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Abstract. The volumetric displacement of a simply supported and symmetrically layered 
piezoelectric circular plate under lateral load and pretension in large deflection is studied. The 
approach extends von Karman’s large deflection theory to a layered case and accounts for the 
associated piezoelectric force terms. The nonlinear governing equations based on the 
equilibrium were derived, but the arising nonlinear terms in governing equations were dropped, 
to have an analytical investigation. The solutions were found to be expressible with modified 
Bessel or standard Bessel functions, depending on whether it is a mechanical-load dominating or 
piezoelectric-load dominating condition. The previously derived expressions for lateral slopes 
and deflections are further manipulated to derive the analytical expressions for the volumetric 
displacements, following strictly the related recurrence relations. The presented approaches are 
implemented with typical silicon-based layer materials used in a sensing or actuating device.  
Various dimensions, especially the relative thickness of the piezoelectric layer, as well as 
different applied voltages and pretensions are considered to have an extensive parametric study.  
The results indicate that, piezoelectric effect is only apparent in a low pretension condition.  
Upon reaching a moderate pretension, the pretension effect may always be dominant over the 
effects of varying the applied voltage and relative thickness. 

1. Introduction 
Piezoelectric devices have long been utilized as micro transducers including sensors and actuators, 
especially micro pumps in practical applications. This type of devices has shown many advantages in 
characteristics such as rapid response, high-energy capacity, and excellent efficiency in power 
consumption [1]. In the recent years, similar application has been broadened and extended to the field 
of medical industry. In this area, a comparatively new application is to make use of the property of 
piezoelectricity of a piezoelectric material in pumping drug fluid as a micro pump for drug delivery [2].  
The same pumping principle appears to already have a very industrialized application in automobile 
field for pumping fuel flow for fuel delivery [3]. Similar piezoelectric actuating mechanisms have also 
been employed in PZT energy transducers to harvest energy of sound wave [4]. For the consideration of 
exploiting sustainable energy and resource, energy harvesting floors based on similar PZT materials 
have been developed and commercialized as well [5]. These kinds of devices are commonly designed 
and fabricated in a layered configuration, or maybe bossed with a proof mass. Devices with such 
configuration have demonstrated better performances such as improved sensitivity and linearity over a 
conventional flat member without a center boss [6]. In practical applications, however, they may often 
undergo a large deflection condition. Thus, a more advanced approach beyond classical plate theory 
that bases on Kirchhoff hypothesis is required to evaluate their structural responses. In literature, there 
have been available quite a few studies dealing with this type of problems [7-8]. In practical fabrication, 
they are often made by simply depositing a piezoelectric sensing or actuating layer onto a substrate 
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[9-11]. Thus, a shallow-patched structure is quite common for this type of devices. 
Another key issue in designing and fabricating these types of members appears to be the arising of 

initial tension, on the other hand. A severe pretension may cause a possible warpage in early stage and 
premature failure. The pressure sensitivity may thus be degraded for the case a pressure sensor [12].  
A worth-to-note fact is, however, pretension induced buckling is also the most reliable mechanism in 
evaluating the residual stresses [13]. Apparently, problems of large deflection of a patched plate under 
pretension are of practical importance. In literature, however, related available studies often consider 
the cases of clamped-ended edges and the center boss is usually taken as a rigid part, thus neglecting the 
possible elastic deformation of the center boss. For a layered piezoelectric transducer such as a micro 
pump, a center boss may be of a thickness comparable to the annular region. The possible elastic 
deformation should be included in problem formulation in assessing their structural behaviors. On the 
other hand, a simply supported problem is deemed to represent the other limited case regarding end 
support for practical application, though it has been considered in less. Solutions for a simply supported 
case should be of definite significance as it may serve as an opposite bound in structural 
characterization. It can likely be of more practical merit in simulating a real application for piezoelectric 
miniaturized devices. 

