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Abstract
Building on the work of Giulini and Holzegel (2005 (arXiv:gr-qc/0508070)), 
a new numerical approach is developed for computing Cauchy data for 
Einstein’s equations  by gluing a Schwarzschild end to a Brill–Lindquist
metric via a Corvino-type construction. In contrast to, and in extension of, 
the numerical strategy of Doulis and Rinne (2016 Class. Quantum Grav. 
33 075014), the overdetermined Poisson problem resulting from the Brill 
wave ansatz is decomposed to obtain two uniquely solvable problems. 
A pseudospectral method and a Newton–Krylov root finder are utilized to
perform the gluing. The convergence analysis strongly indicates that the 
numerical strategy developed here is able to produce highly accurate results. 
It is observed that Schwarzschild ends of various ADM masses can be glued 
to the same interior configuration using the same gluing radius.

Keywords: general relativity, numerical relativity, initial-value problem

(Some figures may appear in colour only in the online journal)

1. Introduction

The theoretical possibility of gravitational-wave generation through the merger of two black 
holes has recently received spectacular confirmation through several earth-bound detections 
of gravitational waves by the LIGO-Virgo-Collaboration [1–3]. Also, these observations were
most recently complemented by the no less spectacular detection of the gravitational-wave 
signal from the merger of two neutron-stars [4]. From a theoretical point of view the problem 
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of modelling binary neutron-star systems differs drastically from the former insofar as it 
involves a complicated coupled system of differential equations that governs both, the dynam-
ics of the gravitational field and that of the neutron matter composing the stars. In contrast, the 
theoretical analysis of the dynamics of black holes ‘only’ involves the sourceless (i.e. vacuum) 
Einstein equations of general relativity. Hence, in terms of differential equations, black holes 
pose the much ‘cleaner’ problem.

But even in this ‘simpler’ case there are still unresolved mathematical issues of undeniable 
physical relevance in connection with the initial-value formulation of the matter-free field 
equations of general relativity. We recall that these are ten coupled non-linear but quasi-linear 
partial differential equations of second order for the ten components gµν of the space-time 
metric. Here, as usual, Greek indices range in the set {0, 1, 2, 3} and for definiteness we state 
that we use the ‘mostly-plus’ convention concerning the signature, though this will be irrel-
evant for the rest of this paper. This system of differential equations can be cast into the form 
of a Hamiltonian system (see, e.g. [5]) which reveals its hybrid-nature in the following sense. 
Six out of the ten equations are of (underdetermined) hyperbolic type and hence comprise 
the evolutionary content of Einstein’s equations, whereas the remaining four equations are of 
(underdetermined) elliptic type. The latter are constraints in the sense that they only involve 
the initial data and their spatial derivatives, but not their time derivatives. Hence they properly 
constrain the initial data themselves, rather than their evolution. In this paper we will be exclu-
sively concerned with these constraints.

There exists a considerably large body of knowledge concerning explicit analytic expres-
sions of solutions to the constraints representing initial data for two or more black holes. A 
classic paper is [6], in which initial data are given for two black holes without orbital and spin 
angular momentum at the moment of rest. For such ‘time symmetric initial data’ (vanish-
ing linear and angular momenta), and under the assumption that the Cauchy hypersurface is 
conformally flat, the constraints simply reduce to a single Laplace equation for the conformal 
factor; see, e.g. [5] for a review. Hence a whole arsenal of techniques, like Thomson’s method 
of images familiar from electrostatics, can be employed to construct solutions with various 
kinds of symmetries [7], even in the time-asymmetric case; e.g. [8, 9]. A modern comprehen-
sive reference explaining and comparing the various methods for general-data building is [10].

However, there is one physical issue that affects all these data alike, even the most simple 
ones, which usually goes under the name of ‘spurious’ or ‘junk’ radiation; compare, e.g. [11], 
section 3.2.35. That is to say, all these data already contain initial gravitational radiation that 
fills space up to infinity, as depicted in our figure 1. That radiation is clearly seen in numer
ical simulations, e.g. [12], and needs to be distinguished and separated from that radiation 
that is dynamically produced by the process of black-hole collision. Usually this is pragmati-
cally done by simply ignoring the radiation that identifies itself as being ‘spurious’—in the 
sense of not being produced in the scattering and merging process—by arriving too early at 
large spatial distances, that is, outside the causal future of the merging event; compare again  
figure 1. But for general data it cannot be expected that spurious and proper radiation will 
always emerge as two sufficiently localised and separated packages in time. A lack of sepa-
rability will clearly introduce uncertainties in the calculation of dynamically sourced radia-
tion energy. This happened, e.g. for the (non time-symmetric) Kerr–Schild data studied in 
[12]. Again in the non time-symmetric case it was observed in [13] that spurious radiation 
could be removed from the Bowen–York data [8] for spinning black holes by modification of 
the extrinsic curvatures, keeping however conformal flatness of the metric. As far as we are 
aware, there is no systematic insight connected with this observation. This also holds for the 

