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Abstract
We consider the effects of memory on the stationary behavior of a two-
dimensional Langevin dynamics in a confining potential. The system is 
treated in an overdamped approximation and the degrees of freedom are under 
the influence of distinct kinds of stochastic forces, described by Gaussian 
white and colored noises, as well as different effective temperatures. The 
joint distribution function is calculated exactly by means of time-averaging 
techniques, and the long-term behavior is analyzed. We determine, by using 
the stochastic thermodynamics formalism, the influence of noise temporal 
correlations on the energetics in the steady-state regime. As a result, we find 
that non-Markovian effects lead to a decaying heat exchange with spring force 
parameter, which is in contrast to the usual linear dependence obtained when 
only Gaussian white noises are presented in overdamped treatments. Also, the 
memory time-scale affects in a nontrivial fashion the entropy production rate 
associated with stationary states.

Keywords: non-equilibrium, stochastic thermodynamics, memory effects, 
Langevin dynamics

(Some figures may appear in colour only in the online journal)

1.  Introduction

The current interest in emergent properties, and thermodynamics, of mesoscopic and small 
systems has given rise to very rich discussions and investigations about the fundamental con-
cepts and applications of statistical physics in non-equilibrium [1–9]. Many of these studies 
can be addressed, as a starting point, by means of Langevin dynamics (LD) [9–15], which is 
a coarse-grained theory that emphasizes, through effective degrees of freedom, the role of 
distinct time-scales in the temporal evolution of many-particle systems. Despite the simplic-
ity, LD provides an interesting theoretical framework for modeling stochastic properties of 
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different kinds of complex systems in physics, chemistry and biology [12]. Also, in the con-
text of LD, it is possible to develop stochastic analogs of thermodynamic quantities such as 
heat and work that may contribute for the understanding of non-equilibrium behavior [9, 13, 
14, 16].

Paradigmatic models for studying non-equilibrium behavior are usually formulated in 
terms of Langevin equations with many different kinds of stochastic forces, usually described 
by Gaussian [14, 17–19] and/or non-Gaussian noises [20–23]. Probably, one of the simplest 
cases of LD that presents interesting steady-state properties is an overdamped two-dimen-
sional (2D) Brownian particle bound by a harmonic potential, and in contact with distinct ther-
mal baths. For this kind of model, Dotsenko and collaborators [18] found a non-equilibrium 
distribution which leads to complex behavior of the probability currents. Similar results are 
described by Mancois et al [19] in a LD with inertial effects as well asymmetric potentials. 
These studies show the emergence of stationary states with spatial-dependent probability flux 
and non-zero mean angular velocity due to the interplay between different temperatures and 
coupled degrees of freedom.

The stationary behavior of Langevin systems is also affected by the presence of stochastic 
forces with memory [10, 11, 24, 25]. For example, Puglisi and Villamaina [24] have shown 
that, for a one-dimensional (1D) LD with colored noises, memory contributes to the entropy 
production by means of effective non-conservative forces. Also, Villamaina and collaborators 
[25] presented a study about the role of fluctuation–dissipation relations in the stationary states 
of a LD with memory. The inclusion of time-correlated Langevin forces affects some dynami-
cal aspects of Brownian motion, specially when inertial contributions are not properly consid-
ered. According to investigations of Nascimento and Morgado [26], an overdamped Brownian 
particle with memory, and just one heat bath, evolves to a non-equilibrium distribution in one 
dimension. Interestingly, for an underdamped system, the memory kernel is usually related to 
the colored noise second cumulant in order to give rise to the correct Boltzmann–Gibbs (BG) 
statistics [10, 11]. Although equilibrium is not achieved if time-correlated noise is considered 
in overdamped treatments, the inclusion of an additional weak white noise may regularize the 
stationary behavior and the BG is recovered [26].

The absence of mass may provide artifact results for heat exchanges in many-bath environ
ments. For a model consisting of coupled, two-temperature, overdamped Langevin equa-
tions  with harmonic forces, Sekimoto [13] discusses the possibility of heat flux shows a 
divergence as the spring force constant k → ∞. This nonphysical result is avoided if one 
considers inertial contributions. For a Brownian particle under the influence of many thermal 
baths, which also exhibits artifact behavior for the heat flux [27], Murashita and Esposito [28] 
developed extensive calculations in order to properly consider the stochastic thermodynam-
ics in overdamped cases. Overdamped treatments also affect results associated with entropy 
production in systems that present temperature gradients, which leads to a kind of entropy 
anomaly with vanishing inertial effects, as discussed by Celani and collaborators [29].

