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Abstract — Considering the time-varying selection criterions of neighbors, we propose a dynamic
interaction strategy to determine interactive neighbors based on aspiration payoffs. Under this
strategy, interactions decide the aspiration payoffs and interactive payoffs, after that, the group
is divided into high-payoff and low-payoff subgroups. And individuals in the same subgroup
constitute the interactions in turn, which indicates an internal feedback mechanism. Based on
the spatial prisoner’s dilemma game, simulations show that the introduction of this interaction
strategy successfully delays the extinction of cooperators. And cooperation is enhanced at appro-
priate aspiration levels but suppressed with high temptations. Moreover, under an appropriate
aspiration level, high-payoff cooperators are able to expand the scale of cooperator clusters and
low-payoff cooperators maintain the stability of cooperative behaviors by both forming an isola-
tion belt around cooperator clusters and promoting the appearance of high-payoff cooperators,

which blocks the invasion of defectors and leads to a state of complete cooperation.

Copyright © EPLA, 2020

Introduction. — Though the phenomenon of coopera-
tion is widespread in real life, it is still a huge challenge to
fully understand the internal mechanism [1,2]. Evolution-
ary game theory provides a powerful framework for this
kind of problem [3-5]. Network reciprocity [6,7], one of
the mechanisms to explain the emergence of cooperation,
together with the classic games, describes the evolution of
self-behaviors in social networks vividly. Network struc-
ture provides the game environment. A large number of
studies indicate that the network structure plays an im-
portant role in the study of cooperative behaviors [6,8-13].
The incentive mechanism, another important factor to
study cooperation by introducing other means such as
punishment, also has significant effects on promoting co-
operative behaviors [14-16].

Individuals usually interact with all neighbors to obtain
accumulate payoffs. However, they tend to interact with
some neighbors in reality, and these interactions change
with time. In other words, the interactive network is a dy-
namic subset of the fixed social network. Based on these
backgrounds, the influence of limited interaction on coop-
eration is gradually getting attention. Traulsen et al. [17]
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used probability to expand deterministic interactions into
random interactions in a finitely well-mixed group. Chen
and Wang [18] utilized the reputation attribute of indi-
viduals with tolerance to select neighbors. Chen et al. [19]
used the interaction probability p to select neighbors, and
get an optimal strong interaction region. Further, Chen
and Szolnoki [20] regarded personal wealth as the crite-
rion for whether individuals participate in the game, and
concluded that the cooperative behaviors can become the
dominant strategy within a broader parameter interval.
Julia Poncela et al. [21] used the concept of association
ability to select interactive neighbors. Wu et al. [22] ex-
ploited degree-based and reputation-based mechanisms to
select interactive neighbors.

Besides, aspiration is also useful for selecting partners.
Aspiration [23] is firstly used in the deterministic win-
stay-lose-shift (WSLS) strategy updating rule, which is
called innovative strategy [24], and then mainly applied
to fusion with other strategy updating rules [25-27] af-
ter changing into the form of owning fault tolerance [28].
Based on the aspiration, Perc and Wang [29,30] explored
the synergistic effects of diverse strategy sources to be
copied by individuals on cooperation. Shen et al. [31] fo-
cused on how the changing link weight based on aspiration
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affects cooperators. Li et al. [32] studied the influence of
conditional participation on cooperative behaviors. In-
spired by these researches, this paper studies the dynamic
aspiration-based interaction strategy in the spatial pris-
oner’s dilemma.

Model. — Different from other selections, interaction
strategy here is a kind of iteration process. Individuals
gain their current interactive payoffs and aspiration
payoffs after playing games with their selected neighbors.
These selected neighbors depend on both the aspiration
payoffs and interactive payoffs in the last step. To be
clear, we suppose that social network N describes con-
nections among individuals, and the interactive network
K depicts interactions among individuals. Initially, the
interactive network K is the social network N, then
becomes a dynamic sub-network of N during the selection
process. We assume that neighbors of individual ¢ in N
and K are sets N; and K! in t step, respectively. The
number of social neighbors and interactive neighbors of i
are |N;| = n; and |K}| = k!, respectively, here k! € [0, n;].
The interactive payoff of i are Pf =Y JEK? Pitj_1 and the
aspiration payoff of i is P}y = kf x A [33]. P/;" represents
the interactive payoff of i after playing the game with
the interactive neighbor j in (t — 1) step. A indicates the
aspiration level of individual 7. Thus, when P} > P},, j
is an interactive neighbor of ¢ in (¢ + 1) step if and only
if P{ > P},, and vice versa, namely individuals only play
games with homogeneous neighbors. This selection rule
of interactive neighbors is

P < P;A, if P!<Pl,.
The number k! of interactive neighbors in (¢ + 1) step
can be obtained by the relationship between interactive
payoffs and aspiration payoffs of both individual ¢ and his
n; neighbors in ¢ step.

