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Abstract. Use of a homogeneous aquifer method to represent a heterogeneous aquifer for 

parameter estimation will inevitably result in uncertainties in the estimated parameter values. 

The objective of this paper is to evaluate the impacts of the reduced duration of the pumping 

test on the estimated hydraulic conductivity using the observations from pumping tests. Firstly, 

a heterogeneous hydraulic conductivity K field was generated using the Monte Carlo method. 

A MODFLOW groundwater flow model was then constructed to perform numerical pumping 

tests. The K value was estimated by the inverse method based on the Theis solution for an 

unconfined aquifer. The K fields were generated based on the hydraulic conductivity data sets 

collected for a karst aquifer in southwest of China. The effective hydraulic conductivity (Ke) 

was calculated to represent the hydraulic conductivity of a heterogeneous aquifer. For a single 

test in a heterogeneous aquifer, while the duration of the test is less than a critical value, the 

reduced duration will lead to the big uncertainty of the estimated hydraulic conductivity. 

However, Ke can achieve a relative stable value while the number of reduced duration tests is 

big enough to eliminate the impacts of the uncertainty of the separate K values. 

1. Introduction 

The study on the heterogeneity of an aquifer is important to the analysis of groundwater flow and 

contaminant transport. The heterogeneity of an aquifer can include the spatial variation of hydraulic 

properties, such as hydraulic conductivity (K), specific yield (Sy), and coefficient of dispersity. 

Moench et al. (2001) noted that the differences (errors) between simulated and measured drawdowns 

in groundwater models are caused by local variations of hydraulic properties, primarily in K. Sudicky 

(1986) also reported that K is a key factor in controlling groundwater flow and solute transport, and it 

can vary significantly over short distances.  

In the last century, the methods to determine K for a homogenous aquifer were developed from the 

point scale to regional scale, such as the slug test, permeability test, pumping test and inverse 

modeling. Therefore, numerous approaches were proposed to determine the K values of a homogenous 

aquifer. However, for a heterogeneous aquifer, the spatial heterogeneity results in difficulty in the 

determination the K values accurately under different scales. In the field studies on the estimation of K 

values of a heterogeneous aquifer, many researchers focused on the scale effects of K (Sudicky 1986; 

Illman 2006) and the methods of upscaling K values from a small scale (Felletti et al. 2006). In most 

of these studies, the actual heterogeneous aquifers were assumed to be homogenous aquifers, therefore, 

when the approaches derived from a homogenous aquifer are applied to a heterogeneous aquifer, they 

might lead to large uncertainties in the K values.  



MSEE 2019

IOP Conf. Series: Materials Science and Engineering 735 (2020) 012058

IOP Publishing

doi:10.1088/1757-899X/735/1/012058

2

 

 

 

 

 

 

Devlin and McElwee (2007) used numerical modeling to study the effects of measurement error on 

the estimations of horizontal hydraulic gradient, which led to more attention to the uncertainty analysis 

of field tests and measurements. In practice, some pumping tests may be forced to stop due to the short 

depth of pumping well, the energy disruption, and other unpredictable factors, especially in a karst 

aquifer with strong heterogeneity, which might result in fewer observations with reduced duration of 

pumping test. The reduced duration tests (RDTs) induce a concern whether the fewer observations 

may significantly affect the estimations of hydraulic conductivity of a heterogeneous aquifer. The 

impacts of the reduced duration of test on the estimates of hydraulic properties were studied by 

Moench et al. (2001), and they reported that results for an 8-hour test were as valid as the results for a 

72-hour test, which was conducted in Cape Cod, Massachusetts. In our study, the impact of the 

reduced duration of pumping tests on the estimated hydraulic conductivity will be further studied in 

several hypothetic aquifers with different heterogeneities.  