The overdamped approximation simplifies the analysis of LD and, for some cases, give 
reasonable physical insights. However, the absence of inertia should be considered with care 
in non-Markovian systems. Then, in order to investigate the interplay between memory and 
overdamping treatments, we revisit the problem of 2D Brownian motion in contact with 
two thermal baths at different temperatures. We consider a linear system described by two 
coupled Langevin equations. We assume Gaussian white and colored noises, as well as a 
memory kernel for dissipation. The stationary probability distribution is calculated by using 
time-averaging approaches, and non-Gibbsian and Gibbsian states can be identified, depend-
ing on the model parameters. Based on stochastic thermodynamic calculations, we identify 
a memory-dependent heat flux that decays with the spring constant force. This result is very 
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different from the usual linear dependence found in a LD with Gaussian white noises and lin-
ear forces, which suggests that, for overdamped systems, memory affects the heat conduction 
in a nontrivial way. Also, we show that noise temporal correlations contribute to the steady-
state entropy production. In fact, the system exhibits, for finite memory time-scale, a zero 
entropy production when bath temperatures are the same. However, for this case, the probabil-
ity density of the degrees of freedom is different from the usual equilibrium BG distribution.

In this work, we emphasize only the memory effects on a massless 2D Brownian motion 
in a harmonic trap. Underdamped systems with colored noises usually present a very compli-
cated mathematical structure to deal with analytically, even for 1D cases [17].

The paper is organized as follows. In section  2, we define the model of a 2D LD in a 
overdamped approximation. We calculate the probability distribution and study the station-
ary behavior in section 3. The heat flux and entropy production is determined in section 4 for 
steady-state regime. The conclusions are presented in section 5.

2.  Langevin system in a harmonic potential

We consider a Brownian particle moving in two dimensions, with degrees of freedom x1 and 
x2, under the influence of a quadratic potential,

U(x) = U(x1, x2) =
k
2
(
x2

1 + x2
2

)
+ k u x1 x2.� (1)

The confining aspects of the potential is established by assuming u2  <  1. Each degree of 
freedom is coupled to a heat reservoir, one described by white noise and the other represented 
by a colored noise. These noises are basically Gaussian. We assume the baths are at distinct 
temperatures T1 and T2. One may interpret these different noises as two Langevin forces acting 
along the ‘temperature axes’, which coincides with the Cartesian frame x1 and x2. However, 
we also have to take into account the effects of the eigenframe associated with harmonic 
potential, see figure 1. In fact, for non-zero value of coupling parameter u, the directions of 
stochastic forces do not coincide with the principal axes of the quadratic form (1).

We would like to emphasize that the choice of a linear model is due solely to mathematical 
convenience, which allows us to develop theoretical analysis with possible analytical results. 
Nevertheless, systems with nonlinear forces present an even richer physics. In particular, 
the unusual phenomenon of noise enhancement stability [30–33], where nonlinearity and 
noisy effects lead to enhanced-stability of mean lifetime of metastable and stable states. 
Although our model is formulated through Langevin equations with linear forces, we find 
many interesting physical results associated with steady-state probability distribution and 
heat flux behavior.

The time evolution of the system is formulated in terms of an overdamped Brownian 
dynamics in the presence of Langevin forces ξ1 and ξ2 and initial conditions

xi (0) = 0, ẋi (0) = 0, i = 1, 2.� (2)

The equation of motion for x1 is given by

γ1ẋ1 (t) = −k x1 (t)− k u x2 (t) + ξ1 (t) ,� (3)

where ξ1 is a Gaussian white noise with cumulants

〈ξ1(t)〉c = 0,
〈ξ1(t) ξ1(t′)〉c = 2 γ1 T1 δ(t − t′),
� (4)
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with temperature T1 and friction coefficient γ1. The degree of freedom x2 evolves according to 
the equation of motion

∫ t

0
dt′K (t − t′) ẋ2(t′) = −k x2 (t)− k u x1 (t) + ξ2 (t) ,� (5)

where ξ2 is a Gaussian colored noise,

〈ξ2(t)〉c = 0,

〈ξ2(t) ξ2(t′)〉c =
γ2T2

τ
exp

(
−|t − t′|

τ

)
,

� (6)

with temperature T2, friction γ2 and persistence time-scale τ . As we have a Langevin equa-
tion with correlated noise and dissipation, the second cumulant (6) is related to the memory 
kernel by the usual expression

K (t − t′) =
〈ξ2(t) ξ2(t′)〉c

T2
.� (7)

Notice that, for 1D cases, the presence of inertial effects lead to a steady-state behavior with 
equilibrium distribution, since (7) is in agreement with the fluctuation–dissipation relation 
[10, 11]. However, for an overdamped Brownian particle with memory, the lack of inertial 
time-scale may lead to a non-equilibrium stationary probability density, with an effective local 
temperature different from the bath temperature [26]. Here, our interest is to investigate the 
effects of memory on 2D Brownian motion with Markovian and non-Markovian noises, at 
different bath ‘temperatures’.

