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Abstract

The Parker instability, a Rayleigh—Taylor-like instability of thermal gas supported against gravity by magnetic
fields and cosmic rays, is thought to be dynamically important for galaxy evolution, possibly promoting molecular
cloud formation and the galactic dynamo. In previous work, we examined the effect of three different cosmic-ray
transport models on the Parker instability: decoupled (v, = 0), locked to the thermal gas (v, = 4/3), and coupled to
the gas with streaming by self-confinement. We expand on that work here by considering radiative cooling, a
smooth gravitational potential, and simulations into the nonlinear regime. We determine that cosmic-ray transport
away from compression points, whether by diffusion or streaming, is the largest driver of the instability. Heating
due to cosmic-ray streaming is also destabilizing and especially affects the nonlinear regime. While cooling
depressurizes the dense gas, streaming cosmic rays heat and inflate the diffuse extraplanar gas, greatly modifying
the phase structure of the medium. In 3D, we find that the fastest growth favors short-wavelength modes in the
horizontal direction perpendicular to the background magnetic field; this is imprinted on Faraday rotation measure
maps that may be used to detect the Parker instability. The modifications to the Parker instability that we observe in
this work have large implications for the structure and evolution of galaxies, and they highlight the major role that
cosmic rays play in shaping their environments.
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1. Introduction

The Parker instability (Parker 1966) is a key example of the
effect that magnetic fields and cosmic rays can have on the
structure of the interstellar medium (ISM). In the Parker
instability, a perturbation to the magnetic field causes the field
lines to bend, allowing the gas to fall down into the valleys of
the magnetic field owing to the force of gravity. This releases
gravitational potential energy, some of which is used to
compress the gas into the valleys and resist magnetic tension.
The instability, then, is a constant battle between gravity,
compression, and magnetic tension. While Parker originally
employed the instability as a mechanism by which molecular
clouds could form, a concept further investigated by Kosinski
& Hanasz (2006) and Mouschovias et al. (2009), many
additional astrophysical phenomena have been pinned on the
Parker instability, including disk stability (Kim et al. 2000;
Rodrigues et al. 2016; Heintz & Zweibel 2018) and the
magnetic dynamo (Hanasz & Lesch 1997; Machida et al.
2013).

The stability of stratified media was first analyzed by
Newcomb (1961) in a system with a horizontal magnetic field
but without cosmic rays. In the limit of infinitely long parallel
wavelength and infinitely short perpendicular wavelength, the
instability criterion reduces to the Schwarzschild criterion:

_gdp _ pg®

>0, (1)
pdz .k

where g is the gravitational acceleration, p is the thermal gas
density, v, is the adiabatic index of the gas, and P, is the
thermal gas pressure. While the magnetic field does not
explicitly appear in that criterion, it affects the stability of the

system through its effect on the stratification.

Parker (1966) adapted this system to galactic disks with the
addition of cosmic rays. These highly energetic particles compose
about one-third of the total energy density in interstellar gas and
can help drive galactic winds (Breitschwerdt et al. 1991; Everett
et al. 2008; Girichidis et al. 2016; Ruszkowski et al. 2017; Wiener
et al. 2017), ionize the ISM (Grenier et al. 2015), and contribute to
the formation of the Fermi bubbles (Guo et al. 2012; Yang et al.
2012) and the galactic dynamo (Hanasz et al. 2009).

In Parker’s original analysis, cosmic rays were assumed to
provide equilibrium pressure support but behave as a v =0
fluid when perturbed, thereby significantly destabilizing the
medium.

Since that seminal paper, our understanding of cosmic-ray
coupling to the thermal gas has significiantly expanded. For
GeV cosmic rays, which make up the bulk of the cosmic-ray
pressure, cosmic-ray streaming, described by the self-confine-
ment model, is the dominant transport mode (Kulsrud &
Pearce 1969; Kulsrud & Cesarsky 1971; Zweibel 2017). In this
model, cosmic rays that are in gyroresonance with Alfvén
waves can exchange energy and momentum with these waves.
If their bulk speed is larger than the Alfvén speed, v4, the
cosmic rays will scatter off the waves until they reach marginal
stability, namely, isotropy in the wave frame, in the process
amplifying the waves (Kulsrud & Pearce 1969). In a steady
state, the waves will then transfer the energy to the surrounding
thermal gas in the form of heating, and the bulk flow of cosmic
rays proceeds at the local Alfvén speed down the cosmic-ray
pressure gradient directed along the magnetic field.

The extrinsic turbulence model is an alternative model of
cosmic-ray transport, according to which the cosmic rays
scatter off waves generated by a turbulent cascade. While they
still interact resonantly with the turbulence, their gains and
losses cancel owing to the waves propagating in both directions
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with equal intensity. Therefore, in this model, there is no
cosmic-ray heating of the gas (Zweibel 2017). This model
effectively reduces to cosmic-ray advection with the thermal
gas. Both the self-confinement and extrinsic turbulence models
admit magnetic-field-aligned diffusion, at a rate that depends
on the amplitude of the scattering waves.

With these modern cosmic-ray transport theories in hand, Heintz
& Zweibel (2018, hereafter HZ18) revisited the Parker instability.
The results of our linear stability analysis, which we outline in
Section 2.1, show significant dependence on the transport
model. For streaming, in particular, we found that the range of
unstable wavelengths is greatly expanded and the growth rate is
significantly increased. These changes to the canonical Parker
instability picture promise wide-ranging implications for the
structure of the ISM; therefore, we are motivated to explore these
effects further with an expanded linear stability analysis and
numerical simulations.

In this paper, we analyze the Parker instability under three
different cosmic-ray transport models, using both a linear stability
analysis and magnetohydrodynamic (MHD) simulations. The
paper is outlined as follows. In Section 2.1, we summarize the
results of Heintz & Zweibel (2018). We then discuss the advances
we have made to that linear theory through the addition of
radiative cooling in Section 2.2. The remaining bulk of the paper
centers around numerical simulations of the Parker instability,
focusing on both the linear and nonlinear development of the
instability with different cosmic-ray transport models. We outline
the methods for these simulations in Section 3, as well as cover
the addition of a smooth gravitational potential to the system in
Section 4.1. We then proceed to discuss our results from 2D
simulations in Section 4.2, focusing on the effect of cosmic-ray
heating in both the linear and nonlinear regimes of the instability.
We then investigate the effect of cosmic-ray heating on the system
in Sections 4.3 and 4.4, including the competing role of radiative
cooling in Section 5. We perform the same analysis for our 3D
simulations in Section 6 and use those results to make some mock
observations of the Parker instability. We then summarize the
main results, conclusions, and implications of our work in
Section 7.

2. Linear Theory
2.1. Basic Equations and Summary of Past Results

Here we outline the linear stability analysis and main results
from HZ18. For completeness, our equations include the
additional terms for radiative cooling. These are explained in
Section 2.2 and derived in more detail in the Appendix.
Following our setup from HZ18, we assume a 2D stratified
system in magnetohydrostatic equilibrium where the cosmic-
ray pressure (P.), gas pressure (P,), density (p), and magnetic
field (B = Bx) are all functions of y. We also assume, as Parker
(1966) did, that the gravitational acceleration (g = —gy) is
constant and that the ratios of magnetic pressure and cosmic-
ray pressure to thermal pressure are constant. Under these
conditions, p, P,, P, and P, = Bz/ (8m) all depend on y as
e_y/H, where H = (B, + F. + Pm)/pgg is the (constant) scale
height.

The equations for the background and perturbed (denoted by
0) quantities are (HZ18)
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where T is the temperature, n is the gas density, A(7) is the
optically thin cooling function, « is the diffusion tensor (A and
x were omitted from HZ18), u is the velocity, u, is the Alfvén
velocity, B / J4mp;, and 7y, and ~, are the adiabatic indices of
the gas and cosmic rays, respectively. We have written p; to
denote the plasma density, which differs from the total thermal
gas density p in regions that are weakly ionized; we will ignore
ionization effects throughout. These five equations, in order,
describe mass continuity, momentum conservation, magnetic
induction, and the energy equations for the cosmic rays and
thermal gas. All terms associated with the self-confinement
model appear in the cosmic-ray and thermal gas equations
(Equations (5) and (6)).

Following the same procedure as in HZ18, we assume a
Fourier decomposition for the perturbation quantities in terms
of x and ¢, § o< e~ and then assume that the background
quantities and perturbations depend on y as
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Again, following HZ18, we introduce the dimensionless
variables:
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where u, is the Alfvén speed, a, = /7, F; /p is the thermal gas
sound speed, a, = /. F./p is the cosmic-ray sound speed, H,
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Figure 1. Contour plots of growth rates for the three Parker cases we investigated in HZ18. Top: no cooling; bottom: with cooling. Note the different domains of (k,
Hy) and (k, Ho) in the graphs, as well as the different ranges for (wHo/a,) in the bar legend. In all three cases, 7, = 5/3. While any dependence on temperature is
excluded for the noncooling case, for the ones with cooling, we do have a temperature dependence and assume here that 7 = 8000 K. This gives H ~ 194 pc. We see
without streaming that cooling further destabilizes the system by allowing gas to be easier to compress. But with streaming, the cosmic-ray heating is less efficient

when cooling is turned on, and so that system becomes more stable.

would be the scale height if there were no pressure support
from magnetic fields or cosmic rays, H is the actual scale
height, and g is the gravitational acceleration constant. The m
and c values used here relate to « and 3 used in Parker (1966):

2
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Plugging all of these substitutions into Equations (2)-(6), we
get our linearized perturbed equations:
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We considered three transport models: (1) “Classic Parker,”
where the cosmic rays are assumed to behave as a 7. = 0 fluid
but still affect the equilibrium system through their pressure
gradient; (2) the extrinsic turbulence model (Modified Parker)
with 7. = 4/3; and (3) the self-confinement model (Modified
Parker with Streaming). We solve Equations (10)-(16) for a
dispersion relation and obtain the contour plots shown in
Figure 1. A comparison between the instability found in Classic
Parker, Modified Parker, and Modified Parker with Streaming
is shown in the top row of Figure 1 (from HZ18). In Modified
Parker (Zweibel & Kulsrud 1975; Boettcher et al. 2016), we
found that the increase in adiabatic index led to a decrease in
the compressibility of the cosmic rays, resulting in a much
more stable system than Classic Parker owing to the energy
needed to compress the cosmic rays in the magnetic valleys. In
Modified Parker with Streaming, we kept 7. = 4/3 and
inserted the cosmic-ray streaming terms into Equations (5)
and (6). We found this system to be much more unstable than
Modified Parker and more unstable than Classic Parker as well.
Based on the work contributions in the three different systems,
we concluded that cosmic-ray heating in the self-confinement
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Figure 2. Low-temperature cooling curve (Inoue et al. 2006) used in this work,
which has contributions from Lya and C1I fine-structure emission. The full
CIE cooling curve generated from CLOUDY models (Wiersma et al. 2009) is
also plotted for comparison, showing a reasonable fit at lower temperatures but
discrepancies near the peak of the cooling curve.

model was responsible for the increased instability. We revisit
this diagnosis in Section 4.4 with new information from our
MHD simulations.