This study is thus motivated to investigate the volumetric displacement in large deflection of a 
simply supported and piezoelectric layered plate under pretension. The approach extends von Karman’s 
large deflection theory to consider a symmetrically layered piezoelectric plate. Thus, the associated 
piezoelectric force term will be included in formulating the problem. For a primary insight, however, 
the thus derived nonlinear governing equations were reduced to linear ones, by neglecting the arising 
nonlinear terms. This gives rise to a modified Bessel equation or standard Bessel equation for the lateral 
slope, depending on the relative magnitude of piezoelectric force term. The corresponding analytical 
solutions were developed by considering the boundary condition of the problem. The solutions for 
various geometrical responses, including lateral curvatures and deflections have been illustrated by the 
present authors in our previous work [14], all expressible in terms of either modified Bessel or standard 
Bessel functions. Following the solution of lateral deflections, one more tractable and feasible step is 
conducted in the present study to find the volumetric displacement, by integrating the solution of lateral 
defection over the entire plate. The significance of extending such analytical solutions is to provide a 
clue for detecting the quasi-static dosage for a single stroke in drug or fuel delivery applications [3], or 
maybe piezoelectric actuators operating alike. In real application, the importance and merit of finding 
the solution of volumetric displacement should worth further note, as it may also represent the key 
element for evaluating the acoustic compliance for an electro-acoustic device [15]. The developed 
approach will be implemented with typical silicon-based layer materials. A parametric study will be 
conducted to evaluate the effects of the ratio in thickness between the center piezoelectric layer and the 
substrate layer, as well as the magnitude of pretension and electric voltage applied across the 
piezoelectric layers. A recent work presented by Fox, et. al. [16] had ever evaluated the effect of 
dimension (radius and thickness) of an annular piezoelectric actuator film upon the behavior of lateral 
deflection of a circular plate, for different kinds of boundary conditions.  However, the influence due 
to initial tension was not considered. 

2. Problem Description and Solution Method 
In order to simulate a more practical situation compared to our previous investigation [14], a 
simply-supported isotropic circular plate symmetrically sandwiched between two piezoelectric outer 
layers polarized in the thickness direction is considered. It is subjected to an initial in-plane tension, N0, 
a uniform lateral load, pz=p0, and an applied voltage V, across the piezoelectric layers polarized in the 
thickness direction, as shown in Figure 1. The governing equations based on force and moment 
equilibrium can be expressed by lateral slope, w,r, in-plane force resultants, Nr and Nθ, and the moment 
resultants, Mr and Mθ, such that, 

,0),(,),,(),(,0),( 0 =−−−=+=− rrrrrrrrrr rQMrMrpwrNrQNrN θθ      (1) 
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Figure 1. Simply Supported and Sandwiched Piezoelectric Layered Plate under Pretension in Lateral 

Load 

 
Where Qr is the transverse shear force resultant, and Ns and Ms are the force resultants and moment 

resultants, respectively, with the following common definitions based on laminate constitutive laws, 
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In the above, As and Ds are the elements of the extensional and bending stiffness matrix, 
respectively, and both are expressible in terms of moduli and thickness of the composted layers of the 
plate. The subscript r (θ) represents a radial (circumferential) component, and the subscript l (t) for 
stiffness components represents a diagonal (off-diagonal) component. In addition, 

αε and κα (α = r, θ) 
are the mid-plane strain and curvature components defined by the radial displacement, u, and the 
lateral deflection, w, such that, 

rwwruwu rrrrrrr ,,,;,2),(, 2 −=−==+= θθ κκεε  .      (3)                 

2.1. Nonlinear Governing Equations 
For the problem of lateral loading after in-plane pretension, an incremental form for the equilibrium 
equations can be derived, following the approach presented previously [14]. For completeness, the 
previously illustrated equations are cited as follow, 
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Where a caped superscript and the superscript “P” represent incremental force and piezoelectric 
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force terms, respectively. In additions, ltq AAA −=1  and lltt AAAA −= are all expressible in 
terms of extensional stiffness of the layered plate. Employing a non-dimensional scheme similar to 
that defined by Sheplak and Dugundji [8], these equations can further be simplified and merged to 
read. 

2 2 2 3

2 2 2
2 '' '

[ ( 12 ) 1] 6
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2
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The related non-dimensional quantities are defined as follow: 
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2.2. Linear Problem and Analytical Geometrical Responses 
Due to the presence of nonlinear terms including 2θ and rS *θ , apparently, trying to solve the above 
nonlinear equations is formidable. For a preliminary insight, a simplified linear study, i. e., the case of 
small deflection is considered. The non-dimensional force resultant rS may be small as well, so that 
the nonlinear term of product, rS *θ , can be negligible. In this manner, the first of previous equations 
for lateral slope can be reduced to the following linear one, i. e.  

