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Abstract. Poly(silicon-containing arylacetylene) (PSA) syntactic foams were prepared by 

thermally expandable microspheres (EM) in the silicon-containing arylacetylene (SA) resin 

during curing. The morphology, porosity, thermal and mechanical properties of the foams were 

studied. Furthermore, the PSA foam was reinforced by attapulgite (ATT) nanoparticles to 

fabricate the PSA/ATT composite foam. The results display that the density, compressive 

strength and thermal stability of the PSA foam decrease with increasing EM content in the 

matrix, but the temperature at 5% weight loss in N2 is still higher than 560℃, and the residual 

yield at 800℃ is larger than 89%. With addition of 10 g ATT in the 100 g matrix, the average 

specific compressive and flexural strength of PSA/ATT foam are 31.4 MPa g-1cm3 and 33.6 

MPa g-1cm3, respectively. The thermal conductivity of the composite foam can decrease to 

0.064 W m-1 K-1 and has a density of 319 kg m-3. 

1.  Introduction 

Lightweight, thermal insulating, high strength and heat-resistant polymeric materials have attracted 

many attentions among researchers and industries. Polymeric foams are widely used in many 

applications due to their great features, such as thermal and sound insulation, lightening, cushioning as 

well as low dielectric constant. Polyarylacetylene (PAA) resin possesses high char yield (over 80%). 

The PAA foam was prepared by blowing PAA prepolymer with pentane and then carbonized to 

synthesize carbon foams with high mechanical strength and high strength/density ratio [1]. 

Poly (silicon-containing arylacetylene) is highly heat- and burn-resistant as ceramic, easy-to-

process, and light as thermosetting resin with -C≡C-Si-C≡C-Ar- units. It can be utilized as ablative 

and heat-protection materials. Itoh and co-workers [2-5] used magnesia to catalyze dehydrogenative 

coupling polymerization of diethynyl benzenes and hydrosilanes to prepare the poly [(phenylsilylene) 

ethynylene-1,3-phenyleneethynylene] (called MSP), which has no volatility with cure, high 

decomposition temperature and high char yield after pyrolysis. Buvat et al [6] prepared a easily 

processable phenylacetylene terminated poly (silylene ethynylene phenylene ethynylene) (termed BLJ 

resin) by condensation of dichlorosilane (dichlorophenylsilane) and a mixture of Grignard agents of  1, 

3-diethynyl benzene and phenyl acetylene. Huang et al [7] also prepared a silicon-containing 

arylacetylene resin (SA) by condensation of dichlorodimetylsilane and a mixture of Grignard agents of 

diethynyl benzene and phenyl acetylene. The resin abbreviated PSA is processable, highly heat 

resistant and has good mechanical properties as well as stable dielectric property in the range of wide 

operating temperature and broadband. 

The thermally expandable microsphere consists of inert low-boiling liquid hydrocarbon core 

wrapped by a spherical thermoplastic acrylonitrile copolymer shell to be used as a physical aerating 



MSEE 2019

IOP Conf. Series: Materials Science and Engineering 735 (2020) 012055

IOP Publishing

doi:10.1088/1757-899X/735/1/012055

2

 

 

 

 

 

 

powder [8, 9]. The liquid core begins to evaporate, and meanwhile the thermoplastic shell becomes 

soft and starts to swell due to the high internal pressure of the gasified blowing agent in the 

microsphere when the microsphere is heated to above the glass transition temperature (Tg) of the 

polymer shell. The thermally expandable microspheres (TEMs) are lightweight fillers that can act as 

physical blowing agent and adjust the size of closed cells when mixed in the resin and subsequently 

heated to cause expansion within the matrix to fabricate the composite foam. Wang et al [10] prepared 

the expandable microspheres/epoxy foams with different densities and microstructures, and found that 

the precuring process and foaming temperatures affected the cell size, the cell size distribution and the 

density of the foam.  

