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Abstract

We model the long-term X-ray and ultraviolet (XUV) luminosity of TRAPPIST-1 to constrain the evolving high-
energy radiation environment experienced by its planetary system. Using a Markov Chain Monte Carlo (MCMC)
method, we derive probabilistic constraints for TRAPPIST-1ʼs stellar and XUV evolution that account for
observational uncertainties, degeneracies between model parameters, and empirical data of low-mass stars. We
constrain TRAPPIST-1ʼs mass to må=0.089±0.001 Me and find that its early XUV luminosity likely saturated
at = - -

+L Llog 3.0310 XUV bol 0.12
0.23( ) . From the posterior distribution, we infer that there is a ∼40% chance that

TRAPPIST-1 is still in the saturated phase today, suggesting that TRAPPIST-1 has maintained high activity and
LXUV/Lbol≈10−3 for several gigayears. TRAPPIST-1ʼs planetary system therefore likely experienced a persistent
and extreme XUV flux environment, potentially driving significant atmospheric erosion and volatile loss. The inner
planets likely received XUV fluxes ∼103–104 times that of the modern Earth during TRAPPIST-1ʼs ∼1 Gyr long
pre-main-sequence phase. Deriving these constraints via MCMC is computationally nontrivial, so scaling our
methods to constrain the XUV evolution of a larger number of M dwarfs that harbor terrestrial exoplanets would
incur significant computational expenses. We demonstrate that approxposterior, an open source Python
machine learning package for approximate Bayesian inference using Gaussian processes, accurately and efficiently
replicates our analysis using 980 times less computational time and 1330 times fewer simulations than MCMC
sampling using emcee. We find that approxposterior derives constraints with mean errors on the best-fit
values and 1σ uncertainties of 0.61% and 5.5%, respectively, relative to emcee.

Unified Astronomy Thesaurus concepts: Exoplanet evolution (491); Stellar evolution (1599); Stellar luminosities
(1609); Stellar activity (1580); Stellar properties (1624)

1. Introduction

The James Webb Space Telescope (JWST) is poised to detect
and characterize the first terrestrial exoplanet atmospheres via
transmission spectroscopy. This search will likely focus on
planets orbiting nearby M dwarfs given their favorable relative
transit depths, the potential buildup of biosignature gases due to
ultraviolet-driven photochemistry (Segura et al. 2005), and the
large occurrence rates of M dwarf planets (Dressing &
Charbonneau 2015). The correct interpretation of those
observations, however, is predicated on understanding the
system’s long-term evolution, most importantly processes that
could affect the planet’s atmospheric state and habitability,
such as atmospheric escape, water loss, and the potential
buildup of an abiotic O2 atmosphere (Watson et al. 1981;
Lammer et al. 2003; Murray-Clay et al. 2009; Luger &
Barnes 2015). These volatile escape mechanisms are partially
driven by the host star’s XUV luminosity (X-ray and extreme
ultraviolet emission ranging over approximately 1–1000Å),
and therefore characterizing the long-term stellar XUV
evolution of late M dwarfs is critical to assessing the present
state of their planets, including habitability.

High-energy stellar radiation originates from the corona via
the heating of magnetically confined plasma (Vaiana et al.
1981). The stellar magnetic field is likely generated via
differential rotation within the stellar convective envelope
(Parker 1955), linking rotation to stellar activity and XUV
emission. Stellar rotation rates slow over time because of

magnetic braking (Skumanich 1972), causing XUV emission to
decline with time. The X-ray luminosity (LX) of FGK stars, for
example, has been empirically shown to monotonically
decrease with age (Jackson et al. 2012). This trend has also
been observed for commonly used proxies for stellar age,
rotation period, and Rossby number (Ro=Prot/τ for con-
vective turnover timescale τ; Pizzolato et al. 2003; Wright et al.
2011).
Stellar activity evolution is characterized by two distinct

phases. First, in the saturated phase, young, rapidly rotating
stars (Ro0.1) maintain a constant LX/Lbol≈10−3 (Wright
et al. 2011; Jackson et al. 2012). Then, at longer rotation
periods and larger Ro, stars transition to the unsaturated phase
in which LX/Lbol exponentially decays over time (Pizzolato
et al. 2003; Ribas et al. 2005). Recent work has shown that the
stellar dynamo processes that generate magnetic fields and
drive XUV emission in fully convective M dwarfs follow the
same evolution with Ro as described above for solar-type stars
(Wright & Drake 2016; Wright et al. 2018). We can therefore
apply this model to examine the XUV evolution of individual
fully convective stars.
TRAPPIST-1 (Gillon et al. 2016, 2017), an ultracool dwarf

located 12 pc from Earth, harbors seven approximately Earth-
sized transiting planets that are prime targets for JWST
transmission spectroscopy observations (Morley et al. 2017;
Lincowski et al. 2018; Lustig-Yaeger et al. 2019). TRAPPIST-
1ʼs high observed LX (Wheatley et al. 2017), short photometric
rotation period (3.3 days, Luger et al. 2017), and low Rossby
number (Ro≈0.01, Roettenbacher & Kane 2017) suggest that
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TRAPPIST-1 is still saturated today (Pizzolato et al. 2003;
Wright et al. 2011, 2018). Both Roettenbacher & Kane (2017)
and Morris et al. (2018) suggest that the photometrically
determined rotation period is inaccurate, with the latter study
proposing that the 3.3 day period corresponds to a characteristic
timescale for active regions on the stellar surface. TRAPPIST-
1ʼs v sini=6 km s−1 (Barnes et al. 2014), however, implies a
rotation period of ∼1 day for i=90°, providing evidence that
TRAPPIST-1ʼs rapid rotation is physical and consistent with
saturation (Prot20 days, Wright et al. 2018).

