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Abstract. Neopentyl glycol is a kind of solid-solid phase change material for thermal energy 
storage. In order to overcome volatilization weight loss caused by the high saturated vapor 
pressure of neopentyl glycol，epoxy resin was chosen as the encapsulation matrix to inhibit 
the volatilization of neopentyl glycol when it happens phase change or works in a relatively 
high temperature environment. The micro morphology analysis indicated that the neopentyl 
glycol was encapsulated evenly in the epoxy resin matrix. These two components had no 
chemical reactions and combined with each other by the physical encapsulation. Phase change 
temperature and latent heat of the composite was measured as 41.26°C and 57.04 J/g 
respectively，which proves the  thermal heat storage performance of the neopentyl glycol was 
not influenced by the adding of epoxy resin. Meanwhile, attributed to the effective 
encapsulation and protection by epoxy resin, volatilization weight loss of the neopentyl glycol 
in the composite decreased significantly and behaved good thermal stability and reliability. 
After 100 times thermal cycling test, the composite hardly changed in the thermo-physical 
properties. Thus, the prepared neopentyl glycol/epoxy resin composite phase change material is 
supposed to be a potential and promising functional material for the applications in low 
temperature building energy conservation and solar energy storage.  

1. Introduction 
Phase change materials (PCMs) are a kind of functional materials which have the ability to absorb and 
release thermal energy at a certain temperature range near their phase change temperature. PCMs 
working as energy storage carrier can improve the energy utilization efficiency and alleviate the 
energy crisis. Attributed to the advantages such as high efficiency, saving energy and environmental 
protection etc., PCMs have been applied widely in the fields of industrial waste heat utilization, solar 
energy utilization, building thermal energy storage and so on [1]. The commonly used PCMs include 
solid-liquid and solid-solid phase transition forms, and there have been many researches and 
applications about these two kinds of PCMs [2]. However, liquid leakage is always a fatal problem for 
the liquid-solid PCMs in the process of heat absorption. Therefore, a packaging container [3] or shape-
stabilized matrix [4-6] would be needed to overcome this disadvantage. Polyol is kind of solid-solid 
PCMs which do not generate liquid while absorbing the latent heat. They have the advantages of wider 
phase transition temperature range, small volume change, non-toxic, non-corrosion and loose 
requirements for PCM container and operation conditions. The latent heat of polyol is comparative 
with that of the solid-liquid PCMs and the super-cooling degree is small [7]. So the polyol is suggested 
to be a kind of potential and promising PCMs in latent thermal energy storage systems [8-10].  
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  The biggest problem of polyol is the higher saturated vapor pressure which can generate the 
volatilization of polyol in the relatively low working temperature range. The volatilization will cause 
the weight loss of polyol and its thermal storage capacity will be influenced resultingly. This is 
profitless to the long-term thermal stability and reliability in engineering application for the polyol 
PCMs. Taking neopentyl glycol (NPG) as an example, its saturated vapor pressure is about 3 Pascal. 
In the repeated heating/cooling cycling process or high temperature working environment, the NPG 
may volatize and leads to the weight loss and finally influence the latent heat storage and service life 
of NPG servicing as the thermal energy medium. One of the feasible methods is to choose an 
encapsulation matrix to inhibit the volatilization of NPG. So the objective of this paper was the 
preparation of NPG/epoxy resin (EP) composite as a thermal-stable composite PCM by incorporation 
of NPG within the EP to resist the volatilization weight loss of NPG. EP has tight structure and is able 
to keep solid and rigidity near the solid-solid phase change temperature of NPG. The characterizations 
of chemical structure, micro morphology, thermo-physical properties and thermal reliability of the 
NPG/EP composite PCM were examined by FT-IR, SEM and DSC techniques, Service performance. 
In addition, the influence of the weight loss improvement of the NPG/EP composite PCM was also 
evaluated experimentally. 

