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Abstract.  The problem of eective equations  is reviewed and discussed. 
Starting from the classical Langevin equation, we show how it can be generalized 
to Hamiltonian systems with non-standard kinetic terms. A numerical method 
for inferring eective equations from data is discussed; this protocol allows to 
check the validity of our results. In addition we show that, with a suitable 
treatment of time series, such protocol can be used to infer eective models from 
experimental data. We briefly discuss the practical and conceptual diculties 
of a pure data-driven approach in the building of models.
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1.  Introduction

It is a matter of fact that many interesting dynamic problems in science and engineering 
are characterized by the presence of a variety of degrees of freedom with very dierent 
time scales. As important examples we can mention proteins [1] and climate dynam-
ics [2]: we remind that the time scale of vibration of covalent bonds is O(10−12 s), 
while the folding time for proteins may be of the order of seconds; in a similar way the 
characteristic times of the processes involved in climate vary from seconds for the 3D 
turbulence, to days for the atmosphere, to O(104 yr) for the deep ocean currents and 
ice shield dynamics.

Due to the multi-scale character of such kind of systems, it is not possible to perform 
a direct simulation of all the relevant involved scales, even with the support of modern 
supercomputers and advanced numerical algorithms. These practical diculties force 
us to reduce our ambitions; a (non-trivial) possibility in this sense is to describe the 
‘slow dynamics’ in terms of eective equations. Using such an approach one has both 
practical and conceptual advantages: for instance, it is possible to decrease the compu-
tational eort, e.g. by reducing the number of equations and adopting a ‘large’ time-
step ∆t; in addition, the eective equations are able to catch some general features and 
to reveal dominant ingredients which can remain hidden in the detailed description [3].

Disappointingly enough, only in a few cases it is possible to derive eective equa-
tions with a systematic approach: important examples are dilute gases [4], harmonic 
chains [5, 6] and the Markovian limit of Hamiltonian dynamics [7].
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On the other hand, in the history of science there is a series of clever practi-
cal approaches for the study of multi-scale problems that do not rely on rigorous 
derivations, e.g. the averaging method in celestial mechanics [8], the Langevin equa-
tion  for colloids [9], the homogenization for partial dierential equations  [10], the 
Born–Oppenheimer ‘approximation’ [11] and the Carr–Parrinello method [12].

In order to give an idea of the general methodology let us briefly remember a well 
known example of eective model, the advection-diusion equation for a passive scalar 
ρ(x, t) (e.g. the concentration of a pollutant) in an incompressible flow (∇ · u = 0):

∂ρ

∂t
+ (u · ∇)ρ = D0∆ρ .� (1)

Maxwell had the idea, now supported by mathematics (under rather general condi-
tions), to consider the solution of equation (1) at large scale and asymptotically in time; 
in these limits one obtains the so-called standard diusion, i.e. a Fick’s law holds of 
the form

∂Θ

∂t
=

∑
i,j

Dij
∂2Θ

∂xi∂xj
� (2)

where Θ is the spatial coarse graining of ρ, and Dij is the eective (eddy) diusion 
tensor, depending (often in a non trivial way) on D0 and the field u (just for simplicity 
we considered the case 〈u〉 = 0). If some (rather general) conditions on the field u are 
satisfied then one can use a precise protocol to compute the tensor Dij [13].

In this paper we review some important aspects of the problem of finding eective 
equations  for complex systems. In section 2 we review the classical Langevin equa-
tion and show how it can be extended to cases in which the system obeys a Hamiltonian 
with a generalized form of the kinetic energy; section 3 is devoted to the discussion 
of a data-driven method that allows to test such generalization; section 4 shows how 
this method can be applied to experimental cases, and how it can be used to infer 
coarse-grained models whose behavior nicely agree with that of the real system; then 
in section 5 we briefly comment on the lessons that we can learn from the problem of 
eective equations in physics, and how such warnings can reveal useful also in the con-
text of big data and machine learning. In section 6 we briefly sketch our conclusions.