We intend to determine the physical properties of the model through time-averaging 
treatments [17, 26, 34, 35]. These approaches are very useful for dealing with generalized 

Figure 1.  Principal axes for a 2D Brownian particle. Stochastic forces act on 
‘temperature axes’ T1 and T2. The eigenframe of the harmonic potential is characterized 
by η1 and η2. For different values of potential parameters it is possible to identify distinct 
equipotential curves (green dashed lines).
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Langevin forces. The main idea is to determine the probability density by solving the evo
lution of all moments or cumulants. Time-averaging calculations have been used, for example, 
to study LD with white shot noise, or Poisson process [23], and dichotomous noise (telegraph 
process), which is also a colored-like noise [21, 22]. In our case, due to the harmonic potential, 
all results are calculated exactly.

The important point of the formalism is to rewrite the coupled Langevin equations (3) and 
(5) through a Laplace–Fourier integral representation,

x̃ (s) =
∫ ∞

0
dte−stx (t) .� (8)

As a result, the Brownian dynamics reads

x̃1 (s) =
1

r (s)

{
[γ2 s + k (1 + τ s)] ξ̃1 (s)− ku (1 + τ s) ξ̃2 (s)

}
,� (9)

x̃2 (s) =
1 + τ s

r (s)

[
(γ1 s + k) ξ̃2 (s)− ku ξ̃1 (s)

]
,� (10)

where

r (s) = as2 + bs + c = a (s − λ1) (s − λ2) ,� (11)

is a quadratic equation with roots λ1,2 and coefficients

a = γ1(γ2 + kτ),

b = k
[
γ1 + γ2 +

(
1 − u2) kτ

]
,

c = k2 (1 − u2) .

�

(12)

These coefficients depend on the physical parameters of the model. Then, it is not difficult to 
perceive that λ1,2 assume negative real values, whenever u2  <  1. In particular, c is related to 
the stability of the harmonic potential, which is well-defined for u2  <  1.

One can notice from (9) and (10) that all cumulants associated with the time evolution of 
the system are straightforwardly obtained in terms of the noise cumulants. This is because of 
the linear potential considered, which allows us to perform all calculations analytically. In 
order to continue our analysis, we should also calculate the Laplace transformation of non-
zero noise cumulants (4) and (6). Then, we obtain

〈ξ̃1(s1) ξ̃1(s2)〉c =
2 γ1 T1

s1 + s2
,� (13)

〈ξ̃2(s1) ξ̃2(s2)〉c =
2 + (s1 + s2) τ

(s1 + s2) (1 + s1τ) (1 + s2τ)
γ2 T2.� (14)

The solutions of the Langevin equations combined with noise properties allows us to deter-
mine all dynamical aspects of the system, specially the physical behavior of stationary states.

3.  Stationary probability distribution

Now that all cumulant relationships are characterized, we can calculate the probability density 
for the degrees of freedom of the model. The instantaneous distribution function may be writ-
ten as a noise average,
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P(x, t) = 〈δ(x − x(t))〉 =
∫

d2q
4π2 exp (iq · x)G (q, t) ,� (15)

where

q =

(
q1

q2

)
,� (16)

and

G (q, t) = 〈exp [−iq · x (t)]〉,� (17)

is the characteristic function associated with the joint probability density (15). Since both 
noises present Gaussian structure, all the moments of (17) can be written in terms of the first 
and second moments. However, it is more feasible to characterize the distribution by using 
a cumulant generating function, which depends only on the second cumulant for the kind of 
system we are dealing with. Then, one may write

lnG(q, t) = −1
2

q ·
(
I11,t I12,t

I12,t I22,t

)
· q,� (18)

where

Iij,t = lim
ε→0

1
4π2

∫ ∫
dq1 dq2e(iq1+iq2+2ε)t〈x̃i (iq1 + ε) x̃j (iq2 + ε)〉c,� (19)

are integrals (with i, j = 1, 2) that account for time evolution contributions of the system. In 
fact, these integrals are the frequency domain representations of the cumulants, as discussed in 
appendix. Now, we can use the Laplace–Fourier form of the Langevin equations (9) and (10) 
combined with the expressions for the noise cumulants (13) and (14). Then, we have

〈x̃1 (s1) x̃1 (s2)〉c = Ω

{
2γ1T1

[
γ2s1 + k (1 + τs1)

][
γ2s2 + k (1 + τs2)

]

+ γ2T2 (ku)2
[
2 + τ (s1 + s2)

]}
,

�

(20)

〈x̃1 (s1) x̃2 (s2)〉c = −k uΩ
{

2γ1T1

[
γ2s1 + k (1 + τs1)

]
(1 + τs2)

+ γ2T2 (k + γ1s2)
[
2 + τ (s1 + s2)

