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Abstract. Account of interactions in frameworks of Standard Model leads to appearence of γ5

terms in a dressed fermion propagator. In this case the standard spin projectors do not commute
with propagator and should be modified. Starting point of our discussion is the eigenvalue
problem for inverse propagator S(p). Having the solutions of this problem, one can understand
the necessary modification of spin projectors. The same generalized spin projector appears at
propagation of neutrino in a moving matter, but in contrast to vacuum case, corresponding
polarization vector is not arbitrary. This spin projector commute with neutrino propagator and
all dispersion laws for neutrino in media are classified according to spin projection onto this
fixed axis.

1. Introduction
General tendency in neutrino physics consists in transition to more detailed description of the
processes in vacuum and media in frameworks of Quantum Field Theory (QFT), see reviews
[1, 2, 3]. In astrophysics neutrino can propagate in different physical conditions, related with
media properties (movement and polarization of matter, magnetic field, ...). Another aspect is
related with accurate description of the production and detection processes in QFT and it leads
to use the wave packets instead of plane waves. There appear also interesting spin properties of
neutrinos in media, see e.g. [4, 5].

Here we discuss the influence of interaction on the spin properties of neutrino. Account
of interactions (in particular, in Standard Model) leads to appearence of γ5 terms in neutrino
propagator. In this case the standard spin projectors cease to commute with dressed propagator
and should be modified. In particular, this issue becomes very essential, if we are interested by
polarization in intermediate state [6]. Another interesting example may be related with accurate
form of resonance curve of t-quark, including spin properties.

2. Fermion propagator
2.1. Free propagator and spectral representation
Below we will use for fermion propagator a convenient algebraic construction – so called spectral
representation of an operator (see, e.g. textbook [7]). In this representation the self-adjoint
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operator Â takes the form:

Â =
∑
i

λi|i〉〈i| =
∑
i

λiΠi, (1)

where λi are eigenvalues of the operator, |i〉 are eigenvectors

Â|i〉 = λi|i〉

and Πi = |i〉〈i| are corresponding orthogonal projectors (eigenprojectors). In the case of non-
hermitian operator there arises a similar decomposition but to construct it, one needs solutions
of two different eigenvalue problems – left and right.

Let us consider the eigenvalue problem for free inverse propagator S0 = p̂−m

S0Πi = λiΠi.

One can guess the answer if to introduce the known off-shell projection operators

P1,2 =
1

2
(1± p̂

W
), W =

√
p2 (2)

With use of these operators the inverse propagator can be rewrited identically as

S0 = (W −m) · P1 + (−W −m) · P2 =

n∑
i=1

λiΠi (3)

and one can recognize here the spectral representation. Reversing this formulae, we have the
propagator G(p) = S−1

0

G0 =
1

(W −m)
· P1 +

1

(−W −m)
· P2 =

2∑
i=1

1

λi
Πi (4)

and one can see that zeroes of eigenvalues λi are poles of propagator.
If to remember about spin degrees of freedom, in fact spectral representation looks like

G0(p) =
1

λ1
· P1Σ+

0 (s) +
1

λ1
· P1Σ−

0 (s) +
1

λ2
· P2Σ+

0 (s) +
1

λ2
· P2Σ−

0 (s),

where Σ±
0 are spin projectors, commuting with propagator

Σ±
0 =

1

2
(1± γ5ŝ), [P1,2,Σ±

0 ] = 0 (5)

2.2. Dressed propagator
Now let us consider the dressed fermion propagator in theory with parity violation. In this case
the self-energy contains γ5 and it needs to modify the spin projectors

S(p) = p̂−m− Σ(p), Σ(p) = A · I +B · p̂+ C · γ5 +D · p̂γ5. (6)

It is convenient to introduce the following set of matrices

P1 =
1

2
(1 +

p̂

W
), P2 =

1

2
(1− p̂

W
), P3 = P1γ5, P4 = P2γ5 (7)
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and one can use them as a basis to expand the self-energy and propagator.

S(p) =
4∑

M=1

PMSM (W ) (8)

The eigenvalue problem for such matrix may be solved [8]. The eigenvalues λ1,2(W ) are defined
by characteristic equation

λ2 − λ(S1 + S2) + (S1S2 − S3S4) = 0, (9)

where SM (W ) are coefficients in decomposition (8). The corresponding eigenprojectors are

Π1 =
1

λ2 − λ1

(
(S2 − λ1)P1 + (S1 − λ1)P2 − S3P3 − S4P4

)
,

Π2 =
1

λ1 − λ2

(
(S2 − λ2)P1 + (S1 − λ2)P2 − S3P3 − S4P4

)
.

