/ab5707
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distribution of generation times. We now show, invoking Theorem 3, that the CDF in 
the case of a critical branching process is indeed that of the gamma distribution. From 
Theorem 3, one obtains, with G′′(1) = 2a,

P (Zt > u|Z0 = 1,Zt > 0) ∼ exp(− u

at
)� (15)

with u � 0. Thus, the CDF of the distribution of P cells at the tth generation is

P (Zt � u|Zt �= 0) = 1− exp(− u

at
).� (16)

The CDF of a gamma distribution with shape parameter k and mean kθ has the form

F (x; k, θ) =
1

Γ(k)

∫ x/θ

0

yk−1e−ydy� (17)

where Γ(k) is the gamma function. A comparison of equations  (16) and (17) shows 
that the CDF in a critical branching process (equation (16)) is that of a gamma dis-
tribution with k  =  1 and the mean kθ = at, the mean of the probability distribution 
of surviving clones of P cells (equation (12) with G′′(1) = 2a). Figures  3(a) and (b) 
show the MC simulation CDF data (represented by dots) in the cases of the two-
branch (b = 0, a = c = 0.5) and three-branch (b = 0.4, a = c = 0.3) models, respectively, 
through 20 generations and 1000 simulation runs. The solid lines correspond to the 
CDF of the gamma distribution with form as in equation (16).

3. Temporal signatures of approach to criticality

The critical branching process describing tissue homeostasis satisfies the condition a  =  c 
for the branching probabilities with the mean number of ospring per individual m  =  1. 
Regardless of the value of m, any state with finite population size k �= 0 is transient 
[8, 9] (equation (9)). In the large time limit, the fate of a population of P cells is either 
extinction or explosion (equation (10)). We now show that the approach to the critical 
point c

a
= 1 carries distinctive temporal signatures in terms of quantities like the mean 

extinction time, Tex, and the mean time, Tth, to reach a threshold population size Nmax. 
We use the same MC simulation procedure as discussed in [5] for our investigation. A 
brief description of the procedure is as follows. For specific values of the parameters a 
and c, a MC simulation run yields time series data for the population size (number of 
P cells) growing from Z0  =  1 to Nmax or to extinction. A fraction of the total number 
of simulation runs Stot results in extinction for which the mean extinction time, Tex, is 
calculated. For the rest of the runs, the population attains the threshold size Nmax and 
one calculates the mean time, Tth, to reach the threshold size. In our simulation, we set 
the values Nmax = 10 000 and Stot = 10 000.

Figures 4(a) and (b) show the plots of Tex versus c
a
 for b  =  0 and b  =  0.75 respec-

tively. Tex reaches its maximum value when the branching process is critical, i.e. c
a
= 1. 

The maximum value of Tex increases with increase in the magnitude of Nmax and Tex 
diverges in the limit of Nmax → ∞. When c

a
� 1, the probability of generation of D 

cells is much greater than that of the P cells so that the mean extinction time for the 
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a
 approaches 1, Tex increases in magnitude as the 

probability of generation of the P cells becomes progressively closer to that of the D 
cells so that the average cell population size increases. At a  =  c, the mean extinction 
time becomes maximum tending to infinity as Nmax becomes infinitely large. In the case 
of c

a
� 1, the extinction probability decreases with most of the clusters exceeding the 

size limit Nmax with the few populations which go extinct, doing so within the first few 
generations, resulting in a small value of Tex. In the case of the three-branch model, 
the non-zero value of b has the eect of increasing the magnitude of the maximum of 
Tex (figure 4(b)) with Nmax having a finite value. An increase in b implies an increase 
in the probability of the number of progenitor cells in the cell population remaining 
unchanged so that Tex reaches a higher maximum value.

This behaviour of the mean extinction time can be understood, if one looks at the 
distribution of the time to extinction for both the critical and the o-critical cases 
(figures 5(a)–(c)). For the critical case, the distribution shows a power law behaviour 

Figure 3.  Simulation results (red diamonds) for cumulative probability 
distribution of P cells at the 20th generation for (a) a = 0.5, b = 0, c = 0.5 and 
(b) a = 0.3, b = 0.4, c = 0.3. The solid line in each case depicts the fitted gamma 
distribution.

