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Abstract
Modeling the propagation and damping of electromagnetic waves in a hot magnetized plasma is
difficult due to spatial dispersion. In such media, the dielectric response becomes non-local and
the wave equation an integro-differential equation. In the application of RF heating and current
drive in tokamak plasmas, the finite Larmor radius (FLR) causes spatial dispersion, which gives
rise to physical phenomena such as higher harmonic ion cyclotron damping and mode
conversion to electrostatic waves. In this paper, a new numerical method based on an iterative
wavelet finite element scheme is presented, which is suitable for adding non-local effects to the
wave equation by iterations. To verify the method, we apply it to a case of one-dimensional fast
wave heating at the second harmonic ion cyclotron resonance, and study mode conversion to ion
Bernstein waves (IBW) in a toroidal plasma. Comparison with a local (truncated FLR) model
showed good agreement in general. The observed difference is in the damping of the IBW,
where the proposed method predicts stronger damping on the IBW.

Keywords: Morlet wavelets, finite element method, ion cyclotron resonance heating, mode
conversion, ion Bernstein waves

(Some figures may appear in colour only in the online journal)

1. Introduction

Modeling the propagation and damping of electromagnetic
waves in a hot magnetized plasma is difficult due to spatial
dispersion [1–4]. Spatial dispersion occurs when natural
length scales are present in a medium. As a consequence, the
dielectric response becomes non-local and the wave equation
an integro-differential equation that is difficult to solve with
common numerical methods [5–7].

In the application of RF heating and current drive in
tokamaks [8], accounting for spatial dispersion is important in
modeling codes. Parallel spatial dispersion is caused by the
parallel velocity of the particles, and is important for Landau
damping and the Doppler broadening of the ion cyclotron
resonances. In the presence of a poloidal magnetic field,
parallel spatial dispersion makes the dielectric tensor an int-
egral operator [7]. In the perpendicular direction, the finite
Larmor radius (FLR) of the gyrating particles causes spatial
dispersion. FLR effects give rise to higher harmonic ion
cyclotron damping, transit-time magnetic pumping (TTMP)
and mode conversion [1, 2, 9, 10].

Common numerical tools for solving the wave equation
include the finite element (FE) method and Fourier spectral
methods. The FE method is efficient in solving the wave
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equation and can be applied on complex geometries. The
main disadvantage of the FE method is that it cannot account
for the non-local character of the dielectric response. Fourier
spectral methods can describe non-local effects by using
Fourier bases, however, these methods are time consuming
and require a large amount of computer memory.

Much effort has been devoted to develop modeling codes
that can simulate the propagation and damping of RF waves
in hot magnetized plasmas [11–18]. A common approach is to
solve the wave equation in two dimensions and take advan-
tage of axisymmetry in the toroidal direction. The advantage
of axisymmetry is that the electric field can be Fourier
decomposed toroidally and simulations can be performed for
a single toroidal mode number at a time. In the radial and
poloidal directions (or poloidal plane), the choice of dis-
cretization method varies between different modeling codes.
The simplest approach is to apply a FE discretization in the
poloidal plane. This method relies on algebraic approxima-
tions that remove the integral operators in the dielectric ten-
sor, so that the wave equation becomes a partial differential
equation (e.g. by neglecting the poloidal contribution to the
parallel wave number) [16, 18]. One approach to include non-
local effects due to parallel dispersion is to Fourier decom-
pose in the poloidal direction and use a FE discretization in
the radial direction [11, 12]. For this type of numerical
scheme, FLR effects are typically included by expanding the
dielectric tensor in the Larmor radius, where the first few
terms are kept. Such approximations are sufficient to describe
e.g. higher harmonic damping and mode conversion from the
fast magnetosonic wave (or fast wave) to electrostatic waves,
but are only valid when the Larmor radius of the gyrating ions
is relatively small. Fourier spectral methods can solve the
integro-differential wave equation without imposing any
approximations [17]. However, these methods require mas-
sive computing power and are difficult to apply outside the
plasma domain.

Research in development of new numerical schemes to
include non-local effects using the FE method has been made
and is available in the literature. In [19, 20], Sauter et al
developed a method for solving the one-dimensional wave
equation using a FE scheme, where FLR effects are included
by employing a gyrokinetic approach. In [21], a numerical
method called Gabor element method was developed, which
was used to study a case of mode conversion from fast to slow
waves. In this numerical method, the electric field is expanded
into Gabor functions (note that Gabor functions are similar to
Morlet wavelets used in the present work), which results in
sparse matrices. In [22], Meneghini et al developed a two-
dimensional FE model for lower hybrid waves in tokamaks.
This method is based on a cold plasma model, where hot
plasma effects are added by iterations to the most important
dielectric tensor elements. A similar iterative algorithm in one
dimension was developed by Green et al [23], where parallel
non-local effects are evaluated by calculating particle orbits
backward in time and added by iterations to the wave
equation. Recently, an iterative wavelet FE scheme has been
developed that is suitable for modeling RF heating of toka-
mak plasmas [24]. This numerical scheme was tested for

parallel dispersion in one dimension, where non-local effects
were evaluated using wavelets and added to the wave
equation by iterations.

In this paper, the main objective is to show that the
iterative wavelet FE scheme can account for spatial dispersion
caused by FLR effects in one dimension. We split the sus-
ceptibility operator into an algebraic susceptibility tensor and
an induced current density term (were the latter quantity
contains the integral operators). The wave equation is solved
with a FE scheme using the algebraic susceptibility tensor,
where the induced current density is represented as an inho-
mogeneous term. The contribution of the induced current
density is added by using a fixed point iteration scheme based
on Anderson Acceleration [25]. The induced current density
is assumed to be zero for the first iteration. For subsequent
iterations, the induced current density is evaluated using
solutions from previous iterations. To account for the non-
local character, the induced current density is evaluated in
wavelet space [24, 26–29]. In this work, the Morlet wavelet
was used to perform the wavelet decomposition. Morlet
wavelets have several attractive features, such as having good
convergence properties in the wavelet transform as well as
being localized in both configuration and frequency space
[30–32].

