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Abstract. A theoretical study of the quality and the validity range of different numerical and 

analytical methods of calculating of the frequency shift in measurement using 

microcromechanical sensor is presented. This work considered a calculating method for natural 

frequency in comparison with experimentally measured oscillation frequencies of 

microcromechanical sensor immersed in air and/or viscous medium. The numerical methods 

for solving the equation of resonance oscillation of the console fixed on one side are 

considered for calculating the natural oscillation frequencies of standard AFM cantilevers. 

1. Introduction 

At present micromechanical sensors are commonly used. Their repeatability, resolution and stability 

are remarkable [1]. Micromechanical sensors mostly use the resonance mode of cantilever oscillations 

for higher sensitivity which allows measuring of wide range of physical quantities (pressure, vacuum 

degree, temperature, humidity, acceleration, flux etc), in different environmental conditions. Such 

sensors based on cantilever oscillations could operate both in air and different viscous media (water, 

medium, oil etc.). However, their operation in liquids is hampered by a significant decrease in the 

quality factor of the cantilever oscillations which in turn leads to a significant decrease in the sensor 

sensitivity.The oscillation frequency of the micromechanical consoles depends both on the physical 

parameters of the console and on the media properties. In some cases, by optimisation the physical 

parameters of the console, one could providean operable of the micromechanical sensor in a liquid 

medium. In this paper we consider methods of modelling the resonance oscillations and calculating the 

natural frequencies. The results of calculation we compare with the experimentally measured 

oscillations frequencies of cantilevers immersed in air and a viscous medium. 

2. Resonance frequency in vacuum 

In the general case a cantilever is a rectangular beam fixed on one of the sides to a rigid base. Such an 

oscillator has several resonance modes [2]. The quality factor (amplitude) of oscillations is the 

possibility to detect any of the modes and is determined by the cantilever geometry. There is a number 

of applications where alongside the main mode, for example, the torsion mode increases the sensitivity 

of the sensor [3], however, in practice, most sensors operate using the first oscillation mode. 

Therefore, in this paper, we consider only the first mode of resonant oscillations of cantilever sensors. 

The resonance frequency can be calculated as [4]: 
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where m0 is mass of cantilever, k is elastic coefficient which is associated with the geometrical 

parameters of the cantilever and the Young's modulus, E, as: 
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where L, W, T are the cantilever length, width and thickness, correspondingly. 

In many applications of cantilever sensors, the frequency shift, f, is measured under the influence 

of a change in the cantilever mass, m, related with, e.g., some objects attached to the cantilever 

(absorbed molecules, biological objects, films, etc.) From expression (1) it is easy to obtain that[5]: 
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The application of this analytical expression is very limited, since it involves the uniform 

distribution of the attached mass over the entire surface of the cantilever. In addition, the value of the 

attached mass should be less than the mass of the cantilever.The case when the attached mass is 

concentrated only at the end of the cantilever is taken into account in the following analytical 

expression for calculating the resonant frequency of the cantilever [6]: 
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γ = Δm/m0; ρ – cantilever material density; λ – dimensionless parameter dependent on γ as 

λ(γ)=1.875/(1+4γ). 

Eqs. (1) and (4) allows one to calculate the resonant frequency of a cantilever with a rectangular 

geometry. At the same time most commercially available cantilevers, such as those used in AFMs, 

have a complex geometry different form rectangular. To calculate the resonant frequencies of such 

cantilevers the authors use software package COMSOL Multiphysics 5.3a. Calculation of the natural 

frequencies in the “Eigenfrequency” module is carried out by finite difference method.The calculation 

consists of the following steps: 1) creation of the console geometry; 2) setting the initial conditions; 3) 

construction of a mesh on the cantilever; 4) start the calculation to find a solution. 

The geometry of NSG10 cantilever fabricated by NT-MDT which was additionally corrected in 

accordance with preliminary obtained SEM images of the real cantilever was used as a base 

calculations. Experimentally the frequency of the cantilever vibrations was measured using an 

adaptive holographic interferometer [7] and was amounted to 168.2 kHz which is well corresponded to 

the simulation results. The cantilever performs its vibrational movements which accompanied with the 

loss of vibrational energy. This energy is dissipated in the form of heat on the defects in the cantilever 

structure, flows into the base to which the cantilever is fixed. When the cantilever is placed in a liquid 

the vibrational energy is dissipated into the medium due to the presence of viscous friction. Similar 

energy losses should be taken into account while using the COMSOL Multiphysics module “Viscous 

damping”. However, the “Eigenfrequency” module does not support a calculation of resonant 

frequencies in liquids. To simulate oscillations and calculate the resonant frequencies of the cantilever 

in liquids, we propose the using of “FSI Analysis” module (Fluid    Structure    Interaction) [8]. At the 

same time, this model assumes a strong influence of fluid flows on the deformation of the cantilever, 

but limits the geometry of the cantilevers: the cantilever thickness should be much less than length. 

Thus, resonance frequencies for commercial AFM cantilevers cannot be calculated using the "FSI 

analysis” module. 
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Figure 1. Simulation of the AFM cantilever oscillations in the COMSOL Multiphysics interface: 

(A) – geometry of trapezoid-shaped AFM cantilever; (B) – mesh for calculating the physical model; 

(C) – simulation result of the first cantilever oscillation mode. 

 

3. Resonance frequency in liquid 

The natural oscillations frequencies of cantilever are reduced when cantilever is immersed in a fluid. 

The fluid also affects resonance mode shapes and provides additional vibration damping. In the case of 

immersed cantilevers, an approximate analytical solution is frequently used to estimate the natural 

frequencies based on the fluid properties, cantilever geometry and the structure-only natural 

frequencies. The analytical expression accounts for the “added mass” of the fluid that is displaced by 

the beam as it vibrates [9]. Our calculations of the oscillation frequency using one of these analytical 

solutions are shown below. 

