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Abstract. The magnetic dipole polarizabilities and hyperpolarizabilities of the vector ρ0 and
ρ
± have been calculated. The new characteristic of the QCD vaccum in the strong magnetic

field called tensor polarizability has been introduced, which is related to the tensor polarization.
The contribution of the dipole magnetic polarizabilities to the tensor polarization of the vector
mesons in the external abelian magnetic field has been explored.

1. Introduction

The presence of an abelian magnetic field of a hadron scale creates a kind of anisotropy in
the vacuum of quantum chromodynamics. By a strong magnetic field we mean fields that
can affect the quark currents inside hadrons.This leads to the appearance of the higher order
magnetic polarizabilities and hyperpolarizabilities and to a deviation of the energy square from
the linear field dependence corresponding to Landau levels. In our previous simulations in
the lattice SU(3) gauge theory without dynamical quarks we have observed this non-linear
behavior at eB ∼ 0.2 − 0.4 GeV2 [1]. The magnetic field effect on the hadronic medium was
explored in theoretical models [2, 3, 4, 5, 6, 7, 8] and in lattice quantum chromodynamics
[9, 10, 11, 12, 13, 14, 15].

The observed response of a strongly interacting medium to a strong magnetic field arises as
a result of the interaction of QED and QCD. Spin interactions play a very important role, since
the energy of vector mesons strongly depends on the relative orientation of the spins of the
quarks that form the meson and determine the values of polarizability and hyperpolarizability.
Therefore, the energy of a vector meson in a strong magnetic field depends on its polarization.
The vector ρ mesons decay into virtual photons produce the dilepton asymmetries [16] relative to
the direction of emission of the virtual photon. The dilepton asymmetries can allow to investigate
the various channels to which particles decay. Also these physical quantities allow to explore
the physical properties and evolution of a quark-gluon plasma [17]. The tensor polarizabilities
and polarization make possible to appreciate the values of the dilepton asymmetries, so below
we can explore the contribution of the dipole magnetic polarizabilities to the tensor polarization
of the vector mesons.
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2. Magnetic polarizabilities of the ρ± mesons

According to the conservation of parity for the spin projection sz = 0, the square of energy
receives corrections from the non-linear terms of even powers in the magnetic field. For spin
projections sz = +1 and sz = −1 the squared energy contains terms of both even and odd
powers in the field. We found that the contributions of these terms depend on the cjnsidered
interval of magnetic fields. So, for the considered lattices the correction of the third power term
to the lowest energy sub-level with qsz = +1 is not larger than 20% and compatible with errors
at eB ∈ [0, 1.2]GeV2.This can be seen from Fig. 9 presented in our previous work [1]. Similarly,
a correction of the fourth power does not give a significant contribution to the energy squared
for the case sz = 0.

At strong magnetic field the energy squared reveals non-linear behavior depending on the
magnetic field value. To take this phenomena into account we include the terms with the
magnetic dipole polarizability and hyperpolarizabilities into consideration. It follows from the
parity conservation that the energy squared for the spin projection sz = 0 can contains only
terms of even powers in a field, while for the spin projections sz = −1 and sz = +1 the terms
both even and odd powers in a field contribute. In our previous work we have found that the
contributions of these terms depend on the field interval considered [1].

So, at eB ∈ [0, 1.2] GeV2 one can find the magnetic dipole polarizability βm for the for the
spin projection sz = 0 from the following relation

E2
sz=0 = |eB|+m2 − 4πmβm(eB)2, (1)

where m are the particle mass at zero magnetic field, eB is the magnetic field in GeV2. The
values of the βm and m were found as the fit parameters from the lattice data using formula
(1). At Fig. 1 we depict the energy squared versus the magnetic field for the lattice volume 184,
the lattice spacings 0.105 fm and 0.115 fm and different pion masses. The values of the βm are
shown in Table 1.
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Figure 1. The energy squared of the ρ± meson for the spin sz = 0 versus the magnetic field
value for various lattices and pion masses. The solid lines are the fits of the lattice data for the
energy of the ρ± meson.
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V mπ(MeV) a(fm) βm(GeV−3) χ2/d.o.f.
184 574± 7 0.105 0.03 ± 0.01 6.90
184 395± 6 0.115 0.028 ± 0.006 0.53
184 541± 3 0.115 0.027 ± 0.004 1.25

Table 1. The values of the magnetic polarizability βm of the ρ± meson for the spin projection
sz = 0 for various lattices and several pion masses.

