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Abstract

®
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The effect of graphene on unique features of surface plasmon-polariton excitations near the

interface of vacuum and quantum plasma half-space is explored using a quantum hydrodynamic
model including the Fermi electron temperature and the quantum Bohm potential together with
the full set of Maxwell equations. It is found that graphene as a conductive layer significantly
modifies the propagation properties of surface waves by making a change on the corresponding
wave dispersion relation. It is shown that the presence of graphene layer on the interface of
vacuum and plasma leads to a blue-shift in the surface Plasmon frequency. The results of present
study must be contributed to the modern electronic investigations.

Keywords: plasmon-polariton, quantum plasma, quantum hydrodynamic model, graphene, nano-
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1. Introduction

The physical characteristics of surface waves has attracted a
great interest in theoretical, numerical, and experimental
investigations in many fields of plasma science and technol-
ogy such as plasma spectroscopy, surface science, nano-
electronic devices with surface Plasmons which can be
excited and transmitted in metal thin films, laser physics,
overdense plasma heating and so on [1-10]. These waves can
propagate along the boundary of two different mediums with
different signs of the real part of dielectric response function
[11] and evanescent on either side of it. The existence of the
linear electrostatic surface oscillations was first proved for a
cold plasma half-space by Ritchie in 1957 [12] and for a cold
cylindrical plasma columns by Trivelpiece and Gould in 1959
[13]. The effects of finite plasma temperature have also been
considered [14—17] and the propagation of the surface waves
on an unmagnetized quantum plasma half-space has been
investigated by employing the quantum hydrodynamic

3 Author to whom any correspondence should be addressed.

0253-6102/20,/045501+-06$33.00 1

(QHD) model which obtained from self-consistent Hartree
equations [18] or from the phase-space Wigner—Poisson
equations [19] conjugating with Maxwell-Poisson equations
by Lazar et al [16] and Shahmansouri [17].

The electrostatic surface oscillations of free electrons
near a plasma-dielectric surface is called surface Plasmon
(SP) and it’s linear coupling with photons is considered as a
hybrid surface mode called surface Plasmon Polariton (SPP).
SPs can provide a way of confining electromagnetic field to
nanoscale structures and SPPs can be excited at frequencies
ranging from O up to wp, / V2 (in which wpe considered as the
plasma frequency).

The quantum Fermi temperature and quantum electron
tunneling (Bohm potential) effects should be considered, due
to the great degree of miniaturization of nowadays electronic
devices and also high number density in metallic plasmas or in
solid-density plasma. On the other hand, the quantum effects
can no longer be neglected since the thermal deBroglie
wavelength of electrons is comparable to the average inter-
particle distance of them. The dispersion relation of surface
waves is profoundly affected by both the quantum Fermi
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temperature and quantum electron tunneling effects [16, 17].
This is the case that makes the behavior of surface waves on
quantum plasma half-space as an important issue in recent
years. The fundamental properties of the surface waves in
quantum plasma have been studied in the previous investiga-
tions [10, 16-33] under the influence of e.g. the quantum
tunneling [10, 20-31], external magnetic field [20-22], colli-
sional effects [24, 25], relativistic effects [26], spins [27-30],
nonlocality effects [31] and exchange effects [17, 32 and 33].

A surprising property of graphene [34-43], a two
dimensional (2D) monolayer of carbon atoms tightly packed
in a hexagonal lattice, has attracted a great deal of attention
for a wide range of electronic and electromagnetic applica-
tions. Interaction of the electrons with this wonderful atomic
structure forces the charge carriers in graphene to act as an
effective zeromass particle which can show photon-like dis-
persion in the low energy excitations [44]. The unique elec-
tron structure in which conduction and valance bands meet
each other at the Dirac point is the origin of the extraordinary
optical properties of graphene. The property of graphene can
be tuned by chemical doping or electrical gating due to
change in the value of the chemical potential yi, or Fermi level
E; of graphene. The complex dynamic optical response of
graphene consisting of interband and intraband contributions
can be derived from Kubo formula [45-48]. By changing in
the level of chemical potential, the imaginary part of con-
ductivity can achieve negative and positive values [48], in
different ranges of frequencies.