In all three cases, we found that increasing m increases
instability. The picture for ¢ is more complex: while increasing
c is destabilizing in the Classic Parker model, increasing ¢ for
Modified Parker is stabilizing, as the cosmic rays become more
difficult to compress into the magnetic valleys. With streaming,
increasing c¢ initially destabilizes the system more until
reaching a threshold value of ¢ (&3, usually), at which the
growth rates begin to decrease again.

We also performed a 2D versus 3D comparison of Modified
Parker and Modified Parker with Streaming. In 2D, we
assumed k, — 0, while in 3D, we assumed that k, — oo,
allowing a comparison of these two to give us boundaries on
the range of instability for a 3D case with a finite k.. We found
that, in general, the 2D case is always unstable over a smaller
range of wavelengths than the 3D case. While in Modified
Parker the 3D case always reaches higher growth rates than the
2D case, for Modified Parker with Streaming the 2D case peaks
at larger growth rates than the 3D case, especially at larger
values of c.

2.2. Radiative Cooling

In many studies of the Parker instability, strong cooling is
effectively assumed by varying v, to be less than 5/3. As
shown in Kosinski & Hanasz (2006) and Mouschovias et al.
(2009), explicit implementations of low-temperature, optically
thin radiative cooling give decent but not exact agreement with
simply using -, = 1; however, the compressibility of the gas,
which works to stabilize the system, is altered between the two
cases, and the further collapse of overdense regions due to
thermal instability cannot be described by simply changing the
adiabatic index of the gas. Additionally, HZ18 previously
implicated cosmic-ray heating as the probable destabilizing
effect, due in part to lower growth rates observed when setting
ve = 1, which negates the cosmic-ray heating term (the last
line of Equation (6)). An analysis of work contributions
similarly indicated that cosmic-ray heating was destabilizing.

Heintz, Bustard, & Zweibel

Given these differences between explicitly including cooling
and simply assuming -, < 5/3, a linear stability analysis with
explicit radiative cooling is necessary.

To add radiative cooling to our linear stability analysis, we
use an analytic approximation to the optically thin cooling
curve (Inoue et al. 2006):

A(T) =73 x 10_2](6_118400/(T+1500'0))
+7.9 x 10727 (¥ Ty erg cm’®s7!, (17)

where the first term represents cooling from Ly« emission and
the second term comes from C II fine-structure emission. A plot
of this cooling function, with a comparison to the CIE cooling
curve from CLOUDY, is given in Figure 2. While the Inoue
et al. (2006) cooling curve is a reasonable quantitative fit and
produces a medium with two stable phases, there is a larger
discrepancy at high temperatures. The Inoue et al. (2006)
cooling curve levels off at high temperatures and misses the
prominent O VI peak that triggers the warm unstable phase.
This is not important for our linear stability analysis, but it led
us to choose a different cooling model for our MHD
simulations in the nonlinear regime.

As in Kosifiski & Hanasz (2006), a temporally constant but
spatially varying heating function I' = ny(y)A(Tp) is applied to
keep the initial setup in equilibrium, where ny(y) and T are the
unperturbed density and temperature, respectively. Note that
while the heating function is constant with temperature, it does
depend on y to satisfy thermal equilibrium since the initial
density ng is a function of y. We ignore cosmic-ray heating in
this equilibrium state, despite assuming that the cosmic rays are
already coupled to the gas. This rests on the assumption, also
made by Begelman & Zweibel (1994), that the equilibrium
horizontal cosmic-ray pressure gradient is too weak to
contribute significantly to heating.

For our chosen cooling function, the cooling rate is
E = —nf,A(T) = —0.49(p/my)*A(T), where we assume that
hydrogen is 90% by number. Therefore, the radiative loss and
corresponding gain terms in Equation (6) are

E = —0.49(p/my)*A(T) + 0.7(p/my)T
=—0.49(p/my)>A(T) + 0.49(p/my)
X (po(y) /me) A(To(y)). (18)

Inserting the terms in Equation (18) into Equation (6), we
derive a dispersion relation and create the contours in the
bottom panel of Figure 1. For these plots, we assumed a base
value of n = 0.1 em~3, m = 1072 g, T = 8000 K, a, = 10°
cms” !, and g~4x10"%cm sfz, which are all reasonable
for the Milky Way warm neutral medium. These parameter
values give an Hy ~ 79 pc and an H ~ 194 pc.

After adding radiative cooling for these parameter values, we
now see that Classic Parker is the most unstable case of the
three, while Modified Parker and Modified Parker with
Streaming are now much closer to each other in levels of
instability. When compared with the top row of Figure 1, we
see that both Classic Parker and Modified Parker are more
unstable than their noncooling counterparts. We believe that
this is because cooling the gas makes it easier to compress into
the valleys of the magnetic field. However, for Modified Parker
with Streaming, we see that radiative cooling makes the system
become more stable than without cooling. The cooling of the
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Figure 3. Plots of & vs. Ky for the three Parker cases with radiative cooling with k, = 0. For each case, we have plotted three different curves with three different
temperatures (meaning different cooling functions). No cooling is the black curve, T = 8000 K is the purple curve, T = 5000 K is the orange curve, and 7 = 20000 K
is the blue curve. Again, note the different domains of (k,Ho) and (w Hy/a,). Similar to the contour plots, the more cooling without streaming, the more unstable the
system, while the opposite holds true with streaming. The behavior at large values of K, is due to thermal instability.

gas makes the cosmic-ray heating effect less efficient and
therefore makes the system more stable. But even with cooling,
Modified Parker with Streaming is still more unstable than
Modified Parker for this set of parameter values.

In Figure 3, we plot the instability curves for three different
values of equilibrium temperature 7, for all three cosmic-ray
transport models. Increasing 7, from 8000 to 20,000 K creates
negligible changes between the instability curves. However,
lowering T, to 5000 K again shows the stark differences
between the cases with and without streaming. In Classic
Parker and Modified Parker, lowering the temperature causes
the peak growth rate to decrease but results in a much larger
range of instability that appears to asymptote to a certain
growth rate. With Modified Parker with Streaming, the range of
instability is still increased, but now we instead see that the
peak growth rate is larger when the temperature is decreased
to 5000 K. Furthermore, at a certain value of k,, even the
T = 8000 K curve begins to rise back up into a more unstable
regime.

Since the Parker instability turns off at short wavelengths, it
seems likely that the increased ranges of instability are due to
thermal instability. For the analytic cooling curve of Inoue et al.
(2006), we calculate that our initial setup is unstable to pure
condensation modes (satisfying én/n oc —6T/T) when 92
K < T < 5800 K. This corresponds to the relatively flat part of
the cooling curve with dA/dT < A/T (Field 1965). Inspection
of the eigenfunctions derived in the linear stability analysis
supports this conclusion. For an isobaric system (similar to our
system with cooling), one expects the temperature and density
eigenfunctions to differ in phase by w. We find for all
temperatures where the instability extends out and asymptotes
at large values of Ky that this relationship seems to hold at those
values. However, as we decrease back to smaller values of k;,
the two eigenfunctions align in phase, as one would expect for
an adiabatic system where thermal instability is not the
dominant instability. In general, we find that somewhere
around Kk, ~ 0.3 for the lower-temperature systems and
Ky =~ 0.4 for the higher-temperature systems the instability
switches over from the Parker instability to thermal instability.

For further study of the wealth of effects uncovered here, we
now turn to nonlinear simulations.

3. Simulation Method

We use the FLASH v4.2 (Fryxell et al. 2000) magnetohy-
drodynamics (MHD) code to carry out our simulations. To
solve the ideal MHD equations, we use the unsplit staggered
mesh MHD solver (Lee & Deane 2009; Lee 2013), which is
based on a finite-volume, high-order Godunov scheme and uses
a constrained transport scheme to ensure divergence-free
magnetic fields. We use a modified version of FLASH that
includes an additional cosmic-ray module (Yang et al. 2012;
Ruszkowski et al. 2017), which evolves cosmic rays as a
second fluid and includes a fluid description of the kinetic
cosmic-ray streaming process. In practice, the cosmic-ray fluid
is defined as a mass scalar in FLASH, and it obeys a relativistic
equation of state, as well as a separate evolution equation that
depends on whether streaming is desired or not. We refer the
reader to Ruszkowski et al. (2017) for the full set of cosmic-
ray-modified equations evolved in FLASH.

Because, in the streaming picture, the direction of flow along
field lines is always directed down the cosmic-ray pressure
gradient, numerical issues arise near extrema in cosmic-ray
pressure, where the gradient changes sign. To counteract this,
Ruszkowski et al. (2017) implement a regularization method
(Sharma et al. 2009), for which one must choose a
characteristic cosmic-ray scale length, L. For our simulations,
we consistently use L = Skpc. We show convergence with
respect to this parameter in Appendix B.