When A > 0, all individuals in the group are in a
dynamic interaction game since individual ¢ updates his
strategy in each time step, and thus his interactive neigh-
bors change with time. Consequently, though the aspi-
ration level A is fixed, the interactive network K keeps
changing. When A = 0, the interactive network K is al-
ways equivalent to the social network N during the selec-
tion process and this dynamic evolution selection process
reduces to the classic spatial prisoner’s dilemma game.

Individuals whose interactive payoffs are not lower than
their aspiration payoffs are defined as high-payoff individ-
uals, otherwise defined as low-payoff individuals. This in-
teraction strategy indicates that a group is divided into
high-payoff and low-payoff subgroups. The subgroups are
depicted in fig. 1. As individuals in subgroups change with
time, aspiration payoffs and interactive payoffs of individ-
uals also alter with the number of interactive neighbors in
this paper.

For simplicity, we simulate this interaction strategy
in prisoner’s dilemma game. The re-scaled payoff matrix

Low-payoll
subgroup

High-payoll
subgroup P

Fig. 1: A simple sketch of the interaction strategy in the evo-
lutionary game. Small circles represent eight individuals in V.
All solid lines represent the connections among individuals
in N. All solid lines except for the black one constitute inter-
actions among individuals in K. In addition, the solid line in
blue (brown) means interactions in the low-payoff (high-payoff)
subgroup, and the black one means there is no interaction be-
tween heterogeneous individuals. Therefore, both individuals ¢
and k have four social neighbors, but only interact with three
neighbors in the game.

depends on one single parameter b: T = b, R = 1, and
P =5 = 0. brepresents the temptation to defect and is in
the range (1,2]. Individuals use the Fermi rule to update
strategies. Thus, individual 7 in the above assumption
randomly selects a learning object among n; neighbors.
Let the individual j be the learning neighbor selected by
i in t step, then the individual i adopts the strategy of j
with the probability of W (S} — S in (t + 1) step:

1
(1+ exp([P} = Pf]/r))’

W (St — St = (1)

where Sf“ and S! means the strategy of individual ¢ in
(t+1) step and j in ¢ step, respectively. P} and P} is the
interactive payoff of individual ¢ and j in ¢ step, respec-
tively. The parameter k represents the amplitude of noise
and is set to 0.1 in the following simulation.

Simulation results. — We simulate this model on a
square lattice of size 100 x 100. Initially, strategies of
individuals are randomly selected from cooperation (C)
and defection (D) with the probability 0.5. Each individ-
ual updates his strategy synchronously after interactions.
To overcome the randomness, the process is carried out
for 100 Monte Carlo simulations and each contains 10000
time steps. Simulation results in the equilibrium state are
averaged over the last 100 time steps.

Figure 2 shows the density of cooperators as a func-
tion of iterations for distinct aspiration levels. Com-
pared with the results in classic spatial prisoner’s dilemma
game represented by A = 0 [34,35], the introduction of
this aspiration-based interaction strategy has successfully
slowed the spread of defections. When A is 0.3 and 0.5,
respectively, cooperators decrease first, then increase, and
finally keep a certain proportion, and the group reaches a
state of complete cooperation when A = 0.7. Thus, there
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Fig. 2: Time evolution of the density of cooperators for differ-
ent aspirations. We use the square lattice of size 100 x 100
as the social network N. The temptation b is 1.1. The aspira-
tion level A changes from 0.1 to 1.1 at intervals of 0.2. When
A = 0, the game reduces to the classic one [34]. Group reaches
complete cooperation when A = 0.7.
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Fig. 3: Equilibrium density of cooperators as a function of
temptation b under varied aspiration levels in (a) and aspira-
tion level A under different temptations in (b). A lies in the
range [0.1,1.1] at intervals of 0.2, and A = 0 is given as a
contrast. b lies in the range [1.1,1.5] at intervals of 0.1. Coop-
erators are enhanced at appropriate aspiration levels and are
suppressed with high temptations.

exists an appropriate aspiration level that makes cooper-
ation become the dominant strategy in the group.