The lattice values of the energy squared of the ρ± with qsz = +1 (which corresponds to ρ−

at sz = −1 and ρ+ at sz = +1) can be fitted by the following formula

E2
qsz=+1 = |eB| − g(eB) +m2 − 4πmβm(eB)2 (2)

at eB ∈ [0, 1.2] GeV2. The values of m, g and βm are the fit parameters. In Table 2 we
represent the βm values. The corresponding lattice data with their fits are shown in Fig.2 for
various lattices and pion masses.
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Figure 2. The energy squared of the charged ρ meson for the case qsz = +1 depending on the
magnetic field value for various lattice data sets. The solid lines correspond to the fits of the
lattice data obtained with use of the formula (2)

For the case qsz = −1 one can find the βm using the formula

E2
qsz=−1 = |eB|+ g(eB) +m2 − 4πmβm(eB)2 . (3)

.
The parity conservation demands the equality of the magnetic dipole polarizabilities for

sz = +1 and sz = −1. It also follows from (2) and (3) and was suggested by our previous results
[1].
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V mπ(MeV) a(fm) g-factor βm(GeV−3) χ2/d.o.f.
184 574 ± 7 0.105 2.48 ± 0.19 −0.049 ± 0.010 2.66
184 541 ± 3 0.115 2.26 ± 0.14 −0.041 ± 0.006 2.32
204 535 ± 4 0.115 2.19 ± 0.12 −0.044 ± 0.006 1.48
184 395 ± 6 0.115 2.12 ± 0.13 −0.039 ± 0.006 1.49

Table 2. The magnetic dipole moment and the magnetic dipole polarizability of the charged
ρ meson with qsz = +1 for the lattice spacings 0.105 fm, 0.115 fm, the lattice volume 184,
various pion masses and for the lattice spacing 0.115 fm, the lattice volume 204 and the pion
mass mπ = 535(4) MeV with their errors and χ2/d.o.f values. The results were obtained with
the use of 3-parametric fit (2) at eB ∈ [0, 1.2] shown in Fig. 2.

3. Magnetic polarizability of the ρ0 meson

When calculating physical observables, it is necessary to take into account different coupling of
u and d quarks with an external magnetic field is different. The energy of a neutral ρ meson
with a spin projection sz = 0 is expressed as follows:

E2 = m2 − 4πmβm(eB)2 − 4πmβh2
m (eB)4 − 4πmβh4

m (eB)6 − 4πmβh6
m (eB)8 − ... , (4)

where βh2
m , βh4

m and βh6
m are the magnetic hyperpolarizabilities of higher orders, m is the mass

of the meson at zero field.
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Figure 3. The energy squared of the ρ0 (sz = 0) ground state versus the field value squared.
The data are shown by points for various lattice spacings, pion masses and two lattice volumes
184 and 204 with the fits obtained using formula (4).

In Fig. 3 the squared energy of the ρ0 meson with sz = 0 from the squared field for several
lattices and pion masses at (eB)2 ∈ [0 : 0.5]GeV4 is shown. It is seen that energy is rapidly
falling. The lattice spacing, the lattice volume, and the pion mass also strongly affect the meson
energy. From the formula (4) follows the fits, which are lines, which also take into account the
terms ∼ (eB)10 and ∼ (eB)12. The fits for the lattice with spacing a = 0.105 fm were performed
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at (eB)2 ∈ [0 : 1.7]GeV4, for the other lattices we use (eB)2 ∈ [0 : 1.5]GeV4. The contribution
of the terms of higher degrees is noticeable only at low fields. When restricting the magnetic
field, it is not easy to extract magnetic polarizability. Extrapolation to the chiral limit was not
carried out, since only qualitative predictions are needed.