Our simulation setup assumed periodic boundary conditions
along the direction of the magnetic field (£), with diode
boundary conditions (allowing outflow but not inflow)
set along the direction of gravity (). We also tested outflow
boundaries and found consistent growth rates and system
evolution away from the immediate boundary cells. In 3D
simulations, we also assume periodic boundary conditions
along the third direction (z). For our fiducial 2D simulations,
we used a uniform 512 x 512 grid, resulting in a resolution of
31.25 pc or 16.125 pc depending on box size (8 kpc x 8 kpc for
solar neighborhood parameters, 16 kpc x 16 kpc for Rodrigues
et al. 2016 parameters). See Appendix B for how the
simulations converge for different resolutions. Our more
computationally expensive 3D simulations were only run using
the set of Rodrigues et al. (2016) parameters on a 16 kpc x 16
kpc x 8kpc grid (with gravity again in the y-direction) with a
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Figure 4. Left panel: Fourier amplitudes of B, for a selection of excited modes in an m = 2, ¢ = 1 unstable ISM using the solar neighborhood parameter set. Growth
rates for this case are calculated by fitting a line to each curve between 100 and 200 Myr (denoted by the vertical dashed lines) and calculating the slopes. Right panel:
dimensionless growth rate & vs. K, when different 100 Myr time intervals are chosen for line fitting. This example nicely shows the nonlinear interactions that pump
some of the short- and long-wavelength, initially very slowly growing modes (e.g., the A = 1/2 and A = 8 kpc modes) after 200 Myr. This merging and transfer of
energy between modes cause them to grow much faster than expected from linear theory, and this is prevalent in our simulations, as the evolution surpasses the linear

regime.

resolution of (62.5 pc, 62.5 pc, 31.25 pc). We shortened the
box length and cell size in the Z-direction because we expected
(and corroborated) a prevalence of short-wavelength perpend-
icular modes in the Z-direction. For all simulations, we used the
HLLD Riemann solver but did not find any differences when
using the HLLC solver.

3.1. Seeding the Parker Instability

One typically seeds the Parker instability by applying one of
two types of perturbations™: to isolate a specific wavelength ),
one would perturb the vertical component of the velocity with a
harmonic function of 27 x/A—we refer to this as “leading the
horse to water”; or, one can simultaneously perturb many
wavelengths and apply all those velocity perturbations at once
—we refer to this as the “horse race.” In this work, we
consistently perturb the first 100 wavelengths that fit within the
box width along the background magnetic field. In our
coordinate system, the initial magnetic field is in the
X-direction, while the vertical stratification is in the y-direction.
Our vertical velocity perturbation is then

100 100
by = > > Asin(z)\LX - GnX]sin(z)\LZ -

ny=1n,=1 Ny ng

0] (19)

where A, = (Xmax — Xmin)/n and )\nz = (Zmax — Zmin)/n are
the wavelengths that fit within the box width in the X-direction
(parallel to the background magnetic field) and the z-direction
(perpendicular to the field). 6, and 6, are phases randomly
drawn between 0 and 27. Note that the summation over z-terms
is excluded for 2D simulations. The above perturbation also has
no y-dependence; we found no difference between simulations
with velocity perturbations constant in y and ones following an
exponential profile falling off with height.

The variable A defines the initial perturbation amplitude. For

2D simulations, we set the fiducial value of A to 10~*cm sfl,

A third method, waiting for the instability to grow from numerical noise, is
typically too slow to be efficient.

which gives a highly subsonic velocity perturbation, resulting
in vertical magnetic field perturbations growing by 4 or more
orders of magnitude throughout the instability evolution.
Changing this value of A to 107% cm s~! makes no significant
difference in the resulting growth rates (see Appendix B). In
3D, since we now apply 100 more perturbations, we find that
A=10"*cms™! is too high; 107®cm s~ gives a similar
velocity kick to that in the 2D case and promotes a long linear
phase from which we can compute growth rates, so we choose
this to be our fiducial 3D value.

To get a growth rate, we Fourier transform the y-component
of the magnetic field across the simulation box, which gives a
Fourier amplitude A(k) for each mode. We then back out the
growth rate by fitting a line to a section of log(A(k)) versus
time.* How the Fourier amplitudes are scaled does not matter
for our growth rate calculations, and the amplitudes are not to
be confused with the value of B, for each mode. While “leading
the horse to water” avoids mode coupling to give the most
direct growth rate comparison for a given wavenumber, it is
computationally expensive to run such simulations over and
over again. The “horse race” allows us to run only one
simulation instead of many simulations with one wavelength
each. While it does so at the expense of possible mode
coupling, it is also more representative of the ISM, which
would naturally seed many wavenumbers at once.

In Figure 4, we have plotted the Fourier amplitude of B, for
different wavelengths in the simulation. We see for modes with
wavelengths between 4/5kpc and 4 kpc that in the range of
100200 Myr the modes generally grow exponentially, as
expected for unstable modes in the linear regime. However,
other modes, most notably the 1/2kpc and 8kpc modes,
oscillate between different amplitudes but show no real growth
in this range. From the stability analysis, we expect the 1/2 kpc

4 Choosing the time interval is not an exact science. To isolate linear growth,
one wants to choose an interval when initially oscillatory /spurious modes are
clearly not excited, but the time interval should capture enough output times to
get an accurate line fit. We varied the interval start and end times for every
growth curve shown in this paper, and we find our presented results to be
robust.
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mode and short wavelengths like it to be stable but that the
8 kpc mode should be unstable with a very small growth rate.
Thus, we believe that for both of these modes and others of
similar wavelengths, their oscillating amplitudes are due to
them being nonlinearly pumped by the faster-growing modes in
the simulation. As the simulation reaches 200-300 Myr, the
simulation leaves the linear regime and all of the modes begin
to grow similarly. Thus, when calculating growth rates, we
focus on the 100-200 Myr regimes, while noting that the
growth rates of modes that are stable or only slightly unstable
will be more random owing to this nonlinear pumping and may
not follow the linear analysis.

Despite the resulting mode coupling (see, e.g., Figure 4), we
consistently find a tight match between simulation growth rates
and our linear stability analysis (see Section 4); therefore, we
will only present results using this “horse race” method.

It is worth noting that almost all studies in the literature carry
out a similar “horse race” by perturbing cell by cell (e.g.,
Rodrigues et al. 2016), which means that the perturbations
change depending on grid layout and resolution, or utilize the
“leading the horse to water” method. However, we have found
few studies that have made a direct comparison of simulation
growth rates to linear theory (as an example of work that has,
see Kosinski & Hanasz 2007, where linear growth rates of
Parker and thermal instabilities were compared with simulation
growth rates).

4. Simulation Results: 2D

We first describe our transition to a smooth gravitational
potential. Although a constant gravitational field is more
tractable analytically, we found a smooth transition necessary
(and more realistic) for our simulations. Using the constant
field did give reasonable growth rates in some cases, but it was
not reliable, partially because of the impossible strain placed on
simulations to resolve an abrupt transition from positive to
negative gravitational force at the midplane (see Appendix C
for a short summary of our struggles). Therefore, we were
driven to a smooth gravitational potential by computational
necessity, as well as scientific realism.

4.1. Smooth Gravity and Growth Rates

Giz & Shu (1993) were the first to study the Parker
instability with a smooth gravitational acceleration, in their
case g(y) o tanhy, which corresponds to a self-gravitating,
isothermal mass layer. They pointed out that this setup,
regardless of the exact function for a smooth gravitational
acceleration, is analogous to a quantum harmonic oscillator and
results in both continuum modes (as in Parker’s analysis) and
discrete modes, where the modes are set by a parameter £. They
found that the discrete modes are the most unstable, and
therefore we compare to these modes in our simulations. In
Parker’s analysis (and that of many other authors, including
HZ18), these modes are suppressed because the potential well
has no width near y = 0.

Kim & Hong (1998) subsequently compared three cases:
constant gravity, linear gravity, and the tanh gravity profile.
They found that the linear case was the most unstable while
constant gravity led to the most stable system. Recently,
Rodrigues et al. (2016) ran simulations in 3D with the fanh
gravitational acceleration with cosmic-ray diffusion. In most
analyses of 2D simulations, it is found that the undular modes
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(k) > k) are preferred by the instability over the interchange
modes (k. > k) owing to the inability of gas to fall into
magnetic valleys with the interchange modes. However, due to
their 3D setup, Rodrigues et al. (2016) found no preference for
undular or interchange modes, an important point to note when
comparing simulations to observations.

It is also worth noting some key differences between mode
symmetries. Even in a constant-gravity case, simulating both
sides of the disk (with g abruptly changing sign at the
midplane) allows for midplane warping modes, whereas
simulations that are cut at the midplane theoretically keep the
midplane untouched. This is an important point appreciated in
previous works, including Matsumoto et al. (1988) and Basu
et al. (1997), which showed that the midplane warping mode
“even” in v,) is naturally selected over the symmetric mode
(“odd”) when random perturbations are applied to the stratified
system. This even mode also leads to the greatest density
enhancements in the midplane, which is most conducive to
giant molecular cloud formation. These modes typically also
have faster growth times than the odd modes due to the extra
freedom for gas to cross the midplane and convert gravitational
potential energy to kinetic energy. However, in their work with
the realistic gravitational potential, Giz & Shu (1993), Kim &
Hong (1998), and Rodrigues et al. (2016) all found that the
modes show no preference for a specific symmetry, odd
or even.

For our simulations, we will use the tanh gravity profile,
following Rodrigues et al. (2016). Using y as the vertical
direction, we write the density, gravitational acceleration, and
temperature as functions of y:

>
p(y) = Eéisechz(ﬁg) (20)
g(y) = —ZWGEtanh(%), Q1)

where X is the total (gas + stars) surface density of the galaxy
and H is the scale height, and

_ 7GXmyuH
kp(1 + o + ()’

where m,, is the proton mass, we choose ;. = 1 as the mean
molecular mass, and 3, is the disk total surface density. This
definition of our temperature follows from magnetohydrostatic
equilibrium—a balance between the gravitational force and the
sum of the vertical pressure gradient (from both gas and cosmic
rays) and the magnetic pressure gradient.

