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Abstract. We demonstrate how to calculate perturbative components of the structure
functions F1 (for unpolarized DIS) and g1 (spin-dependent DIS) in Double-Logarithmic
Approximation, studying separately the cases of fixed and running QCD coupling. We show
that as long as only ladder graphs are accounted for (throughout the talk we use the Feynman
gauge for virtual gluons) there is no difference at all between F1 and g1. However, accounting
for contributions of non-ladder graphs brings an essential difference between them. Applying
Saddle-Point method to expressions for F1 and g1, we obtain their small-x asymptotics. The
both asymptotics are of the Regge kind but with different intercepts. The intercept of F1 proved
to be greater than unity, so it is a new contribution to Pomeron. We show the reason for the g1
intercept should be less than the one of F1 and thereby argue against using model Pomerons in
the spin-dependent processes. Finally, we discuss the applicability region of Regge asymptotics.

1. Introduction
According to QCD factorization, structure functions describing Deeply Inelastic Scattering can
be regarded as convolutions of perturbative and non-perturbative contributions. In the present
talk we consider the perturbative components only. In particular, we consider perturbative
components of the DIS structure functions F1 and g1. They can be calculated in fixed orders in
the QCD coupling or, alternatively, with total resummation of contributions to all orders in in
αs. The latter can be done only approximately, with selecting most important contributions in
every order in αs and constructing evolution equations accounting for such contributions. The
most important contributions are different in different kinematics. Selection of them is expressed
in terms of orderings of momenta of virtual partons. They look very simple when the standard
Sudakov parametrization[1] is used for momenta ki(i = 1, 2, ...) of virtual partons:

ki = αiq
′ + βip′+ ki⊥, (1)

where q′ and p′ are light-cone momenta, each made of the photon momentum q and the initial
parton momentum p while ki⊥ are the components transversal to the plane formed by p and
q. The invariant energy w = 2pq is presumed to be the largest invariant involved. First of all,
there is the DGLAP ordering:

β1 ∼ β2 ∼ ... ∼ 1, µ2 ≪ k21⊥ ≪ k22⊥ ≪ ... ≪ Q2, (2)
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where −Q2 = q2 and µ2 is a mass scale. For instance, it can be the factorization scale. We keep
the standard DGLAP numeration of partonic ladder rungs from the bottom to the top. This
ordering means that the DGLAP equations[2, 3, 4, 5] sum logarithms of Q2 to all orders in αs

and do not account for logs of x. As a result, DGLAP is designed for work in kinematics x ∼ 1
and Q2 ≫ µ2 for reactions with both unpolarized and polarized partons, so it describes both F1

and g1 at large x. In contrast, the BFKL ordering is

1 ≫ β1 ≫ β2 ≫ ..., µ2 ∼ k21⊥ ∼ k22⊥ ∼ .... (3)

So, the BFKL equation[6, 7, 8, 9, 10] accounts for logs of x. and does dot deal with
logarithms of Q2. As a result, BFKL is tailored for work in kinematic region of small x and
small Q2. It sums leading logarithms. They contribute to unpolarized processes only, so BFKL
contributes to description of F1 but not g1. The perturbative series for F1 in Leading Logarithmic
Approximation (LLA) looks as follows:

FLL
1 = δ(x− 1) + (1/x)

[
1 + c1αs ln(1/x) + c2(αs ln(1/x))

2 + ...
]
, (4)

where cr are numerical factors. Alternatively, both logs of Q2 and logs of x are accounted for
when the Double-Logarithmic Ordering[11, 12, 13] is used:

1 ≫ β1 ≫ β2 ≫ ..., µ2 ∼ k21⊥/β1 ≪ k22⊥/β2 ≪ .... (5)

This ordering makes possible to account for logs of x and Q2 in Double-Logarithmic
Approximation (DLA) for both unpolarized and spin-dependent processes and therefore both
F1 and g1 can be calculated in DLA. The DL perturbative series for both g1 and F1 looks as
follows:

FDL
1 = δ(x− 1) + c′1αs ln

2(1/x) + c′2(αs ln
2(1/x))2 + ... , (6)

gDL
1 = δ(x− 1) + c̃1αs ln

2(1/x) + c̃2(αs ln
2(1/x))2 + ... ,

where c′r and c̃r are numerical factors. The overall factor 1/x in Eq. (4) is huge at small x, so
the DL contribution FDL

1 of Eq. (6) looks negligibly small compared to FLL
1 . In the present talk

we demonstrate that this impression is false.