During vibration of a cantilever in a liquid, an external force arises which resists its movement. 

This force is denoted by 𝐹𝑓𝑙𝑢𝑖𝑑and is as follows [9]: 

 1fluid fF g m = − −
, (5) 

where ω=ω(x, t) is the deflection at an arbitrary place x on the axis of the cantilever. g1 is the damping 

coefficient of the fluid, and mf is the mass of the added fluid per unit length of the cantilever. From this 

formula, the resonant frequency fr of a cantilever immersed in a viscous liquid can be expressed [10]: 
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where Qtot(liq) is the general figure of merit of the submerged cantilever, it reflects both the cantilever’s 

own losses and those caused by interaction with the liquid. The frequency f0 can be expressed as 

follows: 

 

2/1
2

0
2

1






















=




i ii

i ii

hW

IE

L
f









. (7) 

Equation (7) is derived from the classical theory of beam bending. The parameters 𝜌𝑖 and ℎ𝑖 are the 

density and thickness of the corresponding layers of the composite cantilever. 𝐼𝑖 represents individual 

moments of inertia of different layers relative to the neutral axis of the beam. 𝐸̂𝑖-elementary Young's 

modulus. Since the quality factor Qtot(liq) of the cantilever immersed in the liquid also shows the 

cantilever’s intrinsic losses due to interaction with the liquid, we can express it as the sum of two main 

components: 

 ( ) int

1 1 1

tot liq fluidQ Q Q
= +

 (8) 

𝑄𝑖𝑛𝑡 is the proper quality factor of the cantilever, 𝑄𝑓𝑙𝑢𝑖𝑑 is the loss caused by the liquid. One can 

neglect the contribution of own losses and replace the overall quality factor in the formula. This 

follows from the fact that losses caused by the liquid dominate the cantilever’s own losses. Then we 

get 𝑄𝑡𝑜𝑡(𝑙𝑖𝑞) ≈ 𝑄𝑓𝑙𝑢𝑖𝑑. Using the results of J.E. Sader [11] 𝑄𝑓𝑙𝑢𝑖𝑑can be written as: 
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Liquid ratios, 𝑔1 and 𝑚𝑓: 

 ( )1 Re Reig = 
, (10) 
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where 𝜂 is the viscosity of the liquid; 𝑅𝑒 is the Reynolds number of the fluid flow around the 

cantilever which is given by 
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𝜌𝑓 - fluid density; 𝛤𝑟 and 𝛤𝑖 are the real and imaginary parts of the "hydrodynamic function": 
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where K0(…) and K1(…) are modified Bessel functions. The Reynolds number is proportional to the 

oscillation frequency, which represents an unknown parameter that will be calculated here. This means 

that we need to perform a self-consistent calculation of fr. The resonant frequency of the cantilever in 
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air is used as the initial value fr for the Eq. (12). Then, the obtained Re value is used to calculate g1 and 

mf. Thus we obtain a new resonant frequency fr of the cantilever in the liquid. Then we find a new 

Reynolds number. This iterative process continues until self-consistency is achieved. 

To facilitate calculations, an algorithm for finding the resonant frequency of a cantilever in a liquid 

was implemented in MATLAB. With its help, the theoretical resonant frequency of the cantilever in 

the following liquids was calculated. For the cantilevers considered in this work, the difference in the 

resonant frequency in air and vacuum differs insignificantly and, as a rule, is less than the error of 

frequency measurement. In most cases few iterations are usually enough for obtaining good accuracy 

of resonance frequency calculation. In our case the change of calculated of resonance frequency 

became less than 0.01 % already after 4 iterations. 

4. Experimental measured resonant frequencies 

For experimental measuring of the resonant frequencies of cantilevers we used an adaptive 

holographic interferometer based on two-wave interaction of waves in a photorefractive crystal [12, 

13]. The cantilever was placed in a flow cell and installed in the reference beam of the interferometer. 

To excite natural oscillations of the cantilever, the Nd:YAG pulsed laser operated at a wavelength of 

532 nm with a pulse duration of 5 ns and a pulse repetition rate of 20 Hz was used. The average laser 

pulse energy (200 μJ) was chosen so that the recorded longitudinal vibrations of the cantilever did not 

exceed a quarter of the wavelength of the laser used in the interferometer (1064 nm). The signal 

demodulated by the interferometer was detected by a photodetector and recorded in digital 

oscilloscope. The obtained signal was processed using FFT conversion to finding the 

eigenfrequencies. Calculated and experimentally measured frequencies of the first resonance mode for 

various cantilevers surrounded by air and water are summarised in the Table 1. 

 

Table 1. Theoretically calculated and experimentally measured frequencies of the first resonance 

mode of various cantilevers placed in water and in air. 

 Cantilever C1 

(lenth:180; width:40; 

thickness:7) 

Cantilever C2 

(lenth:120; width:32; 

thickness:15) 

Cantilever C3 

(lenth:240; width:40; 

thickness:2) 

in air (modelling)  181.5 kHz 290.0 kHz 19.8 kHz 

in air (measured) 178.2 kHz 277.1 kHz 8.2 kHz 

in liquid (modelling) 72.1 kHz 108.3 kHz 7.5 kHz 

in liquid (measured) 69.3 kHz 102.9 kHz 4.8 kHz 

 

Analyzing the obtained data from the Table 1, we can conclude that the methods described above 

for calculating resonant frequencies are in good agreement with experimental results. The frequency 

differences for the C3 cantilever can be explained by the small cantilever thickness, due to which the 

structural defects that inevitably appear during manufacture at the factory have a significant effect on 

the resonant frequency. 
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