Poly (silicon-containing arylacetylene) foam will be a promising lightweight material which could 

be applied as adsorbent materials after pyrolysis. Attapulgite (ATT), a kind of natural fibrillar 

hydrated magnesium-aluminum silicate clay has been used to prepare polymer/ATT nanocomposites, 

due to its intriguing properties, low cost, and low density. In this paper, the PSA syntactic foams were 

prepared by mixing with the expandable microspheres (EMs) and then elevating temperature to cure 

and foam the SA/EMs resins. Furthermore, a nanorod-like ATT nanoparticles were used to reinforce 

the PSA syntactic foam. The fabrication of PSA foams, the correlation of structure, thermal and 

mechanical properties of PSA, and PSA/ATT composite foams were attempted to be investigated in 

detail. 

2.  Experimental 

2.1. Materials 

Silicon-containing arylacetylene (SA) resins with ethynyl terminal groups were prepared in our lab 

according to the procedure shown in reference [7]. The number-average molecular weight (𝑀𝑛
̅̅ ̅̅ ) and 

polydispersity index (PDI) of the silicon-containing arylacetylene resins are 2230 and 1.81, 

respectively. Ethyl acetate, 99+% was purchased from Shanghai Titan Scientific Co., Ltd., China. The 

expandable microsphere, DU170 (number-average particle size 25.6 m, density 1.028 g/cm3) was 

received from Crerax Science and Technology Co., Ltd., China. Nano attapulgite (ATT) powder was 

supplied by Jiangsu Jiuchuan Nano Material Technology Co., Ltd., China. All chemicals were used as 

received. 

2.2. Preparation of PSA Syntactic Foam 

50 grams of SA and 220 mL of ethyl acetate were added into the 500 mL three-necked flask with 

mechanical stirrer, condenser and thermometer. The mixtures were heated to 75oC by oil bath, and 

were agitated until the SA resin was dissolved in ethyl acetate. The certain amount of DU170 powders 

were poured into the SA melt after the solvent was evaporated under vacuum. The mixture of SA melt 

and DU170 was stirred until the powders were evenly dispersed in the melt. The melting SA mixtures 

were poured into the aluminum boxes with sizes of 25 mm×15 mm ×15 mm and 42 mm×42 mm×5 

mm. The mixtures of the SA resin and DU170 were foamed and cured in the hot oven in term of the 

process, 170oC /2 h, 210oC /2 h and 250oC /4 h. SA resin was crosslinked to form poly(silicon-

containing arylacetylene) (PSA) during foaming and curing. The added amount of DU170 and the 

named PSA foams were listed in Table 1. 

  

Table 1.  The Named PSA Foams with Different DU170 Content 

Coded foam DU170 content (phr) Coded foam DU170 content (phr) 

PSA-1.0 1.0 PSA-3.2 3.2 

PSA-2.0 2.0 PSA-3.4 3.4 

PSA-3.0 3.0 PSA-3.6 3.6 

PSA-4.0 4.0 PSA-3.8 3.8 

2.3. Preparation of PSA/ATT Composite Foam 

In 500 mL round bottom flask, 220 mL ethyl acetate was poured, and then the ATT powders were 
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weighed and added with agitation and sonication. After 2 h, the 50 g of SA resin was added into the 

flask. The dispersion was being agitated and sonicated at room temperature for 1.5 h. And then the 

dispersion was only heated to 80oC with agitation. The 3.6 parts of DU170 per hundred resin were 

added into the melted mixture of SA and ATT after the ethyl acetate was partially removed at 80oC  

for 20 min. The melted mixture was poured into the aluminum box with size of 40 mm × 40 mm × 40 

mm until the solvent was evaporated. The mixtures were foamed and cured to achieve the PSA/ATT 

syntactic foams according to the procedure, 170oC /2 h, 210oC /2 h and 250oC /4 h. With addition of 

3.0, 5.0, 7.5, 10.0, 12.5 and 15.0 g of ATT in 100 g of the SA resin, the mixtures were coded as 

SA/ATT-1, SA/ATT-2, SA/ATT-3, SA/ATT-4, SA/ATT-5 and SA/ATT-6, respectively. 

