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Abstract

In this paper, the initial-boundary value problem of the one-dimensional
full compressible Navier—Stokes equations with positive constant viscosity
but with zero heat conductivity is considered. Global well-posedness is
established for any H' initial data. The initial density is assumed only to be
nonnegative, and, thus, is not necessary to be uniformly away from vacuum.
Comparing with the well-known result of Kazhikhov and Shelukhin (1977 J.
Appl. Math. Mech. 41 273-282), the heat conductive coefficient is zero in this
paper, and the initial vacuum is allowed.
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1. Introduction

1.1. The compressible Navier-Stokes equations

The one-dimensional non-heat conductive compressible Navier—Stokes equations are

pr+ (pu)x =0, (1.1)
p(uy + uny) — pityy +py =0, (1.2)
cvp(B; + uby) + up = p(uy)?, (1.3)
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where p, u, 0, and p, respectively, denote the density, velocity, absolute temperature, and pres-
sure. The viscous coefficient g is assumed to be a positive constant. The state equation for the
ideal gas is p = Rpf, where R is a positive constant. Using the state equation, one can derive
from (1.1) and (1.3) that

P upy + yup = p(y — 1) (u)?,

where v — 1 = LE Therefore, we have the following system

o+ (pu)y =0, (1.4)
p(uy + uuy) — piy, + pr = 0, (1.5)
P+ ups +yuxp = p(y — 1) (). (1.6)

Note that systems (1.1)—(1.3) and (1.4)—(1.6) have less dissipation than the heat conduc-
tive compressible Navier—Stokes equations but more dissipation than the compressible Euler
equations, and thus they serve as intermediate systems between the classic Navier—Stokes
equations and Euler equations. One may also find the background of these two systems in the
large-scale atmospheric dynamics: in the atmospheric dynamics, the air is usually considered
as an ideal gas and, thus, both the kinetic viscosity and thermal conductivity are neglected;
however, due to the presence of strong turbulent mixing in the atmosphere at large scale,
which creates the eddy viscosity to the air, the eddy viscous terms (rather than the kinetic
viscous ones) are involved in the large-scale atmospheric dynamical systems, which reduce to
systems (1.1)—(1.3) and (1.4)—(1.6), for the one-dimensional case.

The compressible Navier—Stokes equations have been extensively studied. In the absence
of vacuum, i.e. in the case that the density has a uniform positive lower bound, the local well-
posedness was proved long time ago by Nash [45], Itaya [20], Vol’pert-Hudjaev [56], Tani
[49], Valli [50], and Lukaszewicz [39]; uniqueness was proved even earlier by Graffi [14]
and Serrin [48]. Global well-posedness of strong solutions in 1D has been well-known since
the works by Kanel [24], Kazhikhov—Shelukhin [26], and Kazhikhov [25]; global existence
and uniqueness of weak solutions was also established thereafter, see, e.g. Zlotnik—Amosov
[57, 58], Chen—Hoff-Trivisa [1], and Jiang—Zlotnik [23], see Li-Liang [32] for the result on
the large time behavior, and see [15, 16, 31, 38, 44] for some related results for the isentropic
system with density dependent viscosity. The corresponding global well-posedness results for
the multi-dimensional case were established only for small perturbed initial data around some
non-vacuum equilibrium or for spherically symmetric large initial data, see, e.g. Matsumura—
Nishida [40-43], Ponce [46], Valli-Zajaczkowski [51], Deckelnick [9], Jiang [21], Hoff
[17], Kobayashi—Shibata [27], Danchin [7], Chen—Miao—Zhang [2], Chikami—Danchin [3],
Dachin—Xu [8], Fang—Zhang—Zi [10], and the references therein.

