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Abstract

We extend the definition of the refined topological vertex C to an n-coloured
refined topological vertex C, that depends on n free bosons, and compute the
5D strip partition function made of N pairs of C, vertices and conjugate C,*
vertices. Using geometric engineering and the AGT correspondence, the 4D
limit of this strip partition function is identified with a (normalized) matrix
element of a (primary state) vertex operator that intertwines two (arbitrary
descendant) states in a (generically non-rational) 2D conformal field theory
with Z , parafermion primary states.

Keywords: refined topological vertex, parafermion conformal field theories,
AGT correspondence

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Background

In a 2D conformal field theory, a correlation function is a sum of (or an integral over) products
of holomorphic and anti-holomorphic conformal blocks. Methods to compute the conformal
block include 1. making use of a null state that flows in an internal channel in the block to
derive and solve a differential equation for the block [16], 2. representing the conformal block
in terms of a Coulomb gas of charges with a background charge and screening charges, then
evaluating the conformal block as an integral over the positions of screening charges [23, 24,
42], and 3. using the analytic properties of the conformal block to derive and solve a recursion
relation that can be solved for the block [49, 50]. These methods are powerful and lead to deep
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insights into the analytic structure of the conformal blocks, but they are also non-algorithmic
in the sense that the answer cannot (in general) be written explicitly and directly, and become
complicated to apply in the presence of vertex operators of a sufficiently-large highest-weight
charge!, and for 5- and higher-point conformal blocks?.

1.2. Conformal blocks as products of normalized matrix elements

An algorithmic approach to computing the conformal blocks is to regard them as products of
matrix elements M 22 of primary-state vertex operators between arbitrary descendant states,
these being normalized by Shapovalov matrix elements. However, no closed-form expressions

for these matrix elements are known?.

1.3. From 2D conformal blocks to 4D instanton partition functions

An approach to compute the normalized matrix elements M 22 in closed form is the AGT
correspondence [2, 40, 47], which applies to Wy x H conformal field theories, where the Wy
algebra, generated by chiral spin-2, spin-3, ---, spin-N currents, is augmented by a Heisenberg
algebra H generated by a chiral spin-1 current*. The AGT correspondence identifies matrix
element M?P in 2D Wy x H conformal field theories and instanton partition functions
Z P in4D N = 2 supersymmetric Yang-Mills theories with matter in bifundemental SU (N)
representations.

14. From 4D instanton partition functions to 5D strip partition functions

The 4D instanton partition function Z 3P is engineered by taking the 4D limit of a 5D topo-
logical string strip partition function S3P [36, 37], obtained by gluing topological vertices [1,
7, 8,29-31]. In this sense, a topological vertex is the most fundamental building block of the
correlation functions in a 2D conformal field theory.

1.5. 2D parafermion conformal field theories

In [3, 4, 10-12, 13, 15, 17, 19, 20, 33, 43, 46, 48], and other works, 4D instanton parti-
tion functions on C2/Z, were related”, using an extension of the AGT correspondence,
to matrix elements in non-rational 2D conformal field theories based on the algebra

A(N,n) = (g\l (N), x sl (N), /sl (N)n+p) x sl (n)y x H°. However, no connection with 5D

topological string partition functions and topological vertices was made.

! Vertex operators that require multiple screening charges in the Coulomb gas approach.

2The more powerful (elliptic) version of the recursion relation is available only for 4-point conformal blocks [45, 50].
3In W conformal field theories, the Virasoro algebra W, provides sufficiently-many constraints to allow us to
compute any Virasoro matrix element on an element-by-element basis, but in Wy theories, N = 3,4, - - -, more con-
ditions than those provided by the Wy algebra are required [35], and the computation of the matrix elements, while
still on an element-by-element basis, is more complicated than in the W, case.

“4The contributions of the H algebra factor out in the result of conformal block computations in Wy x H theories,
and one obtains conformal blocks in Wy theories.

5The action of Z, on C2 =C; x C, is (z1,22) (wzl, w! Zz), where z1 € Cy, 72 € Cp, w" = 1[11].

6 Qur notation for A (N, n) is adapted to that used in the present work and as such it differs, in an obvious way, from
that used in the original papers. Further, we stress that the discussion of the conformal field theories in the original
papers on the subject, and definitely in the present work, is restricted to non-rational conformal field theories. The
space of states in rational theories based on .A (N, n) contains degenerate representations with null states that require
special treatment.
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1.6. In this work

1. We propose an extension of the refined topological vertex C of [31], constructed using
a single free boson, to a refined topological vertex C, constructed using n free bosons, and
a conjugate vertex C,". 2. We compute & Zf,f)n, the 5D topological string strip partition func-
tion that consists of N pairs of vertices where each pair consists of a single C, vertex and a
single C,*. 3. We take the 4D limit of S3P, of to obtain S;P,, and identify the result, using
geometric engineering [36, 37], with Z,‘\‘,{)n, the 4D instanton partition function of matter in
a bifundamental representation of SU (N) in C*/Z . 4. We use the AGT correspondence, as
defined in [3, 4, 10-12, 13, 15, 17, 19, 20, 46, 48], to identify Zj\‘,?n with a matrix element
M ff(N, n) (ar, a, ag) of a primary vertex operator that carries a highest-weight charge a
between left and right states, (@, |and | a g ), where (@ |and | @ ) are arbitrary descendant
states. 5. We obtain the linear relation between the Kihler parameters of the 5D instanton
partition function and the parameters of the corresponding .A (N, n) matrix element, 6. We
discuss in detail the differences in normalizations of these objects, and show that these differ-
ences cancel out when gluing matrix elements to compute conformal blocks.

1.7 Outline of contents

In section 2, we recall the combinatorics of partitions and Young diagrams that is used in
the sequel, and then in section 3, we do the same for symmetric functions in infinitely-many
variables, with emphasis on the Schur functions, Heisenberg algebras, and correspondences
between them. In 4, we introduce the n-coloured refined topological vertex C,, and the conju-
gate vertex C¥. In 5, we compute S 1?,{)", the 5D SU(N) topological string strip partition func-
tion made of N pairs of vertices. In 6, we compute S 3P, the 4D limit of S3P . and identify it
with the 4D instanton partition function Z ,‘\‘,f’n. In 7, we use the 5D strips to compute 5D web
diagrams, and then in 8, we take the 4D limit of the 5D web diagrams. In 9, we reproduce a
4-point conformal block computed in [4], and in 10, we make a number of comments.

2. Young and Maya diagrams

2.1. Young diagrams

A partition ¥ = (y1,y2,--- ), of a non-negative integer | Y|, is a set of non-negative, non-
increasing integers y; 2 yi+1 = 0,>"._, y; = | Y|, and can be represented as a Young diagram,
that consists of rows such that row i has y; cells (see figure (1)). We use y; for the ith row as
well as for the number of cells in that row, and YT for the transpose of Y. In this work, a Young
diagram has infinitely-many rows. By a finite Young diagram, we mean a Young diagram that
has fintely many non-null rows. The null Young diagram Y = @ is such that all rows are null.
Given a set of n Young diagrams ¥ = (Yy,- -+, ¥,), define

Y[ =31l YT =y, @.1)
i=1

2.1.1. The (infinite) borderline of a (finite) Young diagram. The union of the positive x-axis
and the negative y-axis, that is the borderline of the south-east quadrant, is the borderline of
the null Young diagram Y = @. The (infinite) borderline of a (finite) Young diagram is the
union of the right vertical boundaries of the right-most cells of each row, the lower horizontal
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Figure 1. The Young diagram Y = (5,4,2), and the corresponding transpose Young

diagram YT = (3,3,2,2, 1). The infinite borderline is shown in thick lines. The rows

are numbered from top to bottom, the columns are from left to right, with null-rows

and null-columns included. The arm-length and leg-length of the box with v are

oAt — t+ 17t — + imi

A(,Y =24,, =524, = 3+,L/’y = 1,L/+_i— 3/2,L, =2 Sirmlarly f0r+ihe box

with X, we have Ay, = —3,Ay = —5/2,Ay" = ~2.Lx, = ~2.Ly, = -3/2.Ly} = ~1.
boundaries of the bottom cells of each column, the semi-infinite segment of the positive x-axis
to the right, and the semi-infinite segment of the negative y-axis below the Young diagram, as

in figure 1.

2.1.2. Cells. 'We use [ for a cell (a square) in the south-east quadrant of the plane, and refer to
the coordinates of O as (7,7). If 0 € Y, then i is the Y-row-number, counted from top to bottom,
and is the Y-column-number, counted from left to right, that [ lies in. If O¢y , we still regard
i (j) as a Y-row-number (Y-column-number) albeit that row (column) is null. In other words, the
coordinates (i,5) of a cell are measured with respect to the (original) boundaries of the south-
east quadrant, rather than with respect to the borderline of any specific Young diagram.

2.1.3. Arms, legs, and hooks. Consider a cell O with coordinates (i,7). We define the lengths
of the arm AEI,Y’ half-extended arm AJDr y» €xtended arm AEJ;,, the leg LI:l,Y’ half-extended leg

LEgy, extended leg LE;, of [J with respect to the Young diagram Y,

) 1
Aoy =yi—J Aby=Aoy+5. Ay =Aoy+1 2.2)

LD,Y = y]T —_ i, LE,Y = LD,Y + LE:; = LD,Y + 1. (2.3)

5’
Note that Agy and Ly are negative when O ¢ Y. The hook of a cell [, with respect to

the borderline of a Young diagram Y is,
Ho=Apy+ Loy + 1. (2.4)

2.14. Charged Young diagrams. We define a charged Young diagram as a pair (¥, cy), where
Y is a finite Young diagram and cy € Z is the charge.

2.2. Maya diagrams

A Maya diagram is an infinite 1-dimensional lattice with a black stone or a white stone on
each segment, the segments are labelled by a position coordinate ¢ ,, such that sufficiently far
to the left, all stones are black, and sufficiently far to the right, all stones are white [41].

4



J. Phys. A: Math. Theor. 53 (2020) 065401 W Chaimanowong and O Foda

Cp= -7 -6 -5 -4 -3 -2 -1

Figure 2. The ground-state, O-charge Maya diagram. That no stones are shuffled
corresponds to introducing a null Young diagram. That the charge is zero corresponds
to positioning the apex between (¢, = —1), and (¢, = 0).

2.2.1. The ground-state, 0-charge Maya diagram. The simplest Maya diagram is the ground-
state, 0-charge Maya diagram M, where all segments from position (¢, = —c0), to position
(¢, = —1), inclusive, carry black stones, and all segments from position (¢, = 0), to position
(¢, = 00), inclusive, carry white stones, see figure 2. From M, we can generate all other
diagrams by applying a charged Young diagram (Y, cy)to M, such that, ¥ shuffles the black
and the white stones at finite distances from the origin, and c y shifts the positions of all stones
to the right by the same distance cy. The result is an excited state, charge-c y Maya diagram.