5 In what follows we shall regard both terms, ‘spurious’ and ‘junk’, synonymously, but shall mostly use ‘spurious’.
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suggestion made in [11] to the effect that for non time-symmetric data it is conformal flat-
ness that can be held responsible for such excess radiation. This was partially confirmed in 
[14], where admittance of conformal curvature was numerically observed to result in a 50% 
reduction. A possible way to understand why this could be the case may be contained in the 
geometric analysis of the behaviour of marginally outer trapped surfaces of individual holes 
after merging as given in [15], but this is presently also unclear. Only in some rare cases will 
intuition let us see more or less obvious physical reasons for spurious radiation due to initial 
data that more or less obviously mismatch the physical proper dynamical situation but which 
we nevertheless choose due to convenience. This happens, e.g. when we require the initial data 
of an orbiting binary system to start off with spatially closed orbits corresponding to a space-
time helical symmetry. This will be a good approximation for systems whose components are 
far apart. For close components, however, for which previous radiation reaction has already 
left its traces, the orbit is already an ispiraling one rather than perfectly circular at the moment 
we start to run the initial-value problem. Assuming circularity will then lead to spurious orbit 
eccentricities which, in turn, radiate off and give rise to what in this context has to count as 
spurious. See, e.g. chapter 9.4. of [10] and references therein.

All this puts into evidence that current pragmatic procedures, albeit efficient for many of 
the data sets of interest, are not entirely satisfying from a theoretical and conceptual point of 
view, where a proper theoretical understanding would certainly be much preferred against a 
case-to-case prescription based on no better insight than trial and error. Hence the question 
arises of how to systematically modify the known multi-black-hole initial data sets, so as to 
remove the spurious radiation while keeping the other aspects intact, like the presence of 
black holes, their masses, mutual distances, and possible other parameters. This is the ques-
tion addressed in this paper for the most simple case of the time-symmetric Brill–Lindquist 
two-hole data [6].

Figure 1.  Conformal (Penrose) diagram of spacetime with two spacelike hypersurfaces 
Σ and Σ′ ending at spacelike infinity i0 and future lightlike infinity I +, respectively. 
Σ depicts an asymptotically flat Cauchy surface, whereas Σ′ is asymptotically 
hyperboloidal and not Cauchy. u denotes the standard Bondi parameter along the null 
generators of I +. The difference between the ADM-mass of Σ (computed at i0) and 
the Bondi mass of Σ′ (computed at the intersection two-sphere between Σ′ and I +, 
here denoted by the point b) must be due to gravitational radiation escaping between i0 
and b. This radiation originates from the causal past P of the region i0b ⊂ I +, whose 
intersection with Σ is the region ai0. In this sense we say that the data on Σ contain 
radiation in that region. Any gravitational radiation emerging from an (quasi localised) 
event e, e.g. the formation of a black hole due to a binary merger, cannot reach I + 
before the intersection c of the future light-cone at e with I +. In that sense, any 
radiation reaching I + before c, like that explicitly shown in the figure, is considered 
‘junk’ or ‘spurious’.
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Analytically, the existence of initial gravitational radiation that spreads all the way to infin-
ity has been shown in [16] to relate to the Newman–Penrose constants [17] in case of time-
symmetric and conformally flat initial data sets. An explicit calculation performed in [16] 
showed that the Bondi mass mBondi can be expressed in terms of the ADM mass mADM and the 
five (generally complex-valued) Newman–Penrose constants G−2, G−1, G0, G1, G2 as follows:

mBondi = mADM +

k=2∑
k=−2

|Gk|2
(√

2
u

)7

+ O(1/u8).� (1)

Here u is the Bondi parameter (affine parameter along the null generators of future light-
like infinity I +) with u → −∞ approaching spacelike infinity i0; compare again figure 1. 
Note that the Bondi mass coincides with the ADM mass at i0, i.e. for u = −∞, as it must be, 
and lies below the latter for finite negative values of u, i.e. in a neighbourhood of i0 on I +, 
corresponding to outgoing gravitational radiation. To leading order the Bondi mass is mono-
tonically decreasing in any neighbourhood of i0 in I +, whereas the ADM mass is a proper 
geometric invariant of the 3-manifold Σ with asymptotically flat end at i0 [18].

Furthermore, it has been shown by the same author in [19] that non-vanishing Newman–
Penrose constants impose obstructions to smoothness in the transition from spatial infinity 
(i0) to null infinity (I ±). It has even been conjectured in [19] that such a smooth trans
ition requires the (time symmetric and conformally flat) data to be exactly Schwarzschild in 
a neighbourhood of i0, though recent work [20] on spacetimes admitting polyhomogeneous 
expansions of the metric at infinity (spacelike and null) suggests that the conjecture is false 
(too strong)6.