]}
,

�

(21)

〈x̃2 (s1) x̃2 (s2)〉c = Ω

{
2γ1T1 (ku)2

(1 + τs1) (1 + τs2)

+ γ2 T2 (k + γ1s1) (k + γ1s2)
[
2 + τ (s1 + s2)

]}
,

�

(22)

where

Ω =
1

r (s1) r (s2) (s1 + s2)
,� (23)

also depends on variables s1 and s2.
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The linear character of the model allows one to calculate an expression for the time-
dependent cumulant generating function and the instantaneous joint distribution density. 
These functions are expected to exhibit many contributions associated with relaxation pro-
cesses. Although the mathematical structure is quite complicated, a careful looking at (11) 
suggests two important time-scales that might influence the transients. In fact, these time-
scales are associated with the roots of (11). Since we want to focus only on the long-term 
behavior, a detailed study of transients is not necessary.

Nevertheless, due to the formalism we adopt in this work, an investigation about the prop-
erties of stationary states are more feasible to deal with. This is done by considering the 
nontrivial contributions that come from (19) as we perform contour integration around the 
stationary (thermal) pole, which is obtained by the relation

iq1 + iq2 + 2ε = 0.� (24)

It is worth mentioning that some integrals should be evaluated with care in order to properly 
apply Jordan’s lemma. As a result, by taking the limit t → ∞, we find

lim
t→∞

I11,t = lim
ε→0

1
2π

∫
−2 dq1

r (iq1 + ε) r (−iq1 − ε)

{[
(γ2 + kτ)2

(iq1 + ε)
2 − k2

]
γ1 T1

− (k u)2
γ2 T2

}
,

� (25)

lim
t→∞

I12,t = lim
ε→0

1
2π

∫
2 k u dq1

r (iq1 + ε) r (−iq1 − ε)

{
[(γ2 + kτ) (iq1 + ε) + k]

× [τ (iq1 + ε)− 1] γ1 T1 − [γ1 (iq1 + ε)− k] γ2 T2

}
,

�

(26)

lim
t→∞

I22,t = lim
ε→0

1
2π

∫
−2 dq1

r (iq1 + ε) r (−iq1 − ε)

{[
τ 2 (iq1 + ε)

2 − 1
]
(k u)2

γ1 T1

+
[
γ2

1 (iq1 + ε)
2 − k2

]
γ2 T2

}
.

�

(27)

Then, performing the remaining integrations, it is possible to write the stationary cumulant 
generating function as

lnGs(q) = −1
2

q · C · q,� (28)

where

C =

(
ζ11 ζ12

ζ12 ζ22

)
,� (29)

is the covariance matrix which elements are the second cumulants of the distribution,

ζ11 = −

[
λ1λ2 (γ2 + kτ)2

+ k2
]
γ1T1 + (k u)2

γ2T2

λ1λ2 (λ1 + λ2) a2 ,� (30)

ζ12 =
[λ1 λ2τ (k + τ γ2) + k] ukγ1T1 + k2uγ2T2

λ1λ2 (λ1 + λ2) a2 ,� (31)
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ζ22 = −

(
λ1λ2 τ

2 + 1
)
(k u)2

γ1T1 +
(
λ1λ2γ1

2 + k2
)
γ2T2

λ1λ2 (λ1 + λ2) a2 .� (32)

These cumulants are expressed in terms of the products and sums of the roots of (11), in 
addition to bath temperatures. Since products and sums of roots of a quadratic equation are 
simply related to its coefficients, it is straightforward to write the variances in terms of model 
parameters. Then, we have

ζ11 =

[
c (γ2 + kτ)2

+ ak2
]
γ1 T1 + a (ku)2

γ2 T2

abc
,� (33)

ζ12 = −

[
cτ (k + γ2 τ)

2
+ ak

]
ukγ1 T1 + a uk2 γ2 T2

abc
,� (34)

ζ22 =

(
cτ 2 + a

)
(ku)2

γ1 T1 +
(
cγ1

2 + ak2
)
γ2 T2

abc
.� (35)

Therefore, the stationary distribution is obtained through the Fourier transform the charac-
teristic function that comes from (28). Then, we find

Ps (x) =
∫

d2q
4π2 exp

(
−1

2
q · C · q + iq · x

)
,

=
1

2π
√

detC
exp

(
−1

2
x · C−1 · x

)
,

�
(36)

where detC and C−1 are, respectively, the determinant and the inverse of C. Despite its 
Gaussian character, the general stationary state is not in agreement with the BG statistics and, 
consequently, the system is out of equilibrium. However, for some particular set of model 
parameters, we can recover the equilibrium properties.

