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Abstract.  The real-space renormalization procedures on hierarchical lattices 
have been much studied for many disordered systems in the past at the level of 
their typical fluctuations. In the present paper, the goal is to analyze instead 
the renormalization flows for the tails of probability distributions in order to 
extract the scalings of their large deviations and the tails behaviors of the 
corresponding rate functions. We focus on the renormalization rule for the 
ground-state energy of the directed polymer model in a random medium, and 
study the various renormalization flows that can emerge for the tails as a 
function of the tails of the initial condition.
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1.  Introduction

The theory of large deviation has a long history in mathematics (see the books [1–6] 
and references therein), in particular in the area of disordered systems (see the the 
books [7–9], the review [10] and references therein). In physics, the explicit use of the 
large deviations framework is more recent but is nowadays recognized as the unify-
ing language for equilibrium, non-equilibrium and dynamical systems (see the reviews 
[11–13] and references therein). In particular, this point of view has turned out to be 
essential to formulate the statistical physics approach of non-equilibrium dynamics (see 
the reviews [14–20] and the PhD Theses [21–24] and the HDR Thesis [25]).

It is thus natural to revisit also classical and quantum disordered systems from the 
perspective of large deviations [26]. In particular, in the field of real-space renormaliza-
tion procedures for classical statistical physics models, the focus of previous studies has 
been mostly the region of typical fluctuations around typical values, but it is interest-
ing to study now how their large deviations properties emerge from the renormaliza-
tion flows. In the present paper, we have chosen to focus on the renormalization rule 
for the intensive energy of the ground state of the directed polymer on a hierarchical 
lattice depending on two integer parameters A and B (see section 2 for more details): 
the new random variable xn+1 at generation (n+ 1) is obtained from (AB) independent 

random variables x
(a,b)
n  of generation n with a = 1, ..,A and b = 1, ..,B by the following 

maximum and sum operations

https://doi.org/10.1088/1742-5468/ab5d09
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xn+1 = max
1�b�B

(
1

A

A∑
a=1

x(a,b)
n

)
.� (1)

Our goal will be to study the renormalization flows for the tails x → ±∞ of the corre
sponding probability distribution Pn(x) at generation n as a function of the exponents 
α± characterizing the exponential decays of the initial condition at generation n  =  0

P0(x) ∝
x→±∞

e−λ±
0 |x|α±

.� (2)

Besides its physical interpretation for the directed polymer model, the RG rule 
of equation (1) is also interesting on its own from the general point of view of prob-
abilities, because it mixes the basic operations ‘sum over A independent variables’ 
and ‘maximum over B independent variables’. Of course, the two following degenerate 
cases are very well-known:

	 (i)	� in the special case B  =  1, the variable

xn =
1

A

A∑
a1=1

x
(a1)
n−1 =

1

A2

A∑
a1=1

A∑
a2=1

x
(a1;a2)
n−2 = ... =

1

An

A∑
a1=1

...
A∑

an=1

x
(a1;a2;..;an)
0� (3)

		  reduces to the empirical average of An independent variables x
(a1;a2;..;an)
0  of genera-

tion n  =  0, which is the most studied problem in the whole history of probability. 
The typical fluctuations are classified in terms of the Gaussian distribution of the 
central limit theorem (see [27–29] for the renormalization point of view) and in 
terms of the Lévy stable laws (when the variance does not exist). While the stan-
dard theory for the large deviations of the empirical average focuses on the case 
of symmetric large deviations [11, 13], the case of asymmetric large deviations 
(with dierent scalings for rare values bigger or smaller than the typical value) 
have also attracted a lot of attention recently [30–35]. As recalled in appendix, 
the tails properties of the empirical average of equation (3) strongly depend on the 
tail exponents α± of the initial condition of equation (2) with completely dierent 
regimes associated to compressed exponentials α± > 1, stretched exponentials 
0 < α± < 1 and simple exponentials α± = 1. For the more general problem of 
equation (1), one thus expects that the tail exponents α± of the initial condition 
of equation (2) will continue to play an essential role.

	 (ii)	� in the special case A  =  1, the variable

xn = max
1�b1�B

(
x
(b1)
n−1

)
= max

1�b1�B;1�b2�B

(
x
(b1;b2)
n−2

)
= ... = max

1�b1�B;...;1�bn�B

(
x
(b1;...;bn)
0

)

� (4)
		  reduces to the empirical maximum of Bn independent variables x

(b1;...;bn)
0  of gen-

eration n  =  0, which is the basic problem in the field of Extreme Value Statistics 
[36, 37]. The typical fluctuations are classified in terms of the three universality 
classes Gumbel–Fréchet–Weibull [36, 37], with many applications in various 
physics domains (see the reviews [38–40] and references therein) and have been 
much studied from the renormalization perspective [41–45]. The large deviations 
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properties of the empirical maximum have been found to be asymmetric [35, 46, 
47], as a consequence of the following obvious asymmetry: an ‘anomalously good’ 
maximum requires only one anomalously good variable, while an ‘anomalously 
bad’ maximum requires that all variables are anomalously bad. This simple 
argument allows to understand why the large deviations will be also completely 
dierent for the two tails x → ±∞ in the more general problem of equation (1).

Since the symmetric and asymmetric large deviations properties of these two special 
cases (i) and (ii) have been revisited in great detail recently in the companion paper 
[35], we will focus here on the non-degenerate cases (A > 1,B > 1) where there is really 
an interplay between the maximum and the sum operations. The paper is organized as 
follows. In section 2, we recall the origin of the RG rule of equation (1) for the directed 
polymer model on the hierarchical lattice of parameters (A,B), and we introduce the 
useful notations to analyze the renormalizations of the corresponding probability distri-
butions. The various renormalization flows that can emerge for the two tails x → ±∞ 
as a function of the exponents α± of the tails of the initial condition (equation (2)) are 
then discussed in the following sections with their consequences for the large devia-
tions properties. Section 3 describes the generic large deviation form with respect to 
the length Ln = An that emerges for the positive tail x → +∞ when the initial condi-
tion corresponds to some compressed exponential decay α+ > 1. Similarly, section 4 
describes the generic large deviation form with respect to the volume Ld

n = Adn that 
emerges for the negative tail x → −∞ when the initial condition corresponds to some 
compressed exponential decay α− > 1. The anomalous large deviations properties that 
emerge when the initial condition decays only as a stretched exponential 0 < α± < 1 
are then discussed for the tails x → +∞ and x → −∞ in sections 5 and 6 respectively. 
Finally, the intermediate simple exponential decays α+ = 1 and α− = 1 are considered 
in sections 7 and 8 respectively. Our conclusions are summarized in section 9. The 
appendix contains a reminder on the tails properties of the empirical average of inde-
pendent variables.

