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Abstract. We determine the polarized Bjorken sum rule Γp−n
1

in two different ways:
phenomenologically, by means of integration of the spin structure function g

p−n
1

within the
truncated moment approach and theoretically, with use of the renormalization group for the
optimization of the perturbation series. Presented approaches are universal and can be applied
to any of the DIS sum rules.

1. Introduction

Understanding the behavior of αs with the scale of the virtual momenta Q2 allows us to describe
hadronic interactions at both long and short distances. The short-distance domain, at high
Q2, involves perturbative methods of quantum chromodynamics (pQCD), which have shown
tremendous progress over past 40 years after the discovery of asymptotic freedom [1,2]. In order
to optimize the perturbative series in αs of a physical observable, various methods can be used.
Here we present one of them applied to the coefficient function CBjp(αs) for Bjorken sum rule
(BSR) predictions [3]. We compare the obtained results with the experimental measurements
at COMPASS and Jefferson Lab (JLab) and also with our predictions based on the truncated
Bjorken sum rule (tBSR) approach [4–6].

2. Optimization for coefficient function CBjp(as)
In perturbative QCD (pQCD), the hadronic observables, like deep inelastic lepton-hadron
scattering (DIS) sum rules, are expanded into the power series in the strong coupling αs. One of
the DIS sum rules is BSR, Γp−n

1 (Q2), [7,8], providing fundamental spin predictions of the nucleon.
The radiative corrections to BSR in the strong coupling constant αs of order O(αn

s ), n = 1, .., 4
were obtained in [9–12], respectively. In the limit Q2 → ∞, the BSR relates the difference
between the first moments of the proton, gp1 , and the neutron, gn1 , spin structure functions to

the nucleon axial charge, gA, Γ
p−n
1 = |gA|/6. Away from the large Q2 limit, the QCD analysis of

the BSR involves both the perturbative leading-twist (LT) and the nonperturbative higher-twist
(HT) corrections:

Γp−n
1 (Q2) =

∫ 1

0

(

gp1(x;Q
2)− gn1 (x;Q

2)
)

dx =

∣

∣

∣

∣

gA
6

∣

∣

∣

∣

CBjp(as) +

∞
∑

i=2

µp−n
2i

Q2i−2
, (1)
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where CBjp(as) is the LT nonsinglet coefficient function (c.f.) including radiative corrections.
The perturbation expansion for the c.f. CBjp(as) reads

CBjp

(

Q2

µ2
, as(µ

2)

)

= 1 + c1
(

as(µ
2) + c2 a2s(µ

2) + c3 a3s(µ
2) + c4 a4s(µ

2) + . . .
)

, (2a)

where the coefficients ci = ci(Q
2/µ2) are calculated in the MS scheme and are normalized by

the first coefficient c1 = −3CF = −4; the running QCD coupling as is as(µ
2) = αs(µ

2)/(4π).
For the default condition µ2 = Q2 and at the number of active quarks nf = 4, we have

CBjp(1, as(µ
2)) = 1− 4

(

as(µ
2) + 13 a2s(µ

2) + 221.6 a3s(µ
2) + 6553.7 a4s(µ

2) + . . .
)

. (2b)

In order to optimize the perturbative series in αs of a physical observable, various methods
can be used [13–16]. Here we present another method of optimization [3]. We perform an

optimization of the partial sum in Eq. (2a) by choosing an appropriate new normalization scale
µ → µ′ and following the renormalization group transform. The value of the partial sum for the
series in Eq. (2) as well as the values of its separate terms start to change at the variation of
the renormalization scale µ2 around the default scale Q2. Our goal is to make smaller the total
amount of radiative corrections in Eq. (2a) keeping simultaneously some natural hierarchy of
the coefficients ci for appropriate convergence, using for this purpose the variation of a scale µ.