For us the desired modification of data would consist in removing all radiation outside 
some sphere and to maintain the old data set inside some smaller sphere still containing all 
the black holes. Their masses, distances etc would then be preserved. Clearly, a sufficient 
condition (possibly also necessary, if the conjecture mentioned above should indeed be true) 
for really removing the radiation and obtain a smooth future null infinity I + (at least in a 
neighbourhood of i0) is to modify the data outside the larger sphere so as to become exactly 
Schwarzschild (in the time symmetric case).

A priori it is not at all obvious that such a modification exists, as the data have to satisfy the 
mentioned constraints which are of (underdetermined) elliptic type. Fortunately, such a modi-
fication is indeed possible, as was shown in 2000 through a non-constructive existence proof 
[21]. The pattern of modification is precisely the one envisaged above, where outside a larger 
sphere one obtains the exterior Schwarzschild data, inside the inner sphere the restriction of 
the original data set, and in the annular region in between the two spheres one has some inter-
polating metric that furnishes a smooth transition between the two. The proof in [21] merely 
asserts the existence of a transition region without further control of its size, and the existence 
of a transition metric without further control of its properties.

An attempt to make this procedure explicit in the simplest case of the two-hole Brill–
Lindquist data was made in [22]. Since these initial data are axisymmetric, the central idea 
here was to also restrict the transition metric to a simple axisymmetric form of Brill waves 
[23]. A central concern of [22] was to find out whether this Corvino-like modification of the 
two-hole Brill–Lindquist data set using Bill waves could be used to reduce the overall ADM 
energy. This is not obvious since although one clearly removed all gravitational radiation 
outside the larger sphere, one possibly also re-introduces new one in the transition region, 
possibly by an inappropriate choice of the transition metric. On the other hand, one suspects 

6 We thank Piotr Chruściel for pointing this out.
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on physical grounds that such a reduction of energy should clearly be possible, given the exist-
ence of spurious radiation in the first place. Presumably one just has to make the right use of 
the large freedom in choosing the transition metric to achieve that end, but a clear proof that 
this is indeed possible was, and still is, missing. In this paper we contribute towards a decision 
on that question.

Building on ideas of [22] some recent numerical implementation [24, 25] found, somewhat 
surprisingly, no evidence that an overall mass reduction is indeed possible, though the con-
verse was also not ruled out and the question remained open. As the authors themselves admit-
ted, their approach severely restricted the set of transition metrics, thereby possibly missing 
out the ‘good ones’. Here we present a novel approach to the numerical implementation that 
allows to avoid the overdetermined nature of the boundary-value problems encountered in 
[24, 25]. This will allow a larger flexibility in choosing transition metrics, possibly including 
energy reducing ones. But that possibility still awaits being turned into reality.

2. The gluing construction

We will start with a short summary of the main statement in [21]. For any smooth, asymptoti-
cally flat, and scalar flat metric ĝ on Rn, n � 3, which is conformally flat at infinity and has 
positive mass M̂, and any compact set K ⊂ Rn, there is a scalar flat metric g on Rn which is 
exactly Schwarzschild near infinity yet satisfies g ≡ ĝ inside K. Here, ‘near infinity’ means 
outside a compact set. In the proof, a candidate metric g̃ is constructed which simply blends 
smoothly between the interior metric ĝ and a Schwarzschild end gS

M,c of ADM mass M and 
center of mass c7. This blending is confined to an annular region AR := B2R \ BR, where R 
is the gluing radius and BR is an open ball of radius R (with respect to the asymptotically 
flat coordinates). The candidate metric g̃ will then in general not be scalar flat, i.e. we have 
R(g̃) �= 0 on AR. Corvino now proves that for sufficiently large R there exists a mass M, center 
of mass c, and a smooth deformation h with support on AR such that R(g̃ + h) ≡ 0. Due to 
the localized nature of the gluing, the proof works for any conformally flat end of a scalar flat 
asymptotically flat metric ĝ, which includes non-trivial black hole data. However, the proof 
does not indicate how the deformation h or the parameters M and c of the Schwarzschild end 
can be obtained in practice.

In order to implement such a construction in a concrete case, Giulini and Holzegel [22] 
glue a Schwarzschild end, i.e. a spacelike t = const slice of an exterior Schwarzschild metric 
in isotropic coordinates,

gS
M = (ψS

M)
4 δ :=

(
1 +

M
2‖x‖

)4

δ,� (2)

to a Brill–Lindquist interior metric

gBL = (ψBL)4 δ :=
(

1 +
m

2‖x − x0‖
+

m
2‖x + x0‖

)4

δ,� (3)

where x0 = (0, 0, d/2)T and δ is the flat 3-metric. Equation (3) describes two black holes of 
equal mass at the moment of time symmetry with positions on the z-axis symmetrical about 
the coordinate origin, justifying our choice of c = 0 for the Schwarzschild end in (2). Note 

7 We recall once more that the ADM mass is a proper geometric invariant of a manifold with end, if the end is 
asymptotically flat in a suitable sense; see [18]. In case there are more such ends, there is one ADM mass for each 
end.
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that at spatial infinity ‖x‖ → ∞ (2) and (3) have ADM masses M and 2m, respectively. The 
metric (3) has two more asymptotically flat ends for x → ±x0, the ADM masses of which are 
equal and given by m(1 + m/2d), which are to be identified with the masses of the individual 
holes. Hence the overall ADM mass of (3) (at spatial infinity) differs from the sum of the indi-
vidual ADM masses by the amount  −m2/d, which is to be interpreted as the binding energy 
of the two holes.