In the presence of vacuum, that is the density may vanish on some set or tend to zero at
the far field, global existence of weak solutions to the isentropic compressible Navier—Stokes
equations was first proved by Lions [36, 37], with adiabatic constant v > %, and later general-
ized by Feireisl-Novotny—Petzeltova [11] to v > %, and further by Jiang—Zhang [22]to v > 1
for the axisymmetric solutions. For the full compressible Navier—Stokes equations, global
existence of the variational weak solutions was proved by Feireisl [12, 13], which however
is not applicable to the ideal gases. Local well-posedness of strong solutions to the full com-
pressible Navier—Stokes equations, in the presence of vacuum, was proved by Cho—Kim [6],
see also Salvi—Straskraba [47], Cho—Choe—Kim [4], and Cho—Kim [5] for the isentropic case.
Same to the non-vacuum case, the global well-posedness in 1D also holds for the vacuum case,
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for arbitrary large initial data, see the recent work by the author [29]. Generally, one can only
expect the solutions in the homogeneous Sobolev spaces, see Li-Wang—Xin [28]. Global exist-
ence of strong solutions to the multi-dimensional compressible Navier—Stokes equations, with
small initial data, in the presence of initial vacuum, was first proved by Huang—Li—Xin [19]
for the isentropic case (see also Li—Xin [35] for further developments), and later by Huang—Li
[18] and Wen—Zhu [53] for the non-isentropic case; in a recent work, the author [30] proved
the global well-posedness result under the assumption that a certain scaling invariant quantity
is small. Due to the finite blow-up results in [54, 55], the global solutions obtained in [18, 30,
53] must have unbounded entropy if the initial density is compactly supported; however, if
the initial density has vacuum at the far field only, one can expect the global entropy-bounded
solutions, see the recent works by the author and Xin [33, 34].

In all the global well-posedness results [1, 23, 25, 26, 32, 57, 58] for the heat conduc-
tive compressible Navier—Stokes equations in 1D, the density was assumed uniformly away
from vacuum. For the vacuum case, global well-posedness of heat conductive compressible
Navier—Stokes equations in 1D was proved by Wen—Zhu [52] with the heat conductive coeffi-
cient k = 1 4 64, for positive g suitably large, and by the author [29] with positive constant .

The aim of this paper is to study the global well-posedness of strong solutions to the one-
dimensional non-heat conductive compressible Navier—Stokes equations, i.e. system (1.1)—
(1.3), with constant viscosity, in the presence of vacuum,; this is the counterpart of the paper
[29] where the heat conductive case was considered. To our best knowledge, global well-pos-
edness of 1D non-heat conductive compressible Navier—Stokes equations for arbitrary large
initial data is not known before, no matter the vacuum is contained or not.

The results of this paper will be proven in the Lagrangian coordinate being stated in the
next subsection; however, it can be equivalently translated back to the corresponding one in
the Euler coordinate.

1.2. The Lagrangian coordinates and main result

In this subsection, we first transform the system from the Euler coordinate to the Lagrangian
coordinate and then state the main result. Different from [26], in which the mass Lagrangian
coordinate was used and the non-vacuum case was considered, in this paper, we work in the
flow map Lagrangian coordinate and take the vacuum into account. The reasons for us to use
the flow map Lagrangian coordinate instead of the mass Lagrangian one are the following two:
(1) in the mass Lagrangian coordinate, the specific volume, one of the unknowns used in the
system, is destined to be infinite in the vacuum region; (ii) if it presents a region of vacuum,
then one can not distinguish the points in this region if using the mass Lagrangian coordinate.
Let 7(y, 7) be the flow map governed by u, that is

{nz(y, 1) = u(n(y,1),1),
n(y,0) = y.

Denote by p, v, and 7 the density, velocity, and pressure, respectively, in the Lagrangian coor-
dinate, that is

oy 1) := p(n(y:0),0), - vy, 1) i= u(n(y,1),0),  w(y.1) := p(n(y.1),2),
and introduce a function J = J(y,t) = ny(y, ). Then, it follows
Ji = vy, (1.7)
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and system (1.4)—(1.6) can be rewritten in the Lagrangian coordinate as

Vy
9,+7’g=0, (1.8)
WV Ty
ovr — 7 (7)y + 7= 0, (1.9)
T2 = —1)(3)2 (1.10)
' 'VJ = ply 7)) :

Due to (1.7) and (1.8), it is straightforward that
%
(o) =Jio+Jo = vyo—J—0=0,

from which, by setting o|,—o = 0o and noticing that Jl,_o = 1, we have Jo = go. Therefore,
one can replace (1.8) with (1.7), by setting o = %, and rewrite (1.9) as

v
00V — b <7y) +m, = 0.
y

In summary, we only need to consider the following system

Ji =, (1.11)
Vy
@ovl—u<7) +my =0, (1.12)
y
T+t = —1)(3)2 (1.13)
T =y ) :

Note that here we explicitly use J, instead of g, as one of the unknowns, while g is determined
from J as €; expressing ¢ as € provides more precise behavior of the density near the vacuum.