The TRAPPIST-1 planetary system currently receives
significant high-energy fluxes (Bourrier et al. 2017b; Wheatley
et al. 2017; Peacock et al. 2019), possibly a consequence of
TRAPPIST-1 remaining in the saturated regime. These fluxes
were likely more extreme during the pre-main-sequence,
driving significant water loss and potentially rendering the
planets uninhabitable (Bolmont et al. 2017; Bourrier et al.
2017a). Here, we model the long-term stellar and XUV
evolution of TRAPPIST-1 to characterize the evolving XUV
environment of its planetary system. We use a Markov Chain
Monte Carlo (MCMC) method to derive probability distribu-
tions for our model parameters that describe the XUV evolution
that are consistent with TRAPPIST-1ʼs observed properties and
their uncertainties.

TRAPPIST-1 is not the only system that merits this
modeling, however, as the Transiting Exoplanet Survey
Satellite will likely discover additional transiting planets
orbiting in the habitable zone of nearby M dwarfs (Barclay
et al. 2018), some of which may be suitable targets for
atmospheric characterization with JWST. In this work, we
show that stellar XUV histories can be accurately inferred using
machine learning (approxposterior, Fleming & Vander-
Plas 2018), but using 980 times less computational resources
than traditional MCMC methods. This speed-up enables our
methods to scale to additional stars that host potential targets
for atmospheric characterization and is generalizable to a large
number of applications, potentially enabling Bayesian statistical
analyses that are otherwise intractable with traditional MCMC
approaches, such as emcee (Foreman-Mackey et al. 2013).

We describe our model and statistical methods in Section 2.
We present our results and demonstrate the ability of machine
learning to reproduce our analysis in Appendix 3, and we
discuss the implications of our results in Section 4. In
Appendix A, we describe the approxposterior algorithm
and discuss its convergence properties.

2. Methods

2.1. Simulating XUV Evolution with VPLanet

We simulate TRAPPIST-1ʼs stellar evolution using the
STELLAR module in VPLanet6 (Barnes et al. 2020), which
performs a bicubic interpolation over mass and age of the
Baraffe et al. (2015) stellar evolution tracks. The Baraffe et al.
(2015) models (also employed by both Burgasser & Mamajek
2017 and Van Grootel et al. 2018 to constrain TRAPPIST-1ʼs
stellar properties) were computed for solar-metallicity stars
and hence are suitable for TRAPPIST-1, whose [Fe/H]
is consistent with solar (Gillon et al. 2016; see also Burgasser
& Mamajek 2017).

We assume TRAPPIST-1ʼs LXUV evolution traces that of LX
and use the Ribas et al. (2005) model,
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where fsat is the constant ratio of stellar XUV to bolometric
luminosity during the saturated phase, tsat is the duration of the
saturated phase, and βXUV is the exponent that controls how
steeply LXUV decays after saturation.
Note that each VPLanet simulation (and hence likelihood

calculation, see Section 2.4) in principle only requires
interpolating the Baraffe et al. (2015) Lbol tracks and evaluating
an explicit function of time to compute LXUV, both computa-
tionally cheap tasks. VPLanet, however, is a general-purpose
code designed to simulate the evolution of an exoplanetary
system and its host star by simultaneously integrating coupled
ordinary differential equations and explicit functions of time
that describe the evolution. This generalized structure requires
numerous steps to facilitate physical couplings, such as
validation steps and a host of intermediate calculations (for
more details, see Barnes et al. 2020). Moreover, STELLAR
simultaneously evolves a star’s radius, effective temperature,
radius of gyration, LXUV, and rotation rate in addition to Lbol,
adding computational overhead. Each VPLanet simulation
using STELLAR lasts about 10 s.

2.2. Markov Chain Monte Carlo Analysis

We use emcee, a Python implementation of the affine-
invariant Metropolis–Hastings MCMC sampling algorithm
(Foreman-Mackey et al. 2013), to infer posterior probability
distributions for our model parameters that describe the
evolution of TRAPPIST-1. These distributions are conditioned
on observations of TRAPPIST-1 and the activity evolution of
late-type stars, and they account for both observational
uncertainties and correlations between parameters. Our model
parameters that we fit for via MCMC comprise the state vector

b= x m f t, , , age, , 2sat sat XUV{ } ( )

where må and age are the stellar mass and age, respectively, and
the other parameters are defined by Equation (1). All of the
code used to perform the simulations and analysis in this work
is publicly available online.7

2.3. Prior Probability Distributions

Since we have few available observable properties of
TRAPPIST-1 to use to condition our analysis (Lbol and
LXUV/Lbol; see Section 2.4), our prior probability distributions
will strongly impact our results. We use previous studies and
empirical data of late M dwarfs to assemble the best available
constraints to serve as priors for our MCMC analysis. We list
our adopted prior probability distributions in Table 1.
Following Van Grootel et al. (2018), we rely on TRAPPIST-

1ʼs luminosity and age to constrain its mass. We therefore
adopt a simple uniform prior of ~ m 0.07, 0.11( ) Me. For
the age, we use the empirical estimate for TRAPPIST-1 derived
by Burgasser & Mamajek (2017), age ~ 7.6, 2.22( ) Gyr, as
their thorough analysis considered both observations of

6 VPLanet is publicly available at https://github.com/VirtualPlanetary
Laboratory/vplanet. 7 https://github.com/dflemin3/trappist
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TRAPPIST-1 and a host of empirical age indicators for
ultracool dwarfs. This age distribution is consistent with
Gonzales et al. (2019), who conclude that TRAPPIST-1 is a
field-age dwarf based on their spectral energy distribution
modeling. We cap the maximum age we consider at 12 Gyr.
Younger ages have been suggested based on TRAPPIST-1ʼs
activity (e.g., 500Myr, Bourrier et al. 2017b), but here we
argue that the behavior is consistent with an extended
saturation timescale.

