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Abstract
This paper describes the effect of quenched disorder on the synchronization 
properties of a class of circuits known as Josephson junction arrays. The 
methodology extends the ‘dynamical systems approach’ used to analyze 
identical-element arrays to a ‘statistical mechanics approach’ to incorporate 
disorder, a topic of great importance from the perspective of device 
applications. The essential step is to map the circuit equations onto a version 
of the fabled Kuramoto model, whose tractability allows one to quantify the 
system-wide quality of synchronization.
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1.  Introduction

The context for this paper is a desired goal in applied physics, namely the creation of a high-
quality, tunable, high-frequency voltage source. The device in question uses superconducting 
circuit elements called Josephson junctions. A single Josephson junction can convert a con-
stant input current into a periodic voltage output, whose frequency varies monotonically with 
the input current. Typical frequencies can be very high by electronic standards, and can reach 
levels of one terahertz or more.

A single junction is physically small (∼1 micron), has low impedence (∼1 ohm), and 
generates low power output (∼10 nanowatts). This motivates building arrays having many 
junctions, coupled in such a way that the individual elements exactly frequency-lock. In the 
ideal limit of identical junctions, the problem reduces to finding an architecture and operating 
regime where the in-phase state is an attractor. A lot of attention has been devoted to this topic, 
much of it found in the dynamical systems literature.
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As a practical matter, however, the inevitable variability in junction properties presents a 
barrier to creating a useful device. On the plus side, the nonlinear nature of the circuit dynam-
ics makes it possible for perfect frequency locking even for non-identical junctions, provided 
the disorder is not ‘too large’. This begs a series of questions. How much disorder can be 
tolerated? Is existing fabrication technology good enough to achieve complete locking? If 
not, what tolerances must be achieved? Finally, what variety of Josephson junction, and what 
circuit architectures, have the greatest tolerance? 

2.  Background

2.1.  Single junctions and arrays

The term Josephson junction refers to any configuration where two pieces of superconduc-
tor are separated by a thin gap. The gap may be a layer of vacuum, insulator, semiconduc-
tor, metal, or even another type of superconductor. Although the fundamental physics of the 
Josephson junction is quantum mechanical [1–4] for the purposes of this paper it can be 
treated as a nonlinear circuit element [5–7]. A Josephson junction’s current-voltage relation is 
defined by the pair of equations

I =
�c
2e

φ̈+
�

2er
φ̇+ Ic sinφ� (1)

V =
�
2e

φ̇� (2)

where I is the current through the junction, and V  is the voltage drop across the junction. In 
equation  (1), the three terms on the right represent, respectively, the displacement current, 
the normal current, and the super-current; the capacitance c, resistance r, and critical current 
Ic depend on the junction’s material composition and geometry; and � is Planck’s constant 
divided by 2π and e is the fundamental electron charge. The quantity φ is an angular dynami-
cal variable (equal to the phase difference between the macroscopic wave functions on either 
side of the junction), and the overdot denotes differentiation with respect to time.

By convention, Josephson junctions are divided into two categories, depending on whether 
or not their capacitance is negligible. This distinction has significant physical consequences, 
and depends on the geometry of the junction. So-called ‘point contact’ junctions have c  =  0, 
while ‘tunnel junctions’ have c  >  0.

A Josephson junction can act as a frequency generator because a constant input current can 
give rise to a periodic output voltage. The frequency can be very high by electronic standards: 
oscillations of hundreds of gigahertz are common; frequencies up to a terahertz and more 
have been attained [8]. The disadvantages of single-junctions—low output power and low 
impedence—can be overcome by building arrays.

2.2.  Array architectures

The design of a Josephson junction array allows for considerable flexibility. Individual junc-
tions can be connected to each other is a variety of ways; additional elements can be included 
in the circuit; external fields can be applied. In this paper, we consider two types of junctions 
and two different array architectures, representing a total four classes of Josephson arrays. 
The two junction types are point contact junctions, and tunnel junctions. The two architectures 
are series arrays, and two dimensional rectangular arrays. In all cases, the array is driven by 
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a constant bias current and has a generic resistor-inductor-capacitor load. No effects from 
external fields are considered.