2. Generalizing the Langevin equation

In his celebrated paper about Brownian motion, Paul Langevin addressed the problem 
of properly describing the irregular behavior of pollen particles suspended in water [9]. 
Following Einstein, he assumed that both the colloidal particle and the molecules of the 
fluid could be modeled as material points with masses M and m � M  respectively. The 
motion of the heavy particle is due to the collisions with the molecules of the liquid, 
which are assumed to be uncorrelated. To account for the discontinuous action of the 
hitting molecules, Langevin relied upon the introduction of a stochastic term in the evo
lution equation of the colloid, namely a white Gaussian noise ξ(t) = (ξ1(t), ξ2(t), ξ3(t)) 
such that

https://doi.org/10.1088/1742-5468/ab535c
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〈ξi(t)〉 = 0

〈ξi(t)ξj(t′)〉 = δ(t− t′)δij.
� (3)

He supposed that the impulsive force acting on the colloid was proportional to this dis-
continuous function ξ. On the other hand, he argued that the interaction with the fluid 
results into an average damping force acting on the colloidal particle, and proportional 
to its velocity (Stokes law). The combination of the above eects leads to the celebrated 
Langevin equation (LE)

Ṗ = −γP+
√

2γkBTξ� (4)

which characterizes the evolution of the momentum P = MQ̇ of the heavy colloid (Q 
being its position in the three-dimensional space). Here γ is the friction term due to the 
interaction of the colloidal particle with the fluid, while T is the temperature and kB is 
the Boltzmann constant. The noise amplitude is determined by the Einstein relation, 
which relies on the fact that the interested particle is at thermal equilibrium with the 
fluid, so that equipartition theorem holds and

〈P 2/M〉 = 3kBT .� (5)

Equation (4) clearly shows that the Brownian motion is the result of the competing 
actions of a damping force and a thermal noise. It seems reasonable that such mech
anism should hold, under appropriate modifications, also for Hamiltonian systems with 
non-standard, generalized forms of the kinetic energy K(P ) (e.g. non quadratic func-
tions of the momenta). In these cases there would be no reason for the damping force 
to be proportional to the momentum, and the equipartition theorem could assume a 
formulation very dierent from equation (5).

This problem has been addressed in [14] and, as it will be discussed in the follow-
ing, it assumes particular conceptual relevance when Hamiltonian systems living in 
bounded phase-spaces are taken into account, so that the absolute temperature of the 
system can assume negative values.

Let us consider the general case of a Hamiltonian system of the form

H(P , { pn},Q, {qn}) = K(P ) +
∑
n

K̃( pn) + U(Q) + V (Q, {qn})� (6)

where (P ,Q) is a ‘slow’ degree of freedom. For example, in a system with the usual 
quadratic kinetic energy it could represent a particle with a mass much higher than the 

others (K(P)  =  P2/2M, K̃( pn) = p2n/2m, M � m). U(Q) is the external potential which 
the slow particle is subjected to, while V (Q, {qn}) takes into account the interactions 
occurring among dierent degrees of freedom. For the sake of simplicity we consider 
here only Hamiltonian systems in one dimension, but all the results can be straightfor-
wardly generalized to the multi-dimensional case.

In what follows we will limit our analysis to Hamiltonians of the form (6), in which 
the kinetic energy is the sum of single-particle contributions only depending on the 
momentum.

https://doi.org/10.1088/1742-5468/ab535c
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The Hamilton equations describing the motion of the slow degree of freedom read:
{
Q̇ = ∂PK(P )

Ṗ = −∂QU(Q)− ∂QV (Q, {qn})
.� (7)

At this stage we introduce a first, strong hypothesis, in the spirit of the one done by 
Langevin: we suppose that the time-scale separation between the dynamics of the slow 
particle and the fast ones allows us to approximate the former through an eective 
stochastic equation. In other words, we assume that equation (7) can be rewritten as

{
Q̇ = ∂PK(P )

Ṗ = −∂QU(Q) + Γ(P ) +
√
2Dξ(t).

� (8)

Here the term Γ(P ) can be seen as a generalization of the Stokes force, while D is a 
constant which determines the amplitude of the noise. In this way we are ignoring 
the details of the interactions between the slow and the fast degrees of freedom. The 
possibility to perform such averaging procedure on rigorous mathematical grounds is 
a non-trivial, largely studied problem in the field of dynamical systems [15, 16]: the 
above approximation should be therefore viewed as an ansatz, whose validity needs to 
be checked a posteriori.