For our simulation setup, we mainly follow the parameter
choices of Rodrigues et al. (2016), with ¥ = 100.0 M., pc2,
¥, = 10.0 M, pc~2, and H = 500 pc. To make our conclusions
more robust, we also run a few simulations with a second set of
parameters appropriate for the solar neighborhood (McKee et al.
2015), with ¥ = 47.1 M pc=2, ¥, = 13.7 M, pc~2, and H =
250 pc. This has the added benefit that we can comment directly
on the ramifications for our solar neighborhood, which is a
standard ISM model in many ISM “patch” analyses (e.g., Kim &
Ostriker 2018). These two parameter sets are shown in Table 1 for
clarity. For each choice of surface densities and scale heights, we
then vary the magnetic field and cosmic-ray parameters m and ¢
(or av and (). This, in turn, defines the temperature of the ISM.
Throughout our work, we found no major differences between our
results for the two parameter sets, especially in a qualitative sense.

(22)
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Figure 6. Growth time curves for Rodrigues et al. (2016) parameters and
varying ISM compositions. As m and c increase, the instability becomes faster
over a larger range of wavelengths, which is consistent with HZ18.

Table 1
Two Parameter Sets of Total (Stellar+-Gas) Surface Density (£), Gas Surface
Density (¥,), and Scale Height (H)

Z(Mg; pC’z) Zg(M PC_Z) H (pC)
Solar Neighborhood Setup (McKee et al. 2015)
47.1 13.7 250

Rodrigues et al. (2016) Setup
100.0 10.0 500

Quantitatively, they lead to different growth curves, which is to be
expected.

To validate our simulations, we begin with a growth rate
comparison of our Modified Parker simulations to the growth
rates calculated using a linear stability analysis, now account-
ing for a smooth gravity profile. To see how to solve these
linearized equations, see Giz & Shu (1993), who provide a
nice, detailed analysis of the Parker instability with a fanh
gravitational profile.” Our linear analysis comparison for
Modified Parker follows Giz & Shu (1993).

For many different values of m and ¢, we ran out simulations
in 2D that evolved through the linear phase. A comparison of
the growth rates obtained from simulations against the growth
rates from the linear theory is presented in Figure 5. We can see
that at the highest growth rates, simulated growth rates line up
very well with the linear analysis. For modes far from the peak
growth rate, the simulated mode growth diverges from the
linear theory in some cases. This may be attributed either to
slow growth, which is more difficult for the simulation to
capture, or to pumping by faster-growing modes that have
reached nonlinear amplitude—an effect not captured by the
linear analysis.

In 2D simulations with streaming, although we do not have a
linear stability analysis to compare to directly, we find a good
qualitative match between our growth curves and the results
of HZ18. Figure 6 shows our derived growth times for
simulations of varying (m, c) values for Rodrigues et al. (2016)
galaxy parameters. We see that increasing m and c leads to

5 Note that solving the same set of equations with smooth gravity and
streaming is much more difficult. We leave this to future work.
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Growth Rates without Streaming: Linear Theory vs Simulations
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Figure 5. Dimensionless growth rate comparison between the linear stability
analysis and 2D FLASH simulations. This test was for the Modified Parker
setup (no streaming or cooling) with the solar neighborhood galaxy parameter
set. The solid lines represent the linear stability analysis, while the circles
represent the Fourier transform of wavelengths periodic in the box of the
simulation.

shorter growth times and an expanded range of unstable modes.
The m = 2, ¢ = 4 simulation even looks to grow faster and
faster at shorter wavelengths, which are not shown on our plot
because we do not trust them to be well resolved at our
resolution of 31.25 pc. We expect that, as we found in the
constant-gravity case, at higher ¢ these growth curves will turn
back toward stability, but we do not have the numerical
resolution to probe that full (m, ¢) range in our simulations.

Overall, we are very pleased with the match between theory
and simulation, and we proceed to an analysis of the nonlinear
regime.

4.2. Nonlinear Evolution

The typical highly evolved state of a Parker unstable system
is shown in Figure 7 for Rodrigues et al. (2016) parameters
with cosmic-ray streaming, no cooling, m = 2, and ¢ = 1.
Bearing in mind that the Parker instability is driven by the
gravitational potential energy of gas supported above its
thermal scale height by magnetic and cosmic-ray pressure, it
is unsurprising that the gas is more heavily concentrated in the
magnetic valleys, forming the tendril-like structures of higher-
density gas seen in the plots. This leads to a density increase in
the midplane with displaced, buoyant gas ballooning outward.
The magnetic field is advected with these buoyant loops,
resulting in a magnetic pressure increase of a few orders of
magnitude in regions a few kiloparsecs above the disk. As the
system becomes more and more nonlinear, these tendrils/
arches of gas come together to form the bigger loops that are
also observed in these slice plots. This behavior may be abetted
by anomalous (numerical) magnetic diffusion, but we cannot
quantify this effect with our current simulations. Cosmic rays,
streaming along the field lines, will begin to move away from
the midplane, heating the gas as they do this. Importantly,
cosmic rays seem to heat the gas most efficiently in the regions
between these loops where the gas density is lower. We will
focus on this behavior in Section 4.4.

As found by Giz & Shu (1993), Kim & Hong (1998), and
Rodrigues et al. (2016), our system shows no preference for a
particular type of symmetry. Instead, it appears to be a mixing
of both the “even” and “odd” modes. This lack of preferred
symmetry is not due to our initial conditions. As outlined in
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Figure 7. Example of an evolved Parker instability with cosmic-ray streaming and Rodrigues et al. (2016) parameters. Here we set m = 2 and ¢ = 1 and do not
include cooling. Line integral convolutions of the magnetic field are overplotted. The magnetic loops that are often associated with the Parker instability are seen. In
the density plot, we also see the gas falling down in the valleys of the magnetic field as one would expect for the instability. Along the resulting Parker loops,
compressive heating raises the temperature far above the equilibrium temperature of ~10* K, while cosmic-ray heating increases the diffuse gas temperature to beyond
10° K. This is especially true high above the disk, where the heating per particle is greatest.

Section 3, we apply a perturbation to velocity in the y-direction
(the direction of gravity) that goes as a sine function. This
initial perturbation therefore would seem to favor the antisym-
metric system about the midplane, yet the symmetric modes
still develop and mix with the antisymmetric ones, indicating
that neither mode is dominant and both will arise in the system,
regardless of the initial conditions.

In Figure 8, we see the differences in ISM structure when
streaming is added to our system. In general, we see that in
Modified Parker with Streaming, the changes in all of our
quantities happen at earlier times, due to the increased
instability of this system compared with Modified Parker.
The gas pressure and density, qualitatively, increase in both
systems, but quantitatively they increase much more sharply
and to a larger value when streaming is added. This again
reinforces that the system with cosmic-ray streaming is more
unstable, as the gas compacts more easily into the valleys of the
magnetic field as the cosmic rays stream away up the magnetic
loops. An interesting comparison arises between the two
systems with the magnetic pressure as well. In both systems,
the average magnetic pressure slightly decreases as it is
replaced by the gas pressure. However, we see a stark
difference in the maximum magnetic pressure in the two
systems. In the more stable system of Modified Parker, the
maximum magnetic pressure roughly follows the trajectory of
the average magnetic pressure within 1kpc. However, with
streaming, as the instability creates more dense, heavier pockets
of gas, the magnetic field lines near the midplane that cannot
lift away from the disk are compressed closer together, and so
the magnitude of the field sharply rises.

These two models differ most strongly in the cosmic-ray
pressure statistics. In Modified Parker, the cosmic rays only
advect with the gas, and therefore the cosmic-ray pressure
increases proportionally to the gas pressure. However, in
Modified Parker with Streaming, we see that the cosmic-ray
pressure actually decreases near the midplane of the disk. Since
the cosmic rays are no longer locked to the gas, they are able to
move out of the way of the falling gas and follow the magnetic
loops up away from the disk. This gives more room in which
the gas can be compressed, possibly providing another reason
for why Modified Parker with Streaming is so much more
unstable than Modified Parker in the linear theory (in addition
to cosmic-ray heating).

4.3. Diffusion versus Streaming

In an attempt to test our intuitions from HZ18 and further
understand why cosmic-ray streaming makes the system more
unstable, we also decided to run simulations with cosmic-ray
diffusion and compare the two different models of transport.
The linear theory of the Parker instability with cosmic-ray
diffusion can be found in the work of Ryu et al. (2003),
Kuwabara et al. (2004), and Kuwabara & Ko (2006) but is not
included in this work. In general, they all found that higher
parallel diffusion coefficients lead to a more unstable system
than systems with lower diffusion coefficients. For reference,
Classic Parker is equivalent to x| — 00, and Modified Parker is
equivalent to k) = O (here “parallel” means with respect to the
magnetic field), so the results of our linear stability analysis
reinforce their findings. In our system, we add diffusion to our
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Figure 8. Evolution of the mass-weighted density and pressures, within 1 kpc
of the midplane, for Modified Parker simulations with and without cosmic-ray
streaming. Note that these simulations used solar neighborhood parameters, but
the qualitative results hold for Rodrigues et al. (2016). The density and gas
pressures grow much more quickly and to higher values with streaming than
they do without it. A huge difference is seen between the cosmic-ray pressures,
as with streaming they move out of the midplane, giving more room for the gas
to compress, whereas when they just advect, they move with the gas and
increase their own pressure in the midplane.
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Figure 9. The m = 2, ¢ = | growth time vs. wavelength for the galaxy
parameters from Rodrigues et al. (2016) using different transport models. Here
we find the somewhat surprising result that diffusion growth times, even for
a relatively small diffusion coefficient of 3 x 10?7 cm® s~! (about 0.1 of the
canonical Milky Way value), are comparable to the streaming growth times.

Modified Parker setup with ~, =5/3 and . =4/3 and
assume only a parallel diffusion coefficient, .

In Figure 9, we plot the simulated growth rates of the
diffusion and the streaming cases for m =2, ¢ =1, and
Rodrigues et al. (2016) parameters.

We find with diffusion coefficients of 3 x 102" cm® s™' and
3 x 102 cm? s that the growth rates qualitatively match the
results from Ryu et al. (2003) and Kuwabara et al. (2004). Lower
diffusion coefficients allow stronger cosmic-ray—gas coupling,
therefore stabilizing the system. This reaches the highest level of
stability in Modified Parker, where H‘g = 0. Conversely, for our
larger diffusion coefficient of 3 x 1028 cm? s_l, we find that the
instability almost matches the large growth rates found with
cosmic-ray streaming.