2.3.  Kuramoto–Sakaguchi model

In 1975, Kuramoto published a paper describing the onset of spontaneous frequency-locking 
in a simple model of coupled phase oscillators [9]. Today, this work stands as a theoretical 
touchstone in the field of emergent behavior, and has spawned a large literature. Of particular 
interest here is a variation known as the Kuramoto–Sakaguchi model [10]

θ̇j = ωj +
K
N

N∑
�=1

sin (θ� − θj + α) ; j = 1, 2, . . . , N� (3)

where K and α are coupling constants, and the set of bare frequencies ωj  are selected from a 
given probability distribution g(ω). K can have either sign, so we can restrict α ∈ [−π/2,π/2] 
without loss of generality. For unimodal g and in the large-N limit, as K is increased from a 
small value, the system exhibits a transition to partial ordering, i.e. where there first appears 
a non-zero fraction of frequency-locked oscillators. As K is further increased, the size of the 
locked population grows, and a second transition may occur beyond which all of oscillators 
are locked at the same frequency. While the former transition is better studied, for our pur-
poses the latter transition is more important.

As a nonlinear dynamical system with little or no symmetry, equation (3) has complicated 
solutions. However, in the large-N limit and treated statistically, the model is surprisingly trac-
table: the above-mentioned transitions can be calculated using a self-consistency approach [10, 
11]. The essential points are as follows. The first step is to define the complex order parameter

σeıψ =
1
N

N∑
�=1

eıθ�� (4)

where σ and ψ are real. The amplitude σ ∈ [0, 1] is a measure of the overall phase coherence 
of the system. Typical numerical simulations of large populations find that the order parameter 
settles down to a uniformly rotating state σeıΩt  where σ and Ω are approximately constant. 
Next, use equation (4) to rewrite equation (3) as

θ̇j = ωj − Kσ sin (θj − ψ + α) .� (5)

Transform to a rotating frame such that ϕj = θj − Ωt + α, so that

ϕ̇j = ωj − Ω− Kσ sinϕj.� (6)

One sees immediately that, treating σ and Ω as constants, the population of oscillators 
partitions into two groups, those that reach a fixed phase (in the rotating frame), and those 
whose phases drift monotonically around the circle. The former group represents the fre-
quency-locked sub-population, comprising oscillators having bare frequencies satisfying 

|ωj − Ω| � Kσ; these evolve to a constant phase such that sinϕj =
ωj−Ω

Kσ . Meanwhile, each 
oscillator outside the locking interval winds at a dressed frequency ω̃j  (in the rotating frame) 
which is determined by direct integration of equation (6),

ω̃2
j = (ωj − Ω)

2 − (Kσ)
2 .� (7)
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Now, whether or not the oscillator falls inside the locking interval, equation (6) is readily 
solved. The basic idea is to substitute the solutions back into equation (4), thus generating a 
self-consistency condition for the parameters σ and Ω. In the limit N → ∞,

σeıα =

∫ ∫
dω dϕ g(ω) ρ(ϕ|ω) eıϕ� (8)

where ρ(ϕ|ω) is the conditional (stationary) density of phases for oscillators with bare fre-
quency ω . For oscillators in the locked interval, so that −Kσ < ω − Ω < Kσ, the conditional 
density is concentrated

ρ(ϕ|ω) = δ

(
ϕ− arcsin

[
ω − Ω

Kσ

])
� (9)

where δ is the Dirac delta function. For oscillators outside the locked interval the conditional 
density is distributed around the circle:

ρ(ϕ|ω) =

√
(ω − Ω)

2 − (Kσ)
2

2π |ω − Ω− sinϕ|
.� (10)

Substitution of equations  (9) and (10) into equation  (8) leads to, after some additional 
effort, the following useful form of the self-consistency condition [10]:

σeıα = Kσ

(
ıJ +

∫ π/2

−π/2
dξ g (Ω + Kσ sin ξ) eıξ cos ξ

)
� (11)

where

J =

∫ π/2

0
dξ

cos ξ (1 − cos ξ)

sin3 ξ

[
g (Ω + µ)− g (Ω− µ)

]
� (12)

and µ = Kσ/ sin ξ. Starting from the given parameters K, α, and function g(ω), one solves 
equation (11)—typically numerically—to find σ and Ω; these are used in turn to determine the 
fraction of frequency-locked oscillators:

f =

∫ Ω+Kσ

Ω−Kσ

dω g (ω) .� (13)

Full frequency-locking corresponds to f   =  1.
The goal, then, is to map the dynamical equations for a Josephson array onto the Kuramoto–

Sakaguchi equation, and in so doing determine K,α, and g(ω) in terms of the circuit param
eters, including the distribution-widths of the junction parameters. From there, the degree of 
frequency-locking is readily determined.