As an example, we will apply this method to a case of
fast wave heating at the second harmonic ion cyclotron
resonance, and study mode conversion to ion Bernstein waves
(IBW) for different toroidal mode numbers. In this model, we
use the hot susceptibility tensor for Maxwellian plasmas,
including FLR effects. We show that the solution converges
and that it is consistent with the hot plasma dispersion rela-
tion. The solution is also compared with the results from the
TOMCAT code [33], which is a one-dimensional ion cyclo-
tron resonance heating code.

The paper is structured as follows: the wave equation and
susceptibility tensor are described in section 2; the continuous
wavelet transform and the wavelet representation of the sus-
ceptibility tensor are described in section 3; the simulation
results in section 4, and the discussion and conclusions in
sections 5 and 6, respectively.

2. Wave equation and susceptibility tensor

In this section, we develop a one-dimensional model for ion
cyclotron resonance heating in a toroidal plasma. We derive
an expression for the wave equation that is suitable to be
solved with the iterative wavelet FE scheme. Furthermore, we
describe the boundary conditions and give expressions for
the susceptibility model. The last sections describe the hot
plasma dispersion relation and the energy equation.

2.1. Wave equation

The wave equation is given in a cylindrical coordinate system
( )fe e e, ,R Z , where eR is the major radius direction, ef the
toroidal direction and eZ the vertical direction. We assume
that the plasma response and geometry are axisymmetric (i.e.
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the model accounts for toroidal curvature). The plasma is
inhomogeneous in eR only and is invariant in eZ. We will also
assume that the wave vector lies in the Rf plane (i.e. kZ = 0).
Under these assumptions, the wave equation can be written as
[1, 2]

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥˜ ( )å cw

wm ´  ´ - + =
c

iE I E J , 1
j

j ext

2

2 0

where the tilde denotes integral operator, c̃j is the hot sus-
ceptibility operator for species j, I the identity matrix and Jext
the external current density. The solution has the form

( ) ( ) ( )f = ffR R eE E, , 2in
0

where E0 is a complex amplitude, and nf is the toroidal mode
number.

Letcj be an algebraic approximation to the susceptibility
operator c̃j. The relation between these two quantities can
then be written as

˜ ˜ ( )c c cd= + , 3j j j

where c̃d j is the difference and is an integral operator. Sub-
stituting the above expression for c̃j in equation (1) gives

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

˜ ( )
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å

c

c

w
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w
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 ´  ´ - +

= +

c

i
c

E I E

J E. 4
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j
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j

j

2

2

0

2

2

The key point here is to represent the integral operator term as
an inhomogeneous term on the right hand side of the wave
equation. Furthermore, it is convenient to represent this term
as an induced current density term, which we refer to as the
correction current, given by

( ˜ ) ( )å c cd w= - -iJ E. 5ind
j

j j0

To solve equation (4), we iterate over δJind in a fixed point
iteration scheme using Anderson Acceleration [24, 25]. Let k
be the iteration index and E(0)=0 the initial solution. A
solution to the wave equation can then be found by solving
the following equations,

( ˜ ) ( )( ) ( )å c cd w= - -iJ E , 6ind
k

j
j j

k
0

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( ) ( )

( ) ( )

( )

å cw

wm d

 ´  ´ - +

= +

+ +

c

i

E I E

J J . 7

k

j
j

k

ext ind
k

1
2

2
1

0

Thus, equation (7) can be solved using the FE method. To
evaluate equation (6) and account for the non-local character
of the equation, we use a method based on Morlet wavelet
decomposition, which is described in section 3.

2.2. Boundary conditions to the wave equation

In this model, we assume that the domain is confined by
perfectly conducting walls. Thus, the boundary condition

applied is

( )´ =n E 0, 8

where n is the unit normal vector to the wall.
The antenna is located inside the domain and is repre-

sented as an internal boundary, where we assign a prescribed
surface current density. In cylindrical coordinates, we let the
antenna location be described by Rant. The antenna surface
current density Jant is then given by

( ) ( )f= =R R Z JJ e, , , 9ant ant Z0

where J0 is a complex constant with the unit A m−1

2.3. Hot susceptibility tensor

In this work, we use a quasi-homogeneous approximation of the
susceptibility tensor, where we assume a slow variation in the
density, temperature and magnetic field. The susceptibility ten-
sor is given in a Cartesian coordinate system ( )e e e, ,x y z , where
the magnetic field is aligned in the positive ez direction and the
wave vector is in the xz plane (i.e. ky=0). Denoting Fourier
transformed variables using the hat symbol, the susceptibility
tensor for a hot Maxwellian plasma is given by [1, 2]

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
ˆ ( )

ˆ ˆ ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ
( )( )c

c c c

c c c

c c c
= -

-
k k, , 10j

Stix
x z

xx j xy j xz j

xy j yy j yz j

xz j yz j zz j

, , ,

, , ,

, , ,

where the elements are given by

ˆ ( ) ( )åc
w

w l
z=

l-

=-¥

¥e

k v

n I
Z , 11xx j
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n j,
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j
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w
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n I I Z , 12xy j j
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,
2
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j