2. Real space renormalization at the level of large deviations

2.1. Hierarchical diamond lattice with two parameters (A,B)

Among real-space renormalization procedures for classical statistical physics models 
(see the reviews [48–50] and references therein), Migdal–Kadano block renormaliza-
tions [51, 52] play a special role because they can be considered in two ways, either 
as approximate renormalization procedures on hypercubic lattices, or as exact renor-
malization procedures on certain hierarchical lattices [53–55]. One of the most studied 
hierarchical lattice is the diamond lattice which is constructed recursively from the 
generation n  =  0 that contains a single bond of unit length Ln=0  =  1 by the following 
rule: the generation n  +  1 is made of B branches, where each of these B branches con-
tains A bonds of generation n in series. At generation n, the length Ln between the two 
extreme sites is thus

https://doi.org/10.1088/1742-5468/ab5d09
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Ln = ALn−1 = A2Ln−2 = .. = AnL0 = An
� (5)

while the volume Vn (defined as the total number of bonds at generation n) grows as

Vn = (AB)Vn−1 = (AB)2Vn−2... = (AB)nV0 = (AB)n.� (6)

The eective fractal dimension d that can be defined from the volume-length scaling 
Vn = Ld

n

d =
ln(Vn)

ln(Ln)
=

ln(AB)

lnA
= 1 +

lnB

lnA� (7)

allows to analyze the role of the dimensionality. The special cases mentioned in the 
Introduction correspond to two extreme cases for the eective dimension: the case (i) 
where B  =  1 corresponds to the dimension d  =  1, and the lattice at generation n reduces 
a series of Ln bonds; the case (ii) where A  =  1 corresponds to the dimension d = ∞, 
because the length cannot grow and remains fixed to unity Ln = An = 1, while the 
volume Vn = Bn grows, and the lattice at generation n reduces to Bn bonds in parallel. 
Apart from these two degenerate cases, the next simplest case A  =  2  =  B corresponds 
to the eective dimension d  =  2, and the first generations n = 0, 1, 2 are shown on 
figure 1 as example.

On these diamond lattices, many disordered models have been studied, including 
the diluted Ising model [56], the ferromagnetic random Potts model [57–60], spin-
glasses [61–71] and the directed polymer model in a random medium [72–83]. In this 
paper, we will focus only on the ground-state energy of this directed polymer model.

2.2. RG rules for the intensive ground state energy xn of the directed polymer model

At generation n, the number Nn of directed paths of length Ln between the two extreme 
sites satisfies the recurrence

Nn+1 = B(Nn)
A.� (8)

Taking into account the initial condition Nn=0 = 1 at generation n  =  0, one obtains the 
solution

lnNn = lnB + A lnNn−1 = lnB + A (lnB + A lnNn−2) = ...

= (lnB)
n−1∑
k=0

Ak = (lnB)
An − 1

A− 1
= (lnB)

Ln − 1

A− 1

�
(9)

that corresponds to the following configurational entropy per unit length

s ≡ lim
n→+∞

lnNn

Ln

=
lnB

A− 1
� (10)

which is finite for the non-degenerate cases (A > 1,B > 1).
In the model of the directed polymer in a random medium, a random energy E0 is 

drawn independently for each bond of generation n  =  0. At generation n, each directed 
path of length Ln between the two extreme sites will collect Ln random energies of gen-
eration n  =  0, and the ground-state will correspond to the Directed path of minimum 

https://doi.org/10.1088/1742-5468/ab5d09


Real-space renormalization for disordered systems at the level of large deviations

7https://doi.org/10.1088/1742-5468/ab5d09

J. S
tat. M

ech. (2020) 013301

energy. The hierarchical structure of the lattice yields that the extensive ground state 
energy follows the closed renormalization rule [72]

En+1 = min
1�b�B

(
A∑

a=1

E(a,b)
n

)
� (11)

where E
(a,b)
n  are (AB) independent energies of generation n. In order to analyze the large 

deviations properties, it is more convenient to focus on the intensive variables that 
represent the ground-state energies per unit length (with a minus sign)

x(a,b)
n ≡ −E

(a,b)
n

Ln

= −E
(a,b)
n

An
.� (12)

The RG rule of equation (11) then translates into the RG rule

xn+1 ≡ −En+1

An+1
= max

1�b�B

(
1

A

A∑
a=1

[
−E

(a,b)
n

An

])
= max

1�b�B

(
1

A

A∑
a=1

x(a,b)
n

)
� (13)

already mentioned in equation (1) of the Introduction.

2.3. RG rules for the probability distribution Pn(x)

The RG rule of equation  (1) concerning random variables can be translated as fol-
lows for their probability distributions. If Pn(x) denotes the probability distribution of 

the independent intensive variables x
(a,b)
n  at generation n, the probability distribution 

Pn+1(x) at the next generation (n+ 1) is then obtained via the two following steps [72]:

	 (1)	� the probability distribution An(x) of the B independent empirical averages

x(b)
n ≡ 1

A

A∑
a=1

x(a,b)
n� (14)

n = 0 n = 1 n = 2

Figure 1.  First generations n = 0, 1, 2 of the hierarchical lattice of parameters 
A  =  B  =  2: the lengths Ln = An = 2n between the two extreme points are given 
by L0  =  1, L1  =  2, L2  =  4, while the volumes Vn = (AB)n = 4n (total numbers of 
bonds) are given by V0 = 1, V1 = 4, L2  =  16. An example of directed polymer of 
length Ln between the two extreme points is shown in red for each generation.

https://doi.org/10.1088/1742-5468/ab5d09
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		  is given by the convolution

An(x) =

∫ +∞

−∞
dx1...