Figure 4.  Variation of mean extinction time Tex versus c
a
 for (a) b  =  0 and (b) 

b  =  0.75. It is seen that Tex reaches a maximum at c
a
= 1 with the higher maximum 

occurring for b  =  0.75.

https://doi.org/10.1088/1742-5468/ab5707
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indicating an absence of a characteristic time scale in the system, with the mean diverg-
ing in a power law fashion. In the o-critical case, the distribution is exponential indi-
cating the presence of a characteristic time scale, tc. The mean extinction time in this 
case is given by

Tex ∼
∞∑
t=1

t exp(− t

tc
)

=
exp(−1/tc)

(1− exp(−1/tc))2� (18)
which is clearly finite for a finite tc. It is expected that this characteristic time scale 
should decrease as we move away from criticality, so that the mean extinction time 
decreases. This behaviour is evident from figure 5(c).

The possibility of the population size reaching the threshold value Nmax is real-
ized when a is greater than c. Figures 6(a) and (b) show the variation of the mean 
time, Tth, for reaching the threshold size Nmax as a function of c

a
 with Nmax = 100 000, 

Stot = 10 000 and b  =  0, b  =  0.75, respectively. The figures show that the mean time 
diverges as c

a
→ 1. The plots in figures 4 and 6 are similar to the ones in [5] obtained 

in the case of evolving tumour cell populations. The plots obtained are based on simu-
lation results in both the cases. An analytic expression for the distribution of times 
to reach a threshold size can be derived in the case of a CT birth–death process, as 
discussed later in the section.

Figure 5.  Distribution of time to extinction for (a) b = 0, a = 0.5, (b) 
b = 0.25, a = 0.375 and (c) b  =  0, a  <  0.5. The first two cases represent this behaviour 
at criticality (a = c) whereas the third case corresponds to the subcritical regime. 
In the critical case, the distribution has a power law form whereas it is exponential 
in the subcritical regime.

https://doi.org/10.1088/1742-5468/ab5707
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We now compute the distribution of times to reach the threshold size for dierent 
values of the parameter a. Figure  7 shows the resulting plots. One finds from the 
figure that as criticality is approached (a → 0.5 from above, for a 2-branch model), the 
peak of the distribution shifts to a higher value of t. This can be understood from the 
fact that when a → 0.5, the competition between production of P and D cells increases, 
so that it takes more number of generations to reach a given threshold size of P cells. 
Another notable feature of the approach to criticality is that of a rising variance in the 
distribution of the extinction time and the time to reach Nmax. The variance as a func-
tion of the parameter c

a
 is plotted in figure 8. The rising variance has been proposed as 

a signature of regime shift in the dynamics of nonequilibrium systems [18–20].

Figure 6.  Variation of mean time, Tth, taken by the population of P cells to reach 
the threshold size, Nmax = 100 000 versus c/a for (a) b  =  0, (b) b  =  0.75. Tth is seen 
to diverge as c/a → 1.

Figure 7.  Simulation results for distribution of times to reach the threshold size 
for dierent values of a  >  0.5 and b  =  0 (supercritical branching process). As 
criticality (a = 0.5) is approached, the system takes more and more time to reach 
the threshold size.
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So far, we have been considering a DT branching process of the GW type in which 
time changes in discrete steps. For the case b  =  0, analytic expressions for various 
quantities can be obtained using the formalism of CT homogeneous Markov process 
[8–10, 21–23]. Let us consider a population of P cells, the total number of which at 
time t is given by n(t) where time t is now a continuous variable. Each individual in the 
population is capable of giving birth to new individuals. At the time of birth, a parent 
may give rise to two osprings and cease to exist, as in the case of the generation of 
two P cells through cell division, or the parent may continue to exist along with the 
ospring as in the case of animal reproduction. Both the descriptions are equivalent in 
the sense that in each case the total population size of reproducing individuals increases 
by one. For the CT case, it is more convenient to adopt the second interpretation. 
In the case of the DT two-branch model, on cell division, the total number of P cells 
increases by one with probability a (a birth process) and decreases by one with prob-
ability c (a death process). In the CT case of the linear birth–death process, let λ∆t 
be the probability that an individual gives birth in the time interval ∆t and µ∆t the 
probability that the individual dies in time interval ∆t. In the CT branching process 
theory, Z(t) again represents the population size of the reproducing individuals at time 
t and the corresponding PGF is defined as