We construct an empirical =f L Llogsat 10 XUV bol( ) distribution
from the sample of fully convective, saturated M dwarfs with
observed LX fromWright et al. (2011). For each star in the Wright
et al. (2011) sample, we follow Wheatley et al. (2017) and
estimate LXUV as a function of LX using Equation(2) from
Chadney et al. (2015). We find that the distribution is well
approximated by a normal distribution, ~ -f 2.92, 0.26sat

2( ),
and we adopt it as our prior.

The duration of the saturated phase is estimated to be
tsat≈100Myr for FGK stars (Jackson et al. 2012). Studies of
stellar activity of late-type stars as a function of stellar age, or
its proxy rotation period, indicate that the activity lifetime, and
hence duration of the saturated phase, is likely longer for later-
type stars (Wright et al. 2011; Shkolnik & Barman 2014; West
et al. 2015), with fully convective M dwarfs potentially
remaining active throughout their lifetimes (tsat7 Gyr, West
et al. 2008; Schneider & Shkolnik 2018). Furthermore, the
spin-down timescales of late M dwarfs increase with decreasing
stellar mass (Delfosse et al. 1998), with late M dwarfs retaining
rapid rotation longer than earlier-type stars and hence
remaining active for up to Prot≈86 days (West et al. 2015),
much longer than TRAPPIST-1ʼs estimated rotation period.
Given these constraints, we adopt a broad uniform tsat prior
distribution capped by the maximum age we consider,

~ t 0.1, 12sat ( ) Gyr.
In the unsaturated phase, LX, and hence LXUV, decay

exponentially with power-law slope βXUV (Ribas et al. 2005).
Jackson et al. (2012) find that βXUV does not significantly vary
with stellar mass in their sample of FGK stars. Since Wright &
Drake (2016) found that the X-ray evolution of fully
convective stars is qualitatively similar to that of partially
convective FGK stars, we adopt the βXUV distribution of late K
dwarfs from the Jackson et al. (2012) sample as our
prior, b ~ - 1.18, 0.31XUV

2( ).

2.4. Likelihood Function and Convergence

We further condition our analysis on TRAPPIST-1ʼs observed
bolometric luminosity, =  ´ -L L5.22 0.19 10bol

4
 (Van

Grootel et al. 2018, but see also Gonzales et al. 2019), and
LXUV/Lbol=7.5±1.5×10−4 (Wheatley et al. 2017). In other
words, we require that our forward models (VPLanet

simulations) yield results that are consistent with the observations
of TRAPPIST-1 and their uncertainties.
For a given state vector x, we define the natural logarithm of

our likelihood function, ln , as
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where Lbol, LXUV/Lbol and Lbol(x), LXUV/Lbol(x) are the
observed values and VPLanet outputs given x, respectively,
and sLbol and sL LXUV bol are the observational uncertainties. For
each x, we compute the natural logarithm of the posterior
probability at x, or “lnprobability,” required for ensemble
MCMC sampling as = +x x xf ln lnPrior( ) ( ) ( ). We use the
distributions described in Section 2.3 to calculate the natural
logarithm of the prior probability of x, xlnPrior( ).
We run our MCMC with 100 parallel chains for 10,000

iterations, initializing each chain by randomly sampling each
element of x from their respective prior distributions. During
each step of the MCMC chain, VPLanet takes x as input and
simulates TRAPPIST-1ʼs evolution up to the age in x,
predicting Lbol and LXUV/Lbol to evaluate ln . We discard
the first 500 iterations as burn-in and assess the convergence of
our MCMC chains by computing the integrated autocorrelation
length and acceptance fraction for each chain. We find a mean
acceptance fraction of 0.48 and a minimum and mean number
of iterations per integrated autocorrelation length of 93 and
132, respectively, indicating that our chains have converged
(Foreman-Mackey et al. 2013). Given our integrated auto-
correlation lengths, our MCMC chain yielded about 10,000
effective samples from the posterior distribution.

2.5. Inference with approxposterior

The methods presented above can be applied to any late-type
star to constrain its LXUV history, given suitable priors and
observational constraints. Our MCMC analysis, however,
required 4070 core hours on the University of Washington’s
Hyak supercomputer to converge. The main computational cost
is incurred by running a ∼10 s VPLanet simulation each
MCMC step to evaluate ln , requiring ∼1,000,000 simula-
tions in total for the full MCMC analysis. Assuming similar
convergence properties, repeating this analysis for even a
modest sample of 30 stars would require∼122,000 core hours,
a significant computational expense. Moreover, performing a
similar analysis with a more computationally expensive model
would only exacerbate this issue.
To mitigate the computational cost, we apply approxpos-

terior,8 an open source Python machine learning package
(Fleming & VanderPlas 2018), to compute an accurate
approximation to the true MCMC-derived posterior distribution
for TRAPPIST-1ʼs XUV evolution. approxposterior, a
modified implementation of the “Bayesian Active Learning for
Posterior Estimation” (BAPE) algorithm of Kandasamy et al.
(2017), trains a Gaussian process (GP; see Rasmussen &
Williams 2006) replacement for the lnprobability evaluation,

Table 1
Prior Distributions

Parameter (units) Prior Notes

må (Me)  0.07, 0.11( ) L
fsat - 2.92, 0.262( ) Wright et al. (2011)
tsat (Gyr)  0.1, 12( ) L
Age (Gyr)  7.6, 2.22( ) Burgasser & Mamajek (2017)
βXUV - 1.18, 0.312( ) Jackson et al. (2012)

8 approxposterior is publicly available at https://github.com/
dflemin3/approxposterior.
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learning on the results of VPLanet simulations. The GP is
then used within an MCMC sampling algorithm, such as
emcee, to quickly obtain the posterior distribution. In our case,
predicting the lnprobability using the GP (∼130 μs) is 80,000
times faster than running VPLanet (10 s) for each lnprob-
ability evaluation, yielding a massive reduction in computa-
tional cost.

