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Abstract. In the present work, crumpled graphene is considered under hydrostatic tension by
molecular dynamics simulation. Here hydrostatic compression is used in two variants: to obtain
composite from crumpled graphene combined with Ni nanoparticles and to serve hydrogen inside
crumpled graphene. Pressure-strain curves and structural transformations during hydrostatic
compression in both cases are discussed. It is found, that hydrostatic compression at high
temperatures can be very effective for Ni-graphene composite formation. The possibility of
application of compressive strain to make crumpled graphene better media for hydrogen storage
is discussed. It is observed that at 77 K and 300 K compression results in the considerable
increase of hydrogen sorption capacity.

1. Introduction
Nanotechnology is a rapidly developing branch of science, especially if one considers novel carbon
nanostructures. Recently, green and effective methods of fabrication a three-dimensional network
of crumpled and folded graphene flakes connected by van-der-Waals interactions was proposed
by different scientific groups [1, 2, 3]. Such structure derives its name – crumpled graphene
(CG) – right from its structural features based on the crumpling of graphene flakes (GF)s.
Crumpled graphene demonstrates such properties as the outstanding electrical conductivity of
sp2 GFs, high specific surface area, hierarchical porosity with shortened diffusion pathways, high
mechanical strength and flexibility of graphene nanosheets to name a few. Three-dimensional
crumpled graphene can demonstrate combined merits from both graphene and porous materials.
Possible application of such structures is in different electrochemical energy devices, such as
Li-ion batteries, Li-S batteries, supercapacitors, metal-air batteries, fuel cells, water splitting
devices, and flexible devices, hydrogen storage. Mechanical properties of CG are of great interest
and were previously studied by molecular dynamics simulation [4, 5, 6, 7, 8].

Elastic and inelastic deformation can be considered as a very effective way of changing
the physical, sorption, thermal and mechanical properties of carbon nanostructures [9]. High
pressure and low temperatures are effective instruments to improve the hydrogen storage
capacity [10]. For example, pressure can be used to increase both chemisorption and
physisorption [10, 11]. The same approach was used in [12] for pillared graphene bubble system.
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In the present work, hydrostatic compression is considered as a promising way to use crumpled
graphene as a hydrogen storage media or to obtain new composite material. First,the composite
structure with Ni nanoparticles is considered. Simulation is conducted by molecular dynamics
simulation. Second, the effect of hydrostatic compression on the capacity of hydrogen storage is
presented. Conclusions on the possible practical applications of crumpled graphene are given.

2. Simulation details
The initial structure of CG is presented in Figure 1. This structure is obtained by a combination
of GFs to 3D structure where single GF translated as Lx ×Ly ×Lz along x, y and z axis. Each
graphene flake is obtained from small carbon nanotube by cut and removing some carbon atoms.
The initial structure of CG then was filled with Ni nanoparticles or hydrogen atoms cluster. Let
the structure with Ni nanoparticles be mentioned as A and structure with H atoms as B. All the
structures are considered at density 1 g/cm3 because only just at this value structural elements
start to interact.

Figure 1. Initial structure of crumpled graphene, Ni nanoparticle, and H cluster. For hydrogen
atoms all the possible configurations are presented

The simulations are conducted using a large-scale atomic/molecular massively parallel
simulator (LAMMPS) package. Periodic boundary conditions are applied for all cases. As
was shown previously, at periodic boundary conditions the size of the simulation cell has no
effect on the obtained results [4, 5, 6, 7, 8]. Equations of motion for the atoms were integrated
numerically using the fourth-order Verlet method with the time step of 0.1 fs. The Nose-Hoover
thermostat is used to control the system temperature.

2.1. Ni-graphene composite
To obtain Ni-graphene composite, Ni nanoparticles NNi=21, 47, 66, 78 was inserted inside
GF NC=299 and then randomly rotated and translated as 4×4×4 along x, y and z axis. All
structural configurations obtained during simulation are shown in Figure 1: single hydrogen
atom H, hydrogen molecule H2, a hydrogen atom attached to graphene and hydrogen molecule
attached to graphene.
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Simulations are performed using AIREBO potential to describe the interatomic interactions
between carbon atoms, which include both covalent in the basal plane of graphene and van-der-
Waals interactions between GFs. To describe interatomic interaction for Ni-Ni and Ni-C, Morse
interatomic potential is used with parameters De=0.4205 eV, Re=2.78 Å and β=1.4199 1/Å
for Ni-Ni [13]; and De=0.433 eV, Re=2.316 Å and β=3.244 1/Å for Ni-C obtained by ab-initio
simulations [14, 15].

Here, to obtain composite structure, CG with Ni nanoparticles hydrostatically compressed
at temperatures 1000< T <2000 K, because at this temperature range interaction between GFs
is activated. At the same time, the melting temperature of the Ni nanoparticle is about 1300 K.
Thus, in temperature range between 1000 K and 2000 K melting of Ni nanoparticle can start
facilitate the mixing of the structural components or nanoparticle can be fully melted which
leads to even better spreading of Ni atoms inside CG.

2.2. Hydrogenated graphene
Hydrogenated CG consists of 616 carbon atoms and 371 hydrogen atoms and each GF is
translated as 3×3×3 along x, y and z axis. The simulation cell for structure B includes
26649 atoms. The simulations are conducted using AIREBO interatomic potential [16]
which was previously effectively used for studying carbon nanostructures with hydrogen
[17, 18, 19, 20, 21, 22]. However, AIREBO potential has some limitations, for example, for
studying discreate breathers in hydrogenated graphene [23, 24, 25] or for investigation of chemical
interaction between graphene (carbon atoms) and hydrogen atom [26, 27].

