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Abstract. The basic ingredients of baryon polarization emerging in the collisions of hadrons
and heavy ions are compared. The apperance of the pseudovector as the normal to reaction
plane, axial anomaly, as a spin-orbital interaction, and dissipation, as imaginary phase are
discussed. The interplay beyween chenical potential and Regge behaviour and the hadronic
analog of viscosity are outlined. The experimental studies of transition of hadrons to heavy
ions, in particular at NICA (JINR) is discussed.

1. Introduction
The recent experimental discovery of STAR collaboration [1] indicate the presence of hyperon
polarization in heavy-ion collisions. Such a polarization was well studied in hadronic collisions
and it seems quite interesting to compare these effects.

Here we compare the three important ingredients of such polarization: necessity for some
pseudovector (being the normal to the scattering plane in hadronic scattering), interference
with the amplitude containing spin-orbital interaction and imaginary phase.

2. Polarization and pseudovectors
As the spin −1/2 polarization is a pseudovector, it should be directed along some pseudovector
constructed from particles momenta.

In the case of heavy-ion collisions this is represented by the normal to the reaction plane. At
the same time, the component normal to scattering plane was suggested [2] to disappear because
of randomization in the course of formation of strongly interacting matter.

Note also, that other P-odd combinations of momenta may appear, being a sort of
generalization[3] of handedness concept [4] in application to heavy-ion collisions.

Since nuclei have non-zero angular momentum in non-central collisions we can expect to find
some P-odd effects in the final state.

To obtain information about polarization of particles in the initial state based on the
properties of particles in the final the several methods were proposed based on computation
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of vector or triple product of 3-momenta of particles in the final state. These methods are
suitable for processing experimental data.

In the first article [5] a pseudoscalar T was introduced:

T =
1

|~p|
([~p1, ~p2], ~p3),

with |~p1| > |~p2| > |~p3|, where ~p1, ~p2 and ~p3 - 3-momenta of particles in the final state,
~p - momentum of the particle in the initial state. Using T and quantities derived from it
some reactions including electron-positron annihilation to hadrons and nucleon collisions were
considered.

Later, independently, in [4] a new quantity called handedness was defined. It was proposed
to investigate polarization of the initial quark or gluon. Longitudinal handedness is defined as
follows:

H|| =
Nl −Nr

Nl +Nr
,

where Nl and Nr - is the number of left- and right-handed combinations ~k, ~k1, ~k2: Here, ~k -
momentum of the initial particle, ~k1, ~k2 - momenta of particles (pions) in the final state. It was

proposed to sort particles ~k1 and ~k2 according to their charge or magnitudes of momenta.
Based on these articles the following quantity was considered:

η =

∑
(~p3, ~p2, ~p1)∑
|(~p3, ~p2, ~p1)|

,

where (~p3, ~p2, ~p1) - triple product (~p3, [~p2, ~p1]) with all vectors in a triplet in the same octant in
the momentum space, ~p1, ~p2, ~p3 - momenta of pions in the final state. Momenta in each triple
product were sorted:

|p3|2 < |p2|2 < |p1|2.

Hence eight values ηi, i = 0..7, one for each octant, were calculated.
Au+Au collisions were considered with projectile energy of 5GeV per nucleon in the

laboratory frame with impact parameter b = 7fm/c. Heavy-ion collisions were modeled in
Hadron-String Dynamics model [6]. The results indicated the small effects which can be revealed
processing the high statistics data.

The similar method may be applied for two pions in final state and one fixed initial
(longitudinal) momentum, so that only the transverse components of pion momenta will enter.
The first attempts in this direction is briefly described in the presentation and of A. Martynova.

Note also, that inclusion of polarization pseudovector into the set of considered vectors will
lead to the number of local polarizations. This will require the separate investigation.

3. Spin-Orbital Interaction
The appearance of spin-orbital interaction is a necessary ingredient of generation of polarization
in hadronic collisions. For heavy ions, the very large orbital momentum is unlikely to be directly
relevant, as it is a global distributed quantity, while spin-orbital coupling is a local one. This
may lead to relative suppression of large polarization suggested in the pioneering work [7].

Instead, such local counterpart of orbital momentum as vorticity may be important which
may be transformed to spin in various ways.

