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Abstract

In the early stages of a protoplanetary disk, turbulence generated by gravitational instability (GI) should feature
significantly in the disk’s evolution. At the same time, the disk may be sufficiently ionized for magnetic fields to play
some role in the dynamics. In this paper, we report on global three-dimensional magnetohydrodynamical simulations of
a self-gravitating protoplanetary disk using the meshless finite mass Lagrangian technique. We confirm that GI spiral
waves trigger a dynamo that amplifies an initial magnetic field to nearly thermal amplitudes (plasma β<10), an order
of magnitude greater than that generated by the magnetorotational instability alone. We also determine the dynamo’s
nonlinear back reaction on the gravito-turbulent flow: the saturated state is substantially hotter, with an associated larger
Toomre parameter and weaker, more “flocculent” spirals. But perhaps of greater import is the dynamo’s boosting of
accretion via a significant Maxwell stress; mass accretion is enhanced by factors of several relative to either pure GI or
pure magnetorotational instability. Our simulations use ideal MHD, an admittedly poor approximation in protoplanetary
disks, and thus, future studies should explore the full gamut of nonideal MHD. In preparation for that, we exhibit a small
number of ohmic runs that reveal that the dynamo, if anything, is stronger in a nonideal environment. This work
confirms that magnetic fields are a potentially critical ingredient in gravito-turbulent young disks, possibly controlling
their evolution, especially via their enhancement of (potentially episodic) accretion.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Gravitational instability (668);
Protoplanetary disks (1300)

1. Introduction

One of the fundamental problems in planet and star formation
concerns the nature of angular momentum transport in proto-
planetary disks. Not only does this process govern the rate and
nature of mass accretion onto the (proto-)star, it determines how
material is redistributed through the disk and, consequently, the
conditions for planet formation. Unfortunately, observational
estimates of mass accretion rates in young disks rates are rather
sporadic, but there is mounting evidence that the majority of mass
transfer, and indeed planet formation, occurs early (0.1–1Myr;
see, e.g., Helled et al. 2014). For example, the well established
“disk luminosity problem” is one indication of strong early
accretion (Hartmann & Kenyon 1996), as is the fact that Type II
and older disks possess masses that are too small in comparison to
those of observed exoplanetary systems (Najita & Kenyon 2014;
Manara et al. 2018).

It is early during a protostellar disk’s life (when its mass is a
significant fraction of its host star) that it is most susceptible to
gravitational instability (GI). Estimates of disk masses suggest
that 50% of Class 0 and 25% of Class I disks are GI unstable
(Kratter & Lodato 2016), while recent images of spiral
structure in some young sources (e.g., Elias 2–27, WaOph 6)
are consistent with the activity of GI (Pérez et al. 2016; Meru
et al. 2017; Huang et al. 2018).

On the other hand, hydrodynamical simulations of collapsing
molecular cloud cores recurrently produce massive and self-
gravitating disks (Vorobyov & Basu 2010, 2015; Hayfield et al.
2011), and this holds even when magnetic fields are included,
provided that nonideal MHD effects are taken into account
(Tomida et al. 2017; Lam et al. 2019). In fact, most models of
protostellar disk evolution posit that it is turbulence instigated
by GI that drives mass accretion during their early years (e.g.,

Durisen et al. 2007), precisely the period in which we have
evidence for the most active accretion, and possibly planet
formation. This provides strong motivation to fully establish
theoretically the dynamics of GI.
The onset and saturation of GI in protostellar disks have

been thoroughly studied with hydrodynamic models. Magnetic
fields have almost always been neglected. While it is true that
protostellar disks exhibit notoriously low ionization fractions,
there is strong numerical evidence that magnetic fields remain
dynamically important nonetheless, both in the earlier core
collapse and in the later T-Tauri phases (e.g., Turner et al.
2014; Masson et al. 2016). Simulations of the latter indicate
that nonideal MHD effects limit the magnetorotational
instability (MRI) to certain radii but still permit significant
angular momentum transport via the formation of laminar
magnetic outflows (see, e.g., Bai & Stone 2013; Bai 2014;
Lesur et al. 2014; Gressel et al. 2015; Simon et al. 2015;
Béthune et al. 2017). Observationally, there is some (contested)
evidence of disordered fields lying primarily in the disk plane
from dust polarimetry, most notably in the cases of HL Tau and
the class 0 object, I16293B (Rao et al. 2013; Stephens et al.
2014). Future observations of Zeeman splitting of CN lines by
ALMA may provide further information about these in situ
fields (Brauer et al. 2017; Vlemmings et al. 2019). Given the
prominence of nonideal MHD in T-Tauri disks, it is natural to
ask how magnetic fields alter, and become altered by, the
turbulence generated by GI, even if at the present time the
ionization profile of young disks is poorly constrained.
The first direct MHD simulations of a self-gravitating disk

were carried out by Fromang et al. (2004) and Fromang (2005)
who showed that MHD turbulence simply reduced the
effectiveness of GI transport. However, this pioneering work
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could only afford a rather low resolution, and it did not treat the
full 2π in azimuth nor could it be run for many orbits. More
recently, Riols & Latter (2018a, 2019) presented the first high-
resolution, long-time simulations of GI turbulence and
magnetic fields but in vertically stratified boxes. These revealed
several surprising results: (a) gravito-turbulence impedes and
can ultimately overwhelm the MRI, when the cooling time is
sufficiently low, (b) gravito-turbulence functions as a dynamo
itself, building up strong fields even in highly resistive gas, (c)
the magnetic fields so generated can reach nearly thermal
strengths, and their back reaction on the flow severely weakens
the gravito-turbulent spiral waves, and (d) the resulting
accretion torques are enhanced, dominated by magnetic
stresses, and show oscillatory behavior. It is clear from this
work that the admixture of magnetic fields and GI produce
qualitatively different outcomes than in pure hydrodynamics.
But being local simulations, they raise several issues that need
to be addressed. For instance, the GI dynamo occurs mainly on
large (possibly global) scales, and gravito-turbulence itself
possesses an inherently global character, at least in a thicker
protostellar disk environment. These issues motivate the
simulation of GI and MHD in global models of protostellar
disks, which is the task this paper sets itself.

We explore the GI dynamo in fully 3D global simulations of
massive self-gravitating magnetized protoplanetary disks. Most of
our runs employ ideal MHD, and not the full gamut of nonideal
effects prevailing in real disks. They should be regarded as an
unavoidable first step before embarking on an exploration of
models employing more realistic, but also more complicated and
poorly constrained, ionization physics. We employed the N-Body
+MHD code GIZMO (Hopkins 2015, 2016; Hopkins &
Raives 2015) in its meshless finite mass (MFM) mode (see also
Gaburov & Nitadori 2011). It has been demonstrated that the
MFM approach performs especially well in simulations of pure
GI, exhibiting better conservation of angular momentum than
most competing methods, which allowed, for example, for
achieving the numerical convergence of the cooling boundary in
fragmentation studies (Deng et al. 2017). Moreover, while more
diffusive than certain finite volume grid-based codes, it can
adequately handle MHD, as shown by recent local simulation of
the MRI (Deng et al. 2019). Given that our aim is to uncover the
global GI dynamo, which is large-scale (and, if anything,
enhanced by diffusion), the MFM particle method is a suitable
tool for our task. It should be stressed from the outset that our goal
is not to provide a comprehensive study of global magnetorota-
tional turbulence, which is a challenging problem even in grid
codes, and certainly more so for a particle code such as MFM. We
also emphasize that the numerical task is especially heavy: our
best resolved runs employed ∼40M particles per disk, and are,
thus, some of the most expensive self-gravitating disk simulations
attempted so far(see, e.g., hydrodynamical simulations, Meru &
Bate 2012; Szulágyi et al. 2016). The two GI–MHD simulations
alone employed nearly 3 million core hours on the CPU-only
partition of the Cray XC40/XC50 supercomputer Piz Daint at the
Swiss National Supercomputing Center (CSCS).