2 2 2 3[ ( ) 1] 6     '' ' p
rξ θ ξθ ξ k N Pθ ξ+ − − + = ,                       (6) 

Where ξ is the normalized radial coordinate. Depending upon the sign of the term, 2 P
rk N− , this 

equation can be reformed as either one of the following two cases : 
 

(i) For ( 2 2p
r mk N k− =  > 0), i. e., mechanical-load dominating case, the previous equation may 

clearly be cast in a form as a modified Bessel equation, i. e.,  

                       2 '' ' 2 2 3 [ 1] 6mk Pξ θ ξ θ ξ θ ξ+ − + = .                       (7) 

Boundary conditions of the problem to be satisfied include: (i) Free lateral slope at the center of the 
plate due to axis-symmetry, i.e, 0:0 == θξ ; and (ii) Free radial moment resultant at support ends, 
i. e, 1=ξ : 0=rM . Considering the asymptotic behaviors of the modified Bessel functions at infinity, 
the solution for θ can be derived in terms of modified Bessel functions, i. e., 
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Where I1(kξ) is the modified Bessel function of the 1st kind. Subsequently, taking another step of 
integration and differentiation, respectively, the lateral deflection and curvature can be obtained 
following the recurrence relationships of the modified Bessel functions, i. e., 

( ) ( ) ( )2
0 02 1

6 1( ) ( ) 1
2

I
m m

m m

DPW d I k I k
k k

ξ
ξ θ ξ ξ ξ ξ

 
= = − − −   

 
∫ ,                 (9) 



MSEE 2019

IOP Conf. Series: Materials Science and Engineering 735 (2020) 012030

IOP Publishing

doi:10.1088/1757-899X/735/1/012030

5

0 12

6 1( ) ( ) ( ) 1I m m
m

P D kI k I k
k

ξ ξ ξ
ξ

  
Ψ = − −  

  
.                     (10) 

Likewise, the solution of volumetric displacement (VD) can further be derived, by integrating the 
lateral deflection over the entire plate based on similar recurrence relations of I1 and J1 [18], as well as 
the definition of (VD). Thus, for mechanical-load dominating case,  
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(ii) For 22
c

p
r kkN =−  > 0, or piezoelectric force dominating situation, on the other hand, the 

problem reduces to a standard Bessel equation, i. e., 

  6]1[ 3
c

322 kPθθ ''' ηθηηη =−++ ,                        (12) 

Where 22 kNk p
rc −= ; and ξη ck= . The solution for lateral slope can be similarly formulated to 

read, 
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The corresponding solutions for lateral deflection and curvature can subsequently be derived, i. e., 
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In the above, J0() and J1() are the Bessel functions of the 1st kind with order 0 and 1, respectively.  
Thus, the volumetric displacement can be similarly derived to take the form as, 
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In the last equation, since ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
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, a 

few more steps of manipulations can give rise to the expression of volumetric displacement for this 
case that,  
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3. Numerical Remarks 
To implement the developed approach, a simply-supported and symmetrically layered plate composed 
of silicon (Si) substrate layer sandwiched between two piezoelectric outer layers of either poly-silicon 
(Poly-Si) or silicon-dioxide (SiO2) were considered during the course of this study. The material 
properties (Young’s moduli and Poisson’s ratios) for the layers are listed in Table 1 [18]. The case 
with poly-silicon (Poly-Si) outer layers simulates a nearly monolithic plate (NMP), while that with the 
SiO2 outer layers represents a typically layered plate. An outer radius of 500 (μm) for the plate is 
considered. The thickness of the substrate layer (ha) is taken to be 10 (μm) and that of the piezoelectric 
layer (hp) is set to be 0.25, 0.5, 1.0 or 2.5 (μm), respectively; to have a total thickness ratio of hb/ha = 
1.05, 1.1, 1.2, and 1.5 between the entire sandwiched plate and that of the middle substrate layer. In 
this way, hence, only comparatively thin piezoelectric layers were considered, to avoid the risk that the 
polarization orientation may be affected as the electric voltage is applied. The pretension parameter 
with ka=1, 10, and 50 was implemented, similar to Sheplak and Dugundji [8]. Meanwhile, 
piezoelectric constant of the symmetric patches is taken to be d31=50 pm/V [16] and the applied 
voltage is considered to be V=1, 5 and 10 (Volt) [11]. 
 