⎡
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l z= + - ¢

l-

=-¥

¥e

k v

n I
I I Z2 , 13yy j

p j

z j n

n

j
j n n n j,
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j

ˆ
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( )åc
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w w l

z
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k
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2
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z c j n

n

j

n j
,
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,

,
j
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( )åc
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w w
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e
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I I
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, 15yz j j x

p j

z c j n
n n

n j
,

,
2

,

,
j

ˆ ( ) ( )åc
w

w
z z= - ¢

l-

=-¥

¥e

k v
I Z , 16zz j

p j

z j n
n n j n j,

,
2

, ,

j

where n is the harmonic number, ωp,j the plasma angular fre-
quency, ωc,j the cyclotron angular frequency, ∣ ∣= q qj j j the

charge sign, qj the species charge, l r= k 2j x L j
2

,
2 the FLR

parameter, ρL,j is the Larmor radius, vj the thermal velocity,
In=In(λj) the modified Bessel functions of order n, and
Z(ζn,j) the plasma dispersion function evaluated at z =n j,

( ) ( )w w+ n k vc j z j, . The prime denotes derivative.
The magnetic field in tokamaks can be decomposed into

toroidal and poloidal components. In this work, we neglect the
contribution of the poloidal magnetic field in order to focus on
FLR effects only. Such an assumption is reasonable, given that
the poloidal magnetic field in general is much weaker than the
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toroidal magnetic field. This assumption also simplifies the
transformation matrix from the Cartesian coordinate system to
the cylindrical coordinate system, and removes the integral
operators due to parallel dispersion (the proposed numerical
scheme was tested for parallel dispersion in [24]).

Since the wave equation is described in a cylindrical
coordinate system, the susceptibility tensor must be transformed.
Let ex be parallel to eR, ef antiparallel to ez, and ey parallel to eZ.
Under this assumptions, the transformation matrix becomes

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ( )= -R

1 0 0
0 0 1
0 1 0

, 17

and the transformed susceptibility tensor is given by

ˆ · ˆ · ( )( )c c= -R R . 18j j
Stix 1

Without a poloidal magnetic field, the parallel wave number is
antiparallel to the toroidal wave number. Hence, the parallel
wave number becomes

( )= - f
k

n

R
. 19z

2.4. Algebraic susceptibility tensor

The algebraic susceptibility tensor used here is based on the
hot susceptibility tensor from previous subsection, but eval-
uated for the fast wave. This requires that the perpendicular
wave number of the fast wave is known in advance [18]. The
perpendicular wave number of the fast wave can be obtained
from the following approximative dispersion relation

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ( )w

» - +
-

l =

k
c

K n
K

K n
, 20FW xx z

xy

xx z

2
2

2
2

2

2
0j

where ĉ= + åK 1xx j xx j, , nz=ckz/ω is the parallel refrac-
tive index and ĉ= åKxy j xy j, . An approximative algebraic
susceptibility model can then be obtained by evaluating the
hot susceptibility tensor for the fast wave, i.e.

ˆ ( ) ( )( ) ( )c c= =k k k, . 21j
Stix

j
Stix

x FW z

The main advantage of using this susceptibility tensor instead of
a cold plasma model is that higher harmonic cyclotron damping,
TTMP and Landau damping are described quite well for the
fast wave.

2.5. Hot plasma dispersion equation

The local dispersion equation is obtained by setting the
determinant of the Fourier transformed wave equation to zero
(equation (1)). Using the Cartesian coordinate system, the
dispersion equation is given by

( ) ( )(( )( ) )

( ( ) ( ))
( )( ( )

( ))
( )

= - - - - +

+ - + +

+ + - - -

´ +

D n n K n K n n K n K

K K K n K K n n

K n n K K K n n

n n K

,

,

22

x z xx z yy x z zz x yz

xy xy zz x yz xz z x

xz x z xy yz yy x z

z x xz

2 2 2 2 2

2

2 2

where ĉ= + åK I j j, nx=ckx/ω and nz=ckz/ω. The roots
were calculated as the intersection of the contours Re(D)=0
and Im(D)=0 in the complex kx plane.

2.6. Energy equation

For time harmonic waves in spatially dispersive media, the
energy equation has the form

· ( ) ( ) + = -PS T , 23abs

where S is the Poynting flux, T the kinetic flux and Pabs is the
local absorption. The Poynting flux is given by

[ ] ( )
m

= ´S E B
1

2
Re . 24

0

*

Expressions for the kinetic flux and the local absorption in
inhomogeneous spatially dispersive media are given in
[6, 34, 35]. In these expressions, the electric field is Fourier
expanded and the kinetic flux and local absorption are cal-
culated by using the absorption kernel. Due to the complexity
of the theory, an equivalent expression based on Morlet
wavelets has not been derived yet. In this work, we will use
approximative expressions to evaluate the kinetic flux and the
local absorption, which can be written as

·
ˆ

( )å
cw

» -
 d

d
T E

k
E

4
, 25

j

j
H

0 *

[ · ˆ ] ( )å cw
»


P E E

2
Im , 26abs

j
j
A0 *

where ĉj
H and ĉj

A are the Hermitian and anti-Hermitian parts
of the susceptibility tensor, respectively. In these expressions,

the factors
ĉ

E
d

dk
j
H

and ĉ Ej
A are evaluated using wavelet

decomposition (i.e. non-locally). The electric field component
E* on the left side of these factors is evaluated locally.
Therefore, the evaluation becomes non-symmetric, and the
results will only be approximative. However, for the fast
wave, T≈0, so that · » -PP abs, and as such, this
approximation should be reasonable. For the IBW, »P 0, so
that · » -PT abs. Thus, the divergence of the kinetix flux
of the IBW gives the local absorption.

3. Wavelets and the susceptibility tensor

In this section, we will start with a short description of the
Morlet wavelet and the continuous wavelet transform, fol-
lowed by a derivation of the susceptibility tensor in wavelet
space. We also describe the wavelet grid, matched layers and
how to discretize the wavelet scale parameter.