We aim at finding some kind of generalized Einstein relation to relate the constant 
D to Γ(P ). Let us introduce the steady probability density f(Q,P ) of the considered 
degree of freedom (to be determined) and the corresponding steady probability currents:

{
JQ(Q,P ) = f(Q,P )∂PK(P )

JP (Q,P ) = −f(Q,P )∂QU(Q,P ) + Γ(P ) f(Q,P )−D∂Pf(Q,P ).� (9)

In terms of the above quantities, the Fokker–Planck equation corresponding to equa-
tion (8) reads:

∂QJQ(Q,P ) + ∂PJP (Q,P ) = 0.� (10)
We assume now that the system is in thermal equilibrium (which is the same 

hypothesis done by Einstein and Langevin when exploiting the equipartition theorem 
(5)). We require therefore that detailed balance is satisfied, i.e. that the irreversible part 
of JP vanishes, so that

Γ(P ) f(Q,P )−D∂Pf(Q,P ) = 0.� (11)
Exploiting the factorization of the equilibrium distribution f(Q,P ) = fQ(Q) fP (P ) and 
the fact that

fP (P ) ∝ e−βK(P )
� (12)

where β = (kBT )
−1, one easily finds from equation (11):

Γ(P ) = −Dβ∂PK(P ).� (13)
This last equation can be seen as a generalization of the Einstein relation to cases with 
non-quadratic kinetic energy. It tells that the Stokes law is always proportional to the 

velocity Q̇ = ∂PK(P ), no matter what the form of the kinetic energy is, and that their 

https://doi.org/10.1088/1742-5468/ab535c
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ratio is fixed by −Dβ. Let us stress that in the usual, Newtonian case K(P)  =  P2/2M, 
the Einstein relation is exactly recovered, as it should.

The above argument gives a relation between D and Γ, but it is not sucient to 
determine Γ (or D) from the knowledge of the Hamiltonian. When the nature of the 
bath is specified one may try perturbative methods in the limit of large scale separation 
to derive all the parameters of the eective equation. An analytically tractable case 
has been discussed in [17], where the thermal bath is constituted by a large number 
of Ising spins, which are kept at a fixed temperature by Glauber dynamics, and the 
‘slow’ degree of freedom is an oscillator with generalized kinetic energy. All the spins 
feel a magnetic field that depends on the position of the oscillator. In the limit in which 
the typical frequency of the oscillator ωosc is much slower than the rate of the Glauber 
dynamics rspin, a Chapman–Engsok expansion of the Fokker–Planck equation of the 
particle can be performed, for which the small parameter is given by

ε =
ωosc

rspin
.� (14)

The obtained Langevin equation for the slow dynamics is of the form

Q̇ = K ′(P )

Ṗ = −U ′
R(Q)− Γ(P ,Q)K ′(P ) +

√
2D(Q)η

� (15)
where UR(Q), Γ(P ,Q) and D(Q) can be explicitly computed. Remarkably, this result 
basically coincides with the one obtained with the previous phenomenological argu-
ment: equation (13) still holds, with the only dierence that D is now a function of Q.

It can be verified that both equilibrium features (e.g. stationary probability density 
function) and non-equilibrium ones (e.g. correlations and relaxations) obtained with the 
eective Langevin equation  (15) are in perfect agreement with the actual numerical 
results from the complete system [17].

3. Testing the generalized LE

In order to check the validity of the generalized form for the LE,

Ṗ = −∂QU(Q)−Dβ∂PK(P ) +
√
2Dξ,� (16)

we can perform computer simulations of a large, compound system in which both 
‘heavy’ and ‘light’ particles are present, and compare the eective behavior of one slow 
particle with the stochastic description given by equation (16). Our strategy articulates 
into four steps:

	 (i)	� Design a suitable Hamiltonian system in which time-scale separation may be 
expected; 

	 (ii)	� Simulate a (deterministic) evolution of such system; 

https://doi.org/10.1088/1742-5468/ab535c
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	 (iii)	� Extrapolate a posteriori the coecients of the eective LE which approximates 
the dynamics to the best extent; 

	 (iv)	�� Compare them to equation (16).