In general, the understanding of heterogeneity is generally based on numerous field investigations, 

such as pumping test, slug test, ground tomography and other geophysical works; however, it is 

impossible to perform field investigations at each test site in a small scale to analyze the hydraulic 

properties of an aquifer. Due to the lack of data and sampling biases of field tests, numerical 

simulations and laboratory tests are implemented to achieve some insights of nature, which easily 

satisfy the specific statistical assumptions (Zhang et al. 2007). In comparison with the lab tests and 

numerical simulations, for the known physics the numerical simulation is more convenient to conduct 

than the lab test (Zhang et al. 2007; Beckwith et al. 2003). On the other hand, pumping test was 

always used to yield reasonable estimates of the average hydraulic conductivity of an aquifer (Butler 

and Healey 1998; Moench et al. 2001). This study focused on parameter estimation from pumping 

tests, and the drawdown datasets were primarily produced by the numerical pumping tests.  

2. Materials and Methods 

2.1. Aquifer Tests and the Solutions 

Three pumping-recovery tests, nine slug tests and nine permeability tests (three constant-head tests 

and six falling-head tests) were conducted in an unconfined karst aquifer within the Houzhai basin 

from August 13th to 21st, 2008. The Houzhai basin is near the town of Puding, southwest of China. 

Drawdowns from the pumping and recovery periods were recorded in every ten minutes at the 

beginning of the tests. At the end of the pumping-recovery tests, the changes of drawdowns were 

minimal so that the groundwater flow in the aquifer was regarded as steady-state. The Dupuit solution 

for an unconfined aquifer was used to calculate the K value under the steady-state conditions. The 

drawdowns collected at each observation well in the pumping-recovery tests were used to estimate the 

hydraulic parameters using the Moench solution (Lu et al. 2011). Totally 13 K estimates were obtained 

using the Dupuit solution and the Moench solution based on the pumping-recovery tests. Both of the 

constant-head and falling-head tests were analyzed by Darcy’s Law, and the slug tests were evaluated 

by the solutions of Hvorslev (1951) and Bouwer and Rice (1976). In all, 9 estimates and 18 estimates 

of K were obtained by the permeability tests and slug tests, respectively.  

2.2. Numerical Simulations for the Pumping Test in a Heterogeneity Aquifer 

2.2.1. Generation of the Random K Fields. Zhang et al. (2007) noted that the natural deposits often 

exhibit long range correlation. Webb and Anderson (1996) demonstrated that the pure random field 

with assumptions of spatial correlation and spatial trends might result in unrealistically smooth 

distribution of K. However, in a karst area, the spatial correlation exists slightly because of the strong 

heterogeneity of aquifer. Therefore, the Monte Carlo simulation is more feasible than the Gaussian 

sequential simulation in generating the random K fields in the study.  

In order to study the impacts of the variability of an aquifer on the estimated K, the K field was 

given randomly according to the specific EK and Cv. The generation of random K value in this study 

followed the steps of the Monte Carlo method. The pseudorandom uniform numbers were produced by 

the algorithm described by Lehmer (1951), and the pseudorandom normal deviates were transformed 
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from the uniform numbers using Box–Muller (1958) method. This random number generator has 

passed all the standard tests for random number generators.  

2.2.2. Forward Modelling. The hypothetical pumping tests were conducted in heterogeneous aquifers 

generated based on the mean and deviation of K values from actual aquifer tests. MODFLOW was 

used to simulate the hydraulic heads in response to groundwater pumping. The simulated aquifer was 

unconfined, and the dimension of the model was 2500 m in length, 2500 m in width and 50 m in depth. 

The model area was discretized into 100 columns and 100 rows in the x and y directions, respectively. 

Since the determination of the vertical K was not the focus of this study, the model had only one layer 

of a depth of 50 m, thereby inducing a two-dimensional groundwater flow system. A pumping well 

was placed at the center of the model. The pumping test lasted for 24 hours with a constant pumping 

rate of 1728 m3/d, which is the actual rate of a pumping test conducted near the town of Laoheitan. In 

all, the pumping duration was divided into 10 stress periods and 15 time steps in each stress period 

with a 1.1 multiplier used within each stress period. Therefore, 150 drawdowns were recorded at each 

of the two observation wells. In the study of the heterogeneous aquifer, two observation wells, labeled 

as Wmin and Wmax, were placed at different directions of the pumping well. Well Wmin was located 

in the short axis of the influence since pumping, and well Wmax was located in the long axis of the 

influence. 

