
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

XVIII Workshop on High Energy Spin Physics "DSPIN-2019"

Journal of Physics: Conference Series 1435 (2020) 012055

IOP Publishing

doi:10.1088/1742-6596/1435/1/012055

1

Nonperturbative extension of perturbative quantum

chromodynamics and fractal dimension of space as a

confinement phase transition order parameter

Nugzar Makhaldiani
Joint Institute for Nuclear Research
Dubna, Moscow Region, Russia

E-mail: mnv@jinr.ru

Abstract. Infrared extension of perturbative quantum chromodynamics given. Phenomeno-
logical quarkonium potential interpreted as Coulomb potential of point charge with dynamically
changing dimension of space.

It is 65 years since Yang and Mills (1954) performed their pioneering work on gauge theories.
In the standard model of particle physics, the strong force is described by the theory of quantum
chromodynamics (QCD). At ordinary temperatures or densities this force just confines the
quarks into composite particles (hadrons) of size around 10−15 m = 1 femtometer = 1 fm
(corresponding to the QCD energy scale ΛQCD=200 MeV) and its effects are not noticeable at
longer distances. However, when the temperature reaches the QCD energy scale (T of order
1012 kelvins) or the density rises to the point where the average inter-quark separation is less
than 1 fm (quark chemical potential µ around 400 MeV), the hadrons are melted. Such phases
are called quark and gluon matter or Gluquar. The renormdynamic (RD) equations play an
important role in our understanding of Quantum Chromodynamics and the strong interactions.
The expression of the RD β-function can be obtained in the following way,

[ab] = [g2b ] = 2ε = 4−D, ab = µ2εZa,

0 = dab/dt = d(µ2εZa)/dt = µ2ε(εZa+
∂(Za)

∂a

da

dt
)

⇒ da

dt
= β(a, ε) =

−εZa
∂(Za)
∂a

= −εa+ β(a), β(a) = a2
d

da
(Z1) (1)

where Z1 is the residue of the first pole in ε expansion

Z(a, ε) = 1 + Z1ε
−1 + ...+ Znε

−n + ... (2)

RD equation, for the fine structure coupling constant a

ȧ = β1a+ β2a
2 + ... (3)

can be reparametrized,

a(t) = f(A(t)) = A+ f2A
2 + ...+ fnA

n + ... =
∑
n≥1

fnA
n, Ȧ = b1A+ b2A

2 + ... =
∑
n≥1

bnA
n,



XVIII Workshop on High Energy Spin Physics "DSPIN-2019"

Journal of Physics: Conference Series 1435 (2020) 012055

IOP Publishing

doi:10.1088/1742-6596/1435/1/012055

2

ȧ = Ȧf ′(A) = (b1A+ b2A
2 + ...)× (1 + 2f2A+ ...+ nfnA

n−1 + ...)
= β1(A+ f2A

2 + ...+ fnA
n + ...) + β2(A

2 + 2f2A
3 + ...) + ...+ βn(An + nf2A

n+1 + ...) + ...
= β1A+ (β2 + β1f2)A

2 + (β3 + 2β2f2 + β1f3)A
3 + ...+ (βn + (n− 1)βn−1f2 + ...+ β1fn)An + ...

b1 = β1, b2 = β2 + f2β1 − 2f2b1 = β2 − f2β1,
b3 = β3 + 2f2β2 + f3β1 − 2f2b2 − 3f3b1 = β3 + 2(f22 − f3)β1,
b4 = β4 + 3f2β3 + f22β2 + 2f3β2 − 3f4b1 − 3f3b2 − 2f2b3, ...
bn = βn + ...+ β1fn − 2f2bn−1...− nfnb1, ... (4)

So, by reparametrization, beyond the critical dimension (β1 6= 0) we can change any coefficient
but β1. We can fix any higher coefficient with zero value, if we take

f2 =
β2
β1
, f3 =

β3
2β1

+ f22 , ... , fn =
βn + ...