First, we will carry out our program with a Hamiltonian system which is well-known 
to reproduce the Brownian motion in the thermodynamic limit, i.e. a harmonic chain 
with a heavy ‘intruder’:

H =
P 2

2M
+

∑
i=±1,...,±N

p2i
2m

+
k

2

N+1∑
i=−N

(qi − qi−1)
2, Q ≡ q0.� (17)

Here ( pi, qi), i = −N , ...,−1, 1, ...,N  are the canonical coordinates of the ‘light’ parti-
cles, with equal masses m, while (P ,Q) are those of the heavy intruder of mass M � m; 
k is the elastic constant. We consider fixed boundary conditions q−N−1 = qN+1 = 0. 
The above model and similar harmonic chains have been analytically studied since 
the 1960’s and represent one of the few examples in which stochastic dierential equa-
tions can be exactly derived starting from first principles [5, 6, 18, 19].

Hamiltonian (17) is integrable, so that the energy assigned to each normal mode at 
the beginning of the dynamical evolution is conserved; as a consequence, if the system 
is initialized in such a way that energy is shared among only few degrees of freedom, 
thermodynamic equilibrium will never be reached and the Langevin description (4) will 
necessarily fail. If, conversely, the system starts at equilibrium, it can be rigorously 
shown that the dynamics of P is approximated by a Markovian stochastic process, 
whose autocorrelation function reads

C(t) � exp

(
−2

√
km

M
t

)
+O(m/M).

� (18)
We numerically simulate Hamiltonian (17) with a standard velocity Verlet update, 

choosing the time-step in such a way that the relative fluctuations on the total energy 
are of order O(10−5). We start from equilibrium initial conditions.

Given a generic Langevin equation

Ṗ = F (P ) +
√
2D(P )ξ

� (19)
the drift term F (P ) and the diusivity D(P ) can be computed from the temporal evo
lution of P using the definitions [20]

F (P ) = lim
∆t→0

〈∆P |P (t0) = P 〉
∆t

� (20a)

D(P ) = lim
∆t→0

〈∆P 2|P (t0) = P 〉
2∆t

.� (20b)

In other words, we can evaluate the Langevin coecients for a given value P of the 
variable by looking at the average behavior of the trajectory after it passes through P. 
This approach has been used in several contexts ranging from physics to biology and 
finance [21, 22].

https://doi.org/10.1088/1742-5468/ab535c
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Of course, the above limits of conditioned moments need to be evaluated with care. 
One has to be sure that the sampling rate is much higher than the typical frequencies 
of the dynamics, so that the quantities on the rhs of equation (20) can be evaluated for 
time intervals ∆t smaller than any characteristic time of the evolution. In this case, in 
particular, one needs ∆t � M/

√
km.

On the other hand, the evolution cannot be Markovian on all time-scales, because 
the original dynamics is deterministic, and it depends on the interactions with other 
degrees of freedom. This can be also understood by considering the velocity autocor-
relation functions CD(t) and CL(t) in a deterministic and in a Langevin process respec-
tively; for small times t, they can be expanded as:

CD(t) = 1− t2

τ 2D
+O(t3)� (21a)

CL(t) = 1− t

τL
+O(t2).� (21b)

Therefore it exists a minimal time-scale τM  (sometimes called the Markov–Einstein 
time [21]), such that the process can be considered Markovian only on time-scales much 

larger than τM . Such threshold should be at least O
(

τ2D
τL

)
, in order for the dierences 

between CD and CL to be negligible.
At a practical level, a good strategy consists in evaluating the quantities (20a) and 

(20b) (for a fixed starting value P) as functions of the time interval ∆t, then looking at 
their behavior for ∆t � τM (but still small with respect to the typical times of the evo
lution) and extrapolating the limit ∆t → 0 (figure 1). In order to numerically evaluate 
the conditioned moments relative to an initial value, say, P0, we have to wait until the 
trajectory passes through a (small) interval (P0 −∆,P0 +∆), and then to look at its 
displacement ∆P  after a time ∆t. This is repeated many times, so that the averages in 
equation (20) are evaluated as temporal averages.

