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Abstract. Concerning the scattering of K+ - mesons on nuclei, the explicit discrepancy
between experimental data and optical model calculations is a longstanding problem and none of
the conventional medium effect corrections improves significantly the agreement with the data.
In this paper the cross sections for the reactions K++12C at incident momenta of the kaon
Plab < 800 MeV/c are calculated on the basis of Glauber’s high-energy approximation. The
noneikonal corrections, Fermi motion effect and both Pauli and dynamic short-range correlations
were incorporated in the Glauber approach for nuclear collisions. The influence of all these
corrections on the calculation of the cross sections for the interactions of kaon with nucleus is
discussed. The full calculations is compared to available data. The corrections seem to fail in
reproducing the experimental data. Our results is compared to optical model calculations. We
show that both our model and optical model fails to give a satisfactory description of K+-nuclei
cross sections. Different attempts to remove this discrepancy with the in-medium effects taken
into account are discussed.

1. Introduction
At present it is believe that Quantum Chromodynamics (QCD) is the most probable candidate
for the fundamental theory of strong interactions. This theory have asymptotic freedom which
accounts for the observed scaling behavior of strong interactions at high energies. However, the
properties of hadrons at low energies are dominated by the long-distance regime of QCD, where
the perturbation theory breaks down. The most important of these properties is confinement,
i.e., no free quarks have been seen. But QCD predicts that quarks can be partially deconfined at
high nuclear density (which may be achieved in high energy nuclei-nuclei collisions). Moreover,
it has been shown by J.S. Brossky that many of the key issues in understanding quantum
chromodynamics involve processes in nuclear targets at intermediate energie [1]. In addition,
measurement probing nuclei in deep-inelastic scattering at high momentum transfer indicates
that quark structure of free nucleons differs from that of nucleons in the nuclei (EMC effect). It
is interesting to study possible signals of such effects not only in the extreme but also in usual
conditions, e.g., in the intermediate energy (IE) region of interaction, E<1 GeV [2, 3].

The investigation of nuclear reactions at IE is considered as a central subject in nuclear
physics. Strong evidence concerning the modification of nucleon properties in a nuclear medium
(in-medium effects) has been reported from the proton electromagnetic form factors measured
in polarized (e⃗, e′p) scattering on 16O and 4He at MAMI and Jefferson Lab [4, 5].
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2. Glauber model of high-energy scattering
We have used the Glauber model because it is applied successfully in analyzing a large number
of peculiarities of different nuclear reactions [6, 7, 8]. The breakdown of conventional Glauber
model prediction (which might be a hint of new physics) has become a focus of theoretical
interest [9, 10, 11].

For clarity, we recall that, following Glauber [6], the amplitude for a projectile-target elastic
scattering assumes the general form as the lowest order eikonal approximation

f(q) =
ik

2π

∫
eiq⃗·⃗b

[
1− eiχ(⃗b)

]
d⃗b, (1)

where b⃗ is the impact parameter, and χ is the corresponding phase shift function,

f(q⃗) =
ik

2π

∫
eiq⃗·⃗bΓ(⃗b)d⃗b, with Γ(⃗b) = 1− eiχ(⃗b) =

1

2πik

∫
e−iq⃗·⃗bf(q⃗)dq⃗, and (2)

f(q) =
k(i+ α)σ

4π
e−β2q2/2, α = Ref(0)/Imf(0). (3)

With our normalization, the optical theorem becomes σt =
4π
k Imf(0).

For projectile-nucleus scattering Eq.(1) in the Glauber model can be recorded into the form:

F (Q) =
ik

2π

∫
eiQ⃗·⃗b < [1− eiχ(⃗b,s⃗1,···,s⃗A)] > d⃗b, (4)

where s⃗j is the component of the radius-vector r⃗j of the j
th

target-nucleon in the direction

perpendicular to the incident momentum k⃗, while the brackets < > denote the target ground-
state average.

The total and reaction cross sections in the eikonal model may then be approximated by

σt = 4π

∞∫
0

Re[1− eiχ(b)]bdb, σr = 2π

∞∫
0

[1− e−2Imχ(b)]bdb. (5)

For potential scattering the eikonal expansion has been derived by Wallace [12],

χ(b) =
∑
n

− µ
n+1

k(n+ 1)!

(
b

k2
∂

∂b
− ∂

∂k

1

k

)n
∞∫

−∞

V n+1(r)dz, (6)

where µ is the reduced mass, and k is the momentum in the c.m system (h̄ = c = 1). The
zeroth-order term in the above expansion represents the Glauber eikonal phase shift function
while the higher-order terms correspond to the noneikonal effects. In this work we truncate the
tedious expansion of eqs. (6) and include in our calculations till the the second-order noneikonal
corrections.