F (s, t) =
∑
k≥0

P [Z(t) = k|Z(0) = 1]sk
� (19)

with F (s, 0) = s. The PGF of the family size in the case of the two-branch model is

f(s) =
µ

λ+ µ
+

λ

µ+ λ
s2.� (20)

Drawing analogies with the DT case (equation (4)), a = λ
µ+λ

, b = 0, c = µ
λ+µ. The PGF 

F (s, t) satisfies the backward Chapman–Kolmogorov (CK) equation [8, 9, 22]

Figure 8.  Plots of variance in the distributions of the extinction time and the time 
to reach the threshold size versus the parameter c

a
 (b = 0). The variance appears to 

diverge as the critical point is approached.
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∂F (s, t)

∂t
= µ− (µ+ λ)F (s, t) + λF 2(s, t).� (21)

With the initial condition F (s, 0) = s, the analytic solution of equation (21) for µ �= λ 
is given by

F (s, t) =
µ(s− 1)− e−(λ−µ)t(λs− µ)

λ(s− 1)− e−(λ−µ)t(λs− µ)
.� (22)

From the PGF, one can obtain the expressions for the probability distributions 
pn(t) = P [Z(t) = n] as

pn(t) = (1− α)(1− β)βn−1, n � 1,

p0(t) = α
� (23)

where α = µ(e(λ−µ)t−1)

λe(λ−µ)t−µ
 and β = λ(e(λ−µ)t−1)

λe(λ−µ)t−µ
. From equation (23), p 0(t) yields the probabil-

ity that the extinction of the population occurs by time t so that the CDF FT(t), giving 
the probability that the extinction time T is less than t is p 0(t). The PDF is obtained 
by dierentiating the CDF with respect to t and the expression for the mean extinction 
time TME is given by

TME =

∫ ∞

0

t
dp0
dt

dt =

∫ ∞

0

t
dα

dt
dt.� (24)

In the subcritical case (λ < µ), in which population extinction occurs with probability 
1, an analytic expression for TME can be obtained as

TME =
1

λ
ln(

µ

µ− λ
).� (25)

Figure 9 shows a plot of TME versus λ which diverges at the critical point λ = 0.5 in 
contrast with the finite-size eect exhibited in figure 4(a).

The time to reach the threshold size, Nmax (conditioned on non-extinction), has a 
double-exponential (Gumbel) distribution given by

f(t) =
θ2Nmax

λ
exp(− θ

λ
Nmaxe

−θt)e−θt� (26)

where θ = λ− µ. This is plotted in figure 10(a) for dierent values of λ. The qualitative 
behaviour matches with that of figure 7 for the discrete time case. The mean time to 
reach the threshold, computed from equation (26) is

Tth =
1

θ
log(

Nmaxθ

λ
) +

γ

θ
� (27)

where γ = 0.577 215 6649 is the Euler’s constant. Figure 10(b) shows that Tth diverges 
as λ → 0.5.

In the CT case, one can derive a number of analytic expressions for various quanti-
ties which is not possible in the case of the DT branching process. In the limit of time 
t → ∞, the behaviour of Z(t) and associated quantities are very similar in both the 
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cases [9]. We illustrate this equivalence for two quantities. In the supercritical branch-
ing case, the probability of extinction in the large time limit of a CT process is, from 
equation (23), µ

λ
 which is the same as the expression c

a
 (equation (8)) in the DT case. 

Considering a critical branching process (λ = µ) in the CT case, the probability distri-
butions have the form [8, 21]

Figure 9.  Plot of the analytic expression of mean extinction time, TME (equation 
(25)) versus the parameter λ (λ < µ). It is seen that TME diverges as λ → 0.5.

Figure 10.  Plots of: (a) Gumbel distribution of time to reach the threshold size, 
Nmax = 100 000 for dierent values of the parameter λ and (b) theoretical mean 
time to reach the threshold size (equation (27)).
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pn(t) =
(λt)n−1

(1 + λt)n+1
, n � 1,

p0(t) =
λt

(1 + λt)
.