Our results can be summarized as follows. Simulations that
mixed GI and MHD generated large-scale magnetic fields of a
different character and strength than those sustained by pure
MRI runs with no self-gravity. In particular, their saturated
magnetic energies were roughly an order of magnitude higher
(with plasma betas significantly lower, approaching ∼10), and
their poloidal fields were organized around the GI spiral waves

in characteristic rolls (in accordance with Riols & Latter 2019).
We, hence, conclude that the GI dynamo can manifest in global
disks. As a result of magnetic pressure and enhanced magnetic
dissipation, the disk becomes hotter and thicker, while the back
reaction of the dynamo via the Lorenz force degrades the spiral
structure, rendering it more “flocculent.” Finally, the highly
magnetized dynamo state produces a large Maxwell stress. As a
consequence, the mass accretion rate in GI–MHD runs can be
several times the mass accretion rate in purely hydro GI runs:
magnetic fields significantly “speed up” the evolution of the
disk. Finally, as a prelude to future work involving nonideal
MHD, we ran a small number of ohmic simulations and found
that the GI dynamo is mostly unchanged in its key features. In
fact, it is slightly more vigorous.
The structure of the paper is as follows: in Section 4, we

describe the governing equations, numerical method, simulation
setup, and diagnostics. In Section 3, we present our results, first
analyzing the growth and properties of the magnetic dynamo and,
second, assessing its back reaction on the gravito-turbulent state.
We explore the effects of magnetic diffusivity on the dynamo in
Section 3.5. The caveats and outlook are discussed in Section 4,
and we draw our conclusions in Section 5.

2. Physical and Numerical Model

2.1. The Governing Equations

The equations we solve are those of compressible self-
gravitating MHD:
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where ρ, U, P, and v represent the density, internal energy, gas
pressure, and velocity, respectively; B is the magnetic field and
η is the magnetic resistivity. We focus on ideal MHD, where
η=0, in the paper though present exploratory simulations
with magnetic resistivity in Section 3.5. The ratio between the
gas pressure and magnetic energy, β≡P/(B2/8π), is a widely
used dimensionless measure of the magnetic field strength. Φ is
the sum of the gravitational potential of the central object and
the gravitational potential induced by the disk itself, Φs, which
satisfies the Poisson equation

p r F = G4 . 5s
2 ( )

We assume an ideal gas equation of state (EOS),

g= -P U1 , 6( ) ( )

with γ=5/3. We adopt an ad hoc cooling timescale that equals
the local orbital period of fluid elements, ie, τc=2π/Ω(r)
(Gammie 2001). With this cooling rate the disk will not fragment
(Deng et al. 2017), but the induced spiral pattern should be strong
enough to drive a dynamo according to local simulations (Riols &
Latter 2018a, 2019). We also note that in the MHD simulations
without self-gravity, designed to study the MRI, we do not
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employ any cooling. Material out-flowing from the simulation
will cool the MRI disk once the disk inflates.

2.2. Numerical Method and Basic Setup

We use the N-Body + MHD code, GIZMO (Hopkins 2015,
2016, 2017; Hopkins & Raives 2015), in MFM mode (Gaburov
& Nitadori 2011). The GIZMO code solves for the disk self-
gravity by employing a tree algorithm drawn from GADGET3
(Springel 2005). We used the conservative and adaptive
gravitational softening of Price & Monaghan (2007), and
employed the Wendland C4 kernel with 200 neighbors
(Dehnen & Aly 2012). The divergence of magnetic field is
kept to low levels by the aggressive constrained gradient flux
cleaning algorithm (Hopkins 2016), but see below. The MHD
module has been tested in Hopkins & Raives (2015) and, in
addition, Deng et al. (2019) showed that GIZMO MFM
describe the local MRI adequately for some 50 orbits, provided
sufficient resolution was deployed. It is noteworthy that
comparable SPH MHD schemes struggled with the MRI, and
in fact typically grew unphysically strong toroidal fields.

We performed three types of simulations, which are
summarized in Table 1: (1) global MHD simulations without
self-gravity (run labels have prefix “MRI”); (2) global self-
gravitating simulations without magnetic fields (prefixed with
“grvhd”); (3) global MHD simulations with self-gravity
(“grvmhd”). Our main focus here, of course, is the third class
of simulations, which is the least well explored, but the other
two are necessary as they provide points of comparison.

We simulate disks exhibiting a radial range of 5<R<25 au
orbiting a solar mass star. Hence, the outer rotation period (ORP) at
25 au is 125 yr, and is sometimes used as a time unit. More
generally, however, we take 1 solar mass, 1 au, 1/2π yr, and 1
Gauss as the mass, length, time, and magnetic field strength units,
respectively. The central star is modeled as an active sink particle
with a sink radius of 5 au. Gas particles reaching the sink radius are
deleted and their mass and momentum are added to the star to
ensure mass and momentum conservation. We apply an outflow
boundary condition by clipping any particle whose smoothing
length is larger than 5 au. In grvmhd1, this yields a density floor
about 8×10−16 g cm−3, which is four orders of magnitude
smaller than the midplane density at 25 au.

It must be conceded from the outset that the weak field limit,
in particular, is polluted (as in all particle codes) by small-scale
(resolution-dependent) noise, arising from insufficient div(B)

cleaning (Deng et al. 2019). Throughout our simulations, the
domain averaged dimensionless divergence á *  ñh B B∣ · ∣ is
kept to ∼10−3, where the angle brackets indicates a domain
average and h is the resolution length (Deng et al. 2019). But
despite this relatively low value, the persistent deviation from
solenoidality introduces an artificial magnetic diffusion and
low-level magnetic activity on the smallest scales. This
additional numerical diffusivity may explain some of the
decaying MRI behavior witnessed in Deng et al. (2019); it also
makes challenging the simulation of weak fields, and the
estimation of (kinematic) dynamo growth rates. We, hence,
limit ourselves to stronger field initializations and keep in mind
the enhanced numerical resistivity exhibited by these simula-
tions. It is worth stressing here that this additional diffusion,
and its deleterious effects on the MRI, are of secondary concern
to us: our goal in this paper is to describe the GI dynamo. Our
MRI simulations only serve as a point of comparison and to
demonstrate that the GI dynamo is not the MRI.