2.2.3. Estimation of the Hydraulic Conductivity. In this study, the Theis solution for the unconfined 

aquifer, labeled as Quasi-Theis, thereafter (Chen 2001), was used to calculate the hydraulic heads of 

the simulated aquifer, which is expressed as ℎ
2 = ℎ0

2 −
𝑄

2𝜋𝐾
𝑊(𝑢). Here, h0 is the hydraulic head prior 

to pumping, h is the hydraulic head since pumping begins, and W(u) is the well function. Using of the 

Theis solution for this study is to document the difference between the derived K value from the 

simulated drawdown datasets and the actual K values built into the test heterogeneous aquifers. The 

gradient method reported by Chen and Ayers (1997) was regarded as the inverse method to estimate 

the K of the hypothetic aquifers, which was to minimize the square errors between the observed 

hydraulic heads from the forward modeling and the calculated hydraulic heads using the Quasi-Theis 

solution.  

The effective hydraulic conductivity, labeled as Ke, was generally regarded as the hydraulic 

conductivity of the heterogeneous aquifer (Renard and de Marsily 1997), and Ke can be calculated 

from the discrete K values obtained from the previous parameter estimations. The equations proposed 

by Gutjahr et al. (1978) were adopted in this study because they are simple to conduct without 

considering the boundary conditions. Ke was calculated as follow, respectively,  

𝐾𝑒 = 𝐾𝑔[1 + (
1

2
−

1

𝑛
)𝜎𝑌

2], 𝐾𝑔 = (∏ 𝐾𝑖
𝑁
𝑖=1 )

1/𝑁
                                               (1) 

Where 
2

Y the variance of LnK, Kg is is the geometric mean of K values, n is the dimensionality of 

media, N is the number of the K values. Since the numerical modeling was two-dimensional in the 

study, Ke is equal to Kg.  

Ke represent the estimated hydraulic conductivity of the heterogeneous aquifer. EK and Cv for the 

K of model grids represent the average K and the variability of the hypothetical aquifer, respectively. 

In the numerical simulations, the EK values were set to be 10, 50 and 100 m/d, respectively, and the 

Cv values of given K at each mean value were set to be 0.1 (small variance), 0.5 (medium variance) 

and 1 (large variance). The K values of the girds in the model were assigned from the ten thousand K 

values. Under the condition of a set of the assigned EK and Cv values, one hundred realizations were 

run to obtain an estimate of Ke for an observation well. The impacts of the aquifer heterogeneity were 

assessed by generation of the heterogeneous K fields, running the numerical pumping tests in these 

heterogeneous aquifers and performing inverse modeling for K estimation.  
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3. Results and Discussion 

3.1. The Estimated K Values in the Karst Aquifer 

Figure 3 shows the wide range of the estimated K values from 10-7 to 103 m/d in the karst aquifer 

located in Houzhai basin. The estimated K values range from 26.74 to 469 m/d, 6.39×10-5 to 20.7 m/d, 

and 6.67×10-7 to 32.5 m/d in terms of the pumping tests, permeability tests, and slug tests, respectively. 

The results show that the estimated K values from the pumping tests are greater than those from the 

permeability tests and slug tests, which may be attributed to the fact that the scales of pumping tests 

are larger than those of other aquifer tests (Rovey 1998). In the meanwhile, the Cv of the estimated K 

values from the pumping tests are lower than those from other tests, which indicates that pumping 

tests may yield a higher K value with less variability.  