We consider the initial-boundary value problem on the interval (0, L), with L > 0, and the
boundary and initial conditions are

v(0,1) = v(L,1) =0 (1.14)

and

(5 00v, )| =0 = (1, 0ovo, ). (1.15)

We point out that here we put the initial condition on ggv rather than on v. As will be shown
in theorem 1.1, in the below, we can guarantee the continuity in time of gov but not necessary
of v, if the initial data lie only in H 1

For1 < ¢ < oo and positive integer m, we use L9 = LI((0,L)) and W™ = W™4((0, L)) to
denote the standard Lebesgue and Sobolev spaces, respectively, and in the case that g = 2, we
use H™ instead of W2, H} consists of all functions v € H! satisfying v(0) = v(L) = 0. We
always use ||ul|, to denote the L? norm of u.

The main result of this paper is the following:

Theorem 1.1. Assume 0 < g9 € L™, 0 < w9 € H', and vy € Hé. Then, there is a unique
global solution (J,v, ) to system (1.11)—(1.13), subject to (1.14)—(1.15), satisfying
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0<JecC(o,T;H"), J, €L>(0,T;L*)NL*0,T;H"),
oov € C([0,T);L*), v e L>®(0,T;H")NL*0,T;H?),
Voo € L*(0,T;L%), /v, € L*(0,T; H'),
0<mec(0.T):H"), m€Li0,T;:H"),

Sforany T € (0, 00).

Remark 1.1. The arguments presented in this paper also work for the free boundary value
problem in which the boundary condition for v in (1.14) is replaced by

In fact, all the energy estimates obtained in this paper hold when one replaces the boundary
condition (1.14) with the above one, by copying or slightly modifying the proof.

Some comments about the proof of theorem 1.1 are made as follows. Note that, for the heat
conductive case, as it has been shown in [26, 29], a crucial step of proving the global exist-
ence is to get the L>°(L?) estimate on the total energy E := % + ¢,¥. One may try the same
step in the current paper, that is, trying to test the E equation with E and correspondingly the
v equation with v3. However, with this approach, one will encounter some terms involving
either 7, or 9J,, which, unfortunately, can not be dealt with, due to the lack of heat conductivity,

and moreover, one also needs to control some term of the form fOL(|7T\ [vy|? + |vy|?)dy which

is also hard. A central quantity used in this paper is the effective viscous flux G := ,u% -,
which satisfies

u (G, vy
G-E(2) =—2a
’ J(Q())y 7

The key estimate is the L°°(L?) a priori bound of G, which in the current paper is derived by
testing the above equation with JG, see proposition 2.4. It is interesting that the basic energy
identity and the uniform positive lower bound of J are sufficient, in other word, not any other
estimates beyond these two are required, to get the desired L°°(L?) a priori bound of G; in
particular, the L°°(L?) a priori bound of E is not required at all to get the desired estimate for
G. This indicates a remarkable difference concerning the proof of global existence between
the non-heat conductive case and the heat conductive case, by recalling that the L>°(L?) esti-
mate for G is derived based not only on the basic energy identity and the uniform positive
lower bound of J but also heavily on the upper bound of J and the L>°(L?) of E as shown in
[26, 29].

Throughout this paper, we use C to denote a general positive constant which may vary from
line to line.

2. Local and global well-posedness: without vacuum
This section is devoted to establishing the global well-posedness in the absence of vacuum

which will be the base to prove the corresponding result in the presence of vacuum in the next
section.
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We start with the following local existence result of which the proof will be given in the
appendix.