2.3. Initialization of Disk Models

We employed global disk models similar to those in Lodato
& Rice (2004). But due to the different nature of the the three
types of simulations (see Table 1), the initial conditions are
prepared differently. We start from a ≈0.1Me disk, with initial
surface mass density and temperature profiles obeying
Σ∝R−1 (Bate 2018) and T∝R−1/2 (vertically isothermal),
respectively. The initial temperature is normalized so that, at
the outer edge of the disk, the Toomre Q parameter equals 2.
We generate the particle distribution through Monte Carlo
sampling and then relax it to the hydrodynamical equilibrium
state described above.
In the following subsections, we detail the sequence of moves to

generate the required initial condition in each case. But as a general
rule, we obtain higher-resolution simulations from lower ones via a
particle-splitting technique, which is mass and momentum
conserving; see Appendix E in (Hopkins 2017). We do not apply
particle splitting on the fly to avoid numerical instabilities. Instead,
we stop the simulation and restart it from the re-sampled initial
condition. To obtain disks of larger mass, the particle splitting can
be made non mass-conserving. And due to loss of particles from
the domain, the mass of the disk can be reduced from the 0.1Me
initially put in.

2.3.1. The Pure MRI Runs

In the base simulation, dubbed “MRI-lr,” we used 25 million
particles to sample the initial disk model (Section 2.3) and
initialized the vertical field, Bz=0.001 sin(2πf) after the
particles are relaxed to a glassy configuration (see also Deng
et al. 2019). The weak seed field grows exponentially. We note
that in the linear growth stage a small fluctuation is observed,
possibly caused by numerical noise or by a transient growth
phase (see Figure 1). When the MRI turbulence is fully
developed within 20 au, namely within the main disk body, we
split the particles and rerun the simulation further. The high-
resolution simulation is named MRI-hr.

2.3.2. The Pure GI Runs

Since the resolution requirements for hydrodynamical self-
gravitating disks are not so stringent, compared to disks with
MHD turbulence, 2 million particles are already enough to
correctly model mass and angular momentum transport via

Table 1
Disk Simulations

Run label Physics Disk mass Particles τcΩ Run time

MRI-lr MHD 0.07Me 22M ¥ 4.5 ORPs
MRI-hr MHD 0.07Me 44M ¥ 2 ORPs
grvhd1 SG 0.07Me 2M 2π 10 ORPs
grvhd2 SG 0.13Me 2M 2π 10 ORPs
grvmhd1 SG+MHD 0.07Me 35M 2π 7 ORPs
grvmhd2 SG+MHD 0.13Me 35M 2π 6 ORPs

Note. List of main production runs and their attributes. The acronym SG stands
for “self-gravitating.” ORP refers to “outer radius orbit.” The number of
particles and disk mass in the table take the values at the point we apply our
diagnostics. The relaxation stage of grvmhd1 is not included (see Section 2.3.3
and Figure 1). MRI-hr starts from the saturated state of MRI-lr (see
Section 2.3.1) and grvmhd2 starts from the saturated state of grvmhd1 to
save computational resources.
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gravito-turbulence(see Cossins et al. 2009) and fragmentation
(Deng et al. 2017). We start directly from non-self-gravitating
equilibrium disk (Section 2.3) and let it relax to a marginally
unstable, turbulent state with τc=2π/Ω.

2.3.3. The Grvmhd Runs: GI+MHD

We start from a low-resolution (11M particles) non-cooling,
non-self-gravitating equilibrium disk with a positive pure
toroidal field, β=25, everywhere. Next, we add a modest
cooling rate with τc=8Ω−1 to avoid spurious fragmentation
(Deng et al. 2017) for two ORPs so that the spiral structure is
fully established in the disk. We then split all of the gas
particles by a factor of two once and switch to the the desired
cooling rate, τc=2π/Ω. We run it for 1.6 extra ORPs. By this
time, the initial net-toroidal flux has been expelled from the
disk now leaving a zero-net-flux disk similar to published MRI
simulations with initial toroidal fields (see, e.g., Fromang &
Nelson 2006; Flock et al. 2011). Finally, we split the particles
again (reaching ∼40M particles) to resolve small-scale
turbulence and run the simulation further (see Figure 1).
Resolution tests in Appendix show that ∼40M particles give
converged time-averaged quantities in the saturated turbulence.
The simulation starting from the last re-sampling state is what
we identify as the grvmhd1 simulation in Table 1. The
grvmhd2 model’s initial condition is prepared from a grvmhd1
snapshot taken at 160 yr by doubling the particles’ mass while
keeping the Toomre Q constant (quadruple the specific internal
energy).

2.4. Diagnostics

In order to analyze the numerical results, we define various
averages of a quantity X.

ò

ò

r

r
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, 7V

V

( )

is the density-weighted average, where V denotes the volume of
the computational domain. In particle codes, it is more natural to

compute this density-weighted average than the volume averaged
one to avoid bias toward the under-resolved low-density regions.
In GIZMO, this average is accomplished through
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where N and mi are the number of particles and the mass of the
ith particle (particles have equal masses here). The density-
weighted average á ñX equals the direct arithmetic average X .
We also can calculate the pure volume average, in order to

best compare with previous work. This is accomplished by
adding a weighting factor 1/ρi to Equation (8), i.e.,
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where ρi is the mass density of the ith particle.
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which can be combined into the double average á ñfX z. Volume
versions of this can also be defined. And, finally, a temporal
average
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where the average takes place between times t=T and
t=T+ΔT. Often, in what follows, the subscript in the
average will be dropped if the context makes things clear.
We also computed the two-dimensional Toomre Q

(Toomre 1964),

k
p

º
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S
Q

c

G
, 12s z ( )

where cs is the (time and space dependent) sound speed,
computed from the ideal EOS, and the surface density is
simply ò rS = dz.
In this paper, we will quantify the transport of angular

momentum via the exertion of a stress, comprising the sum of the
Reynolds stress Hrf, Maxwell stress Mrf and the gravitational
stress Grf. Here, Hrf=ρδvrδvf, Mrf=−BrBf/4π and =fGr

pfg g G4r with d d f fv v g g, , ,r r denoting the radial/azimuthal
velocity/gravitational acceleration fluctuations (Lynden-Bell &
Kalnajs 1972). It is also common to introduce the alpha associated
with local transport associated with these stresses:

a = á + + ñ á ñf f fH M G P . 13r r r V V ( )

Both full domain or fz averages can be used in the definition of α.
It is sometimes useful to calculate the azimuthal power

spectrum of the density and (density-weighted) magnetic
energy. A radial interval of the disk domain is divided annuli
of fixed width, ΔR=0.5 au, and in each annulus, we compute
the azimuthal Fourier transform of the midplane volume
density (see, e.g., Cossins et al. 2009). Within a given annulus,

Figure 1. The averaged magnetic field energy (in code units) in the disk trunk
(10–20 au) during the whole simulation. The initial relaxation for grvmhd1 is
denoted by dashed and dotted–dashed lines. Grvmhd2 starts from the saturated
state of grvmhd1 (see Section 2.3.3) and shows a transitional growth of m=4
mode spirals and field strength. The thick lines indicate the last 1000 code time
units evolution during which we do the time-averaging.
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the mth mode amplitude is
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where fk is the azimuthal angle of the kth particle, and Nann is
the number of particles in this annulus. Similarly, we can
calculate the mth mode of the magnetic energy:
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These quantities are subsequently time-averaged over some
interval.