3.  Series array of point contact junctions

A circuit schematic is shown in figure 1. The governing dynamical equations are

�
2erj

φ̇j + Ij sinφj = B − Q̇ ; j = 1, 2, . . . , N� (14)
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LQ̈ + RQ̇ +
Q
C

=
N∑

�=1

�
2e

φ̇�� (15)

where rj  is the j th junction’s normal resistance and Ij  is its critical current, B is the externally-
supplied bias current, Q is the charge on the load capacitor, L, R, and C are the load induc-
tance, resistance, and capacitance. In what follows, the disorder and coupling are assumed 
to be weak. In this regime, equations (14) and (15) can be mapped onto equation (3) using a 
so-called averaging method [12], as now described.

Assume the bias current B is large enough that φ̇j is always positive. The first step is to 
introduce the ‘natural angle’ variables defined by

2erj

�
dθj

ωj
=

dφj

B − Ij sinφj
� (16)

where ωj  is the frequency of an isolated junction

ωj =
2erj

�
(
B2 − I2

j

)1/2
.� (17)

The θj are natural in the sense that, in the uncoupled limit, they advance uniformly, while 
the φj do not. Direct integration of equation (16) yields

B − Ij sinφj =
B2 − I2

j

B − Ij cos θj
� (18)

so that equation (14) can be rewritten as

θ̇j = ωj −
ωjQ̇

B2 − I2
j
(B − Ij cos θj) .� (19)

Figure 1.  Circuit schematic of a series array. The filled circles represent superconducting 
islands, the double-lines represent Josephson junctions. The array is driven by a 
constant current source (double circle) and coupled to an external load (inductor-
resistor-capacitor combination).
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For weak disorder, it is convenient to write

rj = r (1 + ερj)� (20a)

Icj = I (1 + εζj)� (20b)

ωj = ω (1 + εδj)� (20c)

where ε is a formal parameter used to keep track of small quantities; it will be set to one at 
the end. The overbar denotes a sample mean. Note that ρj, ζj, and δj are not independent: to 
leading order,

δj = ρj −
I

B2 − I
2 ζj + O(ε).� (21)

In what follows, assume that the bias current is not too close to the (largest) critical current 
and that the coupling weak, so that B − Ij > O(ε), and Q̇ = O(ε), respectively. Equation (19) 
becomes

θ̇j = ω + εωδj −
ωQ̇

B2 − I
2

(
B − I cos θj

)
+ O(ε2).� (22)

The basic idea behind the averaging method is as follows. To leading order, θj(t) = θj(0) + ωt, 
so substituting this into the already-small term in equation (22), generates an error of O(ε2). 
Moreover, since θj − ωt is slowly varying, we can replace the righthand side by its time aver-
age over one cycle, again at the cost of an O(ε2) error. To carry out the latter step, we need an 
explicit expression for Q̇. From equations (14) and (18),

�
2e

φ̇j =
B2 − I2

j

B − Ij cos θj
rj − Q̇rj� (23)

so that equation (15) becomes, to leading order in ε

LQ̈ + (R + Nr) +
1
C

Q = r
(

B2 − I
2
) N∑

�=1

∞∑
n=0

An cos

[
nωt + nθ�(0)

]
� (24)

where I have introduced the Fourier series

∞∑
n=0

An cos nωt =
[

B − I cosωt
]−1

.� (25)

Equation (24) is the standard equation for a periodically driven linear oscillator. It is evi-
dent from equation (22) that only the fundamental-frequency component of Q will survive the 
time averaging. This component is, in steady state,

Q(t) =
N∑

k=1

B1 cos [ωt + θk(0) + β1]� (26)

where

B2
1 =

r2
(

B2 − I
2
)2

A2
1

(
Lω2 − 1/C

)2
+ ω2 (R + Nr)2

� (27)
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and

β1 = arctan

{
ω (R + Nr)
Lω2 − 1/C

}
.� (28)

Substitution of equation (26) into equation (22) and taking the time average over one period 
yields

θ̇j = ω + εωδj −
ω2I

B2 − I
2
B1

2

N∑
k=1

sin (θk − θj + β1) .� (29)

Finally, set α = β1 + π , so that

θ̇j = ωj +
K
N

N∑
k=1

sin (θk − θj + α)� (30)

where

K =
Nrω

( 2e
� rB − ω

)
[ (

Lω2 − 1/C
)2

+ ω2 (R + Nr)2
]1/2� (31)

and

cosα =
Lω2 − 1/C[ (

Lω2 − 1/C
)2

+ ω2 (R + Nr)2
]1/2� (32)

with 0 � α � π/2. This completes the task of mapping the governing dynamical equa-
tions (14) and (15) onto the Kuramoto–Sakaguchi model equation (3).