We consider the transformation of the coefficients ci of the renormalization group (RG)
invariant (RGI) quantity CBjp(as) under the change of the normalization scale µ → µ′.
Reexpanding the running coupling as(∆, a′s) in terms of ∆ = t − t′ = ln

(

µ2/µ′2
)

and the
coupling a′s, we obtain

as = as(∆, a′s) = exp [−∆β(ās)∂ās ] ās

∣

∣

∣

ās=a′s
= a′s − β(a′s)

∆

1!
+ β(a′s)∂a′sβ(a

′

s)
∆2

2!
+ . . . . (3)

The shift ∆ of the logarithmic scale in Eq. (3) can be expanded in its turn in the perturbation
series in powers of the rescaled charge a′sβ0 [14]:

t′ ≡ t−∆,

∆ ≡ ∆(a′s) = ∆0 + a′sβ0 ∆1 + (a′sβ0)
2 ∆2 + . . . , (4)

where the argument of the new coupling a′s depends on ∆, i.e. , a′s = as (t−∆(a′s)). Reexpansion
as in terms of a′s and ∆i leads to rearrangement of the perturbation series for c.f. CBjp(as),
namely

CBjp(as) =
∑

i>0

aisci →
∑

i>0

(a′s)
ic′i = 1 +

∑

i,j>1

(a′s)
iBijcj , (5)

where Bij is a triangular matrix presented in Table I of [3]. In our approach we fit the expansion
parameters {∆0,∆1,∆2, . . .} ≡ {∆} numerically following natural conditions for the PT series
optimization and ignoring the intrinsic structure of cn. Based on these conditions, we find the
admissible domains for the corresponding new normalization scales µ′2 for the QCD corrections of
the order O(α4

s). For these domains we find numerically the minimum of the radiative corrections
to CBjp(αs) based on the 4-loop run of αs(µ

2),

CBjp(t
′, a′s) = 1 + c1fRad(t; {∆}) , (6a)

fRad(t; {∆}) = a′s
(

1 + a′sc
′

2 + (a′s)
2c′3 + (a′s)

3c′4
)

. (6b)

This leads to the optimum values of the theoretical predictions for BSR.
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We have checked that 3D optimization {∆0,∆1,∆2} has no substantial advantages over the
corresponding 2D results, {∆0,∆1}, [3]. Below, we briefly present our 2D analysis.

In order to satisfy the reliability requirements for the PT expansion in Eqs. (4) and (5), we
demand natural inequalities which for two-dimensional parametrization obtain the form

|∆0| > |A′∆1| , (7a)

1 >

∣

∣

∣

∣

A′
c′2
β0

∣

∣

∣

∣

>

∣

∣

∣

∣

A′2 c
′

3

β2
0

∣

∣

∣

∣

, (7b)

t > tµ0
+∆0 +A′∆1 , (7c)

where A′ ≡ β0a
′

s and µ2
0 ≃ 1 GeV2 that corresponds to tµ0

= ln
(

µ2
0/Λ

2
qcd

)

≃ 2.3 at

Λqcd = Λ
(nf=4)

(4) = 0.318 GeV. Now, we scan t in the practically interesting interval 2.3 < t 6 8

(1 < µ2 6 301 GeV2) and we localize at every t the region of the parameters {∆0,∆1}, where
the constraint conditions, Eqs. (7), are fulfilled simultaneously.

The corresponding admissible domains calculated numerically for t = 3, 4, . . . , 8 or,

respectively, for µ2 = 2.0, 5.5, 15.0, 40.8, 111, 301 GeV2 at Λ
(nf=4)

(4loop) = 0.318 GeV together with

the global and local minima of the radiative corrections are shown in Fig. 1.
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Figure 1. 2D domains for admissible parameters {∆0,∆1} at different t, t = 3 (dark), . . . , t = 8 (light). The
black triangle on the right half plane corresponds to the conditions c

′

2 = c
′

3 = 0 [15]. Blue points (on the left)
and red points (on the right) are the bare (global) and the constrained (local, at the condition ∆0 > 0) minima
of the radiative corrections, respectively.