Since both gS
M  and gBL have cylindrical symmetry, the initial blending can be performed 

using a conformally transformed Brill wave [23], which is the most general axisymmetric 
3-metric. In spherical polar coordinates it reads

gBrill = ψ4 (e2q (dr2 + r2 dθ2)+ r2 sin2 θ dφ2) .� (4)

Here, ψ and q are functions of r and θ satisfying the following conditions stated in [23]:

q = 0 for θ = 0 and θ = π (on the z-axis),� (5a)

∂q
∂θ

= 0 for θ = 0 and θ = π (on the z-axis),� (5b)

q ∈ O(r−2) for r → ∞,� (5c)

and

ψ > 0 everywhere,� (6a)

ψ − 1 ∈ O(r−1) for r → ∞,� (6b)

∂ψ

∂θ
= 0 for θ = 0 and θ = π (on the z-axis).� (6c)

One possible choice for a conformal factor ψ realizing a smooth blending between gBL and 
gS

M  would be

ψ(r, θ) = β(r, θ) ψBL(r, θ) + (1 − β(r, θ)) ψS
M(r),� (7)

where β is any smooth cutoff function in AR satisfying

β(r, θ) =
{

1 for r � R
0 for r � 2R,� (8a)

∂nβ

∂rn = 0 for all n � 1 and r = R or r = 2R,� (8b)

∂β

∂θ
= 0 for θ = 0 and θ = π.� (8c)

The first condition ensures that we blend from the Brill–Lindquist to the Schwarzschild con-
formal factor inside AR, while the second condition guarantees smoothness of the radial blend-
ing. The third condition follows from (6c).

Note that a choice of the form (7) and q ≡ 0 just corresponds to a candidate metric g̃ for 
which, in general, R(g̃) �= 0 in AR. However, if we assume the final glued metric g = g̃ + h 
to preserve the cylindrical symmetry, then it can also be expressed in the form of (4), i.e. 
g̃ + h = gBrill  for some choice of ψ and q. Inserting now (4) into R(gBrill) = 0, we get

D Pook-Kolb and D Giulini﻿Class. Quantum Grav. 36 (2019) 045011
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(
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂θ2

)
q(r, θ)

= −4ψ−1
(

∂2

∂r2 +
1
r
∂2

∂θ2 +
2
r
∂

∂r
+

cot θ

r2

∂

∂θ

)
ψ(r, θ),

�

(9)

which can be read as a 2-dimensional Poisson equation for q

∆(2)q = f := −4
∆(3)ψ

ψ
.� (10)

If equation (10) is solved with suitable conditions on q and ψ, the scalar curvature vanishes 
everywhere and the gluing has been performed.

2.1.  Boundary conditions

We require gBrill to be equal to gS
M  for r � 2R and gBL for r � R. This means that q  =  0 

and ∆(3)ψ = 0 outside AR, thereby trivially satisfying (10). Hence, equation  (10) is to be 
solved on AR only, which, due to the cylindrical symmetry, reduces to the half annular plane Ω 
depicted in figure 2. Smoothness of gBrill then implies

q = 0 for r = R and r = 2R (on the radial boundary),� (11a)

∂nq
∂rn = 0 for all n � 1, r = R and r = 2R.� (11b)

For the same reasons, conditions (11) also apply to ∆(3)ψ and hence to f . Fortunately, this sim-
plifies the conditions for q: if (11) holds for n  =  1, then by equation (10) it holds for any n  >  1. 
Combining this with (5), the complete boundary conditions for q consist of homogeneous 
Dirichlet and homogeneous Neumann conditions on ∂Ω. Clearly, this makes equation (10) 
overdetermined since the pure Dirichlet problem on Ω already has a unique solution, see 
theorem 4.3 in [26]. Therefore, the task is now to find a conformal factor ψ blending smoothly 
from ψBL to ψS

M such that (10) has a solution q satisfying Dirichlet and Neumann conditions. 
In [22] this is called the DN-problem and a solution q a DN-solution.

3. The numerical strategy

An analytical treatment of the DN-problem has been carried out in [22] where an approx
imation result could be obtained. The objective of the present paper is to present a strategy for 
numerically approximating DN-solutions and find explicit values of the glued Schwarzschild 
mass M.

Figure 2.  Half annular plane Ω on which to solve equation (10).