3.1.  Memoryless limit and different temperatures

For a two-temperature Langevin system subjected to only Gaussian white noises, which cor-
responds to taking the limit τ → 0 in (33)–(35), the cumulants are given by

ζ11 =
(γ1 + γ2) T1 + γ2u2 (T2 − T1)

k (γ1 + γ2) (1 − u2)
,� (37)

ζ12 = − (γ1T1 + γ2T2) u
k (γ1 + γ2) (1 − u2)

,� (38)

ζ22 =
(γ1 + γ2) T2 + γ1u2 (T1 − T2)

k (γ1 + γ2) (1 − u2)
.� (39)

In the special case of same dissipation mechanisms for both degrees of freedom, γ1 = γ2 = γ , 
the covariance matrix is given by

C =
1

2k (1 − u2)

(
2T1 + (T2 − T1) u2 − (T1 + T2) u

− (T1 + T2) u 2T2 + (T1 − T2) u2

)
,� (40)
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which allows to write a distribution function of the type

Ps (x) ≈ exp

[
− k

(T1 − T2)
2 u2 + 4T1T2

x · A · x

]
,� (41)

where

A =

(
2T2 + (T1 − T2) u2 (T1 + T2) u

(T1 + T2) u 2T1 + (T2 − T1) u2

)
.� (42)

The probability density in (41) is in agreement with Dotsenko and collaborators [18], which 
have shown that a similar Langevin system, with spring forces and two different temper
atures, presents a non-equilibrium stationary state that exhibits spatial-dependent probability 
currents. This probability flux leads to a mean rotation velocity, which characterizes a kind 
to ‘symmetry breaking’ rotor. Considering asymmetric harmonic potentials as well under-
damped situations in a LD system, Mancois et al [19] found, by means of analytic treatments 
and simulation results, that different ‘temperature axis’ lead to nontrivial current patterns for 
the steady-state regime. Interesting, the potential strength u and the temperature difference 
T2 − T1 play a important role in the average angular velocity [19].

3.2.  Finite memory and same temperatures

Now consider that baths present the same temperature, T1 = T2 = T . As a result, one finds 
the cumulants

ζ11 =
T

k (1 − u2)
,� (43)

ζ12 = −

[
(γ1 + γ2) (γ2 + kτ) + kτ (k + γ2 τ)

2 (1 − u2
)]

u

[γ1 + γ2 + kτ (1 − u2)] (γ2 + kτ)
T

k (1 − u2)
,� (44)

ζ22 =

(
γ2 + kτu2

)
(γ2 + kτ)

T
k (1 − u2)

.� (45)

These expressions indicate a steady-state of non-Gibbsian type whenever the memory kernel 
time-scale is finite. It is interesting to consider a series expansion of the stationary distribution 
for small values of kτ . Roughly speaking, we can perceive, in a simple way, the departure 
from the BG form as kτ  is very small. As a result, we have

Ps(x) ≈ exp

[
− k

2T
x ·

(
1 u
u 1

)
· x

]

× exp

[
− kτ

2γ2 (γ1 + γ2) T
x ·M · x

]
,

�

(46)

with

M =

( (
γ1 − γ2 + 2k2

)
k u2

[
γ1 − γ2u2 + k2

(
1 + u2

)]
k u[

γ1 − γ2u2 + k2
(
1 + u2

)]
k u

[
γ1 + γ2 + 2u2

(
k2 − γ2

)]
k

)
.

�

(47)

The first exponential term in (46) is the usual form of a BG distribution in equilibrium statistical 
physics, and the second exponential term is a nontrivial contribution that come from memory 
effects.
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We like to mention that overdamped approximations may lead to artifact results [26]. For a 
1D, overdamped, Langevin system with colored and white noises, Nascimento and Morgado 
[26] have shown that it is possible to recover BG distribution if the baths present the same 
temperatures. Nevertheless, for the model investigated in this paper, only one bath is coupled 
to each degree of freedom. Then, it would be interesting to consider if additional baths (per 
degree of freedom) may effectively regularize the equilibrium behavior of massless LD.

In next section we study how time-correlated noise may affect the long-term behavior of 
energetic fluxes.

4.  Average heat flux and entropy production

The model of Brownian dynamics we are studying presents a feasible mathematical structure 
that allows some investigation beyond the structure of the distribution function Ps (x1, x2). 
For example, we can obtain many analytical results for the average heat exchanges, with the 
thermal reservoirs, as well the entropy production in steady-state regime.

