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Abstract. The effective transport level is defined from the Monte-Carlo modelling in 

energetically and spatially disordered system, and the temperature dependence of the low-

concentration and low-field mobility is calculated. The spatial disorder leads to the slight 

decreasing of the coefficient C in the temperature dependence, the same as decreasing of 

localization. 

1.  Introduction 

Organic semiconductors, the conjugated polymers predominantly, are considered as perspective 

materials for spintronics [1]. Charge transport, characterized by the mobility of charge carriers 

(electrons and holes), is one of the key physical processes in organic spintronic devices, and also in 

organic light-emitting diodes [2], photovoltaic devices, field-effect transistors, etc. Transport of charge 

carriers and excitations in disordered organics occurs by means of uncorrelated phonon-assisted 

tunneling jumps of a carrier in the manifold of the localized states – the hopping sites (the hopping 

transport). It is the concept of the Gaussian Disorder Model (GDM) [3]. One has to note that the basic 

results of this model were obtained originally from the Monte-Carlo (MC) simulations [3]. However, 

one can obtain these results by the analytic methods [4], like transport level concept (TLC) [5-10], 

percolation theory [4,6,11], the average hopping parameter [12], etc. These methods are very suitable 

for the analysis of the mobility dependence on numerous parameters, namely the temperature, electric 

field strength, concentration of charge carriers and hopping sites. The energetic disorder, caused by the 

spatial disorder in the molecular structure of a given material, is the principal factor for the 

temperature dependence of the mobility [3]. Due to this reason, the Monte-Carlo (MC) modeling and 

other numerical methods often employ ordered structures of the hopping sites (for example, the simple 

cubic lattice) [9,11]. However, it is shown by MC modeling that the spatial disorder itself influences 

strongly the field dependence of mobility [3, 4]. In this work, we study the effect of a spatial disorder 

on the temperature dependence of mobility. We apply the modified method of the work [9] in order to 

find the transport level by MC modeling, and find the temperature dependence of mobility by the use 

of the transport level concept [8,9], comparing  the cases of a pure energetic disorder (E-disorder) and 

the combined energetic and spatial disorder (E-r disorder). 

2.  The method of simulations 

We use a MC simulation model similar to works [9,13]. The model is based on the well-known 

Gaussian disorder model [3]. Energies of the hopping sites are distributed as a Gaussian function with 
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the variance σ. The Miller-Abrahams (MA) model is used to describe the hopping rates     from a state 

i to the state j: 

         (     (
     |    |

   
))       (1) 

where r is the distance between the states i and j, γ is the inverse localization radius of the wave 

function, ѵ0 is the frequency factor, T is the absolute temperature, k is the Boltzmann’s constant, 

          . 

The escape of a carrier from a rather deep initial state is a multi-step process, because the first jump 

most probably will be followed by return to the initial state, hence one has to model the random walk 

of a carrier in vicinity of the initial state [9] (the case of a rather small electric field is considered). The 

condition of an electron’s escape from the initial state of a given energy E is the escape from the 

spherical volume of a certain radius around this state. This radius is set so that the mean number of 

states of the energy deeper than E inside this volume is less than unity [9]. The escape time is the time 

until the last jump from the initial state, after which a carrier does not return to this state. 

a) 

 

b) 

 

Figure 1. Visualization of the material structure: a) the hopping centers form the cubic lattice and 

b) randomly distributed in space (the minimal distance is d = 0.15 nm). The lattice constant is 1 nm. 

 

Two models of the geometric distribution of localized states are considered. In the first model, 

there is no spatial disorder, the same as in the ref. [9] (Fig. 1a), i.e. the hopping centers are located at 

the nodes of the simple cubic lattice with the lattice constant a (1 nm in this work). Spatial disorder is 

present in the second model (Fig. 1b), so that localized states are randomly distributed in space. The 

mean concentration of these states is the same as in the case of an ordered lattice. The parameter of 

this model is the minimal inter-site distance d (0.15nm and 0.03nm in this work). 

3.  Results and discussion 

Energy dependence of the escape time obeys the exponential law,        
     ((    )   ⁄ ) both 

for the case of E- and E-r disorder, see the figure 2,  0 0 2exp a     , hence one can define the 

effective transport level    from the condition        
   , see the figure 2b. Anyway, the spatial 

disorder accelerates the charge escape from a deep state, this effect is more pronounced for the case of 

the smaller localization parameter 2ɣa, and for the smaller energy disorder parameter    ⁄ . Variation 

of the minimal hopping distance d, gives negligible effect on the escape time, see figure 2a. 