∫ +∞

−∞
dxAPn(x1)...Pn(xA)δ

(
x− 1

A

A∑
a=1

xa

)
.� (15)

		 The tails properties of this convolution An(x) depend on the tails properties of 
Pn(x): as recalled in appendix, dierent regimes appear for compressed exponen-
tials α± > 1, stretched exponentials 0 < α± < 1 and simple exponentials α± = 1.

	 (2)	� the probability distribution Pn+1(x) corresponds to the distribution of the max-

imum of B independent variables x
(b)
n  of equation (14)

Pn+1(x) = BAn(x)

[∫ x

−∞
dx′An(x

′)

]B−1

= BAn(x)

[
1−

∫ +∞

x

dx′An(x
′)

]B−1

.

�

(16)

		 The two tails of Pn+1(x) for x → ±∞ are thus related to the tails of An(x) as 
follows

Pn+1(x) �
x→+∞

BAn(x)

Pn+1(x) �
x→−∞

BAn(x)

[∫ x

−∞
dx′An(x

′)

]B−1� (17)

		 where one sees why the two tails x → ±∞ will be governed by completely dierent 
mechanisms.

The goal of the present paper is to analyze the renormalization rules for the functions 
f±
n (x) that characterize the two tails x → ±∞

Pn(x) �
x→±∞

e−f±
n (x)

� (18)

in order to extract the large deviation properties for large n.

2.4. Link with the large deviations of the intensive ground-state energy

The general expectation for the directed polymer model in a random medium of dimen-
sion d is that the region of values bigger than the typical value (x  >  xtyp) should display 
a large deviation form with respect to the length Ln

Pn(x) ∝
Ln→+∞

e−LnI+(x) for x > xtyp
� (19)

because an ‘anomalously good’ ground state energy requires only Ln anomalously good 
bond energies along the polymer. The region of values smaller than the typical value 
(x  <  xtyp) should display instead a large deviation form with respect to the volume 
Vn = Ld

n

Pn(x) ∝
Ln→+∞

e−Ld
nI

−(x) for x < xtyp
� (20)

https://doi.org/10.1088/1742-5468/ab5d09
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because an ‘anomalously bad’ ground state energy requires Ld
n bad bond energies in 

the sample. This asymmetric large deviation form has been computed exactly for the 
directed polymer in dimension d  =  1  +  1 [84, 85] that belongs to the Kardar–Parisi–
Zhang universality class (see the various models and interpretations in the review 
[86]). Here our goal will be thus to derive this asymmetric large deviation form for the 
hierarchical lattices of arbitrary parameters (A,B), and to compute explicitly the tails 
x → ±∞ of the corresponding rate functions I±(x).

2.5. Special families of explicit solutions for the renormalization flows of the tails 
x → ± ∞

While we will write the functional renormalization rules for the tail functions f±
n (x) of 

equation (18), the analysis of their general solutions in the infinite-dimensional space of 
all admissible tail functions clearly goes beyond the goals of the present paper. We will 
instead focus on special families of explicit solutions that appear for initial conditions 
of the following form

P0(x) �
x→±∞

K±
0 |x|ν

±
0 −1e−λ±

0 |x|α±

.� (21)

As already stressed many times, the exponents α± > 0 characterizing the leading expo-
nential decays will play an essential role. These parameters α± will turned out to 
be conserved by the renormalization flow, while the other parameters may be renor
malized, i.e. the tails at generation n will be of the form

Pn(x) �
x→±∞

K±
n |x|ν

±
n −1e−λ±

n |x|α±

� (22)

and will thus correspond to the following special form of the tail functions f±
n (x)

f±
n (x) �

x→±∞
λ±
n |x|α

±
+ (1− ν±

n ) ln |x| − ln
(
K±

n

)
.� (23)

For each case labelled by the possible tail exponents α±, we will thus compute the solu-
tions of the closed RG flows for the three other parameters (λ±

n , ν
±
n ,K

±
n ), in order to 

extract the large deviations properties and the corresponding rate functions.
The following sections are devoted to the various renormalization flows that can 

emerge for the two tails x → ±∞ as a function of the exponents α± of the initial con-
dition of equation (21): we will first consider the compressed exponential cases α± > 1 
that indeed lead to the expected large deviations of equations (19) and (20); we will 
then turn to the stretched exponential cases 0 < α± < 1 that lead to anomalous large 
deviations with respect to equations (19) and (20); finally, we will discuss the intermedi-
ate cases α± = 1 that require a special analysis.

3. RG flow of the tail x → +∞ for the compressed exponential cases α+ > 1

3.1. Functional renormalization for the tail function f+n (x)

As recalled in appendix, when the tail function f+
n (x) of equation  (18) satisfies the 

conditions of equation (A.7), the tail of the distribution of the convolution An(x) of 

https://doi.org/10.1088/1742-5468/ab5d09
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equation (15) has been studied in detail in [87] and the output is the ‘democratic’ form
ula of equation (A.6)

An(x) �
x→+∞

e−Af+
n (x)

√
A

(
2π

( f+
n )

′′(x)

)A−1
2

.� (24)

The tail x → +∞ of equation (17) is simply given by

Pn+1(x) �
x→+∞

BAn(x) �
x→+∞

Be−Af+
n (x)

√
A

(
2π

( f+
n )

′′(x)

)A−1
2

.� (25)

The identification with Pn+1(x → +∞) � e−f+
n+1(x) of equation (18) yields the func-

tional RG rule for the tail function f+
n (x)

f+
n+1(x) = Af+

n (x) + (A− 1) ln

(√
( f+

n )
′′(x)