3. Comparison with the experimental measurements and TMM approach for BSR

3.1. TMM approach

Experimental verification of the DIS sum rules always encounters the difficulty that in any
realistic experiment one cannot reach arbitrarily small values of the Bjorken x, x > xmin The
method of truncated Mellin moments (TMM) operating in the range (xmin, xmax) overcomes
this problem [17–19].

The truncated BSR (tBSR) based on the TMM approach was elaborated in [4] providing not
only a natural framework of DIS analysis in the restricted kinematic region of x > xmin but
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also allowing an effective study of the sum rules in a small x limit. We can estimate the value
of Γp−n

1 from the smooth extrapolation of the truncated moments Γ1;ω(x0) in x0 → 0, where

Γ1;ω(x0) =

∫ 1

x0

gp−n
1;ω (x) dx, (8)

transformed gp−n
1 : gp−n

1;ω (x) ≡
(

ω ∗ gp−n
1

)

(x) ≡

∫ 1

x
ω (x/z) gp−n

1 (z,Q2)
dz

z
, (9)

and ω is the normalized weight with the fitted parameters z1, z2, A,

ω(z) = −Aδ(z − z1) + (1 +A) δ(z − z2). (10)

Here 0 < x0 < z1 < z2. It is convenient to rewrite the approach in terms of the experimental
parameters xmin and r, where xmin = x0/z2 denotes the smallest x available in the experiment
and r = z1/z2, xmin < r < 1 is the ratio of two experimental points from the set 0 < xmin ≡
x1 < x2 < · · · < xmax < 1. The idea of the tBSR leads to a “shuffle” of the initial structure
function gp−n

1 in x variable and the truncated BSR Γ1;ω,

Γ1;ω(xmin, r) =

∫ 1

xmin

gp−n
1 (x) dx +A

∫ xmin/r

xmin

gp−n
1 (x) dx > Γ1(xmin) =

∫ 1

xmin

gp−n
1 (x) dx , (11)

saturates the limit Γp−n
1 ≡ Γ1(0) more quickly than the ordinary Γ1(xmin).

In other words, the use of the tBSR “mimics” the extension to lower values of x in the
experimental kinematic regime. The BSR limit Γ1(0) can be determined very effectively with
the use of the first order of Taylor expansion independently of the small x behavior of gp−n

1 [4].
To obtain the optimized phenomenological result for BSR, we use the tBSR approach which

incorporates experimental uncertainties on the spin function gp−n
1 [5, 6].

3.2. Optimized BSR vs COMPASS data

The tBSR approach gives for the COMPASS data [20–22]

Γexp-opt
1(c−ss) = 0.191 ± 0.01 , (12)

which is in good agreement with the most recent COMPASS result at Q2 = 3 GeV2 [22]:

Γexp
1(c−ss) = 0.192 ± 0.007stat ± 0.015 syst . (13)

The optimized value of CBjp, Eq. (6), at Q
2 = 3 GeV2 is

{∆0 = −0.545,∆1 = −3.13,∆2 = 0}

C∆
opt(a

′

s) ≡ CBjp

(

t′, a′s
)

= 1− 4 (0.0209 + 0.0077 + 0.0055 + 0.0039 + . . .)

= 1− 4( 0.0380 ) = 1− 0.152 , (14)

that is visibly larger than the nonoptimized result

CBjp

(

1, as(Q
2)
)

= 1− 4 (0.0268 + 0.0093 + 0.0043 + 0.0034 + . . .)

= 1− 4( 0.0438 ) = 1− 0.175 . (15)
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These values lead to the following estimates for the leading twist-2 part of Γth
1 in Eq. (1):

Γth-non-opt
1,tw2 (Q2) =

∣

∣

∣

∣

gA
6

∣

∣

∣

∣

C-SS

CBjp

(

1, as(Q
2)
)

≈ 1.29/6 · 0.825 = 0.177 ± 0.003 , (16a)

Γth-opt
1,tw2 (Q

2) =

∣

∣

∣

∣

gA
6

∣

∣

∣

∣

C-SS

C∆
opt(a

′

s) ≈ 1.29/6 · 0.848 = 0.182 ± 0.003 , (16b)

where |gA|C-SS = 1.29± 0.05stat ± 0.1syst.
It is seen from the comparison of the nonoptimized result, Eq. (16a), the optimized one,

Eq. (16b); and then the prediction of the tBSR approach, Eq. (12), with the experimental result,
Eq. (13), that the optimization reduces the differences between theoretical and experimental
(exp, exp-opt) estimations. After taking into account the first HT term µp−n

4 , which is negative,
the difference between our theoretical prediction and the COMPASS result increases (see [3] for
details on HT corrections).