2.2.2. Introducing a Young diagram. Starting from the ground-state, O-charge Maya diagram
M, we can use a finite Young diagram Y to shuffle the black and white stones at finite dis-
tances from the origin and produce an excited-state Maya diagram as follows. 1. We position
the diagram Y as in figure 3, so that the apex of Y projects on the point between positions
(—1) and (0) on the Maya diagram. The infinite borderline of Y then consists of upward and
downward segments (,/,\), where all segments are , sufficiently far to the left, and all seg-
ments are \_sufficiently far to the right. 2. We map the infinite borderline to a Maya diagram
according to,

S = e, N = 0. (2.5)

The result is an excited-state, 0-charge Maya diagram, where the configuration of the black
and white stones is in bijection with a finite Young diagram Y. Note that the position coordi-
nates ¢, are the same as in the ground-state Maya diagram.

2.2.3. Introducing a charge. We can introduce a charge ¢y into any 0-charge Maya diagram

by shifting all stones globally by ¢y segments to the right, as in figure 4. A stone that is at
position ¢, before introducing the charge is shifted to position (¢, + cy).

3. Symmetric functions and Heisenberg algbras

We recall basic definitions related to symmetric functions, Heisenberg algebras and relations
between them.
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Figure 3. An excited-state, O-charge Maya diagram with a shuffling that corresponds
to Y = (4,3,3,2). The apex of the Young diagram is between position (¢, = —1), and
position (¢, = 0).

Figure 4. An excited-state charge-2 Maya diagram, with a shuffling that corresponds
to Y = (4,3,3,2). The apex of the Young diagram is between position (¢, = 1), and
position (¢, = 2).

3.1. Exponentiated sequences

Given any two sequences of integers @ = (ay,az, -+ ) ,b = (b, by, - - - ) and two variables x, y
we define

xayb — (xalybl’xazyhz’ . ) . 3.1

In particular, given a Young diagram Y = (y;,y», - - - ), and an infinite sequence of integers
t=(1,2,---), we have

xl.yiy:(xyj:yl’xlyiyg._.)’ xL—ly

bl

iY:(yim’xyi)’z,.,
(3.2)
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For the purposes of section 4, we define the sub-sequence,
[x“yb]c: (xa[ybill': 1,2,--+,a;+b;=c mod n) (33)

3 3 4,2

Forexample,forn = 3andY = (4,3,3,2),x*y 7V = (xy~%, 6%y 73,0y 3, x4y =2, x%,x8 ),

we have [x*y o = (xy™, 2y a0, ),

3.2. The power-sum symmetric functions

Given x = (x,xz, - - - ), the power-sum symmetric function p, (x), n € (0, 1,---), is’,
P =1, P = Yt w2, »

and py (x), indexed by a Young diagram Y = (y1, s, - - ), is®,

Py (x) =Py (x) Py, (x) U (3.5)

3.3. The inner product of power-sum functions

Consider the ring of symmetric functions in a set of variables x = (x;,x; - - - ), with constant
coefficients. In this case, the power-sum functions are defined to be orthogonal with inner
product [39]

<PY1 (x) |pY2 (x)>qt =2y 6Y1Y2’ iy = " (nl!)znz (}12') (3.6)

3.4. The Schur function

Given a Young diagram Y = (yi,y2,---), YT =(y,y;,---), and a set of variables
x = (x1,x2,- -+ ,X,), such that|x | >y, the Schur function sy, (x) is?,

det (xfﬂr"_j)
I1<ij<n 3.7)

a ng;}j@ (i —x;)

Sy (x)

3.5. The skew Schur function

For two partitions Y} and Y3, the product of the Schur functions,
Y
SYISYzzchIYZSY (3.8)
Y
defines the integers ¢ ;1 v,» and the skew Schur symmetric functions are then defined as'?,

Sy/vi = XY:C; VS Ya- 3.9)
2

7Ch. 1, p. 23, in [39].
8Ch. T, p. 24, in [39].
9Ch. I, p. 40, in [39].
0Ch. 1, p. 69, in [39].
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By definition,
Soio (X) =1, sg/mx) =0, ifn# 3, QA= Sx/n (%) = s5/5 (Ox) .
(3.10)
3.6. Cauchy identities
The (skew) Schur functions satisfy the Cauchy identities'!,
O 1
ZSY/YZ (x) Sy /v, (y)= H ﬁ Z SYI/Y(x) SYz/Y(J’) 3.11)
Y ij=1 Py
ZSYT/YZT (x)syy, (¥) = H (1 +xiyj)ZSYlT/YT (x) svyv (¥)- (3.12)
Y ij=1 Y

3.7 The Heisenberg algebra

In this work, a Heisenberg algebra H is the infinite-dimensional algebra generated by
a; = (ay1,a42,---)and a_ = (a_y,a_y, - - ), that satisfy the commutation relations,

[am’ an] =m 5n+m,0 (313)
act on the left-state as creation and annihilation operators, respectively, and on the right-state
as annihilation and creation operators, respectively.

3.8. The left- and right-Heisenberg states

The left-Heisenberg state {ay |, and the right-Heisenberg state |ay ), ¥ = (y1,y2, - - - ), are gen-
erated from the left- and the right-vacuum states,

(ay|=(0lay ay, ---. |ay)=---a,a0) 3.14)
Using the Heisenberg commutation relations, the inner product of (ay, |and|ay, ) is,

(ay,|ay,) =zy, 0y, 2y = 1" (m1!) 2™ (n3!) -+~ (3.15)

3.9. The power-sum/Heisenberg correspondence

From the inner products (3.6) and (3.15), we deduce that the power-sum basis spanned by
p (x)is isomorphic to the left-state Heisenberg basis spanned by ( ay |, as well as the right-state
Heisenberg basis spanned by | ay ),

pn(X) = —ay, p,(x)=—a,, n=>1L (3.16)

3.10.The left- and right-Schur states

Expanding the Schur functions in terms of the power-sum functions, then formally replacing
the latter with Heisenberg generators, we obtain operator-valued Schur functions that act on
left- and right-vacuum states to produce left- and right-Schur states,

' Ch. 1, p. 93, in [39].
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(sy|=(0]sy (@y), |sy)=sy(a_)[0). (3.17)
The left- and the right-Schur states satisfy the orthogonality condition,
(sv, (x) |51, (x)) = Oy, (3.18)

3.11. The T-operators

To the Heisenberg algebra H, we associate the operators I'+,

(oo} _x:Fn
Iy (x) = exp (; p ai,,) . (3.19)
Using the Heisenberg commutation relations equation (3.13), we obtain
- 1 _
Iy (x I (y) = <l—xy> I_ (g (x7h). (3.20)

3.12. The action of the I' 1+ operators on Schur states

In [26, 27], identities that describe the action of the I'y operators on states labelled by
Macdonald and g-Whittaker symmetric functions, respectively, were derived. In the Schur
limit, these identities reduce to,

o0

{(sy | HF, ) = Z(SY‘SYl/Y ), HF+ (xi_l) Isy, )= ZSYI/Y (x) |sy). 3.21)

i=1 Y i=1

4. The n-coloured refined topological vertex

We construct the n-coloured refined topological vertex using n free bosons.

The n-coloured refined topological vertex is a trivalent vertex with an incoming leg labelled
by n Young diagrams ¥ = (Y9, , Y ,—1), an outgoing leg labelled by n Young diagrams
Y, = (Y20, -+ ,Y2,—1), and a preferred leg labelled by a single charged Young diagram

(Y,cy),cy € (0,1,--- ,n— 1). We construct the n-coloured vertex in six steps'%.

4.1. 1. Introduce n species of free bosons

Instead of a single Heisenberg algebra, as in the case of the refined topological vertex, we
work in terms of n commuting Heisenberg algebras H,,, m € (0,1,--- ,n — 1). From now
on, all operators that belong to # ,, will carry a subscript m. In particular, we have I';, 4,
me (0,1,---,n—1).

4.2. 2. Introduce an excited-state, charged Maya diagram

We start from a ground-state, O-charge Maya diagram and use a charged Young diagram
(Y, cy) as in section 2.2 to produce an excited-state, charge-c y Maya diagram. The position of
each stone is shifted from ¢, to (¢, + cy).

12 The construction of the n-coloured vertex and the conjugate vertex, in this section, was guided by the form of the
instanton partition function on C? /Z, of the Landau School [3, 4, 10-12, 13, 15]

9



J. Phys. A: Math. Theor. 53 (2020) 065401 W Chaimanowong and O Foda

4.3. 3. Introduce the T-operators

We map the excited-state, charge-c y Maya diagram to an infinite sequence of I'-vertex opera-
tors HMaya(Y) I'4, using the bijections

/S =0=T¢4, N=@0=T,_ ., cy=(cp,+cy) modn,
4.1

for each stone at position (c, + cy). We call cy the Heisenberg charge.
4.4. 4.Assign arguments to the vertex operators

We take the arguments of the I'-operators to be,

FEH+ (x_iin) > FCH* <yj_1x7YjT) ’ “4.2)

where Y; is the length of the i-row of the Young diagram Y that labels the preferred leg of the
vertex, and YjT is the length of the j-column of the Young diagram Y. The sum of the exponents

of the arguments of I'+ is related to ¢, as follows. For I' ., 4 (x*" yri ) at position (¢, + cy),
cp =Y —1i, (4.3)
and for T, _ (yf_l x_YfT> at position (¢, + cy),
p=-Y"+j-L (4.4)

4.5. 5. From the infinite sequence of T-operators to an expectation value

We evaluate the sequence [ [y, ,y) '+ between a left-state,

(svil = (swiol @ - @ {sy, )| = Olsr (@14) 5w,y (@) (4.5)
and a right-state,

Iv,) = [s1,0) @ - ® sy, () = Swoy (@1=) -5, () (@) |0) (4.6)

to get the unnormalized n-coloured refined topological vertex

cr-er unnorm

Y, Y, Y (X, y) = <SY| | H ry ‘SY2>‘ 4.7
Maya(Y)

Forn=3and Y = (4,3,3,2) (see figure 4), the sequences for the possible ¢ y arel3,

C;l’y"z’;,zo’ o () =(syy | Dig (x7°) Do (x7*) Tom (™) Tis (x4?) Tom (22
Top (x73y3) | (x72y3) THo (y3x71) Top (x71y4) Ti_ (y4) < |syy).