2. Experimental 

2.1. Materials 
Neopentyl glycol (NPG) working as the phase change material was supplied by Tianjin Kemiou 
Chemical Reagent Co., Ltd. Epoxy resin (EP) of E-44 type which was supposed to be encapsulation 
matrix to NPG and modified amine curing agent of T-31 type were provided by Wuxi Bluestars 
Petrochemical Co., Ltd. Anhydrous ethanol and acetone acting as solvent in the preparation of 
NPG/EP composite PCM was purchased from Tianjin Kemiou Chemical Reagent Co., Ltd.. The main 
physical parameters of E-44 EP are listed in Table 1. 
 

Table 1. The Main Physical Parameters of EP 

Property Quantity 
Appearance No visible impurities 
Epoxy equivalent/ g·eq-1 210~244 
Viscosity /Pa·S 6~10 
Softening point /°C 12~20 

2.2. Preparation of the NPG/EP Composite PCM  
  The melt blending method was conducted on the preparation of the NPG/EP composite PCM.  

  1) The NPG was dissolved in anhydrous ethanol firstly and irradiated by the infrared lamp until the 
anhydrous ethanol volatilized completely. After cooled to the room temperature, the NPG was poured 
into a mortar and grinded into powders. The dissolved raw material of EP was put into a drying oven 
for about 2 h at the temperature of 50°C and then cooled to the room temperature for use.  

  2) A certain amount of NPG was put in the acetone solution and dissolved completely at 50°C. The 
equal weight of NPG and EP was mixed together uniformly by stirring to be a mixture solution. Then 
the T-31 modified amine curing agent was dripped in the mixture at the ratio of 20wt% by EP. After 
agitated evenly, the mixture solution was poured into the stainless steel mold coated with release agent. 
The mold was vacuumized for 2 h and then cured at the room temperature for 96 h. In order to make the 
EP cure completely and remove the acetone solvent, the mold filled with NPG and EP was dried in the 
drying oven at 65°C for 1 h. When cured entirely, the sample was naturally cooled to the room 
temperature and then taken out of the mold.  

  3) The anhydrous ethanol was used to flush the composite PCM block for several times until its 
surface was clear, and the NPG/EP composite PCM was finally obtained after dried in the drying oven 
to make the anhydrous ethanol volatilize out. 
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2.3. Instruments and Measurements 
Fourier-transform infrared (FT-IR) was carried out on a EQUINX55 spectrophotometer to investigate 
the compatibility and interaction between NPG and EP matrix. Scanning electronic microscope (SEM) 
observations were performed for the PCM samples on a JSM-5600LV microscope. Thermal properties 
such as latent heat and phase change temperature of  pure NPG and NPG/EP shape-stabilized PCMs 
were obtained by using differential scanning calorimetry (DSC) instrument (DSC822e, Mettler). The 
amples were heated from 10°C to 70°C at a heating rate of 5°C min-1 in a static nitrogen atmosphere. 
Thermogravimetric (TG) analysis was subjected on a thermo-analyzer instrument (TGA/SDTA851e, 
Mettler). The samples were treated in the instrument from atmosphere temperature to 700°C at a 
heating rate of 10°C min-1 in a static nitrogen atmosphere. 

2.4. Thermal Cycling Test 
For investigating the variation of thermo-physical properties of the NPG/EP composite PCM after 
enduring many times phase transition, accelerated heating-cooling thermal cycling test was conducted 
on the composite PCM. In the thermal cycling test, the heating temperature was 60°C, while the 
cooling temperature was determined to be 0°C implemented in a refrigerator. The heating-cooling 
process was repeated for 100 times and DSC analysis was used for measuring the phase change 
temperature and latent heat of the NPG/EP composite PCM after the thermal cycling. 