(10)

One can see that in presence of γ5 the standard spin projectors Σ±
0 (5) do not commute

with dressed propagator (6). To correct this defect we should come to some generalized spin
projectors.

First of all, it is convenient to rewrite the inverse dressed propagator as

S(p) = a(p2) + n̂b(p2) + γ5c(p2) + n̂γ5d(p2), nµ = pµ/W. (11)

One can see that the eigenprojectors (10) and eigenvalues (9) are

Π1,2 =
1

2

(
I4 ± n̂ ·

b+ n̂γ5c+ γ5d√
b2 + c2 − d2

)
, λ1,2 = a±

√
b2 + c2 − d2 (12)

and Π1,2 also do not commute with Σ±
0 because of γ5.

From a common sense we expect that there should exist some generalized spin projectors
with following properties [

Σ±
i ,Πi

]
= 0, Σ±

i Σ±
i = Σ±

i ,

Σ±
i Σ∓

i = 0, Σ+
i + Σ−

i = I4.

If so, the eigenvalue problem (both left and right) is degenerate in spin

S
(
ΠiΣ

±
i

)
= λi

(
ΠiΣ

±
i

)
. (13)

Spectral representation of inverse propagator will have the form

S(p) =

2n∑
i=1

λi(ΠiΣ
+
i + ΠiΣ

−
i ). (14)

We can use the found eigenprojectors (12) to construct the necessary spin projectors. Since
the matrices n̂ and γ5ŝ have the same commutative properties, the spin projector is obtained
from (12) by replacement the factor n̂→ γ5ŝ

Σ± =
1

2

(
I4 ± γ5ŝ ·

b+ n̂γ5c+ γ5d√
b2 + c2 − d2

)
, s2 = −1, (sp) = 0. (15)
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One can easily verify that (15) have all the required properties. In absence of interaction
(b = W , c = d = 0), or in theory with parity conservation (c = d = 0) they coincide with the
standard ones Σ±

0 .
One can say that appearance of γ5 in a vertex leads to dressing of spin projectors together

with dressing of propagator.
The same trick with replacement n̂ → γ5ŝ allows to build the spin projectors in case of n

mixing fermion fields [9]. The corresponding eigenprojectors may be written as

Πi =
1

2

(
ai + n̂bi + γ5ci + n̂γ5di

)
=

1

2

(
I4In + n̂ti

)
, (16)

where ti = n̂
(
ai − I4In

)
+ bi + n̂γ5ci + γ5di and coefficients are matrices of dimention n.

Substitution n̂→ γ5ŝ in last expression gives the generalized spin projector

Σi =
1

2

(
I4 + γ5ŝti

)
In. (17)

One can check that Σi has properties of projector, commuting with the eigenprojector Πi.
In density matrix there appears product of energy and spin projectors and it leads to essential

simplification of generalized spin projector

ΠiΣi =
1

2

(
1 + n̂ti

)1

2

(
1 + γ5ŝti

)
= Πi

1

2

(
1 + n̂tiγ

5ŝn̂
)
.

Using the main property of energy projector Πi · n̂ti = Πi, we have simple recipe for modification
of spin projector in theory with parity violation

Σ0(s) =
1

2
(1 + γ5ŝ) ⇒ Σ(s) =

1

2
(1 + γ5ŝn̂), nµ = pµ/

√
p2. (18)

3. Propagator in a moving matter
3.1. General case
When we consider the propagation of neutrino through a moving matter, we have two 4-vectors
in this problem: momentum of particle p and matter velocity u. We can write down the most
general expression for inverse propagator

S(p, u) = G−1 = s1I + s2p̂+ s3û+ s4σ
µνpµuν +

+s5iε
µνλρσµνuλpρ + s6γ

5 + s7p̂γ
5 + s8ûγ

5, (19)

which contains eight matrix structures with some coefficients si, depending on invariants.
If we want to solve the eigenvalue problem for S, first of all we need a convenient γ-matrix

basis. Let us introduce the 4-vector zµ, which is linear combination of two vectors p, u and has
properties of fermion polarization vector: zµpµ = 0, z2 = −1. It looks like

zµ = b (pµ(up)− uµp2), b = [p2((up)2 − p2)]−1/2.

Using this vector, one can construct the generalized off-shell spin projectors [10]:

Σ± =
1

2
(1± γ5ẑn̂), Σ±Σ± = Σ±, Σ±Σ∓ = 0, (20)

where nµ = pµ/W, W =
√
p2.
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The main property of these operators is that Σ± commute with all γ-matrices in inverse
propagator (19)

[Σ±(z), S] = 0.