Proposition 2.1.  Assume that (09, Jo, vo, o) satisfies

0<o<@<o<o0, 0<J<J<J <o,
m =0, (00,Jo,m) €H', vy € H,,

for positive numbers 0.0,J, and J. 3
Then, there is a positive time Ty depending only on R, v, p, 0, 0, J, J, and ||(Jo, vo, 7o) ||,
such that system (1.11)—(1.13), subject to (1.14)—~(1.15), has a unique solution (J,v,7) on
(0,L) x (0, Ty), satisfying
0<JeC(0,To);H"), J, €L®(0,Ty;L?),
v e C([0,To); HY) N L*(0,To: H*), v, € L*(0,Ty; L?),
0<meC(0,To;H"), = €L>®(0,Ty;L?).
In the rest of this section, we always assume that (J, v, ) is a solution to system (1.11)—
(1.13), subject to (1.14)—(1.15), on (0,L) x (0, T), satisfying the regularities stated in propo-
sition 2.1, with T there replaced by some positive time 7. A series of a priori estimates of

(J, v, ), independent of the lower bound of the density, are carried out in this section.
We start with the basic energy identity.

Proposition 2.2. I holds that

L
/ J(y, 1)dy = o
0

and

(/OL (?Vz + ij 1) dy) (1) = Eo,

L L 77
for any t € (0,00), where £y := [ Jody and Ey := [ <%v(2) + ,y_”l> dy.

Proof. The first conclusion follows directly from integrating (1.11) with respect to y over
(0, L) and using the boundary condition (1.14). Multiplying equation (1.12) by v, integrating
the resultant over (0, L), one gets from integration by parts that

ld * b (w)? t
—— d 2 dy = dy.
2dtogov y+u/0 7w /Ovyﬂy

Multiplying (1.13) with J and integrating the resultant over (0, L), it follows from (1.11) that
a [t L L ()2
f/ Jrdy + (v — 1)/ vyrdy = p(y — 1)/ Qdy,
dr J, 0 o J

which, combined with the previous equality, leads to
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d “/o0 , Jr
(2 dy =0,
dr J, (2V+71 Y

the second conclusion follows. O

Next, we carry out the estimate on the lower bound of J. To this end, we perform some
calculations in the spirit of [26] as preparations.
Due to (1.11), it follows from (1.12) that

oove — p(log J)y + my = 0.

Integrating the above equation with respect to ¢ over (0, ¢) yields

t
00(v —vo) — p(logJ —log Jy), + (/ 7rd7’> =0,
0 y

from which, integrating with respect to y over (z,y), one obtains
y 7 7
00(v —vo)d§ — pu ( log —(y,1) — log —(z,1)
z Jo Jo
1
+ [ rlnm) —wlamir =0, Wze (0.)
0

Thanks to this, noticing that

Y 'y ¥4
— vo)dé = — o) — — vo)dé,
/Z 00(v — vo)d§ /o 00(v — vo)d§ /0 00(v — vo)d§

and rearranging the terms, one obtains
y J !
| vty = voe — tog )+ [ sy
0 0 0

Z J t
= / 00(v — vp)d€ — plog J—(z, 1) —I—/ 7(z, 7)dr, Vy,z € (0,L).
0 0 0

Therefore, both sides of the above equality are independent of the spacial variable, that is

y J t
/ oo(v —vp)d¢ — plog — + / wdr = h(r),
0 Jo o

for some function A, from which, one can easily get

J - '71' T

J—OHB:eLfo dr o
where

H= H(t) = e%, and B = B(y’ t) — ei N Qo(Vofv)df.

Multiplying both sides of (2.1) with % leads to

@Jﬂ' = (eﬁ fO’TrdT) s
/J,JO t
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from which, integrating with respect to ¢, one arrives at

' 1 !
ernhom™ — 1+ | BHJrdr.
udo Jo

Thanks to this, one obtains from (2.1) that
] t
JHB = Jy + — / HBJrmdr. 2.2)
HJo

A prior positive lower bound of J is stated in the following proposition:

Proposition 2.3. The following estimate holds

4 —1)E,
J >Jexp{_\/m_ (Wg)oe;wmt}’
H o

Sforanyt € [0, 00).