2.4. Characterization 

Scanning electron microscopy (SEM, S-4800, Hitachi Company, Japan) was utilized to observe the 

morphology of the foam samples. Based on Archimedes’ principle, the volume density of the PSA 

foam was tested by drainage method according to the Chinese Standard GB/T 4472-2011. It used the 

density determination kit for the analytical balance (Mettler Toledo ML204, Switzerland).  

The compressive test was done according to Chinese Standard GB/T 8813-2008. The compressive 

strength of the foams was tested by universal material mechanical testing machine (CMT4204, 

Shenzhen SANS, China) at room temperature. The testing speed used was 1 mm/min.  

Thermal conductivity of the PSA and PSA foams with dimensions of 40 mm 40 mm 5 mm was 

measured by a heat conduction analyzer (TC3000, Xiatech, China).  

Thermogravimetric analysis (TGA) was conducted using thermogravimetric analyzer (Mettle-

Toledo TGA-DSC1, Switzerland). Nitrogen was used as the purge gas with a flow rate of 50 mL min-1, 

and a heating rate of 10°C min-1 was used. 

The flexural properties of the foams were performed on an electronic universal testing machine 

(CMT4204, Shenzhen SANS, China) at room temperature. The flexural properties of the samples were 

tested according to Chinese Standard, GB/T 1499-2005. The cross-head speed was 2 mm min-1 and the 

resulting fracture surfaces were used for the SEM observations. 

3. Results and Discussions 

3.1. PSA Foaming 

The morphology of the PSA syntactic foams with different DU170 content displays that the rigid PSA 

syntactic foam can be obtained during crosslinking and expanding. The most of foams have closed cell 

structure, and the amount of spherical cells increases with addition of DU170 content in the PSA. The 

cell wall of the PSA syntactic foam becomes thinner and the cells squeeze and collapse with each 

other when the 4 parts DU170 per hundred PSA matrix are added. The increase of the cell density can 

decrease the density of the PSA syntactic foam. Figure 1 shows the fractured surfaces of the PSA 

syntactic foams with the content of DU170 from 3.2 to 3.8 phr. The spherical cells are evenly 

dispersed in the PSA matrix. The PSA syntactic foam with high content of closed cells presents the 

low density and the proper mechanical property. 

 

       

Figure 1. SEM Images of PSA-3.2 (a), 3.4 (b). 3.6 (c) and 3.8 (d) Foams 

3.2. Structure and Compressive Strength 

The density and compressive strength of the PSA syntactic foams with different DU170 content were 
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listed in Table 2. The results show that the density of PSA syntactic foam decreases with increase of 

DU170 content. Meanwhile, the compressive strength of PSA syntactic foam decreases from 10.3 

MPa to 4.0 MPa. The decrease of the density of the foam results in the increase of porosity of the foam. 

The compressive strength of the foam reduces because the wall of the closed cells becomes thinner. 

However, there is an optimal value, 25.6 MPa g-1 cm3 for the specific compassion strength of the foam 

when the content of DU170 is 3.6 g in 100 g of PSA matrix. The density of the PSA foam with 4.0 g 

DU170 in 100 g PSA can reach 296 kg m-3, but the compressive strength of the foam declines to 4.0 

MPa since the collapse of the cells occurs in the foam (see Fig. 1(d)).  

 

Table 2. Density and Compressive Strength of PSA Foams with Different DU170 Content 

Foam ρ (g cm-3) σc (MPa) σ/ρ (MPa g-1 cm3) 

PSA-3.0 0.511±0.021 10.32±0.22 20.20 

PSA-3.2 0.433±0.011 9.92±0.11 22.90 

PSA-3.4 0.361±0.006 9.11±0.06 25.23 

PSA-3.6 0.341±0.008 8.74±0.09 25.63 

PSA-3.8 0.323±0.013 6.07±0.14 18.80 

PSA-4.0 0.296±0.004 4.03±0.05 13.62 

3.3. Thermal Stability and Conductivity 

The effect of DU170 microspheres on the thermal stability of the PSA syntactic foams are shown in 