4.1.  Stochastic heat exchanges

Following a treatment along the lines of Sekimoto approach of stochastic thermodynamics3 
[13, 16] we may write the instantaneous heat fluxes as

J1 (t) = ξ1 (t) ẋ1 (t)− γ1ẋ2
1 (t) ,� (48)

for variable x1, and

J2 (t) = ξ2 (t) ẋ2 (t)−
∫ t

0
dt′K (t − t′) ẋ2 (t) ẋ2(t′),

� (49)
for variable x2, which is under the influence of a dissipation with memory kernel. However, 
the dynamical evolution of the system is given by the Langevin equations (3) and (5), which 
allows us to rewrite (48) and (49) as

J1 (t) = k x1 (t) ẋ1 (t) + k u x2 (t) ẋ1 (t) ,
J2 (t) = k x2 (t) ẋ2 (t) + k u x1 (t) ẋ2 (t) .
�

(50)

We can use these expressions to determine the average heat, which is the time integral of the 
average heat flux. However, in order to better understand the heat exchanges for stationary 
states, it is more appealing to consider the heat exchange during the time interval between t 
and t + θ, for any arbitrary instant t. Then, for x1 variable, we find

Q1 =

∫ t+θ

t
dt′〈J1 (t′)〉c =

k
2
[
〈x2

1 (t + θ)〉c − 〈x2
1 (t)〉c

]

+ k u [ψ1 (t + θ)− ψ1 (t)] ,
�

(51)

where

ψ1 (t) =
∫ t

0
dt′〈x2 (t′) ẋ1 (t′)〉c.� (52)

3 We adopt calculus manipulation in Stratonovich sense.
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A similar equation for x2 is obtained straightforwardly. It is interesting to notice that (51) sug-
gests a relationship between the average heat and second cumulant of the position variables. 
Then, after carrying on all calculations, we combine the results for both degrees of freedom 
in order to write the expression

〈U (t + θ)〉 − 〈U (t)〉 = Q1 +Q2,� (53)

which is basically the first law of thermodynamics associated with our (workless) Brownian 
dynamics. Since we are interested in properties of stationary states, it is not difficult to notice 
that, by taking the limit t → ∞, the stationary behavior of the energy shall imply

Q1 +Q2 = 0.� (54)

This indicates that a quantity of heat absorbed (dissipated) by bath 1 is dissipated (absorbed) 
into reservoir 2. From a technical perspective, we can only focus on the dynamical aspects of 
just one degree of freedom, say x1.

Notice that the first term in (51) depends on the second cumulant associated with the degree 
of freedom x1, which we have already determined for the stationary state. The integral in (52) 
may be calculated by using the Laplace–Fourier formalism, which reads

ψ1 (t) = lim
ε→0

1
4π2

∫ ∫
dq1 dq2

e(iq1+iq2+2ε)t − 1
(iq1 + iq2 + 2ε)

(iq1 + ε) 〈x̃1 (iq1 + ε) x̃2 (iq2 + ε)〉c.� (55)

Our main interest here is to determine the stationary properties of the heat flux. The main 
contributions come from the terms that integrate over the residues of the thermal pole (24). 
Now, performing the integral over q2, which can be evaluated without any convergence prob-
lems, one obtains, for the long-time limit, the expression

ψs
1 (t) =

k u t
π

lim
ε→0

∫
dq1

iq1 + ε

[r (iq1 + ε) r (−iq1 − ε)]
2

{[
(iq1 + ε) (kτ + γ2) + k

]

×
[
(iq1 + ε) τ − 1

]
γ1 T1 +

[
(iq1 + ε) γ1 − k

]
γ2 T2

}
.

�

(56)

This integral over q1 should be calculated by means of a different approach, since the inte-
grand behaves as 1/q1, which means that Jordan’s lemma is not satisfied for the semi-circular 
contour part. Nevertheless, it is still feasible to evaluate the Cauchy principal value, but we 
need to consider the nontrivial contributions of the semi-circular contour, as schematically 
represented in figure 2. This also happens if one intends to determine the stochastic energetics 
of Brownian particles with Poisson white noise [36]. Therefore, after performing the integra-
tion with appropriate limit procedures, we find

ψs
1 (t) = − ku γ1γ2t

(λ1 + λ2) a2 ( T1 − T2 ) .� (57)

It is worth reinforcing that (57) is valid for large values of t. Using the roots and coefficients 
of (11), it is possible to write the long-term behavior of (51) as

Qs
1 =

ku2γ2 ( T1 − T2) θ

(γ2 + kτ)
[
γ1 + γ2 + k τ (1 − u2)

] .� (58)

One can notice that (58) is physically consistent, since if T1 > T2, heat is absorbed by the sys-
tem from the reservoir at temperature T1. Then, the stationary heat flux for degree of freedom x1
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J1 = lim
θ→0

Qs
1

θ
=

ku2γ2 ( T1 − T2 )

(γ2 + kτ)
[
γ1 + γ2 + k τ (1 − u2)

] ,� (59)

and from the energetic constraint (54), we have

J2 = −J1.� (60)

The heat flux in (59) presents terms of the form k τ , which suggests an interesting interplay 
between the oscillator constant parameter k and the memory time-scale τ . From a mathemati-
cal point of view, one can perceive that, for finite values of τ , the heat flux tends to zero as 
k → ∞. This result should be compared to the case of a memoryless 2D Brownian system, 
which is obtained from (59) by taking the limit τ → 0 (in fact kτ → 0). When only Gaussian 
white noises are present, the heat flux turns out to depend linearly on the spring force constant 
k. Consequently, the heat flux diverges for very large values of spring parameter (k → ∞). We 
would like to emphasize that these results should be considered with care due to the important 
physical considerations concerning the origin of a memory kernel. In fact, as discussed by 
Sekimoto [13], heat flux that grows with k is an artifact of lacking inertial contributions, which 
act to regularize the heat conduction.

