
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

XVIII Workshop on High Energy Spin Physics "DSPIN-2019"

Journal of Physics: Conference Series 1435 (2020) 012059

IOP Publishing

doi:10.1088/1742-6596/1435/1/012059

1

Radiative corrections to QCD SR for meson

distribution amplitudes up to O(α2
sβ0)

S V Mikhailov1 and N Volchanskiy1,2

1 Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia
2 Research Institute of Physics, Southern Federal University,
Prospekt Stachki 194, 344090 Rostov-on-Don, Russia

E-mail: mikhs@theor.jinr.ru, nikolay.volchanskiy@gmail.com

Abstract. We obtain QCD radiative corrections to distribution amplitudes of π and ρ mesons
within QCD sum rules. To this end, we calculate correlators of two different composite vertices
at order O(α2

sβ0), where β0 is the first coefficient in the expansion of QCD β-function.

1. Introduction
An important problem in the description of hard processes is to calculate distribution amplitudes
(DA) ϕM (x) of light mesons M = π, ρ, etc. with the help of QCD sum rules (SR). These
distributions of partons by the fraction xp of an hadron momentum p appear naturally as a
consequence of “factorization theorems” for hard exclusive processes [1, 2]. In the factorization
approach, DAs accumulate information about long-distance dynamics of partons in hadrons. For

helicity-zero vector mesons M‖ = ρ‖, ρ
′
‖, . . . and for axial mesons MA = π, a

‖
1, . . ., the twist-2

DAs are defined by projecting currents V (z) = d(z)ẑu(0) and A(z) = d(z)ẑγ5u(0) on a meson
state |M〉:

〈0|d̄(z)ẑ(−iγ5)u(0)|M‖(A)(p)〉
∣∣∣
z2=0

= fM‖(A)
(zp)

∫ 1

0
dx eix(zp) ϕM‖(A)

(x). (1)

The corresponding definition for a helicity-one state, Mλ=±1
⊥ = ρ⊥, b1⊥ . . ., is as follows:

〈0|d̄(z)σµνu(0)|Mλ
⊥(p)〉

∣∣∣
z2=0

= ifTM⊥

(
ε(λ)µ (p)pν − ε(λ)ν (p)pµ

)∫ 1

0
dx eix(zp) ϕM⊥(x). (2)

These DAs and their moments can be extracted from a correlator Π of the currents J(z) =
V (z), A(z), or Tµ(z) = d̄(z)σµαz

αu(0) [3–6]—for example, for the local current Tµ(n)(y) ≡
d̄(y)σµαzα (z∇)n u(y), we have

i

∫
dy eipy〈0|T

{
Tµ+(0) (y)Tµ(n)(0)

}
|0〉 = −2in (zp)n+2 Π(n0)(p

2) . (3)

The key element to calculate the inverse Mellin image of Π(n0), M̂(n→x)Π(n0) = Π(x; p2), at order

O(α2
sβ0) was obtained in [7] and will be considered in the next section. The borelized correlator

B̂(M2)Π(x; p2) directly determines the pQCD content ∆ϕM of the corresponding DA ϕM within
QCD SRs. Further, we discuss the impact and main features of these radiative corrections.
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2. Two-loop correlators with composite vertices
In order to calculate the required contributions of the order O(α2

sβ0), we need to evaluate the
two-loop diagram of kite topology with one of its external vertices being composite:

p p
n

x

=

∫
dDk1 d

Dk2 δ [x− (zk1)/(zp)]

k21k
2
2(k1 − p)2(k2 − p)2 [(k1 − k2)2]n

=
(−)1+nπD

(−p2)n+4−DG(n;x;D), (4)

where z is a lightlike vector and the tick on a line denotes the Dirac δ-function that accompanies
the composite vertex in the integrand. Even more general kite correlator of two composite
vertices (as well as the Mellin moments of it) was considered in [7] with the propagators raised
to arbitrary powers. The α representation of such two-loop correlator can be evaluated directly
as a hypergeometric integral. In the general case, the result of integration is expressed in
terms of a hypergeometric series in two variables—the Kampé de Férriet functions. A chain of
reductions to simpler functions can be found for some special cases. In particular, the correlator
(4) amounts to a generalized hypergeometric function:

G(n;x;D) = −Γ2(−ṅ)Γ(1 + ṅ− λ)Γ(λ)

Γ(n)Γ(1− ṅ)Γ(λ− ṅ)
(xx̄)λ−1

×
{

Γ(n)Γ2(ṅ)Γ3(1− ṅ)Γ(λ− ṅ)

Γ2(λ)Γ(2ṅ)Γ(1− 2ṅ)Γ(−ṅ)
+ Ŝ

[
x−ṅ3F2

(
1, λ, −ṅ

1− ṅ, λ− ṅ

∣∣∣∣x
)]}

, (5)

where λ = D/2− 1, ṅ = n−λ, ŜT (x) = T (x) +T (x̄), and x̄ = 1− x. The integral of G(n;x;D)
over x coincides with the well-known results in [8–10] after some transformations of 3F2(1).
The Laurent expansions of Eq. (5) near even and odd D can be obtained with the help of the
standard algorithms and results (see [11] and references therein).

3. 〈AA〉 and 〈V V 〉 correlators. Distribution amplitudes of π and ρ‖
In what follows, we use the notations as = αs(µ

2)/(4π), β0 = 11
3 CA− 2

3nf for the first coefficient

of β-function, and M2 is a parameter of the Borel transform B̂(M2) applied to correlators Π(p2)
in the framework of QCD SR (e.g., see [12]). To take into account NLO corrections and a part
of N2LO corrections that are proportional to β0, we have to deal with the following diagrams:

i∆ϕ
(1)
M (M2;x) = B̂(M2)




+ + + . . .




i∆ϕ
(2)
M (M2;x) = − 3β0

2nf
B̂(M2)




+ + + . . .