4.8)
Cryy "™ (y) = (s | Tog (67) Too (x74) Tie () Ty (x7%?) To- () 4.9)
I (x73y3) | (x72y3) To_ (y3x7]) | (x71y4) T (y4) o |sgy). ’
™™™ (9) =(om |- Tow () Ti_ () T (™) Tae () Ty ()
| (x_3y3) | (x_2y3) I (y3x_l) | (x_1y4) To_ (y4) e |syy).
(4.10)

13 We list all three possibilities, then we choose one.

10
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To evaluate the expectation value in equation (4.7), we normal-order the sequence
(HMaya( Y) I‘i) toputall ", 4 vertex operators on the right, and all I' ., _ vertex operators on

the left. Since I'-operators with different Heisenberg charges commute, the n-coloured vertex
is a product of n components labelled by cy € Z,,

n—1

e @y = TLon | T1 0 Taa [ln) @i

cy=0 Maya(Y)
c¢p+cy=cy mod n

where (H Maya(¥) Ficﬁ> is restricted to the sub-Maya diagram of Maya (Y) with

c¢p+cy=cy mod n
stones at positions (¢, + ¢y = cy mod n). Within each factor, we commute I'-operators (all
of which are built from the same Heisenberg algebra) using,

F('u+ (xiiyYI) Fc‘u - (yj;l xiy‘.’r)

1 o -
B (1 —VH -y +j—1) Tau— (yj Lx Y“) Loy (x7Tp"0).
— X ity Li

(4.12)

Since I' ., + is attached to a segment  in the borderline of Y, and I' ., _ is attached to an
adjacent segment \_ to the right of the former, the commutation relation, equation (4.12), is
the same as adding a strip of length n to Y. Repeating this process,

n—1

1
7, ¢y, unnorm
CYley (x,y) = H H T vt 4i v
1—xY +ly7Y,+/71
en=0 (iey
Y,—i+cy=cy mod n
7Y,.T+j71+c y=cy mod n

n—1 o) o)
i—1.—YT —iYi
vl TT I1 Poe (7)) T Taw 797 [ lov)
cn=0 j=1 ) i=1
—YT+j—l+cy=cy mod n Yi—itcy=cy mod n

—1
1 n
_ —1,.-YT L —Y
- H 1 L A+t H ZSYIL‘H/Y (b} X ]CH*CY SYZCH/Y ([X y ]7(‘H+Cy)
O¢y —XxT 0y "0y oy
AD,Y+LD,Y+F:O mod n

(4.13)

where, to obtain the last equality, we used ¢t = 3 = (1,2, - - ), equations (3.21) and (3.18), and
the definition of [x?y?]., for any two sequences of integers a, b, in equation (3.3).

4.6. 6. Normalization of the vertex
Using theunnormalized vertex Cyy"3"™ ™ (x, y), we obtainthe normalization 5% """™ (x, y),

from which we then obtain the normalized vertex:

1
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Figure 5. An n-coloured Maya diagram for conjugate vertex that corresponds to a
partition ¥ = (4,3,3,2). Note that the position coordinates are reversed with respect
to those in figure 3.

C n, ¢y, unnorm

) Y, Y,Y (x,y)
C\Z;‘(:Y (X,y) = Cnffi,unnorm (X y)
{2324%} (4

(1 -y 11 :

i+
1— x—LD,nyAD.Y

I
o

1

<
Il

D?Y
mod n Apy+Loy+1=0 mod n

=3

1—i—j=

n—1
H ZSYh,,/Y ([yjfleyT]C”_”) SYoey /Y ([xtyiy]—cw-%-cy)

cy=0 Y

n—1
= H S H ZSYhH/y ([)”71X7YT]cH—cy) Sty /v (09 ey -

++
1— XLD.yyAD.y

Oey cy=0 Y
Apgy+Loy+1=0 mod n
(4.14)
Then, on defining
n—1
1 1

ZIT T | S | N I

LA Y ity = )

cn=0 (ij)ey 1—x yi Oey 1 —x"orytor

Yi—it+cy=cy mod n Agy+Loy+1=0 mod n
—YjT+j—l+L‘y=(7H mod n

(4.15)

we obtain

n—1
Oty (3) = 25 () TT D s r (0775 e ) s v (857 erer) b (416)

cy=0 Y

See the lhs of figure 7.
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4.7 The conjugate vertex

To form strips, we need the conjugate vertex which is obtained by reversing the positions of
the Maya diagram as shown in figure 5, that is, ¢, — — ¢, — 1, and repeat the construction of
the vertex outlined above, but now the sum of the exponents of the argument of ' is related
to the initial position ¢, in a different way. For I', 4 (x =/ y¥%), at position (c, + cy),

= —Yi+i1, 4.17)

and for ', _ (yf L™ ), at position (¢, + cy),

T _ .
=Y -] (4.18)

so that,

n—1
C{(’S{;Yunnmm* (X, y) = H <SY1| H nyi ‘SY2>

cp=0 Maya(Y)

¢ptey=cy mod n
| D | S
- —YT+i —y,4j—
cn=0 (i) &Y L — oy riit

—Yi+i—14cy=cy mod n
YIT —j+cy=cy mod n

o) o)

n—1
(vl TT I o () 11 Ceps (757 | lsva)

cn=0 =1 =l
Y,T*jJrF y=cy mod n —Y;+i—l4+cy=cy mod n

1 1 _yT
— L, —Y
= I | _L | I § YY|H/Y< X }*CH‘FCY*l)SYZcH/Y ([x y ]C'H*CY‘FI)’
Dgr 1 —atony ™0 | 55
Agy+Loy+1=0 mod n

(4.19)
and after normalization,
C\'(l,;;; (X y x y) H ZSYuH/Y = 1x7Y]_CH+CY_1)SY2pH/Y ([xLy7YT]C'H—C'y+1) -
cy=0 Y
(4.20)
See the rhs of figure 7.

5. From n-coloured vertices to n-coloured N-strip partition functions

We construct 5D strip partition functions from N pairs of n-coloured refined topological ver-
tices, where a pair of vertices consists of a vertex and a conjugate vertex.

We consider an N-strip partition function on C?/Z, shown in figure 6. The horizontal
external legs are labelled by Young diagrams with Z,-charges. Denote a Young diagram Y car-
rying Z,-charge cy € Z, by (Y, cy). There are N horizontal external legs to the left labelled by,

(Voev) = (Vi ev), o (Vs evy)) - (5.1
There are N horizontal external legs to the right labelled by,
(W, ew) = (Wi, ew,) s (Wi, cwy)) - (5.2)

13
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(%]
Vi
&1, 4
14
Emy s Ay
V,
&, A
W,
éEnmys A,
5~~
-
fMN—l > AMN—I

7]

Figure 6. The strip diagram made of N pairs of n-coloured vertices and conjugate
vertices. Each internal line is labeled by a partition and a Kihler parameter.
Each external (horizontal) line is labeled by a partition. The external legs are
preferred and labelled by Young’s diagrams V = ((Vi, ¢v,), -+, (Vn, cyy)) and
W= (Wi, cw) .. (Wh, ewy)):

Each internal edge is labelled by uncharged n-Young diagrams & = (&, - - - ,&,—1). For an
internal edge with diagram &; we define,

Edge factor = (—Qi)‘s", Qi=eRA  i=1,M,2,My,--- ,My_1,N.
5.3)

The external vertical legs are labelled by n null Young diagrams &.

5.1. The unnormalized strip partition function

The unnormalized N-strip C2/Z , partition function can be written directly from figure 6,

SW.ey)W.ew)a (575 R)

e H( )1 (=) 8 L L () CE oy, (%)) (5.4)

N €My Emy_y =]

where the summations are over all possible internal n-Young diagrams. Expanding the defini-
tion of the vertices and the conjugate vertices,

14



J. Phys. A: Math. Theor. 53 (2020) 065401 W Chaimanowong and O Foda

(Veew) (W, opya (53, R)

N N
H(Zv,(xy) y.x ) Z 3 H< ) e (,QMI)\aM,\)
=1 N Emy e By 1=
n—1
- - _yT
H ZSS&I—I"H/”]; ([X Vly] I]C'Hf"Vl)sfer/"h/ ([xby Vi ]7L'H+"VI>
cn=0 n]
n—1
W _
H ngMI“H/nl// <[y " xL l}—CH'FL‘W,—l) Sf,rTH/Th” ([ij W’]CH—CW,‘Fl)
cp=0 n/’
n—1
(@ 00) TS % T1(00 (ou/™)
I=1 n=0 (& &n) (& Emy_, ) 1=

- _yT
Z 5M 1 ’/1 VlyJ I]CH*CVI)S&/"I; <[xby Vi }7CH+¢~VI>
Z%M’/"’ <[y Mt }7"”*‘”1’1) ST /my ([y]xiwl]cﬁfcwﬂrl) (5.5
ny’

where &y, = Eu, = . Using the result of appendix B,

N
n, unnorm _
Sty oy (63 R) = [T (20 (53) Zgx (0:9))
=1
n—1 N J oo - ,
W,
ITIIII 11 I1 Tlow [T 0w
cy=0J=11=1 i=1 =1 K=l
—V,I+i=—cuy+cy, mod n—Wj+j—l=cy—cw, mod n
n—1 N J—1 o - o .
H H H H 1-— H O, H Qe Vo= 1y =W+
en=0J=11=1 =l =1 K=I K=I+1
W +i—l=—cytew,—1  mod n —Vytj-l=cy—cy, mod n
n—1 N J—I 00 o 1 .
_ VTl
T I Il Hou ffowrn oo
ey=0J=11=1 i=1 j=1 K=1
—VI+i=—cy+tey, mod n—Vyj+j—l=cy—cy, mod n
n—1 N J—1 oo o J-1 ; 1
H H H H 1- H Oumyx H QKx—W,J+i—1y_wII+j
en=0J=11=1 =l j=1 K=I K=I+1
—W,]+i—1=—cy+cw,—1 mod n—Wy+j—l=cy—cy, mod n
N
n
=11 ) 23 0)
I=1
N o 0o ;
Wyjtiy =V, +i
HH H HQMKHQKX 1i l) Li
J=11=1 ij=1 k=1
(=V I 4+D)+(=Wyj+i)—14cw, —ey, =0  mod n
N J-1 oo J-1 J-1
—Vij+i—1 =W, T+j—1
11 11 =TT ow [I oeetesmyris
J=11=1 ij=1 K=I K=I+1

(=W, T 4+)+(=Vyj+i)—1+ey, —cw; =0 mod n

N J—1 ) —1
fi (o feffornn)

J=11=1 i1 ey
(=VI4+)+(=Vij+i)—1+ey,—ey,=0 mod n

N J-1 oo J-1 J -1
1 i (1-Tlow TT o) 5.6)

J=11=1 ij=1 K—I K=I+1
(=W, T +)+H(=Wy+i)—I4cw, —cw,=0 mod n
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5.2. The normalization of the strip

For n = 1, the normalized N-strip partition function on R* is obtained by normalizing

Svwa (x,y,R)by Sz za (x,¥,R), so that norm  (x,y,R) = 1. Similarly, for n > 1, we write

the normalized strip partition function on R*/Z, as,

n
n,norm (x R) o S(V,L‘v) (WJ:W)A (.X, Y, R)
(V.ey) (Woew) A Y- 1Y) = S (x.y.R) : 5.7
(@.cv) (B.ew) A Y
From equation (5.6) and identity (A.1),
N
n, norm
ew.ena (3R =] ] (Zvl xy)Z (y,x))
I=1
N T -1 I
— X Wy vy
1 M x Al e
I=1J=1 Mcw, K=J K=J
Amw,+Lmy,+1—cw,+cy,=0 mod n
A+t
11 I—HQMKHQKwayDWI
Oev,
Agy,+Low,+1+cw,—cv,=0  mod n
N I-1
L+t
111 Il - Tow TT 0w 55
I=1J=1 DEV] K=J+1
AD,V,ﬁLLD‘W,Jrl*Cv,JrCW]:O mod n
—1
11 1= HQMK T o=yt
Hcw, K=J K=J+1
AI,WJJFLI,v,JrlJer,*CWI:O mod n
N -1 I—1 I—1 —1
Attt
I111 I1 1= TT Qu [T Qex 5yt
I=1J=1 Oev; K=J K=J
Agy,+Loy,+1—cv,+cv;=0  mod n
I1—1 -1 i —1
L
11 =] o [T Qwx'emryon
Oev, K=J K=J
AD,V‘,_"LD‘VI“FI“FCVI—CV‘]:O mod n
N -1 I ; . 1
HH H I_HQMK H Qxx v y~ Lm,
I1=1J=1 .eWI K=J+1
Amy,+Lmw,+1—cw,+cw,;=0 mod n
-1 I -1
ALt
II 1= T om J] oxx'®wymm) . (5.8)
Hew, K=J K=J+1

Amy,+Lmw, +1+cw,—cw;=0 mod n

6. From n-coloured 5D strips to n-coloured 4D instanton partition functions

We take the 4D limit of the 5D strip partition function to obtain the corresponding 4D instanton
partition function.
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6.1. Parameters

The parameters x,y of the n-coloured topological vertex and the parameters €j, €, of the
instanton partition functions are related as,

x=etRe y—e R, (6.1)

Further, recall that Q; = e R2i i = 1,M,2,M>,--- ,My_1,N.