Two remarks are in order. First, in the circuit problem, the natural control parameter is the 
bias current, but the effective coupling parameters K and α are not monotonic functions B. 
Similarly, the effective disorder also varies with the control parameter B. Since it is the inter-
play between coupling and disorder that determines the degree of synchronization, it’s difficult 
to extract a simple heuristic condition for achieving full-locking. Second, the derived values of 
the coupling parameters K and α are independent of the disorder, while the bare frequencies 
{ωj} are determined by the single junction problem, independent of the coupling. In subse-
quent sections, we will take advantage of this decomposition to streamline the calculations.

4.  Series array of tunnel junctions

For a series array of tunnel junctions, the governing dynamical equations are

�cj

2e
φ̈j +

�
2erj

φ̇j + Ij sinφj = B − Q̇ ; j = 1, 2, . . . , N� (33)

LQ̈ + RQ̇ +
Q
C

=
N∑

�=1

�
2e

φ̇�� (34)

where cj  is the capacitance of the j th tunnel junction, and all other quantities are as previ-
ously defined. The new stumbling block is that we do not know the transformation to natural 
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angles that would allow a repeat of the averaging calculation. Instead, we will use an expan-
sion technique, originally applied to the identical-element Josephson array by Chernikov and 
Schmidt [13].

4.1.  Bare frequencies

We first determine the bare frequencies, i.e. an expression analogous to equation (17). Consider 
a single isolated junction

�c
2e

φ̈+
�

2er
φ̇+ I sinφ = B.� (35)

Ranging over parameter space, equation (35) admits fixed point and periodic attractors—
including regions of bistability—and homclinic orbits, as described in [14]. In this paper, we 
confine attention to the periodic state.

Introduce the dimensionless time τ = νt , so that

βφ′′ + φ′ + γ sinφ = 1� (36)

where the prime denotes differentiation with respect to τ , and

ν = (2erB) /�� (37)

β = �cν2/ (2eB)� (38)

γ = I/B.� (39)

The idea is to develop a solution for φ (τ) using γ  as an expansion parameter. We will carry 
this through second order. Substitute

φ = φ0 + γφ1 + γ2φ2 + . . .� (40)

into equation (36), and equate terms of equal order in γ . At zeroth order,

βφ′′
0 + φ′

0 = 1 ⇒ φ0 = θ + τ� (41)

where θ is a constant. At first order in γ ,

βφ′′
1 + φ′

1 + sinφ0 = 0 ⇒ φ1 = A sin τ + B cos τ� (42)

where A and B are constants. Using the expression for φ0, one readily finds
(

A
B

)
=

(
1 + β2)−1

(
β −1
1 β

)(
cos θ

sin θ

)
.� (43)

At second order in γ ,

βφ′′
2 + φ′

2 + φ1 cosφ0 = 0 ⇒ φ2 = λτ + E sin 2τ + F cos 2τ� (44)

where λ, E, and F are constants. Using the expressions for φ0 and φ1, one finds

λ = −1
2
(
1 + β2)−1

.� (45)

Through order γ2 , then,

φ (τ) = θ + τ + γ (A sin τ + B cos τ) + γ2 (λτ + E sin 2τ + F cos 2τ) .
� (46)
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The period T satisfies

φ (T)− φ (0) = 2π.� (47)

Introduce the expansion T = T0 + γT1 + γT2 + . . . into equation (46) evaluated at τ = T , 
and solve order-by-order in γ , to find

T = 2π
(
1 − γ2λ

)
+ O(γ3).� (48)

In terms of the original units the frequency is 2πν/T . For a tunnel junction with parameters 
rj, cj, and Ij , this gives the bare frequency

ωj =
2erjB
�

(
1 − 1

2
(
1 + β2

j

)−1
(

Ij

B

)2
)

� (49)

where βj = 2er2
j cjB/� . To this same level of accuracy, equation (49) can be written in a form 

that invites direct comparison with the point contact formula equation (17):

ωj =
2erj

�

√
B2 − zjI2

j� (50)

where zj =
(
1 + β2

j

)−1.