Following Kandasamy et al. (2017), approxposterior
iteratively improves the GP’s predictive ability by identifying
high-likelihood regions in parameter space, and hence high-
posterior-density regions, where the GP predictions are
uncertain. approxposterior then evaluates VPLanet in
those regions to supplement the training set, improving the
GP’s predictive ability in the relevant regions of parameter
space, while minimizing the number of forward-model
evaluations required for suitable predictive accuracy. Similar
techniques using a GP surrogate model have been shown to
rapidly and accurately infer Bayesian posterior distributions for
computationally expensive cosmology studies (e.g., Bird et al.
2019; McClintock & Rozo 2019).

To model the covariance between points in the GP training
set, we use a squared exponential kernel,

= -
-

k x x
x x

l
, exp

2
, 4i j

i j
2

2
( )

( )
( )

⎛
⎝⎜

⎞
⎠⎟

where xi and xj are two arbitrary points in parameter space and l
is a hyperparameter that controls the scale length of the
correlations. We assume correlations in each dimension have
different scale lengths and fit for each l by optimizing the GP’s
marginal likelihood of the training set data using Powell’s
method (Powell 1964), randomly restarting this optimization
10 times to mitigate the influence of local extrema. To ensure
our solution is numerically stable, we add a small white-noise
term of s = -ln 15w( ) to the diagonal of the GP covariance
matrix.

We initially trained the GP on a set of 50 VPLanet
simulations with initial conditions sampled from our prior
distributions. We then ran approxposterior until it
converged after seven iterations. For each iteration, approx-
posterior selected 100 new training points according to the
Kandasamy et al. (2017) point selection criterion. approx-
posterior ran VPLanet at each point for a total of 750
training samples. The trained GP was then used within emcee
to quickly obtain the approximate posterior distribution
following the same MCMC sampling procedure described
above. In Appendix A, we provide additional information
about the approxposterior algorithm and its convergence
properties.

3. Results

3.1. The Evolution of TRAPPIST-1

In Figure 1, we display the posterior probability distributions
for our model parameters derived using MCMC with
VPLanet and emcee. We adopt the median values of the
marginal distributions as our best-fit solutions and derive the
lower and upper uncertainties using the 16th and 84th
percentiles, respectively. We list these values in Table 2.

TRAPPIST-1 likely maintained a large LXUV throughout its
lifetime as we find = - -

+f 3.03sat 0.12
0.23 and = -

+t 6.64sat 3.13
3.53 Gyr,

consistent with the observed LXUV/Lbol and long activity

lifetimes of late M dwarfs (West et al. 2008; Wright et al.
2018). The long upper tail in the marginal fsat distribution arises
from the combination of the degeneracy between fsat and tsat
and from our strong empirical fsat prior that disfavors
fsat−2.5. The degeneracy stems from our model attempting
to match TRAPPIST-1ʼs observed LXUV/Lbol. For example,
larger values of fsat produce high initial LXUV/Lbol, requiring
shorter tsat, and hence an earlier transition to unsaturated
LXUV/Lbol decay, to decrease LXUV/Lbol to its observed value,
and vice versa.
Although our tsat prior distribution, based on empirical

measurements of late M dwarfs (see Section 2.3), equally
favors both short and long saturation timescales, the marginal
posterior density for tsat steeply declines for tsat4 Gyr. This
decline implies that ultracool dwarfs like TRAPPIST-1 likely
remain saturated for many gigayears. Our analysis strongly
disfavors short saturation timescales, with only a 0.5% chance
that tsat�1 Gyr, the saturation timescale adopted by Luger &
Barnes (2015) in their analysis of water loss from exoplanets
orbiting in the habitable zone of late M dwarfs and in
Lincowski et al. (2018). From the posterior distribution, we
infer that there is a 40% chance that TRAPPIST-1 is still in the
high-LXUV/Lbol saturated phase today, suggesting that the
TRAPPIST-1 planets could have undergone prolonged vola-
tile loss.
The marginal age and βXUV posterior distributions reflect

their prior distributions as for the former, and Lbol is not
sufficient to constrain TRAPPIST-1ʼs age beyond our adopted
prior because the luminosities of ultracool dwarfs do not
significantly change during the main sequence (Baraffe et al.
2015). The marginal posterior for βXUV does not vary from the
prior because our XUV model is overparameterized with three
parameters to fit two observations, although all are motivated
by empirical data and hence merit inclusion. Our model prefers
to exploit the degeneracy between fsat and tsat to match
TRAPPIST-1ʼs observed LXUV in our MCMC instead of
varying the slope of the unsaturated LXUV decay. Even though
our model is overparameterized, the observations of TRAP-
PIST-1 used to condition our probabilistic model do in fact
influence the posterior distribution because the reduction in
posterior variance relative to the prior can be seen in the joint
posterior and marginal distributions of Figure 1 for må, fsat, and
tsat.
In the joint posterior distribution, age and βXUV weakly

correlate with fsat, requiring a narrow spread of fsat≈−3.05 for
young ages and steeper βXUV, respectively. Note that βXUV and
tsat are uncorrelated, except at short tsat, where steep βXUV
values are disfavored as this evolution would underpredict
the observed LXUV. We constrain TRAPPIST-1ʼs mass to
må=0.089±0.001 Me, in good agreement with and six
times more precise than the value derived by Van Grootel et al.
(2018). In Section 3.3, we consider how this mass constraint
affects TRAPPIST-1ʼs predicted radius.
Finally, we estimate the Monte Carlo standard error (MCSE)

for each model parameter. The MCSE does not reflect the
inherent probabilistic uncertainty in our model that arises from
conditioning on data with uncertainties, but rather it approx-
imates the error incurred by estimating parameters using an
ensemble of MCMC chains of finite length. Using the batch
means method (Flegal et al. 2008; Flegal & Jones 2010), we
find MCSEs for må, fsat, tsat, age, and βXUV of 3.41×10−6,
1.23×10−3, 2.0×10−2, 1.30×10−2, and 2.12×10−3,
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respectively. These errors are much less than the posterior
uncertainty and can be safely ignored.