3.1. Morlet wavelet

Let ψ(x) be the mother wavelet, which is a complex and
continuously differentiable function. To generate a set of
wavelets (or daughter wavelets) from the mother wavelet, we
introduce the wavelet scale parameter a and the translation
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parameter b. The set of wavelets is then given by [30–32]

⎜ ⎟⎛
⎝

⎞
⎠( )

∣ ∣
( )y y=

-
x

a

x b

a

1
. 27ab

In this paper, we use the normalized complex Morlet wavelet
that is defined as

( ) ( ) ( )y p k= -s
s

s
- -x c e e , 28i xx1

4
2

2

where σ=6 is a reference wave number and

( )
k =

= + -
s

s

s
s s

-

- - -

e

c e e

,

1 2 .

1
2

2

2 3
4

2 1
2

The central wave number of each Morlet wavelet is given by
k=σ/a. The Fourier transformed Morlet wavelet is

ˆ ( ) ∣ ∣ ( ) ( )
( ) ( )

y p k= -s s
- - -s-

k c a e e e2 . 29ab
ikb ak ak1

4
1
2

2

2

2

2

3.2. Continuous wavelet transform

The continuous wavelet transform of a continuously differ-
entiable function f (x) is [30, 36, 37]

[ ( )] ( ) ( ) ( )ò y= =
-¥

¥
f f x f x x dxWT , 30ab ab*

where ∗ denotes complex conjugate and -¥ < < ¥a b,
where ¹a 0. The inverse continuous wavelet transform
returns the original function, given by

( ) [ ]( )

( ) ( )ò ò y

=

=
y

-

-¥

¥

-¥

¥

f x f x

C
f x

dadb

a

WT
1

, 31

ab

ab ab

1

2

where the admissibility constant is

∣ ˆ ( )∣
∣ ∣

( )ò
y

= < ¥y
-¥

¥
C

k

k
dk . 32

2

3.3. Wavelet representation of the susceptibility tensor

As described in section 2.1, the considered plasma is assumed to
be inhomogeneous in the ex direction only, and the wave vector
to lie in the xz plane, i.e. ky=0. Under these circumstances, we
can Fourier transform the susceptibility operator acting on the
electric field in the ex direction as follows [6]

˜ ˆ ( ) ˆ ( ) ( )òc c
p

=
-¥

¥
x k k k k e dkE E

1

2
, , , . 33j j x z x z

ik x
xx

Since the plasma is homogeneous and periodic in the toroidal
direction, the susceptibility can be evaluated for one toroidal
mode number at a time. We hereby drop the kz dependence for
simplicity in writing.

By rewriting the electric field as a Fourier transform, we
obtain

ˆ ( ) ( ) ( )ò ò c
p

¢ ¢
¢

- ¢x k x e dx dkE
1

2
, .

k x
j x

ik x x
x

x

x

We can now wavelet decompose the electric field using
equation (31). Furthermore, we note that the integral in x′ is

the Fourier transform of the Morlet wavelet. The result is

ˆ ( ) ( )

( )
( )

( )ò ò ò ò

ò ò

c
p

y ¢ ¢

=

y

y

¢
- ¢

C
x k x e dx dk

dadb

a

C
x

dadb

a

E

I E

1

2

1
,

1
,

34

a b k x j x ab ab
ik x x

x

a b ab ab

2

2

x

x

where

( ) ˆ ( ) ˆ ( ) ( )ò c
p

y=x x k k e dkI
1

2
, . 35ab

k
j x ab x

ik x
x

x

x

Next, we Taylor expand the susceptibility at kx=σ/a

⎜ ⎟⎛
⎝

⎞
⎠

( )
!

( )

( )

ò

å
c

p
s

y

=
¶

¶

-

=

¥

= s

x
p k

k
a

k e dk

I
1

1

2
,

36
ab

p

p
j

x
p

k

k
x

p

ab x
ik x

x

0
x a

x

x

^

^

where p is the expansion order. Performing the integral over
kx requires some technical steps presented in appendix. The
result is

( ) ( ) ( ) ( )c y=x x xI , 37ab j ab ab,

where cj ab, is the susceptibility represented in wavelet space
given by

( )
!

( ) ˆ
( )åc

c
=

¶

¶=

¥

= s

x
i

p

X

a k

He
, 38j ab

p

p
p ab

p

p
j

x
p

k

,
0

x a

=
-

X
x b

a
,ab

where Hep are the probabilists Hermite polynomials [38].
Substituting into equation (33) gives the following result,

˜ [ ]( ) ( )c c= - xE WT E . 39j j ab ab
1

,

Equation (39) implies that the non-local susceptibility
response can be evaluated by multiplying the susceptibility
and electric field in wavelet space, and then performing the
inverse wavelet transform.

3.4. Evaluation of the correction current

To evaluate the correction current, we use equation (39) in
(6), which gives

[( ) ]( ) ( )( ) ( )å c cd w= - --i xJ WT E , 40ind
k

j
j ab j ab

k
0

1
,

where

[ ( )] ( )( ) ( )= xE WT E , 41ab
k k

is the wavelet transform of the electric field.

3.5. The wavelet grid and matched layers

It is not necessary to evaluate δJind over the whole domain
used in the FE discretization. The FLR effects are important
where the plasma is hot, whereas in regions with low temp-
erature the FLR effects are expected to be small. It is therefore
convenient to define a smaller grid for the evaluation of δJind
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in order to reduce the computational cost. This grid is called
the wavelet grid.