Table 3. The results show that the temperature of 5% weight loss (Td5) of the cured SA, namely PSA 

decreases with addition of DU170 microspheres. However, the Td5 of PSA syntactic foams is still 

higher than 560oC in N2, and the residual yield at 800oC (Yr800) of the foams and the cured SA are 

greater than 89%. The PSA syntactic foam still sustains high heat-resistance. The weight loss of the 

foams is higher than that of the cured SA, and increases with rising temperature since the gases in the 

cells escape from the foam. There is a first decomposition temperature for the PSA syntactic foams 

around 330oC. It results from the decomposition of the polymeric shell of DU170 microspheres. The 

second weight losses are attributed to the decomposition of the PSA. The thermal conductivity of the 

PSA syntactic foam is in the range of 0.08~0.09 W m-1 K-1, which is lower than 0.2 W m-1 K-1 of the 

cured PSA. 

 

Table 3. TGA Analysis of the Cured PSA and PSA Foams (in N2) 

DU170 content in 100 g of PSA (g)  Td5 (oC) Yr800 (%) 

0.0  622.0 89.1 

3.0  573.4 90.9 

3.2  583.0 91.0 

3.4  584.1 90.9 

3.6  560.8 89.3 

3.8  569.2 89.9 

4.0  564.3 89.5 

3.4. PSA/ATT Composite Foams 

The effect of ATT content on the mechanical properties of the PSA/ATT composite foams are 

presented in Table 4. The density of the composite foam decreases gently with increasing ATT loading. 

It probably belongs to the hydrated pristine ATT nanoparticles, which can participate in the foaming 

with DU170 to reduce the density of the composite foams compared with the neat PSA foam. The 

nearly free zeolitic water filling up the empty channels which parallel to the ribbons in two silicon-

oxygen tetrahedron layers and one octahedral layer of metal cations, escapes firstly during heating 

dehydration [11, 12]. The escape of water can be gasified and held by the PSA to form the bubble cells 

in the matrix. The remaining solvents and water resulting from polycondensation reaction were used 

as blowing agent to prepare polyimide foams [13]. The average specific compressive and flexural 
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strength of PSA/ATT composite foam are higher than that of the neat PSA foam, and increase with 

increase of ATT loading, and can reach 31.4 MPa g-1 cm3 and 33.6 MPa g-1 cm3, respectively, when 

the 10 phr of ATT loading are added in the matrix. The epoxy foams expanded by microspheres at 

175oC foaming temperature exhibited specific compressive strength of 32.5 MPa g-1 cm3 [10]. The 

maximum values obtained are attributed to the formation of physical network of ATT nanoparticles in 

the PSA matrix. The unmodified attapulgite nanosized particles could be well-dispersed in the 

phenolic (PF) matrix and had the supporting effect in PF foam cell wall to improve the tensile strength 

and the compressive strength of PF foam nanocomposites [14]. The thermal stability of the PSA/ATT-

4 composite foam is also higher than that of the PSA foam (Td5 589oC, Yr800 92.8%). Moreover, the 

specific strength of the composite foam decreases evidently with addition of higher content of ATT 

nanoparticles. The fractured surfaces of the PAS/ATT-4 and PSA/ATT-5 composite foams and wall of 

cells in the foams are shown in Figure 2. The ATT nanoparticles can be evenly dispersed in the cell 

wall of PSA/ATT-4 composite foam (see white prominent dots in Figure 2(b)). The strength of the 

PSA/ATT composite foam with higher than 10 phr ATT loading in PSA matrix drops down because of 

existence of the agglomeration of the filler (as indicated in the black cycle in Figure 2(d)). The flexural 

modulus of the PSA/ATT composite foam decreases slowly with increasing ATT loading. The 

decrease of the density of the PSA/ATT composite foam causes the reduction of the thickness of wall 

of cells which will lead to the decrease of the modulus of the foam. Similarly, the flexural strength of 

the cured SA was augmented with addition of montmorillonite (MMT) or organically modified 

montmorillonite (OMMT), but the flexural modulus of the cured SA decreased slightly [15].  

