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Abstract. Antibacterial photodynamic therapy is a promising method of treating local infected 

foci, especially surgical and burn wounds, trophic and diabetic ulcers. This work explores the 

photophysical and antibacterial properties of novel phthalocyanine- and synthetic-

bacteriochlorin-based octacationic photosensitizers (PS). The results of the study confirm their 

low degree of aggregation at high concentrations, as well as high efficiency of photodynamic 

treatment of Gram-negative bacterial biofilms.  

1. Introduction 

Infected long-term non-healing complicated skin and mucosa wounds, trophic ulcers, pressure sores and 

ulcers of diabetic feet present serious treatment problems. Recently, evidence connecting the chronicity 

of wounds with biofilms and polymicrobial communities has been found. These are usually multi-

species and include both Gram-positive and Gram-negative bacteria [1].  

Antibacterial photodynamic therapy (APDT) is a promising way to treat infected surgical and burn 

wounds, trophic and diabetic ulcers [2,3]. Photodynamic effect can effectively inactivate bacterial cells 

without causing any drug resistance in response to the treatment and does not damage the patient's 

normal microflora as compared to antibiotics due to local irradiation [4,5]. Even after 20 consecutive 

cycles of partial destruction of bacterial flora and its regrowth, no resistance to PS and APDT has been 

observed [6,7]. Almost all pathogenic microorganisms, including antibiotic-resistant strains of bacteria, 

are susceptible to APDT [8]. 

An effective PS must kill both Gram-positive and Gram-negative bacteria both in planktonic and in 

biofilm states. The sensitivity of Gram-negative bacteria to APDT is much lower than that of Gram-

positive bacteria. Gram-negative bacteria have an additional structural element - an outer 10-15 nm thick 

membrane, which is external to the peptidoglycan network and has a very heterogeneous composition 

(porin-function proteins, lipopolysaccharide trimers and lipoproteins which create an external 

pseudosurface of tightly packed negative charges) [9]. This highly organized system prevents large 
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molecules from penetrating and facilitates drug resistance. The Gram-negative bacteria effectively 

interact only with polycationic PS with a small molecules size and weight. The most likely mechanism 

to ensure the association of cationic PS with microbial cells is the electrostatic interaction of positively 

charged molecules with negatively charged cell wall sites [10]. Inactivation of Gram-negative bacteria 

is, therefore, the most important and difficult goal for photodynamic treatment of infected foci [11]. 

The efficiency of bacterial photodynamic inactivation depends on the properties of PS molecules — 

their size, mass [12], and the number and configuration of the cationic groups. High concentrations of 

PS should be used for sensitization to ensure correct inactivation of bacteria. The aggregation of 

tetrapyrrole molecules [13–15] leads to a decrease in absorption intensity, the lifetime of the excited 

state, the fluorescence quantum yield, as well as a change in the shape of the absorption and fluorescence 

spectra. Coulomb repulsion of cationic PS molecules can partially reduce the aggregation. An increase 

in the number of cationic group n leads to a reduction in the degree of aggregation of aquatic solutions 

and, therefore, to an increased fluorescence and singlet oxygen quantum yields [16–18]. The rise of their 

activity with the increase of n may be both due to the dissociation of inactive dimer complexes and the 

increase of the bacteria binding efficiency.  

It should be noted that the depth of the P. aeruginosa infectious lesions foci can reach 12-15 mm 

[19]. Therefore, PS, the excitation of which can be carried out in 720-850 nm spectral range, known as 

the "biological tissue transparency window," must be used for achieving proper photodynamic effect on 

such foci. In addition, a number of pigments (especially, pyocyanin, pyoverdin, pyorubrin, pyomelanin) 

are produced by P. aeruginosa bacteria during their lifetime. [20]. The presence of these pigments in 

wound discharge results in a large absorption in the 660-740 nm spectral range. Due to this, APDT with 

the red spectral range photosensitizers may be ineffective due to the large loss of exciting radiation 

caused by absorption of both the pigments and the hemoglobin in host tissues.  

This work is the part of a research series devoted to the photophysical study of photosensitizers for 

antibacterial photodynamic inactivation. This article focuses on the analysis of octacationic compounds 

ZnPcChol8 and (3-PyEPy)4BCBr8). The photophysical properties of the compounds and their 

effectiveness were analyzed, and their efficacy on one of the most common biofilms in clinical practice 

(P. aeruginosa) was verified.  

2. Materials and Methods 

In our work, we studied original tetrapyrrole-derivative-based polycationic photosensitizers synthesized 

in Organic Intermediates and Dyes Institute (Russia) for photodynamic inactivation of bacteria and their 

biofilms: zinc octakis(cholinyl)phthalocyanine ZnPcChol8 (1678 Da, local optical absorption maximum 

at 677 nm) and octacationic bacteriochlorin derivative (3-PyEPy)4BСBr8 (1691 Da, local optical 

absorption maximum at 763 nm) [12,21–23]. 

The novel PS were studied in vitro by absorption and fluorescence spectroscopy for signs of 

aggregation at various concentrations. The absorption studies were carried out on a two-beam 

spectrophotometer "Hitachi U-3410" (Hitachi, Japan). The fluorescence intensity was measured with 

fiber-optic spectrometer "LESA-01-Biospec" (BIOSPEC, Russia). The PS absorption was measured in 

in the concentration range between 0.001 mM and 0.1 mM. The fluorescence of (3-PyEPy)4BСBr8 was 

excited using 532 nm CW laser, which matches its Q2 absorption band. The ZnPcChol8 fluorescence 

was excited using 632.8 nm He-Ne laser.  

To evaluate photo-bleaching, we studied the intensity and shape of the PS fluorescence spectra before 

and after the irradiation process, as well as at certain intermediate moments of the irradiation process. 