4.2.  Effective coupling parameters

To calculate K and α, it’s sufficient to consider the identical-junction problem. Using the 
dimensionless time τ = νt , and dimensionless charge q = νQ/Ib, equations  (33) and (34) 
become

βφ′′
j + φ′

j + γ sinφj = 1 − q′� (51)

q′′ + Γq′ +Ω2q = µ

N∑
�=1

φ′
�� (52)

where ν,β, and γ  are defined by equations (37)–(39); and

Γ =
R

Lν
� (53)

Ω2 =
(
CLν2)−1

� (54)

µ =
�

2eBL
.� (55)

As before, develop a solution in powers of γ:

φj = φ
(0)
j + γφ

(1)
j + γ2φ

(2)
j + . . .� (56)

q = q(0) + γq(1) + γ2q(2) + . . .� (57)

and solve order by order. The algebra is considerably more tedious than for the isolated junc-
tion, and the details are relegated to the appendix. Through second order, the steady state 
solution has the form

K Wiesenfeld﻿J. Phys. A: Math. Theor. 53 (2020) 064002
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φj (τ) = θj + τ + γ (Aj sin τ + Bj cos τ) + γ2 (λjτ + Ej sin 2τ + Fj cos 2τ)
� (58)

q (τ) = q0 + γ (C sin τ + D cos τ) + γ2 (G sin 2τ + H cos 2τ)� (59)

where the constants Aj, Bj,λj, Ej, Fj, C, D, G, and H can be expressed in terms of the ‘initial 
conditions’ (q0, {θj}). Equation  (58) can be used to generate a discrete map of the phase 
dynamics. Starting at τ = 0, advancing τ → 2π results in advancing φj → φj + 2π

(
1 + γ2λj

)
. 

This is equivalent to keeping τ = 0 while advancing θj → θj + 2π
(
1 + γ2λj

)
. In other words, 

propagating φj over a time interval ∆τ = 2π is equivalent to the map iteration

θj → θj + 2π
[

1 + γ2λj

(
�θ
)]

where the notation emphasizes that each λj is a function of θ1, θ2, . . .. The θj advance at a 
nearly uniform rate, so the map is well-approximated by the differential equations

∆θj

∆τ
≈ θ′j = 1 + γ2λj.

Upon explicit evaluation of the coefficients, one finds (see appendix)

λj =
−1

2 (1 + β2)
− m1

2

∑
�

sin (θ� − θj) +
m2

2

∑
�

cos (θ� − θj)� (60)

where m1 and m2 are (somewhat complicated) functions of the load and junction param

eters. In terms of the unscaled time, θ̇j = νθ′j , so we recover the zero-disorder limit of the 
Sakaguchi–Kuramoto model

θ̇j = ω +
K
N

∑
�

sin (θ� − θj + α)� (61)

where

ω = ν

[
1 − 1

2
γ2 (1 + β2)

]
� (62)

K =
1
2

Nγ2ν
√

m2
1 + m2

2� (63)

α = arctan (−m2/m1) .� (64)

The result for ω  recovers the previously derived equation (49), as expected. The expres-
sions for K and α are the main results of this subsection. The full problem, with disorder, is 
given by equation (61) with ω  replaced by ωj  from equation (50), and (K,α) evaluated from 
equations (63) and (64) using the mean junction parameter values.

5. Two dimensional array of point contact junctions

The architecture in a standard rectangular array consists of an N rows and M columns of super-
conducting islands, with bias current injected along the top, and removed along the bottom 
(see figure 2). Denote the superconducting phase of the island in row n and column m by Ψnm. 
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The overall phase shift invariance reduces the number of island phase variables to NM  −  1. 
The equations of motion can be written

∑
〈k�〉

[
�

2erij,k�

(
Ψ̇ij − Ψ̇k�

)
+ Ic

ij,k� sin (Ψij −Ψk�)

]
= Iij� (65)

LQ̈ +RQ̇ +
Q
C

=
�
2e

N−1∑
i=1

(
Ψ̇i+1j − Ψ̇ij

)
� (66)

where equation (65) hold for each site (i, j) and the sum is over all nearest-neighbor islands; 
equation (66) holds for each column j ; Iij is the externally-supplied current into island (i, j); 
and rij,k� and Ic

ij,k� are the resistance and critical current, respectively, of the junction linking 
island (i, j) and (k, �). The notation for the load parameters L,R, C is made in anticipation of 
later comparison with the corresponding series array.

Equivalently, the dynamics can be described in terms of the more numerous Josephson 
junction phase differences, supplemented by constraint equations. Specifically, there are 
N (M − 1) horizontal junctions, (N − 1)M  vertical junctions, for a total of 2NM  −  N  −  M 
Josephson phase variables, and one constraint equation for each of the (N − 1) (M − 1) pla-
quettes, so that there are NM  −  1 free variables, as before. The labeling scheme is shown in 
figure 3. Let Hnm  be the Josephson phase of a horizontal junction, Vnm the Josephson phase 
of a vertical junction, and ∆nm  the mesh current of a plaquette. The equations of motion are

�
2er̃mn

Ḣnm + Ĩnm sinHnm = ∆nm −∆n−1m� (67)

�
2ernm

V̇nm + Inm sinVnm = Bm +∆nm−1 −∆nm� (68)

Lnm∆nm = − �
2e

(Hnm + Vnm+1 − Hn+1m − Vnm)� (69)

LQ̈ +RQ̇ +
Q
C

=
�
2e

N∑
n=1

V̇nm� (70)

Figure 2.  Schematic of a two-dimensional array, current biased, with an external load.
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where, ̃rnm is the resistance of the corresponding horizontal junction and Ĩnm is its critical cur
rent, rnm is the resistance of the corresponding vertical junction and Inm is its critical current. 
Finally, Bm is the portion of the bias current feeding the mth vertical column, so that the total 
bias current is MB =

∑
� B� + Q̇.