3. Results

Our main goal is to simulate magnetic field generation and
saturation in GI turbulent flows. But to best understand what is
going on, we also present purely hydrodynamic GI runs, so as
to (a) exhibit the turbulent flows that initially give rise to this
field generation, and (b) provide a point of comparison for the
saturated dynamo flows, in which strong fields have reacted
back on the turbulence (via the Lorenz force) and altered it. We
also present pure MRI runs, with no GI. These exist to
demonstrate that the dynamo fields are different in magnitude
and character to those generated by the MRI. We emphasize
that our aim is not a comprehensive study of the MRI and how
well GIZMO performs in describing it, but rather to prove that
the dynamo we see is not the MRI.

Rather than treating each set of simulations separately, we
break up the results into (a) a descriptive section that concentrates
only on the magnetic field properties of the simulations,
contrasting, in particular, the MRI runs with GI–MHD runs, (b)
a section that investigates the back reaction of the dynamo on the
GI turbulent flow, (c) a section that undertakes some analysis of
the GI dynamo, (d) a closer look at the transport of angular
momentum, accretion, and outflows, and finally (e) a short section
discussing some preliminary nonideal MHD runs.

In Figure 1, the time-evolution of the magnetic energy is
plotted for the MHD runs. To give an impression of the
different types of turbulent structures and magnetic fields, we
have also plotted in 2, the midplane density, midplane magnetic
field strength, and edge-on volumetric density of the high-
resolution MRI simulation MRI-hr (left), the pure GI simula-
tion grvhd2 (middle), and the GI–MHD simulation grvmhd2.

3.1. Magnetic Fields in MHD Simulations

In this subsection, we focus on the nature of the magnetic
fields observed in our pure MRI and GI–MHD simulations.
Our main diagnostics will be magnetic energy, morphology and
spectra, and the characteristic dynamo patterns in the azimuthal
flux witnessed in most MRI simulations.

Note that the GI–MHD simulations are started with pure
toroidal fields with β=25, in contrast to the pure MRI runs,
which begin with an azimuthally varying vertical field.
However, grvmhd1 has already lost any memory of the initial
toroidal field after our initial relaxation process (it has been
expelled). This is similar to what has been reported in global
MRI simulations with initial toroidal fluxes (Fromang &
Nelson 2006; Beckwith et al. 2011; Flock et al. 2011). Thus,
comparison of the two sets of simulations remains valid.

3.1.1. Energetics

Perhaps the most telling difference between the pure MRI and
GI–MHD runs is the magnitude of the saturated magnetic energy,
as shown in Figure 2. Both grvmhd1 and grvmhd2 support much
stronger magnetic energies than the MRI-hr simulation, with
bá ñ ~ 4 and bá ñ ~ 7 in the disk trunk (10–20 au), respectively.
The magnetic energy and kinetic energy in MRI-hr is only a few
percent of the gas pressure in accord with previous global
simulations (Fromang & Nelson 2006; Parkin & Bicknell 2013).
This striking difference is also observed in local simulations (Riols
& Latter 2018a, 2019) and is perhaps the best piece of evidence
we have that magnetic energy production in GI runs is
fundamentally different to the MRI.
Inspection of how the energy is partitioned between magnetic

and kinetic energy in our GI–MHD simulations (Figure 2) reveals
that the kinetic energy dominates the magnetic energy, the reverse
to what occurs in the MRI. This is perhaps as expected, given the
relative strength of gravito-turbulence. The ratio of magnetic to
kinetic energies is similar to that observed in local boxes, though
there is some dependence on total disk mass (a quantity difficult to
measure in local simulations). It is likely that this dependence is
related to differences in effective numerical diffusion (see Riols &
Latter 2019). More notable is that, relative to the average thermal
energy, both magnetic and kinetic energies are larger in the global
simulations (compare with Table1 in Riols & Latter 2018a).
Moreover, there is a slight dependence in the global kinetic energy
on disk mass (something difficult to model in local simulations);
these discrepancies probably indicate shortcomings of the local
model.

3.1.2. Morphology and Spectra

Moving on from averaged quantities to the morphology of
the field, we can discern additional differences between the
MRI and GI–MHD simulations. In the top row of Figure 3, the
midplane magnetic field strength is plotted for the runs MRI-hr
and grvmhd2, putting aside the greater strength of the fields in
the latter (discussed in the previous subsection), we observe
that both simulations exhibit spiral structure, with perhaps the
MRI run producing tighter and less coherent spirals. If we next
turn to the second row, which shows the midplane density of
the flows, it is clear that the dominant magnetic structures in
grvmhd2 are correlated with density structures—suggesting a

Figure 2. Time-averaged magnetic energy (Em) and kinetic energy (Ek) (normalized
to the averaged gas pressure) as a function of radius for the MHD simulations.
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close connection between the two, as discussed at length in
Riols & Latter (2019). In contrast, the MRI simulations support
only minor perturbations in density, and these do not appear
dynamically significant.

To obtain a more quantitative sense of the field structure, we
calculate the power spectrum for the magnetic energy Bm

2 (see
Section 2.4). We calculate Bm

2 for 10 equally spaced annuli
ranging from 10 to 20 au with width ΔR=0.5 au, noting that it
varies only mildly with R. We then normalize the power spectrum
in each bin to the local averaged magnetic energy B0

2 and average
the power spectrum at different radii and over time. The results are
plotted in Figure 4 for runs MRI-hr, grvmhd1, and grvmhd2.

The MRI magnetic energy power spectrum agrees well
with the previous grid code simulations of (Flock et al. 2011,

Figure 12), showing a flat spectrum when m<5. In grvmhd1
and grvmhd2, the structure in the magnetic energy is closely
related to the spiral density waves, with power peaking at
m=3 and m=4, respectively, which are also the peak ms for
the surface density spectra.
On smaller scales, the power spectrum in both GI–MHD runs

shows a hint of an m−5/3 scaling but only on the very limited band
30<m<100. This may, or may not, indicate the beginnings of
an inertial range, with energy input at the large spiral-wave
dynamo scale and then cascading to the (numerical) dissipative
scales. What is less in doubt is the difference with the MRI
spectrum, which shows a steeper drop in this range and no
obvious scaling law, in agreement with most other local and
global simulations.

Figure 3. Face-on and side-on color-coded maps of magnetic field strength and density in code units. The top row is magnetic field, the middle row is midplane
density, and the bottom row is density. The box size is 50 au per side. The grvmhd2 run exhibits stronger magnetic fields than the MRI-hr simulation, and they are
correlated with the spiral density waves. Compared to grvhd2, grvmhd2 exhibits more flocculent spiral density waves and a much more extended disk atmosphere.
Finally, as a test, we turned off the MHD module in grvmhd2, and grvmhd2 gradually collapse to a razor-thin state similar to grvhd2.
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3.1.3. Dynamo Cycles

MRI turbulence shows a characteristic periodical polarity
change of the azimuthally averaged toroidal fields, i.e., the so-
called butterfly diagram in both local (Miller & Stone 2000;
Simon et al. 2015) and global simulations (Flock et al. 2011). Our
MRI runs also exhibit the same temporal evolution of the toroidal
field. As an example, we plot in Figure 5 á ñf fB between the radii
9.5 and 10.5 au for run MRI-lr (local orbits and disk scale height
are calculated at 9.5 au). The vertical extent of the plot is±10 au
(see also Figure 3). As is clear, the polarity changes about every
eight orbits and, thus, agrees with previous studies(see, e.g.,
Flock et al. 2011). The reproduction of this generic feature of the
MRI dynamo gives us some confidence that our global
simulations can describe the MRI up to some level of accuracy
for some period of time (see also Deng et al. 2019).