Scale effect of K means that K values vary with the data support (Zhang et al. 2007). The estimated 

K values from the pumping-recovery tests, permeability tests and slug tests were plotted versus the 

support volume (Schulze-Makuch et al. 1999) and the nominal length (Illman 2006) to evaluate the 

scale effect and characterize the variability of the K values. For the pumping tests, the pumpage in the 

pumping test and the radius of influence were regarded as the support volume and the nominal length, 

respectively. For the permeability tests and slug tests, the volume of the injected water and the depth 

of the test hole were considered as the support volume and the nominal length, respectively. Butler and 

Healey (1998) suggested that the fact of different K values with different measurement scales cannot 

be attributed to the scale effect without the examination of hydraulic tests. Here, when the support 

volume is regarded as the scale of measurement, the observed K values have an increasing trend with 

the support volume (Figure 1a). On the other hand, due to the lack of field investigations in the karst 

aquifer, when the nominal length is regarded as the scale of measurement, there is no increasing trend 

of K values with the nominal length (Figure 1b).  

 

 

Figure 1. The Hydraulic Conductivities through the Field Tests with the Support Volume (a) and the 

Nominal Length (b). The Support Volume is calculated by the Involved Water Volume in Each Test. 

The nominal length represents the depth of test hole in permeability test and slug test, and represents 

the radius of influence in pumping test, respectively. 

 

All the estimated K values show a log-normal distribution, which can be tested through the 

Kolmogorov-Smirnov (K-S) test (Figure 2a). The mean of log-K is -1.20 and the deviation of log-K is 

3.22. The mean and Cv of the estimated K are 80.81 m/d and 1.73, respectively. In terms of the 

pumping tests, 13 different K values were estimated, and they are in a normal distribution from the K-

S test (Figure 2b). The mean and Cv of the 13 estimated K values are 223.35 m/d and 0.71, 

respectively. Sanchez-Vila et al. (1996) suggested a log-normal distribution for the K values in the 

aquifers. However, due to the non-stationarity of the log-normal distribution, extreme variations of the 

K field may lead to the nonconvergence of the computation in numerical models. In addition, since the 
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K value of a model grid represents the hydraulic conductivity of the entire grid, including the matrix 

and fissure within the area, the normal distribution for the 13 estimated K values from pumping tests 

may be more suitable for numerical simulation in this study. Therefore, the normal distribution was 

selected as the probability distribution function in the following numerical simulations.  

 

 

Figure 2. The hydraulic conductivities through the field tests with the support volume (a) and the 

nominal length (b). The support volume is calculated by the involved water volume in each test. The 

nominal length represents the depth of test hole in permeability test and slug test, and represents the 

radius of influence in pumping test, respectively. 

3.2. Occurrences of Reduced Duration Test by Aquifer Heterogeneity 

Given the EK and Cv values from the previous pumping-recovery tests in the karst aquifer, thousands 

of different K values representing the heterogeneous K field were generated randomly based on the 

Monte-Carlo method. As Cv increases, the variability of the given K distribution becomes stronger, 

and the probability of that the pumping well is located in a grid with extremely small K become 

greater. Because the pumping rate was constant in the numerical models, the grid cell with a small K 

value placed the pumping well will occasionally change into a dry cell in the process of the simulation. 

Since the durations of these tests were not equal to one day, here, these reduced duration tests (RDTs) 

were not taken into account to estimate K. However, in the next section, numerous artificial reduced 

duration tests were conducted to study the impacts of the reduced duration tests on the estimated 

hydraulic conductivity. Table 1 gives the occurrences of RDTs at different EK and Cv values. The 

occurrences increase as it has a small EK and a large Cv.  

 

Table 1. Occurrences of Reduced Duration Test (RDT) Owing to the Variability of the Random K 

Field. One hundred realizations were performed with each set of EK and Cv. 