Multiplying the inverse propagator S(p, u) (19) by unit matrix

S = (Σ+(z) + Σ−(z))S ≡ S+ + S−, (21)

one obtains two orthogonal terms S+, S−.
One more useful property of projectors Σ±: they allow to simplify the γ-matrix structure

in S±. Namely: γ-matrices, which contain the matter velocity uµ may be transformed to the
set of four vacuum matrices: I, p̂, γ5, p̂γ5. For example, the term û can be rewritten as a linear
combination p̂ and ẑ and with use the projector property (Σ+ · γ5ẑn̂ = Σ+) we obtain:

Σ+û = Σ+(a1p̂+ a2ẑ) = Σ+(z)(a1p̂−
a2
W
p̂γ5). (22)

After this simplification it’s convenient to use the off-shell operators P1, . . .P4, introduced in
case of vacuum dressed propagator. To construct the solution of eigenstate problem we can use
the solution (9), (10) for vacuum dressed propagator.

The introduced by us four-vector zµ (20) plays role of the complete polarization axis and all
eigenvalues are classified by the projection of spin onto this axis. In contrast to vacuum, this
axis is not arbitrary. As it will be seen from discussion of SM case, the projection on this axis
is not conserved in general case.

3.2. Propagator in Standard Model
In the case of SM a fermion propagator in matter is

S(p, u) = p̂−m− αû(1− γ5), (23)

where α is some constant (matter “potential”).
Solutions of the eigenvalue problem in this case are (particular case of general formulae):

λ1,2 = −m±W
√

1 + 2K+, λ3,4 = −m±W
√

1 + 2K−,

Π1,2 = Σ− · 1

2

[
1± n̂ 1 +K+ − γ5K+

√
1 + 2K+

]
, Π3,4 = Σ+ · 1

2

[
1± n̂ 1 +K− − γ5K−

√
1 + 2K−

]
,

where K± = −α
(

(pu)±
√

(up)2 − p2
)
/p2.

In case of SM it is easy to verify that the spin projection on the axis of complete polarization
is not conserved. The Hamiltonian is defined by Dirac operator (23) H = p0− γ0S. We can use
a known zeroth commutator

[R,S] = 0, R = γ5ẑn̂, (24)

for simple calculation of commutator R with Hamiltonian

[R,H] = γ0[S,R] + [γ0, R]S = [γ0, R]S, (25)

which may be reduced to [γ0, R]. With use of the standard representation of γ-matrices we have

R =

(
σv −iσξ
−iσξ σv

)
, v = n0z− z0n, ξ = [z× n].

If to require [γ0, R] = 0, we come to condition ξ = 0, i.e.

ξ ≡ [z× n] = bW [p× u] = 0. (26)
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3.3. Rest matter
If matter does not move, the found polarization vector zµ (20) takes the form

zµ =
1

W

(
|p|, p0 p

|p|

)
, (27)

which corresponds to helicity state of fermion, but the off-shell one since W 6= m.
In general case of moving matter we have the following properties

[Σ±, S] = 0, but [Σ±, H] 6= 0.

In case of the rest matter, according to Eq. (26), spin projection is concerved and polarization
vector zµ corresponds to helicity state. Straight calculation gives

Σ± =
1

2

(
1±Σ

p

|p|

)
, Σ = γ0γγ5. (28)

Eigenvalues:

λ1,2 = −m±W
√

1− 2α(E + |p|)/W 2, λ3,4 = −m±W
√

1− 2α(E − |p|)/W 2.

Thus, for the rest matter the well-known fact [11, 12] is reproduced that neutrino with definite
helicity has a definite law of dispersion in matter.

4. Conclusions
We found simple modification (18) of spin projectors in theory with P-parity violation. The
necessity of modification arises because of appearence of γ5 matrix in dressed fermion propagator.
To obtain spin projectors with necessary properties we used spectral representation of dressed
propagator and corresponding eigenprojector (12). After it the simple substitution n̂ → γ5ŝ
allows to get operators (15) with required commutative properties. Since the density matrix
contains production of two projectors ΠiΣi, we obtain very simple recipe (18) for modified spin
projector.

At propagation of neutrino in a moving matter there exists the fixed 4-axis of complete
polarization zµ, such that corresponding spin projector commutes with propagator. It means
that all eigenvalues (and, consequently, dispersion laws) are classified according to spin projection
on this axis. These two examples lead to the same form of generalized spin projectors (18), (20)
but in moving matter polarization vector z is fixed in contrast to vacuum case.
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