D Pook-Kolb and D Giulini﻿Class. Quantum Grav. 36 (2019) 045011



8

3.1.  Previous results

The first step towards a numerical solution has been made by Doulis and Rinne in [24] and 
[25] and the strategy here extends and corrects their results. Specifically, Doulis and Rinne 
employ a numerical method to find a mass M and a gluing function β based on iteratively 
solving problems that are still overdetermined, i.e. in each step they impose a Neumann con-
dition on ∂Ω and additionally a Dirichlet condition on the arches at r  =  R and r  =  2R. With 
these boundary conditions, the Poisson equation  (10) has no solution on Ω in general; see 
section 2.1.

To determine whether it is still possible that the numerical search converges to an existing 
solution, Doulis and Rinne carry out convergence tests on their results. Since the solutions are 
computed using a pseudospectral method, the expected behaviour is exponential convergence of 
the numerical solutions to the exact solution for increasing resolution. An approximation of the 
error of a particular numerical solution is given by the last coefficient of the expansion of the solu-
tion into the chosen basis functions [27]. This argument applies to one-dimensional problems. For 
higher dimensions, one typically chooses a particular basis set for each dimension and expands 
the solution into the tensor product basis. The coefficients of solutions of two-dimensional prob-
lems then become a matrix (akl), k = 0, . . . , K, l = 0, . . . , L, where K and L define the resolution, 
i.e. the number of basis functions to consider. The question now is how to approximate the error 
using the ‘last coefficient’ in case of a coefficient matrix. In [25], Doulis and Rinne choose aKL 
and plot how it decays exponentially in K when increasing K and L at the same time. They also 
plot how the L2-norm of the difference between lower resolution solutions and a reference solu-
tion of high resolution decays.

We were able to reproduce this strategy and obtained very similar results at the resolutions 
mentioned in [25]; see figure 3. Even though we can closely match the convergence of the aKL 
coefficient (figure 4(a)), we observe poor convergence of the coefficient aK0, i.e. in the radial 
direction, especially at higher resolutions (figure 4(b))8. Furthermore, the conformal factor ψ 
numerically determined in this process does not pass the criterion of equation (13) developed 
in the following subsection. In light of these results, we were not able to confirm that the 
numerical strategy presented in [25] successfully produces DN-solutions.

3.2.  Our strategy

The basic idea here is as follows. An ansatz of the form (7) is perturbed by a function χ(r, θ), 
i.e.

ψ(r, θ) = β(r, θ) ψBL(r, θ) + (1 − β(r, θ)) ψS
M(r) + χ(r, θ),� (12)

such that the DN-problem is solvable. This latter condition is tested by decomposing the full 
DN-problem into two problems, each having an existing and unique solution. The first prob-
lem is obtained by taking (10) and imposing a Dirichlet condition just on the arches, and a 
Neumann condition just on the z-axis for θ = 0 and θ = π. This problem is uniquely solvable 
(see e.g. remark 2.1 in [28]) and we will call its solution a dn-solution qdn. The second prob-
lem is obtained by exchanging the boundary conditions and imposing a Neumann condition 
on the arches and a Dirichlet condition on the z-axis. Solutions of this problem will be called 
nd-solutions qnd. If, for some particular χ and M, we have

8 The cause is most likely the very wide bump-type function, which is constructed with b1 = b2 = 10−2 , see equa-
tion (3.2) in [25]. At low radial resolutions, the collocation points do not sample this function and its derivatives 
sufficiently fine enough, such that the Neumann condition is effectively ignored.

D Pook-Kolb and D Giulini﻿Class. Quantum Grav. 36 (2019) 045011
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qdn ≡ qnd,� (13)

then both solutions satisfy Dirichlet and Neumann conditions on ∂Ω and hence solve the 
DN-problem. On the other hand, if (13) is not satisfied, then equation (10) has no DN-solution.

Naturally, the conditions to impose on χ are directly related to those of ψ. Specifically, 
we require ∂χ/∂θ = 0 on the z-axis and that χ be of bump-type in the radial direction, i.e. 
∂nχ/∂rn = 0 for all n � 0 on the arches.

Figure 3.  Result of our implementation of the strategy of Doulis and Rinne 
corresponding to the case of figure 6(b) in [25] (i.e. m  =  2, d  =  10, R  =  100). Shown 
is the numerical solution q of the Poisson problem (10) after the gluing function β(r, θ) 
had been determined as in [25] at the same numerical resolution of K  =  L  =  25. The 
found ADM mass is M = 4.000 027 17.

Figure 4.  Convergence of three different choices of a ‘last coefficient’ for numerical 
resolutions of (a) K = L =: N  and (b) L = �K/3� (i.e. the integer part of K/3). As 
explained in section 3.3, the π/2-symmetry effectively removes half of the coefficients 
in the angular ‘direction’, leaving in the end �K/2� significant angular coefficients for 
case (a) and �K/6� for (b). The scale on the right of each plot is normalized with respect 
to the largest coefficient of the solution of highest resolution. As can clearly be seen in 
both cases, the coefficient aKL converges most rapidly and does not reflect the fact that 
we have poor convergence in the radial direction. Since the values of the aK0 curve in (b) 
are far away from the floating point roundoff plateau, one may question convergence and 
instead assume that at the higher radial resolutions, the very wide bump-type function 
used in [25] starts to get sampled fine enough such that the overdeterminedness of the 
equation begins to show an effect.