Another complication occurs when a finite wavelet grid is
used in the continuous wavelet transform, which is defined on an
infinite interval. The introduction of a finite grid results in edge
artifacts when performing the wavelet transform. These artifacts
occur when the wavelets are near the boundaries, so that
information outside the finite interval is required. In many
applications, this is solved to some degree by using extension
methods, which include zero padding, symmetric and periodic
extensions [39, 40]. In this work, we solve this issue by using a
technique called matched layers at the boundaries of the wavelet
grid [24, 26]. This is basically an extension method where the
function of interest is extended by matching it with a Morlet
wavelet with similar wave number (see figure 1). The method
ensures that the function becomes continuous over the boundary
and that all edge artifacts in the wavelet transform fall within the
matched layers. The evaluation of δJind is therefore performed in
the extended wavelet grid. The matched layers are then removed
on the correction current before solving the wave equation.

3.6. Scale parameter and admissibility constant

The scale parameter a is assumed to be continuous in the
wavelet transform. In order to perform the calculations
numerically, the scale parameter must be discretized. The
calculations in this paper are based on a discretized scale
parameter given by

( )=a 2 , 42m 4

where m is an integer. The constant Cψ in equation (31)
depends on the discretization and have been numerically
calculated to be Cψ≈1.1598.

4. Fast wave heating and mode conversion

To test the proposed numerical scheme, the code FEMIC1D
was developed in MATLAB®. In FEMIC1D, the wave
equation was solved using the RF module in COMSOL
Multiphysics®, while the evaluation of equation (6) was
performed in MATLAB®. The interface between COMSOL
Multiphysics® and MATLAB® was handled using the
LiveLinkTM for MATLAB®.

The model parameters, summarized in table 1, were chosen
to mimick a JET-like scenario. We considered a pure hydrogen
plasma, where the antenna frequency and magnetic field were
tuned for second harmonic heating of hydrogen ions near the
magnetic axis. We included up to 8 harmonics in the suscept-
ibility tensor (equation (10)), and four terms in the wavelet
representation of the susceptibility tensor (equation (38)). The
toroidal magnetic field was given by

( )=B
B R

R
, 43tor

0 0

where B0 is the on-axis magnetic field and R0 is the major
radius. The density and temperature profiles are shown in
figure 2. For simplicity, flat profiles were assumed in the
plasma with a smooth transition over the pedestal to the low-
density domain (or scrape-off-layer). The pedestal was
described by an mtanh model [18]. The electron density in the
low-density domain was nSOL=4.2·1017 m−3, the electron
temperature =T 23 eVe SOL, , and the ion temperature

=T 16 eVi SOL, .
To solve the wave equation using the FE method, a grid

size of 0.5 mm was applied in the plasma domain and 5.0 mm
in the low-density domains. Second order elements were
used. The wavelet grid was defined between  R1.96
3.84 m, with a grid step of 0.63 mm. The scale parameter
was chosen so that wave numbers ranging between 20 and
1536 m−1 were resolved.

The model with nf=15 required a wavelet grid with
finer resolution. The step was set to 0.54 mm and modes with
wave numbers between 20 and 1827 m−1 were resolved.

4.1. Dispersion relation

The dispersion relation for nf=20 is shown in figure 3(a).
The fast wave branch has wave numbers ranging between

 k30 65x in the plasma, and is evanescent in the low-
density regions. Its imaginary component indicates that the
second harmonic ion cyclotron resonance is located at
R=3.1 m. A mode conversion zone can be identified at the
resonance, where the dispersion relations of the fast wave and
the IBW intersect. The IBW propagates in the negative major
radius direction and becomes strongly damped near R≈
2.2 m. Note that the imaginary component of kx for the IBW
is negative, indicating that the wave is backward propagating

Figure 1. Illustration of matched layers. The function f (x)=e ikx

with k=35 is defined over the interval  x0 2. Matched layers
are applied at-  x0.5 0 and  x2 2.5 and the function f (x)
is matched with Morlet wavelets with similar wave number.

Table 1. Summary of the model parameters.

Parameter Value

Magnetic field, B0 1.70 T
Major radius, R0 2.97 m
Toroidal mode, nf 15, 20, 27
Antenna frequency 49 MHz
Antenna position 3.95 m
Wall, low field side 4.08 m
Wall, high field side 1.80 m
Mesh size, plasma 0.50 mm
Mesh size, SOL 5.00 mm
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(i.e. the phase and group velocity are in opposite directions).
A third branch is observed near R≈3.8 m, which is an IBW
associated with the third harmonic ion cyclotron resonance.
However, this wave was not excited in the plasma and will
not be discussed further.

Figure 3(b) shows the dispersion relations for the IBW
for the toroidal mode numbers 15, 20 and 27. The real parts of
the dispersion relations are only weakly dependent on the
toroidal mode number. In contrast, the imaginary part defin-
ing the damping location is sensitive to the toroidal mode
number. The lower the toroidal mode number, the longer
distance the IBW can propagate from the second harmonic
cyclotron resonance before being strongly damped.

4.2. Electric field for nf=20

The solution to the wave equation for nf=20 as predicted by
FEMIC1D is shown in figure 4. The incoming fast wave
couples to the plasma and propagates in the negative major
radius direction. The wave becomes damped when crossing
the ion cyclotron resonance near R=3.1 m, which we
identify as a reduction of the wave amplitude (there is also a
weak change in the amplitude due to the change in the tor-
oidal magnetic field). The fast wave is reflected at the pedestal
near R≈2.0 m and crosses the second harmonic cyclotron
resonance a second time.

The fast wave is partly converted to IBWs when crossing
the second harmonic cyclotron resonance. The presence of the
IBW is only observed in the ER and Ef components as a short
wavelength mode, which is a typical feature of electrostatic
waves [41]. Figure 5 shows the propagation and damping of
the IBW, which was obtained by filtering the electric field
using wavelets. The IBW is born near the second harmonic
cyclotron resonance and propagates in the negative major
radius direction. We note that the Ef component of the IBW

increases when propagating away from the resonance. On the
other hand, the ER component increases rapidly at the reso-
nance and varies weakly when propagating away from the
resonance. Thus, since electron Landau damping is quadratic
in the amplitude of Ef, the damping of the IBW becomes
stronger. When the wave crosses R≈2.4 m, it becomes
strongly damped and vanishes. This behavior is consistent
with the hot plasma dispersion relation in figure 3.