Figure 3(a) shows the density of cooperators as a func-
tion of temptation b for different aspiration levels. On the
whole, the density of cooperators shifts when A is 0.3, 0.5
and 0.7, respectively, and cooperators decrease with the
temptation b. The result means that at an appropriate
aspiration level, the density of cooperators is greatly in-
creased. Figure 3(b) shows the density of cooperators as
a function of aspiration level A for different temptations
b. When b is 1.5, the density of cooperators is always 0 re-
gardless of A, which means high temptation restrains the
positive effects of this interaction strategy on group coop-
eration. In other temptations, the density of cooperators
increases first and then decreases with A, and reaches the
highest cooperation level at 0.7. Thus, there exists an
appropriate aspiration level that is able to minimize the
influence of temptation b on cooperation to some extent.

In order to better understand cooperative behaviors,
the snapshots of group cooperators in simulations under

three different aspiration levels are given. The group is
divided into four kinds of individuals by introducing the
aspiration-based interaction strategy. Taking individual ¢
as an example, if P; > P, 4, then i is defined as the strict
high-payoff individual. If P, = P4 > 0, ¢ is called the
aspiration-payoff individual. If P, = P4 = 0, 7 is the
isolated individual. And when P; < Pj4, i is the low-
payoff individual. That is, individuals either interact with
the same level of neighbors or become isolated individuals
who do not participate in the game. Here, the temptation
b is set to 1.1. Each snapshot contains eight colors repre-
senting four kinds of individuals in two strategies (C or D).
Dark colors mean cooperators, bright colors represent de-
fectors. The corresponding types and colors of individuals
are listed in table 1. And for high-payoff individual i, the
demanding minimum number w; of cooperators in K; is
[ki x A] and [(k; x A)/b] when S; = C and S; = D,
respectively. [x] is the ceiling function.

When the aspiration level A is 0.1, snapshots in fig. 4
display a clear change process of strategies. Firstly, dark
blue and green disappear significantly. Then, green is the
color of most nodes around the remaining dark blue clus-
ters. Orange and yellow keep the status of increase during
this process. Finally, the result in the snapshot is repre-
sented as the coexistence of yellow and orange. Figure 5
is given to further verify these changes in fig. 4. In left
subfigure, all types of cooperators are in the process of
fading out. The trend of strict high-payoff cooperators is
consistent with the density of group cooperators. In the
right subfigure, strict high-payoff defectors eventually dis-
appear. The trend of low-payoff defectors is in agreement
with the density of defectors in the group, and there also
exists a few proportion of isolated defectors in equilibrium
state. Thus, it can be inferred that the density of cooper-
ators and defectors depends mainly on strict high-payoff
individuals and low-payoff individuals, respectively.

Based on the model and on fig. 5, changes in fig. 4
are analyzed. As is shown in fig. 4(a), the group owns
vast strict high-payoff individuals and a few low-payoff
ones, which represents a high chance to meet strict high-
payoff ones. Strict high-payoff cooperators (dark blue)
easily turn into strict high-payoff defectors (green) or low-
payoff defectors (yellow) if contacting with strict high-
payofl defectors. And low-payoff cooperators (cyan) are
easy to transform into isolated defectors (orange) when
surrounded by strict high-payoff defectors (green). These
transformations result in the significantly drop of strict
high-payoff cooperators (dark blue) in fig. 4(b), which in-
creases the probability to meet strict high-payoff defec-
tors. For aspiration-payoff defectors (light orange), they
will turn into low-payoff defectors (yellow) if surrounded
by strict high-payoff defectors (green). For strict high-
payoff defectors (green), they either become low-payoff
defectors (yellow) when the interactive cooperators are
less than w;, or change into isolated defectors (orange)
when surrounded by low-payoff defectors, or become strict
high-payoff cooperators (dark blue) when the interactive
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Table 1: The corresponding types and colors of individuals.