3.2. Comparison with approxposterior

We compare the approximate posterior distribution derived
using approxposterior with our previous results (referred
to as the fiducial MCMC). We display the approximate joint
and marginal posterior distributions in Figure 2 and list the
marginal constraints derived by both methods in Table 2.

As seen in Figure 2, approxposterior recovers the
nontrivial correlations between model parameters seen in the
fiducial MCMC posterior distribution. We emphasize this good

agreement by overplotting the approxposterior estimated
posterior distribution (blue) on top of the fiducial MCMC
results (black) in Figure 3.
Our parameter constraints derived using approxposterior

are in good agreement with those inferred using emcee. We find
average errors in parameter medians and 1σ uncertainties of
0.61% and 5.5%, respectively, relative to the constraints derived
using emcee. These differences are larger than the MCSEs
because the GP employed by approxposterior is an
accurate, yet imperfect, surrogate for the lnprobability calculation.
approxposterior tends to underestimate parameter uncer-
tainties by a few percent because its algorithm preferentially

Figure 1. Updated joint and marginal posterior probability distributions for the TRAPPIST-1 stellar parameters given in Equation (2) made using corner (Foreman-
Mackey 2016). The black vertical dashed lines on the marginal distributions indicate the median values and lower and upper uncertainties from the 16th and 84th
percentiles, respectively. The blue curves superimposed on the marginal distributions display the adopted prior probability distribution for each parameter. From the
posterior, we infer that there is a 40% chance that TRAPPIST-1 is still in the saturated phase today.

Table 2
Updated Parameter Constraints and Errors

Parameter (units) VPLanet-emcee MCMC approxposterior MCMC approxposterior Relative Error Monte Carlo Error

må (Me) -
+0.089 0.001

0.001
-
+0.089 0.001

0.001 <0.1% 3.41×10−6

fsat - -
+3.03 0.12

0.23 - -
+3.03 0.12

0.23 <0.1% 1.23×10−3

tsat (Gyr) -
+6.64 3.13

3.53
-
+6.76 3.10

3.52 1.81% 2.0×10−2

Age (Gyr) -
+7.46 2.10

2.01
-
+7.57 1.93

1.87 1.47% 1.30×10−3

bXUV - -
+1.16 0.30

0.31 - -
+1.15 0.29

0.29 0.86% 2.12×10−3

P(saturated) 0.40 0.39 2.5% 3.30×10−3

Note. Best-fit values and uncertainties are derived using the medians and 16th and 84th percentiles from the marginal posterior distributions, respectively. P(saturated)
indicates the posterior probability that TRAPPIST-1 is still in the saturated regime today. The relative errors are computed as the absolute percent difference between
the best-fit values derived by emcee and approxposterior. The approxposterior-derived results are in good agreement with the fiducial emcee MCMC.
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selects high-likelihood points to expand its training set (see
Appendix A.1). This concentration of high-likelihood points
slightly biases the inferred GP scale lengths, l, toward smaller
values, effectively overfitting. The smaller values of l shrink the
estimated posterior distribution, producing the underestimated
parameter uncertainties. We mitigate this effect by adding a small
white-noise term to the diagonal of the GP covariance matrix.

Not only can approxposterior accurately recover
Bayesian parameter constraints and correlations, but it does so
extremely quickly. approxposterior requires only about 4
core hours to estimate the approximate posterior distribution, a
factor of 980 times faster than our fiducial MCMC. Moreover,
approxposterior used 1330 times fewer VPLanet simula-
tions to build its training set than the ∼106 simulations ran by the
fiducial MCMC for likelihood evaluations. This reduction in
computational expense arises from a combination of approx-
posterior’s GP-based lnprobability predictions only taking
∼130 μs, compared to the much longer 10 s per VPLanet
simulation, and its intelligent iterative training set augmentation
algorithm. approxposterior’s efficient selection of the GP’s
training set focuses on high-likelihood regions to improve the
GP’s predictive ability in relevant regions of parameter space
while minimizing the training set size.

Our findings demonstrate that approxposterior can be
used to estimate accurate approximations to the posterior
probability distributions of the parameters that control stellar
XUV evolution in late M dwarfs, but significantly faster than
traditional MCMC methods. Note that approxposterior is

agnostic to the underlying forward model it learns on and
enables Bayesian parameter inference with computationally
expensive forward models.

3.3. TRAPPIST-1’s Evolutionary History and Its Planets’ XUV
Environment

Here we consider plausible stellar evolutionary histories for
TRAPPIST-1 by simulating 100 samples from the posterior
distribution. We plot the evolution of TRAPPIST-1ʼs Lbol,
LXUV, and radius in Figure 4 and compare our models to the
measured values.
TRAPPIST-1 remains saturated throughout its 1 Gyr pre-main-

sequence, with both LXUV and Lbol decreasing by a factor of ∼40
before stabilizing on the main sequence. TRAPPIST-1ʼs radius
likely shrank by roughly a factor of four along the pre-main-
sequence. We derive a present-day radius Rå=0.112±0.001 Re
from the posterior distribution, a value that is ∼7% smaller than
the Van Grootel et al. (2018) constraint, Rå=0.121±0.003 Re,
that was computed from their inferred mass and TRAPPIST-1ʼs
density (Delrez et al. 2018). This difference arises from the likely
underprediction of TRAPPIST-1ʼs radius by the Baraffe et al.
(2015) models, consistent with stellar evolution models often
underestimating the radii of late M dwarfs (Reid & Hawley 2005;
Spada et al. 2013).
An alternate explanation to account for its inflated radius is

that TRAPPIST-1 has supersolar metallicity (Burgasser &
Mamajek 2017; Van Grootel et al. 2018), but Van Grootel et al.
(2018) found in their modeling that TRAPPIST-1 required a