The Table 3 shows the magnetic polarizability βm and hyperpolarizability β2h
m obtained from

the fits. The lattice volume V , the lattice spacing a, the pion mass mπ, the interval of fields
selected for the fitting procedure and χ2/n.d.o.f. are also shown.

V a(fm) mπ(MeV) βm(GeV−3) β2h
m (GeV−7) n (eB)2(GeV4) χ2/d.o.f.

184 0.105 574 ± 7 0.66± 0.16 −2.51± 0.98 10 [0 : 1.7] 1.04
184 0.115 541 ± 3 0.90± 0.16 −5.11± 1.59 12 [0 : 1.5] 2.46
204 0.115 535 ± 4 0.95± 0.15 −5.78± 1.60 12 [0 : 1.5] 2.63
184 0.115 395 ± 6 0.98± 0.30 −5.79± 2.74 12 [0 : 1.5] 3.32

Table 3. The value of the magnetic dipole polarizability βm and the magnetic
hyperpolarizability β2h

m for the ρ0 with spin projection sz = 0 are shown for the various lattice
volumes V , lattice spacings a and pion masses mπ. The degree of polynomial n, field range used
for the fitting and χ2/d.o.f values are represented in columns sixth to eighth correspondingly.
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Figure 4. The energy squared of the ρ0(|sz| = 1) meson versus magnetic field for various lattice
spacings, pion masses, and two lattice volumes 184 and 204. The lines correspond to the fits of
the lattice data obtained using formula (5).

At eB ∈ [0 : 1.2] GeV2 for the spin projection |sz| = 1 on the field axis the square of the
energy of the neutral vector meson is expressed as follows:

E2 = m2 − 4πmβm(eB)2 − 4πmβh1
m (eB)3 . (5)

In Fig. 4 the energy squared is shown for the ρ0 meson with the spin projection |sz| = 1,
the energies of the neutral vector meson for the sz = +1 and sz = −1 are the same due to the
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conservation of C-parity. The magnetic polarizability βm is obtained from the fit of the lattice
data by formula (5) for the lattices with spacings 0.105 fm and 0.115 fm, where m, βm and βh1

m

are the fit parameters. The lattice data for a = 0.084 fm and a = 0.095 fm are given to check the
lattice volume and lattice spacing effects. The βm values with the errors and other parameters
are shown in Table 4. The results agree with each other within the errors

V a(fm) mπ(MeV) βm(GeV−3) β1h
m (GeV−5) eB, GeV2 χ2/d.o.f.

184 0.105 574± 7 −0.10 ± 0.02 0.07 ± 0.02 [0 : 1.1] 0.47
184 0.115 541± 3 −0.07 ± 0.02 0.03 ± 0.03 [0 : 1.1] 0.87
204 0.115 535± 4 −0.10 ± 0.02 0.06 ± 0.03 [0 : 1.1] 1.54
184 0.115 395± 6 −0.11 ± 0.03 0.08 ± 0.03 [0 : 1.1] 0.65

Table 4. The value of the magnetic dipole polarizability βm and the magnetic
hyperpolarizability β1h

m are shown for ρ0 with |sz| = 1, for the lattice volumes 184 and 204,
the lattice spacings 0.105 fm and 0.115 fm and various pion masses. The fourth and the last
columns contain the intervals of the magnetic field used for the fit and χ2/d.o.f. correspondingly.