3.1. 〈V (A)V (A)〉 correlator at orders up to O(α2
sβ0)

The contribution of order O(as) was obtained first in [12] and leads to a visible correction that
is especially significant near the endpoints. Here, we recalculate it in arbitrary covariant gauge:

∆ϕ
(0+1)
M‖(A)

(M2;x) = B̂(M2)Π
V (A)
LO+NLO(p2) =

Nc

2π2
xx̄

{
1 + asCF

[
5− π2

3
+ ln2

( x̄
x

)]}
. (6)
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At β0N
2LO, we obtain the following expression involving dependence on LB = ln

(
M2

µ2
e−γE

)
:

∆ϕ
(2)
M‖(A)

(M2;x) =
Nc

4π2
a2sCFβ0Ŝ

{
−xx̄

[
10 Li3(x)− 2 lnxLi2(x) + ln2 x ln x̄− 5

6
ln2
( x̄
x

)

− 1

3
ln3 x+

5π2

18
− 2π2

3
lnx− 7

6

]
− 2x

[
Li2(x)− π2

6
− 3

4
ln2 x+

(
31

12
− LB

)
lnx

]}
, (7)

3.2. Perturbative content of twist-2 DA for π and ρ‖ mesons

Important characteristics of ∆ϕM of DA are the norm 〈x0〉M and inverse moment 〈x−1〉M :

〈xn〉M ≡
∫ 1

0
dxxn∆ϕM (x), 〈x0〉M‖(A)

=
Nc

12π2

[
1 + asCF 3 + a2sβ0CF 3

(
11

2
− 4ζ3 − LB

)]
, (8)

〈x−1〉M‖(A)
=

Nc

4π2

{
1 + asCF 5 + a2sβ0CF

[
7

18
− 5

3
ζ3 +

31

108
π2 − π2

9
LB

]}
. (9)

The 〈x0〉M in (8) coincides with the corresponding part of the Adler D-function, as expected.
The impact of O(a2sβ0) contribution to ∆ϕM looks especially significant for intermediate values
of x, see Fig. 1 (left panel), while in the vicinity of endpoints it is less important, which is
reflected by a minor contribution to 〈x−1〉M‖(A)

in (9).
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Figure 1. Comparison of NLO (——) and β0N
2LO (– – –) contributions to DAs: (left panel) pseudoscalar

or longitudinally polarized vector mesons, Eqs. (6) and (7); (right panel) transversally polarized vector meson,
Eqs. (10) and (11). All curves are for the case of LB = ln(M2/µ2) − γE = 0 and αs(µ2 = 1 GeV2) ≈ 0.494.

4. 〈T T 〉 correlator and perturbative part ∆ϕM⊥ of DA for transversal ρ meson
The NLO contribution was derived first in [3] and recalculated by us together with its non-
logarithmic part (not shown here):

∆ϕ
(0+1)
M⊥

(M2;x) =
Nc

2π2
xx̄

{
1 + asCF

[
6− π2

3
+ ln2

( x̄
x

)
+ ln(xx̄) + 2LB

]}
(10)

The contribution of the NLO corrections is as moderate as in Eq. (6). The β0N
2LO terms read

∆ϕ
(2)
M⊥

(M2;x) =
Nc

12π2
a2sβ0CF Ŝ

{
xx̄

(
π2

6
− L2

B

)
+ x [6 (2− x̄) ln (x) + 19x̄]LB

+ xx̄

[
−30Li3(x) + 6Li2(x) ln(x) + ln3(x) + ln2(x) [2− 3 ln(x̄)] +

(
2π2 + 19

)
ln(x)

− 5 ln(x) ln(x̄)− 5π2

6
− 193

12

]
− x

[
12Li2(x)− 2π2 + 16 ln(x)− 9 ln2(x)

]}
. (11)
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In comparison with the LO and NLO terms, the contribution of ∆ϕ
(2)
M⊥

is mainly of an opposite

sign and comparable in magnitude with the NLO in the middle region of x, see Fig. 1 (right
panel).

〈x0〉M⊥ =
Nc

12π2

[
1 + asCF

(
7

3
+ 2LB

)
+ a2sβ0CF

(
π2

6
− 12ζ3 +

383

36
+ 2LB − L2

B

)]
, (12)

〈x−1〉M⊥ =
Nc

4π2

[
1 + asCF 2 (2 + LB) + a2sβ0CF

(
2ζ3 +

19π2

18
− 493

36
+

25− 2π2

3
LB − L2

B

)]
,

(13)

The O(a2sβ0) contribution to 〈x−1〉M⊥ in (13) is numerically tiny. The norm 〈x0〉M in Eq. (12) is
in agreement with the result in [13] obtained for a correlator of the corresponding local currents
Tµ(0). The magnitude of O(a2sβ0) contribution in the norm (12) is moderate.

5. Conclusions
We briefly analyze the perturbative corrections ∆ϕ

(2)
M to DAs of leading twist for pion and

(longitudinally or transversely) polarized light vector mesons at order O(a2sβ0). To this end, we
calculate vector-vector (axial-axial), 〈V (A) V (A)〉, and tensor-tensor 〈TT 〉 correlators with the
corresponding composite currents V (A) and T up to the order O(a2sβ0). The impact of these

β0N
2LO corrections is moderate, while the sign of the correction in the transverse case ∆ϕ

(2)
M⊥

is opposite to the one of LO and NLO terms.
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