The amplitude of the wavelet coefficients of the ER

component is shown in figure 6. The incoming fast wave
branch is seen in the lower half of the spectrogram, which
corresponds to waves with negative wave number. The ion
cyclotron damping at R≈3.1 m can be identified as a
reduction of the amplitude of the wavelet coefficients. At the
plasma edge near R≈2.0 m, we can observe that the fast
wave is reflected (due to the cutoff) and reappears in the upper
half of the spectrogram. The IBW branch is here only seen in
the upper half, which corresponds to waves with positive
wave numbers. However, since the IBW propagates in the
negative major radius direction (i.e. negative group velocity),
this is yet another indication that the wave is backward
propagating.

In figure 7, the electric field components as predicted by
TOMCAT are shown. By comparing the EZ component in
figure 7(b) with figure 4(c), we find good qualitative agree-
ment between FEMIC1D and TOMCAT, which indicates that
the description of the fast wave is similar. By comparing the
ER components in figures 7(a) and 4(a), we observe good
agreement for the fast wave only. The main difference is the
propagation and damping of the IBW. The characteristic of
the IBW as predicted by TOMCAT is shown in figure 8. Near
the second harmonic resonance, we observe a similar beha-
vior between the two codes. When propagating away from the
second harmonic resonance, the amplitude in ER stays con-
stant down to the plasma edge. As for the Ef component, we
note that its amplitude grows as it propagates away from the
resonance. However, despite that Ef is growing, the electron
Landau damping does not damp out the wave. We also note
that the amplitude of the IBW near the resonance in TOM-
CAT is about a factor two larger than in FEMIC1D, indi-
cating a larger fraction of mode conversion. A possible
explanation is that the interference patterns caused by the
incoming and reflected fast waves are different in FEMIC1D
and TOMCAT. As was shown in [42], the mode conversion
rate is sensitive to these interference patterns.

4.3. Power absorption

The total power absorption Pabs and absorption profiles were
calculated assuming unit current density in the antenna strap.
Since we have a one-dimensional axisymmetric model where
the solution is invariant in the eZ direction, the total power
absorption was estimated by integrating the power absorption
density in the Rf plane (i.e. Pabs has the unit Wm−1). The
results are summarized in table 2 and show that the absorbed
power increases with decreasing toroidal mode number. This
behavior is consistent with both theoretical predictions and
experiments [18, 43, 44]. Furthermore, both FEMIC1D and

Figure 2. Density and temperature profiles.
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TOMCAT predict that the electron power partition increases
with the toroidal mode number, while the hydrogen power
partition decreases. This is due to stronger electron absorption
with increasing toroidal mode number [9, 10, 45].

The ion absorption profiles for different toroidal mode
numbers are shown in figure 9(a), where the results from
FEMIC1D (solid lines) and TOMCAT (dashed lines) are
compared. Good qualitative agreement was found with
respect to the magnitude and absorption location, with some
minor variations caused by different interference pattern.
Figure 9(b) compares the electron absorption for nf=20.
Two important observations can be made. First, the difference
in the interference patterns is also observed in the electron
absorption profiles. Second, TOMCAT predicts higher elec-
tron absorption in the interval  R2.0 2.3 m. The differ-
ence is due to the IBW damping. In FEMIC1D, the IBW is
completely absorbed at R=2.2 m. In contrast, the weaker
damping in TOMCAT allows the IBW to propagate to the
plasma edge at R=2.0 m, which increases the total electron
damping in the interval 2.0<R<2.3 m. A similar behavior

Figure 3. (a) Dispersion relations for nf=20. Black and red curves represent the real and imaginary parts, respectively. The solid line
represents the fast wave, the dashed line the IBW, and the dotted line the IBW related to the third harmonic ion cyclotron resonance.
(b) Dispersion relations for the IBW for toroidal mode numbers 15, 20 and 27. Real parts are represented in black, imaginary parts in red.

Figure 4. Electric field calculated by FEMIC1D for the case with
nf=20. Real parts are drawn in black and imaginary parts in red.
(a) ER, (b) Ef and (c) EZ.

Figure 5. IBW electric field (real parts only) as predicted by
FEMIC1D. The results were obtained by filtering the electric field
using wavelets for wave numbers ranging between 114 and
1526 m−1. (a) ER, (b) fE .
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was observed for the other toroidal mode numbers, which are
not shown here for brevity.

The electron absorption is described by TTMP and
electron Landau damping. For the fast wave, these two
absorption mechanisms are coherent and connected by the
susceptibility elements ĉyz e, and ĉzy e, . This is illustrated in

figure 10 for the case with nf=20. Both the TTMP and
electron Landau damping are positive definite, where the
TTMP is a factor of two larger. The contribution of the cross
terms is negative definite and roughly cancels the contribution
of the TTMP, which leaves a net absorption similar to the
electron Landau damping [1, 45].

Figure 11 shows the absorption profiles of the IBW for
different toroidal mode numbers, as predicted by FEMIC1D.
The location of the maximum absorption is dependent on the

Figure 6. Absolute value of the wavelet coefficients of the ER

component, where kR=6/a.

Figure 7. Electric field as predicted by the TOMCAT code for
=fn 20. Real parts are drawn in black and imaginary parts in red.

(a) ER, (b) EZ.

Figure 8. Electric field (real parts only) of the IBW as predicted by
the TOMCAT code. The results were obtained by filtering the
electric field using wavelets for wave numbers ranging between 114
and 1526 m−1. (a) ER, (b) Ef.