D Pook-Kolb and D Giulini﻿Class. Quantum Grav. 36 (2019) 045011
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We still have to consider that the ADM mass M of the glued Schwarzschild end cannot be 
chosen arbitrarily—Corvino [21] just proves that there exists a mass such that the gluing can 
be done. This fact manifests itself in the current construction as follows. The DN-solution will 
also be a pure Neumann solution of the Poisson problem. But for such a solution to exist, the 
compatibility condition

∫

Ω

f d3x = 0� (14)

has to be satisfied, as can easily be seen when integrating equation  (10) over Ω and using 
Gauss’s theorem on the left-hand side. Note that the mass M enters the inhomogeneity f  
through ψS

M in the ansatz (12). We therefore read (14) as a condition for M. In [25], Doulis and 
Rinne obtain an equivalent condition,

M =

∫ π

0

∫ ∞

0

[(
∂rψ

ψ

)2

+

(
∂θψ

rψ

)2
]

r2 sin θ dr dθ,� (15)

which they call the integrability condition. Again, equation (15) is not an identity, since the 
mass also enters the integrand through ψ. As this condition is necessary for a Neumann solu-
tion to exist, there can be no choice of χ leading to a DN-solution unless it is satisfied.

3.3.  Numerical setup

Mathematically, the task is to find a ‘root’ of the map (χ, M) �→ qdn − qnd. To guarantee the 
bump-condition for χ, we use the ansatz

χ(r, θ) = Bχ(r) χ̂(r, θ),� (16)

where Bχ is a bump-type function of the form

B(r) := sech(s(r)), s(r) :=
R
2

(
b1

r − 2R
+

b2

r − R

)
,� (17)

for some b1, b2 > 0. For χ̂ we use a truncated expansion into a product basis of Chebyshev 
polynomials Tn and cosines,

χ̂(r, θ) =
Nr∑

i=0

Nθ−1∑
j=0

aχij Ti(x(r)) cos(2jθ).� (18)

Here, the linear map x : [R, 2R] → [−1, 1],

x(r) =
2
R

r − 3,� (19)

is used to transform the problem to the domain of the Chebyshev polynomials and the cosines 
are used to impose ∂χ/∂θ = 0 on the z-axis. We choose just the even cosine frequencies due 
to the π/2-symmetry of the whole problem resulting from the choice of equal masses of the 
two Brill–Lindquist black holes.

Using (18) to define χ̂ means that we have N = (Nr + 1)Nθ degrees of freedom, which can 
be used to either control the coefficients aχ

ij  directly, or to specify values χ̂ should have at, for 
example, the N different Gauss–Lobatto collocation points (r(xi), θj), where r(x) is the inverse 
of (19) and
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xi = cos

(
πi
Nr

)
, i = 0, . . . , Nr,

θj =
πj

2Nθ
, j = 0, . . . , Nθ − 1.

�
(20)

For a particular χ, we numerically compute M by finding the smallest value M  >  0 satisfy-
ing the integrability condition (15).

Finally, we need to have highly accurate numerical solutions for qdn and qnd in order to 
evaluate their difference. Similar to [25], we choose the pseudospectral method [27, 29] and 
expand the two solutions into Chebyshev polynomials for both r and θ

qnd(r, θ) =
Nq

r∑
i=0

Nq
θ∑

j=0

adn
ij Ti(x(r)) T2j(y(θ)),

qdn(r, θ) =
Nq

r∑
i=0

Nq
θ∑

j=0

and
ij Ti(x(r)) T2j(y(θ)),

�

(21)

where the resolution Nq
r , Nq

θ  is independent of the resolution Nr, Nθ of χ̂. Here, y(θ) := 2θ/π − 1 
transforms the angular range to the domain of the Chebyshev polynomials and we have used 
only the even polynomials to accommodate the π/2-symmetry. By choosing Chebyshev poly-
nomials for the angular ‘direction’, we have the required freedom to impose any kind of 
boundary condition on the z-axis. For the dn- and nd-problems, all boundary conditions are 
imposed in the standard way by replacing rows in the resulting pseudospectral matrix equa-
tion. Again, we use Gauss–Lobatto points for x and also for y , for which they reduce to

yj = cos

(
πj

2Nq
θ

)
, j = 0, . . . , Nq

θ .� (22)

3.4. The root search

The search for χ and M is carried out as follows. Let v ∈ RN be the vector encoding the N 
degrees of freedom of χ̂, e.g. by specifying the values of χ̂ on the grid (20) of Gauss–Lobatto 
points. This is transformed to spectral space providing the coefficients aχ

ij . With χ fixed, we 
use the integrability condition (15) to determine M. In case no such mass exists (there are 
cases in which (15) cannot be satisfied by any M), the search cannot continue at this point, 
but this usually only occurs for too small gluing radii R. With χ and M, we can evaluate the 
inhomogeneity f  of the Poisson equation  (10) and compute the two solutions qdn and qnd 
with the pseudospectral method. Sampling the difference qdn − qnd on the Gauss–Lobatto 
grid of χ̂ results in N values which constitute the vector w ∈ RN . Note that this defines a map 
F : RN → RN , v �→ w.