Two temperatures - 77 K and 300 K - are considered. From one hand, it is known that
the maximum sorption capacity of hydrogen could be reached at 77 K for different carbon
structures [28, 29]. On the other hand, 300 K is also characteristic room temperature at which
dehydrogenation can starts.

3. Results and discussion
3.1. Hydrostatic compression for composite fabrication
Hydrostatic compression of the initial structures was carried out at temperatures of 0; 300;
1000 and 2000 K. These studies were carried out in order to ensure the formation of the most
durable composite since an increase in temperature leads to the activation of the appearance of
new bonds between graphene flakes. In Figure 2, pressure-strain curves for four structures are
presented for 1000 K and 2000 K. Curves at 0 K and 300 K are not presented, because at such
small temperatures no composite formation is observed.

As can be seen, in the case when Ni nanoparticle is very small (Ni21) increase of temperature
from 1000 K to 2000 K does not lead to any changes, which can be explained by the fact that at
1000 K small nanoparticle are already melted and easily spread inside graphene flake. Fro the
biggest nanoparticle (Ni78), curves for 1000 K and 2000 K are also close because, as the analysis
of structure showed, at any temperature, this nanoparticle fills the graphene flake and after
that structural unit is a rigid metallic sphere covered with graphene. In this case, formation of
the composite is difficult. Curves for nanoparticles Ni47 and Ni66 considerably affected by the
temperature increase: the same pressure value is achieved at lower compression strain.

With temperature increase, the interaction between GFs begins much earlier than at zero
temperature. This is due to the fact that the flakes begin to rotate due to thermal vibrations,
take a different shape, and new chemical bonds between the individual flakes begin to appear
actively. Two snapshots of the structure compressed at T=0 K and T=1000 K after ε=0.2 (in
Figure 3 b) are presented for comparison. In general, the temperature positively affects the
dynamics of the formation of the composite structure.

In Figure 3, pressure-strain curves structures with Ni47 nanoparticles under tension are
presented. The structure was initially hydrostatically compressed at T=0; 1000; 2000 K. As
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Figure 2. (a) Pressure-strain curves for four types of structures with nanoparticles
hydrostatically compressed at temperatures of 1000 K and 2000 K. (b) Snapshots of the structure
with Ni47 at 0 K and 1000 K at compression (ε=0.2). Colors as in Figure 1

it can be seen, at 0 K stresses under tension increase to about 550 GPa and then stop changing.
As it can be seen from the corresponding snapshot, structural elements stay round, almost no
chemical bonds appeared between GFs, large pores can be seen even at ε=0.3 and earlier. At
higher temperatures, increase of stress is observed with the following small decrease which is
more characteristic for composite structure. From the snapshots, mixing of the elements can be
seen. At T=1000 K, after tension until ε=0.3 small pores are appeared, while after compression
at T=2000 K, where melting of the nanoparticles and spreading of the Ni atoms inside crumpled
graphene took place, mixing is much better.

3.2. Hydrostatic compression for hydrogen storage
At first, it should be noted that initially, only hydrogen atoms introduced to the structure.
After several first steps, hydrogen atoms H were mostly transformed into hydrogen molecules
H2. Both hydrogen atoms and hydrogen molecules can be attached to graphene by chemical or
Van-der-Waals bonding respectively. All the structural configurations are presented in Figure 1.

In Figure 4a, volumetric density as the function of time at two strain values ε=0 and ε=0.4
for two temperatures T=77 K and T=300 K are presented. As can be seen, after 2 ps of holding
at 77 K or 300 K, increase of strain from 0 to 0.4 results in increase of volumetric density of
hydrogen storage. Contradictory to 300 K, at 77 K even holding during 20 ps lead to considerable
increase of volumetric capacity. This can be explained by Van-der-Waals interaction between
hydrogen molecules and graphene flakes. From the snapshots (Fig. 4b) it can be seen, that H2

occupies all the empty sites inside GF and some hydrogen molecules attached to the back side
of the flake. Since Van-der-Waals interactions can be easily destroyed by thermal fluctuations,
this behavior is found only for low temperatures 77-200 K.

4. Conclusions
In this work, hydrostatic compression is applied to crumpled graphene with different filling
elements - hydrogen and Ni atoms. The study is conducted by molecular dynamics simulation.
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Figure 3. (a) Pressure-strain curves for structures with Ni47 nanoparticles under tension.
Structure was initially hydrostatically compressed at T=0; 1000; 2000 K. (b) Snapshots of the
structure with Ni47 at ε=0.3 (dot is shown by red on pressure-strain curves). Colors as in
Figure 1

Figure 4. (a) Volumetric density as the function of time at two strain values ε=0 and ε=0.4 for
two temperatures T=77 K and T=300 K. (b) Snapshots of the structure. Colors as in Figure 1.

The possibility of application of crumpled graphene as matrix for composite Ni-graphene
structure and for hydrogen storage is discussed.

From the obtained results it is found that crumpled graphene can be used to obtain graphene-
based composite filled with Ni nanoparticles. It is observed, that even high pressure up to 500
GPa cannot be successfully used to obtain composite structure at zero or room temperature.
Only heating to high temperatures close to 1000-2000 K can affect the transformation of graphene
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flakes and formation of covalent bonds between neighboring structural elements. Moreover, the
size of the nanoparticle is of high importance: small nanoparticles can be easily melted even at
1000 K, while big nanoparticles stay rigid until 2000 K. If nanoparticle melted, it can ease the
process of mixing the elements and lead to composite formation.

The improvement of the hydrogen storage capacity of CG by application of hydrostatic
pressure is found at 77 K and 300 K. This work shows that the hydrogen storage capacity of the
crumpled graphene can be maximized by decreasing the temperature and increasing the applied
hydrostatic pressure. The obtained results can significantly enriched the understanding of the
possibility to use graphene-based functional materials for hydrogen storage and transportation.
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