2π

)
− ln

(
B
√
A
)
.� (26)

3.2. Explicit solution of the RG flow for the special form of equation (23) when α+ > 1

The special form of equation (23)

f+
n (x) �

x→+∞
λ+
nx

α+

+ (1− ν+
n ) ln x− ln

(
K+

n

)

( f+
n )

′′(x) �
x→+∞

λ+
nα

+(α+ − 1)xα+−2 +
(ν+

n − 1)

x2
�

x→+∞
λ+
nα

+(α+ − 1)xα+−2

� (27)
satisfies the conditions of equation (A.7) in the region α+ > 1, and remains closed under 
the functional RG flow of equation (26) with the following RG rules for the parameters

λ+
n+1 = Aλ+

n

ν+
n+1 = A

(
ν+
n − α+

2

)
+

α+

2

ln(K+
n+1) = A ln(K+

n ) + (A− 1) ln

(√
2π

λ+
nα

+(α+ − 1)

)
+ ln(B

√
A).

�

(28)

In terms of the initial condition at generation n  =  0, the solution reads

λ+
n = Anλ+

0

ν+
n = An

(
ν+
0 − α+

2

)
+

α+

2

ln(K+
n ) = An

[
lnB

A− 1
+ ln

(
K+

0

√
2π

λ+
0 α

+(α+ − 1)

)]
+

n

2
lnA− lnB

A− 1
− ln

(√
2π

λ+
0 α

+(α+ − 1)

)
.

� (29)
Putting everything together, it is convenient to gather all the terms involving the 
length Ln = An to obtain the final result for the tail function of equation (27)
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f+
n (x) �

x→+∞
An

[
λ+
0 x

α+ − lnB

A− 1
− ln

(
K+

0

√
2π

λ+
0 α

+(α+ − 1)

)
+

(
α+

2
− ν+

0

)
ln x

]

− n

2
lnA+

lnB

A− 1
+ ln

(√
2π

λ+
0 α

+(α+ − 1)

)
+

(
1− α+

2

)
ln x.

�

(30)

3.3. Conclusion for the large deviations in the tail x → +∞ when α+ > 1

The RG solution of equation (30) thus corresponds to the expected large deviation form 
with respect to the length Ln = An of equation (19). In addition, the corresponding rate 
function I+ (x) of equation (19) displays the tail behavior

I+(x) �
x→+∞

λ+
0 x

α+ − lnB

A− 1
− ln

(
K+

0

√
2π

λ+
0 α

+(α+ − 1)

)
+

(
α+

2
− ν+

0

)
ln x.

� (31)

3.4. Example with the Gaussian initial condition

The special solution of equation (30) will not contain the logarithmic terms in (ln x) for 
the initial conditions satisfying

α+ = 2

ν+
0 = 1.

� (32)

It is thus interesting to consider the normalized Gaussian initial distribution at genera-
tion n  =  0

P0(x) = K+
0 e

−λ+
0 x2

K+
0 =

√
λ+
0

π
.

� (33)

The special solution of equation (30) then simplifies into

f+
n (x) �

x→+∞
An

[
λ+
0 x

2 − lnB

A− 1

]
− n

2
lnA+

lnB

A− 1
− ln

(√
λ+
0

π

)
� (34)

and corresponds for the probability distribution to the tail

Pn(x) �
x→+∞

e−f+
n (x) �

x→+∞

√
λ+
0 A

n

π
e−An[λ+

0 x2− lnB
A−1 ]−

lnB
A−1 =

√
λ+
0 A

n

π
e−An[x2−(x+

n )2]

� (35)
with the parameter

(x+
n )

2 =
lnB

A− 1

(
1− 1

An

)
.� (36)
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4. RG flow of the tail x → −∞ for the compressed exponential cases α− > 1

4.1. Functional renormalization for the tail function f−n (x)

As recalled in appendix, when the tail function f−
n (x) of equation  (18) satisfies the 

conditions of equation (A.7), the tail of the distribution of the convolution An(x) of 
equation (15) is given by the ‘democratic’ formula of equation (A.6)

An(x) �
x→−∞

e−Af−
n (x)

√
A

(
2π

( f−
n )

′′(x)

)A−1
2

.� (37)

As a consequence, the corresponding cumulative distribution displays the tail

∫ x

−∞
dx′An(x

′) �
x→−∞

∫ x

−∞
dx′e−Af−

n (x′)
√
A

(
2π

( f−
n )

′′(x′)

)A−1
2

�
x→−∞

e−Af−
n (x)

√
A

A[−( f−
n )

′(x)]

(
2π

( f−
n )

′′(x)

)A−1
2

.

� (38)
So the tail x → −∞ of equation (17) is given by

Pn+1(x) �
x→−∞

BAn(x)

[∫ x

−∞
dx′An(x

′)

]B−1

�
x→−∞

BA[−( f−
n )

′(x)]

[
e−Af−

n (x)

√
A

A[−( f−
n )

′(x)]

(
2π

( f−
n )

′′(x)

)A−1
2

]B

.

� (39)
The identification of the tail Pn+1(x → −∞) � e−f−

n+1(x) of equation (18) yields the 
functional RG rule for the tail function f−

n (x)

f−
n+1(x) = ABf−

n (x) + (A− 1)B ln

(√
( f−

n )
′′(x)

2π

)
+ (B − 1) ln[−( f−

n )
′(x)] +

(
B

2
− 1

)
lnA− lnB.

� (40)

4.2. Explicit solution of the RG flow for the special form of equation (23)

The special form of equation (23)
f−
n (x) �

x→−∞
λ−
n (−x)α

−
+ (1− ν−

n ) ln(−x)− ln
(
K−

n

)

( f−
n )

′(x) �
x→−∞

−λ−
nα

−(−x)α
−−1 +

1− ν−
n

x

( f−
n )

′′(x) �
x→−∞

λ−
nα

−(α− − 1)(−x)α
−−2 +

(ν−
n − 1)

x2
�

x→−∞
λ−
nα

−(α− − 1)(−x)α
−−2

�

(41)

satisfies the conditions of equation (A.7) in the region α− > 1, and remains closed under 
the functional RG flow of equation (40) with the following RG rules for the parameters
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λ−
n+1 = ABλ−

n

ν−
n+1 = ABν−

n +
α−

2
(2− B − AB)

ln(K−
n+1) = AB ln(K−

n )− (AB − 1) ln(λ−
n ) + (A− 1)B ln

(√
2π

α−(α− − 1)

)

− (B − 1) ln(α−)− (B − 2)
lnA

2
+ ln(B).