6.2. The 4D limit

For n = 1, taking the 4D limit is straightforward because both the numerator and the denomi-
Vl, norm

nator of ev) (W, ew)A A (x,¥,R) approach zero as RN (IVil+| W | ), in the limit R — 0. For
n>1, thls is no longer the case and S (’;,"::';EW WA (x,y, R) approaches zero as RX, in the limit
R — 0, for some integer K which depends on (V, ¢y) and (W, cw), and take the 4D limit, we

must cancel the excess factors of R,

norm . —K norm
S ey (€1,62) = Tim (RTKSrmy, (3 3,R)) 6.2)
to obtain'*

S(';/"c,,";}w ow)A (e1, 2)

~1111 1T (zAzA>

I=1J=1 Hcw, K=J K=J
Amw, +Lmy,+1—cw,+cy,=0 mod n

-1
H (ZAMKJFZAK* DV]62+LDWl€])
K=J K=J

0.,
Ay, +Low, +1+ew, —cy,=0 mod n

N I-1
++ ++
IT11 II ZAW Z Ax+AK & — L 6
I=1J=1 Oev, K=Tt1
AQy,+Low, +1—cy+ew,; =0 mod n

-1 -1
11 <ZAMK+ > AK*AI,W152+LI.V,61)
k=

Hcw, K=J+1
Amw, +Llmy,+1+cy, —cw,=0  mod n

N
-1 —1
++ ++
H H <_AD,V,E2 + LD,V,EI) H (—A.,W,Ez + LI,W,el)
I=1 Oevy Hew;
Agy,+Loy,+1=0 mod n Amw,+Lmw,+1=0 mod n
N I-1 -1
Il Il S au+ YAt sl - Lane
I=1J=1 Oevy

Ay, +Loy,+1—cy ey, =0 mod n

-1 -1 -1
H <Z Ay, + ZAK —Agy,e +LEJ\r,,>

Oev, K=J K=J
Ay, +Loy, +H1+ey —cy,=0  mod n

N I-1 1
H H <Z AMK + Z Ag + Am W €2 — L. WJ€|>
I1=1J

=1 Hew; K=J+1
Amw, +Lmw,+1—cw,+ew, =0 mod n

H (ZAMK+ Z Ak —Agly 52+LIW,€I> . (6.3)

mew, K=J+1
Amw,+Lmw, +1+cw,—cw,;=0  mod n

14We do not need the closed form expression of the factor K, and it suffices for our purposes to compute it on a case
by case basis.
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6.3. Comparison with the R*/Z,, 4D instanton partition function

The R*/Z, 4D instanton partition function is,

Zrmm(q Voey|p|b,W,ew)

Z”(a,V,Cv“j,‘b,W,cW): (6.4)
Zn, den (as V.cy ‘ bW, Cw)
where
N
Zri @ Vey|n|bW.ew) = H H (“I —by—p+ALG e - LD,W,ﬂ)
1J=1 Oev;
Agy,+Low, +1—cy+ew; =0 mod n
H <a1 —b;—p—Amw,e2 + L;,T/,El)
Wcw, (6.5)
Amw,+Lmy,+1+cy,—cw;=0 mod n
and,
Zgen (@, V,cv |b,W,cw)
1
= (Zn,num (a, V,CV | 0 ‘ a, V’CV) Z n.num (b, W,Cw | 0 ‘ b, W,Cw))2
N 1
— ++ 2
= H H (Cl]—aj +A[|,v,62_LEI,VJ€1)
1J=1 DEV[
Agy,+Loy,+1—cy+cy;=0 mod n
1
Ca— ++ )2
H (al ay —Apy,e + LD,v,El)
Oev,
AD,VJ+LD,v,+1+CV,*CvJ:0 mod n
al 1
++ 2
H H (b[ - bj + AI,W,EZ — LI,WJGI)
1J=1 Hcw,
Amy,+Lmw,+1—cw,+cw,=0 mod n
1
++ )2
H (b[ — by —Amw,e2 + L.,Wle]) , 6.6)
Hcw,
Amw,+Lmw,+1+cw,—cw,=0 mod n
where, a = (ay, ...,ay) and b = (by, ..., by) are Coulomb parameters, p is a mass parameter

and €, €; are deformation parameters.

6.3.1. Parameters identification. To compare the 4D strip partition function to the 4D instan-
ton partition functions, we substituting the parameter identifications,

Ai=—ai+bi+p—ea, Ay,=a1—bi—p+ea, i=1,--,N

6.7)

where a; = a;1n, and b; = b; 1y, into equation (6.3), to obtain,
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S(ri}i,nco;‘)n(w, cw)A (€1, €2)

N o1
=HH H - (ajfb,fu+AE;jeszD’qu>

I=1J=1 Oev,
Ay, +Low, +14cw, —cv,=0  mod n
-

H - (a./ — by —p—Amwe + L.,V_,ﬂ)

Hcw,;
Amw,+Llmy,+1—cw,+cv,=0 mod n
N -1

++
11 S Iy
I=1J=1 Oev,
Agy,+Low, Hl—cy+ew,; =0 mod n
++
H (“1 —bj—p—Amw,e2 + L.,VIEI)

Hew,
Amy,+Lmy,+1+cy,—cw,=0 mod n

N
e —
1 11 - (AD’VIGZ - LD”’“) 11 <_AI.W,€2 + Ll,vw“)
I=1 Oev, Hcw,
Any,+Loy,+1=0 mod n Amw,+Lmw,+1=0 mod n
N I-1 .
o+
I I (e aifo-to)
I=1J=1 Oev,
Agy,+Lgy,+1—cy+ev;=0  mod n
++ )
H <al —aj—Agye+ Lmylfl)
Oev,
Any, +Loy, +14cv,—cy, =0 mod n
N I-1 3
o
HH H - (b, —by 7AI,W,52+L.YW161)
I=1J=1 mew,
Amw, +Lmw,+1—cw,+cw, =0 mod n
—1
—
H - (b_/ - b[ +A.,W,EZ - L.,W,el)
Hew,
Amw, +Lmw,+1+cw,—cw;=0 mod n
n, num
S(V,rv)(W,cw)A (e1,€) (6.8)
= o .
Sden(V,Cv)(W,cw)A (61’ 62)

6.3.2. Sign factors and abbreviations. We define,

Frm (V7 Cy | W’ CW)

F = ’
(V,ev | W, cew) Faen (V,cv | W, cw)

F™™ (V,cy |W,ew) =

=

II II (=1 II (=1

I=1J=1 Oev, oW,
Agy, +ow,+1+ew, —cy,=0  mod n Amw, +Lmy,+1—cw+ey,=0 mod n
(6.10)

N
Fden (V,CV‘W,Cw) :H H (_1)

=1 Oev,

Ay, +Loy, +1—cv,—cy,=0 mod n
N I-1

1111 11 (=1 11 (=1 (6.11)
I1=1J=1 Hew; Hcw,

Amw, +Lmw,+1—cw,+cw,=0 mod n Amy, +Lmy, 14w, —awy, =0 mod n
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and introduce the abbreviations,

HYU (x’ cY) = 'Ayu (x’ cY) ‘Cyu (X, CY) s (612)
where,
Ay, (x,ev) = I (v-w+afhe—Loya), Assey) =1,
Oev,
Any,+Lay,+1—cv+ey,;=0 mod n
(6.13)
= Cxr— ++ -
Lw, (x,ew) = H <x1 X;— Amy,€2 +LI,W,€1> , Loz (xew)=1.
Hcw,
Amw, +Lmw,+1+cw, —cw;=0 mod n
(6.14)

6.3.3. Comparing the numerators. The numerators S ’t,“c“‘:‘; W.ew)a (€1:€2)  and
Zmnmm (g V.ey | w|b, W, cw) are identical up to possible overall signs,

S(nvnz‘r:l)(w cw)A (61, 62) = Fnum (V,CV | W,Cw) Zn,num (a, V,CV | 1% ‘ b, W,Cw) .

(6.15)
6.3.4. Comparing the denominators. The denominators are,
S fen (V.ev)(W,ew)A (€1, €)
N N J-1
= Fde" (V’ v | W’ Cw) H AVII (a,Cv) ﬁWn (b’ CW) H H HVJ] (a9 CV) HWU (b, CW) (616)
I=1 J=11=1
and
N N
Zélen (a’ V.ev |b’ w, CW) = H H HVIJ a,cy HWIJ (b CW))l/Z . (6.17)
I=1J=1
In other words, 8"V o)A (€1.€2) and 2™ (@, V. ey | 11| b, W, ew) have different

denominators. However, we show in the sequel that in computing linear as well as cyclic 4D
instanton partition functions, we get exactly the same result by using S™ "™ (with an appro-
priate choice of framing factors) and by using Z " "™,

7. From n-coloured 5D strips to n-coloured 5D webs

We glue 5D n-coloured strip diagrams to form 5D n-coloured web diagrams.
The linear and cyclic web diagram topological partition functions are obtained from fig-
ures 8 and 9, once the horizontal edge factors are specified. The answer takes the general form,

n — n, block
S"(x,y,R) = Z S(Vl,wl),(vz,%)’m,(Vm’%) (x,y,R) 7.1)
(View, ) (Ver,)

S block
(vi, v,) (Va.ev, ) (Vpoev,,) ) ]
for every strip, and an edge factor for every internal horizontal edge.

