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Abstract. We calculate the tensor meson exchange contribution to the interaction operator of
muon and proton, which is determined by the tensor meson coupling with two photon state. For
the construction of transition form factor T → γγ we use the monopole parametrization over
photon four-momenta and experimental data on the decay width ΓTγγ . It is shown that tensor
meson f2(1270) exchange gives essential contribution to the Lamb shift in muonic hydrogen
∆ELs(2P −2S) which should be taken into account for a comparison with precise experimental
data.

1. Introduction
The problem of the proton charge radius, which arose after the CREMA experiments [1, 2], raised
the question of a more accurate construction of the particle interaction operator in muon atoms
and the inclusion of new contributions to this operator. Emerging new experimental data on
the Lamb shift in electron hydrogen, as well as a new analysis of experiments already performed
on the scattering of leptons by nucleons, show that the values of the proton charge radius
obtained from electron and muon systems are approaching [3, 4]. The problem of the proton
charge radius is gradually beginning to be solved. However, the analysis of new interactions
between the proton and the muon is important for future more accurate experiments. Among
the interactions of the proton and the muon there are those in which two virtual photons turn
into a meson, which leads to an effective one-meson potential. The fusion of two photons in a
meson with different quantum numbers can be described in terms of the quark model with light
quarks. The calculation of the form factor of the transition of two photons into a meson can be
performed within the framework of nonperturbative quantum chromodynamics. In the case of
pseudoscalar and axial vector mesons, the results of a theoretical calculation of the transition
form factor can be compared with the available experimental data. No experimental data are
available for scalar and tensor mesons; therefore, model representations are used to calculate
the amplitude of the interaction of the muon and proton. An important role is played by the
inverse decay of the meson into two photons, the width of which is measured experimentally
and is included in the estimation of the transition form factor at zero squared photon momenta.
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In this work we continue our investigation [5, 6, 7] (see also [8, 9, 10, 11, 12]) of the role of
one-meson exchange interactions in muonic hydrogen in the case of tensor mesons.

Figure 1. One-meson (pseudoscalar (PS), axial-vector (AV), scalar (S), tensor (T)) exchange
interaction in muonic hydrogen.

2. General formalism
For tensor mesons consisting from light quarks the experimental analysis of decay angular
distributions for γγ cross sections to π+π−, π0π0, K+K− have shown that the J=2 mesons
are produced mainly in a state with helicity Λ = 2 [13]. We will assume further that hadronic
light-by-light amplitude for tensor mesons is dominated be helicity Λ = 2 exchange. Then the
amplitude of the process γ∗ + γ∗ → T (see Fig. 1) can be parametrised as follows [14]:
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Our approach to the construction of the interaction operator is based on quasipotential
method in quantum field theory [15, 16, 17]. Introducing the four-momentum t of the tensor
meson we can present the muon-proton interaction amplitude due to two-photon fusion in the
form:

iM =
4πZα

16m2
1m

2
2

∫
d4k

(2π)4
1

(p1 − k)2 −m2
1

Dµµ′(t− k)Dνν′(k)Dα′β′αβ
T (t)Mµ′ν′α′β′(k1, k2) (3)
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where the vertex function of tensor meson nucleon interaction is [18]
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p1, q1; p2, q2 are four momenta of muon and proton correspondingly in initial and final states.
The introduction of projection operators onto the muon-proton states with certain values of

the total momentum makes it possible to simplify the construction of the particle interaction
operator in these states and use analytical systems such as Form [19]. Projecting the interaction
amplitude on the S-state with F = 1 we obtain:
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After the trace calculation we obtain that in the leading order in t the interaction amplitudes
in 3S1 and 1S0 states are the following:
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The contribution to the ground state hyperfine splitting contains additional degrees t:
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We use the dipole parametrization for the transition form factor

FTγ∗γ∗(k21, k
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2) = FTγ∗γ∗(0, 0)
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Making the transition to the Euclidean space we present the loop momentum integral in the
form:
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shift and hyperfine splitting are

∆V LS
T (r) = −16α2m1GTNN

MT

2
√
5Γγγ

α
√
πMT

I 1

4πr
e−MT r, (10)

∆V HFS
T (r) =

8α2GTNN

3πm2MT

2
√
5Γγγ

α
√
πMT

J
(
δ(r)− M2

T

4πr
e−MT r

)
, (11)

J =

∫ π

0

sinψdψ

(−2 + a21 + a21 cos 2ψ)
2

(
a21 cos 2ψ − 2 ln

(
a21 cos

2 ψ
)
+ a21 − 2

)
×



XVIII Workshop on High Energy Spin Physics "DSPIN-2019"

Journal of Physics: Conference Series 1435 (2020) 012004

IOP Publishing

doi:10.1088/1742-6596/1435/1/012004

4

(
sin3 ψ + 7 sinψ − 3 sinψ cos2 ψ + 2 cos4 ψ ln

(
2

sinψ + 1
− 1

))
.

There are several tensor mesons which can contribute to LS and HFS [20], but in our calculation
we take into account only the contribution of f2(1270) meson, since we know for it more or
less reliable values of various parameters, including the coupling constant with the nucleon [18].
Using obtained potentials we can calculate contributions to the energy levels of muonic hydrogen:
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where W = µα.

3. Conclusion
The obtained numerical values of the contributions to the Lamb shift and the hyperfine structure
show that they are significant and must be taken into account in a more accurate comparison
with experimental data. The contribution of the tensor meson is comparable to the contribution
of the scalar σ-meson. Other tensor mesons apparently make a significantly smaller contribution,
since their constant of interaction with the nucleon is much smaller. Experimental data [20] show
that all tensor mesons have a significant decay width into a pair of pions, which interact well
with the nucleon, therefore, such processes need to be investigated additionally. Work in this
direction is in progress.
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