(n− 1)β1
, ... (5)

In this case we have simple scale dynamics,

A = (µ/µ0)
−2εA0 = e−2ετA0, g = f(A(τ)). (6)

In the critical dimension of space-time, β1 = 0, and we can change by reparametrization any
coefficient but β2 and β3. In the critical dimenshion (β1 = 0), we can define the minimal form
of the RD equation

Ȧ = β2A
2 + β3A

3, (7)

than, as in the noncritical case, explicit solution for a will be given by reparametrization
representation (4). If we know somehow the coefficients βn, e.g. for first several exact and
for others asymptotic values [1], than we can construct reparametrization function (4) and find
the dynamics of the running coupling constant. In field theory models usually consider small
values of ε. In statphysical models usually D = 3, 2, 1, so 2ε = 1, 2, 3. Perturbative series of
renormalization constants have good analytic sense when 1/2ε = p is prime number.

Let us solve the minimal RD equation

dA

β2A3(1/A+ β3/β2)
= dt⇒ d(1/A)1/A

1/A+ β3/β2
= −β2dt ⇓

x− a ln(x+ a) = −β2t+ c, x = 1/A, a = β3/β2 (8)

Nonperturbative extension means the following change

t = ln
p2

Λ2
→ tm = ln

p2 +m2

Λ2
,
dtm
dt

=
p2

p2 +m2
(9)

Let us fined corresponding RD motion equation

ẋ(1− a

x+ a
) = −β2

p2

p2 +m2
⇓

Ȧ = (β2A
2 + β3A

3)
p2

p2 +m2
= { βpert, p2 � m2,

0, p2 � m2 ,

p2

p2 +m2
= 1− m2

Λ2
e(1/A−c)/β2(1/A+ β3/β2)

−β3/β2
2 (10)

In the one loop approximation, β3 = 0,

Ȧ = β2A
2(1− m2

Λ2
e(1/A−c)/β2) (11)
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Quarkonium spectroscopy indicates that between valence quarks inside hadrons, the potential
on small scales has D = 3 Coulomb form and at hadronic scales has D = 1 Coulomb one. We
may add this two types of potentials and form an effective potential in which at small scales
dominates D = 3 component and at hadronic scale - D = 1, the Coulomb-plus-linear potential
(the ”Cornell potential”[2]),

V (r) = −k
r

+
r

a2
= µ(x− k

x
), µ = 1/a = 0.427GeV, x = µr, (12)

where k = 4
3αs = 0.52 = x20, x0 = 0.72 and a = 2.34GeV −1 were chosen to fit the quarkonium

spectra. [2] From our point of view it is more natural to consider the dimension D(r) of space
of hadronic matter which is dynamically changing with r and corresponding Coulomb potential
VD(r) ∼ r2−D(r), where effective dimension of space D(r) changes from 3 at small r to 1 at
hadronic scales ∼ 1fm. We constructed such a potential and effective dimension as functions of
r, [3]. We have the following expression for the solution of the Poisson equation with point-like
source in D-dimensional space [4]

∆ϕ = eδD(x), ϕ(D, r) = − Γ(D/2)

2(D − 2)πD/2
er2−D, V (D, r) = eϕ(D, r) = −α(D)r2−D,

α(D) =
e2Γ(D/2)

2(D − 2)πD/2
, V (3, r) = − e2

4πr
, V (4, r) = − e2

4π2r2
. (13)

As defined so far, the coupling constant has a mass dimension de = (D − 3)/2 = −ε. To work
with a dimensionless coupling constant e, we introduce the mass scale µ. Then, the potential
energy takes the following form

V (D, r) = − Γ(D/2)

2(D − 2)πD/2
e2µ2εr2−D = −α(D)(µr)2ε/r = −α(D)(x)2−Dµ. (14)

Cornell potential contains QCD dynamics. We may compare it with Coulomb potential with
dynamical dimension. Let us define dimension of space from the equality of (12) and (14)

k − x2

x3−D
= α(D) =

e2Γ(D/2)