The above procedure is performed for several values of the starting value of P, so 
that at the end we can appreciate the dependence of the drift and the diusivity on 
P. The results are shown in figure 2. As expected, the drift linearly depends on the 
momentum and the diusivity is constant. Relation (13) is also verified. In order to 
check that the reconstructed LE actually reproduces the behavior of the slow particle, 
we can do an additional check: we can compute the steady probability density and the 
autocorrelation function in this new coarse-grained dynamics and compare them to the 
original, deterministic evolution. In this simple case, since the dynamics is linear, we 
can determine such observables analytically once we know F (P ) and D; in more compli-
cated cases one can rely on numerical simulations of the stochastic process. Figure 3(a) 
shows both quantities in the original and in the reconstructed dynamics: the agreement 
is quite good. Finally, we have to check that time-scale separation hypothesis is valid, 
i.e. that the ‘thermal noise’ 

ζ(t) = Ṗ (t)− F (P (t))� (22)

decorrelates much faster than P. The autocorrelation functions of the two quantities 
are shown in figure 3(b): the time-scale separation is evident.

https://doi.org/10.1088/1742-5468/ab535c
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3.1. A case with also negative temperature

According to statistical mechanics, the inverse temperature β is defined in terms of the 
microcanonical entropy S(E) of the system described by H(X):

β =
1

kB

∂S

∂E
, S(E) = kB ln

∫
dX δ(E −H(X)) .� (23)

From the above expression one realizes that β becomes negative if S(E) is a decreas-
ing function. It is well known that this never happens for systems with the usual, 
quadratic kinetic energy [23], so that negative temperatures can be only observed for 
peculiar systems, typically living in bounded phase-spaces.

Figure 1.  Evaluation of the conditioned moments on the rhs of equation  (20). 
We numerically compute such quantities as functions of ∆t (points), then we fit 
the curves with low-order polynomials (solid lines) and we consider the limits 
for ∆t → 0. Left: rhs of equation  (20a), linear fit. Right: rhs of equation  (20b), 
parabolic fit. Dierent colors and shapes of the points correspond to dierent values 
of the initial value of P. All fits are computed between ∆t = 0.25 and ∆t = 1.5. 
Parameters of the simulation M  =  200, m  =  1, k  =  2500, 2N  =  2000, β � 1.0.

Figure 2.  Drift term F (P ) and diusivity D(P ) of the process P (t) as determined 
by the data-driven procedure discussed in the text. Red circles (black diamonds) 
represent the values obtained for the drift (diusivity) from the limits (20); solid 
lines are linear fits.

https://doi.org/10.1088/1742-5468/ab535c
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Systems with negative temperature, however, are not mere curiosities: among the 
many interesting physical cases we can mention 2D inviscid hydrodynamics, including 
the point-vortices model discussed by Onsager during the first StatPhys conference 
(Florence 1949) [24], systems of nuclear spins [23], the discrete nonlinear Schrödinger 
equation [25] and systems of cold atoms trapped in optical lattices [26].

Since in our derivations we never assumed that the temperature of the system is 
positive, it can be interesting to see if formula (13) still holds for Hamiltonian models 
which can assume negative temperature. We will consider the following form for the 
kinetic energy:

K( p) = mc2
[
1− cos

( p

mc

)]
.� (24)

Here c is a constant with the physical dimensions of a velocity, while m can be seen as 
a generalized ‘mass’: it is straightforward to verify that, at fixed velocity, both kinetic 
energy and momentum are proportional to m, as one would expect from additivity. 
Momentum p  lives in the interval [−mcπ,mcπ), so that it can be considered as an angu-
lar variable. If also the ‘positions’ are chosen to live in a bounded space, we can expect 
to observe negative temperature at high values of the energy. Apart from the con-
stant, the above form of the kinetic energy resembles the one that has been observed 
in a famous experiment on cold atoms [26], and it has been used in the definition of 
mechanical models for systems with negative temperature [27–30]. One of the reasons 
is that for small energies such term reduces to the usual, quadratic form p 2/2m, so that 
in the low (positive) temperature regime we recover the usual statistical properties.