In either form equations (65) and (66) or equations (67)–(70), the governing dynamical 
equations are significantly more complicated than those of the series array equations (14) and 
(15). Nevertheless, the anisotropy of the bias current induces an anisotropic response which 
radically simplifies the analysis: the horizontal junctions pass only small currents, and the 
array quickly settles into a steady state such that the vertical junctions within each row are 
frequency-locked and nearly in-phase. At the same time, despite the strong frequency-locking 
within each row, the various rows hardly influence each other at all. This behavior was noted 
in early numerical studies of rectangular arrays, with [16] and without [17] external loads.

5.1.  Intra-row locking and effective frequencies

We first consider the strong interactions within a given row. Specifically, we ask: if the junc-
tions are not identical, but the vertical junctions lock to a common frequency, what will that 
frequency be? Consider a single, isolated row as shown in figure 4. The current Îj passing 
through the j th vertical junction is (suppressing the row index)

Îj = B +∆j−1 −∆j ; j = 1, 2, . . . , M� (71)

where ∆j is the mesh current in the j th plaquette and by definition ∆0 = 0 = ∆M . Now, if Îj 
were constant, then the exact expression for the frequency of the j th vertical junction would 

be, assuming Îj > I2
j ,

ωj =
2erj

�

(
Î2
j − I2

j

)1/2
.� (72)

If all of the vertical junctions within the row are to lock at the same frequency ω , then just 
the right amount of current must be shunted across the horizontal junctions to compensate 

Figure 3.  Portion of a 2D array illustrating the labeling scheme. The open circle 
denotes the superconducting island at position (n, m); the single-line bonds identify the 
labeled horizontal and vertical junctions; ∆nm  is a mesh current.
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for the variations in their resistances and critical currents. Combining equations (71) and (72) 
yields, to first order in ∆j,

(
�ω
2erj

)2

= B2 − I2
j + 2B (∆j−1 −∆j) .� (73)

Summing over all j , the mesh currents drop out, with result

ω2 =

(
2e
�

)2 B2 − 〈I2〉
〈r−2〉

� (74)

where I have introduced the row-averaged quantities

〈r−2〉 = 1
M

M∑
�=1

r−2
�� (75)

〈I2〉 = 1
M

M∑
�=1

I2
� .� (76)

Equation (74) gives the common frequency of all the vertical junctions in the row, in terms 
of the set of individual junction parameters rj, Ij. Therefore, the probability density of the row-
frequencies is

ρω(ω) =

∫ ∫
ρJ(r, I)δ (ω − ω(r, I)) dr dI

where ρJ(r, I) is the joint probability density of a junction’s resistance and critical current. 
One sees that the row-averaging reduces the effective disorder [16–18]: since 〈r−2〉 and 〈I2〉 
are each the average of M independent random variables, their variances are smaller by a fac-
tor M compared with the single-element values.

5.2.  Effective coupling constants

The next step is to show that the disorder-free system reduces to a corresponding disorder-
free Kuramoto–Sakaguchi system, and in so doing to determine the coupling parameters. To 
this end, in equations (67)–(70), set all resistances to r , critical currents to Ic, and plaquette 

Figure 4.  Horizontal slice of the two dimensional array.
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inductances to L. Assuming in-phase synchronization within each row, set Hnm = 0 and 
∆nm = 0, automatically satisfying equations (67) and (69), and leaving

�
2er

V̇nm + Ic sinVnm = Bm� (77)

LQ̈ +RQ̇ +
Q
C

=
�
2e

N∑
n=1

V̇nm.� (78)

Meanwhile, a portion Q̇ of the total bias current MB runs through the load, and the remain-
der, by symmetry, splits equally along each column, so Bm = B − Q̇/M :

�
2er

V̇nm + Ic sinVnm = B − Q̇
M

.� (79)

Comparison of equations  (78) and (79) with the zero disorder limit of the series array 
equations (14) and (15) show that these are identical, provided the load is scaled according to 
L = L/M , R = R/M , C = MC . (This scaling is precisely what one would expect intuitively 
for a matched load: the equivalent resistance of an array with M parallel columns is smaller 
by a factor of M, with corresponding statements for the inductance and capacitance.) We can 
immediately carry over the results for K and α, given by equations (31) and (32).