For local potentials the first and second order corrections are given, respectively, by

χ1(b) = − µ2

2k3

(
1 + b

∂

∂b

) ∞∫
−∞

V 2(r)dz, χ2(b) = − µ3

6k5

(
3 + 5b

∂

∂b
+ b2

∂2

∂b2

) ∞∫
−∞

V 3(r)dz. (7)

The zero order term in (6) gives the eikonal phase
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χ0(b) = −2π

k

∞∫
−∞

f(0)ρ(b, z)dz, χ0(b) = −µ

k

∞∫
−∞

V (b, z)dz, V (r) =
2π

µ
f(0)ρ(r), (8)

where f(0) is the elementary forward scattering amplitude, ρ(r) is the corresponding nuclear
density. The elementary scattering amplitudes for K-nucleon scattering were taken from Martin
phase shifts analysis [13].

In our calculations we have used (in a usual way) harmonic oscillator wave functions to obtain
the carbon density with the parameters of Ref. [8]:

ρ(r) = (α+ βr2) exp(−γr2), α =
4

R3π1.5
, β =

2(A− 4)

3π1.5R5
, γ =

1

R2
, R2 = 2.5fm2 (9)

Correlation effects have also been incorporated into the Glauber approach [14]. These will
lead to the correction χcorr in the nuclear phase, which can be given by,

iχ(b)corr =
(A− 1)2

2

∫
dr1dr2ρ(r1)ρ(r2)γ(b− b1)γ(b− b2)g(r1, r2) (10)

where g(r1, r2) is a two–body correlation function, whereas the profile function γ(b) is given in
terms of the projectile target–nucleon amplitude [14]. It has been shown, that g(r1, r2) is a sum
of contributions due to the Pauli correlations gp and short–range dynamic correlations gs . Both
the functions gp and gs can be well approximated [14] by

gp = g1e
−a1 |r1−r2 |2

, gs = g2e
−a2 |r1−r2 |2

(11)

where the parameters g1 , g2 , a1 , a2 are given in [15].
The Fermi motion in nuclei was included in our model since the nucleon motion is crucial

for the particle production in backward semisphere, the Cronin effect etc. The fact that Fermi
motion is important induced us to include his in our calculations by an more accurate method. In
contrast with diferent analytical approximations used in others Refs. (see, e.g., [16]) we utilized
Monte Carlo statistical modulation of interactions of kaons in nuclei. The internal momentum
distribution in nuclei was approximated by

ρ(p) =
A

α3
exp

(
− p2

2α2

)
+

B

β3
exp

(
− p2

2β2

)
(12)

where the parameter α is related to the nuclear Fermi momentum and β corresponds to the high
momentum component. The parameters were obtained from the analysis of the experimental
data on backward proton production in pA and AA collisions [17]. It was found that for the
carbon target the inclusive distribution of the protons is described by the function (12) with the
parameters (Y = 75 MeV/c , p = 190 MeV/c , B/A = 0.06.

3. Results of calculation and summary
The total cross section is the most fundamental characteristic of nuclear reaction. The K+-
meson has a long mean fee path and can penetrate into the interior of a nucleus, thus probing
the nucleus in a region where the density is high. (Other hadrons can probe only nuclear surface.)
Total cross section measurements of K+-nuclei interaction show a significant discrepancy when
compared to theory of the optical potential model [2, 3]. We used Glauber model because she is
utilised successful in analysing of different nuclear reactions. In the framework of our Glauber
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Monte Carlo model, we calculated cross sections of K+ and proton interactions with nuclei (see
Table 1).

Table 1. K+ - 12C and P - 12C total cross-sections in mb. In column ”Theory” is demonstrated
results of this work. Here, the column G denotes the results on conventional Glauber model, the
column GF denotes the results as in column G including Fermi motion, column GF+CO denotes
the results as in column GF including corelations, column GF+CO+NE denotes the results as
in column GF+CO including noneikonal corrections. In parenthesis is shown experimental data
[18, 19]. For comparison, we represent the optical models results of Ref. [20].

Plab Theory σtot(mb) Relativistic optical
(GeV/c) G GF GF+CO GF+CO+NE potential model

0.488 (K+ - 12C) 155.98 156.72 152.05 152.78 137.8 (165.60±1.40)
0.531 (K+ - 12C) 157.36 158.10 153.44 154.18 140.5 (169.16±1.05)
0.656 (K+ - 12C) 157.11 158.00 153.82 154.71 146.9 (176.09±0.62)
0.714 (K+ - 12C) 156.96 158.11 154.71 155.86 148.8 (178.66±0.57)
1.000 (P - 12C) 365.74 367.08 363.88 365.23 (370±9)

As can be seen from Table 1. our approach for K+ - 12C intraction gives the results more close
to the experiment. Nevertheless, a universal discrepancy is observed between predictions of our
model and data. In conclusion, our model describes well the data on the scattering of proton
with carbon [8, 19] as well demonstrate the opportunity of observing some unusual phenomena
in K+-nucleus interaction (e.g. partial restoration of chiral symmetry in ground state nuclei)
[1, 2, 3, 21, 22].
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