2. Calculating the structure functions F1 and g1 in DLA
In order to calculate F1 and g1 in DLA F1 and g1 in DLA we construct and solve Infra-red
Evolution Equations (IREEs). This method was suggested by L.N. Lipatov. The basic idea
is to introduce an infra-red cut-off µ in the transverse momentum space and trace evolution
with respect to µ. The key-stone idea here is factorization of DL contributions of partons with
minimal transverse momenta, which was proved by V.N. Gribov in the QED context. History
and details of application of the method to DIS can be found in Ref. [14]. It is convenient to
begin with calculating amplitudes of elastic Compton scattering off a quark and a gluon, which

we denote Aq and Ag respectively, and obtain F
(q,g)
1 and g

(q,g)
1 from them with Optical theorem:

F q
1 =

1

2π
ℑA(+)

q , F g
1 =

1

2π
ℑA(+)

g , (7)

gq1 =
1

2π
ℑA(−)

q , gg1 =
1

2π
ℑA(−)

g ,

where the signature amplitudes A
(±)
q and A

(±)
g defined as follows:
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A(±)
q (w,Q2) = Aq(w,Q

2)±Aq(−w,Q2), A(±)
g (w,Q2) = Ag(w,Q

2)±Ag(−w,Q2). (8)

It is convenient to express Aq and Ag through the Mellin transform:

A(±)
q,g (

w

µ2
,
Q2

µ2
) =

∫ ı∞

−ı∞

dω

2πı

(
w

µ2

)ω

ξ(±)(ω)F (±)
q,g (ω,

Q2

µ2
) =

∫ ı∞

−ı∞

dω

2πı
eωρξ(±)(ω)F (±)

q,g (ω, y), (9)

where we have introduced the signature factor ξ(±)(ω) = − (e−ıω ± 1) /2 and the logarithmic
variables ρ, y (using the standard notation w = 2pq):

ρ = ln(w/µ2), y = ln(Q2/µ2). (10)

In what follows we will address F
(±)
q , F

(±)
g as Mellin amplitudes and will use the same form

of the Mellin transform for other amplitudes as well. Constructing IREEs for the Compton

amplitudes F
(±)
q and F

(±)
q is identical, so we keep generic notations Fq and Fg for them without

the signature superscripts. Technology of composing and solving IREEs in detail can be found
in Ref. [14, 15]. As the first step, we construct IREEs involving Fq,g and auxiliary amplitudes
hrr′ . They are related to the parton-parton amplitudes frr′ : hrr′ =

1
8π2 frr′ , with r, r′ = q, g. So,

we obtain the following IREEs:

[∂/∂y + ω]Fq(ω, y) = Fq(ω, y)hqq(ω) + Fg(ω, y)hgq(ω), (11)

[∂/∂y + ω]Fg(ω, y) = Fq(ω, y)hqg(ω) + Fg(ω, y)hgg(ω),

Solving Eqs. (11), we express Fq,g in terms of auxiliary amplitudes hrr′ which can be found
by the same method. Explicit expressions for them can be found in [14, 15]. Substituting them
in solutions of Eqs. (11) allows us to arrive at explicit expressions for Fq,g and then obtain F1

and g1 in DLA.

3. Small-x asymptotics of F1 and g1
Pushing x → 0 and applying Saddle-Point method to the expressions for F1 and g1, we arrive
at their small-x asymptotics. They both are of the Regge kind, though with different stationary

points ω
(±)
0 :

g1 ∼
Π
(
ω
(−)
0

)
ln3/2(1/x)

x−ω
(−)
0

(
Q2

µ2

)ω
(−)
0 /2

, F1 ∼
Π
(
ω
(+)
0

)
ln3/2(1/x)

x−ω
(+)
0

(
Q2

µ2

)ω
(+)
0 /2

, (12)

where we again introduced the signature notations (±). Explicit expressions of the factors

Π(ω
(±)
0 ) depend on the type of QCD factorization (see Refs. [14, 15] for detail). In Regge theory,

ω
(±)
0 are called intercepts. They control the x-dependence of the structure functions. Intercept