The evaluation of fluorescence lifetime was carried out using Hamamatsu streak-camera system 

[12,24,25].  

The microbiological studies were carried out on P. aeruginosa 32 clinical isolate. The methodology 

is thoroughly described in [25]. 

3. Results 
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No signs of aggregation were observed in the absorption spectra of the studied PS in the range of 

concentrations up to 0.2 mM (Figure 1). The bathochromic shifted dimer band [18] in ZnPcChol8 

spectrum is absent even at high concentrations. The absorption is in the linear dependence with 

concentration and agrees with optical extinction values determined at low concentrations. Such 

dependence suggests low degree of aggregation at higher concentrations. 

 

Figure 1. The dependence of optical density of ZnPcChol8 (1) and (3-PyEPy)4BСBr8 (2) water solution 

on their concentration (in cell 1 mm long) 

 

The studied PS fluorescence band is narrow and intense in water. The dependence of the fluorescence 

intensity on the concentration increases to a concentration of 0.1 mM (up to 0.03 is linear, further is 

sublinear) (Figure 2). This suggests low degree of reabsorption in this range of concentrations. 

 

Figure 2. Fluorescence intensity of ZnPcChol8 (1) and (3-PyEPy)4BСBr8 (2) in water 

 

P. aeruginosa bacteria produce pigments during biofilm growth. Analysis of the culture medium 

reveals an intense absorption band with maximum at 690–700 nm and half-width of 60 nm at 24 hours 

[25]. The absorption spectra of pigments in the biofilms of clinical isolate of P. aeruginosa 32 are 

presented in Figure 3. The optical density of pigments in culture medium of P. aeruginosa 32 biofilms 

grown in LB broth reaches higher values at 690 nm (up to 1.8). These wavelengths are close to 

absorption maxima of a variety of PS (for example, ZnPcChol8 used in this study). It should be noted 
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that the concentration of pyocyanin in the wound discharge in case of P. aeruginosa growth is much 

higher compared to biofilm growth in LB broth [20]. 

 

Figure 3. The pigment absorption spectrum in the culture medium during the growth of 

the biofilms of P. aeruginosa 32 clinical isolates (1) 24 hours after the beginning of 

growth; (2) 72 hours after the beginning of growth. 

 

Studies of photobleaching (the PS fluorescence dependence on the radiation dose) showed that the 

speed of ZnPcChol8 photobleaching is low up to a dose of 100 J cm-2, however, the fluorescence 

intensity of (3-PyEPy)4BСBr8 decreased e times by 50 J cm-2.  

The results of P. aeruginosa 32 biofilms APDT are shown in Figure 4. 

 

 

Figure 4. Photoinactivation of P. aeruginosa biofilms after 60 min of incubation with 

aqueous solutions of the studied PS with concentration of 250 µM depending of light dose:  

1 – ZnPcChol8; 2 – (3-PyEPy)4BСBr8 

 

Effectiveness of APDT in biofilms greatly depends on light dose and PS concentration during 

incubation. For (3-PyEPy)4BСBr8 it reaches 105 times reduction in CFU at a low (50 J cm-2) light dose. 

The effectiveness of inactivation of the P. aeruginosa bacteria in biofilms using ZnPcChol8 is greatly 

reduced due to high light absorption by pigments in biofilm at around 680 nm, where ZnPcChol8 is 
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excited. Light loss for the excitation of (3-PyEPy)4BСBr8 is less compared to ZnPcChol8, since its 

absorption lies at a wavelength of 760 nm. However, at a higher radiation doses (up to 100 J cm-2), 

complete inactivation of P. aeruginosa biofilms is achieved due to higher photostability of ZnPcChol8. 

Fluorescent microscopy of biofilms after APDT and Live/Dead staining visualize the bacteria that 

are either dead or have higher membrane permeability, which is the first step of cell damage under action 

of reactive oxygen species. Live/Dead staining is not quantitative reaction, but this experiment confirms 

the data of plating experiments. The stained microscopic images for P. aeruginosa biofilms are 

presented in Figure 5. At high (>30 J cm-2) doses of light, these results demonstrate the high efficacy of 

all the studied PS for APDT of P. aeruginosa in biofilms. However, at low (10 J cm-2) light doses only 

the bacteria in biofilms after APDT using (3-PyEPy)4BСBr8 significantly lower than using ZnPcChol8, 

which confirms the conclusion that APDT with (3-PyEPy)4BСBr8 is more effective at low doses of light 

compared to ZnPcChol8. 
 

Light dose 

 

Photosensitizer 

0 J cm-2 10 J cm-2 30 J cm-2 

Control 

(without PS) 

 

(3-PyEPy)4BСBr8 

ZnPcChol8 

Figure 5. The microphotos of P. aeruginosa biofilm before and after the APDT using 

(3-PyEPy)4BСBr8 and ZnPcChol8 cationic PS with light doses of 10 and 30 J cm-2. 
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4. Discussion 

The antimicrobial photodynamic therapy of Gram-negative bacterial P. aeruginosa biofilms can achieve 

highly effective results in vitro by using photosensitizers based on the derivatives of polyacationic 

phthalocyanines and synthetic bacteriochlorins. 

Inactivation of bacteria in biofilms depends on light dose and reaches about 5 orders of magnitude 

with (3-PyEPy)4BСBr8 at low (<50 J cm-2) light dose. The effectiveness of inactivation of the 

P. aeruginosa bacteria in biofilms using ZnPcChol8 is lower. However, at a higher radiation dose (up to 

100 J cm-2), complete inactivation of P. aeruginosa biofilms is achieved due to the high photostability 

of ZnPcChol8.  
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