Along with the cosmic-ray pressure differences shown in
Figure 8, this seems to indicate that the cosmic-ray heating
itself is not solely responsible for the increased instability
we see in Modified Parker with Streaming. Since diffusion
appears to be just as unstable as streaming for reasonable
values of the diffusion coefficient, we must also conclude that
even just the simple transport of the cosmic rays along the
field lines and out of the magnetic valleys also helps
destabilize the system.

For further comparison between the two models, we plot the
evolution of the density and pressures in Figure 10 (these plots
are similar to Figure 8 shown in Section 4.2) and again look
at the time average of these quantities within 1kpc of
the midplane. We see that all three transport models follow
the same trend for all four quantities. The densities and gas
pressures increase for all models but more sharply increase
with streaming and the larger diffusion coefficient. The
magnetic pressure is again similar between the three, as
the overall average decreases as the loops move away from
the midplane, but the maximum increases for all three as the
increase in gas density and pressure pushes together the field
lines at the midplane and thus increases the field.

The only difference between the three cases is shown in the
cosmic-ray pressure statistics. For the lowest diffusion coefficient
of 3 x 10”7 cm?s™!, we see that the cosmic-ray pressure barely
changes throughout the simulation, only slightly dipping near
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600 Myr. We also find that the larger diffusion coefficient and
streaming look similar, both falling by about an order of
magnitude at 600 Myr.

However, as the system becomes nonlinear past this point,
the two lines diverge for the first time as the larger diffusion
coefficient begins to asymptote at its lower pressure, while
streaming continues to fall by approximately another order of
magnitude.

However, around this point in the simulation (usually around
800-1000 Myr), we observe reconnection events driven by
numerical resistivity, causing the previously connected magn-
etic loops to tear into magnetic islands. Because FLASH
conserves total energy, the resulting dissipation in magnetic
energy is compensated by an increase in thermal energy (i.e.,
reconnection heating). This has been observed in past work as
well (see, e.g., Hanasz et al. 2002). While the change in
magnetic topology affects the subsequent evolution of the
system, especially cosmic-ray streaming and diffusion parallel
to B, we find that reconnection heating is very localized (see
Appendix B) and plays a subdominant role compared to
cosmic-ray heating. Comparing the streaming and diffusion
=3 x 102 cm? s~! simulations, we observe this reconnection
to happen in almost identical places at identical times. Because
the subsequent change in magnetic topology is consistent
between these transport models, reconnection does not confuse
our interpretation: cosmic-ray streaming appears to more
efficiently transport cosmic rays away from the midplane than
other transport models included in this paper. This seems to
explain why the streaming model has slightly higher growth
rates than the diffusion models, but it also appears to make
cosmic-ray streaming the fastest process by which cosmic rays
may escape from the galaxy into the circumgalactic medium
(CGM) and intergalactic medium.

4.4. The Role of Cosmic-Ray Heating

Given the minute differences presented so far between the
streaming and diffusion cases, it is reasonable to ask whether
the cosmic-ray heating term actually plays a role in the
instability. In the linear regime, our simulations show only very
small cosmic-ray pressure perturbations. The cosmic-ray
heating term ocvy - VR, is negligible then; however, the self-
confinement picture tells us that cosmic rays spread out along
magnetic field lines at the local Alfvén speed, regardless of
how small VP, is. Because this Alfvenic streaming acts
similarly to diffusion, the two transport models lead to very
similar linear growth stages.

In the nonlinear stage, however, as VP, becomes significant,
the heating term becomes very important. In Figure 11, we plot
the mass-weighted average pressures for our streaming and
diffusion (x =3 x 1028) simulations at late times. The initial state
is shown for comparison. Cosmic-ray transport, in both cases,
leads to a much larger cosmic-ray scale height at t = 500 Myr,
while the average gas pressure increases near the midplane. The
magnetic pressure, similar to cosmic-ray pressure, increases
dramatically at heights of a few kiloparsecs above the disk owing
to advection with the rising gas loops. It has been noted
previously (Parker 1992; Hanasz & Lesch 1993, 1997; Hanasz
et al. 2002) that this advection, combined with the Coriolis force,
can stretch and twist magnetic fields, driving a fast magnetic
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Figure 11. Average magnetic, gas, and cosmic-ray pressure as a function of
height above the midplane in our m = 2, ¢ = 1 2D simulations. Near the
midplane, gas pressure increases at the expense of cosmic-ray pressure, which
diffuses or streams to greater heights. For cosmic-ray and magnetic pressure at
500 Myr, the diffusion and streaming cases line up well; however, cosmic-ray
heating results in a large increase in gas pressure beyond 2 kpc compared to the
diffusion run.

dynamo. Including streaming, which expedites the instability,
reinforces this possibility.

While the cosmic-ray and magnetic pressure profiles overlap
pretty closely between the diffusion and streaming runs, the gas
pressure shows stark differences. In the streaming simulation,
the gas pressure is a factor of 5-10 higher than the diffusion
case at heights beyond ~2kpc. We attribute this directly to
cosmic-ray heating in this cosmic-ray-dominated, extraplanar
diffuse ionized gas (eDIG) medium.

The effects of this heating are even more apparent when
looking at the phase of the eDIG gas, which shows big
differences between diffusion and streaming transport models.
In Figure 12, we show a color map of the mass fraction (cell
mass probability) with axes of temperature and density. At time
t = 0 (not shown), this plot is simply a horizontal line at
constant temperature. In the nonlinear regime, however, the gas
has formed multiple phases. Two sharp lines forming a “V”
shape are present in each plot. The line extending to low
densities and temperatures is formed by adiabatic expansion of
the rising bubbles, while the line to low densities and high
temperatures shows the pileup of compressed (heated) gas
extending from the magnetic valleys to a few scale heights
above the disk. We see for diffusion that the distribution
function is pretty evenly distributed around the peak at about
107%* g cm™ and a few x10* K. It does slightly favor the
lower temperature side of the plot, especially in the very low
density limit. However, with streaming, we find that there is
essentially no portion of the mass at low (p, T), while much
more gas now exists above 10* K. The bottom panel of
Figure 12 shows that the cosmic-ray heating time, defined as
Eqy /Ocr (Where Qcr is the cosmic-ray heating rate), is lowest
precisely in the low (p, 7) region corresponding to the
expanding gas within Parker loops. Note that the cosmic-ray
heating is calculated in the same way as in the MHD equations
where QCR = |VA . VPCR|.

Physically, it is extremely important that the lower-density gas
is the population most affected by the cosmic-ray heating. If this
gas is heated, it is much easier for the instability to proceed, as it
creates more room for the magnetic field loops to grow from their
own buoyancy. As these loops get steeper, more and more gas
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Figure 12. Phase plots of diffusion and streaming simulations (without
cooling) at t = 500 Myr. We see that diffusion and streaming, despite almost
identical growth rates, develop different phase structure, especially for the
adiabatically expanding low-density gas present a few kiloparsecs above the
midplane. The bottom panel shows the cosmic-ray heating time, defined as
Eg.s/Ocr- This heating time is shortest in the diffuse, low-temperature gas,
causing it to shift up to higher temperatures. The diffusion simulation, on the
other hand, maintains a reservoir of cold, low-density gas.

will fall into the valleys, further destabilizing the system. On the
other hand, if the high-density gas is heated, one would expect it
to stabilize the system, as the gas is then more difficult to
compress in these valleys. As we see in Figure 12, however,
the high-density gas in the streaming model appears to peak at
roughly the same temperature as the diffusion case. Therefore,
even if the cosmic-ray heating only plays a small role in the actual
instability when compared against a diffusion model, we see that
the heating plays an important role in shaping properties of the
thermal gas, especially a few kiloparsecs above the disk. Whether
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Figure 13. Plot of the growth times of our 2D simulations without streaming
and cooling, with streaming, and with streaming and cooling. We see that,
contrary to the linear stability analysis, the streaming and cooling system seems
more unstable than if cooling was not included, despite the initial temperature
being on the high side of 13,000 K. However, as expected, implementing
cosmic-ray streaming is always more unstable than with other models of
cosmic-ray transport.

this heating can compete with cooling, which threatens to negate
the heating term, is the subject of the next section.

5. Simulations with Cooling

To address the interplay between radiative cooling and
cosmic-ray heating, we ran a few simulations with cooling
included. As we found through trial and error, we must be
careful not to confuse the Parker instability and thermal
instability. Our choices of scale height, surface densities, and
composition (m and c¢ values) determine the temperature of our
medium, which may be in a thermally unstable regime.
Simulations with initial temperatures in the cold unstable
phase tend to show instability right away, with pockets of
dense gas forming in the midplane on the scale of individual
cells. This behavior was also noted by Mouschovias et al.
(2009). Although the Parker loops form on much larger scales
than thermal instability, we find in the nonlinear regime that
large pockets of gas develop near the midplane and sit at the
imposed temperature floor of 300 K, which changes the large-
scale structure of the ISM.

As noted in Section 2.2, the cooling curve defines a warm
stable phase on the rapidly rising part of the cooling curve
where OA/OT > A/T. This analysis does not include our
height-dependent heating rate put in to perfectly offset cooling
and maintain an equilibrium state. Despite this, we find this
thermal stability analysis to hold quite well. For the set of
simulations (with cooling included) shown in this work, we
always choose a temperature on the steep portion of the cooling
curve, which shows good stability and maintains the equili-
brium state; we can then watch the Parker instability evolve
without clearly developing thermal instability in the cold
unstable phase. However, as noted in Section 2.2, the Inoue et al.
(2006) analytic fit deviates from the real cooling curve at high
temperatures, notably overestimating cooling at 7 ~ 10°° K,
where the O VI peak should trigger thermal instability in a warm
unstable phase. Therefore, we present results from here on using a
more accurate, tabulated cooling curve (Sutherland & Dopita
1993) at high temperatures combined with a fit at 7 < 8000 K
(Slyz et al. 2005). We also ran the same simulations with the
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Inoue et al. (2006) cooling curve and found no significant changes
to our conclusions.