3. Results and Discussion 

3.1. Chemical Structure of the Composite PCM 

 
Figure 1.  FT-IR Spectra of the Samples 

 
FT-IR spectra of EP and NPG/EP composite PCM are shown in Figure 1. From the infrared absorption 
spectrum of NPG, it can be seen that there are two obvious absorption peaks in the wavenumber of 
2915.84 cm-1 and 2848.34 cm-1, which caused by the stretching vibration of C-H group. The 
overlapping peaks in 1465.64 cm-1 and 1390.42 cm-1 correspond to the bending vibration of C-H group. 
The peaks in 1274.72 cm-1 and 1224.58 cm-1 are the characteristic absorption peaks of -OH groups. As 
seen in the spectrum of EP in Figure 2, there is an absorption peak at 3355.53 cm-1 which is caused by 
the stretching vibration of N-H. The characteristic peaks of C=C aromatic nucleus appear at the 
wavenumber of 1461.78 cm-1 and 1589.1 cm-1. From the FT-IR spectrum of NPG/EP composite in 
Figure 2, it is can be found that the typical peak of -OH in NPG has shifted to 1276.6 cm-1 and 
1226.71 cm-1 respectively. The characteristic absorption peaks of C=C and C-H group both have 
appear, and the rest of the main characteristic peaks just have a little change in location and strength. 
Moreover, there are no new absorption peaks appear in the composite PCM. It is can be concluded that 
there are no chemical reactions between NPG and EP in the composite PCM. EP just plays a role in 
encapsulating NPG to confine its volatilization. 
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3.2. Morphology Analysis 
For investigation the encapsulation effect of EP to NPG, the sectional microstructure of EP and 
NPG/EP composite PCM were observed by SEM respectively, shown in Figure 1. From the EP 
morphology of Figure 1(a), it can be seen that the surface of EP is smooth without any pores or 
particles and the structure is compact. Figure 2(b) shows the section microstructure of NPG/EG 
composite PCM. Compared with EP,   NPG/EP composite is less compact than EP and has a lot of 
pores ranging from 0.5 μm to 12.5 μm. A certain amount of NPG crystal particles are found in the 
relatively big pores, which illustrates that most of NPG are encapsulated in the supporting material of 
EP in the small molecules form. When the environmental temperature reaches to the phase change 
temperature of NPG, EP can encapsulate the NPG so well that the volatilization of NPG would be 
restrained effectively. Because the softening point of EP is much lower than the solid-solid phase 
change temperature of NPG, EP can prevent the weight loss of NPG caused by volatilization in the 
composite PCM. Thus, the composite PCM can maintain the good thermal storage performance for a 
long time in service. 
 

   
Figure 2. SEM Images: (a) EP; (2) NPG/EP Composite PCM 

3.3. Thermo-Physical Properties of the Composite PCM 
The important thermo-physical properties of PCMs including phase change temperature and latent 
heat were measured by DSC technique. Figure 3 illustrates the DSC curves of the NPG and NPG/EP 
composite PCM. In Figure 3，the DSC curve of NPG shows that the phase change temperature of 
NPG is 42.88°C and the latent heat is 115.1 J/g. As seen in the DSC curve of NPG/EP composite PCM,   
the phase change temperature of the composite is 41.26°C which is slightly lower than that of pure 
NPG. Due to no heat absorption behavior below 70°C of EP, the similar phase change temperature 
between NPG and NPG/EP composite indicates that the endothermic peak in the composite is only 
attributed to the phase change heat absorption of NPG. As a result, the latent heat of NPG/EP 
composite PCM is 57.04 J/g, which means that the mass fraction of NPG in the composite PCM is 
49.6% based on Formula (1). The mass fraction of NPG in theory is 50% according to the preparation 
method, so it can be deduced that NPG has no loss during the reaction process with EP and maintains 
the intrinsic phase change thermal storage capacity. The FT-IR test results also verify that EP is only a 
supporting material and have little impact on the latent heat storage properties of NPG. 

                                                            
NPG

EPNPG
NPG H

HW
∆

∆
= /                                                       (1) 

Where WNPG is the mass fraction of NPG in NPG/EP composite PCM, %; △HNPG/EP is the latent 
heat of NPG/EP composite PCM, J/g; △HNPG is the latent heat of NPG, J/g. 
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Figure 3. DSC Curves of NPG and NPG/EP Composite PCM 

3.4. Volatilization  Weight  Loss of the Composite PCM 
After NPG undergoing the repeated heating-cooling thermal cycling or working under a relatively high 
temperature environment, NPG may volatilize because of its higher vapor pressure. This will lead to 
the mass loss of NPG or NPG based composite PCMs, which affects the service performance in latent 
heat storage application of the PCMs. To examine the volatilization weight loss of the prepared 
NPG/EP composite PCM and the protection effect of EP to NPG, the weight loss variations were 
recorded by weighing the tested samples after heated to the temperature of 40°C, 60°C and 100°C, 
respectively. The weight loss rates of NPG, EP and NPG/EP composite are shown in Table Ⅱ. 
 