Also in this case, we want to study the eective motion of a ‘heavy’ particle sub-
jected to the action of a thermal bath of ‘light’ molecules. We need the intruder to 
interact simultaneously with many, uncorrelated, degrees of freedom, in such a way 
that it can be considered at thermal equilibrium with such a reservoir. In the following, 
we will model the bath as a chain of ‘oscillators’ with equal masses m:

Figure 3.  Left: autocorrelation function of the velocity in the original dynamics 
(circles) and in the reconstructed stochastic process (solid line). In the inset, 
the steady probability density functions for the deterministic evolution (boxes) 
and for the stochastic one (solid red line) are compared. Right: autocorrelation 
function of the velocity (blue) compared to the one of the ‘thermal noise’ defined 
by equation (22) (red).

https://doi.org/10.1088/1742-5468/ab535c
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Hchain =
N∑
i=1

mc2
[
1− cos

( pi
mc

)]
+ ε

N+1∑
i=1

[1− cos(θi − θi−1)]� (25)

where ( pi, θi) is the ith pair of canonical coordinates. We coupled then such chain to a 
‘heavy’ degree of freedom (Θ,P ) of mass M � m via a bounded potential, so that the 
total Hamiltonian reads

H = Hchain +Mc2[1− cos(P/cM)] + k

N/n∑
i=1

[1− cos(Θ− θi·n)].� (26)

Let us stress that the heavy particle is only coupled to those oscillators whose label is 
a multiple of the integer parameter n � 1.

We can expect that the dierent inertia of the intruder makes its dynamics much 
slower than that of the other degrees of freedom, so that a time-scale separation should 
be observed. Moreover, our choice of the interaction potential should keep the particle at 
the same temperature of the thermal bath. Remarkably enough, in this case such temper
ature can be negative, due to the bound on the total phase space volume. If the gener-
alized Einstein relation (13) holds for β < 0, it means that F (P ), in such regime, must 
be positive when P  >  0 and negative when P  <  0, contrary to what happens at positive 
temperature. In other words, the (generalized) Stokes force tends to give energy to the 
particle, instead of subtracting it. At first sight this behavior may appear very unphysi-
cal: it can be understood by remembering that a thermal bath at negative temperature 
increases its entropy by decreasing the internal energy, i.e. by releasing heat.

We can apply to this new model the data-driven analysis discussed in the previ-
ous section. Figure  4 shows the drift and diusivity terms as reconstructed by our 
approach. We considered two cases, one at positive and one at negative β . The drift 
term F (P ) is clearly proportional to ∂PK(P ), as it should. The diusivity is almost con-
stant. Relation (13) holds both at positive and at negative temperature. In particular, 
as it is clear from the figure, passing from positive to negative β the proportionality 
factor between F (P ) and K(P ) changes its sign.

Finally, we can look at the steady probability density functions and at the autocor-
relations of P, in order to compare the ones computed with the coarse-grained model 
and those from the original deterministic system. As shown in figure 5, the agreement 
is quite good, both at positive and negative β .

The fact that it is possible to write down a Langevin-like equation with β < 0, 
which properly reproduces the behavior of a slow degree of freedom subjected to the 
action of a bath, sounds quite relevant in the context of the long-lasting debate about 
negative temperatures. Several Authors propose the adoption of a definition of entropy 
alternative to equation (23), the so-called ‘volume entropy’ or ‘Gibbs entropy’ SG [31]. 
A statistical description based on SG is able to reproduce the classical results of ther-
modynamics exactly, even if the number of degrees of freedom of the system is small 
[27, 31–33]: due to this remarkable property, SG may appear as the right mechanical 
analogue of the thermodynamic entropy. However, since SG is by definition a non-
decreasing function of energy, β would never be negative. We stress that with this 
alternative choice it would not be possible, in our opinion, to give a coherent descrip-
tion of the above results.
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3.2. Some remarks on the method

At a first glance it seems that everything is quite easy. On the other hand one has to 
face several diculties:

	 (i)	� Time-scales separation does not imply Markovianity.

	 (ii)	� It is true that, in some cases, adding variables can lead to a Markovian process 
(e.g. if colored noise is present); unfortunately a general method to find the ‘right’ 
variables does not exist. Such a diculty has been expressed in a rather vivid 
way in the caveat of Onsager and Machlup [34]: How do you know you have taken 
enough variables, for it to be Markovian?