We next show the temporal evolution of the azimuthally
averaged toroidal fields of the GI–MHD runs grvmhd1 and
grvmhd2. These are plotted in Figure 6. Both simulations show
polarity changes but these occur on longer timescales. In fact,
in grvmhd2 we see only one reversal; hence, we cannot claim
that the process is periodic. The polarity changes occur at about
470/1260 yr in grvmhd1/2, respectively, regardless of the
local dynamical timescale. It is not impossible that a
significantly modified MRI is persisting on some level in these
runs, but it is far more likely that these polarity shifts are driven
by the GI dynamo and not the MRI.

Lastly, we note that the polarity shifts we observe differ from
the local runs of Riols & Latter (2019), which show continued
positive toroidal fields around the disk midplane with vanishing
fields above two disk scale heights. This discrepancy no doubt
originates from the different setups and models. In particular, the
vertical boundary condition is the likely culprit here; Riols &
Latter (2019) demonstrated the sensitivity of some elements of the
dynamo to the boundary conditions. Riols & Latter (2018a, 2019)
enforced Bx=By=0 and dBz/dz=0 at ±3H (the vertical
boundary), which, by construction, cannot model field dragged by
the velocity rolls above/below±3H (see also Shi & Chiang 2014,
Figure 9). In our Lagrangian simulations, which are global and do
not require explicit boundary conditions, fluid elements can be
followed well beyond ±3H. However, we acknowledge that the

higher the altitude, the fewer are the computational elements and,
thus, the less accurate the numerical method.

3.2. Magnetic Field Back Reaction on Gravitational Instability

The quasi-steady states described by our GI–MHD runs
correspond to the situation when the dynamo has completed its
“kinematic” phase and entered its saturated “nonlinear” phase, i.e.,
the magnetic field has grown to such a level that the Lorenz force
is strong enough to react back on the flow that birthed it, and it
will react back in such a way to halt the growth of magnetic field.
In this subsection, we analyze the density field focusing on the
effects of MHD turbulence on the spirals in this subsection.
As well documented in the literature on the subject (Durisen

et al. 2007), self-gravitating disks saturate to a state where the
prescribed cooling is balanced by the heating due to the
instabilities. As shown in many previous studies (Mayer et al.
2004; Rice et al. 2005; Cossins et al. 2009), a GI disk saturates
to a state where the Toomre Q hovers around unity
(Q∼1–1.4). We checked the two-dimensional Toomre Q, at
the end of the SG simulations. The dense spirals have smaller Q
values than the dilute inter-spiral regions. The Q parameter can
be as small as 0.4 in parts of the spirals with no fragments
formation in both HD and MHD simulations.
We plot in Figure 7 the profiles of the Q maps in the various

saturated states. The HD simulations have Q hovering around
1.5 regardless of the disk mass (the disk star mass ratio is small
here). However, grvmhd2 has Q∼2.2 and grvmhd1 has an
even larger Q∼3.2. The extra heating from the dissipation of
magnetic energy is likely responsible for the larger value of Q
at saturation, which was also observed in Riols & Latter
(2016, 2018a). The GI–MHD simulations are simply hotter and
vertically more extended than their HD counterparts: the lower
row of panels in Figure 3 makes this especially obvious. More
specifically, Q is larger in the inter-spiral regions of the MHD
simulations than the HD simulations.
In the density maps of Figure 3, we see that both GI and GI–

MHD simulations exhibit strong spiral patterns with a rich

Figure 4. Space (10–20 au) and time-averaged (see Figure 1) magnetic energy
power spectrum for the MHD simulations. See Figure 13 for the effects of
numerical/physical dissipation on the power spectra.

Figure 5. The azimuthally averaged á ñfB , in Gauss, between 9.5 and 10.5 au in
the MRI-lr simulation (250–800 yr in Figure 1). MRI-lr is used here to provide
long-term statistics despite the lower resolution compared to MRI-hr (see
Figure 13 for numerical/physical dissipation strength).
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mode structure. The GI–MHD simulations, though, show, in
general, slightly more incoherent (“flocculent”) spirals and,
visually at least, smaller-scale density fluctuations are present
compared to the corresponding HD simulations.

To gain a better quantitative insight in the density structure,
we apply azimuthal Fourier transform to the volume density
(see, e.g., Cossins et al. 2009). The time-averaged mode
amplitudes Σm are shown at varying radius in Figure 8. The
hydro grvhd1 simulation is dominated by a m=6 mode
throughout radii beyond R=13 au. Cossins et al. (2009) found
similarly a dominant m=5 mode in disks about 0.1 times the
star mass with Σ∝R−3/2. When MHD is added, any global
radial coherence vanishes; at best there is the signature of an
m=3 mode between 15 and 20 au. It could also be argued that
there is a redistribution of power to higher m.

On the other hand, the hydro run grvhd2 is dominated by a
coherent m=3 mode throughout its entire radial extent. The
dominant azimuthal mode shifts, however, when MHD is added:
in grvmhd2, the m=4 mode becomes the most prominent, as
shown in Figure 8, and there is less continuity in this dominance
across different radii. There is, hence, a loss of global coherence.

It is noteworthy that the m=4 mode is particularly strong in
grvmhd2 between 15 and 20 au in Figure 8. Following up on this,
we measure the m=4 spiral pattern speed. Assuming a density
perturbation µ f w f- + +ei m t kR 0{ ( ) }, then the phase angle is
f0−mωt+kR, where k is the radial wavenumber. The pattern
speed between 15 and 20 au of the major m=4 mode exactly
equals the rotational angular speed at 16 au. This is also strictly
true at different times. As a result, corotation resonance occurs at
∼16 au as indicated by the stresses, which we show later in

Figure 12. The dominant modes in grvhd1/2 rotate significantly
slower with a pattern speed close the orbital angular speed at 22 au.

3.3. Magnetic Dynamo in Self-gravitating Disks

In this subsection, we take a closer look at the process of
magnetic field generation. Riols & Latter (2018a, 2019), using
local finite volume simulations in shearing boxes, showed that

Figure 6. The azimuthally averaged á ñfB , in Gauss, between 9.5 and 10.5 au (top panels) in grvmhd1/2 and 15.5–16.5 au (bottom panels) with shared colorbar. The
local orbits and disk scale height are calculated at 10/16 au and the vertical limits of the plots are±10 au (see also Figure 3). The polarity of the toroidal fields
changes on a longer timescale than that in MRI (see Figure 5). This timescale is independent of the local dynamic timescale.