�

(42)

In terms of the initial condition at generation n  =  0, the solution reads

λ−
n = (AB)nλ−

0

ν−
n = (AB)n

(
ν−
0 − α−

2
ω

)
+

α−

2
ω

ln(K−
n ) = (AB)n

[
ln(K−

0 ) + v
]
+

n

2
ω ln(AB)− v

�

(43)

where we have introduced the notation

ω ≡ 1 +
B − 1

AB − 1

v ≡ − ln(λ−
0 ) +

(A− 1)B

AB − 1

[
ln
√
B

AB − 1
+ ln

(√
2π

α−(α− − 1)

)]
− B − 1

AB − 1

[
AB

AB − 1
ln
√
A+ ln(α−)

]
.

�

(44)
Putting everything together, the tail function of equation (41) reads

f−
n (x) �

x→−∞
(AB)n

[
λ−
0 |x|α

− − ln(K−
0 )− v +

(
α−

2
ω − ν−

0

)
ln |x|

]

− n

2
ω ln(AB) + v +

(
1− α−

2
ω

)
ln |x|.

�
(45)

4.3. Conclusion for the large deviations in the tail x → −∞ when α− > 1

The RG solution of equation (45) thus corresponds to the expected large deviation form 
with respect to the volume Vn = Ld

n = (AB)n of equation (20). The corresponding rate 
function I−(x) of equation (20) displays the tail behavior

I−(x) �
x→−∞

λ−
0 |x|α

−
+

(
α−

2
ω − ν−

0

)
ln |x| − ln(K−

0 )− v

= λ−
0 |x|α

−
+

[
α−

2

(
1 +

B − 1

AB − 1

)
− ν−

0

]
ln |x|

+ ln(λ−
0 )− ln(K−

0 )−
(A− 1)B

AB − 1

[
ln
√
B

AB − 1
+ ln

(√
2π

α−(α− − 1)

)]

+
B − 1

AB − 1

[
AB

AB − 1
ln
√
A+ ln(α−)

]
.

�

(46)
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5. RG flow of the tail x → +∞ for the stretched exponential cases 0 < α+ < 1

5.1. Functional renormalization for the tail function f+n (x)

As recalled in appendix, the tail of the distribution of the convolution An(x) of equa-
tion (15) is then given by the ‘monocratic formula’ of equation (A.14)

An(x) �
x→+∞

A2e−f+
n (Ax)

� (47)

so the tail x → +∞ of equation (17) becomes

Pn+1(x) �
x→+∞

BAn(x) �
x→+∞

BA2e−f+
n (Ax).� (48)

The identification with Pn+1(x → +∞) � e−f+
n+1(x) of equation (18) yields the func-

tional RG rule for the tail function f+
n (x)

f+
n+1(x) = f+

n (Ax)− ln
(
BA2

)
� (49)

instead of the functional RG rule of equation (26).

5.2. Explicit solution of the RG flow for the special form of equation (23) when 
0 < α+ < 1

The special form of equation (23)

f+
n (x) �

x→+∞
λ+
nx

α+

+ (1− ν+
n ) ln x− ln

(
K+

n

)
� (50)

remains closed for the functional RG rule of equation (49) with the following RG rules 
for the parameters

λ+
n+1 = Aα+

λ+
n

ν+
n+1 = ν+

n

ln(K+
n+1) = ln(K+

n ) + (ν+
n + 1) lnA+ lnB.

�

(51)

In terms of the initial condition at generation n  =  0, the solution reads

λ+
n = Anα+

λ+
0

ν+
n = ν+

0

ln(K+
n ) = ln(K+

0 ) + n
[
(ν+

0 + 1) lnA+ lnB
]
.

�
(52)

Putting everything together, the tail function of equation (50) reads

f+
n (x) �

x→+∞
Anα+

λ+
0 x

α+

+ (1− ν+
0 ) ln x− ln(K+

0 )− n
[
(ν+

0 + 1) lnA+ lnB
]
.

�

(53)

5.3. Conclusion for the anomalous large deviations in the tail x → +∞ when 
0 < α+ < 1

The solution of equation (53) thus corresponds to the following anomalous large devia-
tion form with respect to the length Ln = An
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Pn(x) ∝
Ln→+∞

e−Lα+
n J+(x) for x � xtyp

� (54)

instead of the standard form of equation (19). The corresponding rate function J+ (x) 
displays the tail behavior

J+(x) �
x→+∞

λ+
0 x

α+

.� (55)

6. RG flow of the tail x → −∞ for the stretched exponential cases 0 < α− < 1

6.1. Functional renormalization for the tail function f−n (x)

As recalled in appendix, the tail of the distribution of the convolution An(x) of equa-
tion (15) is then given by the ‘monocratic formula’ of equation (A.14)

An(x) �
x→−∞

A2e−f−
n (Ax).� (56)

The corresponding cumulative distribution displays the tail
∫ x

−∞
dx′An(x

′) �
x→−∞

∫ x

−∞
dx′A2e−f−

n (Ax) �
x→−∞

A

[−( f−
n )

′(Ax)]
e−f−

n (Ax)
� (57)

and leads to the following result for the tail x → −∞ of equation (17)

Pn+1(x) �
x→−∞

BAn(x)

[∫ x

−∞
dx′An(x

′)

]B−1

�
x→−∞

BAB+1

[−( f−
n )

′(Ax)]B−1
e−Bf−

n (Ax).