	 (iii)	� The procedure discussed in this section  cannot be applied ‘blindly’, and 
Markovianity should always be checked a posteriori.

Figure 4.  Drift and diusivity evaluated with the discussed data-driven approach 
(points) and corresponding fits (solid lines). Left: β � +0.11. Right: β � −0.10. 
Drift terms are fitted with sinusoidal functions, diusivities with constant values. 
Parameters of the simulations: M  =  8, m  =  1, k  =  0.5, N  =  600, n  =  15.

Figure 5.  Autocorrelation functions of the velocity in the original dynamics 
(circles) and in the coarse-grained model (solid lines) at β = 2 (left) and β = −2 
(right). In the insets, probability density functions of P in the two cases, both for 
the original dynamics (boxes) and for the reconstructed model (solid lines).
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In order to give an example of the above troubles and how mathematics can help to 
select/eliminate models we discuss the case shown in figure 6, which is obtained from 
a system with Hamiltonian

H =
N∑

i=−N

[1− cos( pi/
√
mi)] + k

N+1∑
i=−N

[1− cos(qi − qi−1)]� (27)

where ( p0, q0) ≡ (P ,Q) and mi = m+ δi,0(M −m).
Also in this case one can expect that the presence of a large ‘mass’ would lead to 

a scale-separation between the dynamics of the slow and those of the fast particles. 
However let us note that the additivity condition mentioned above is not satisfied 
in this case. In such a situation, in spite of time-scales separation, it is impossible to 
find a 1D Langevin equation for P. The reason of such impossibility is a property of 
the Fokker–Planck operator: in 1D equilibrium Langevin equation the autocorrelation 
function cannot be negative [20]. Therefore if we want to build an eective Langevin 
equation, it is necessary to introduce (at least) another variable.

4. Data driven models: LE for a granular system

Let us now discuss how to use the procedure for the building of eective equations when 
just experimental data are available, in a system for which we have not a well estab-
lished theoretical understanding.

The analyzed time series is that of the angular velocity of a rotator suspended in a 
vibrofluidized granular medium, as discussed in [35]. In figure 7 we show a sketch of the 
experiment set-up. We recall that in a granular medium kinetic energy is not conserved 
and therefore Hamiltonian modelling discussed before is not applicable.

Figure 6.  A case in which the described method fails: the autocorrelation function 
of the original system (27) (circles) and that of the reconstructed model (solid 
red line) do not coincide. Similarly, in the inset, the original (boxes) and the 
reconstructed p.d.f. (solid red line) are dierent. Paramters: M  =  200, m  =  1, 
k  =  2500, 2N  =  2000, β = 1.04.
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The granular medium is composed of N spheres of diameter d  =  4 mm, placed in a 
cylindrical container whose volume is  ∼7300 times that of a single sphere. The con-
tainer is vertically shaken with a signal whose spectrum is approximately flat in a range 
between fmin = 200 Hz and fmax = 400 Hz. A blade, a ‘massive tracer’, with cross sec-
tion ∼ 8d× 4d, is suspended into the granular medium and rotates around a vertical 

axis. Its angular velocity ω(t) and the traveled angle of rotation θ(t) =
∫ t

0
ω(t′)dt′ are 

measured with a time-resolution of 2 kHz.

4.1. The gas limit

In the dilute limit, e.g. with N  =  350, and packing fraction ∼ 5%, the simplest possible 
scenario holds. The blade performs a standard rotational Brownian motion, and a 1D 
linear Langevin equation for ω is enough for a good description of the observed behav-
ior. We have

dω

dt
= −ω

τ
+ cη,

where the parameters τ  and c can be easily obtained with the procedure discussed in 
section 3, see figure 8. This analysis has been done in [36].