Figure 7. The profile of the two-dimensional Q maps (see Equation (12)). The
two MHD simulations saturate to higher Q values than their HD counterparts.
Note the azimuthally averaged Q values are not weighted by density.
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the vertical circulations (see, e.g., Boley & Durisen 2006;
Mayer et al. 2007; Riols & Latter 2018b) that naturally
accompany spiral waves can, in alliance with differential
rotation, make a dynamo loop. It is fundamentally different to
the MRI dynamo (Lesur & Ogilvie 2008; Gressel 2010) and
has a vertically global character, working on scales larger than
the disk scale height. Moreover, strong ohmic dissipation that
would completely quench the MRI, in fact, enhances the
dynamo (Riols & Latter 2018a, 2019).

In our global GI–MHD simulations, we observe an
analogous amplification of the magnetic field in conjunction
with vertical circulation around spiral arms. In Figure 9, we
show poloidal velocity streamlines and the volumetric density
for the two simulations MRI-hr and grvmhd2. The latter clearly
shows vertical velocity rolls, and these are correlated with the
radial midplane structure. This is the crucial ingredient in the
GI dynamo. In contrast, the MRI run does not exhibit such
velocity structure. To make sure that these circulations did not
issue from convection, we computed the squared vertical

buoyancy frequency in grvmhd2, and found it always positive
(as it was also in the corresponding HD runs).
In order to ascertain further that the latter interpretation of the

magnetic field amplification really captures the physical behavior
of the flow, we exploited the Lagrangian nature of the code and
followed individual trajectories of random fluid elements at
arbitrary times. The typical trajectory is shown in Figure 10,
contrasting the MRI-hr and grvmhd2 runs. First, the different
nature of the fluid elements’ motion is evident, which reflects the
different nature of turbulence in the two regimes. Second, and
most importantly, in the grvmhd2 runs, the amplification of the
magnetic field appears to occur as expected as the fluid elements
are dragged out of the disk midplane and then fall back.
To obtain statistically sound results, we count the midplane

crossing times within two local orbits at 16 au for ∼1000
particle that lie closest to the middle plane. Particles are chosen
this way so that both the dense spiral and dilute inter-arm
regions are sampled, and increasing the number of particles
shows converged results. We intentionally exclude the first

Figure 8. Time-averaged Fourier amplitudes of the density field in the different GI runs, with and without MHD. Radial cutoff is applied to avoid boundary condition
effects.

Figure 9. Zoom in side-on density map of MRI-hr (left column) and grvmhd2 (right column) with over-plotted velocity streamlines; the full disks extend to±10 au
vertically (see Figure 3). Many roll structures develop around the densest spiral center in grvmhd2 while no large-scale motion in MRI-hr is observed.
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immediate crossings that due to the small vertical motion of
these sample particles (close to the midplane initially). In
Figure 11, we show the distribution of disk midplane crossings
in the different runs, which highlights how in GI simulations,
both with and without MHD, fluid elements cross the midplane
(from the top or bottom, as we do not distinguish from where in
our statistics) much more frequently than in the MRI case.
Frequent midplane crossing reflects the action of the vertical
rolls, which are focused around spiral arms, whereas in MRI,
vertical gas motion has no preferred accumulation point. We
also note that vertical rolls in the local simulations of (Riols &
Latter 2019) are not crossing the midplane and, rather, are
confined within half the disk scale height. Finally, from
Figure 11, there is also marginal evidence that rolls are more
vigorous (higher crossing frequency) in MHD runs, probably
reflecting some feedback loop effect of the magnetic field onto
the fluid circulation.

3.4. Turbulent Transport

In the previous sections, we have concentrated on character-
izing the growth of the magnetic field and its influence on
gravito-turbulence. We have employed relatively idealized
numerical experiments as a platform to understand what is a
fundamental physics problem. That being said, these simula-
tions, even if idealized, may also bear on more concrete
astrophysical applications, such as the issue of mass accretion
and outflows in young stellar systems. Though missing many
important physical effects (e.g., realistic radiative processes,
ambipolar diffusion, the Hall effect, realistic ionization profiles,
etc.), the GI dynamo, as simulated here, could have an impact
on how we understand accretion and outflows to work.

We first compare the efficiency of mass transport through the
disk by turbulence generated in MRI, GI, and GI–MHD runs,
respectively. In Table 2, to get a rough idea of magnitudes, we
find that the magnetic stress, absent in purely hydrodynamic runs,
dominates the gravitational and Reynolds stress in grvmhd1, and
is comparable to the gravitational stress in grvmhd2. From these
numbers, we see immediately that accretion should be greatly

enhanced via the inclusion of magnetism: the GI dynamo creates
strong correlated fields that transport angular momentum via the
Maxwell stress. This is in agreement with previous local
simulations. In Table 2, the disk mass-loss rate (accretion
+outflow) in grvhd1/2 more than doubled after including
MHD. This is perhaps one of the more exciting results of our
simulations: magnetic fields enhance accretion in gravito-turbulent
disks and, thus, speed up the evolution of young protostellar disks.
However, we caution that whether the outflow (clipped particles)
falls back onto the disk is uncertain.
We also computed the time-averaged stresses (averaged over

the last 1000 code time units) as a function of radius and
plotted these in Figure 12 for the different simulation runs. The
Reynolds stress in GI fluctuates with radius and possesses
negative values at some radii, and tracks the quasi-steady spiral

Figure 10. 3D trajectory of representative particles in the MRI-hr run (left panel) and in the grvmhd2 run (right panel), color coded in magnetic field strength. The star
is at (0, 0, 0), and the particles start from the red dots 16 au away from the star followed for two local orbits. The magnetic field appears to be amplified when the fluid
element crosses the midplane in the GI–MHD case, consistent with the notion whereby vertical rolls play a crucial role in the magnetic dynamo generation. No such
behavior is present in the MRI case; indeed, the randomly chosen particle does not even cross the midplane.

Figure 11. Distribution of midplane crossings for a subsample of representative
particles in the saturated state for all runs. GI and GI–MHD runs have similar
distributions, with several midplane crossings per particle being typical,
consistent with major vertical circulation crossing the midplane, while this is
rare in the MRI run, where most fluid elements never cross the midplane.
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structure. However, its contribution to the total stress is
negligible in the simulations without magnetic field (see also
Shi & Chiang 2014; Booth & Clarke 2018). Interestingly, the
Reynolds stress increases in the GI–MHD simulations, with an
averaged value 0.034 for grvmhd1 and 0.035 for grvmhd2. The
alteration to the basic gravito-turbulent flow is achieved via the
Lorenz force and must be part of the dynamo saturation.

On the other hand, the saturated dynamo blurs the spirals (as
discussed in Section 3.2) and decreases the gravitational stress
in grvmhd1. However, the averaged gravitational stress in
grvmhd2 equals that in the corresponding hydrodynamical
simulations’ because the spiral pattern remains strong even in
presence of the magnetic field. Note that the gravitational stress
is small within the R<10 au and R>20 au regions due to
low resolution and short simulation duration, respectively.