S P-norm

(x, y, R) is a product of factors of type (View,) (Visroev,, ) Ao

where
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71. The summation in equation (7.1)

For n = 1, the summation is over all N-Young diagrams because the moduli space of instan-
tons on C? is connected, and the localization theorem requires that we sum over the contrib-
utions of all fixed points, each of which is labelled by N-Young diagrams. For n = 2,3, - -,
the moduli space of instantons on C2/Z, is a union of disjoint smaller spaces [28], and the
summation in equation (7.1) is not over all possible charged N-Young diagrams, but restricted
to certain series of charged Young diagrams.

72. (N, k)-type Young diagrams
Following [4,32], given (Y, ¢y) = (Y1, ¢v,), -+ » (YN, cyy)), wedefine N = (Ng,- -+ ,N,_1),

where N, is the number of Young diagrams of charge c. Further, we define k = (ko, - -+ ,k,—1),
where k., is the number of cells with coordinates (¢, 7) € ¥;,i = 1,--- , N (that is, in all Young
diagrams), such that,

cy, +(—=1)—-@0g-1)=¢ c€(0,---,n—1) (7.2)

and say that (Y, cy) is of (N, k)-type. Clearly, ZZ;& N, =N, and ZZ;& ke =S| Y.

78. (N, u)-series of solutions
Let u = (uy,--- ,u,_1)be given by'3,
ui=N;+ (ki-i —2k;i +kit1), (7.3)

then, for fixed u, solve equation (7.3) to find all possible values of (N, k). For fixed N, there
may be no solutions, or there may be infinitely-many solutions k that satisfy equation (7.3).
In the latter (relevant) case, for a corresponding fixed N, k is a sequence in Z*, , indexed by
ko = r € Z > which we denote by k (r). We define,

(N,u) -series = ((Y,cy) | (Y,cy)is of (N,k)— type for k such that N and k satisfy (7.3))

(7.4)
= ((Y,cy) | (Y,cy)is of (N,k(r)) —type for some r € Z ), (7.5)
and restrict the summation in (Y, cy) to one or more of these series.
74. Example
For N =2,n =4, and u = (0,0,0), there are three (N, k)-series'®,
Series 1: N =(2,0,0,0), k= (r,r,r,7) (7.6)
Series2: N=(0,1,0,1), k= (r,r+1,r+1,r+1) (7.7)
Series3: N =(0,0,2,0), k= (r,r+1,r+2,r+1) (7.8)

for r € Z > . This gives rise to three series of charged Young diagrams (¥, cy). The charges
cy are fixed within the series by N,

15 u is related to the first Chern class of the instanton gauge bundle ¢, (E) = Zf;l u; ¢ (T7), [4, 28].
16'We use this example, which can be found in [4], to reproduce the same result.
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Y,

Y.
2 Y,

Figure 7. The vertex Cy'y", (x,y) is on the left and the conjugate vertex Cy'ry 7 y+ (¥, X)

is on the right.

(%]
(7]
%)
Vi, Acy, )
Vai, Ac,, Vs Ac,,
2 --- \
— O
V2, Ac,,
%)
-
-
-

-
Van, Acy y Vil Ac,

(%]

Figure 8. The linear web diagram constructed by gluing (m + 1) N-strips diagrams.
Each N-strips are linked to the next by a series of internal horizontal edges assigned
with Kiéhler parameters A, and sum over all possible associated Young’s diagrams

V.= (Vi,- -+, Viy) in a given series.

Series 1 : ¢y = (0,0)

Series2 : ¢y =(1,3) orequivalently ¢y = (3,1)
Series3 : ¢y =(2,2).

Switching ¢y = (1,3) and ¢y = (3, 1) is the same as switching the labels of Y; and Y, in
the summation, hence they are equivalent. The summation in equation (7.1) is restricted to one
or more of these series.
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(%]
o Za @
Vi, Ac,,, D
Voo, Acy, Var, Ac,, Vs Ac,,
N ot
o Vinzs ACW(,Z
Vi, Ao

.
-

Vans Ac, L Vints Ac,,.y

Yo, Acu
(%]

Figure 9. The cyclic web diagram constructed by gluing the first and the last N-strips
in the linear web diagram.

75. The edge factors

For the /th line between S "™ and S/ ™ , we define,
S(Vifl,cv,;] )(Vi,cvi)A i1 (Vi,(—‘vi)(Vi+1,Cv,»+l )Ai, i1
Vi
Edge factor = (—Qc,) | " i1 (7.9)

—RAC,

with Qc, = zie i, where z; is an instanton expansion parameter, and the framing factor

" }
S i 18

n _ [ Vit | £n,left pp,right
fivii = (=1) NESy (7.10)
N 1
n,right
ettt =11 11 -0 ]I 11 (-1)
J=I Oevy J=1 Oevy
AD,V,-,‘*‘LD.V,-_'_W"F] AD,vi1+LD.vij+l (711)
+evigy —cy;=0 mod n —cyy—cv;=0 mod n
1 -1 N
n,left __
=11 11 oIl II  &nll II v
J=1 Oevy J=1 Oevy J=I+1 Oevy
AD'V"+LD‘V17|_I+1 Apy,tloy, t1 Agy,tloy, +1
—cyy+ey;_ ;=0 mod n —cy,+evy;=0 mod n +ey, —cvy;=0 mod n (7 12)

The framing factor is designed to take care of the sign difference between the conformal
blocks calculated from Z” and §™"™. When n = 1, the framing factor is,

N 1 I—1 N
P =CED T GO IT &0 T 0T I <o I IO -

J=I0Oevy J=10evy Oevi J=10evy J=I+10eVy
Vi N—I+1) | V; 1|V, Vi 1-1) |V, N-I)|V;
:(71)| 1|(7])( )| ll(il)l 1|(7])| ’l(fl)( )| 1\(71)( )| 1|:].
(7.13)
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S3P is given in terms of N-strip partition functions for linear and cyclic cases as follows,

75.1. Linear conformal blocks. See figure 8.

n, linear block
(S(Vl"_v1 ),(Vz.!-‘vz)»'“ (Vv ()Cs Yy, R)

N
__ on,norm [Viel £n n,norm
B S(gsfeu)(vl,cvl )Aa (.3, R) (H (=Ccu) f012,1> S(Vl.cw )(Vaier,)A 0 (6.3, R) -

I1=1

N
n, norm _ ‘ Vini | n n, norm
o S(melyt‘v,,,,l ) (Vi ev, )A —1m (x’ P R) (11_[] ( QC’"") ml,m,m+1,l> S(prcv,,)(zvczm“ )A mmt1 (x’ > R) ’

75.2. Cyclic conformal blocks. See figure 9.

n, cyclic block
S(VOs"VU ),(Vlst'v, ),(Vz,t'vz ) (Vi ev,,) (x’ Y R)

N
__ omn,norm [Virl gn n, norm
= (Vo) (Vier, ) A ) (H o) ) SWrew)(vaen)a R

=1

=

n, norm _ | Vit | o 1, norm
o S(Vm—l,t'v,n,] )(Vm’ch YA i (X, Ys R) < ( QCmJ) fm—l,m,O,I) S(Vmsfv,,,)(vo.cv())Amo (X, Ys R)

N
<H (—0Qcy,) Yoo fn:lm,l) .

I=1

I=1

(7.15)

8. The 4D limit of the 5D n-coloured web diagrams

We take the 4D limit of the 5D n-coloured web diagrams, and show that S™""™ and Z y; 4D

lead to the same 4D instanton partition functions.

Given a pair of charged N-Young diagrams (V,cy) and (W,cw) of (Nvy,ky)-type and
(Nw, kw)-type respectively, the number of factors that appear in Z™™™ (a,V,cy | u|b,W,cw)
(as given in equation (6.5)) is,

n—1

Kn (NV7 kV |NW’ kW) - Z (kV,c+1 kW,c - 2kV,c kW,c + kV,c kW,c+1 + NV,c kW,c + NW,L' kV,c) . (81)
c=0

For the web diagram partition function in equation (7.1), where (V;, ¢y,) is a (N;, u;)-series,

n o . n, block
S"(x,3.R) = > > Sren ) (Vaew, ) Ve B R)

(Vl, cv, )e (N1, uy)-series (Vins€v,, ) € (N, ) -series

o0

= Z Z Y Z S(n"/':,lz(j:),(vz,cvz),m (Vi.ev,,) ()C, Y, R)

e my=0 (Vl,cvl) is (N1.ki(my))-type (Vasew,,) is (Nuk (rm))-type
(8.2)

we multiply each summand of S” (x,y, R) with (ry,- -+, r,) by a factor of,
R0 (Ku(Nis ki(ri) | Niski(ri)) —Kn (N ki (ri) [ Ni1 i1 (i) (8.3)

with either linear or cyclic boundary conditions for (N, k;) for a linear or a cyclic web dia-
gram, respectively. For linear conformal blocks,

(No, ko) = (N3,,0),  (Nut1, ko) = (Ng,.,.0). (8.4)
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with Ng, . is the number of 7Z,-charges in cg;, that are equal to ¢, i = 0,m + 1. For cyclic
conformal blocks,

(NO’ k()) = (07 0) 5 (Nm+1, karl) = (Nhkl) . (85)
In the limit R — O,

o0
S" (e1,6,) = lim Z R0 (K (Niki(ri) | Niki(ri)) =K (Niski(ri) | Nig 1 Ki1 (ri1)))
’ R—0
My, =0
n, block
Z Z &S‘(Vht‘v1 ),(Vz,b‘vz),"- (Visev,,) (X,y, R) (86)
(Viev,) is (Niki(m))-type  (Vimew,) is (Nuk, (rn))=type
_ . n, block
= > > S(VWI )(Vasevy ) (Vimen,) (e1.€2).