 

Table 4. Mechanical Properties of PSA/ATT Composite Foams with Different ATT Loadings 

ATT  (phr)   (g cm-3) c (MPa) Ec (MPa) f (MPa) Ef (GPa) 

0.0 0.341±0.003 8.74±0.03 284.53±26.31 8.12±0.44 2.45±0.14 

3.0 0.337±0.007 9.15±0.18 311.67±19.64 8.27±0.03 2.38±0.11 

5.0 0.333±0.010 9.41±0.33 373.37±33.88 8.71±0.12 2.35±0.17 

7.5 0.326±0.001 9.87±0.28 447.72±14.67 9.41±0.24 2.25±0.08 

10.0 0.319±0.001 10.02±0.78 599.66±97.44 10.72±0.55 2.22±0.10 

12.5 0.311± 0.004 8.44±0.34 212.80±26.57 5.88±0.68 1.40±0.22 

 

 

Figure 2. SEM Images of Fractured Surface of PSA/ATT-4 and PSA/ATT-5 Composite Foams 

 

The attapulgite powders could be hot-pressed to form a dehydrated attapulgite with porosity of 

45.7%, and exhibited that the thermal conductivity of the attapulgite is as low as 0.34 W m-1 K-1 at 

50oC  [16]. This suggests the potential of hot-pressed attapulgite as a candidate for thermal barrier 

materials. The effect of ATT nanoparticles on the thermal conductivity of the PSA composite foam is 

presented in Table 5. The results show that the thermal conductivity of the PSA/ATT composite foams 

are lower than that of the PSA foam, and decreases with increase of ATT loading. It can descend to 

0.0642 W m-1 K-1 when 10 g ATT nanoparticles without premodification are added into 100 g PSA 

matrix. The thermal conductivity of the microsphere-expanded epoxy foam was about 0.05~0.07 W m-

1 K-1 when the expandable microspheres were added in the range of 3wt%~4wt% [17]. The thermal 

conductivity of the PSA foam can further be improved by adding ATT nanoparticles in the matrix. 
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Table 5. Thermal Conductivity of the PSA/ATT Composite Foams 

ATT content (phr) ρ (g cm-3) K (W m-1 K-1) 

0.0 0.341±0.008 0.0821 

3.0 0.337±0.007 0.0753 

5.0 0.333±0.010 0.0724 

7.5 0.326±0.001 0.0688 

10.0 0.319±0.001 0.0642 

4. Conclusions 

Thermally expandable microspheres (EM) were added into the silicon-containing arylacetylene (SA) 

resin to prepare the SA/EM mixtures The melted mixtures were swollen with expanding of 

microspheres during curing to form the poly(silicon-containing arylacetylene) (PSA) syntactic foams. 

Furthermore, the PSA foam was reinforced by attapulgite (ATT) nanoparticles to fabricate the 

PSA/ATT composite foam. The results show that the foams can form at initial curing temperature of 

SA resin, and harden to achieve the rigid foams with spherical closed cells after the foams are post-

cured. With increasing EM content in the PSA matrix, the density, compressive strength, and thermal 

stability of the PSA foam decrease, but the Td5 of PSA syntactic foam in N2 is still higher than 560oC, 

and the Yr800 is larger than 89%. The specific compressive strength of the PSA syntactic foam can 

reach 25.6 MPa g-1 cm3. The thermal conductivity of the foam changes from 0.08 to 0.09 W m-1 K-1. 

With addition of 10 g ATT in the 100 g matrix, the average specific compressive and flexural strength 

of PSA/ATT foam are 31.4 MPa g-1cm3 and 33.6 MPa g-1cm3, respectively. In addition, the thermal 

conductivity of the PSA syntactic foam can reduce to 0.064 W m-1 K-1 when the composite foam has a 

density of 319 kg m-3. A highly heat-resistant poly (silicon-containing arylacetylene) foam is 

lightweight and heat-insulating syntactic foam for aerospace application, and a promising precursor 

for preparing carbon foam to be used as an absorbent material. 
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