4. Tensor polarizability of the vector mesons

The differential cross section for the dilepton pair production

dσ

dM2d cos θ
= A(M2)(1 +B cos2 θ), (6)

where M2 is the energy of the lepton pair in their rest system, θ is the angle between the
momentum of the virtual photon and the lepton emission direction. The coefficient B is defined
by:

B =
γ⊥ − γ‖

γ⊥ + γ‖
, (7)

where the γ⊥,‖ are transverse and longitudinal polarizations of the virtual intermediate photon.
The cross section (6) depends on the energy of the lepton. At the same time one of the main

sources of production of a pair of dileptons is the decay of ρ mesons. We have found that the
energy of the neutral ρ meson with the spin projection sz = 0 decreases versus the magnetic
field value, while energy for the sz = ±1 increases. We also obtain the decreasing energy of
the value for the charged ρ meson for case qsz = +1. It is natural to anticipate that particles
with lower energy will dominate in non-central heavy-ion collisions, i.e. states with a defined
polarization.

The cross section of the emitted dileptons is related to the polarization of the ρ-meson in the
following way:

dσ

dM2d cos θ
= N(M2)(1 +

1

4
P33(3 cos

2 θ − 1)), (8)

where the form of the third diagonal component of the polarizability tensor P33 follows from its
definition. One can represent this quantity in terms of the probabilities of the ρ meson to have
a spin projection equal to +1, −1 and 0 respectively

P33 = wsz=+1 + wsz=−1 − 2wsz=0. (9)

The value of the P33 is related with the asymmetry coefficient B by the following way

B =
3P33

4− P33

. (10)
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We introduce some new physical quantity, which can serve as the measure of the magnetic
field effect on a vector meson, the tensor polarizability

βt =
βsz=+1 + βsz=−1 − 2βsz=0

βsz=+1 + βsz=−1 + βsz=0

, (11)

which at high temperature it has to be proportional to the polarization of the vector meson.
In Table 5 we represent the values of the tensor polarizability for the ρ0-meson for the lattice

volumes 184 and 204, lattice spacings 0.105 fm and 0.115 fm and various pion masses. For
the ρ± meson the βt values are shown in Table 6. The negative values of βt of the ρ0-meson
reveal that the longitudinal polarization dominate. The dileptons are basically emitted in the
plane perpendicular to the field direction. The dominating longitudinal polarization for the soft
dileptons was obtained previously in [18]. The formation of soft dileptons was compared with a
nonzero component of the conductivity of the strongly interacting matter along direction of the
external magnetic field [19].

V a(fm) mπ(MeV) βt
184 0.105 574 ± 7 −3.3± 0.6
184 0.115 541 ± 3 −2.6± 0.2
204 0.115 535 ± 4 −2.8± 0.3
184 0.115 395 ± 6 −2.9± 0.5

Table 5. The tensor polarizability βt of the ρ0 meson is shown for various lattices and pion
masses.

V a(fm) mπ(MeV) βt
184 0.105 574± 7 2.3± 0.7
184 0.115 541± 3 2.5± 0.5
184 0.115 395± 6 2.7± 0.7

Table 6. The tensor polarizability of the ρ± is represented for lattice volume 18, lattice spacings
0.105 fm and 0.115 fm and various pion masses.

5. Conclusions

In this paper some new interesting statements are represented, such as the fact that dileptons
are mainly emitted in the directions perpendicular to the magnetic field axis, and the negative
values of βt suggest the dominating longitudal polarization of the ρ0-meson. We have found out
the convincing result,that the energy of the state with sz=0 decreases, and the energy of |sz|=1
increases. Also, we have found that the longitudinal polarization of the ρ0 mesons dominates
in the colisions, since low energy is preferable to high. Therefore, the dileptons occuring due
to decays of the ρ0 mesons will be emitted perpendicular to the direction of the magnetic field.
Finaly, we have introduced new characteristics of the meson magnetic properties-the tensor
polarizability. This quantity has been suggested to be related to the coefficient of asymmetry in
the differential cross section for the dilepton production.
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