�

(58)

The identification with Pn+1(x → −∞) � e−f−
n+1(x) of equation (18) yields the functional 

RG rule for the tail function f−
n (x)

f−
n+1(x) = Bf−

n (Ax) + (B − 1) ln[−( f−
n )

′(Ax)]− (B + 1) lnA− lnB� (59)

instead of the functional RG rule of equation (40).

6.2. Explicit solution of the RG flow for the special form of equation (23) for 0 < α− < 1

The special form of equation (23)

f−
n (x) �

x→−∞
λ−
n (−x)α

−
+ (1− ν−

n ) ln(−x)− ln
(
K−

n

)

( f−
n )

′(x) �
x→−∞

−λ−
nα

−(−x)α
−−1 +

1− ν−
n

x
�

x→−∞
−λ−

nα
−(−x)α

−−1
� (60)

remains closed for the functional RG rule of equation (59) with the following RG rules 
for the parameters

λ−
n+1 = BAα−

λ−
n

ν−
n+1 = Bν−

n − (B − 1)α−

ln(K−
n+1) = B ln(K−

n )− (B − 1) ln(α−λ−
n ) +

[
B(ν−

n + 1)− (B − 1)α−] lnA+ lnB.
�

(61)
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In terms of the initial condition at generation n  =  0, the solution reads

λ−
n =

(
BAα−

)n

λ−
0

ν−
n = Bn(ν−

0 − α−) + α−

ln(K−
n ) = Bn

[
ln(K−

0 ) + n(ν−
0 − α−) lnA− ln(λ−

0 α
−) +

B

B − 1
lnA

]

+ n ln(BAα−
) + ln(λ−

0 α
−)− B

B − 1
lnA.

�

(62)

Putting everything together, the tail function of equation (60) reads

f−
n (x) �

x→−∞

(
BAα−

)n

λ−
0 |x|α

− − Bn
[
(ν−

0 − α−)|x|+ ln(K−
0 )

+n(ν−
0 − α−) lnA− ln(λ−

0 α
−) +

B

B − 1
lnA

]

− n ln(BAα−
) + (1− α−)|x| − ln(λ−

0 α
−) +

B

B − 1
lnA.

�

(63)

6.3. Conclusion for the anomalous large deviations in the tail x → −∞ when 
0 < α− < 1

The solution of equation (63) thus corresponds to the following anomalous large devia-

tion form in 
(
BAα−

)
n = Ld−1+α−

n

Pn(x) ∝
Ln→+∞

e−Ld−1+α−
n J−(x) for x � xtyp

� (64)

instead of the standard form of equation (20). The corresponding rate function J−(x) 
displays the tail behavior

J−(x) �
x→−∞

λ−
0 |x|α

−
.� (65)

7. RG flow of the tail x → +∞ for the intermediate cases α+ = 1

7.1. Explicit solution of the RG flow for the special form of equation (23) for α+ = 1 and 
ν+
0 > 0

In this section, we wish to analyze the closed RG flow for the special form of equa-
tion (22) when α+ = 1

Pn(x) �
x→+∞

K+
n x

ν+n −1e−λ+
n x.� (66)

As explained in the appendix, the tail of the convolution of equation (15) is then given 
by equation (A.18) if ν+

n > 0
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An(x) �
x→+∞

AAν+n [K+
n Γ(ν

+
n )]

A

Γ(Aν+
n )

xAν+n −1e−Aλ+
n x.� (67)

Then equation (17) yields that the tail at generation (n+ 1) reads

Pn+1(x) �
x→+∞

BAn(x) �
x→+∞

B
AAν+n [K+

n Γ(ν
+
n )]

A

Γ(Aν+
n )

xAν+n −1e−Aλ+
n x.� (68)

The identification with the notations of equation (66) at generation (n+ 1) leads to the 
following RG rules for the parameters

λ+
n+1 = Aλ+

n

ν+
n+1 = Aν+

n

ln(K+
n+1) = A

[
ln(K+

n ) + ln
(
Γ(ν+

n )
)
+ ν+

n lnA
]
− ln

(
Γ(Aν+

n )
)
+ ln(B).

�

(69)

Taking into account the initial condition at generation n  =  0, the solution reads

λ+
n = Anλ+

0

ν+
n = Anν+

0

ln(K+
n ) = An

[
lnB

A− 1
+ nν+ lnA+ ln(K+

0 ) + ln(Γ(ν+))

]
− ln

(
Γ(Anν+)

)
− 1

A− 1
lnB

�

(70)

so this solution satisfies the validity condition ν+
n > 0 for any n if the initial condition 

does ν+
0 > 0.

Putting everything together, the tail function f n(x) of equation (23) reads

f+
n (x) �

x→+∞
λ+
nx+ (1− ν+

n ) ln x− ln
(
K+

n

)

�
x→+∞

An

[
λ+
0 x− ν+

0 ln x− lnB

A− 1
− nν+

0 lnA− ln(K+
0 )− ln(Γ(ν+

0 ))

]

+ ln x+ ln
(
Γ(Anν+

0 )
)
+

1

A− 1
lnB.

�

(71)

7.2. Conclusion for the large deviations in the tail x → +∞ for α+ = 1 and ν+
0 > 0

To extract the large deviation form from the solution of equation (71), one needs to use 
the Stirling formula for the Gamma function of z = Anν+

0 � 1

Γ(Anν+
0 ) �

n�1

√
2π(Anν+

0 )
Anν+0 − 1

2 e−Anν+0 .� (72)

Plugging its logarithm

ln
(
Γ(Anν+

0 )
)
�

n�1
An

[
nν+

0 lnA+ ν+
0 ln(ν+

0 )− ν+
0

]
+ ln(

√
2π)− 1

2

(
n lnA+ ln(ν+

0 )
)

� (73)

into equation (71) yields to the standard large deviation form with respect to the length 
Ln = An of equation (19) and the corresponding rate function I+ (x) displays the tail 
behavior