2(D − 2)πD/2
= αs

2Γ(D/2)

(D − 2)π(D−2)/2
, αs =

e2

4π
(15)

For any values of x and D

αs(D,x) =
π(D−2)/2

2Γ(D/2)
(D − 2)α, α =

k − x2

x3−D
= (k − x2)xD−3 (16)

Matrix calculus in QFT perturbation theory [5], can be interpreted as operator Fractal
calculus. Indeed, we have

G(x, y) =< x|p̂−2α|y >=
1

Γ(α)

∫ ∞
0

dttα−1 < x|e−tp̂2 |y >

=
1

Γ(α)

∫ ∞
0

dttα−1
∫
dDp < x|p >< p|y > exp(−tp2)

=
Γ(D2 − α)

Γ(α)22απD/2
(x− y)−2(D/2−α) (17)

In coordinate representation, p̂n = −i∂/∂xn, we have D-dimensional fractal calculus. As an
example, consider Coulomb potential, the solution of the equation for potential of point source

∆φ = gδD(x), ∆ = −p̂2, ϕ(x) = −g < 0| 1

p̂2
|x >= −g

Γ(D2 − 1)

4πD/2
1

|x|D−2
(18)
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Let us consider simplest Hamiltonian dynamics

ẋ1 = {H,x1}, ẋ2 = {H,x2}, (19)

with dynamical variables (x1, x2), Hamiltonian H

H =
p2

2m
+ V (x) =

x21
2m

+ V (x2) (20)

and Poisson structure

{A,B} = fnm
∂A

∂xn

∂B

∂xm
= f12

(
∂A

∂x1

∂B

∂x2
− ∂A

∂x2

∂B

∂x1

)
. (21)

Instead of solving the system of motion equations, having one integral of motion - Hamiltonian,
we may find x1 from the Hamiltonian, insert it in the motion equation for x2 and solve it.
The variables x and D are nonnegative, so it is natural to introduce, free from this restriction,
variables: t = lnx, x1 = αs and x2 = lnD. Then from (15) we obtain the following Hamiltonian
and motion equations

H(x1, x2, t) = x1 − V (x2, t)⇒ x1 = V (x2, t), ẋ1 = f12
∂V

∂x2
, ẋ2 = −f12,

V (x2, t) =
π(D−2)/2

2Γ(D/2)
(D − 2)

k − x2

x3−D

x1 = V (x2, t) = (k − x2)xD−3 = (k − x2)xexp(x2)−3 = (k − e2t)et(e−t−3),

ẋ1 =
∂V

∂x2
= (k − x2)xex2−3 lnxex2 = (k − e2t)tet(e−t−3)e−t, f12 = 1,

α̇ = β = te−tα = β1α, β1 = ln
αe3t

k − e2t
, ẋ2 = −1⇒ x2 = −t, D = 1/x

αs(D,x) =
π(D−2)/2

2Γ(D/2)
(D − 2)

k − x2

x3−D
=
π(1/x−2)/2

2Γ(1/2x)
(1/x− 2)(

√
k − x)

√
k + x

x3−1/x
(22)

Note that, x > 0 and αs ≥ 0 when x < min(1/2,
√
k) = 1/2 or x > max(1/2,

√
k) =

√
k = 0.72

and for 0.5 < x < 0.72, αs < 0. We may exclude the negative values by different µ : x1 = rµ1 =
1/2, x2 = rµ2 = 0.72, µ2/µ1 = 1.44

We may close the negative interval also taking
√
k = 1/2⇒ αs = 3/16 = 0.1875

αs(D,x) =
π(D−2)/2

2Γ(D/2)
(D − 2)

k − x2

x3−D
=
π1/2x−1

Γ(1/2x)
(x− 1/2)2

x+ 1/2

x4−1/x
→ 1

2πx2
, x� 1 (23)
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