One of them is performed [8] in the framework of approach exploring local equilibrium
thermodynamics [9] and hydrodynamical calculations of vorticity [10]. There is another
(although related [11]) approach to polarization first proposed in [12] and independently in
[13]. It is based on vortical effect (see e.g. [14]) that being the macroscopic manifestation of
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axial anomaly [15] leads to induced axial current of strange quarks which may be converted to
polarization of Λ-hyperons [12, 13]. There is also the contribution of gravitational anomaly[16],
suppressed due to the collective effects revealed in lattice simulations[17] .

It is interesting that rapid decrease of polarization with energy due to decrease of chemical
potential happens also in Regge theory due to decrease of Regge cuts contributions. This may
be compared with the explanation of anizotropic flows in Regge theory [19]. One may probably
speak here about a sort of duality between dynamical and statistical description of heavy-ion
collisions [20, 21, 22].

The anomalous mechanism and calculations of vorticity in PHSD model [18] are discussed in
detail in the contributions of G. Prokhorov and Aleksei Zinchenko.

4. Imaginary phases and dissipation
The imaginary phases play crucial role in generation of single spin asymmetries, and their sources
in QCD can be different.

QCD factorization allows one to express the cross-sections and polarization observables of
hard processes in terms of convolutions of partonic subprocess and non-perturbative functions,
describing the hadron-parton and hadron-parton transitions. The latter may be separated to two
large classes, appearing in the exclusive and inclusive processes. The first one, containing the
various types of wave functions (light-cone and generalized parton distributions and generalized
distribution amplitudes) will be considered in the next section. The non-perturbative objects,
appearing in the inclusive processes, in turn, belong to three classes.

The most widely known ones are parton distributions, describing the fragmentation of hadrons
to partons and related to the forward matrix elements∑

X

< P |A(0)|X >< X|A(x)|P >=< P |A(0)A(x)|P >

of renormalized non-local light-cone quark and gluon operators. As they do not contain any
variable, providing the cut and corresponding imaginary phase (to put it in the dramatic manner,
the proton is stable), the T-odd distributions functions can not appear in the framework of
the standard factorization scheme. At the same time, they may appear effectively, when the
imaginary phase is provided by the cut from the hard process, but may be formally attributed
to the distribution.

Another well-known object is fragmentation function, describing the fragmentation of partons
to hadrons and constructed from the time-like cutvertices of the similar operators∑

X

< 0|A(0)|P,X >< P,X|A(x)|0 > .

Now, they may contain the cut with respect to the time-like parton momentum squared k2(which
was space-like in the case of distributions), corresponding, at the hadronic level, to the jet mass.
This may give rise to the number of T-odd fragmentation functions, including jet handedness,
Collins function and interference fragmentation function.

The FRACTURE function whose particular example is represented by the diffractive
distribution (DD) is related to the object

< P1|A(0)|P2, X >< P2, X|A(x)|P1 >,

combining the properties of FRAgmantation and struCTURE functions. They describe the
correlated fragmentation of hadrons to partons and vice versa.

They were successfully applied to describe the production of diffractive and leading hadrons
in semi-inclusived Deep Inelastic Scattering and were also generalized to spin-dependent case.
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Such functions can easily get the imaginary phase from the cut produced by the variable
(P1 + k)2. Due to the extra momentum of produced hadron P2, the number of the
possible P-odd combinations increases. Therefore, they may naturally allow for the T-
odd counterparts. The present report briefly describes the calculation of the short-distance
subprocess accompanying the simplest T-odd Diffractive Distribution and the possibilities for
their experimental observation.

The natural counterpart of imaginary phase in heavy-ion collisions is dissipation [23]. We were
utilizing the model of pionic superfluidity induced by a chemical potential µ3 breaking isotopic
invariance, see [24] and references therein. It is not a realistic model for the quark-gluon plasma
but this is a rare example when the effects of confinement and of spontaneous breaking of the
chiral symmetry can be accounted for. We demonstrated that the average density of spins
(polarizations) of baryons matches the density of the chiral vortical current in the medium:

< jz5B >baryons ∼ < µ2ωz > , (1)

where j5B is the baryonic axial current and < jz5B >∼< σz >, where σz is the component of the
spin of baryons in the direction of the axis of the rotation. A crucial role in derivation of (1) is
played by defects, or vortices. Formally, the vortices are infinitely thin. Baryons regularize the
vortices at short distances and this is a source of irreversibility.