Figure 9. Power absorption profiles as predicted by FEMIC1D (solid
lines) and TOMCAT (dashed lines). (a) Ions absorption for different
toroidal mode numbers, (b) electrons absorption for nf=20.
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toroidal mode number. The lower the toroidal mode number,
the further the IBW propagates before being damped. Similar
conclusions can be drawn by studying the kinetic flux of the
IBW in figure 12, where we also observe that the kinetic flux
decreases as the wave propagates in the negative major radius
direction. In these calculations, the total electron absorption of
the IBW amounted to 0.63%, 0.44% and 0.21% of the total
absorbed power for the toroidal mode numbers 15, 20 and 27,
respectively. Thus, the fraction of mode conversion increases
for lower toroidal mode numbers.

Since the IBW is an electrostatic wave, its Poynting flux
is negligible. Therefore, the local absorption Pabs is balanced
by the divergence of the kinetic flux · T. This is illustrated
in figure 13, which shows that these two quantities balance
each other in the interval  R2.2 2.5 m.

4.4. The correction current

The algebraic susceptibility cj in equation (7) can describe
the physics of the fast wave quite well (including some FLR
effects of the fast wave). However, this susceptibility model

cannot describe the physics related to non-local effects, in
particular, the mode conversion and the propagation and
damping of the IBW. These effects, which are completely
missing in the algebraic susceptibility model, are described by
the correction current dJind.

Figure 14 shows the components of the correction cur-
rent. The oscillation and amplitude variations in δJx and δJy
correlates with the oscillations of the IBW. The wavelet
spectrogram of the δJx component is shown in figure 15(a),
which is useful in order to further understand the behavior of
the correction current (the wavelet spectrogram for δJy shows
similar information and is not shown for brevity). In the
spectrogram, we can see that the wavelet bases that contribute

Figure 10. Electron Landau damping (black solid line), transit
time magnetic pumping (blue dashed line) and the cross terms
(red dotted line) as predicted by FEMIC1D for =fn 20. The

electron Landau damping is given by ( ˆ )w c E EIm z zz e
A

z
1
2 0 ,

* ,

TTMP by ( ˆ )w c E EIm y yy e
A

y
1
2 0 ,

* and the cross terms by w1
2 0

( ˆ ˆ )c c+E E E EIm y yz e
A

z z zy e
A

y, ,
* * .

Figure 11. Electron absorption profiles for IBW for different toroidal
mode numbers as predicted by FEMIC1D. The results were
calculated using wavelet filtered electric fields.

Figure 12. Kinetic flux for IBW for different toroidal mode numbers
as predicted by FEMIC1D. The results were calculated using
wavelet filtered electric fields.

Table 2. Total power absorption Pabs and the power partitions pH and
pe for different toroidal mode numbers as predicted by FEMIC1D.
The power partitions pH

TOMCAT and pe
TOMCAT as predicted by the

TOMCAT code are also shown.

fn Pabs pH pe pH
TOMCAT pe

TOMCAT

15 31.4 W m−1 87.5% 12.5% 81.9% 18.1%
20 20.7 W m−1 70.5% 29.5% 68.5% 31.5%
27 13.5 W m−1 56.5% 43.5% 57.1% 42.9%
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to the induced current density coincide quite well with the
wavelet bases of the IBW in figure 6. Another interesting
point is that the wavelet bases related to the fast wave branch
range from very small to negligible. This indicates that the
algebraic susceptibility model is a good approximation to
describe the propagation and damping of the fast wave, as the

correction current does not add any significant corrections to
the fast wave.

The parallel current density component δJz is shown in
figure 14(c), and its wavelet spectrogram in figure 15(b). This
component adds corrections to both the fast wave and the
IBW. The corrections for the IBW are related to the ĉzz j,
component and are rather small. This is expected, since the
dependence of kR in the ĉzz j, is very weak. In contrast, large
amplitude corrections for the fast wave are observed. These
corrections are also caused by FLR effects, and affects the fast
wave polarization of the wave in the yz plane. The effect
originates from the susceptibility element ˆ ˆc c= -zy j yz j, , ,
where the fast wave polarization is described by

ˆ ˆc c» -E Ez y zy j zz j, , [45] (a similar effect is caused by the
ĉzx j, term, but is negligible here). Since ĉzy j, is proportional to
the wave number kx, the response is dependent on the sign of
the wave number, which causes the effect. However, this
effect does not modify the power absorption, since the cross
term in the power kernel, ĉE Ez zy j

A
y, , becomes an even func-

tion of kx (the superscript A denotes the anti-Hermitian part).
Thus, calculations that do not account for this FLR effect may
still obtain a reasonable power balance.

4.5. Convergence

The residual norm is based on the electric field components in
the Anderson Acceleration routine, which is given by

∣∣ ∣∣ ( )( ) ( )= - -f E E . 44k k 1

Convergence is achieved when the residual norm f is smaller
than the absolute tolerance, which is set to 10−3. The evol-
ution of the convergence is shown in figure 16. Overall, as
long as the FE and wavelet grids have good resolutions, the
Anderson Acceleration fixed point iteration scheme exhibits
good convergence properties. However, the number of itera-
tions to achieve convergence vary significantly. It was found
that the number of iterations required for convergence are
related to the number of oscillations in the correction current.
Hence, the longer distance the IBW propagates, the more
oscillations will be required in the correction current, which
increases the number of iterations.