Let ε be the greater of the two absolute errors of qdn and qnd, i.e.

ε := max{‖qdn − qexact
dn ‖∞, ‖qnd − qexact

dn ‖∞}.� (23)

We consider v∗ to be an approximate root of F if ‖F(v∗)‖∞ � ε. Recall that the resolution 
Nr, Nθ of χ̂ also controls the grid on which qdn − qnd is measured. If this resolution is high 
enough, we will have ‖F(v∗)‖∞ ≈ ‖qdn − qnd‖∞ and hence

‖qdn − qnd‖∞ � ε.� (24)
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If condition (24) is satisfied, we cannot determine—at least at the chosen resolution Nq
r , Nq

θ  
of the pseudospectral solutions—whether there is any difference between qdn and qnd. We will 
then call them identical, thus a DN-solution, within the numerical limits. Naturally, one aims 
to choose the highest feasible resolution Nq

r , Nq
θ  in order to obtain a low value of ε.

To find a root v∗ of F, we use an approximate Newton search, the Newton–Krylov algo-
rithm [30], which is suitable for high-dimensional problems. Figure 5 shows the basic scheme 
of the numerical strategy. In order to enable the Newton–Krylov search to succeed, it turned 
out that we had to employ means to avoid high-order contributions in the expansion of χ̂ at 
the beginning of the search. This is accomplished by starting with a low resolution for χ̂ and 
applying a low-pass filter, i.e. effectively damping the coefficients aχ

ij  for higher i, j. In suc-
cessive Newton–Krylov runs, each taking only one approximated Newton step, the resolution 
of χ̂ and the dimension of the Krylov-subspace are increased and the damping reduced until 
the target configuration is reached. At this point, the Newton–Krylov algorithm takes as many 
steps as required to satisfy condition (24).

Most of the code implementing this strategy has been written from scratch in Python includ-
ing the pseudospectral method. Library routines of SciPy [31], NumPy [32], and mpmath [33] 
were used for the root finding, integration, and matrix equation solving.

3.5. Testing the convergence on an exact solution

A crucial aspect of the above strategy is to obtain both a high accuracy and a good estimation 
of the error ε of the pseudospectral solutions qdn and qnd. The first of these goals is achieved by 
choosing a sufficiently high resolution Nq

r , Nq
θ , while for the second goal we employ a detailed 

convergence analysis and compare the solutions with a known exact solution of a very similar 
problem. Such a test problem is provided by the analytical solution for an approximated inho-
mogeneity f  obtained in [22]. For the case M  =  2m, an explicit solution formula can be given. 
To this end, consider the ansatz (7) for ψ and choose β as

β(r, θ) = α(r) + µ(r) sin2 θ,� (25)

where α satisfies (8a) and (8b) and µ is of bump-type. Expanding now the inhomogeneity in 
the inverse gluing radius R up to first order, Giulini and Holzegel obtain an ordinary differ
ential equation for µ and conditions for α. For M  =  2m, the result can be written as (see [34])

∫ 2R

R
t−(2−

√
3)α′(t) dt = 0,

∫ 2R

R
t−(2+

√
3)α′(t) dt = 0,� (26a)

Figure 5.  Diagram showing the numerical strategy for finding a DN-solution.
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µ(r) =− 1
2

r2α′′(r) +
3
2

rα′(r)

+

∫ r

R
α′(t)

(
3 + 2

√
3

2

( r
t

)2−
√

3
+

3 − 2
√

3
2

( r
t

)2+
√

3
)

dt.
�

(26b)

To satisfy the conditions (26a) for α we choose

α(r) = α0(r) + Bα(r)(c0 + c1r),� (27)

where Bα is a bump-type function of the form (17) and α0 is given by

α0(r) :=
1
2
(
1 + tanh(s(r))

)
.� (28)

The constants c0, c1 are found via a simple Newton search for a root of the map (c0, c1) �→ (I1, I2), 
where I1, I2 are the numerical values of the integrals in (26a). Using the results of [22], one 
can then easily write down the exact solution q̃ of the approximated problem in terms of α and 
µ. Note that q̃ is a DN-solution and that we therefore expect the pseudospectral solutions q̃dn 
and q̃nd of this approximated problem to coincide.

Figure 6 shows that this is in fact the case up to a remaining roundoff error of about 10−17 
and that the convergence for increasing resolution is exponential as would be expected. It also 
exhibits the typical roundoff plateau which occurs when the floating point errors dominate. 
Note that figure 6(b) provides a very good estimate of the accuracy despite being a purely 
intrinsic test without knowledge of the exact solution q̃ of the approximated DN-problem.