�

(28)

In the asymptotic limit of t → ∞, the PDF of extinction times is

pe(t) =
dp0
dt

∼ 1

t2
.� (29)

We next consider the DT branching process. The exact time of extinction T  =  t if the 
size of the population becomes zero for the first time in generation t. This implies the 
conditional statement Zt = 0 ∩ Zt−1 > 0. One can further write

P (Zt = 0 ∩ Zt−1 > 0) + P (Zt = 0 ∩ Zt−1 = 0) = P (Zt = 0).� (30)
The second term on the l.h.s. can be written as P(Zt−1  =  0) since Zt is necessarily zero 
if Zt−1  =  0. Thus, the distribution of the extinction time T is given by

Pe(T = t) = P (Zt = 0)− P (Zt−1 = 0).� (31)

From Theorem 1 (equation (11)) for the critical branching process, P (Zt > 0) = 2
t
 in the 

large time limit with a  =  0.5 in the two-branch model. Thus, in the large time limit,

Pe(T = t) = (1− 2

t
)− (1− 2

t− 1
) ∼ 2

t2
� (32)

in agreement with the result (equation (29)) for the CT branching process. We will 
revisit the last result in the next section. We also point out that the experimental results 
on tissue homeostasis have been explained earlier by making use of the CT probability 
distributions shown in equation (28) [1, 3, 4]. In the limit t → ∞, it is straightforward 
to verify that the DT branching process results, as contained in Theorems 1–3, repro-
duce those obtained in the CT case to describe the experimental results.

We end this section by showing that a quantitative comparison of the simulation 
results in the case of the two-branch model describing a DT GW process with analo-
gous analytic expressions in the CT case is possible due to the property of embeddabil-
ity. In appendix, the embeddability criterion is discussed with the demonstration that 
the DT GW process, described by the two-branch model, is embeddable in the CT 
linear birth–death process. From equation (A.9) of appendix, one finds that

a

c
=

λ

µ
, c = 1− a.� (33)

In figure 11(a), the simulation data are fitted with the analytic expression for the mean 
extinction time TME (equation (25)) in the subcritical case λ < µ, i.e. a  <  0.5. The argu-
ment of the logarithm in equation (25) is a function of a using the relations in equa-

tion (33). The pre-factor 1
λ
 of the logarithm is not a unique function of a (only the ratios 

a
c
 and λµ are fixed) so that λ can be treated as a free parameter. The best fit between 

the simulation data and the analytic expression is obtained for λ = a
0.91. Figure 11(b) 

compares the simulation data of figure 6(a) with the analytic expression for the mean 
time Tth to reach the threshold population size (equation (27)). The analytic formula is 
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re-expressed in terms of the parameter c treating µ as a free parameter. The expression 
for Tth is given by

Tth =
1

µ

c

1− 2c
log(

Nmax(1− 2c)

1− c
) +

γ

µ

c

1− 2c
.� (34)

The best fit is obtained for µ = c
1.1

. Figure 11(c) shows the simulation data for P (t), 
the distribution of times to reach the threshold size, fitted by the analytic expression 
in equation  (26). The parameter µ was eliminated using the constraints imposed by 
equation (A.9), in favour of λ and a. For a given value of the parameter a, λ was used 
as the fitting parameter.

4. Branching process, avalanche and percolation model

The problem of tissue homeostasis finds a natural representation in a branching pro-
cess [6, 7] with homeostasis signifying criticality. Several studies have established a 
correspondence between a critical branching process and criticality in sandpile and 
percolation models in the mean-field limit [13–15, 24, 25]. We exploit these analogies 
to describe tissue homeostasis in terms of critical quantities characterising the lattice-
statistical models.

In the percolation model, a disordered system is described as a network of elements 
(sites or bonds). The probability that a site (site percolation) or a bond (bond percola-
tion) is present is p . When p   =  0, the network does not exist. For small values of p , the 
network is fragmented, whereas the network is fully connected when p   =  1. A critical 
point transition occurs at the percolation threshold pc(0 < pc < 1) such that for p   >  p c, 
a long-range connectivity is established across the system. Below p c, finite-sized clus-
ters of connected elements coexist whereas above p c, a giant cluster (infinite cluster) 
spanning the system coexists with smaller-sized clusters. The critical point transition is 
characterised by critical phenomena occurring at or close to the critical point [12, 26]. 
The most prominent feature among these is the appearance of power-law singularities 
in cluster-related quantities close to p c. For example, the average cluster size diverges 
as Sav ∼ |p− pc|−γ in the critical region with γ defining a critical exponent.