(V1 NI )E(NI ,uy)-series (Vi ev,, ) € (N, uy, )-series

Since the 4D limit of the edge factors are,

. [ Vi | _ [ Vir |
}elm (=Qc) " " fl i = (D (8.7
—0
n, block

(Vrvew, ) (Vascv, oo (Ve )(el,eg)for linear and cyclic building blocks are,
Levy )\ V2, €y, )V, Cyyy,

n, linear block

(V1,t‘vI ),(Vz,cvz),“. (Viev,) (61 s 62)

N
__ on,norm ZL] [ Vir | n n, norm L
B S(z"'ﬂo)(vl*"Vl)Ao‘ (€e2) (1) : 11:[|f012’IS(V1,cv.)(Vz,cvz)Alz (e1,€2)

N
.. ¢n.norm _ Z?;. | Viur | H n n, norm
S(Vm—lgfvm,, )(Vmchm)Am—],m (61 » 62) ( 1) I_1fm7l’m’erl’IS(quL‘vm)(la',czm“ )Am‘m-f—l (61 5 62)

(8.8)
n, cyclic block (6 € )
(VO,L'VO),(VIch])x(VZchZ):"'v(erch) &2
N
__ gn.norm _ S Vi n n, norm L
S Wen) (Vv o (1) (1) 1L AerS o v s (1)
N (8.9)
| Vi
S(n",:(irilfvmfl)(Vm,L‘Vm)Amfl,m (€1, €2) (71)21_1 Vo] Hf"?*]’m’o”
=1
S | Vorl -
n, norm _ _ o n
S(Vm,l-‘vm)(V()JVO)AM) (61’ 62) ( 1) = Hfm()l,l'
=1
Observing that,
N
, right » n, lef
F (Vi’c"i |Vi+1’cVi+1) = Hﬁ?flgltle:ﬁtl’ (8.10)
1=1

the relation between F (V, ¢y | W, ew) and the framing factors f , ;, ., for the linear confor-
mal blocks is,
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<H )\V11|f > <H (1)V11|f1'53’1>
=1 I=1

N
(—1) !V f> (H (—1) Vol f)

I1=1

:jz

I1=1

N
_ nleft pnright o n left cnright e left nyright  nleft nright ¢ n,left ~n,right
- 01,7 J12,1 12,1 J23,1 fm72,m7],l m—1,m,Mm—1,m m,0,] fm,OJ 01,7
=1
m
=H ( i i+17CV,-+1> (8.11)

Il
<)

Since Vo = Viui1 = @, we have fy 7&" = f 1 | = 1 and it is justified to multiply the right
n, left

hand side in the second last equality by fy; """l | For the cyclic conformal blocks, the

relation is,

<H(—1)V”'fo'iz,1> (H(—l)'v"'f1§3,1>

=1 =
N N
[ Vi | £n [Vor | ¢n
H(il) fm—l,m,(),l H(il) mel,I
=1 =1
N

_ nleft o nright » n left o nright f n.left nright ,n left n,rightf n.left o n,right
- oLl J12,1 12,1 J23,1 m—2m—1Vm—1mlVm—1mWm0,l Jm0,lJ01,1

~
I
-

(8.12)

|
-Eﬁ

Il
<)

F (V,’,CVI- |Vi+1»ch+1)

and we can write the linear and cyclic conformal blocks in equation (8.8) and equation (8.9)
as,

n, linear block
(V],Cv] ),(VZ,CVZ),'“ ‘(Vm,ch) (61 5 62)

=F(D,cq, | Vi,cv,) zn,vnlogr:)l (e1,€2) F (V1,cv,|Va,cv,) S(nVTO::‘I::)(VZ o)A (€1,€2) -

~F (Vu_r,ev,_, | Vascv,) S(”V“‘fnw ) Vocu A1 (e1.€)F (Vi,ev, |D.ca,.,)
n, norm
Vaner,) (2o, ) A i (e1,€2) (8.13)

n, cyclic block (
(VOJ-‘VU ),(Vlst‘v, ),(stt‘vz ) (Vi ev,,)

_ n,norm n, norm .
=F(Vo,ev, | Visey,) S(Vo,cvn)(vl,cvl)Am (e1,€) F (Vi,cv, ‘Vz’CVZ)S(Vl,cv,)(Vz,cvz)Alz (e1,€2)

n,norm
F (melycvmfl ‘ Vm,cvm) S(Vm—lst'vm,,)(Vmsfv,,,)Am—l,m ( CVU)

€1,€)

€, 6) F(

ms

n, norm

(V"“CV’")(VO’CVU)Amo (61 ? 62) :

(8.14)
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8.1. S™"°™ and Z 1 *P lead to the same 4D instanton partition functions

Let,

n, norm

Voor)W.cy)a (€15€2)
Z;’;“D (a,V,cy | u|b,W,cw)
_ I, I, (v, (@,ev) M, (Byew))'?
[T1=, Av, (a.cv) L, (b.ew) [T)-, TT1Z) Hv, (@.cv) Hu, (b,cw)
= Flett (@, V) Frighc (b, W) (8.15)

where we have used equations (6.15)—(6.17) for the second equality. We also define,

H?:l HIJV:I HV[J (a,cv)f
5 ¥ T (8.16)
[I= Av, (a,ev) [T)=; ITi=) Hy, (a.ev)

]—'(a,V|b,W) :F(V,Cv|w,0w)

J_'.left (a3 V) =

H;vzl HIJV:I HWIJ (b’ CW)E

Fright (b, W) = — e ) (8.17)
HI:I ‘CWM (b’ CW) HJ:I I=1 HWIJ (b’ Cw)
The linear and cyclic conformal blocks take the form,
Zmlineardlock — 7z 04D (g o5 cor | pio1 | @1, Vi,ev,) 2% (a1, Vise, | 2 | a2, Va,ey,) - - - 8.18)
er\l;4D (ann Vmch,,, |//Lm,m+l ‘aerl,@acZ) '
Zmeyelieblock — Z 4D (g0 Vo, ev, | por |a, Visev,) 20 (@1, Vi,ev, | iz | @2, Vasey,) - - 8.19)

Z5Y (@, Vinsev, | pimo | @0, Vo, ev,) -

We claim that

’ zn linear block =8 n, linear block zn cyclic block =8 n, cyclic block

and . (8.20)

Comparing equations (8.13)—(8.18) and (8.14)—(8.19), the claim is equivalent to,
]:left (aO’ Q) -/—"right (al, Vl) T -7:left (am’ Vm) -/—'}ight (am-H, @) = 17 (821)

Fiet (@0, Vo) Fight (@1, V1) - - - Fieti (@m> Vi) Frigne (@0, Vo) = 1. (8.22)
Since F (a,@ | b, ) = 1, it follows that Fief (@, D) = Frign (@, D) = 1,
Fiete (@, V) Frign (@, V) =

H?]:l H}JV:I Hy, (a, cv) _
1L, (Av, (@.cv) Ly, (a.ev)) [T, TT/=) Hv, (a.ev) T2, TT=) My, (a.cv)
(=)= T T H, (a.cy)
T, M, (0) TT,o) Hyy (@cev) TT,o s Huy (acv)

proving the claim.

=1 (8.23)

9. A 4-point conformal block

We recover the 4-point conformal block on R* | Z,, in equation (2.10) of [4] by gluing two strip
partition functions. To help with the comparison, in this section, we use the notation of [4].
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9.1. Change of parameters and notation

In previous sections, in the case of computing 4-point conformal blocks. This is the same as
linear blocks with Vo = &,V =Y,V, = &. We used the Kihler parameters A, g, - - -, the
Coulomb parameters ao,a;,a;, the mass parameters p; and f,, the deformation parameters
€1 and €;, and ¢; for the Young diagram charges.

In [4], Alfimov and Tarnopolsky use the Coulomb parameters P; = (P;j, - ,Pin),
P= (P, ---,Py), i = 1,2, the mass parameters «;, v, the deformation parameters b'b,
and g = (g1, - - - gn) for the Young diagram charges. These two sets of parameters are related

as,

ay=P;, a=P, ay=P), pp=o, pn=o, e=>b"', e=n, CY,:—QI,(QI)

and the Kiéhler parameters (A gk, - - - ), in terms of the parameters of [4] are,

Apx=-Pix+Px+a,—b~", Agmy =Pixs1 —Px+a—b~",
A12,1(:—PK-i-Pz,K-l-Oéz—bfl, Alle:PK+1_P2,K+042—b(791.2)

‘We will also use,

(Y,ey)=(Y, —q). 9.3)

9.2. The 4-point conformal block

In the notation of [4], introduced above, the 4-point n-coloured conformal block constructed
from two n-coloured strip partition functions is,

Smd=—point () — Z S(:;’tzs)ck (b) Y1/,

¥, —q)
Where zis an instanton expansion parameter (a position parameter in 2D conformal field theory).
The summationisovereachofthe (N,u = (0,0, 0))-seriesinequations (7.6)—(7.8). Forexample,
if we choose Series 2 in equation (7.7) then N = (0,1,0,1) and k(r) = (r,r + I,r + 1,7 + 1)
and the summation is over all (¥Y,cy) = (Y, —q) of (N,k(r))-type. We obtain the expression
for the 4-points conformal block S(';,bql;wk (b) from the expression of linear conformal block in

equation (8.13) by substituting Vo = &,V =Y, V, = &. In the notation of [4],

94)

S(';;E;)Ck (b) =F (Q,O | Y, Cy) S(%?STFY,CY)AOI (6], 62) F (Y, Cy ‘ Q,O) S(r;,r;(::;lzz,o)A " (51, 52)

n, norm — 1, norm — (95)
=F(2,0]Y,-9)Si"0y. _pa, (b7 0) F (Y, ~q|2,0)S5™0 5 o a ., (67'0)
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N I
- HH H (PI,J —P;—o —ADYYIb—i—LEEb")

I=1J=1 Dey,
Ay, +Log+14+q =0 mod n
N I-1
++ -1
HH H (PI,I*PJ*OélfAD,YIbJrLD,Zb >
I=1J=1 dey,

AD,Y,+LD,g+1+q/:0 mod n

N -
I I (~Ab+ LE5™)

=1 Oey,
Ay, +Loy,+1=0 mod n

N I-1 -
—1
I1 11 (P~ P1—Acyb+ LE}b™)
I=1J=1 Oey,
Agy,+Loy,+1+q—q; =0 mod n
—1
—1
11 (P, — P+ AL b Loyb >
Oey,
Agy,+Loy,+1—qi+q;=0 mod n
N I
—1
H H H (P] — Py~ + ALY b — Ly b )
I=1J=1 Oey,
Agy,tLog+1+q =0 mod n
N I-1
—1
1 11 (Pr=Pay =0+ A b~ L)
I=1J=1 Oey,

Agy,+tLlge+l+q =0 mod n

N —
I1 I1 (g~ Lomb ™)

=1 Oey,
Any,+Loy,+1=0 mod n
N I-1 »
—1
11 11 (Pz — P+ AL b—Loyb )
I=1J=1 Oey,
Agy,+Loy,+1+q—q;=0 mod n
—1
—1
11 (P[ — Py~ Ay b+ LD )
Oey,
Any,+Loy,+1=a+49;=0 mod n
N
—1
- H H (Pu —Pr—air —Agyb+L55b )
1J=1 Oey;
AD,Y,+LD,Q+1 =—q; mod n
N
—1
H H (PJ—Pz,I—Oéz -‘rAE‘J;Ib—LD’Zb )
1J=1 Oey,
Agy,+Log+l=—q; mod n
l —1
—1
II II (Pz — P+ A b — Loyb )
1J Oey,
Agy,+Loy,+1=—q+q; mod n
-1
—1
11 (Pr=Ps = Ay b+ 1567
Oey,

Any,+Loy,+1=q@—q mod n
_ 2™ (51,8,0|o |PY,—q) Z™" (P.Y,—q| a2 |5,9,0)
- Znm (PY,~q[0[P.Y.—q)

which is equation (2.10) in [4], for N =2,n = 4.
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10. Comments and remarks

10.1. A formulation in terms of n-coloured Young diagrams

We have refrained from discussing the n-coloured vertex in terms of n-coloured checker-
board Young diagrams, and in particular, we did not consider working in terms of n-cores and
n-quotients [34, 38, 44]. This is because, in this work, working in terms of n-cores and
n-quotients was not needed and would have taken us far afield from our goal which is to repro-
duce the 2D parafermion matrix elements in [4].