3.3. Optimized BSR vs JLab data

To compare our analysis with the recent high precision determination of BSR at JLab [23], we
choose JLab EG1-DVCS data covering the range 1.0 ≤ Q2 ≤ 4.8GeV2 where the perturbative
methods are justified. In Fig. 2 we present our results.
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Figure 2. Left: Comparison of the optimized (black solid curve) and nonoptimized (red solid lower curve)
predictions on BSR with the experimental EG1-DVCS data. The impact of the twist-4 correction is also shown
(dashed). For better visibility we show the error band only for the optimized plots. Right: the new scale µ

′2 as
a function of the initial scale µ

2 for the case of the bare minima and for chosen JLab kinematics.

We use twist-2 optimized values, Eqs. (1) and (6), calculated for different experimental
momentum Q2 > 1GeV2 together with the standard ones, Eqs. (1) and (2b). The optimized
results for BSR in the order O(α4

s) are systematically higher than the standard ones and
the difference varies between 3.0% at Q2 = 2GeV2, 2.2% at Q2 = 5GeV2, and 1.6% at
Q2 = 10GeV2. Figure 2 shows that the pure LT contribution to BSR lies significantly above
the experimental data for both kinds of theoretical results, motivating the necessity of HT
corrections. By fitting, we get the value of twist-4 µp−n

4 /M2 = −0.034 ± 0.007 for optimized
corrections against −0.026 ± 0.007 for the standard one, i.e. perturbative optimization effect
turned into their difference (M - nucleon mass). The new value µp−n

4(opt)/M
2 = −0.034 ± 0.007

is compatible with the experimental value provided by JLab EG1-DVCS, µp−n
4(JLab)/M

2 =

−0.021 ± 0.016, and also with other theoretical estimations, µp−n
4(theor)/M

2 ≈ −0.05 ± 0.02, [24].

It is also seen that the optimized approach to the value LT+HT describes well the Q2 evolution
of BSR even down to small Q2 values.
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4. Conclusions

We have shown how to perform optimization of the partial sums of the QCD perturbation series
for the coefficient function CBjp(Q

2/µ2, αs(µ
2)) of the leading twist using of the RG approach.

This method is universal and applicable for the analysis of any renormalization group invariant
quantities.

The optimized results for BSR in order of O(α4
s) are systematically higher than the standard

ones and the difference varies between 3.0% at Q2 = 2GeV2, 2.2% at Q2 = 5GeV2, and 1.6%
at Q2 = 10GeV2. We compared these optimized results with the experimental measurements of
COMPASS and JLab. For COMPASS kinematics we also used the optimized phenomenological
result for BSR based on the tBSR approach which incorporates experimental uncertainties on the
spin function gp−n

1 . We found that the optimization reduces the differences between theoretical

and experimental and tBSR estimations. After taking into account the first HT term µp−n
4 ,

which is negative, the difference between our theoretical prediction and the COMPASS result
increases but we still obtain reasonable agreement within the combined statistical and systematic
uncertainty.

From comparison with the EG1-DVCS precise data for Q2 > 1GeV2 we found that the
optimized approach describes well the Q2 evolution of BSR even down to small Q2 values. In
this case the HT corrections have to be taken into account. We estimated the value of the
twist-4 correction: µp−n

4(opt)/M
2 = −0.034 ± 0.007 which is compatible with the experimental

value provided by EG1-DVCS and also with other theoretical estimations.
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