Here, only the intraband conductivity which dominates
the low frequency process of graphene transition is included.
Therefore, the optical conductivity of graphene (0, = Oipira) 18
defined as follow [49-53]:

i eszT He
mh*(w + 2it~ Y| kg T

He
Og,intra = + 21In(e kT + 1)]. (1)
In which w is frequency of the incident light, T is
temperature, kg is Boltzmann constant, 7 is relaxation time
and, , is chemical potential. For the gated or highly doped
graphene (yi,| > kgT), the interband terms of the graphene
conductivity have form [46]:
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Recent investigations reveal that low-cost metal-

graphene composites [54-57] are promising materials in high-
power electronics applications and can be widely used in
digital and nanoelectronic devices. The bonding of graphene
to metal substrates can be classified into two groups [54, 56]:
(i) physisorption, in which the interaction between graphene
and metals, such as Ag, Au, Cu, Al and Pt(111) is weak and
preserves the graphene’s linear dispersion band and Dirac
cone. This weak adsorption on metal surfaces causes the
Fermi level to shift from the conical points in graphene,
leading to doping with either electrons or holes [56]. The
difference of the graphene and metal work functions is the
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Figure 1. Schematic diagram of a quantum plasma half-space: the
graphene sheet is located on the interface of plasma-vacuum at the
plane x = 0, and the surface wave is propagating along the interface
on y axis.

origin of this doping. The downward (upward) shift of Fermi-
level means that holes (electrons) are transfer from the metal
substrate to graphene (in order to equilibrate the Fermi
levels), which causes p-type (n-type) doping. Graphene is
p-type on Au and Pt and n-type on Ag, Al and Cu. (ii) che-
misorptions, the metals Co, Ni and Pd bind graphene so
strong that the electronic characteristics of graphene (the
characteristic conical point at K) are disturbed. In this work
we study the Au-graphene structure in which the basic
characteristics of graphane remain unchanged. The rapid
progress in this field necessitates a fundamental study of their
interfacial structural and electronic coupling, which could be
the key issue to determine their performance for engineering
applications [54], for more information see [54-58].

In this work, we investigate the effect of a graphene sheet
which exactly placed on the boundary of quantum plasma
half-space and vacuum (see figure 1), on the dispersion
relation of the plasma surface waves (SPPs).

The outline of this paper is as follows: after introduction,
in section 2, we derive the general dispersion relation of SPP
which is strongly affected by the existence of graphene on the
boundary and then, the dispersion relation is analyzed
numerically and discussed in section 3. Finally, the outcomes
of this paper are summarized in section 4.

2. Theoretical model

In grphene, two kinds of electrons named ¢ and 7 electrons
can support Plasmons. 2D Plasmons (also named low energy
Plasmons with energy <3 eV) which is responsible for
intraband transitions, can appear in doped graphene while two
other kinds of Plasmons (named as 7 and 7 + o) exist in
pristine graphene and also in higher energies (>3 eV) [58].
An interested frequency range for our model, cannot excite
these two types of Plasmons in graphene, therefore we just
focus on the metal (quantum plasma half-space) Plasmons. To
investigate the dispersion properties in a quasineutral colli-
sionless quantum plasma half-space (shown in figure 1)
consisting of motionless ions (as a neutralizing background)
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and fluid electrons, we use a macroscopic approach based on
the linearized fluid equations, which is valid just in the weak
7, < 0.1 and moderate 0.1 < r; < 1 coupling (in which
7, = e?/hvg is a quantum coupling parameter or fine structure
constant) [43], including the quantum statistical pressure and
the quantum electron tunneling (the second and the third term
in equation (4), respectively),

@—&-noVw:O, 3)
ot
2 2
X g Yy, M gy, @)
ot m ng 4m?n,

and the full set of the Maxwell-Poisson equations for the
electromagnetic fields,

V X E = fla—B, ®))
c Ot
v xp= 10 dmee, ©6)
c Ot c
V-B=0, (7
V - E = —4ren. 8)