Figure 2. Same format as Figure 1, but derived by approxposterior. approxposterior-recovered constraints and parameter correlations are in good
agreement with the emcee MCMC, but require 980 times less computational resources.
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metallicity of [Fe/H]=0.4 to reproduce its density and radius.
Van Grootel et al. (2018) show that this result is 4.5σ from the
best-fit value from Gillon et al. (2016), who found [Fe/H]=
0.04±0.08. The supersolar hypothesis is therefore strongly
disfavored by the observational data. If we instead compute the
radius from our marginal stellar mass posterior distribution and
the observed density (Delrez et al. 2018), we obtain Rå=
0.120±0.002 Re, in agreement with Van Grootel et al. (2018),
who used the same procedure.

Because TRAPPIST-1 could still be saturated today, its
planetary system has likely experienced a persistent, extreme

XUV environment. In Figure 5, we probe the distribution of
XUV fluxes, FXUV, derived from our posterior distributions for
each TRAPPIST-1 planet when the system was 0.01, 0.1, and
1 Gyr old. We normalize these values by the FXUV received by
Earth during the mean solar cycle (FXUV,⊕=3.88 erg
s−1 cm−2, Ribas et al. 2005) and assume the planets remained
near their current semimajor axes after migration in the natal
protoplanetary disk halted (Luger et al. 2017).
We infer that TRAPPIST-1b likely received extreme

Å F F 10XUV XUV,
4 during the early pre-main-sequence before

decaying to the present-day »ÅF F 10XUV XUV,
3, consistent with

Figure 3. New figure: same format as Figure 1, but with the fiducial posterior distribution in black and the approxposterior-derived posterior distribution in
blue. The joint and marginal posterior distributions estimated by approxposterior are in excellent agreement with our fiducial emcee-derived results.

Figure 4. Updated plausible evolutionary histories of TRAPPIST-1ʼs Lbol (left), LXUV (center), and radius (right) using 100 samples drawn from the posterior
distribution and simulated with VPLanet. In each panel, the blue shaded regions display the 1, 2, and 3σ uncertainties. The insets display the marginal distributions
(black) evaluated at the age of the system, with the blue dashed lines indicating the observed value and ±1σ uncertainties. The radius, Lbol, and LXUV constraints are
adopted from Van Grootel et al. (2018) and Wheatley et al. (2017), respectively, by convolving the Van Grootel et al. (2018) Lbol measurement with the LXUV/Lbol
constraints from Wheatley et al. (2017).
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estimates from Wheatley et al. (2017). The extended upper tail of
the FXUV distributions corresponds to the large fsat values
permitted by the posterior distributions. The likely habitable-zone
planets, e, f, and g, similarly experienced severe XUV fluxes
ranging in »ÅF F 10 10XUV XUV,

2 3.5– throughout the pre-main-
sequence. Even today, e, f, and g receive »ÅF F 10XUV XUV,

2,
far in excess of the modern Earth, due to TRAPPIST-1ʼs large
present LXUV, its extended saturated phase, and the close
proximity of M dwarf habitable-zone planets to their host star.
These significant high-energy fluxes likely drove an extended
epoch of substantial atmospheric escape and water loss from the
TRAPPIST-1 planets, potentially producing substantial abiotic O2

atmospheres (Luger & Barnes 2015; Bolmont et al. 2017;
Bourrier et al. 2017a).

4. Discussion and Conclusions

Here we used MCMC to derive probabilistic constraints for
TRAPPIST-1ʼs stellar and LXUV evolution to characterize the
evolving XUV environment of its planetary system. We inferred
that TRAPPIST-1 likely maintained high LXUV/Lbol≈10−3

throughout its lifetime, with a 40% chance that TRAPPIST-1 is
still in the saturated regime today. Our results indicate that at least
some ultracool dwarfs can sustain large LXUV in the saturated
regime for gigayears, consistent with the activity lifetimes of late
M dwarfs (West et al. 2008). We suggest that studies of volatile
loss from planets orbiting ultracool dwarfs model the long-term
LXUV evolution of the host star, or at least assume saturation
timescales of tsat4 Gyr. Our choice of prior distributions
strongly affects our results as our inference hinges on only two

measured properties of TRAPPIST-1, LXUV and Lbol. To mitigate
this effect, we consulted previous studies and empirical observa-
tions of the activity evolution of late M dwarfs to construct
realistic prior distributions.
The TRAPPIST-1 planets likely experienced significant

XUV fluxes during the pre-main-sequence, potentially driving
extreme atmospheric erosion and water loss (Bolmont et al.
2017; Bourrier et al. 2017a). The high-energy fluxes incident
on the innermost planets throughout this phase were probably
large enough for atmospheric mass loss to be recombination-
limited (FUV104 g s−1 cm−2) and scale as ~m FXUV