10.2. The n-coloured vertex is not a product of n arbitrary refined topological vertices

The n-coloured vertex factorizes into a product of n refined vertices. However, it is not a
product of n arbitrary refined topological vertices unless the Young diagrams that label the
preferred legs of the component vertices mesh together to form the Young diagram that labels
the preferred leg of the n-coloured vertex.

10.3. Counting parameters

While the 5D strip partition function has (2N — 1) Kihler parameters, and the 4D instanton
partition function also has (2N — 1) parameters, there are N? relations among them which arise
from the factors in S('{;f‘:‘:’)‘(w’ cw)A (€1, €2) (equation (6.8)) and Z™™™ (a,V,cy | 11| b, W,cw)
(equation (6.5)). The significance of the fact that (2N — 1) parameters satisfy N? relations is

not clear at this stage.

10.4. Rational models

In this work, we restricted our attention to generic, that is non-rational parameters and the
corresponding conformal field theories. The relations between the parameters of the 5D strip
partition function and the 2D matrix elements obtained in this work are expected to extend to
the rational model, after 1. re-writing all parameters in terms of the screening charges a4+ and
«_ of the minimal 2D conformal field theory, and 2. restricting the Young diagrams that label
the preferred legs to those that satisfy Burge-type conditions (thereby eliminating the null
states), as described in [5, 14, 18].

10.5. The orbifold vertex [22]

In [22], Bryan, Cadman and Young define Donaldson-Thomas invariants of Calabi—Yau orbi-
folds and introduce an orbifold topological vertex to compute them. The orbifold vertex is
n-coloured in the sense that it is the generating function of plane partitions that are made of
interlacing checkerboard n-coloured Young diagrams. However, the orbifold vertex differs
(at least on a superficial level) from the n-coloured vertex introduced in this work in several
technical respects. 1. The orbifold vertex is constructed in terms of one type of I' +-operators,
which is equivalent to using one Heisenberg algebra, rather than n Heisenberg algebras as in
the n-coloured vertex, and consequently, the orbifold vertex is in the form of a single sum of a
bilinear of Schur functions (as in the refined topological vertex), while the n-coloured vertex
is in the form of a product of n sums of bilinears of Schur functions, and 2. the cells of the
plane partitions generated by the orbifold vertex are assigned n colours, and cells of different
colours are assigned different weights, while in the case of the n-coloured vertex, all cells are
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assigned the same (trivial) weight!”, 3. the orbifold vertex is not refined, while the n-coloured
vertex is'8. More generally, 4. The orbifold vertex computes topological string partition func-
tions on orbifold Calabi—Yau (internal) spaces such as Cc? /7 ,, while the n-coloured vertex
computes topological string partition functions on the (Euclidean version of space-time) orbi-
folds C2/Z,. It is possible that there is a more general operator formalism that produces a
more general vertex such that the orbifold vertex and the n-coloured vertex are special cases of
the same object, but this is not clear at this stage, and is unlikely given that these two vertices
compute different objects.

10.6. The intertwining operator of the Fock representations of the quantum toroidal algebras
of type A, [9]

Following the completion of this work, we learned that in [9], Awata, Kanno, Mironov,
Morozov, Suetake and Zenkevich introduced an intertwining operator of the Fock representa-
tions of the quantum toroidal algebras of type A, and used these to obtain the instanton parti-
tion functions on C2 / 7.5, Using AGT, these instanton partition functions are identified with
the matrix elements discussed in this work, and as such, the intertwiner of [9] is identified
with the n-coloured vertex introduced in this work. The differences between the two works are
that 1. The intertwiner of [9] is in Awata—Feigin—Shiraishi operator form [6], which bypasses
working in terms of symmetric functions, while the n-coloured vertex in this work is in the
(more conventional) Igbal-Kozcaz—Vafa symmetric-function form [31], 2. The focus of [9] is
on the representation theory of quantum toroidal algebras, while that of the present work is
on making contact with the 2D matrix elements that the C?/Z , topological vertex formalism
computes, with emphasis on the details, including the framing factors, the matching of the
various normalizations, efc.

10.7 More general orbifolds

Following the completion of this work, Bourgine and Jeong [21] introduced an n-coloured
topological vertex of the Awata—Feigin—Shiraishi type [6], that allowed them to discuss
new quantum toroidal algebras that are related to 5D supersymmetric gauge theories on
((C2 / Z,,) x S! orbifolds, which were first discussed in [19, 20]. These orbifolds are more
general than those discussed in this work, and so far the corresponding 2D conformal field
theories are not known.

10.8. Extracting the affine Ay, integral level-N, WZW model algebra

In, Macleod and the second author show that there is a choice of the Nekrasov deforma-
tion parameters such that the coset component in the full A (N, n) algebra trivializes and one
obtains a formalism that involves only the affine A, WZW models, at integral level N, times a
Heisenberg factor.

17 There can be an orbifold vertex that is formulated in terms of n free bosons that assign different colours to differ-
ent cells, but this is not clear at this stage.

18 Because of 1 and 2, the orbifold vertex is parameterized in terms of n parameters (qo, g1, - »q—1), while the
n-coloured vertex is parameterized in terms of the equivariant deformation parameters (e, €;), and the radius R.
However, this is probably not a deep difference, and it is entirely possible that there is a refined version of the
orbifold vertex.

19 We thank M Bershtein and J-E Bourgine for bringing [9] to our attention.
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Appendix A. A proof of the n-coloured normalized product identity
We prove the identity used to go from equation (5.7) to (5.8)
In the following, ¢ stands for cy — cw, the difference of the charges of the Young diagrams

Vand W.

A.1 An identity

Forc € (0,1,---,n — 1), we have the following identity:
H (1 _ Qx—v[+jy7Wf+i71)
ij=1

(=Vit)+(=WT+i—1)=c mod n

(1-0xy™)
ij=1

i+j—1l=c mod n

= H (1 — Qx Ay y*LH> H (1 - QXAE} yLD.v)

| 19% Oew
Amy+Llmw+1l=—-c mod n Apw+Loy+l=c mod n
++ ++
= H (1 — Qx_AD,v y_LD,W> H (1 — QxA.,W yLl,v) .
Oew Hcv
Agy+Llgw+l=—c mod n Amw+Llmy+l=c mod n

(A.1)
A.2. A more general identity

Here we prove an identity more general than equation (A.1), and from which the latter follows.

A.2.1. Proposition. LetF : Z x Z — R be a function such that H;ff: . (1 4+ F (j,i))converges
absolutely. Then, for any pair of Young diagrams V and W,

I1 (17 (-visiw +4))

ij=1 — = H (1+F(-Amy, —Lmw)) H (1 +F (AER’LE;))
[T a+FG.i) mov 4l
ij=1
= ng(l +F(_A|:|,V, _LD,W)) .gv (1 +F (A::;/,L=:"‘_/)) .
(A.2)

As an example we can consider the case where V = (4,3,3,1,1,1) and W = (5,5,3,2)
illustrated in figure A1l and figure A2.
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In the other words, we consider the map Yyy : Zi — 72, and identify Zi_ with the associat
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Figure A2. The Young diagram pair W,V and their embedding into 1wy . The rest of

1wy (colored black) exactly coincide with )4 4.

Figure Al. ¢gy.
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(1,0

(4)

Z1 X L. We associate to each point (j,i) € Z2,, the symbol

(-3.-3)[-2.-3)|(-1.-2)| (o, 1)|

(0.0)

(0.1

(5.0)
(5.5)
(3.4)
(2:3)

(0.2

+:

(14+F(m,n)), myn € Z as (m,n). Consider the positive quadrant of the integer lattice
2

A.2.2. Proof of the first equality in equation (A.2.) To simplify the notation, we write the
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symbols and the map 1wy . By multiplying all factors that correspond to all symbols in Z2
we obtain the product []7, (1 +F (—Vl- +j =W +i 2

For V = W = @, equation (A.2) is trivially true, and Z7_is populated by symbols (j, ) at
each point (j,i) € Z3. We extend this to Z? by associating (j, i) at all points (j, i) € Z?, and
take 14 to be the restriction of the identity map to the sub-lattice Zﬁ_.

For arbitrary Young diagrams (W, V), we construct ¢yy from 14 as follows. 1. Shift the
first coordinate of each symbol (m, n) in the ith row of Z? in the positive j-direction by V;.
For example (m, n) becomes (m — V;, n) after the shift, 2. Shift the second coordinate of each
symbol (m, n) in the jth column of Z? in the positive i-direction by W,T. For example (m, n)
becomes (m,n — W,T) after the shift, and 3. Restrict to the sub-lattice Z2 C Z2.

Consider V to be arbitrary, and W = &. From the construction of 14y, all symbols in 1)z
are preserved, but get pushed to the right to make room for the embedding of V C Zi. All the
factors corresponding to symbols in 14 o are eliminated when dividing by H;.?:l (1+F(j,0),
and we are left with the product [ ; ;) cy (1 + F (=V; +,1)), so the identity is proven in this
case.

Next, consider the general case where both V and W are arbitrary. From the above construc-
tion, the symbols in V C Zi give the product,

[T (1+F(=viti-wT+i)) = T O+ F(-Amy. ~Law).

(ji)ev Hcv

It only remains to show that W along with 44 can be embedded in the Zi_ \ V part of
Ywy. That is, the embedding of W must include the symbols that represent the factors in the
product,

[T (1+F(atfeL83)) -
Oew

The contributions from 44 are eliminated when dividing

[ (e (-vieswr o))

ij=1

by [T;; (1 + F (j,i)), giving equation (A.2).

Now, keep V fixed, and add boxes to W, completing a row then moving to the next. The first
box added to W shifts the second coordinates of the symbols on the first column of Z? down
by 1. This is equivalent to pushing all symbols above the V,"-row in the first column up by 1,
and refilling the empty spot at (1, V| + 1) by a new symbol (1, V|"). Therefore, all original
symbols from 14 are preserved.

The new symbol (1, V|T) cannot be part of 144 because we have just concluded that v o o
gets pushed away with all its symbols preserved. This gives an embedding of W into ¥y as
the new symbol (1, V\7), and ¢4 into Ywy as Z2 \ (VU{(L, VT + 1)}).

Consider that W consists of a single row of length (n — 1) and can be embedded in ¥y .
Adding a box into the row of W, so that W is single row of length n, amounts to shifting the
second coordinates of the symbols in the nth column of Z? down by 1. Take V' = oo, and let,

Ny=(je (e m) VT, = VT >0). (A3)
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For each j € N, all symbols above the VjTth row but below the lelth row are shifted
up by 1 and for each j € N, \ {1}, the symbol En —j+1, lel) on the lelth row and nth
column is pushed to replace (n —j+1, lel) at(n — (j — ijTlJrl) ,VjI, + 1). The symbol
being replaced was a new symbol created when we added a (n — ( j — ij. T +1>)th box to
the row of W. The new symbols introduced are (n —j + 1, V]T> for all j € NV,. The remaining
symbols needed for the embedding of W are (n —j+1, V]T) for j & Nyor VT = V7. These
symbols are in Yyy before we added our last box and it cannot get replaced because, as noted
above, only (n —j+1, lel) for j € N, \ {1} are replaced.