4.2.  Entropy production for steady-states

Since we have obtained the long-term behavior of the average heat flowing through the sys-
tem, we can also evaluate the entropy changes, at least for stationary states. Then, we assume 
a form of entropy variation, during the time-interval between t and t + θ, that corresponds to 
the sum of an exchange term (with the environment) and an internal entropy production term,

∆Ssys = ∆Sin +∆Sex,� (61)

where ∆Sin is the entropy produced inside the system due to its dynamical evolution, and ∆Sex 
is the entropic variation associated with the environment (the heat baths). We emphasize that 

Figure 2.  Typical contour integration for calculating average heat fluxes in steady-
state regime. The poles ±z1 and ±z2 are associated with the roots of equation  (11). 
Integration along CR contributes nontrivially for the stochastic energetics.
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(61) should be consistent with the principle of increase of entropy [37, 38], i.e. the second 
law. The system’s entropy is defined in terms of the joint probability through the relation [13, 
39, 40]

Ssys (t) = −
∫

dx1 dx2 P (x1, x2, t) lnP (x1, x2, t) ,� (62)

which allows us to write the entropy change as

∆Ssys = Ssys (t + θ)− Ssys (t) .� (63)

However, the entropy variation due to interactions with environment is given by the heat asso-
ciated with the reservoirs, which we interpret in terms of the average heat exchanges,

∆Sex =
1
T1

∫ t+θ

t
dt′〈J1 (t′)〉+

1
T2

∫ t+θ

t
dt′〈J2 (t′)〉 =

Q1

T1
+

Q2

T2
.� (64)

In fact, we adopt the interpretation that the stochastic heat given by (48) and (49) flow into 
the system, which means that expression (64) is also related to the entropy change of ther-
mal baths. For instance, for T1 > T2 we have Q1  >  0 and Q2  <  0, signalling that the system 
receives entropy from reservoir 1 and releases it on reservoir 2.

The actual calculation of an expression for the total entropy variation may be quite compli-
cated, but we can determine some interesting relationships. For the present Brownian dynam-
ics, the total entropy for system and environment reads

Stot = S1 + S2 + Ssys,� (65)

where, for the reservoirs, the variation of entropy is given by

∆S1 +∆S2 = −Q1

T1
− Q2

T2
.� (66)

Now, for the long-term run, we know that the join distribution function is independent of time, 
which means that the entropic change of the system in (61) is identically null,

∆Ssys → 0 as t → ∞,� (67)

since the stationary state is achieved. It becomes clear, from(61) and (64), we can write the 
total entropy variation as

∆Stot = ∆S1 +∆S2 = −∆Sex = ∆Sin,� (68)

which corresponds to the entropy produced by the system. Then, we may express the internal 
entropy generation in terms of the change of entropy of the reservoirs when the stationary 
state is reached.

According to (54) and (58), the entropic variation associated with the heat baths makes 
nontrivial contributions of the form

∆Stot = −∆Sex =

(
1
T2

− 1
T1

)
Qs

1

=
ku2γ2θ

(γ2 + kτ)
[
γ1 + γ2 + k τ (1 − u2)

] ( T1 − T2 )
2

T1 T2
.

�
(69)

Finally, we obtain, for the steady-state regime, the total entropy production,

∆Sin = ∆Stot = Σs θ,� (70)
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associated with the spring-bead system and the reservoirs, where

Σs =
ku2γ2

(γ2 + kτ)
[
γ1 + γ2 + k τ (1 − u2)

] ( T1 − T2 )
2

T1 T2
,� (71)

is a non-negative quantity that we identify as the entropy production rate.
It is straightforward to notice that, for the case of vanishing memory dissipation effects 

obtained by taking the limit τ → 0, we recover the expected entropy generation for a coupled 
linear LD with two thermal baths (with Gaussian white noises) at different temperatures:

Σs →
ku2

γ1 + γ2

( T1 − T2 )
2

T1 T2
as τ → 0.� (72)

Also, for this memoryless limit, the entropy production rate tends to zero as the bath temper
ature are the same. This is also expected, since, by assuming T1 = T2, the stationary state 
presents a trivial average energetic flux.