Cv 0.1 0.5 1 

EK (m/d) 10 50 100 10 50 100 10 50 100 

Occurrences 0 0 0 6 3 1 19 16 14 

3.3. Impacts of RDTs on the Estimated K 

As the description of the numerical simulation in the previous section, due to the strong spatial 

variability of K, the model cell will become dry during pumping, resulting in the RDTs. In practice, 

various reasons can cause RDTs. With respect to the estimate of K, the direct impact of RDTs is 

expressed by the shorter length of the observations from the reduced duration of tests. In this section, 

the impacts of reduced duration tests on the estimated K of a single pumping test and on the Ke value 

through one hundred realizations are discussed.  
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3.3.1. Impact on the Estimated K Using the Datasets from a RDT. According to the results of the 

numerical tests, there are two identified types of pumping tests (see Figure 3). The calculated heads 

and observed ones from the first type of pumping test easily agree well; however, the calculated head 

curve is difficult to fit the observed heads in the other type of pumping test. In terms of the two types 

of pumping tests, a series of artificially reduced observations were used to estimate K, such as 10% off, 

20% off, 30% off and up to 90% off, respectively. The comparison of the observed time-head with the 

calculated time-head and the goodness of fit for the two curves are shown in Figure 3.  

 

Figure 3. Comparison of the Observed Head with the Calculated Heads in Two Types of Pumping 

Test for a Heterogeneous Aquifer. (a) shows the observed time-head and calculated time-head using 

the estimated K with different observed duration, and the groundwater flow is significantly affected by 

the heterogeneity of aquifer in this type of pumping test. (b) shows the root mean square error (RMSE) 

between the calculated values and observed ones in the case of (a). (c) shows the observed time-head 

and calculated time-head, and the groundwater flow is not affected by the heterogeneity of aquifer 

obviously in this type of pumping test. (d) shows the RMSE in the case of (c). 

 

Figure 3a shows the observed time-head and the calculated time-head of the first type of pumping 

test. The groundwater flow is significantly affected by the heterogeneity of aquifer (see Figure 3a) so 

that the curve of time-head is different with the curve in theory. The dissimilarity between the two 

curves results in the difficulty in fitting the curve of observed time-head using analytical solution. 

Though the root mean square error (RMSE) between the calculated heads and observed heads drops 

significantly (see Figure 3b) when the duration of pumping test decreases, it cannot be concluded that 

the more accurate estimation is achieved with the fewer observations. Because the reduced duration 

with the same pumping rate will lead to a smaller cone of depression, the differences between 

observed heads and calculated heads are less than the cases with longer pumping duration. Therefore, 

the smaller RMSE value resulted from the smaller drawdowns. With respect to the long-duration 

prediction, the estimates of K from the reduced duration test in terms of this type of pumping test will 

produce greater errors of the drawdowns.  
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The drawdown curves of the second type of pumping test are shown in Figure 3c. Since the 

groundwater flow is not affected obviously by the heterogeneity, the drawdown curves are generally 

fitted well by the analytical solutions. The absolute values of RMSE (Figure 3d) are one order of 

magnitude lower than the RMSE values of the first type of pumping test (see Figure 3b). In Figure 3d, 

when the duration is less than 0.3 day, the RMSE has lower value, which may result from the smaller 

drawdowns. While the duration is larger than 0.3 day, the RMSE value decreases with the increasing 

duration. The results indicate the accuracy of the estimated K increases with the increasing duration of 

test while the duration is greater than a critical value.  

In particular, the different length of observations were used to estimate the K value while EK was 

equal to 100 m/d, and Cv was equal to 0.5 and 1, respectively. Figure 4 shows the estimated K varied 

by the duration of test at well Wmin and well Wmax. The estimates of K at each well can reach a 

relative stable value when the duration is greater than 0.6 day. Meanwhile, the influences of estimates 

are shown in Figure 4 while the duration is less than 0.4 day. The results indicate that a long duration 

test will reduce the uncertainty of the estimate of K in a heterogeneous aquifer. Moreover, the 

accuracy of the estimate cannot be improved significantly while the duration of test is larger than a 

critical value (specifically 0.6 day in this case). Real-time estimation of the K value can be regarded as 

an efficient correction method, and it increases the efficient of pumping tests and reduces the cost of 

field work.  