P = Pia
Payoffs P, > Py k; >0 ki=0 P, < P;a
Types Strict high-payoff®  Aspiration-payoff ~ Isolated  Low-payoff
Cooperators Colors Dark blue(®) Blue Light blue Cyan
Value of colors 0 1 2 3
Types Strict high-payoff ~ Aspiration-payoff  Isolated  Low-payoff
Defectors Colors Green Light orange Orange Yellow
Value of colors 4 5 6 7
(@)When P; > P; 4, i is a strict high-payoff individual.
(®)The color of strict high-payoff cooperators is dark blue.
(©)The value 0 stands for the color of dark blue.
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Fig. 4: Snapshots during the evolutionary game when A is 0.1. The color bar provides the corresponding number of colors,
which is shown in table 1. T'a; means the i-th time step. The time step is 1, 2, 10 and 2000 for T'a1—T a4, respectively. At last,

orange and yellow coexist in equilibrium.
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Fig. 5: Time evolution of the density of individuals in differ-
ent states when A = 0.1. The subfigure on the left depicts the
density of cooperators, and the right one is the density of defec-
tors. For example, in the left subfigure, f. means the density of
cooperators in group, fe (strict high-payos) 15 the density of strict
high-payoff cooperators in the group, and curves in the right
subfigure are similar with the left one, f; means the density
of defectors in group, fa (strict high-payosr) 15 the density of strict
high-payoff defectors in group. Only low-payoff defectors and
isolated defectors remain finally.

payoffs of strict high-payoff cooperators are higher than
those of defectors. These changes lead to the high drop
of strict high-payoff defectors (green) and low increase of
strict high-payoff cooperators (dark blue) in fig. 4(c), and

the latter slows down the extinction of strict high-payoff
cooperators (dark blue). Low-payoff defectors also get im-
proved as is shown in fig. 4(b) and (c), where yellow is
always increasing. On the one hand, the increased low-
payoff defectors accelerate the process of both low-payoff
cooperators (cyan) turning into low-payoff defectors (yel-
low) and strict high-payoff defectors (green) changing into
isolated ones (orange). On the other hand, low-payoff de-
fectors (yellow) either keep unchanged after interacting
with homogeneous defectors, or become high-payoff defec-
tors (green) after interacting with low-payoff cooperators,
or change into isolated defectors (orange) when there is no
interaction. Finally, only isolated defectors (orange) and
low-payoff defectors (yellow) remain in fig. 4(d). It should
be noted that during the process, though a few strict
high-payoff cooperators are able to spread cooperations
by forming turbulent cooperator clusters, these cooperator
clusters finally disappear as their surrounding strict high-
payoff cooperators are gradually invaded by defectors.

When A equals 0.5, fig. 6 shows that there are five kinds
of colors in the group at first. Then green and dark blue
decrease while yellow and orange increase. Different from
fig. 4, dark blue clusters are not only surrounded by green
but also cyan, and then start to expand with time. Finally,
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Fig. 6: Snapshots of individuals when A = 0.5. Here, the time step is 1, 10, 50 and 10000 for T'b1—Tb4, respectively.
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Fig. 7: Time evolution of the density of individuals in different
states when A is 0.5. Definitions of symbols are the same as
in fig. 5. All kinds of cooperators and defectors coexist in the

group.

all colors coexist in the square lattice. Figure 7 depicts
the density of individuals in eight colors. No type of indi-
viduals disappears in the equilibrium state. Cooperators
and defectors coexist in the group, but there are mainly
defectors.

Combining fig. 7, changes of snapshots are analyzed
when A is 0.5. Figure 6(a) and fig. 7 show that the
increased aspiration level brings aspiration-payoff individ-
uals and more low-payoff individuals. Both the aspiration-
payoff cooperators and low-payoff individuals reduce the
interactions between strict high-payoff defectors and co-
operators. But the difference is that the former delay
the process of strict high-payoff cooperators turning into
defectors while the latter prevent it. When updating
strategies, the probability of strict high-payoff coopera-
tors turning low-payoff defectors into cooperators is in-
creased. Interactions among low-payoff cooperators boost
the emergence of strict high-payoff cooperators. There-
fore, strict high-payoff cooperators are surrounded by a
few aspiration-payoff cooperators and low-payoff cooper-
ators gradually occupy a certain proportion in fig. 6(b).
And there are more individuals of strict high-payoff coop-
erators compared with fig. 4(c). As time goes by, based
on the support of aspiration-payoff and low-payoff individ-
uals, scattered strict high-payoff cooperator clusters try
to expand, and those strict high-payoff defectors gather-
ing around strict high-payoff cooperators are able to keep

(d) Thy=10000

None of

high-payoff state. Therefore, cooperators and defectors
are in a dynamic death-birth process, and finally these
changes enable cooperators to coexist with defectors in a
relative stable mode, as is shown in fig. 6(c) and (d). Thus,
low-payoff individuals not only maintain cooperations, but
also consolidate defections.