In our field theoretic example the rotation is transferred to spin of heavy degrees of freedom
which are not dynamic but are introduced as ultraviolet cutoff in the effective theory of plasma.
The loss of unitarity in field theory due to account of heavy degrees of freedom (represented by
local operators) is a well known way to imitate dissipation in field theory, see, e.g., [25].

5. Viscosity for hadrons [26]
Another interplay of phases in matrix elements and dissipation is provided by the gravitational
form factors [27], related to pressure, which may be also considered in the time-like region. This
opportunity was recently explored in the exclusive production of pion pairs in the collisions if
real and virtual photons to get the relevant information for pion [28].

It will be very interesting to extend this analysis for the production of πη pairs with exotic
quantum numbers JPC = 1−+, being the natural generalization of the production of exotic
hybrid mesons [29].

The relevant matrix element of the quark symmetrized energy-momentum tensor

〈πη(P,∆)|Tανi |0〉µ2 = ηi(µ
2)Pα∆ν (2)

may be considered as a sort of shear viscosity). Indeed, the relative momentum of the pair (being
the counterpart of hybrid meson polarization vector) may be considered after crossing P ↔ ∆
to GPD channel as corresponding to (average) velocity vν ∼ P ν/M while the total momentum
of the pair should correspond to (transverse) derivative in the viscosity tensor.

The viscosity interpretation in the GPD channel itself should naturally correspond to the
appearance of transition GPDs, (naive) T-oddness and imaginary phases. The possible smallness
of relevant matrix element might be related to famous holographic bound for viscosity. Needless
to say, that the total average viscosity of quarks and gluons should be zero, which is a natural
generalization of nullification of exotic hybrid meson coupling [29, 30]

6. Experimental tests of interplay between hadronic and nuclear polarization
The similarity and distinction between hadronic and nuclear polarization may be systematically
explored at NICA Complex at JINR.

The MPD detector is well suited to study the hyperon polarization, including the kinematic
and energy dependence and correlations to flows. The various versions of handedness may be
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studied as well. Its correlations with flows and polarization should reveal the structure of vortical
effects in heavy-ion collisions.

The BM@N detector may allow one to explore the transition from local (normal to
scattering plane) to global (normal to reaction plane) polarization. by studying the reactions
with hadrons, light and heavy nuclei. It may also explore the spin dependence of short range
correlations.

The SPD detector may study the reactions with polarized protons, and, especially
deuterons. The latter option is the unique one. The deuteron tensor polarization may be
studied in various hard reactions including the hadronic P-even single spin asymmetries and
opens, among the other interesting possibilities, the way to study the shear forces [26] providing
yet another link between hadronic and heavy ion physics. The studies of reactions with polarized
deuterons may be also started at MPD.

7. Discussion and Conclusions
The polarization of baryons in hadronic and heavy-ion collisions have both common and distinct
features.

Kinematically, in parity-conserving theory like QCD, some pseudovector is required. While
in inclusive baryon production in hadronic collisions this is a scattering plane, the reaction plane
takes this role for heavy-ion collisions. at the same time, various versions of handedness and
related local polarizations may appear.

Dynamically, the transition of very large orbital momentum to spin should require some
local coupling. This, in turn, requires some local quantity, like vorticity. In thermodynamical
approach, under the assumption of local equilibrium with polarized baryon, this allows to
determine the momentum dependent polarization. This effect is flavour blind, so that the sign
of polarization is universal and dependent only on particle mass. Note also the general problem
of transfer of (conserved) orbital angular momentum to the spin one in the case of symmetric
energy-momentum tensor.

The use of anomalous mechanism, due to the appearance of chiral quarks as polarization
carriers, will lead to the essential flavour dependence of polarization.

The extreme, although difficult for experimental studies, is the case of protons. While in the
thermodynamoc approach their polarization is similar to that of baryons, in the anomalous one
it should be very small due to division of axial charge between their large number.

The decrease of polarization with energy may be dual to the same phenomenon in Regge
theory.

The imaginary phase in hadronic collisions corresponds to dissipation in heavy-ion ones. The
model of pionic superfluidity leads to the natural realization of this property in the cores of
quantized vortices.

Another link between dissipation at the levels of hadronic matrix elements and QCD medium
is provided by the analog of viscosity for hadrons.

Finally, the detailed experimental studies of the polarization on hadronic and heavy-ion
collisions may be achieved at MPD, BM@N and SPD detectors at NICA.
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