Figure 13 shows an intriguing result, which seems to hold
for both higher and lower values of (m, c): that cosmic-ray
streaming destabilizes the system even in the presence of
cooling. In fact, streaming and cooling combined show faster
growth times than streaming individually. This seems to
contradict the conclusion of HZI18, which implicated the
cosmic-ray heating term as the destabilizing factor. As we have
seen from our analysis in previous sections, though, streaming
and diffusion give very comparable growth curves, suggesting
instead that the transport itself is most important in the linear
regime. Our analysis with cooling supports this idea, as cosmic-
ray transport and gas cooling do not seem to counteract each
other. However, there are other factors that may be playing a
role in this discrepancy, including the fact that the linear theory
assumes a constant gravitational acceleration. As Giz & Shu
(1993) and Kim & Hong (1998) note, smooth gravity generally
promotes instability more than constant gravity. It is also
possible, therefore, that the overall effects of cooling are
different in these two systems as well.

Analysis of the nonlinear regime shows us why this is the
case: cooling and cosmic-ray heating have only a small spatial
overlap. Figure 14 shows the per-particle heating and cooling
rates at an evolved time for our m = 2, ¢ = 1 simulation.
While cooling dominates in the midplane region and in the
compressed filaments weighing down magnetic field lines,
cosmic-ray heating acts mainly in the expanding bubbles a few
kiloparsecs above the midplane. This can be seen also in the
right panel of Figure 14, which shows the mass-weighted
average of the cosmic-ray heating and cooling as functions of
height above the disk. While cooling (and the heating term
implemented to offset it) dominate within the first few scale
heights, the cosmic-ray heating term becomes important in the
extraplanar gas, exceeding cooling by a few orders of
magnitude at 5 kpc above the disk.

We note that there is some overlap between cosmic-ray
heating and radiative cooling in the dense pockets as well, but
this may in fact be another reason why the instability acts faster
with streaming and cooling rather than with streaming alone.
Without cooling, the heating in that region would stabilize the
medium by increasing pressure. With cooling, however, that
energy transferred between cosmic rays and thermal gas is
immediately radiated away from the system, resulting in a net
loss of pressure support. Instead of the usual Parker instability
picture where cosmic-ray pressure is displaced by gas pressure,
in this case some of the cosmic-ray pressure simply disappears
from the system as it is transferred to thermal gas and quickly
radiated away.

Regardless, Figure 15 shows similar behavior compared to
our noncooling simulations, but the differences between
diffusion and streaming are now more enhanced. There is a
complete lack of low (p, T) gas in the streaming case, while in
the diffusion case the combination of adiabatic and radiative
cooling has pushed a significant mass fraction to that regime.
Compared to Figure 12, which shows a clear upward-trending
line denoting the compressionally heated gas, both phase plots
with cooling now lack that line, as gas near the peak of the
cooling curve is now unstable. Compressed gas is now kept
much tighter near the initial temperature of ~10* K,
especially in the diffusion simulation, which maintains a flat
line in (p, T) space down to p ~ 10727 g cm~3. The streaming
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cooling. In the streaming figure, note the lack of gas at low (p, 7), as well as the
upward-rising slope (instead of flat slope) at higher densities. Both are
attributed to the cosmic-ray heating that is not present with only diffusion.

simulation shows more of a slope due to cosmic-ray heating
preferentially of the lower-density gas, for which cooling
is less efficient, but even of the dense, warm gas too. We
attribute this entirely different phase structure, again, to
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Figure 16. 2D vs. 3D growth times with Rodrigues et al. (2016) galaxy
parameters. We see that contrary to the linear stability analysis from Heintz &
Zweibel (2018), where the 2D case with streaming had a larger growth rate
peak, the growth rates for the 2D cases and 3D cases are essentially the same,
with maybe the 2D case only being slightly more unstable.

cosmic-ray heating. Some implications for this are discussed
in Section 7.

6. Nonlinear Simulations: 3D

For a small set of parameters, we also ran 3D simulations
where perturbations are applied in the y-direction again, but
with random phases and wavelengths in both the X- and
2-directions. Our perturbation amplitude is now A = 10~ (see
Equation (19)) to give the system a similar kick to the 2D
simulations.

Figure 16 shows the growth rates of the 3D simulations
compared to 2D simulations for diffusion = 3 x 10*® and
streaming. We see a tight overlap between 3D and 2D growth
curves. Although we have not done a linear stability analysis of
the smooth gravity setup with streaming or diffusion, we expect
from our constant-gravity analysis that the 3D growth rates
would be slightly lower than 2D, while the 3D system should
be more unstable at shorter wavelengths. We find that the
differences between the two systems in our simulations are
quite small, especially compared to the linear analysis. At long
wavelengths, we possibly see a sign of the 2D system having
larger growth rates than the 3D case, with the 3D case
beginning to overtake the 2D case at shorter wavelengths as
we would expect. It is possible, however, that we are just in an
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Figure 17. Fourier amplitudes as a function of ), for every perturbed mode in
our 3D simulation box. During the linear regime (earlier times), most of the
power is in modes with very short  wavelengths, but at late times the power
slowly shifts to larger )\,. This affects observational signatures of the instability,
such as Faraday rotation measure (Figure 18).

(m, c) regime where the differences should not be very large
once smooth gravity is accounted for. We intend to explore this
in future work once we have a smooth gravity and cooling
linear stability analysis to compare to.

As with our 2D simulations with a realistic gravity profile,
we find there to be no symmetry favored by the instability in
3D. In fact, the instability qualitatively looks extremely similar
(other than in the k_-direction, obviously) to the 2D case in
terms of the magnetic loops, formation of dense pockets of gas,
and symmetry of the modes. We find that many of the
conclusions made about our 2D system still hold for our 3D
simulations as well.

In our 3D simulations, due to the existence of both a k, and
k, wavevector, we find that neither the undular nor interchange
mode is favored in a 3D setting as Rodrigues et al. (2016)
found in their work. In Figure 17, we plot the Fourier amplitude
of B, for the perturbed £ and Z wavelengths in our system. The
dominant modes during the linear growth regime follow our
intuition from previous linear stability analyses (HZ18):
k, — oo gives the fastest-growing mode, and this is true for
each of our Modified Parker, diffusion, and streaming
simulations. In the nonlinear regime, at late times, the mode
growth shifts to larger wavelengths, most noticeably in the
Z-direction, where modes nearly 1kpc in size now have
considerable power. This is naturally explained by small Parker
loops connecting into bigger structures, but given the very
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small wavelengths (of order our resolution) in the Z-direction,
we cannot rule out some smoothing of magnetic structures due
to numerical magnetic field diffusion.

As further analysis of our 3D simulations, we also create
some mock observations that may be useful to disentangle the
Parker instability from other processes. One would naively
expect that the characteristic Parker loops would be visible in
edge-on synchrotron intensity maps; however, Rodrigues et al.
(2016) find their mock intensity maps to be dominated by disk
stratification, with only negligible variation at a given height
due to Parker loops. A more clear Parker instability signature
may be present in face-on Faraday rotation measure maps,
which probe a convolution of the electron number density with
the vertical magnetic field. The rotation measure can be
computed as

ne(y) By dy
lem 3 1uG l1pc’

¢ = (0.812radm2) f (23)

where y is the line of sight, assuming a “top-down” view of
our simulation box. The electron number density, n.(y), is a
tabulated function of (p, 7) assuming photoionization equili-
brium with the extragalactic UV background (Wiersma et al.
2009).

Figure 18 shows mock Faraday rotation maps made from our
3D k=3 x 10%cm®s™" simulations. We see that in the
direction parallel to the background magnetic field the
wavelength of our Faraday rotations is on order of 1kpc.
However, we again see that in the horizontally perpendicular
direction to the magnetic field the shortest possible wave-
lengths for our simulation resolution are favored by the
instability. As we saw in Figure 17, at later times, in the
nonlinear regime, these short wavelengths begin to merge
together into larger wavelengths (which are still shorter than in
the parallel direction).

The Parker instability has been notably difficult to observe
despite it likely being pervasive in galaxies. In early
observations, the Parker instability was often mistaken for
what were eventually determined to be superbubbles owing to
their similar magnetic loop structure. However, the Parker
instability differs from these superbubbles in that it does not
clear the surrounding medium out of the midplane; instead, it
further allows the gas to collapse, another potential signature of
the Parker instability. While one cannot easily distinguish
these differences in an edge-on synchrotron polarization map,
these differences should appear in face-on Faraday rotation
measure maps and their associated structure functions, which
may present one way to see the signature of the instability
(Rodrigues et al. 2016).

Going beyond this analysis, we note that the very short
wavelengths present in our Faraday rotation measure maps may
provide an indicator of the Parker instability in its early
nonlinear phase, while larger modes transverse to the back-
ground magnetic field would indicate a later stage in the
instability evolution. These important visuals may provide
useful measures to compare against observations when
searching for the Parker instability. Given that Rodrigues
et al. (2016) show a correlation between the Faraday rotation
measure structure function and the cosmic-ray content (¢ value)
of the galaxy, we wonder whether one could additionally infer
the cosmic-ray transport method at play. However, given the
almost identical growth curves and Faraday rotation measure
maps generated by our diffusion and streaming simulations,
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Figure 18. Face-on (¥ out of the page) Faraday rotation measure maps of our 3D simulation at different times. The shift in mode power from very short to larger A, is
evident. However, with the small wavelengths, this shift may be due to numerical magnetic diffusion. Also note the significant differences in color bar scale.
Depending on when an observer “catches” the Parker instability, observational signatures, such as these distinct Faraday rotation measure maps, may look quite

different.

depending on the system, prospects for using Parker instability
observations to distinguish between diffusive and streaming
transport seem bleak.