When A is 0.7, this process is embodied in fig. 8. Firstly,
the dark blue is surrounded by abundant cyan and a lit-
tle green, and yellow is distributed throughout the square
lattice. As time goes by, the scattered dark blue clusters
gradually expand into compact clusters and finally cover
yellow. And, in fig. 9, all types of individuals except for
the strict high-payoff cooperators gradually disappear in
the group.

Based on fig. 9, the changes in fig. 8 are analyzed.
The distribution of colors in fig. 8(a) shows that the
increased aspiration level makes low-payoff individuals in-
crease again. Strict high-payoff defectors turn homo-
geneous cooperators into strict high-payoff defectors or
low-payoff defectors. Only those strict high-payoff coop-
erators remain who gain higher interactive payoffs than
strict high-payoff defectors, and form cooperator clus-
ters. Though low-payoff defectors can convert into strict
high-payoff ones when interactive cooperators are not
less than w;, the strict high-payoff defectors either be-
come low-payoff defectors when the interactive coopera-
tors are less than w;, or change into isolated defectors
when surrounded by low-payoff defectors, or turn into
strict high-payoff cooperators when updating strategies.
Low-payoff cooperators easily change into defectors if con-
necting with strict high-payoff defectors when updating
strategies. Only those low-payoff cooperators remain who
are around cooperator clusters, and form an isolation belt
among high-payoff individuals. Thus, the increased low-
payoff individuals enable strict high-payoff cooperators to
form compact clusters mostly surrounded by low-payoff
individuals, as is shown in fig. 8(b). As time passes,
these stable cooperator clusters motivate the surround-
ing low-payoff defectors and isolated defectors to turn into
low-payoff cooperators and isolated cooperators, respec-
tively. And the improved low-payoff cooperators promote
the appearance of high-payoff cooperators, which helps
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Fig. 8: Snapshots of individuals when A is 0.7. Here, the time step is 1, 50, 500 and 5000 for T'ci—Tc4, respectively. Only dark

blue exists in equilibrium.
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Fig. 9: Time evolution of the density of individuals in different
states when A is 0.7. Definitions of symbols are the same as in
fig. 5. Only strict high-payoff cooperators remain at last.

expand the cooperator clusters in turn. As a result, trans-
formations between cooperator clusters and low-payoff
individuals form a positive feedback to enhance the emer-
gence of strict high-payoff cooperators. Hence, the dark
blue clusters in fig. 8(b) gradually expand to those in
fig. 8(c). Finally the group reaches a state of full coop-
eration in fig. 8(d).

Therefore, according to the analysis and results, dif-
ferent aspiration levels bring distinct probabilities of
the above events, which constitutes diverse interactive
processes.

Conclusion. — Considering the limited time and
energy in reality, individuals usually choose suitable
neighbors to interact. Therefore, this paper proposes a dy-
namic aspiration-based interaction strategy. During this
process, the group is divided into high-payoff individu-
als and low-payoff individuals based on the interactive
payoffs and aspiration payoffs. Interactions only happen
among homogeneous individuals. We apply this strategy
of selecting neighbors to the prisoner’s dilemma on square
lattice. Individuals get their aspiration payoffs accord-
ing to the number of interactive neighbors, and use the
Fermi rule to update strategies. Simulations show that
under the same temptation, there exists an appropriate
level which makes the group reach a complete cooperation
state. The increase of temptation suppresses the posi-
tive effect of interaction strategy on cooperation. Under

the appropriate aspiration level, the isolation belt between
homogeneous individuals blocks the invasion of defectors.
Interactions among low-payoff cooperators promote the
appearance of high-payoff cooperators. The blocked in-
teractions with strict high-payoff cooperators lead to the
decline of interactive payoffs, which makes high-payoff de-
fectors turn into low-payoff defectors. On the one hand,
high-payoff cooperators transformed from low-payoff co-
operators are absorbed by high-payoff cooperator clusters,
which expands the scale of clusters. On the other hand,
low-payoff defectors gradually transform into low-payoff
cooperators, which maintains the stability of cooperation
and greatly increases the density of strict high-payoff co-
operators by promoting the interactions among low-payoft
cooperators. In addition, according to the simulation re-
sults, too many low-payoff individuals cannot make coop-
eration become the dominant strategy. Therefore, there
may exist an appropriate varying range of aspiration level
that brings the highest group cooperation.
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