The phenomenon of SOC is wide-spread in nature with the sandpile model serving 
as a well-known paradigm [12, 27]. In the sandpile model defined on a lattice, the pile 
is generated through additions of sand particles at random sites. If the height of the 
pile at a site reaches a critical value, a toppling occurs at the site transferring sand 
particles to each of the neighbouring sites. This continues in successive time steps till 
all the sites have sand piles with height less than the critical height. The sequence of 
topplings constitutes an avalanche. The size of an avalanche is given by the number 
of sites which topples during the lifetime of the avalanche with the size-distribution 
D(s) obeying a power-law, D(s) ∼ s−τ , in the self-organised critical state. One can also 
define the duration of the avalanche defined by the number of time steps through which 
the avalanche progresses before coming to a stop. The avalanche duration, D(T ), also 
has a power-law form, D(T ) ∼ T−δ in the self-organised critical state.
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The mean-field theory (MFT) of lattice statistical models exhibiting critical point 
transitions is equivalent to studying the models on the Bethe lattice which has a 
branching structure and eective dimension d → ∞. It has been shown earlier that 
the Abelian sandpile model (the order of topplings is immaterial) of SOC on the Bethe 
lattice has critical exponents which are the same as those of the mean-field percolation 
model [27]. We now draw on the analogies between a branching process and avalanche 
and percolation models on the Bethe lattice to point out that all the three models 
exhibit similar critical behaviour. Towards this goal, we first derive the PGF of the 
total progeny distribution in a branching process. We define a random variable X which 
counts all the P cells including the founding cell. Thus, in a DT branching process,

X =
∑
t�0

Zt = 1 +
∑
t�1

Zt.� (35)

In figure 2, the total number of P cells is ten up to t  =  4. The PGF of X is defined as

g(s) =
∑
k�1

P (X = k)sk.
� (36)

The PGF G(s) of the ospring distribution (family size) is as given in equation (4). One 
can show that g(s) is given by the solution of the equation [28]

g(s) = sG(g(s)).� (37)
With the form of G(s) known, one can derive an expression for g(s) as

Figure 11.  Comparison of analytic results for CT birth–death process and 
simulation results for DT GW process. (a) Mean extinction time in the subcritical 
case (a  <  0.5); (b) mean time to reach the threshold size (Nmax = 100 000); (c) 
distribution of times to reach the threshold size. In all the cases, continuous solid 
lines represent theoretical results whereas points represent simulation outcomes.
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g(s) =
1− bs−

√
(bs− 1)2 − 4acs2

2as
.� (38)

The criticality condition for the three-branch model is given by a  =  c  =  ac. The survival 
probability Ps of the population of P cells serves as an order parameter of the critical 
point transition with

Ps �= 0, a > ac

Ps = 0, a � ac.
� (39)

For a  >  c, Ps is given by 1− c
a
. Close to the critical point, Ps has the power-law form

Ps ∼
1

ac
(a− ac)

β, β = 1.� (40)

Let 〈k〉 be the average size of the clusters of P cells. In the subcritical regime, the aver-
age size diverges as

〈k〉 = ∂g

∂s
|s=1 ∼ (ac − a)−γ

� (41)

as a → ac with γ = 1. In the supercritical regime, considering only extinct cell popula-
tions, the average cluster size has the power-law form

〈k〉 ∼ (a− ac)
−γ∗

� (42)

as the critical point is approached with γ∗ = 1. For the two-branch model (b = 0), one 

has a = p, c = 1− p with the critical point defined by ac = pc =
1
2
. One can easily check 

that the critical exponents have the same values as in the case of the three-branch 
model, indicating universality of critical phenomena. The exponents β, γ, γ∗(γ = γ∗) 
have values identical to the exponents associated with the order parameter and the 
average cluster size respectively in the mean-field percolation model.