The radially averaged Maxwell stress (0.080) is comparable
with the gravitational stress (0.092) in grvmhd2. Grvmhd1 has
a higher averaged Maxwell stress of 0.13 with a smaller
gravitational stress of 0.063. MRI-hr has a weaker Maxwell
stress than both grvmhd1 and grvmhd2, which reflects the
weaker amplification of the magnetic field relative to the runs
in which the dynamo operates. We also note that,
a = á ñ á ñ ~fM B2 0.4M r

2 in MRI-hr, this being characteristic
of resolved MRI simulations (Hawley et al. 2011; Parkin &
Bicknell 2013; Deng et al. 2019).
We finish this section by pointing out that enhanced

accretion witnessed must come at an energetic cost, as it were.
Accretion liberates orbital energy and transforms it into heat;
thus, faster accretion leads to faster heating, and yet, the
cooling timescale is held fixed between hydro and MHD runs.
In order to achieve a steady state, there must be another source
of cooling, which, here, is achieved through an outflow. As
Table 2 shows, both grvmhd1 and grvmhd2 exhibit significant
loss of mass vertically. This wind in itself is worthy of close
study, not least because it might connect to observed wide-
angle low-speed molecular outflows from evolved class 0 and I
objects (Bally 2016). For now, we merely point it out and also
caution that its dependence on the numerical particulars of the
simulations requires further exploration.

3.5. Nonideal MHD Effects: Ohmic Resistivity

Nonideal MHD effects can often be important in astro-
physical disks and are thought to suppress the MRI for many if
not most radii in protostellar disks (Blaes & Balbus 1994; Sano
et al. 2000; Balbus & Terquem 2001; Kunz & Balbus 2004;
Bai & Stone 2013; Bai 2014; Lesur et al. 2014; Gressel et al.
2015). They also play an important role in the early stages of

Figure 12. Time-averaged (thick lines in Figure 1) stresses. aá ñV =0.094, 0.110, 0.227, 0.207, 0.017 for grvhd1, grvhd2, grvmhd1, grvmhd2, MRI-hr, respectively.
The large Maxwell stress leads to the increase of aá ñV in the GI–MHD simulations compared to the GI simulations (Table 2).

Table 2
Stresses and Mass Variation Rates

Run Hrf Mrf Grf α Accretion Outflow

MRI-hr 0.003 0.014 NA 0.017 2.11 5.18
grvhd1 0.011 NA 0.083 0.094 1.79 0
grvhd2 0.012 NA 0.098 0.110 6.61 0
grvmhd1 0.034 0.130 0.063 0.227 2.75 3.53
grvmhd2 0.035 0.080 0.092 0.207 7.36 5.89

Note. The stresses are the arithmetic average of the corresponding profile in
Figure 12. The accretion and outflow rates are in units of 10−6Me yr−1

measuring the mass variation (the last 1000 code units, Figure 1) due to
accretion and clipping in the regions beyond 10au. We note that the MRI disks
are significantly hotter than GI–MHD disks because no cooling is applied
(Table 1). We caution that the low-density disk surface is more poorly resolved
than the midplane due to the adaptive nature of Lagrangian methods.
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disk formation, as their role is crucial in avoiding the angular
momentum catastrophe caused by magnetic breaking, and
allow an extended disk to form (e.g., Li et al. 2011; Wurster &
Li 2018). Ambipolar diffusion plays an important role in this
context and is generally considered the dominant effect in the
outermost regions of disks (e.g., Mellon & Li 2009), while the
Hall effect has been found to have a potentially important effect
on the size of the disk that results from molecular cloud
collapse depending on the relative orientation of the magnetic
field and the spin axis (Krasnopolsky et al. 2011; Marchand
et al. 2018). However, at very high densities, such as in the
midplane of the disk, in the gravitationally unstable region
(R > 10 au) where MHD turbulence is seen to grow via the
spiral dynamo mechanism, ohmic resistivity may play a strong
and possibly dominant part in the dynamics.

We present preliminary results with magnetic resistivity that
confirm the robustness of the spiral-wave dynamo mechanism,
as shown earlier in local boxes (Riols & Latter 2019). There,
the dynamo was shown to occur even in strongly ohmic
environments ( h= W ~R c 1m s

2 ). To test the role of ohmic
dissipation, we add in explicit magnetic resistivity in grvmhd2
at 320 yr. We rerun the MRI-hr simulation with Rm=100
throughout the disk as a comparison study.

With such a strong magnetic diffusivity, the magnetic energy
of the MRI turbulence quickly decays (Figure 13). In contrast,
the spiral-wave dynamo continues, after an initial readjustment
period. We calculated time-averaged values for one orbit period
at 16 au (thick lines in Figure 13) for the simulations with
ohmic dissipation. Although the averaging time span is smaller
than the previous ideal MHD cases, the disks are saturated
when we start the time averaging. The effective viscous stress

in MRI drops more than an order of magnitude. However, the
energy partition and stress in grvmhd2 is only slightly affected.
We also plot power spectra of the magnetic energy. First, we

see that addition of ohmic resistivity completely alters the
spectrum of the pure MRI run, as might be expected. On the
other hand, the spectrum of the ohmic and ideal grvmhd2 runs
are roughly similar. The inclusion of ohmic resistivity does
push power to longer scales (smaller m), in accordance with
(Riols & Latter 2019), and the small m tail becomes steeper, as
the dissipative scale is longer.

4. Discussion

Our global GI–MHD simulations, which are the focus of this
paper, are still quite idealized, as they adopt a simplified
cooling prescription, assume the disk has some unspecified pre-
existing ionization, and neglect to explore the role of two of the
three nonideal MHD effects (the Hall effect and ambipolar
diffusion). This minimal setup is chosen to illustrate the basic
physical processes operating and the differences with the
better-studied and understood regimes of GI and MRI in disks.
We plan to build upon the current setups incrementally to
account for more complex thermodynamics and nonideal MHD
effects (Wardle 2007; Lesur et al. 2014).
The strength of the spiral density waves, and thus, their

associated dynamo, is sensitive to the cooling rate in self-
gravitating disks. We expect the spiral-wave dynamo dominates
MRI, in the ideal MHD regime, at least when τ<20Ω−1 (Riols
& Latter 2018a). The cooling rate of early stage disks is uncertain.
In pure HD simulations with radiative transfer, Boley et al. (2006)
found τ∼20Ω around 20 au. In our MHD simulations, the
internal energy/temperature in the disk corona is about 20 times

Figure 13. Nonideal MHD simulations of MRI-hr and grvmhd2 with ohmic dissipation, Rm=100. The line series share the same legend as noted in the lower right
panel; the dashed and solid lines in the lower left panel mark the kinetic and magnetic energy. Upper left panel: magnetic energy evolution. The thick lines are the time
span where the time average in the rest three panels are taken. Upper right panel: the α parameter. Lower left panel: the normalized average kinetic and magnetic
energy. Lower right panel: the magnetic energy power spectra calculated similarly to those in Figure 4.
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larger than the disk midplane temperature (∼10 K) while such a
hot-disk corona is absent in the HD simulations. The hot corona
and associated vertical circulation may help to cool the disk
efficiently (Boley & Durisen 2006). Further studies with radiative
transfer(see, e.g., Mayer et al. 2007) are necessary to address the
cooling rate of the GI–MHD turbulent disk. We also note that
infall can do the same job to bring the disk into GI similarly to the
ad hoc cooling (Boley 2009).