7. Summary and Conclusions

In this paper, we carried out a linear stability analysis of the
Parker instability under three different treatments of cosmic-ray
transport, extending our previous analysis (HZ18) to include
radiative cooling. For Classic Parker and Modified Parker,
radiative cooling further destabilizes the system, as the thermal
gas is now easier to compress into the valleys of the magnetic
field. With streaming, the system becomes more stable owing
to the cooling counteracting the cosmic-ray heating. At
temperatures that are known to be thermally unstable to the
condensation mode, like 5000 K, we find for all three transport
models that the Parker modes evolve into thermal instability at
shorter wavelengths.

We then extended our analysis by running MHD simulations
of the Parker instability for various cosmic-ray and magnetic
field strengths and for various cosmic-ray transport models.
After modifying our linear stability analysis to include a
smooth gravitational potential (Giz & Shu 1993; Kim &
Hong 1998; Rodrigues et al. 2016), which is more realistic and
more tractable for simulations than a constant gravity, we ran a
set of 2D simulations iterating over m and c values for two
different ISM parameter choices (McKee et al. 2015; Rodrigues
et al. 2016).

Our simulations with streaming display the clear trends
of HZI18, namely, that streaming extends the range of
instability to shorter wavelengths and promotes faster growth
compared to Modified Parker (see Figure 6). The difference in
disk evolution between Modified Parker with and without
Streaming (Figure 8) has implications for the formation of
molecular, star-forming clouds since the average compression
increases with streaming, and these compressions occur in
more locations since the dominant Parker wavelength is now
shorter with Streaming. As discussed in HZI18, this may
provide some insight into why simulations of cosmic-ray-
driven winds can simultaneously sustain both star formation
and large-scale outflows, while the same simulations with a
Modified Parker cosmic-ray treatment quench star formation
and develop puffy, seemingly stable disks.

One of the most interesting trends that we find, however, is that
the growth rates for streaming and diffusion are nearly identical
using a typical diffusion coefficient of x) =3 x 10% cm? 57!
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(see Figure 10). This suggests that, instead of cosmic-ray heating
acting as the dominant destabilizing mechanism, there is a large
role played by cosmic rays, whether by diffusion or streaming,
moving away from the compressing pockets and to the lower-
density regions of gas supported by the magnetic loops.

Although the growth curves for diffusion and streaming are
very similar, we do find important differences in the nonlinear
regime:

1. Average gas pressure beyond a few kiloparsecs from the
midplane is increased by a factor of 5-10 for streaming
when compared to diffusion (k) =3 x 1028), despite the
magnetic and cosmic-ray pressure profiles looking nearly
identical at a given time (Figure 11).

2. Phase diagrams (Figures 12 and 15) show very different
evolutionary tracks. While both show a clear signature of
adiabatic expansion to low T, p, much of this low-density
gas lies at higher temperatures in the streaming case.

Figure 14 shows the mechanism at work: cosmic-ray heating
is most important in these diffuse, expanding bubbles, while
cooling is most efficient in the dense, compressing pockets.
Because these heating and cooling are spatially offset, they
generally do not cancel each other out, and in some cases they
may even lead to slightly increased instability over the
streaming-only case, similar to the results found in the linear
stability analysis when the temperature was lowered to 5000 K.
This heating of the extraplanar diffuse gas region gives
credence to theories of a cosmic-ray-heated warm ionized
medium (Wiener et al. 2013), which may provide an important
supplemental heating mechanism in addition to photoionization,
turbulent dissipation, and magnetic reconnection (Reynolds et al.
1999).

In all cases, we find a saturated state where further mode
growth is suppressed owing to magnetic tension; however, the
buoyant Parker loops we create always leave the top of our
simulation domain, which is a full 32 scale heights above/
below the midplane. These loops help advect cosmic rays and
the magnetic field to great heights, while cosmic-ray transport
further shifts the cosmic-ray population and forms a cosmic-
ray-dominated eDIG layer. Galactic wind simulations with
cosmic-ray transport generally result in a similar picture, with
thermal gas dominating in the disk and cosmic-ray pressure
dominating in the halo. These cosmic-ray-dominated halos
have numerous implications for galaxy evolution and inter-
pretation of recent outflow and CGM observations, which find
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a coexistence of low and high ions that can be better explained
by a cosmic-ray pressure-supported medium than a thermally
supported one (Salem et al. 2016; Butsky & Quinn 2018). Even
in our idealized simulations, we find that cosmic-ray transport
begins to develop a cosmic-ray-dominated halo, and it
instigates this shift by enhancing the Parker instability.

In addition to our 2D simulations, we also ran 3D
simulations of the Parker instability in order to make
comparisons with our 2D results and to provide a few mock
observations that may prove useful in helping detect the Parker
instability. We find in 3D no preference for the undular or
interchange modes and instead get a mix of the two, with the
wavelength in the horizontal direction perpendicular to the field
becoming as short as allowed by our simulation resolution.
This changes over time, though, as modes coalesce to form
larger wavelengths in both the parallel and transverse
directions. This leads to very different Faraday rotation
measure maps, which would propagate to differences in the
structure function of the medium if we had calculated it.
Rodrigues et al. (2016) show that such structure functions may
be used to infer the cosmic-ray content of galaxies, which is
correlated with magnetic structure in their simulations. Given
that our diffusion and streaming simulations generate almost
identical growth curves and structures, it would be a challenge
to go further than this and try to infer the dominant cosmic-ray
transport method in the galaxy from its structure function.
Overall, the results of our 3D simulations seem closely
correlated to our 2D simulation results, even in regard to the
growth rates of the instability.

Given the wide range of phenomena pinned partially on the
Parker instability (star formation, galactic dynamo, etc.), this
modern treatment of the instability has far-reaching implica-
tions if the instability can act on timescales comparable to
turbulence and star formation in the disk. Compared to
Modified Parker (v.=4/3), diffusion, streaming, and cooling
are all generally destabilizing and push the most unstable mode
down to shorter wavelengths, causing a fast shift in the
composition of the ISM.

By scaling the growth times of our linear stability analysis
with realistic galactic parameters, we can determine whether
the instability is acting on relevant timescales and how that may
change based on the surface density of the galaxy, as well as
the ratio of the three pressures (thermal gas, magnetic, cosmic-
ray). For our dimensionless variable definitions, our growth
rate is scaled by

1/2
w=&(0.531 Myrl)((”jiﬂﬂ)

by 1/2 1500 pe \1/2
50 M, pc~? H ’

which can be derived by modifying the definition of &. We
plugged in the formulae for H, in Equation (8) and the sound

speed in terms of temperature (a, = ,/Y,kg7 /m) and then
used Equation (22) to plug in for 7. The coefficient is then

attained from combining all of the constants in the formula
(/, kg, and the normalization constants). From Salem & Bryan
(2014) and Ruszkowski et al. (2017), we can model our Galaxy
by assuming a stratified, isothermal, and self-gravitating disk,
similar to what we have done throughout this analysis. In that
system, X ~ 400e R/ M. pc=2, where R, = 3.5kpc and

(24)
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vertical scale height H = 350 pc are assumed. The setup of the
disk is comparable to a Milky Way—type galaxy (Klypin et al.
2002; Bovy & Rix 2013). We also assume that the three
pressures exist in equipartition as they do in the Milky Way,
soa=03=1.

As one can see based on our definition above, our growth
rates are scaled by the square root of both the sum of the
pressures and the surface density of the galaxy, so minor
changes in these values will not have a large effect on the
growth times of the instability. However, for the parameter
space prescribed above, at a distance of R = 2kpc (which
gives X ~ 220 M, pc~2), we obtain a growth rate for the Parker
instability of 53 Myr. If we move farther away from the center
of the disk, to a distance more similar to our solar
neighborhood (R =8kpc, ¥ ~40 M, pc2, close to McKee
et al. 2015), the growth time grows to be 127 Myr, a little over
twice that of the growth time at r = 2kpc. Therefore, the
Parker instability has a better chance of being comparable to
star formation and turbulence timescales when it is closer to the
center of the disk for a particular galaxy. A radial distance of
2 kpc still works for the instability since we found often in our
simulations that the wavelength of the instability was of
order 1 kpc.

For starburst galaxies and higher-density galaxies than the
Milky Way, we expect the Parker instability to grow even more
quickly, perhaps growing on the scale of 1 Myr. While it is
possible that these higher-density environments also have
shorter timescales for turbulence and star formation, it is
possible that the Parker instability could arise from an
equilibrium created by these two processes. Furthermore,
the Parker instability acts on wavelengths that are larger
than the typical sizes of both turbulence and star formation,
so the different length scales may also allow both to occur
simultaneously (as noted by Zweibel & Kulsrud 1975).

A scaling of « and § shows the tendency for higher o and 3
to increase the growth rate, but the minor changes away from
one that would match the realistic parameters of most galaxies
are too small to have a large impact on the growth rate. For
example, for our Milky Way system at 2 kpc, the instability
only grows 10 Myr faster when both a: and 3 are increased to 2.
Also note, of course, that our scaling relation here is not a
stability criterion and much of the instability physics is
contained within &.

As with most work, it is important to note that many
assumptions have been made in this work. Our systems assume
no differential rotation or turbulence, which have been shown to
be stabilizing, as well as no self-gravity, which is destabilizing.
Furthermore, additional effects like phase transitions caused by
the radiative cooling are not included (see Mouschovias et al.
2009 for the effects these transitions can have). Lastly, in our
setup, cosmic rays are included as a preexisting fluid along with
magnetic fields and thermal gas. The injection of cosmic rays at
local sources would affect the outcome, but we expect our main
conclusions to hold in future simulations accounting for additional
ISM processes. A study of how the Parker instability behaves in a
more complicated environment, without some of these simplifica-
tions, is left to future work.
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Appendix A
Implementing Radiative Cooling

To implement radiative cooling into our linearized perturba-
tion Equations (2)-(6), we start from the first law of
thermodynamics, dU = dQ — F,dV, where U is the total
energy, Q is the heating rate, P, is the gas pressure, and V is the
volume. Taking a time derivative and assuming that

W__ 1 L 92 _mor ey,

dt -1 dt dt P

v__mdp (25)
dt p? dt

where kg is Boltzmann’s constant, 7 is the thermal gas

temperature, p is the gas density, and 7 is the average mass of

the gas, we find that the first law becomes
p dar

P
kg— = (nI' — n2A(T)) + —g‘fi—p —
1

-, .. KkB A C VR‘
m(y — 1) dt p

(26)

Perturbing this system and making substitutions for p and r,
we find

P
_ R 4T = (6nl’ — 2nén\(T) — nzw(ﬁ)
T(y— 1) dt dr
2
LA do0 o e Suy - WP, 27)
Ve

Finally, we note that since we begin in thermal equilibrium,
nI' = n>A(T), and we use the following for T and én:

o7 _h b b o8

r £ p n p

Making these substitutions, using the mass continuity equation,
and rearranging terms, we arrive at our equation of state for the
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thermal gas (Equation (6)):

0 n*T d\(T)

= b (- D p,
[8t O =D P dr )¢
=—b0u- VP — PV - u

2T dAN(T)  n2A(T)
—(, — D= - §
(e )( o dT p ] p
—(% — D(ua - VOP. + buy - VF.).