6. Two dimensional arrays of tunnel junctions

The calculations closely parallel those of the previous section. The circuit equations are

�c̃nm

2e
Ḧnm +

�
2er̃nm

Ḣnm + Ĩnm sinHnm = ∆nm −∆n−1m� (80)

�cnm

2e
V̈nm +

�
2ernm

V̇nm + Inm sinVnm = ∆nm−1 −∆nm� (81)

Lnm∆nm = − (Hnm + Vnm+1 − Hn+1m − Vnm)�

(82)

LQ̈ +RQ̇ +
Q
C

=
�
2e

N−1∑
n=1

V̇nm� (83)

where the new parameters are ̃cnm for the horizontal junctions and cnm for the vertical junctions.

6.1.  Intra-row locking and effective frequencies

Consider a single row of junctions as in figure 4. The current through the j th vertical junction 
is (suppressing the row index)

Îj = B +∆j−1 −∆j ; j = 1, 2, . . . , M.� (84)

If Îj were constant, the oscillation frequency of the j th vertical junction would be (approxi-
mately) given by equation (50)

ωj =
2erj

�

√
Î2
j − zjI2

j� (85)
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where zj =
(
1 + β2

j

)−1. For small disorder, and thus small mesh currents, combine the last 
two equations to get

(
�ω
2erj

)2

= B2 − zjI2
j + 2B (∆j−1 −∆j)� (86)

to first order in ∆j. Summing over all j , the mesh currents drop out, and so

ω2 =

(
2e
�

)2 B2 − 〈zI2〉
〈r−2〉

� (87)

where 〈r−2〉 is given by equation (75) and

〈zI2〉 = 1
M

M∑
�=1

z�I2
� .� (88)

6.2.  Effective coupling constants

The equations  of motion for the disorder-free system admit row-synchronized solutions 
Hnm = 0, ∆nm = 0, so that (compare equations (78) and (79))

�c
2e

V̈nm +
�

2er
V̇nm + Ic sinVnm = B − Q̇

M
� (89)

LQ̈ +RQ̇ +
Q
C

=
�
2e

N−1∑
�=1

V̇�.� (90)

0 0.1 0.2 0.3 0.4 0.5
 (mA)

0

0.2

0.4

0.6

0.8

1

f

Figure 5.  Fraction of frequency-locked junctions versus critical-current disorder ∆. 
Curves are for: series array of point contact junctions (solid black), series array of tunnel 
junctions (solid blue), rectangular array of point contact junctions (dot-dash black), and 
rectangular array of tunnel junctions (dot-dash blue). Parameter values: r = 0.4 ohms, 
I = 0.5 mA, β = 1.0; for series arrays N  =  100, B  =  1.5 mA, R  =  50 ohms, L  =  25 
pH, and C  =  0.04 pF; for rectangular arrays N  =  100, M  =  9, R = R/M , L = L/M , 
C = MC , and bias current MB.
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For the properly scaled load parameters L = L/M , R = R/M , C = MC , these are equiva-
lent to the governing equations for a series array of identical tunnel junctions, equations (33) 
and (34), so the effective coupling constants are given by equations (63) and (64).

7.  Discussion

In each of four cases, we mapped the Josephson junction array dynamics onto the Kuramoto–
Sakaguchi model. The reduced model is fully tractable: a self-consistency method determines 
quantitatively the effect of disorder on the degree of mutual frequency-lock.

What practical advantage does this reduction afford over direct numerical simulations? 
The latter uses as input the distributions of junction parameters {ri, }, {Ii}, and {βi}; the load 
parameters B, R, L, and C; and the array parameters N, M, and {Lnm}; in addition, ensemble 
averaging requires multiple runs over the sampled disorder. Meanwhile, the reduced model 
needs only the distribution of bare frequencies {ωj}, the coupling constants K and α, and 
the array dimensions N, M ; and its algebraic solution automatically embodies ensemble 
averaging.

Aside from improved efficiency, mapping the various cases onto the same reduced model 
allows direct comparison and a quantitative assessment of their relative merits. As stated in 
the introduction, a key consideration for applications is the degree to which disorder can 
be overcome to achieve complete frequency locking. Qualitatively, one expects tunnel junc-
tions to provide some advantage over point contact junctions because the junction capaci-
tance introduces an additional tuning parameter. Similarly, rectangular arrays should show 
better disorder-tolerance than their series-array counterparts thanks to spontaneous intra-row 
frequency-locking [15, 19].