In the branching process depicting the proliferation of P cells, the spreading of the 
proliferation activity through subsequent generations is analogous to the spreading of 
an avalanche in the sandpile model. The correspondence can be clearly understood by 
considering the two-branch model of P cell proliferation. In each generation, a P cell is 
replaced by two P cells with probability p  and it does not leave P cells as descendants 
with probability 1  −  p . In terms of an avalanche, an active site relaxes (‘topples’) with 
probability p  giving rise to two new active sites. The probability that the active site 
does not relax, i.e. no further active site is generated is 1  −  p . The process is repeated 
for each new active site resulting in the spreading of the avalanche. The avalanche 
comes to a stop when the number of new active sites falls to zero. The regime p   <  p c 
corresponds to the subcritical regime in the branching process (population extinction 
occurs with probability one) corresponding to solely finite-sized avalanches in the sand-
pile model and finite-sized clusters in the percolation model. On the other hand, in 
the supercritical region (p   >  p c), the probability of having an infinite population/ava-
lanche/cluster size is non-zero. The PGF for the two-branch model is obtained by put-
ting b  =  0 in the expression for g(s) in equation (38). By expanding the PGF in powers 
of s and comparing with the expression in equation  (36), one obtains the following 

results as p → pc =
1
2
 from below:
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P (k, p) ∼ k−τk exp(− k

kc
)� (43)

kc( p) ∼ |p− pc|−
1
σ� (44)

with τk =
3
2
 and σ = 1

2
. Also, the size distribution at the critical point is given by

P (k, pc) ∼ k−τk .� (45)
The distribution captures the power-law form of the avalanche size distribution in the 

self-organized critical state with the value τk =
3
2
 the same as the mean-field estimate. 

Furthermore, the extinction time distribution (equation (32)) reproduces the avalanche 

lifetime distribution D(T ) ∼ T−δ, δ = 2 in MFT. The value of σ = 1
2
 also agrees with 

the mean-field estimates. The results can be generalised to the three-branch model with 
identical values of the critical exponents. In the experiments on tissue homeostasis [3, 
4], the lineage tracing technique keeps track of the progeny of labelled cells. The tech-
nique, however, is unable to distinguish between the P and D cells so that the total 
count of cells includes both the P and D cells. This, however, does not pose a problem 
when experimental observations are compared with branching process results as shown 
below. In the latter case, the population consists of solely P cells.

The total number of cells (P  +  D) in the tth generation is Ct = 2Zt−1 where Zt−1 is 
the number of P cells in the (t− 1)th generation (the D cells do not reproduce). From 
equation (16), one can obtain the probability distribution of P cells at large time t  −  1 
(conditioned on non-extinction) as

P (Zt−1 = u) = P (Zt−1 � u)− P (Zt−1 � u− 1)

∼ 1

a(t− 1)
exp(− u

a(t− 1)
)� (46)

which leads to (t is large)

P (Ct = 2u) ≈ 1

at
exp(− 2u

2at
).� (47)

Equation (47) shows that the size distribution of the total number of cells has the same 
scaling form as in the case of P cells.

For both the two-branch and three-branch models, a simple counting argument [26] 
shows that the size (number of cells) of the D cell population is equal to k  +  1 where k 
is the size of an extinct population of P cells. The total number of cells is thus 2k  +  1. 
Thus for large k, the size distribution of the total number of cells (the experimentally 
measurable quantity) at the critical point has the same power-law form, as shown in 
equation (45), with the same magnitude of the critical exponent. The simple relation-
ship gives rise to the possibility of testing the power-law forms of the size and lifetime 
distributions of the descendant cells in lineage tracing experiments.
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5. Concluding remarks

The maintenance of adult tissues in the homeostatic condition is an essential requirement 
for the structural and functional integrity of an organism. In the adult stage, deviations 
from the condition occur due to external injuries or due to an abnormal proliferation of 
cells as in the case of cancer. In the first case, wound healing processes set in to restore 
the homeostatic condition whereas in the second case, therapeutic interventions are 
needed to restore the balance. The problem of tissue homeostasis involving an exquisite 
balance between cell proliferation and cell loss oers an ideal opportunity for applying 
the concepts and techniques of nonequilibrium statistical physics to investigate how the 
crucial balance is achieved. We have utilised the theorems and techniques of branching 
process theory to show that the basic experimental observations on the homeostasis of 
mouse epidermis [1–4] can be understood in terms of a critical branching process. The 
critical state is at the border between the subcritical and supercritical regions with the 
probability of extinction of the population of P cells serving as an order parameter. 
Through numerical simulation as well as analytic results we have obtained a number 
of temporal signatures of the approach to criticality which could be tested in appro-
priately designed experiments. A quantitative comparison between simulation results 
in the case of the two branch model with the analytic expressions obtained in the CT 
case could be carried out due to the special feature of embeddability. This is one of the 
exceptional cases in which a comparison of discrete and CT results can be meaningfully 
compared. We have further drawn on the equivalence between the critical branching 
process and the mean-field avalanche and percolation models to show that the size 
and lifetime distributions of the population of P cells approaching the critical point 
have power-law forms. The associated critical exponents have magnitudes equal to the 