I+(x) �
x→+∞

λ+
0 x− lnB

A− 1
− ln(K+

0 )− ln(Γ(ν+
0 )) + ν+

0 ln(ν+
0 )− ν+

0 − ν+
0 ln x

�

(74)

instead of equation (31).
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8. RG flow of the tail x → −∞ for the intermediate cases α− = 1

8.1. Explicit solution of the RG flow for the special form of equation (23) for α− = 1 and 

ν−
0 � B−1

AB−1

In this section, we wish to analyze the closed RG flow for the special form of equa-
tion (22) when α− = 1

Pn(x) �
x→−∞

K−
n |x|ν

−
n −1e−λ−

n |x|.� (75)

As explained in the appendix, the tail of the convolution of equation (15) is then given 
by the analog of equation (A.18) if ν−

n > 0

An(x) �
x→−∞

AAν−n [K−
n Γ(ν

−
n )]

A

Γ(Aν−
n )

|x|Aν−n −1e−Aλ−
n |x|.� (76)

Then the corresponding cumulative distribution displays the tail
∫ x

−∞
dx′An(x

′) �
x→−∞

AAν−n [K−
n Γ(ν

−
n )]

A

Aλ−
nΓ(Aν

−
n )

|x|Aν−n −1e−Aλ−
n |x|.� (77)

As a consequence, the tail at generation (n+ 1) of equation (17) reads

Pn+1(x) = BAn(x)

[∫ x

−∞
dx′An(x

′)

]B−1

�
x→−∞

B

[Aλ−
n ]

B−1

[
AAν−n [K−

n Γ(ν
−
n )]

A

Γ(Aν−
n )

|x|Aν−n −1e−Aλ−
n |x|

]B

.

� (78)
The identification with the notations of equation (75) at generation (n+ 1) leads to the 
following RG rules for the parameters

λ−
n+1 = ABλ−

n

ν−
n+1 = ABν−

n − (B − 1)

ln(K−
n+1) = AB ln(K−

n ) + B
[
A ln

(
Γ(ν−

n )
)
− ln

(
Γ(Aν−

n )
)]

+ ν−
n AB lnA− (B − 1)

[
ln(λ−

n ) + lnA
]
+ lnB.

� (79)
Taking into account the initial condition at generation n  =  0, the solution reads

λ−
n = (AB)nλ−

0

ν−
n = (AB)n

[
ν−
0 − B − 1

AB − 1

]
+

B − 1

AB − 1

ln(K−
n ) = (AB)n

[
ln(K−

0 ) + n

(
ν−
0 − B − 1

AB − 1

)
lnA+

B(A− 1)

(AB − 1)2
lnB − B − 1

AB − 1
ln(λ−

0 )

]

+ n
B − 1

(AB − 1)
ln(AB)− B(A− 1)

(AB − 1)2
lnB +

B − 1

AB − 1
ln(λ−

0 )

+
n−1∑
k=0

(AB)n−1−kB
[
A ln

(
Γ(ν−

k )
)
− ln

(
Γ(Aν−

k )
)]

�

(80)
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so this solution satisfies the validity condition ν−
n > 0 for any n if the initial condition 

satisfies ν−
0 � B−1

AB−1
.

8.2. Conclusion for the large deviations in the tail x → −∞ for α− = 1 and ν−
0 > B−1

AB−1

To extract the large deviation form from the solution of equation (80), one needs to 
use the Stirling formula for Γ(ν−

k ) and Γ(Aν−
k ) to obtain the asymptotic behavior of the 

dierence

[
A ln

(
Γ(ν−

k )
)
− ln

(
Γ(Aν−

k )
)]

�
k�1

−(AB)kA

(
ν−
0 − B − 1

AB − 1

)
lnA− k

A− 1

2
ln(AB)

+

[
(A− 1) ln(

√
2π)− A− 1

2
ln

(
ν−
0 − B − 1

AB − 1

)
+

(
A− 1

AB − 1
− 1

2

)
lnA

]
.

�

(81)

As a consequence, the leading terms of order (AB)n in the solution ln(K−
n ) of equa-

tion (80) is given by

ln(K−
n ) �

n�1
(AB)n

[
ln(K−

0 )−
B

2(AB − 1)
lnA− B − 1

AB − 1
ln(λ−

0 ) +
B(A− 1)

AB − 1

(
ln(AB)

2(AB − 1)
+ ln

(√
2π

ν−
0 − B−1

AB−1

))]

+ ...
� (82)

One thus obtains the standard large deviation form with respect to the volume 
Ld
n = (AB)n of equation (20) and the corresponding rate function I−(x) displays the tail 

behavior

I−(x) �
x→−∞

λ−
0 |x| −

(
ν−
0 − B − 1

AB − 1

)
ln |x| − ln(K−

0 ) +
B − 1

AB − 1
ln(λ−

0 )

+
B

2(AB − 1)
lnA− B(A− 1)

AB − 1

(
ln(AB)

2(AB − 1)
+ ln

(√
2π

ν−
0 − B−1

AB−1

))

� (83)
instead of equation (46).

9. Conclusions

In this paper, we have revisited the renormalization rule for the ground-state energy 
of the directed polymer model on a hierarchical lattice of parameters (A,B) in order 
to analyze the renormalization flows for the tails of probability distributions as a func-
tion of the initial condition at generation n  =  0. In each case, the explicit solution has 
allowed to extract the scalings involved in the large deviations properties and the tail 
behaviors of the corresponding rate functions. Our main conclusions can be summa-
rized as follows:

	 (i)	� the generic large deviation form with respect to the length Ln for the tail x → +∞ 
emerges only for α+ � 1, while the stretched exponential 0 < α+ < 1 initial condi-

tions lead to anomalous large deviations in Lα+

n .
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	 (ii)	� the generic large deviation form with respect to the volume Ld
n for the tail 

x → −∞ emerges only for α− � 1, while the stretched exponential 0 < α− < 1 
initial conditions lead to anomalous large deviations in Ld−1+α−

n .

This example shows that it is interesting to analyze the renormalization flows of dis
ordered systems at the level of large deviations, in order to go beyond the region of 
typical fluctuations that have been much studied in the past.