4.  Numerical results

Here we present numerical results for the non-approximated DN-problem. Starting the 
search for χ and M with the ansatz (12) for ψ and choosing β(r, θ) = α0(r) as in (28) with 
b1 = b2 = 2 and the configuration d  =  10, m  =  2, and R  =  5000, we obtain a solution for the 
deformation χ depicted in figure 7(a). During the search, the resolution for the pseudospectral 
solutions has been chosen to be Nq

r = 160, Nq
θ = 26. Figure 7(b) shows the dn-solution qdn, 

which is close to the nd-solution qnd with ‖qdn − qnd‖∞ ≈ 2.4 × 10−19. This is compatible 

Figure 6.  Convergence of the pseudospectral solutions q̃dn and q̃nd to the exact solution 
q̃ in (a) and to the solutions q̃ ref

dn  and q̃ ref
nd , respectively, in (b). The reference solutions 

for (b) were computed with a resolution of Nq
r = 280. For all solutions, we chose Nq

θ 
to be the integer part of Nq

r /6. The following parameters were used: d  =  10, m  =  2, 
M  =  2m  =  4, R  =  5000, and b1 = b2 = 2 for both α0 and Bα.
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with the accuracy read off from figure 8 such that condition (24) is satisfied and therefore 
provides a strong indication that this solution is close to an exact solution of the DN-problem. 
The ADM mass M of the glued Schwarzschild end in this result reads

M = 2m + (7.5620 ± 0.0001)× 10−10.� (29)

Using the same interior configuration m, d, and gluing radius R, but different search param
eters (initial resolution for χ̂, etc), we were able to find different combinations of deformations 
χ and ADM masses M which still satisfy the condition (24). The masses found thus far range 
from about 2m + 1.8 × 10−11 to 2m + 4.7 × 10−8. We emphasize that these different masses 
were glued with the exact same gluing radius R. Studying the dependency of this glued mass 
on the gluing radius as done in [25] therefore seems not to be reasonable in our case, as it is 
unclear how the specifics of the solution strategy enter the distribution of the masses we find.

5.  Conclusion

The above results provide strong indication that the presented numerical strategy is able to 
successfully produce a highly accurate gluing of a Brill–Lindquist interior to the exterior 

Figure 7.  Solution of the numerical search for χ depicted in (a). In (b), the dn-solution 
is shown which is equal to the nd-solution within the numerical limits.

Figure 8.  Convergence of the dn- and nd-solutions to the reference solutions q ref
nd  and 

q ref
nd , respectively, computed with Nq

r = 280, Nq
θ = 46.
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Schwarzschild metric, so as to everywhere satisfy the time-symmetric vacuum constraints. 
Moreover, the way this strategy is set up leaves a large freedom for how the final gluing is 
done. As this freedom is a genuine feature of Corvino’s construction [21], it should clearly be 
preserved, at least to some extent, in any more or less faithful numerical implementation, like 
the one presented here. This freedom then opens up the possibility to impose further condi-
tions on the gluing, depending on the desired properties one wishes the final metric to share. 
One such property, that we already used as motivation in the introduction, is the minimisation 
of the ADM mass of the glued Schwarzschild end. Such a minimisation is taken to signal the 
removal of spurious gravitational radiation. On the other hand, it seems clear that just picking 
some gluing function will generically add rather than subtract gravitational waves and hence 
result in overall masses M  >  2m, as we have seen above and as was also seen in [25]. But, as 
shown in our paper, numerical implementations exist which preserve the freedom of Corvino’s 
construction to a large extent and which may eventually be used to adjust the gluing so as to 
actually reduce the overall mass M below 2m. Presently we do not know how to effectively 
translate such an energy-minimisation condition into the numerical strategy in a systematic 
(i.e. not just based on trial and error) way, but our work suggests that this should be possible. 
Looking further ahead we mention that the original gluing construction, devised in [21], can 
be generalised to non time-symmetric data representing spinning black holes. This has been 
shown in [35], where the exterior metric one glues onto is now a slice of Kerr spacetime. This 
may eventually help in gaining proper analytic understanding of how to remove spurious 
radiation in the physically most relevant cases, that of binary systems with orbital and spin 
angular momenta. But we believe that before that more difficult problem can be attacked one 
should seriously try to first gain a decent analytic understanding of the admittedly idealised 
situation investigated here.

Last, but not least, we mention that quite independently of the question of mass reduction, 
Corvino-type gluing constructions may generally find interesting applications in numerical 
evolution codes. Being exactly Schwarzschild in a neighbourhood of spatial infinity, smooth 
null infinities I + are guaranteed. This allows evolutions of hyperboloidal slices extending to 
I +, which in turn enable unambiguous extractions of gravitational radiation data. A detailed 
description of such a scheme is provided by Doulis and Rinne in [25].
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