mean-field estimates. The value of the size distribution exponent τk =
3
2
 (equation (45)) 

is also stipulated by a branching process theorem [8]. Lineage tracing experiments on 
tissue homeostasis could be designed to test the power-law predictions. The two- and 
three-branch models of tissue homeostasis exhibit the same critical behaviour signifying 
universality, a key feature of critical phenomena. In the critical state, the probability 
distribution of the population size attains an invariant scaling form in the long-time 
limit consistent with experimental observations [3, 4].

In most of the lineage tracing experiments carried out so far, fixed samples were 
taken at dierent time points so that an individual progenitor cell could not be tracked 
over time. Rompolas et al [29] used two-photon microscopy in conjunction with live 
imaging to follow individual cells through their lifetimes enabling them to oer new 
insights on epidermal homeostasis. In contrast to the earlier studies in which asym-
metric division (P → PD) was found to be the predominant mode of cell division, the 
study using live imaging in the ear and paw of mice epidermis showed that there was 
an almost 50:50 chance of every cell undergoing direct dierentiation or undergoing cell 
division to produce two P cells. The experiment revealed that the cell behaviour is not 
coordinated between generations and sibling lifetimes are coupled. The findings add 
relevance to the two-branch model of tissue homeostasis. The critical behaviour of the 
branching process models is that of the birth–death process. In these models, the prolif-
eration and dierentiation kinetics are intracellular (cell-autonomous). The models have 
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been designated as zero-dimensional to indicate that the spatial distribution of cells and 
cell–cell interactions are not taken into account. Some studies on tissue homeostasis put 
focus on intercellular interactions as the key driver of cell fate decisions [1, 30–32]. The 
key assumption in a spatial model of cellular kinetics is that the P cells divide only when 
a neighbouring dierentiated cell migrates to the suprabasal layers [32]. This conjecture 
is supported by recent experimental evidence [30]. In the case of cell-intrinsic regulation 
described by a critical birth–death process, the average size of the surviving clones grows 
as 〈n(t)〉 ∼ t and the clone size acquires a scaling form described by the scaling function 
F (x) = exp(−x) in the large time limit. In the case of cell extrinsic regulation in which 

spatial considerations are important, the scaling forms are 〈n(t)〉 ∼
√
t, F (x) ∼ e−

πx2

4  in 

one dimension (1d). The results are consistent with experimental measurements in 1d 

tissues like intestinal crypts [33] and seminiferous tubules [34]. In 2d, 〈n(t)〉 ∼ t with 
logarithmic corrections and F (x) = exp(−x). In dimension d � 3, the scaling forms are 
the same as in the case of cell intrinsic regulation. The scaling forms in the case of the 
cell extrinsic regulation are derived from the voter model (VM) in which the opinion of 
an agent is influenced by that of a neighbour [1, 31, 32]. The characteristic features of 
the clonal dynamics in experimental investigations of skin tissues (2d systems) are repro-
duced well by both cell intrinsic and cell extrinsic regulation models. Critical phenomena 
in living systems constitute a newly emerging research with an interdisciplinary char-
acter [35–39]. The emergence of universal features in living systems close to criticality 
is captured by statistical physics models, which elucidate the basic principles governing 
the critical behaviour of a large class of systems.
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Appendix

A CTM branching process is a sequence of transitions or jumps between states sepa-
rated by random time intervals known as waiting or sojourn times which are exponen-
tially distributed. In the DT branching process of the GW type the jumps occur at 
fixed intervals of time. Every CTM process has a DT process embedded in it if only the 
jump events are considered, ignoring the randomly distributed waiting times between 
the jumps. The discrete process is of the GW type if the time intervals between suc-
cessive jumps are fixed to be δ. The converse question of whether a DT branching 

process with a specific ospring PGF f(s) =
∑∞

j=0 pjs
j is embeddable in a CTM pro-

cess is more problematic [8, 9, 23]. The embeddability criterion stipulates that a PGF 
f(s) is embeddable if there exists a PGF F (s, t), defined in equation (19), such that 
F (s, t+ u) = F (F (s, t),u); t, u � 0, |s| � 1 and F (s, δ) = f(s) for some δ > 0. Using this 
criterion, most of the familiar PGFs turn out to be nonembeddable. The linear frac-
tional GF g(s) is an exception and has the form
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g(s) =
α + βs