0.6
(Murray-Clay et al. 2009), as opposed to the oft-assumed
energy-limited escape ( ~m FXUV , Watson et al. 1981; Lammer
et al. 2003), potentially inhibiting volatile loss. If the
TRAPPIST-1 planets did lose significant amounts of water as
our estimates suggest, they must have formed with a large
initial volatile inventory to account for their observed low
densities (Grimm et al. 2018).
We demonstrated that the open source Python machine

learning package approxposterior (Fleming & VanderPlas
2018) can efficiently compute an accurate approximation to
the posterior distribution using an adaptive-learning GP-based
method, requiring 1330 times fewer VPLanet simulations and a
factor of 980 times less core hours than traditional MCMC
approaches. The posterior distributions derived by approx-
posterior reproduced the nontrivial parameter correlations
and best-fit values uncovered by our fiducial MCMC analysis.
We find that approxposterior recovers the best-fit values
and 1σ uncertainties of our model parameters with an average
error of 0.61% and 5.5%, respectively, relative to our constraints
derived using emcee. If future observations of TRAPPIST-1
refine its fundamental parameters, and possibly LXUV/Lbol,
approxposterior can be used to rapidly and accurately
replicate our analysis to update our constraints.
Finally, we note that our methodology constrains parameters

that describe the long-term XUV evolution of TRAPPIST-1,
conditioned on measurements. In principle, this approach can
be extended to obtain evolutionary histories of planetary
systems in general. For example, in Figures 4 and 5, we
examined the long-term evolution of TRAPPIST-1 and the
evolving XUV fluxes received by its planetary system,
respectively, with samples drawn from the posterior distribu-
tion. Future research can combine those results with additional
physical effects, for example, water loss or tidal dissipation, to
build a probabilistic model for the long-term evolution of the
planetary system, given our model for the underlying physics,
to characterize its present state. In other words, we could infer
the evolutionary history of a planet or planetary system given
suitable observational constraints. While simulating additional
physical effects will inevitably increase the computational
expense, we have demonstrated that approxposterior can
enable such efforts and provide insight into the histories of stars
and their planets.

We thank the anonymous referee for their careful reading of
our manuscript and insightful comments. This work was
facilitated through the use of advanced computational, storage,
and networking infrastructure provided by the Hyak super-
computer system and funded by the Student Technology Fund
at the University of Washington. D.P.F. was supported by
NASA Headquarters under the NASA Earth and Space Science

Figure 5. Updated ÅF FXUV XUV, for each TRAPPIST-1 planet derived from
samples drawn from the posterior distribution and simulated using VPLanet
when the system was 0.01, 0.1, and 1 Gyr old. The latter age corresponds to the
approximate age at which TRAPPIST-1 entered the main sequence. The
TRAPPIST-1 planetary system has likely endured a long-lasting, extreme XUV
environment.
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Appendix

approxposterior is an implementation of the “Bayesian
Active Posterior Estimation” (BAPE) algorithm developed
by Kandasamy et al. (2017), but with several modifications
to afford the user more control over the inference. Below, we
qualitatively describe this algorithm, define parameters, and
suggest typical values. We then discuss approxposterior’s
convergence scheme.

Appendix A
approxposterior Algorithm and Convergence

Qualitatively, the approxposterior algorithm is as
follows. First, assume a forward model with d input parameters
that is designed to reproduce some set of observations. In our
case, d, the dimensionality of parameter space, is five. The
model parameters have an input domain, D, that is defined by
the user. The parameters are further described by a prior
probability distribution based on the user’s prior belief for how
the model parameters are distributed. Next, the user generates a
training set, T, consisting of m0 forward-model simulations
distributed across the parameter space. The user chooses how
the m0 samples are distributed throughout parameter space
according to their preferred experimental design. approx-
posterior then trains a GP on T to construct a nonpara-
metric model (sometimes called a “surrogate model”) that
represents the outcomes of the forward model over the
parameter space. Crucially, GPs also generate an uncertainty
for the surrogate model at every point in parameter space.

approxposterior then identifies m more locations in
parameter space to apply the forward model and add to T. The
new locations are selected by determining the regions that the
GP has identified as having both a high lnprobability, that is, a
high posterior density, and a high predictive uncertainty. This
selection is accomplished by maximizing a utility function (u,
described below) that quantifies where the GP predicts a high
posterior density and high uncertainty in parameter space,
focusing resources on parameter combinations that are likely to
be consistent with the observations. approxposterior
retrains the GP with the augmented T. The GP is then passed to
an MCMC algorithm, emcee, that samples the parameter
space to obtain the approximate posterior distributions of the
model parameters.

At the end of each iteration, approxposterior checks if
a convergence condition (described in Appendix A.2) has been
met. If the algorithm has not yet converged, approxpos-
terior selects an additional m new points to add to T, retrains
the GP, and again estimates the posterior distribution. This
process repeats until convergence or until approxposter-
ior has run the maximum number of iterations, nmax, set by
the user. In Algorithm 1, we list the aforementioned steps that
comprise this algorithm.

Algorithm 1. approxposterior Approximate Inference
Pseudo Code

Assume an input domain D, GP prior on f (x)

Generate a training set, T, consisting of m0 pairs of x xf,( ( ))
for =t n0, 1 ,..., max

for =i m0, 1 ,...,
Findx+=argmax Î xux D ( )
Compute +xf ( )
Append + +x xf,( ( )) to T
Retrain GP, optimize GP hyperparameters given augmented T
end
Use MCMC to obtain approximate posterior distribution with GP surrogate
for xf ( )

if converged break
end
end

where = x xf ln( ) ( ) + xlnPrior( ), that is, the lnprobability
function used for MCMC sampling with emcee, andx+ is the
point in parameter space selected by maximizing u. For our
application, evaluating xf ( ) requires running a VPLanet
simulation to compute  xln ( ) (see Section 2.4).
By placing a GP prior with a squared exponential kernel on
xf ( ), we assume that the function is smooth and continuous,

both reasonable assumptions for modeling the posterior
density. For inference problems that are likely to violate these
assumptions, other kernels, such as the Ornstein–Uhlenbeck
kernel, may be more appropriate (we refer the reader to
Rasmussen & Williams 2006 for detailed descriptions of
common GP kernels and their mathematical properties).
approxposterior uses george (Ambikasaran et al.
2015) for all GP calculations, and hence users can apply any
kernels implemented in that software package.
approxposterior has several free parameters that can

be set by the user: m0, the size of the initial training set
(50 in our case); nmax, the maximum number of iterations (15);
m, the number of new points to select each iteration where
the forward model will be evaluated (50 per iteration); and ò,
the convergence threshold (0.1). Typically, we find that