 

Figure 4. The Estimated K Using the Datasets of Different Durations at Observation Well Wmin and 

Wmax while the EK value is equal to 100 m/d, and the Cv values are equal to 0.5 and 1, respectively. 

3.3.2. Impact of RDTs on the Estimated Ke. Numerous numerical tests were conducted to observe the 

effect of reduced durations on the estimated Ke. The EK value was set to be 100 m/d, and the Cv 

values were set to be 1 and 0.5, respectively. One hundred realizations were conducted to calculate a 

Ke value. In order to evaluate the relation between Ke and duration of test more accurately, anther one 

hundred realizations were run to obtain more estimates for each observation well with the same EK 

and Cv value.  

Figure 5 gives the Ke values varied by the different durations of the tests. The different durations 

represent the length of observations 0% off, 10% off, 30% off, 60% off and 90% off, respectively. 

When Cv is equal to 1, the estimated Ke values are smaller than the corresponding estimates when Cv 

is 0.5. Because two Ke values were estimated in terms of an observation well in this section and there 

are two observation wells in the model, each point in Figure 5 represents the average value of the four 

Ke values from well Wmin and well Wmax. We cannot derive any significant trend from the results; 

therefore, the Ke values calculated from large numbers of tests are slightly influenced by the duration. 

That may result from that the averages of many tests (greater than or equal to one hundred realizations 

in this study) eliminate the random fluctuations of single estimated K of RDT.  
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Figure 5. The estimated Ke varied by duration of test while the EK value is equal to 100 m/d, and the 

Cv values are equal to 0.5 and 1, respectively. The average value and error bar of each point are 

calculated from four separate values. 

4. Summary and Conclusions 

The estimated hydraulic conductivity is strongly affected by the heterogeneity of aquifers and the 

choice of determination methods. Especially for a pumping test, the duration of the test leads to the 

significant variation to the estimated hydraulic conductivity. In this study, the heterogeneity of the 

natural aquifer was observed using the field data collected by the field tests in Puding, southwest of 

China. The numerical model was used to study the impacts of the heterogeneity of aquifer on the 

estimated hydraulic conductivity.  

The results of the field tests, including pumping tests, permeability tests and slug tests, indicate that 

the estimated hydraulic conductivities range widely from 10-7 to 103 m/d. The estimates of K exhibit 

the strong heterogeneity of the karst aquifer. The results of pumping tests are generally larger than the 

results of permeability tests and slug tests. With respect to the support volume as the measurement 

scale, the scale effect is shown in our datasets. Due to the paucity of the nominal length as the 

measurement scale, the structure trend of hydraulic conductivity versus the nominal length does not 

display explicitly. All the estimated K values were log-normally distributed. However, the K 

estimations from pumping tests show the normal distribution. It should be noted that the estimated K 

from pumping tests are much smoother compared with all the estimates of K.  

For a heterogeneous aquifer, while the drawdown curve is difficult to fit using a theory curve in the 

whole pumping duration, the reduced duration will bring high uncertainty of estimated hydraulic 

conductivity even the goodness of fit between the observed heads and simulated ones becomes better 

with the reduction of the duration. In terms of a pumping test conducted in a heterogeneous aquifer, 

the estimated hydraulic conductivity is influenced by the length of observation. A critical duration of 

test can be obtained to achieve a stable estimate of K and to reduce the uncertainty of single estimation. 

At the same time, the reduced duration of test can make a great economic benefit through the reducing 

cost of field work. However, the duration of test is not of importance to evaluating an effective 

hydraulic conductivity under the condition of large numbers of tests, because the random influences 

may be eliminated between each other. In other words, with respect to the effective hydraulic 

conductivity of a heterogeneous aquifer, reduced duration tests cannot change the estimates 

significantly.  
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