Proof. By proposition 2.2, it follows from the Holder inequality that

y L
/ 00(v — Vo)dﬁ‘ < / (loov| + [eovo|)dE < 2+/2myEy,
0 0

where my = f(;‘ oody, and, thus,

e % VIME < B(y, 1) < e VIME, (2.3)

Applying proposition 2.2, using (2.3), and integrating (2.2) over (0, L), one deduces

L L
CoH(t) = / JHdy < eii V200 / JHBdy
0 0

1 t L
— ¢ V2mEo [ZO + f/ H </ BJWdy) dT:l
K Jo 0

o5 V/ZmEs (fo i (v _ul)EOeﬁ‘/zm"Eo /t qu-) ’
0

N

and, thus,

t
H(l) g e%\/ZmoEo <1 + (’7 761)E06%\/2m0E0/ HdT> )
Hro 0

Applying the Gronwall inequality to the above yields

2 —1)E
H(1) < eXp{ 2m0E0+(7)063\/mt}.
2 /,Lgo

With the aid of this and recalling = > 0 and (2.3), one obtains from (2.1) that
.I — H—IB—IJOeﬁ forTrdT 2 H_IB_ll

4 —1)E
>JeXp{—u\/m_ Weimf}’
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the conclusion follows. O

Before continuing the argument, let us introduce the key quantity of this paper, the effective
viscous flux G, defined as

1%
G:= ,ujy - (2.4)

By some straightforward calculations, one can easily derive the equation for G from (1.11)—
(1.13) as

u [ Gy Vy
G-=|—) =—=0G.
T (90>y 75 (2.5)

Moreover, noticing that ggv; = Gy, it is clear from the boundary condition of v that
Gyly=orL = 0. (2.6)

The next proposition concerning the estimate on G is the key of proving the H' estimates
on (J, v, ) later.

Proposition 2.4. The following estimate holds

2 ! 4 Gy
sup ||G +/ GOO—FH}
%QHM L (el =

where Gy = u% — my and C depends only on =y, u, 0, 4y, J, my, Ey, and T.

2
)df < ClIGol3.
2

Proof. Multiplying (2.5) with JG and recalling the boundary condition (2.6), it follows from

integration by parts and (1.11) that
2 L
G, ( 1 ) / 2
— =z~ vyG-dy. 2.7
w H Vol ) Y ) y (2.7)
Integration by parts and the Holder inequality yield

.f&@ﬂ—z 4Vﬂ
o V0o

By the Gagliardo—Nirenberg inequality and applying proposition 2.3, it follows

)

2) ) (2.8)

Combining the previous two inequalities, it follows from the Young inequality and proposition
2.2 that

E&H\[JGHz‘f'

L
/ vGGydy' < 20Vl Gl
0

I
2

G,

1 1 1
1G]l < ClGI; (Gl < € (Gllz +16ll3

Gy

V0

<C (MGHz +IVIG|;
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1
2 )

for any positive €. Substituting the above into (2.7) with suitably chosen €, one obtains

Gy

L , G
v,Gody| < Cl||l—=
) | <e] e

N
Ve

y

Vo

1
lv/eovll2 (IIﬁGlz +IVIG|;
2

2
<e + C=(Eo + Eg)|IVIGI[3,
2

d G
—|IVIG|3 J
G IVIGlE + |

N

2
< CIVIG|;.
2

which leads to the conclusion by applying the Gronwall inequality and simply using (2.8) and
proposition 2.3. O

The following corollary is a straightforward consequence of proposition 2.4.

Corollary 2.1. The following estimate holds
T
sup [GI3+ [ (1614 + 615) dr < ClGol
0<i<T 0

where Gy = M% — my and C depends only on ~y, u, 0, %y, J, my, Ey, and T.

The uniform upper bounds of J, 7 are proved in the next proposition.
Proposition 2.5. The following estimate holds

sup ([|7loe + /lee) < C(1 47 + [0l 0)-
0<r<

SIS

Sfor a positive constant C depending only on v, u, @, 4o, J, mo, Eo, ||Go||2, and T.
Proof. Noticing that v, = ﬁ(G + 7), one can rewrite (1.13) as
2 -1 -2
= =1 e T 26y, 2.9)
o I
from which one can further derive
1 —2 \* P
S <7r 12 G) _ T (2.10)
% 2 4p

The estimate for 7 follows straightforwardly from integrating (2.10) with respect to ¢ and ap-
plying corollary 2.1. As for the estimate for J, noticing that (1.11) can be rewritten in terms of

Gandmas J, = i(G + 7), the conclusion follows from the Gronwall inequality by proposi-
tion 2.3, corollary 2.1, and the estimate for 7 just proved. |

A priori L>(0,T; H') estimate for (J, ) is given in the next proposition.