Table 2. The Weight Loss of PCMs at Different Temperature 

Material Initial weight /g 
Weight loss rate/% 

40°C 60°C 100°C 
NPG 10 0 0.8 22.1 
EP 10 0 0 0 

NPG/EP 10 0 0.05 3.25 
 

From the results in Table Ⅱ, it can be known that EP has no weight loss in the three heating 
processes. Pure NPG has no weight loss either after it was heated to 45°C and happened solid-solid 
phase transformation. However, when heated to 60°C, the weight of NPG has decreased by 0.8% 
because of the volatilization. While heated to 100°C, the weight of NPG decreased significantly, by 
22.1%. Due to EP having no weight loss below 100 °C, the weight loss of the NPG/EP composite 
PCM is caused only by NPG. As can be seen, the weight loss rate is only 0.10% at the temperature of 
60 °C and 6.5% at 100 °C. By the comparison, it is obvious that the EP has remarkably suppressed the 
volatilization of NPG and improves the thermal stability of the NPG/EP composite PCM. The 
prepared NPG/EP composite PCM in our research is supposed to be used in the field of low 
temperature building energy conservation applications and the designed work temperature is less than 
60 °C. While the composite PCM hardly has weight loss below 60°C proved by the test, as a result, the 
engineering application of this kind of NPG/EP composite PCMs is feasible. 

3.5. Thermal Reliability of the Composite PCM 
DSC curve of the NPG/EP composite PCM subjected 100 times accelerated heating-cooling thermal 
cycling test is given in Figure 4.  As shown in Figure 4, the phase change temperature of the NPG/EP 
composite PCM is 41.13°C, being similar to the initial phase change temperature of NPG and the 
NPG/EP composite. Its latent heat is 55.97 J/g, which is reduced by1.88% than that of NPG/EP 
composite PCM before thermal cycling. According to the results in 3.4, the NPG/EP composite PCM 
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happened mass loss at the heating temperature of 60°C ascribed to the volatilization of NPG 
completely. So after the repeated thermal cycling treatment, the heat storage capacity of the composite 
PCM would decline. On the basis of DSC result in Figure 4, however, the mass loss rate of the 
composite PCM has no directly proportional relationship to the thermal cycling times on the 
composite PCM. The latent heat of NPG/EP composite changes small and this change can be 
neglected in the engineering application. Moreover, the slight mass loss is able to be alleviated even 
avoided by using a reasonable application means or advanced construction method. 
 

 
Figure 4. DSC Curve of NPG/EP Composite PCM after 100 Times Thermal Cycling Test 

4. Conclusions 
The NPG/EP composite PCM in which NPG working as phase change core and E type epoxy resin as 
encapsulated matrix was successfully prepared through the melt blending method. The NPG/EP 
composite PCM was characterized by SEM and FT-IR spectroscopy techniques. It is indicated that by 
curing and molding with EP simultaneously, NPG has been encapsulated into EP well. There were no 
chemical reactions between NPG and EP. According to the DSC test results, phase change temperature 
of the NPG/EP composite PCM was 41.26°C which was similar to that of pure NPG. The latent heat 
was 57.04 J/g, about 49.6% of the pure NPG. Heating experiment on the composite PCM indicated 
that EP played an important role in inhibiting the volatilization of NPG in the composite. The 
volatilization weight loss of the NPG/EP composite PCM rate decreased significantly than that of pure 
NPG. Furthermore, thermal cycling test confirmed the thermal stability and reliability of the NPG/EP 
composite PCM. The change on phase change temperature and latent heat of the composite PCM after 
100 times heating -cooling thermal cycling was so small that can be neglected in the thermal storage 
applications. 

Based on all results, it can be concluded that the NPG/EP composite PCM can be used in the 
building energy conservation and solar energy utilization etc. as thermal energy material due to 
absorption of heat in conjunction of solid-solid phase change of PCM. 
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