The number of symbols introduced is equal to | A, |, which is always one more than the
number of symbols replaced. Therefore, all symbols that belong to W before we added the box
but not after, must be replaced. Since all the original symbols from )4 are preserved, we
have an embedding of a single row of any size W and 14 into 1wy as required.

Since we work with Young diagrams, shifting the second coordinates of symbols in the nth
column of Z2down by 1 can only be done if we have done it for columns1, - - - ,n — 1. Moreover,
the operation preserves all but those symbols it created itself in columns 1, --- ,n — 1. When
we add boxes to the next rows of W, the embeddings of all previous rows of W along with
g are preserved. Adding the ith row of Wis exactly the same as adding the first row, except
that all the second coordinates of symbols in every columns that concern us have already been

shifted down (i — 1)-times. So, wherever we introduce a new symbol (W] —-j+1, V]T> we

introduce instead ( W, —j+1, VjT —i+ 1). We have an embedding of 44 and an arbitrary
W into 1wy, which concludes the proof of the first equality in equation (A.2).

A.2.3. Proof of the second equality of equation (A.2.) Applying the first equality with
F(m,n) = F (n,m) and diagrams V=WT,W=VT,

ﬁ (1+F(—\7,-+j,—i7VjT +i))
lo'j[ (1+F(j.i))

- 11 (1+F(—‘7,-+j,—‘7VjT+i)) I1 (1+F(Wi—j+1,\7jT_i+1)) (A4)

(ji)ev (i) ew

where, for clarity, the right hand side is given in detail. Re-writing this in terms of F (m, n) and
tkolg Young diagrams V and W gives

[T (1+F(-viti-wT+i))

ij=1
ITa+FG)
ij=1
= T (+r(-viti-wr+i)) I (1+F(wi—j+1v7—i+1))
(J)ewT (jievr
- 1I (1+F(—Vi+j,—WjT+i)) I1 (1+F(Wi—j+1,\/jT—i+1>). (A.5)
(ij)ew (ij)ev
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This is the second equality in equation (A.2) and the proposition is proven.

A.2.4. Proof of identity (A.1). Let

. —Qx/y=! i+j—1=cmodn
F(ji)= {0 (A.6)

i+j—1#cmodn
Then equation (A.2) gives equation (A.1).

Appendix B. The N-strip partition function. A proof by induction

We present a proof by induction of equation (5.6) for the n-coloured 5D strip partition function.

B.1. The unevaluated strip partition function

Our goal is to obtain equation (5.6) from equation (5.5). However, it is hard to perform a proof
by induction dlrectly on Sk vwa (£, R), and we find that we need to consider a more general
function S ™

Let AT = (AII,AIZ,AQ, -++) be a set of variables indexed by lTand A= (A',--- ,AV), and
similarly for B,C,D. Let @' = (Q},---,0}) and @" = (Q{,--- ,Qy_,). We define,

S™M(A,B,C,D|Q.Q") = > H ( NIl g’ |)
A SR SR S
N
11 Z sei oj (A') seg Z St e (C) g2 (D) (B.1)
=1
where £ = &y = @. In the rest of the proof, any Young diagram & that appears in the product

but not bemg summed over is assumed to be null £ = @. Sp%, A (x,y,R) in equation (5.5) is
expressed in terms of S ™) ag,

N

Shwa (. R) = [T (24 () Ziyr 009)

I=1

p—1
H s® ([xivyyil]mfcv’ [xby7VT] —cutevs b’iunxkl —entew—1 DY oy ey 1 | Q. QM)

cy=0

(B.2)
where
e P (e P VP B
(94 Vv = (17 vl e, )
g arer—t = (7@ e -1 Y 6 a1 )
[ ¥ ey—cwt1 = ([tjqiwl]c'y—cwﬁl"" ; [tjq7WN]CH_CWN+l> ’
0=(01,--,0n),0u=(Qum, - ,0umy)- (B.3)
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Therefore, once we prove the following general result,

S™ (A,B,C,D|Q,Q")

N J J—1 J J—1 J—1 -
~TITIT (1~ T [ oeefet ) TTTITT (1 - Tk T oiie

J=11=1 ij K=I K=I J=11=1 ij K=I K=I+1
N J—1 J—1 TN y-1 J—1 J -1
HHH(lﬂQ HQKA’B£> HHH(lﬂQ}é 1T Q;<ch{) . (B4
J=11=1 ij J=11=1 ij K=I K=I+1

for any A,B,C,D,Q’,Q", for N > 1, equation (5.6) follows from equation (B.2) and our
proof is complete. We prove equation (B.4) by induction.

B.1.1. Step 1.The base case. From equation (B.1), the N = 1 base case is,
S @A,B.c.D|Q.0Q"

=3 (=o' Z sa/u (A) setyo (BY) D soyuy (C) s (DY)
I n{l
= Z )€l (Bl) s (D) =Y s (018" s (D) =[[(1-QiD}B)  (B.5)

& i

which agrees with equation (B.4).

B.1.2. Step 2.The (N — 1) case. We assume that equation (B.1) holds for (N — 1). From equa-
tion (B.1), by switching the summation for {£;, &'} and {n;,n;'} and defining n} = ny = @
we obtain

Sw) (A,B,C,D|Q’,Q") = Z Z H Z(—Q;)lf’ll el (BI) St (DI)
R N B e

N—1

1|
Z (*Q;l) sél”/nl/-f—l (A[+]) sg;,T/Tll” (C[) . (B6)

1\ ¢

~
I

Then, using equation (3.10),

S(N) (A,B,C,D‘Q/,QN) _ Z H ( |"71 Q;/)"’h//')
né"nll\l T]I/”n[/\’/ =1
N N-1
11 Z sefp (= QiB') sgro (D)) TT N D sepmp, (A1) s (ZQ1CT) |- B7)
=1 =1 %
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Then, using equation (3.12),
S™(A,B,C.D|Q.Q") =

[TI1 - emo) [TTL0-ea'c) 3 IT(-en"" =en")

=1 ij I=1 iyj Moo mly el 1=1
N N—1
LI { 2 sy (O) s,me 1y (= 00BY) | T\ 22 87, e (57€C7) 5,0 (A7)
=1 7—1’ I=1 TI”
(B.8)
Changing the summation for {n;,n;'} and {7/, 7/} and defining 7| = 7}, = &,
SWchmQQ%:
[TT10-omo) TIIT( - otat'c)
I=1 iy I=1 ij
\ -1
Z Z// H Z QI nl 7]//7'1 (Dl) 7]1/7'1//71; (_Q;LIC[ )
ST T T "y
N—1 "
11_[1 z”: (_ ;/) i s”l,”T/Tll (—Q;BI) SnIHT/TI,, (A1+1) . (B9)
=1 \ 7

Applying equation (3.11) then gives
S™(A,B.C.D|Q.Q") =

N N—1
[TIT(-aBio) T[T T (1 —-e/ait'c))

=1 ij =1 ij
HH 1—Q1Q}/ lDICI 1 HH I—QQNBIAIH)
1=2 iyj I=1 ij

Z Z H< \r,\ Q;/)\m)
Ty Ty T T 1=
N N—1

7 I—1 1 /1 Al+1 / pl
IT{ >0 s (FQCY) s (D) | T D2 srpyap (—QUA™Y) sop oy (-QiB") | -
1=2 a; =1 a;/
. L B.]10

On changing the s/ummatlo/r/l 1nd1/cles to lgg = Tl",/./. . ,glfvi]/ =7l € = 3, " (. L 7—11_.)1

and my =g, -y = oy = ah, ey, =ayy and g =¢0 =, this

becomes,
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S™(A,B,C.D|Q.Q0") =

N N—1
[IIT (- ooy ITTI (1 - orait'c))

I=1 ij =1 i
N

[TIT 1 - ejer pier™) " TLTT 1 - gioratal™)”
1=2 iy et

)
N—181

SRR

lj( o€l —Q§+1)'5’”‘)

Ry

N—1
II (Z ser o (~QFA™) sy (~QIB') Y sere ) (—Q7CT) sre (—Q3+1D'+1)) :
=1\ '

(B.11)
Using equation (B.1) then gives
S™(A,B,C,D|Q,Q") =
N N—1

[IIT 0 - ITT] (1 - orait'c))

I=1 ij I=1 ij

H [T( -0 pjci™) H [1(1-ciorBa)

=2 iy =1 iy

SW-1) (_Q//A-&-’ _Q'B,-Q'C,—s*D"|Q".Q +) (B.12)
where, for any given set of variables x = (x1,x2,%3,+ ),y = (1,2, Y, - - ), we define,

-x+ = (x27-x33"')7 'xy = (lel,.xzyz,.x3Y,"')- (B'13)

B.1.3. Step 3.The induction. By the induction hypothesis,

S0 (~g'a*,-@B.-0'C.-Q"D"|0".0"")

N-1 J J—1
HH <l - H QK-H H Q QJ+1Q1DJ+IBI>

1

T“I:1

i
J-1
H( HQK+1 11 Q%QQ/Q;/AJHC[)
1

H::

K=I+1

Nr]ﬁﬂ

~1
- H Ok 11 H Ok QyQﬂ“HlBI)

i
(

N —1
H H H 1 — H QK+1 H Ox QJ+1Q7DJ+1CI> (B.14)
121 =1 K=I+1

from equation (B.4) for (N — 1). Therefore,
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SM(@,B.CD|Q.Q") =

N
HH l—QID’BI HH( //A1+1C1)
=1 =1 iy
N—1
[T (1-<ermpicl)” HH(1 0/0A] "B
=1 iy =1
N—1 "‘/I J J+1 ! N—1J-—1 J J
TTITTI (1 TTeTToer s ) TTTTT (1~ [Tok 1T obar'c!)
J=11=1 ij K=I K=I J=11=1 ij K=I K=I+1
N—1J—1 J J “Iy_1y-1 J J+1 -1
(1~ TlosTTow st) TITITT(1-[Tok 1T oot e
J=11=1 ij K=I K=I J=11=1 iy K=I K=I+1
N N—1
~TITI (- epB) T 11 (1 Q}’Aj“C{)
I=1 ij I=1 ij
N—1 N—1 N
H(l QIAIJrlBI) ! (17 }/Q;+1DJ(+1C{>
=1 ij =1 ij
N ]—Jl J—1 J ’ N J-=2 J—1
[T (1~ ot [T owofet) TTTITT (- Tk 11 oioie
J=11=1 ij K=I K=I J=11=1 ij K=I+1
N J—2 J—1  J-1 Ly -2 7 -1
1 H<1— o T] cuaret HH( HQ I Q$<D,’Cf)
J=11=1 ij K=I K=I J=11=1 ij K=I+1
N J J—1 J J—1 J—1
T 1~ Mot T oiort) TT H(l—HQ II o)
J=11=1 ij K=I K=I J=1I1=1 ij K=I+1
N J—1 J—1 -1y g J—1 7 -1
I (- Mo Tlowat) T (1~ TTek 1T oietel) -
J=11=1 iy K=I J=11=1 iy K=I K=I+1

This concludes the proof of equation (B.4).
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