4.2. The cold liquid limit

On the contrary, in the dense regime, e.g. with N  =  2600 and packing fraction  ∼30%, 
the scenario of the usual standard rotational Brownian motion fails, and a rich phe-
nomenology appears (e.g. a superdiusive behavior at long time-scales). A single equa-
tion for ω is not able to describe in the proper way the observed results. It is necessary 
to introduce, at least, a second variable. This new variable, which describes the slow 
behavior of the probe, has been obtained by performing a running average with a 
Gaussian window function

Figure 7.  Sketch of the set-up for the experiment discussed in [35]. The system is 
composed of a large number of beads immersed in a cylindrical container, which is 
shaken from below with a fixed frequency. A blade is immersed in the granular gas 
and it is free to rotate along the vertical axis. Its angular position is measured by 
an encoder. The acceleration felt by the container is also measured.
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θ0(t) =
1√
2πσ2

∫
e−

(t−t′)2

2σ2 θ(t′) dt′

the range of values in which σ should be chosen is suggested by the shape of S( f).
The reconstructed Langevin equation for the variables

θ, θ0, ω =
dθ

dt
, ω0 =

dθ0
dt

,

discussed in [36], is able to reproduce the main statistical features, including the anom-
alous diusion, see figure 9.

5. About enthusiasm for big data, artificial intelligence and machine learning

Recently the possibility of extracting knowledge by data mining (i.e. through the algo-
rithmic analysis of large amounts of data) seems to suggest the emergence of a fourth 
paradigm, a new scientific methodology. In particular a consistent fraction of the 
scientific community seems close to conclude that it is possible to build models with 
black box protocols.

On the other hand, in our opinion, past experience shows that for the problem of 
the prediction, there are rather severe limitations for such an approach. For instance in 
[37, 38] the reader can find a detailed discussion about the good reasons (mainly due to 
the Kac’s lemma on the recurrence time) to be skeptical about the data-centric enthu-
siasm supporting a general philosophy starting from ‘raw data’, without constructing 
modeling hypotheses and, therefore, without theory.

Let us discuss again how the ability to choose the ‘right’ variables typically requires 
a conceptual abstraction which is key to scientific discoveries.

In the 19080s, some researchers in the field of artificial intelligence (AI) devised 
BACON, a computer program to automatize scientific discoveries. Apparently, BACON 
was able to ‘discover’ the third Kepler’s law [39, 40].

Figure 8.  Velocity power density spectrum (left) and mean square displacement 
(right) for the angular position of the blade in the dilute-gas limit. Squares represent 
experimental data, solid lines are computed with the reconstructed model.
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Let us look at the details of the procedure used by BACON, and by Kepler:

	•	 �BACON used as input the numerical values of distance from the Sun, D, and 
revolution period, P, of planets. The program, then, discovered that D3 is propor-
tional to P2.

	•	 �For Kepler the raw observables were not D and P, but a list of planetary positions 
seen from the Earth at dierent times. In his discovery, Kepler chose the ‘right’ 
variables D and P as he was guided by strong beliefs in mathematical harmonies 
as well as the (at that time) controversial theory of Copernicus.

Is it appropriate to claim that AI methods can replace the traditional creative approach 
to scientific discoveries [41]? 

6. Summary and conclusions

Let us briefly summarize the main points discussed in this paper, and try to fix some 
conclusions.

	 (i)	� LE can be generalized to cases with ‘unusual’ kinetic energy, and in particular to 
systems which can show negative temperature.

	 (ii)	� In order to check its validity, one can simulate a bath and find the eective LE, 
this approach works in presence of:

	 •	 �time-scale separation; 
	 •	 �Markovianity of the variable we are looking at.

Figure 9.  Velocity power density spectrum (left) and mean square displacement 
(right) for the angular position of the blade in the cold-liquid limit. Squares 
represent experimental data, solid lines are computed with the reconstructed 
model. Dierent colors of the lines correspond to diernt values of the parameter 
σ used for the analysis, as mentioned in the text.
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	 (iii)	� A procedure to find LE for the slow dynamics can be used in the treatment of 
data if one is able to identify the relevant variables.

	 (iv)	� The choice of the ‘good variables’ does not follow from a mechanical protocol, 
it can be only suggested by intuition and/or a preliminary understanding of the 
main aspects of the phenomena under investigation.

We conclude with a remark about the machine learning methods (MLM) and AI in the 
research. It is matter of fact that in several cases MLM and AI had been able to suc-
ceed; we believe that community have a great opportunity to give a contribute in the 
understanding of the range of applicability of MLM and AI.
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