γ + σs
, ασ − βγ �= 0.� (A.1)

It is easy to check that the successive iterates of g(s) have the linear fractional form 
(LFF). In the case of the CT linear birth–death process, the PGF given by equation (22) 
is of the LFF such that F (s, t+ u) = F (F (s, t),u) has the same form as F (s, t). Writing 
t as t = nδ,n = 0, 1, 2, ..., the nth iterate of F (s, δ) yields F (s, t) = F (s,nδ). We will now 
show that for the linear birth–death process and for infinitesimal δ, F (s, δ) = f(s), the 
ospring PGF of the two-branch model given by equation (4) with b  =  0. The embed-
dability makes it possible to compare the simulation results of the DT case with the 
analytic results obtained in the case of the CT process.

A natural description of a CTM process is provided by the infinitesimal GF 

u(s) =
∑∞

k=0 dks
k.The infinitesimal probabilities of the process are represented by the 

expression δ1k + dkh+ o(h), where δ1k is the Kronecker delta symbol. The coecients 
dk’s satisfy the relations d1 � 0, dk � 0(k = 0, 2, 3, ..) and 

∑∞
k=0 dk = 0. For dk � 0, dkh 

specifies the probability that a single individual is replaced by k individuals in the 
time interval (t, t+ h). The Markov process is assumed to be temporally homogeneous 
so that the coecients dk’s do not depend on time. In terms of the infinitesimal prob-
abilities, the physical characterization of the CT process is as follows. The lifetime of 
an individual is a random variable with exponential distribution. The mean lifetime is 
given by

λ−1
m = d0 + d2 + d3 + ...� (A.2)

At the end of its lifetime, an individual produces a random number X of ospring 
described by the probability distribution

Pr{X = k} =
dk

d0 + d2 + d3 + ...
, k = 0, 2, 3, ...� (A.3)

In the case of the linear birth–death process, one has d2 = λ , d0 = µ, d1 = −(λ+ µ) 

and dk  =  0 otherwise. Also, λ
λ+µ

( µ
λ+µ

) is the probability of a birth(death) at the occur-

rence of an event.
The PGF F (s, t) (equation (19)) can be rewritten as

F (s, t) =
∞∑
k=0

P1k(t)s
k

� (A.4)

where P1k represents the transition probability from state 1 (one individual) to state k 
(k individuals). For an infinitesimal time interval h, one can write

F (s,h) =
∞∑
k=0

P1k(h)s
k =

∞∑
k=0

(δ1k + dkh+ o(h))sk

= s+ hu(s) + o(h).

� (A.5)

In the case of the linear birth–death process, putting h = δ in the expression for F (s, t) 
(equation (22)) and ignoring terms of the order of o(δ), one gets from equation (A.5) the 
following expression for the infinitesimal GF u(s):
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u(s) = λs2 − (λ+ µ)s+ µ.� (A.6)

The infinitesimal GF can further be rewritten as

u(s) = a( f(s)− s)� (A.7)
where

a = λ+ µ� (A.8)
and f(s) is the PGF given by equation (20). The PGF has the same form as that of 
the ospring PGF of the DT two-branch model given by equation (4) with b  =  0. As 
pointed out earlier, the correspondence between the two parameter sets is given by

a =
λ

λ+ µ
, c = 1− a =

µ

λ+ µ
.� (A.9)

One can further check from the expression for F (s, t) (equation (22)) that for small δ,

F (s, δ) = λs2δ + (s− (λ+ µ)sδ) + µδ + o(δ).� (A.10)

In the case of a DT GW process, the generation time is fixed at the value δ with 

δ = 1
λ+µ since birth/death events occur only at the end of a generation. On substituting 

the value of δ in equation (A.10), one recovers the expression for f(s) in equation (20), 
i.e. F (s, δ) = f(s), the embeddability condition discussed earlier.
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