5. Discussion

In general, the propagation and damping of the fast wave as
predicted by the FEMIC1D code is consistent with the pre-
dictions of the TOMCAT code. The observed difference is the
damping of the IBW, where FEMIC1D predicts stronger
electron Landau damping compared with TOMCAT. The
reason behind this is that the FEMIC1D code has an all order
FLR description of the dielectric tensor, while the TOMCAT
code uses a truncated FLR expansion. A truncated FLR
expansion works well when the Larmor radius of the hydro-
gen population is small, i.e. l 1H . This model works well
for the fast wave and for modeling mode conversion. How-
ever, as the wave propagates away from the mode conversion

Figure 13. Comparison between · T and Pabs for the IBW for the
toroidal mode number 20. Far away from the mode conversion zone,
the Poynting flux of the IBW is negligible, thus the local absorption
is balanced by · T.

Figure 14. Real part of the correction current in FEMIC1D for the
last iteration for nf=20. (a) δJx, (b) δJy, (c) δJz.
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zone, the wavelength of the IBW becomes shorter and at
some point it will become comparable to the ion Larmor
radius, so that l ~ 1H . The consequence when the smallness
assumption is broken is that the electron Landau damping
becomes significantly weaker compared with an all-order
FLR model, as was discussed in [41].

To evaluate equation (6) and account for the non-local
response, a wavelet approach was used. The evaluation can
also be done with Fourier bases, however, the Morlet wavelet
approach has two advantages over the Fourier approach. The
first is that Morlet wavelets are localized in space while
having a narrow wave number content. Morlet wavelets are
therefore suitable for describing waves in inhomogeneous
media. The second advantage is that the wavelet transform

does not require a periodic function on a finite grid. Fourier
decomposed functions are required to be periodic in order to
avoid the Gibbs phenomenon. Instead, wavelets have the
problem of producing edge artifacts, which occur when
Morlet wavelets are close to the boundaries. In this work, the
issue is solved with the matched layer technique (see
section 3.5), which is computationally inexpensive.

The main challenge of the iterative wavelet FE scheme is
the number of iterations required to achieve convergence,
which makes the numerical method slow. The number of
iterations appears to correlate with the number of wavelengths
in the correction current δJind. In [27], a wavelet spectral
method was used to solve the wave equation and study fast
wave heating in a toroidal plasma, which could account for
non-local response in the parallel dispersion (i.e. the up- and
downshift in the parallel wave number). The wave equation
was solved by describing all differential operators in wavelet
space, including the curl–curl operator, i.e. solving the
implicit equation

( ) ˆ ( )( ) ( ) ( )c c
w

d+ =  ´  ´ -+E
c

E EI , 45n n n
0

1
2

2

where c0 is the cold susceptibility tensor. The required
number of iterations to achieve convergence was ∼100. In
[24], a similar wave equation was solved, but using the
iterative wavelet FE scheme. For this case, the required
number of iterations to achieve convergence was reduced to
∼10. Hence, the slow convergence in the present model is
related to the fact that the wave equation describing the
propagation of the IBW is treated using wavelets. Therefore, a
possibility to reduce the number of iterations is to move the
lowest order FLR effects from the correction current using
operator splitting and include them in the FE method, and let
the correction current contain higher order FLR effects.

In FEMIC1D, the most time consuming part is the
calculation of the inverse continuous wavelet transform of the

Figure 15. Absolute value of the wavelet coefficients of the correction current. (a) δJx and (b) δJz.

Figure 16. Residual norm (see equation (44)) evolution with the
iteration number for the three toroidal mode numbers.
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correction current (equation (40)). One approach to improve
the performance of the inverse wavelet transform is to remove
the redundancy in the wavelet representation of the functions,
in particular, for large wavelets. For example, the discretiza-
tion in the shift parameter b can be improved by using a
coarser resolution for larger wavelets, while maintaining fine
resolution for smaller wavelets only.

6. Conclusion

In summary, we have developed a new numerical method based
on an iterative wavelet FE scheme, which has the capability to
solve the wave equation and take into account FLR effects to all
orders. To verify the method, we studied a case of one-
dimensional fast wave heating at the second harmonic ion
cyclotron resonance of hydrogen and study mode conversion to
IBWs. Comparison with simulations performed with the
TOMCAT code shows good agreement in regions where the
Landau damping of the IBW is not significant. The numerical
method can also account for FLR effects related to the
polarization of the fast wave in the yz plane, which are caused
by the ĉzy j, term in the susceptibility tensor.

The main advantage of the proposed numerical scheme is
that it relies mainly on the FE method, which is suitable for
solving the wave equation in complex geometries. In part-
icular, the method can use the FE method in the low-density
and antenna regions in a tokamak, where spatial dispersion
effects are either weak or absent. Iterative addition of spatial
dispersion effects are applied locally (i.e. the plasma domain),
since the correction current δJind is evaluated on the wavelet
grid, which is smaller than the FE grid. Another advantage of
the method is that the problem solved with the FE method
does not have to be a rigorous description of the plasma
response, as iterations are used to approach the rigorous
description.

The main challenge of the iterative wavelet FE scheme is
to reduce the number of iterations required to achieve conv-
ergence (which is left for future work). One way to achieve
this is to move the lowest order FLR terms from the correc-
tion current and treat them using the FE method, and only
iterate on higher order FLR terms.
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Appendix. Susceptibility tensor in wavelet space

A.1. Higher order derivatives of the Morlet wavelet

The daughter wavelets (from section 3.1) are given by
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where Xab=(x− b)/a is introduced for brevity. Using the
product rule for derivatives, the k:th derivative of the daughter
wavelet can be written as
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Using the recurrence relation for Hermite polynomials [38], it is
possible to Taylor expand Hen(x+y) and obtain the relation
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which in turn can be used to evaluate equation (A.2). We obtain
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A.2. Integrating using the Binomial theorem

Using the binomial theorem, computing the inverse Fourier
transform and using the result from the previous section, it is
possible to show that
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Usually, ks is very small, so for low orders of p, the second
term can be neglected. In that case, we obtain
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