Proposition 2.6. The following estimate holds

sup ([[Jyll2 + [Imyll2) < C(1+ [[Fgll2 + [[m]l2),
0T
for a positive constant C depending only on v, i1, 8, o, J, J, mg, |70 || 1> Eo, ||Goll2, and T.
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Proof. Differentiating (2.9) with respect to y gives

2(y— 1) -2

GG, +

(myG + 7Gy).

2
oy + ;Wwy =

Multiplying the above equation with 7, and integrating over (0, L), one deduces

1d 2 [
Iyl + 2 / i, [y
H Jo

2dr
20y —1) (* -2 [k

= M/ GGyﬂ'ydy—FL/ (G|my|* + 7Gymy)dy
1% 0 1% 0

< IG5 + CUIGIZ + 1+ [I7l3) Iy 12,

and, thus, by the Gronwall inequality, and applying corollary 2.1 and proposition 2.5, one gets

T
2 ¢ (C I OHIGIRH Il (IIW()II% N C/o ||Gy|§d,>

< C(1 + [lmg13)-

sup ||,

SIS

Note that

(log.J)y: = (ﬁ)y = (%) = i(G—Hr)y.

y

Therefore, by corollary 2.1 and the estimate just obtained for ||7,||2, it follows that

t

(log Jo) + / (log.J),dr
0

sup [|(logJ)yl2 = sup

<< <i<T 2
J/ T
<[ 2] + [ 1ogs)dar
Joll 0
Igll2 1 /T
<=+ | (G2 +[Imll2)dr
J K Jo g ’
< C(1+ [ oll2)
and further by proposition 2.5 that
sup |[Jy]l2 = sup [l7(logJ)yll> < C(1 + [[/g]l2).
0<I<T 0<I<T
proving the conclusion. O

Corollary 2.2. [t holds that

r 4
sup 0B+ [ (I8 )+ e+ ) < .

0T

s, and T

Gy

Jo

for a positive constant C depending only on v, u, 0, 4o, J, J, mo, || 7ol 1 » Eo, 2,
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Proof. The estimates on supyc,<7 [[vy/|3 and fOT [|/ov¢||3dt follow from corollary 2.1 and
proposition 2.5 by noticing that v, = %(G + ) and /0pv; = \Z’);O. As for the estimate of vy,
noticing that

Vy \% vy J J,
e (1), =0 (3), + = L6

y
(G ,
7 7 J L (G+m)

it follows from corollary 2.1 and propositions 2.5 and 2.6 that
T T
2 2 2 2 2 2
/0 [[vyyllzdr < C/O HGyllz + llmyllz + My I2(IGIIS + [l7ll5e)]de < C.

The estimate for J; follows directly from (1.11) and the estimates obtained. By corollary 2.1
and propositions 2.5 and 2.6, it follows from (2.10) that

T T
| mliar< e [l + Inftou < c.
0 0

and
T 4 T 4
/0 Imyllide < / (Il llTylls + |Gl IGolla)
T 3 T 3
<c( / <||w||io+||c||io>dr> ( / <||wy||%+||cy%>dr) <c
This completes the proof. O

The following 7-weighted estimates will be used in the compactness arguments in the pas-
sage of taking limit from the non-vacuum case to the vacuum case.

Proposition 2.7. The following estimate holds

T
I
0

for a positive constant C depending only on v, u, 0,4y, J, J, my,
T.