(29)

Appendix B
Convergence Study

In this section, we show convergence studies with respect to
resolution, box size, and the characteristic cosmic-ray scale
length, L, that is used in the regularization method for cosmic-
ray streaming. Figure 19 shows a subset of the convergence
checks we did to make sure the growth rates with streaming are
precise. We did these checks for both solar neighborhood
(McKee et al. 2015) parameters and Rodrigues et al. (2016)
parameters. Our fiducial choices of scale length L = 5 kpc, grid
size (512 x 512 cells for 2D), perturbation amplitude
(A=10"* in 2D), and box size (8 kpc x 8 kpc for solar
neighborhood parameters, 16 kpc x 16 kpc for Rodrigues et al.
(2016) parameters) are all well motivated.

We additionally reran a subset of our 2D simulations with
lower time steps to tease out the effects of reconnective heating,
which occurs when oppositely directed magnetic field lines are
dragged together in the Parker loops. We found through trial
and error that using a CFL number Z0.6 resulted in numerical
instability, as one would expect, where numerical reconnection
converted magnetic energy to thermal energy. This was
especially prevalent near the top of two merging Parker loops,
where the resulting outburst of hot gas heated much of the
surroundings and was not efficiently counteracted by cooling.

To test that our simulations are well converged and do not
suffer from significant reconnective heating (compared to
cosmic-ray heating due to streaming), we reran our diffusion
(coefficient = 3 x 10?8 cm?/s) and streaming simulations with
a time step capped at 10'° s, which is an order of magnitude
below the time step we observed during the nonlinear evolution
of our diffusion simulations. Figure 21 shows a zoom-in of two
merging loops and a break in magnetic topology, resulting in
the formation of two magnetic islands and a localized increase
in gas pressure. The two phase plots in Figure 20 are for our
fiducial diffusion simulation (right) and the same simulation
with a capped time step (left), showing no significant
differences. We also observe a very similar evolution of total
thermal energy in each simulation box and very similar plots of
gas pressure, temperature, etc., at these two time steps.
Therefore, we consider these simulations to be well converged,
and most importantly, the gas phase is still starkly different
from the streaming case, dominantly owing to collisionless
heating due to streaming.
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0.25 0.2
® A=le4d ® 16 x 8 kpc
A= 1le-6 X 8x16 kpc
O
0.20 1 @® ® ® 0.201 .®-@ ©.O O 8x8kpc
[ ]
® @e 4o)
X [ )
0.15 1 @ o 0.15 1 ° ® O
< 3 O O O < 3 © L4 M X
0.10 0.10
5 © -
[ )
0.05 ° 0054 @ O °
S . o ©
0.00 . . . . 0.00 . . . - ° 7
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
Kx Kx
5 Varying CR streaming scale length; m = 2, ¢ = 1 (streaming) Streaming, no cooling: Z =100M, pc~2, 3g=10M, pc~2, h = 500 pc
® L=10kpc 100 <
X L=5kpc —
0.20 1 ®®@® O L=25kc O g0 ¢
@ > O O °
® = °
@ = O
0.15 1 < & @ 601 ©)
3 © ® E P .
0.10 = 204 ® @@
X £ °
: E ©
0.05 7 o x O O 20 OOC
O O § C o ® m=2c=1,512x512cells
0.001+—= s O m=2c=1,1024x1024 cells
0.0 01 02 03 04 05 0 o T

A

Kx

A (kpc)

10°

Figure 19. Streaming, no cooling, m = 2, ¢ = 1. Top left: solar neighborhood parameters (McKee et al. 2015). Growth times for two different perturbation
amplitudes, A (Equation (19)), showing no significant differences. Top right: solar neighborhood parameters. Effect of box size and dimension, each with 512 x 512
cells. The taller box shows more spurious growth rates (likely due to decreased resolution), but all follow a similar curve, suggesting good convergence as long as the
box height is many scale heights, which is appropriate for comparison to the linear stability analyses that assume k, — 0. Bottom left: solar neighborhood parameters.
Convergence with respect to the characteristic cosmic-ray scale length, L, used in the regularization approximation (Sharma et al. 2009). Bottom right: Rodrigues et al.
(2016) parameters. Growth rates for m = 2, ¢ = 1 at our fiducial resolution of 31.25 pc (512 x 512 grid cells); there is very little difference with a simulation at
double the resolution.
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temperature gas owing to reconnection heating, while the middle and right panels are almost indistinguishable, as reconnection heating is suppressed by the smaller

time steps.
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Figure 21. Temperature zoom-in of two merging loops, where numerically driven reconnection leads to a localized increase in gas pressure and the formation of two
magnetic islands. Left panel: diffusion. Right panel: streaming. The formation of magnetic islands occurs in similar places at similar times. One can also see that the
temperature increase is localized to the magnetic island, whereas cosmic-ray heating due to streaming increases the gas temperature throughout the diffuse,

extraplanar gas.

Appendix C
Constant-gravity Simulations

For the linear stability analysis presented in HZ18, gravity is
constant in the vertical direction, i.e., g(y) = —g,¥. Assuming
a constant temperature everywhere, the density, gas pressure,
cosmic-ray pressure, and magnetic pressure all drop exponen-
tially with scale height H to enforce hydrostatic equilibrium.
This setup is standard in the Parker instability literature, as it
makes the equations more tractable to solve analytically.
However, it poses a few challenges when trying to compare
simulations to analytic results.

It results in a discontinuity at the midplane (where g(y)
abruptly changes sign) that complicates numerical studies; it is
never possible to fully resolve this sharp transition. This leads
to an initial adjustment in the simulation that flattens the
exponential profile and sends a steepening sound wave outward
from the midplane. We use outflow or diode boundary
conditions in the y-direction far away from the midplane in
order to mitigate this effect. These boundary conditions allow
shocks to leave the computational domain, as opposed to a
reflecting boundary that would more accurately conserve total
energy in the simulation box but would reflect this shock back
toward our region of interest. However, the discontinuity at the
midplane still creates numerical artifacts such as a jump in the
values of m and c to slightly larger quantities.

Formally, in order to keep p(6u)? constant, du o< e*/?H. This
means that the velocity perturbation approaches larger and
larger values above the midplane. This seems like it would
present an issue because we ideally want the dominant vertical
wavelength to be as close to infinite as possible, as k, = 0 has
been shown to give the maximum growth rate and is easiest to
compare to. Therefore, we extend our simulation box to be as
tall as possible, while also maintaining a high enough
resolution to resolve the scale height by at least a few cells.
Because we expect perturbations in the disk itself to drive the
instability, we tried simulation perturbations that either drop off
as e~ 1"I/H or have no vertical dependence at all. We found no
difference in the resulting growth rates, and we find that they
match the smooth gravity growth rates very well.

Because of the constant-gravity setup, the analysis of HZ18,
for instance, filters out the midplane warping modes and only
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allows modes that are symmetric about the midplane. The
midplane warping modes, however, typically have faster
growth times than the odd modes owing to the extra conversion
of potential energy to kinetic energy when gas can cross the
midplane.

We will show an example of our results using a full domain,
with gravity instantaneously switching from positive to
negative at y = 0. This setup allows for midplane warping
modes, whereas a similar simulation cut at the midplane keeps
the midplane untouched. A constant temperature of 8000 K,
m = 2, ¢ = 1, and gravitational force of gy = 3 X 10~° N are
used in this case. We perturb the initial state using both the
“leading the horse to water” and “horse race” types of
perturbations, and we come to a similar conclusion: it is very
hard to match linear theory in the constant-gravity case. In
almost every case we tried (varying m and ¢ values, Modified
Parker vs. streaming, etc.) our simulated growth rates were
higher than that predicted by the linear stability analysis, as
shown in Figure 22. We believe that this is partially due to a
mismatch between the assumptions of the linear theory—
whereby the perturbations should be zero at the midplane—and
our simulation setup, which allows the faster-growing midplane
crossing mode. This behavior was most obvious for cases with
generally slow mode growth, which is hard to match even for
our more reliable smooth gravity simulations.

We also tried cutting the simulation box at the midplane and
enforcing the pertubations to go to zero at lower boundary
(y=0); however, we encountered a variety of numerical
artifacts caused by gravity being nonzero within one cell of the
boundary. We also checked convergence with respect to
resolution, box size, perturbation amplitude, etc., and our
results consistently overestimated the linear analysis growth
rates, despite in most cases reproducing the general growth
curve behavior shown in HZ18. We conclude, then, that our
simulations are picking out the midplane crossing mode, which
is not what the linear stability analysis gives us. Therefore,
since a constant gravity is unrealistic anyway, we carried on
with a smooth gravity profile. If you are a fellow Parker
instability simulator and you have read to the end of this
appendix, we caution you to do the same, or else you may
suffer the same fate as these tired authors!



THE ASTROPHYSICAL JOURNAL, 891:157 (21pp), 2020 March 10

__Modified Parker Cases, m=2, c=1
0s/
04/ 2 *

0.3/ ; &

o5 10 15 20
{K.H}

Figure 22. Example of a mismatch between constant-gravity simulations
(black stars are for Modified Parker; red stars are for Modified Parker with
cooling) compared to the linear stability analysis (dashed curves).
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