In which n («ng) is a small electron density perturbation
in the equilibrium number density ng, e is the magnitude of
the electron charge, m is the electron mass and the
perturbed quantities v, E and B are respectively the electron
fluid velocity, the electric and magnetic fields. The surface
wave propagates on the interface (which covered by a
graphene layer) along the y axis. We will study the surface
transverse magnetic (TM) wave so the field components are
given by E = (E,, E,, 0) and B = (0, 0, B;). In the follow-
ing, by assuming that all the physical quantities vary as
P (x)exp(ikyy — iwt) in which ¥ (x) = [N (x); Uy (x); U, (x);
E.(x); Ey(x); B,(x)] and by employing the time-space
Fourier transformation of equations (3), (4) and (8),
and by neglecting of the very slow non-local variations, i.e.
(k;2(0*/0x*) < 9%/0x? < k) the following wave equation
for the electron density can be obtained as:

e,
[@ _ %]Nm o, ©)

where 7, = \/ kP + (wpe — w?) /\/ (Ve + 1%k} [Am?) defined
as wave number in wave equation for the electron density and
Wpe = +/(4mng e?/m) known as electron plasma frequency.
Then, the second-order differential equation for the magn-
etic field can be obtained by employing the Maxwell
equations (5) and (6) and the momentum equation (4), as follow:

& >[Bx)=0 10
@ -4, (x) =0, (10)
in which the wave number ¢, is given by

\/kyz + (Wl — WD) 2.
Equations (9) and (10) have the solutions of the fol-
lowing form:

Nx)=0 x<0, (11)

N,(x) = Aexp(—7px) x>0, (12)

B,(x) = Biexp(g,x), x <0, (13)

B,(x) = Brexp(—g,x) x>0, (14)
where g, = /kyz — (‘:—22) . By using the Maxwell equation (4),

the electric field of surface modes can also be obtained as
follows:

E,(x) = D;exp(q,x) x <0, (15)

E,(x) = Dyexp(—q,x) x> 0. (16)
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-
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In the aforementioned equations, D; and D, are con-
stants given by D, = Bl(—cw/kywz)(kyzf + ig,k,j) and
D, = Bz(cw/ky(wge—wz))(kff — iqpk),f), respectively.

In what follows, we just keep that part of solutions which
disappear by moving away from the boundary in both
regions. The boundary conditions for the electromagnetic
field components will be modified by the existence of gra-
phene sheet with conductivity o, on the plasma-vacuum
interface, in the following form:
a7

N Og
X X (szlx:()Jr - szlx:()’) = _Evylx:()’,
c

Evylx:O’ = pylx:0+~ (18)

By using the above matching conditions together with
the boundary condition v, = 0 at x = 0 for the electron
velocity, the dispersion relation of the surface modes on our
quantum plasma half-space system can be derived as follow:

2,2
ky Whe

ki P
(wz[l + ig, % (wge_wz))

+ pw(wh, — w?) = 0.

19)

To our knowledge, this is the first time that a dispersion
relation of SPP mode on a quantum plasma half-space with a
graphene sheet on the interface has been derived. In the
absence of graphene (o, — 0) this dispersion relation leads to
that obtained by Kaw and McBride [15] (in the absence of
quantum corrections) and Lazar er al [16] results. In the
following we assume overcritical density plasmas (which
happen in solid state plasma such as metals and semi-
conductors) by letting (ky2 Ve, + fzzk;} / 4m? < |W§e — W2,
and then equation (19) reduces to the following form:

2 w? 1

w? w? n 2k (62) 2 ﬁzk,\'z 2
2 2 2 2 Fe 2
Wpe — W kic W%e — W 4m

(20)
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Since in the standard metallic densities [59], quantum
effects do not affect the transverse electromagnetic comp-
onent of the surface modes, we restrict our attention to the
electrostatic part of the surface waves only. In the electrostatic
limit, or when ¢ — oo, the general dispersion relation (20)
leads to the following form:

Al
2 [l =+ iky%] \/Ewpe

(E + B2 /4m?)2 |,

21

Without quantum effects and in the absence of graphene
sheet, equation (20) yields to the equation derived by Ritchie
[14] for the surface electrostatic waves on a thermal plasma
half-space. Moreover, in the case of cold classical plasma
equation (21) leading to the well-known frequency of surface
Plasmons w = wy, / J2.

3. Numerical analysis

By introducing the dimensionless quantities: W = w/wy.,
J = (wpeT), K= kyVp/wp and the Plasmonic coupling
parameter as H = fiwpe /2m€v1§e, equation (21) can be
rewritten as follow:

w2 L1 4K

1
2R a+kHy
2 [1 +1K%] 2

(22)

In which the normalized conductivity &, define as
0, = 1B/ (W + 2iT71) where & = e*kpT /h*vpwpe and 3 =
(u./ksT) + 2 In(exp(—p, /ksT) + 1).