The ionization and chemical state of the disk are crucial for
any disk process involving magnetic fields, and the mechanism
proposed here is no exception. The disk temperature in our
MHD simulations, which ranges from 10 to 100–200 K, is
insufficiently high to provide any appreciable thermal ioniz-
ation, though it might be interesting to ask what temperatures
can be reached in spiral shocks; a four-fold increase in
temperature will bring the collisional ionization of the alkali
metals into play and a steep rise in the ionization fraction. Past
work on GI with 3D global simulations including radiative
transfer and the complex roles of grain chemistry (e.g., porosity
and ice coating) have shown that in spiral shocks, the gas could
heat significantly more than what is observed in this paper—up
to several hundred K (Podolak et al. 2011).

In any case, the ionization source of most importance here
must be nonthermal, arising from cosmic rays, irradiation by
nearby OB stars, or from the central star itself. Each of these
processes is somewhat poorly constrained, and for young disks,
the associated ionization profiles have not been studied to the
same level of detail compared to their older T-Tauri relatives. It
would be useful if future work could be dedicated to estimating
these profiles.

The effect of the magnetic field and the dynamo-induced
circulation on the critical regime of disk fragmentation will be
studied in a future paper. Expected effects are extra support
against contraction into self-gravitating clumps from magnetic
pressure support, and, conversely, dissipation of angular
momentum of a gas clump in the disk close to contract and
fragment, which would promote contraction. Which effect will
dominate over the other and how the magnetic fields affect the
mass of fragments can only be determined with high-resolution
simulations. Early attempts by Fromang (2005) found frag-
ments formation when small-scale MHD turbulence starts to
play a role; although, the fragments are dispersed later due to a
lack of resolution. Recent SPH MHD simulations find that the
magnetic tension force increases the fragment mass in the fast
cooling regime while magnetic fields suppress fragmentation in
the slow cooling regime (Forgan et al. 2016). However, they
used a very low resolution (less than 3% particles used here),
which is definitely not able to resolve the MHD turbulence (see
Appendix). The suppression of fragmentation may also be
caused by unphysical fields growth in stratified MHD disk
simulations using traditional SPH MHD (Deng et al. 2019).
The problem is still open and we will explore it in future works.

5. Conclusions

We carried out three-dimensional global MHD simulations
of self-gravitating accretion disks using the MFM method
(Hopkins 2015; Hopkins & Raives 2015) to study the
interaction between gravito-turbulence and a magnetic field
(zero-net-flux) threading the disk. For comparison, we also ran
pure GI and MRI simulations using the same disk models and a
similar numerical setup. The global MRI runs are meant to
provide a point of reference and comparison for the GI dynamo

runs to prove that the latter are a different phenomenon to the
MRI. In fact, the difficulty that particle codes have in
describing the MRI (Deng et al. 2019) is to our advantage
here, as the MRI will be possibly weaker and less prevalent,
letting us attribute magnetic growth to GI dynamo more
confidently. Our main findings can be summarized as follows:

1. We confirm that global GI turbulence efficiently
generates strong magnetic fields and, thus, acts as a
dynamo. The field growth and saturation is quantitatively
and qualitatively different to the MRI. First shown to
occur in shearing boxes, this is the first demonstration
that the dynamo also works in a global disk model.

2. By examining the vertical circulations associated with GI
spiral waves, we showed that some aspects of the dynamo
mechanism proposed by Riols & Latter (2018a, 2019)
appear in global disk simulations. The saturated field
strength and toroidal field polarity variation is affected by
the disk mass likely through different spiral patterns.

3. We observe how the saturation of the dynamo impacts the
flow field: the disk becomes hotter via magnetic
dissipation and, consequently, the Toomre Q is signifi-
cantly larger than in the hydro gravito-turbulence; the GI
spirals become less coherent and flocculent; and there
develops a greater Reynolds stresses and potentially
lower gravitational stresses.

4. The dynamo enhances the total transport of angular
momentum through the disk substantially, when com-
pared to purely hydrodynamical gravito-turbulence. Thus,
magnetic fields can “speed up” the evolution of young
protostellar disks. Accompanying this accretion is an
outflow, which expels energy from the disk; this
phenomena needs to be studied further and its numerical
particulars (in particular, robustness) understood.

5. Ohmic resistivity, while killing off the MRI, has little
impact on the dynamo, except to transfer power to larger
scales than otherwise. This is in accordance with previous
local simulations (Riols & Latter 2019).

As emphasized, our simulations are quite idealized, in order to
more clearly exhibit and identify the various physical processes
underlying the dynamics. Future work, however, must begin to
add, piece by piece, the most relevant physics for protostellar
disks. We identify as the most urgent: (a) more realistic
ionization profiles and nonideal MHD effects, and (b) different
magnetic flux configurations, especially the case when the disk
is threaded by a large-scale poloidal field. Both will open up
the exploration of how gravito-turbulence, the GI dynamo, and
magnetically mediated outflows interact.

We thank the anonymous referee for comments that helped
to improve the manuscript significantly. H.D. acknowledges
support from the Swiss National Science Foundation via an
early postdoctoral mobility fellowship. We acknowledge
support from the Swiss National Science Foundation via the
NCCR Planets.

Appendix
Resolution Study

To test the numerical convergence directly, we reran
grvmhd1 from 760 yr and varying the resolution by merging
or splitting particles. The tests were run for 70 yr. We show
the midplane density in simulations at the three different
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resolutions in Figure 14. The 18M particles simulation clearly
blurs the spirals.

The 18M particle simulation has weaker fields and smaller
stresses in all three components and, thus, a smaller α than the
two other simulations. The 36M particle simulation (the resolution
adopted in our main paper) agrees well with the 72M particle
simulation in stresses and magnetic energy. In particular, the space
and time-averaged magnetic energy power spectrum appears
converged at 36M particles in Figure 15.

We note that it is hard to compare resolutions in Eulerian and
Lagrangian simulations due to the intrinsic adaptivity in the
latter. In global pure GI simulations, at least when the disk is
approaching fragmentation, around 10 times more computa-
tional elements are needed in grid-based codes than in the
SPH codes (Durisen et al. 2007; Mayer & Gawryszczak 2008).
As for the MHD module, we also do not have a uniform
resolution scale in Lagrangian methods. We have a resolution
scale, measured as the half-width of the kernel (not the
smoothing length, see Dehnen & Aly 2012; Deng et al. 2019)
of 1/16 and 1/20 of the disk scale height around the mid point
of the spiral pattern near, respectively; 10 au and 16 au in
grvmhd1. The corresponding values for grvmhd2 are 1/22
and 1/28, respectively. The latter range in resolution of the

vertical disk structure is a factor of 2–3.5 higher than than the
estimate given in the resolution study of Nelson (2006) in SPH
simulations of self-gravitating disks with no magnetic fields (in
such work the straight value of the SPH smoothing length was
used as a resolution metric).
We calculated the averaged quality factor, i.e., the number of

effective volume elements per characteristic MRI wavelength
(Hawley et al. 2011; Deng et al. 2019) in our GI–MHD
simulations, in order to give a reference for future studies. In
the saturated state of grvmhd1/2, á ñfQ is about 30, 28 and á ñQz
is about 5, 5, respectively. We caution that the GI dynamo is on
a large scale and is fundamentally different from the MRI
dynamo so that this quality factor does not necessarily reflect
that the dynamo is resolved. However, we expect a criterion
based on resolving MRI should be conservative due to the
shorter wavelengths that need to be resolved.
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