ω
(−)
0 of g1 was calculated in Ref. [16] and ω

(+)
0 was obtained in Ref. [15]. When the running αs

effects are accounted for, the intercepts are:

ω
(−)
0 = 0.86, ω

(+)
0 = 1.07. (13)

It is interesting to notice that the intercept ω
(−)
0 is in good agreement with the result

ω
(−)
0 = 0.88 ± 0.17 obtained in Ref. [17] by extrapolating the HERA data to the region of
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x → 0. Intercept ω
(+)
0 > 1, so this Reggeon is a new contribution to Pomeron. Throughout

the talk we will address it as DL Pomeron. Despite its value is pretty close to the NLO BFKL
Pomeron intercept, DL and BFKL Pomerons have nothing in common: BFKL equation sums
leading logarithms whereas IREEs of Eq. (11) deal with double logarithms.

Another interesting observation is that the intercepts ω
(+)
0 and ω

(−)
0 coincide as long as DL

contributions of non-ladder Feynman graphs1 are neglected. In this case ω
(+)
0 = ω

(−)
0 = 1.25.

Non-ladder graphs contributions diminish them both but their impact on ω
(−)
0 is greater than

on ω
(+)
0 . Effect of difference in such impacts was first noticed in Ref. [18] in the QED context.

Eq.(12) manifests that Regge asymptotics of are represented by simple and elegant expressions
in contrast to the parent amplitudes/structure functions. However, the asymptotics should be
used within their applicability regions. Keeping a general notation F for F1 and g1 and denoting
F̃ their asymptotics, we introduce their ratio R as follows:

R(x,Q2) = F̃ (x,Q2)/F (x,Q2). (14)

Obviously, the asymptotics reliably represent their parent structure functions when R ≈ 1.
Let us fix Q2 = 10 GeV2 and study the x-dependence of R. Numerical calculations yield that
R > 0.9 at x < xmax, with

xmax = 10−6. (15)

Nevertheless, it is well-known that in practice the Regge asymptotics have been used at
x ≫ xmax. Doing so leads to artificial increase of the intercepts. Indeed, let us assume that
the model Pomeron x−a is used at x = x1 = 10−4. It is supposed to represent F and therefore

xa1 ≈ F . On the other hand, Eq. (15) states (xmax)
ω
(+)
0 . Equating these expressions, we arrive

at

xa1 ≈ (xmax)
ω
(+)
0 , (16)

which leads to

a ≈ 3

2
ω
(+)
0 ≈ 1.6, (17)

which means that the model Pomeron is hard. Applying the same reasoning to the spin-

dependent Reggeon in Eq. (12), with the intercept ω
(−)
0 < 1, makes easy to arrive at a

Reggeon with the ”intercept”> 1 and obtain thereby a fictitious ”spin-dependent Pomeron”.
Therefore, using the asymptotics outside their applicability region inevitably leads to introducing
Pomeron(s), often hard ones, for both unpolarized and spin-dependent DIS, though without
theoretical grounds.

4. Conclusion
In the present talk we have demonstrated how to calculate the structure functions F1 and g1 in
DLA and how to calculate their small-x asymptotics. It turned out that the both asymptotics
are of the Regge form but their intercepts are different. They coincide when only the ladder
Feynman graphs are accounted for but impact of double logarithms from non-ladder graphs

brings different contributions to these intercepts. As a result, the intercept ω
(−)
0 of the g1

asymptotics in Eq. (12) is less than unity while the intercept ω
(+)
0 of F1-asymptotics is a bit

1 the terms ”ladder” and ”non-ladder” contributions are gauge-dependent. We use them in regard of the Feynman
gauge.



XVIII Workshop on High Energy Spin Physics "DSPIN-2019"

Journal of Physics: Conference Series 1435 (2020) 012007

IOP Publishing

doi:10.1088/1742-6596/1435/1/012007

5

greater than unity and therefore this Reggeon is a new contribution to Pomeron although it has
nothing in common to the BFKL Pomeron.

We also fixed in Eq. (15) the maximal value of x where the small-x asymptotics of g1
and F1 can be used instead of the parent structure functions. It drives us to conclude that
widespread substitution of scattering amplitudes or structure functions by their small-x/high-
energy asymptotics at experimentally available energies is groundless.
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