Dependencies   (    ⁄ ) are shown in figures 3a and 3b in units of kT and √  , respectively. The 

ratio     ⁄  approaches to zero at vanishing disorder, while the ratio     ⁄  becomes constant, if the 

parameter    ⁄  is rather large. This constant value increases with increasing of the parameter 2ɣa and 

approaches to the value 0.35, which was obtained in the ref. [11] from the percolation theory for the 

case of nearest-neighbor hopping, 2ɣa=20. 
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a) b) 

  
Figure 2. Escape time from the site of the energy E (in units of   

  )) at various parameters of 

energetic and spatial disorder. The values of σ (in units of kT) are shown in the figures. T=290 K, 

2ɣa=10 (a) and 2ɣa=6.4 (b). Arrows mark the energies of the energy distribution of carriers,      ⁄ . 

 

a) b) 

 
 

Figure 3. The effective transport level,   , in units of kT (a) and √   (b). Filled (2ɣa=10) and 

open (2ɣa=6.4) triangles in the fig. (a) show the   from the analytic model of the ref. [9], providing 

the percolation factor B=2,8. 

 

The transport level reduces both due to spatial disorder and due to the reduction of the localization 

parameter, 2ɣa. Comparing the dependencies   (    ⁄ ), obtained from the MC simulation, and from 

the analytic model of the ref. [9], see triangles in the figure 3a, one can conclude that, counter 

intuition, the agreement is better for the case of E-disorder, than for the case of E-r disorder. One has 

to note that the escape time is defined in this work as the median time of the distribution, obtained 

from the set of trials, while it was the average escape time in the ref. [9]. The latter approach leads to 

the overestimation of the tesc due to large contribution of rare events of very numerous round trip 

jumps. The constant value of the percolation factor [9] B=2.8 yields excellent agreement with MC 

data, if 2ɣa=10, while the temperature-dependent factor (   ⁄     ), proposed in the ref. [9], works 

better, if localization parameter decreasing, 2ɣa=6,4. However, the value B=2.8 provide qualitative 

agreement also in the latter case; the agreement gets better for the stronger disorder. 

In order to study the temperature dependence of mobility, we use the founded values of    in the 

equation for the mobility [10] 
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where   2

0c e kT a  , and erfc is the complementary error function. If the energy disorder is 

rather strong, 1.5kT  , eq. (2) yields the ubiquitous [4-11] law 

     2 2

0 0exp 0.5 expCkT E kT C kT         ,  (3) 

where    is the high-temperature limit of mobility. We found the coefficient C from eqs (2) and (3) 

at various values of    ⁄ , giving the small variation to the temperature T=290 K and assuming Ec to 

be constant. We obtain for the case 2ɣa=10: C=0.44 (0.43), 0.44 (0.41), 0.39 (0.29) at    ⁄   , 2.8, 

1.6, respectively (results for E-r disorder are in the brackets); 2ɣa=6.4: C=0.42 (0.41), 0.41 (0.38), 

0.36 (0.27), respectively. Anyway, C≈ const, if    ⁄     , hence the law (3) is fulfilled, while 

deviations occurs at    ⁄    . These low-disorder deviations seem to be more pronounced for the 

case of E-r disorder. The value C=0.44 was obtained previously for the case of 2ɣa=10 by various 

methods [3,4], and this value is often considered as universal. However, various analytic methods [4-

6,12,13] yield the slight decreasing of C along with 2ɣa, in qualitative agreement with our results. The 

same effect results from introducing the spatial disorder to the system. It is not surprising, because 

both the decreasing of 2ɣa and introducing the spatial disorder leads to the prevailing of variable-range 

hopping relative to the nearest-neighbor hopping. Although the effect of E-r disorder seems to be 

negligible, if the energy disorder is rather strong, the mean values of C within an interval of moderate 

disorder can decrease by several hundredths, i.e. observably. 

4.  Conclusions 

Monte-Carlo modeling of the electron’s escape from rather deep states in the manifold of energetically 

and spatially disordered hopping sites confirm the applicability of the effective transport level concept, 

as it was done previously for the case of a pure energetic disorder [9]. Calculation of the temperature 

dependence of the low-concentration and low-field mobility show, that the effect of spatial disorder 

qualitatively is the same, as the effect of reduction of localization parameter, i.e. the slight decreasing 

of the coefficient C in the dependence of ln( ) vs (   ⁄ ) . 
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