Table 1. Material Properties for the Layers of Piezoelectric Plates 

Layer Material Young’s Modulus (Gpa) Poisson’s Ratio 
PolySi 170 0.22 

Si 165 0.27 
SiO2 75 0.17 

 
For demonstration, however, the afore-mentioned nearly monolithic plate (NMP) was implemented 

first. In the case of a relatively low applied voltage, V=1 (volt), simulating a nearly pure mechanical 
loading condition, the solutions of lateral slope and deflection for various initial tensions versus 
central deflection (W0) are presented in Figure 2 and 3, respectively. The results following CPT 
(Classical Plate Theory) obtained by taking the layered plate as a single layer with Young’s modulus, 
E=170 (GPa) and the same Poisson’s ratio as the silicon layer without initial tension is included for 
comparison. Apparently, the present solutions for the case of very low initial tension (k=1) correlate 
well with the CPT results and thus the present approach is validated. 
 

 
Figure 2. Comparison of Lateral Slope for Nearly Monolithic Plate with CPT Solutions 
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Figure 3. Comparison of Lateral Deflection for Nearly Monolithic Plate with CPT Solutions 

 
Volumetric displacement (VD) for the same plate under various applied voltages are evaluated for 

thickness ratios of hb/ha = 1.05, 1.1, 1.2 and 1.5 between the total sandwiched plate and the substrate 
layer. The results are plotted against the magnitude of pretension (k=ka), as shown in Figure 4 to 7, 
respectively. Due to the inherent normalization scheme, it should be noted that, the present solutions 
for (VD) are also normalized quantities relative to exactly the dimension of structural volume of the 
considered sandwiched plates. The obtained solutions show that VD always have the highest 
magnitude when no pretension (k=ka=0) is involved. The thinner the piezoelectric layers, the greater 
the piezoelectric effect is observed. This implies that not only a larger VD will be obtained at the left 
end for the shown curves; it also shows a very sensitive change for VD as the applied voltage (V) is 
varied. Under a low pretension and applied voltage, on the other hand, varying the thickness of the 
piezoelectric layers seems to have an apparent influence on the results of (VD). In a low initial tension, 
conceivably, raising the applied voltage may rapidly increase the volumetric displacement, especially 
for a thin piezoelectric layer cases. Yet, as the pretension grows, volumetric displacement (VD) may 
decrease apparently. The decreasing of (VD) relative to pretension further shows that pretension will 
dominate over both the piezoelectric effect and the geometrical size (layer thickness) effect of the 
sandwiched plate. The volumetric displacement will eventually vanish, as the pretension keeps 
increasing to become relatively large. 
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Figure 4. Volumetric Displacement of [Poly-Si/Si/Poly-Si] Plate, hr=1.05 
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Figure 5. Volumetric Displacement of [Poly-Si/Si/Poly-Si] Plate, hr=1.1 
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Figure 6. Volumetric Displacement of [Poly-Si/Si/Poly-Si] Plate, hr=1.2 
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Figure 7. Volumetric Displacement of [Poly-Si/Si/Poly-Si] Plate, hr=1.5 

 

4. Conclusion 
The problem volumetric displacement in large deflection of a pre-stressed piezoelectric and 
sandwiched plate due to lateral load is studied. For a nearly monolithic plate under a very low applied 
voltage, the obtained solutions agree with available solutions for the case of pure mechanical loading 
and thus the presented approach is checked.  The solutions for typically layered plate show that, 
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piezoelectric effect and geometric size effect of the layered plate may come into play when it is in a 
low pretension.  Upon reaching a moderate magnitude for the pretension, the pretension effect will 
dominate over the effects of the applied voltage and relative thickness ratios of the layers. 
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