We depict equation (22) by using the typical values of
the gold metallic plasma at room temperature as follows
[16, 59]: ny =59 x 102cm™3, wp =137 x 100571
and vg, = 1.4 x 103 cm s~!. For physisorbed graphene on
Au metal, the mutual interaction is so weak that its electronic
structure is unchanged and just the Fermi level (or chemical
potential y.) shift from conical point and achieve to 0.2 eV
[54-56] and using 7 = 0.5 ps for relaxation time of charge
carriers [49-51]. Since graphene in our model supposed to be
ungated and doped in low densities by gold metal, the optical
conductivity of graphene is defined by intraband term of
conductivity (0, & Ojnra, €quation (1)). The above assump-
tions yields WJ > 1, which help us to approximate the
graphene conductivity (1) in the following form

_ _ g
0y = —. 23)
e = (

The above expression shows that the normalized con-
ductivity becomes a pure imaginary (pure real) quantity for
W3 > 1 (WJ < 1). In this case the wave frequency reduced
to the following form as

+ 4—12((1 + K2H2)‘/2). (24)
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Figure 2. The normalized frequency of the surface plasmon waves W
with respect to the normalized wave number K, for (a) H = 0.2 and
(b) H = 0.5, and different values of parameter ¢, as solid line refers
to B¢ = 0, dashed line refers to ¢ = 0.11, and dotted line refer

to B¢ = 0.2.

Then, in order to see how the frequency wave may be
affected by the presence of the thin graphene layer, the nor-
malized wave frequency W is depicted in figures 2 and 3, for
different values of 3¢ and H, respectively.

Figure 2 represents the normalized wave frequency W of
surface waves as a function of the normalized wavenumber K,
in the presence of graphene layer for different values of the
parameter (€. This figure represents that the frequency of
surface Plasmon waves experiences an enhancement due to
the presence of boundary graphene layer. For better com-
parison the Lazar er al [16] limit is included in this figure
(solid line). The up-shift of the wave frequency increases with
magnitude of the conductivity coefficient. The effect of the
Plasmonic coupling parameter is included in panels (a) and
(b) of figure 2. It is obvious that the wave frequency for
higher values of H is takes greater values.

To see an obvious influence of the quantum effects on the
wave frequency, figure 3 is depicted for different values of H,
beside the limits of Lazar et al [16] (marker o) and Ritchie
[14] (marker x), for B¢ = 0.11. It can be seen that the
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Figure 3. The normalized frequency of the surface Plasmon waves W
with respect to the normalized wave number K, for different values
of the Plasmonic coupling parameter H, as solid line refers to

H = 0.1, dashed line refers to H = 0.2, and dotted line refer to

H = 0.5. In this case g¢ = 0.11.

quantum effects beside the presence of boundary graphene
layer cause to increase the wave frequency. Therefore,
inclusion of the boundary graphene layer and quantum effects
makes the Plasmon waves faster than that reported in the
Ritchie limit [14].

It must be added that the results are significantly sensitive
to the work frequency, as the graphene conductivity at high
frequencies may be dominated by interband conductivity
formulation. In this limit the effect of boundary graphene
layer may be changed due to the interband conductivity.

4. Conclusions

In summary, we have employed a simple quantum hydro-
dynamic approach to investigate the dispersion properties of
surface Plasmon waves in semi-infinite plasma in the pre-
sence of a boundary graphene layer. In this context, all the
previous results are also recovered. At first approximation the
garaphene layer leads to discreteness in electromagnetic fields
at interface of plasma-vacuum. For typical numerical para-
meters corresponding to gold metal [16], the presence of
graphene layer enhances the wave frequency as well as the
phase velocity. This up-shift is similar to that causes by the
quantum effects. Thus, inclusion of boundary graphene layer
and quantum effects significantly affect the wave frequency
relative to the Ritchie limit. Consideration of different phy-
sical parameters that yield other interesting plasma situations
(such as degenerate plasma, relativistic plasma, etc) can be a
problem of interest, but is beyond of the scope of the present
study. Also, the coupling between the Plasmons in graphene
and plasma regions may be left for future investigation. The
results of present study must be contributed to the surface
plasma and modern nano-electronic investigations.
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