To make these observations concrete and quantitative, we apply the results of this paper to 
a particular example using a normalized parabolic distribution P(I) for the critical currents 
with mean I and full width 2∆:

P(I) =
3

4∆

[
∆2 −

(
I − I

)2
]

.� (91)

For simplicity, the junction resistances and capacitances are taken to be identical. The series 
arrays contain N  =  100 junctions each; the rectangular arrays consist of N = 100 × M = 900 
superconducting islands, and the load parameters are appropriately scaled with M. The choice 
of β = 1 was made because it seems to give the best performance. Figure 5 shows the frac-
tion of frequency-locking f  versus disorder. The data clearly shows the expected improvement 
of ∼

√
M  for the rectangular arrays. Also conspicuous is the relative steepness of the tunnel 

junction curves, as compared with the point contact junctions, though a simple physical expla-
nation for this is unknown.

Appendix. Tunnel junction series array

The goal is to calculate the effective coupling constants K an α starting from equations (51) 
and (52), using the expansions equations (56) and (57). At zeroth order in γ ,

βφ0′′
j + φ0′

j = 1 − q′0

q′′0 + Γq′0 +Ω2q0 = µ
∑
�

φ0′
�

� (A.1)
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which has steady state solution

φ0
j = θj + τ

q0 = µNΩ−2.
� (A.2)

At first order in γ ,

βφ1′′
j + φ1′

j + sinφ0
j = −q′1

q′′1 + Γq′
1 +Ω2q1 = µ

∑
�

φ1′
�

� (A.3)

which has steady state solution of the form

φ1
j = Aj sin τ + Bj cos τ

q1 = C sin τ + D cos τ .
� (A.4)

Substitute equation (A.4) into equation (A.3), and separately balance the sin τ and cos τ  
terms, to get

(
−β −1

1 −β

)(
Aj

Bj

)
=

(
0 1

−1 0

)(
C
D

)
−

(
cos θj

sin θj

)
� (A.5)

and
(
Ω2 − 1 −Γ

Γ Ω2 − 1

)(
C
D

)
= µ

(
0 −1
1 0

)(∑
� A�∑
� B�

)
.� (A.6)

At second order in γ ,

βφ2′′
j + φ2′

j + φ1
j cosφ

0
j = −q′2

q′′2 + Γq′
2 +Ω2q2 = µ

∑
�

φ2′
�

� (A.7)

where

2φ1
j cosφ

0
j = Aj sin θj − Bj cos θj + (Aj cos θj − Bj sin θj) sin 2τ + (Aj sin θj + Bj cos θj) cos 2τ

� (A.8)
equation (A.7) has steady state solution of the form

φ2
j = λj + Ej sin 2τ + Fj cos 2τ

q2 = ν + G sin τ + H cos τ .
� (A.9)

Substitute equation (A.9) into equation (A.7), and separately balance the constant, sin τ 
and cos τ  terms, to get equations  that determine the coefficients λj, Ej, Fj, ν, G, and H. We 
need only λj for our purposes, so it is sufficient to consider just the constant terms from the 
top equation:

λj +
1
2
(Bj cos θj − Aj sin θj) = 0.� (A.10)

Meanwhile, the linear system equations (A.5) and (A.6) are readily solved to give Aj, Bj, 
with result

(
Aj

Bj

)
=

(
m1 m2

−m2 m1

)(∑
� cos θ�∑
� sin θ�

)
+

(
m3 m4

−m4 m3

)(
cos θj

sin θj

)
� (A.11)
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where
(

m1 m2

−m2 m1

)
=

1
(1 + β2) (h2 + g2)

(
−1 −β

β −1

)(
h g

−g h

)(
1 β

−β 1

)
�

(A.12)
(

m3 m4

−m4 m3

)
=

1
1 + β2

(
β −1
1 β

)
� (A.13)

with h = β +
(
Ω2 − 1

) 1+β2

µN  and g = 1 + 1+β2

µN Γ. Combining equations  (A.10) and (A.11) 

one finds, after some algebra,

λj =
1
2

[
m4 − m1

∑
�

sin (θ� − θj) + m2

∑
�

cos (θ� − θj)

]
� (A.14)

where

m1 =
2βg +

(
β2 − 1

)
h

(1 + β2) (h2 + g2)
� (A.15)

m2 = −
2βh +

(
1 − β2

)
g

(1 + β2) (h2 + g2)
� (A.16)

m4 = − 1
1 + β2 .� (A.17)
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