= ´n d2 3max – , = ´m m d, 10 200 – , and = 0.1 work well
in practice, although performance may vary depending on the
use case. For a complete list of approxposterior
parameters, we refer the reader to the online documentation.9

Note that approxposterior does not linearly transform
the parameter space to the unit hypercube as did Kandasamy
et al. (2017). Moreover, approxposterior does not fix the
covariance scale lengths, instead opting to estimate all GP
kernel hyperparameters by maximizing the marginal likelihood
of the GP, given its training set, at a user-specified cadence. In
Algorithm 1, we optimize the GP hyperparameters each time a
new point is added to the training set, but in practice we found
this is unnecessary, especially at later iterations when the GP
has developed a reasonable approximation of the posterior. The
authors prefer to optimize the GP hyperparameters twice per
iteration, once after half of the m new points have been
selected, and again after all m points have been selected.

A.1. Augmenting the Training Set

Each iteration, approxposterior selects m new points
to add to the GP’s training set by maximizing the utility

9 https://dflemin3.github.io/approxposterior/
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function, u. To motivate the choice of u, consider the following
argument based on Kandasamy et al. (2017): approxpos-
terior assumes that the forward model the GP learns on,
here VPLanet via ln , is computationally expensive to run,
and hence approxposterior seeks to minimize the number
of forward-model evaluations required to build its training set.
For inference problems, it is natural to select high-lnprobability
regions in parameter space to augment the GP training set as
this is where the posterior density is large. Furthermore,
selecting regions in parameter space where the GP’s predictive
uncertainty is already small offers little value, compared to
regions where its predictions are more uncertain, as additional
points in low-uncertainty regions are unlikely to alter the GP’s
predictions.

With these considerations in mind, Kandasamy et al. (2017)
leverage the analytic properties of GPs to derive the
“exponentiated variance” utility function, given by their
Equation (5):

m s s= + -x x x xu exp 2 exp 1 , 5t t tEV
2 2( ) ( ( ) ( ))( ( ( )) ) ( )

where m xt ( ) and s xt
2 ( ) are the mean and variance of the GP’s

predictive conditional distribution evaluated at x, respectively,
for the tth approxposterior iteration. To select each point,
we maximize Equation (5) using the Nelder–Mead method
(Nelder & Mead 1965). Note that this optimization is rather

cheap because it only requires evaluating the GP’s predictive
conditional distribution, so this task is not a significant
computational bottleneck. We restart this optimization five
times to reduce the influence of local extrema. Note that in
practice, we optimize the natural logarithm of the utility
function to ensure numerical stability.
As demonstrated in Kandasamy et al. (2017), Equation (5)

identifies high-likelihood points where the GP’s predictions are
uncertain, significantly reducing the cost of training an accurate
GP surrogate model. We highlight this behavior for our own
application in Figure 6 by displaying the approximate posterior
distribution derived by approxposterior from Figure 2
overplotted with the initial training set in orange and the points
selected by sequentially maximizing Equation (5) in blue.
Given the small initial training set, approxposterior
successfully selects high-posterior-density points in parameter
space to augment the GP’s training set. Some points are
selected in low-likelihood regions early on, typically near the
edges of parameter space where the GP’s uncertainty was
initially large.

A.2. Convergence

We assess the convergence of the approxposterior
algorithm by comparing the means of the approximate marginal

Figure 6. Same as Figure 2, but overplotted with the training set for approxposterior’s GP. The orange points display the initial training points, whereas the blue
points display the points iteratively selected by maximizing the Kandasamy et al. (2017) utility function, Equation (5). By design, approxposterior selected
points to expand its training set in regions of high posterior density, improving its GP’s predictive accuracy in the most relevant regions of parameter space while
seldom wasting computational resources in the low-likelihood regions.
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posterior distributions over successive iterations. We consider
an approxposterior run “converged” if the differences
between the marginal posterior means, relative to the widths of
the marginal posteriors, are less than a tolerance parameter, ò,
for kmax consecutive iterations. Effectively, this criterion checks
if the expected value of each model parameter over the
posterior distribution varies by  standard deviations from
the previous iteration’s expected values. That is, we require the
approxposterior convergence diagnostic zt j, for all j,
where

m m s= - - -z , 6t j t j t j t j, , 1, 1,∣ ∣ ( )

and μt,j and σt,j are the mean and standard deviation of
the approximate marginal posterior distribution for the tth
iteration and the jth parameter. This quantity is analogous to the
“z-score” commonly used in many statistical tests. Following
Wang & Li (2018), we require this condition to be satisfied for
kmax consecutive iterations to ensure approxposterior is
producing a consistent result. With this scheme, approx-
posterior tolerates deviations from the previous estimate
that are less than, or at least consistent with, the previous
values, given the inherent uncertainty implied by the width of
the posterior distribution. For our application, we adopted
conservative choices of ò=0.1 and kmax=5. For each
approxposterior iteration, we also visually inspected
the estimated posterior distribution to ensure convergence.

In Figure 7, we display the convergence diagnostic quantity,
zt, as a function of iteration for each model parameter for
the approxposterior run presented in the main text.
approxposterior quickly finds a consistent result as zt
decreases below our convergence threshold within the first few
iterations. For each parameter, zt continues to decrease until
iteration 3 before stabilizing. The evolution of zt is not
monotonic, however, owing to the stochastic nature of GPs, our

hyperparameter optimization scheme, and MCMC sampling
that can cause these values to occasionally be slightly worse
than previous iterations. Requiring convergence over kmax

consecutive iterations mitigates the impact of this stochasticity.
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