Appendix. Tail analysis for the empirical average of a finite number A of random 
variables

In this appendix, we consider a finite number A of independent random variables xa 
distributed with some probability distribution P(x) whose tail for x → +∞ is charac-
terized by the function f(x)

P(x) �
x→+∞

e−f(x).� (A.1)

The empirical average

x ≡ 1

A

A∑
a=1

xa� (A.2)

is distributed with the convolution

A(x) =

∫ +∞

−∞
dx1...

∫ +∞

−∞
dxAP(x1)...P(xA)δ

(
x− 1

A

A∑
a=1

xa

)
.� (A.3)

The tail behavior as x → +∞ of this convolution depends on the tail of equation (A.1). 
For concreteness, it will be convenient to consider the family

P(x) �
x→+∞

Kxν−1e−λxα

� (A.4)

so that the corresponding tail function f(x) of equation (A.1) and its second derivative 
read

f(x) = λxα + (1− ν) ln x− lnK

f ′′(x) = λα(α− 1)xα−2 +
ν − 1

x2
.

� (A.5)

A.1. The ‘democratic’ formula for α > 1

The ‘democratic’ formula obtained in [87]

Ademocratic(x) �
x→+∞

e−Af(x)
√
A

(
2π

f ′′(x)

)A−1
2

� (A.6)

can be understood from two points of view.
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A.1.1.  ‘Democratic’ saddle-point analysis of [87].  The formula of equation (A.6) has 
been derived in [87] from the saddle-point evaluation of the convolution of equa-
tion (A.3) around the symmetric solution xa  =  x for a = 1, 2..,A with the two validity 
conditions (see [87] for very detailed discussions and various formulations of the valid-
ity conditions)

f ′′(x) > 0

x2f ′′(x) �
x→+∞

+∞.� (A.7)

For the special family of equation (A.4), these conditions are satisfied only in the region

α > 1� (A.8)
while they are not satisfied for 0 < α � 1.

A.1.2. Alternative derivation via the tail k → +∞ of the cumulant generating  
function.  Another way to understand equation (A.6) involves the cumulant generat-
ing function φ(k)

eφ(k) ≡
∫ +∞

−∞
dxekxP(x) =

∫ +∞

−∞
dxekx−f(x).� (A.9)

For α > 1, this cumulant generating function exists even for large k, and the tail for 
k → +∞ is determined by the tail for x → +∞ of equation (A.1) via the saddle-point 
evaluation of equation (A.9) around the large saddle-point value xk satisfying

f ′(xk) = k� (A.10)
that leads to the asymptotic result

eφ(k) �
k→+∞

∫ +∞

−∞
dxekxk−f(xk)−

(x−xk)2

2
f ′′(xk) = ekxk−f(xk)

√
2π

f ′′(xk)
.� (A.11)

The scaled cumulant generating function associated to the empirical average of 
equation (A.3) is simply given by the power A of equation (A.9)

∫ +∞

−∞
dxeAkxA(x) =

(∫ +∞

−∞
dxekxP(x)

)A

= eAφ(k).� (A.12)

Equation (A.11) then yields that the tail for k → +∞ is given by

∫ +∞

−∞
dxekAxAn(x) �

k→+∞

(
ekxk−f(xk)

√
2π

f ′′(xk)

)A

= eAkxk−Af(xk)

(
2π

f ′′(xk)

)A−1
2

√
2π

f ′′(xk)
�

(A.13)

that corresponds indeed to the saddle-point evaluation of the tail of equation (A.6).

A.2. The ‘monocratic’ formula for 0 < α < 1

The ‘monocratic’ formula corresponds to the cases where the tail x → +∞ of the con-
volution of equation (A.3) is dominated by the drawing of the anomalously large value 
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y � Ax for the maximum of the A variables (x1, .., xA), while the other (A− 1) values 
remain typical, so that one obtains the tail behavior

Amonocratic(x) �
x→+∞

A

∫
dyP(y)δ

(
x− y

A

)
= A2P(Ax) = A2e−f(Ax)

� (A.14)

that indeed gives a bigger result than the ‘democratic’ formula of equation (A.6) for 
0 < α < 1.

A.3. The intermediate case α = 1 when ν > 0

For the intermediate case α = 1 of equation (A.4)

P(x) �
x→+∞

Kxν−1e−λx
� (A.15)

one can use neither the ‘democratic’ formula nor the ‘monocratic’ formula described 
above. For ν > 0, the cumulant generating function φ(k) of equation (A.9) exists only 
for k < λ and diverges as k → λ. This singularity as k → λ is then governed by the tail 
x → +∞ of equation (66) that one assumes to be valid in the region x  >  C (where C is 
some fixed large constant C  >  0)

eφ(k) �
k→λ

∫ +∞

C

dxKxν−1e−(λ−k)x =
K

(λ− k)ν

∫ +∞

C(λ−k)

dttν−1e−t �
k→λ

K Γ(ν)

(λ− k)ν
.

�

(A.16)

The scaled cumulant generating function of equation (A.12) associated to the empir-
ical average of equation (A.3) then displays the singularity

∫ +∞

−∞
dxeAkxA(x) = eAφ(k) �

k→λ

[K Γ(ν)]A

(λ− k)Aν� (A.17)

that corresponds to the following tail as x → +∞

A(x) �
x→+∞

AAν [KΓ(ν)]A

Γ(Aν)
xAν−1e−Aλx.� (A.18)

A.4. Final remark on the similarities and dierences with the large deviations  
of the empirical average

In this appendix, we have considered as in [87] the problem of the tail x → +∞ of the 
empirical average of a finite number A of independent variables, while the standard 
large deviations problem for the empirical average focuses instead on a large number 
A → +∞ of independent variables, while x remains finite. The two problems are thus 
clearly dierent, but they nevertheless display some similarities as discussed in detail 
in [87], and the two democratic/monocratic behaviors have also been much studied in 
the large deviation regime [30–35].
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