Nevertheless, for finite values of τ , we notice that (71) exhibits an interesting dependence 
on the memory time-scale in the stead-state regime. It is seems that, according to (71), noise 
temporal correlations contribute to decreasing the entropy generation for an overdamped LD 
with harmonic forces. In fact, by assuming a series expansion of entropy production rate for 
very small values of kτ , we find

Σs ≈
ku2

γ1 + γ2

( T1 − T2 )
2

T1 T2
− ku2

γ1 + γ2

( T1 − T2 )
2

T1 T2

(
1
γ2

+
1 − u2

γ1 + γ2

)
kτ + · · · .

� (73)
The first term corresponds to the memoryless limit given by (72), and the second term is 
the non-zero memory contribution that clearly reduces the entropy generation for small kτ . 
Another interesting point is that, even for non-zero values of τ , the entropy production rate 
(71) is zero when bath temperatures are the same. However, this null (steady-state) entropy 
production limit achieved by setting T1 = T2 does not characterize an usual equilibrium state. 
As discussed in section 3.2, when memory is finite and the bath temperatures are the same, the 
stationary distribution is not of BG form. Then, one can say that the system exhibits an effec-
tive equilibrium situation, but that seems to be different from the thermodynamic equilibrium 
described by the equilibrium statistical physics. Clearly, this is an artifact of the overdamped 
approximation used in here.

We like to emphasize that our findings only show some of the consequences of following 
overdamped approximations together with a memory dissipation kernel. It is important to be 
aware of the conceptual problems the may arise when one disregards inertial effects and, at 
the same time, adopts time-correlated Langevin forces. Then, we believe it is reasonable to 
be skeptical about possible interpretations based on the presumably null entropy production 
steady-state we obtained.

Therefore, our results indicate a complex interplay between memory kernel, overdamped 
approximations and many-bath couplings. For these cases, it is possible to identify a nontrivial 
stationary entropic behavior even for very simple linear, harmonically-bound particle models.

5.  Conclusions

We study the effects of memory on overdamped, 2D, Brownian dynamics at different temper
atures. The system is described by two coupled degrees of freedom, interacting via harmonic 
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potential, and the baths are characterized by stochastic forces represented by Gaussian white 
and colored noises, and a memory kernel related to dissipation. We determine analytically, 
through time-averaging treatments, the stationary probability function associated with the 
degrees of freedom. Depending on the model parameters, the steady-state regime is character-
ized by a BG distribution. Nevertheless, for finite memory and same temperatures, the system 
presents a stationary distribution which is not consistent with the BG statistics when only one 
bath is coupled to the system.

We investigate some aspects of the stochastic thermodynamics of the model. More spe-
cifically, for the long-term run, we calculate the heat fluxes associated with each degree of 
freedom, and the entropy generation is analyzed. The presence of memory leads to a heat 
exchange that exhibits a non-linear dependence on the spring force constant k, which is in con-
trast to the linear behavior found for vanishing temporal correlations (associated with colored 
noise). In fact, we find that the heat flux decays with k for finite τ , which suggests a very dif-
ferent behavior for high stiffness limit when compared with memoryless case (τ → 0). Also, 
memory affects the entropy generation associated with steady-states, which present a decay-
ing entropy production rate with the noise temporal correlations. In particular, we show that, 
for finite memory time-scale and same bath temperatures, the system exhibits a non-Gibbsian 
stationary state with null entropy production.

We believe it would be worth to consider further similar investigations with additional 
baths, of non-Gaussian as well non-Markovian type, in order to achieve a better understand-
ing of the role of memory in massive and overdamped systems. Also, it could be interesting to 
study the effects of memory on systems with nonlinear potentials, which are more appropriate 
for complex systems, and coupled to multiple baths at different temperatures.
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Appendix.  Laplace–Fourier integral representation

In this is paper we make use of integral representations for the cumulants, which may be writ-
ten as

〈xn (t)〉c =




n∏
j=1

∫
dtj δ (t − tj)


 〈x (t1) · · · x (tn)〉c,

�

(A.1)

where δ (t − tj) is a Dirac delta function. Now, consider the Fourier integral for the delta 
function

δ (t − tj) = lim
ε→0

1
2π

∫
dqj e(iqj+ε)(t−tj).� (A.2)

It allows us to rewrite (A.1) as

〈xn (t)〉c = lim
ε→0

(
1

2π

)n



n∏
j=1

∫
dqj e(iqj+ε)t


 〈x̃ (iq1 + ε) · · · x̃ (iqn + ε)〉c,

� (A.3)
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where

x̃ (s) =
∫ ∞

0
dt e−stx (t) ,� (A.4)

is the Laplace transform of x(t). Clearly, the same approach is valid for dealing with the tem-
poral evolution of moments.
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