Vyt”%dt < C,

Go

Jo

7ol g1, Eo, 2 2, and

Proof. Multiplying (2.5) with JG,, then integrating by parts yields

G,

V00

wd
2 dr

2 L
+ IVIG|% = —7/ v,GG,dy
2 0

1
< S IVIGHE + ClGI w3,

which, multiplied with 7, gives
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d t
Har
Integrating the above with respect to 7, and using corollaries 2.1 and 2.2 yield
sup | ¢
0<I<T
Recalling the expression of G, by direct calculations, and using (1.13), one deduces
v J
G[:/,L(‘;I_J;Vy> — T

A (u(v ) g

Gy

V00

2
+ Crl|GI% vy 13-
2

2
G,
+ t|VIG, |3 < H’
2) VIG5 < p NS

G, |’

V2

T
) +/ 1|VIG,|3dt < C. (2.11)
0

2

which gives

1
Vy = ;(JGI +,G).

Therefore, it follows from (2.11) and corollaries 2.1 and 2.2 that
T T
AﬂMMmscAumﬁa%+ww%w;w<c,

proving the conclusion. O
In summary, we have the following
Corollary 2.3. The following estimates hold

inf J > Ce T,
(1) €(0,L) X (0,T)

T
swwmb+M@+Anmmw<a

SIS

T
sup ||v|[7: +/ (Iv/eovellz + IIvII7e + tlvel 7 )de < .
0T 0

T 4
sup |||z +/ (el + el jp)de < C,
0<I<T 0

Sfor a positive constant C depending only on v, u, 8,J, ||(Jo, vo, 7o) || g1, and T.

Proof. This is a direct corollary of propositions 2.3 and 2.5-2.7, and corollary 2.2, by using
some necessary embedding inequalities. O

Remark 2.1. Checking the proofs of propositions 2.4-2.7, one can easily see that all the
constants C in the arguments viewing as functions of 7 can be chosen in such a way that are
continuous in T € [0, c0).
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We conclude this section with the following global well-posedness result for the non-vac-
uum case.

Theorem 2.1. Under the conditions in proposition 2.1, there is a unique global solution
(J,v, ) to system (1.11)—(1.13), subject to (1.14)—(1.15), satisfying

0<JeC(0,00);H"), J;€L¥(0,00);L*) N L. ([0,00); H'),

v e C([0,00); Hy) N Line ([0, 00): H?),  vi € Lige ([0, 00): L?),
Vv € Lio([0, 00); H'),

0< e C([0,00);H"), m €L ([0,00);L) nL:

loc

([o, oo);H').

Proof. By proposition 2.1, there is a unique local solution (J, v, ) to system (1.11)—(1.13),
subject to (1.14)—(1.15). By iteratively applying proposition 2.1, one can extend the local solu-
tion to the maximal time of existence Tp,x. We claim that T,,x = co. Assume by contradiction
that Tiyax < o0. Then, by corollary 2.3 and recalling remark 1.1, there is a positive constant C,
independent of T € (0, Tyax), such that

inf J > Ce T
(.)€(0,L) x (0,T)

T
sup (Wl + Wil + [ Il < €
0<t<T 0

T
sup_[[v][z +/ (Ieovill3 + 1[Iz + tllvill7)dr < €.
0

\t\

T 4
sup_||[|7 +/0 (Imelle + lImell 0 )dr < C.

0<r<

Thanks to this, by the local existence result, i.e. proposition 2.1, one can extend the local
solution (J, v, 7) beyond Tp.x, contradicting to the definition of Ti,,«. Therefore, it must have
Tmax = oo. This proves the conclusion. O

3. Global well-posedness: in the presence of vacuum

In this section, we prove our main result as follows.

Proof of theorem 1.1. Existence. Choose 0o, € H', with % < 0o < 0+ 1, such that

oon — 0o in LY, for any g € (1, 00). By theorem 2.1, for any n, there is a unique global solu-
tion (J,, vy, ) to system (1.11)—(1.13), subject to (1.14)—(1.15), with gg in (1.12) replaced
with gg,. By corollary 2.3, there is a positive constant C, independent of n, such that
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inf J, > Ce ",
(»,t)€(0,L) % (0,T)

sup (14,1 + 10:45) / [0t <

IS

sup [l + / (lv@dmnll3 + vl + dlomaln)ar < €.
<i<T

sup [|mall + / 10 5 <

0<I<T

@3.1)

for any T € (0, o). By the Aubin-Lions lemma, and using Cantor’s diagonal argument, there

is a subsequence, still denoted by (J,,, v, 7, ), and (J, v, ) enjoying the regularities

J€L>®0,T;H"), J, €L>®(0,T;L*)NL*0,T;H"),
v e L®(0,T;H) NL*(0,T; H?), /v, € L*(0,T;H"),

reL®0,T:H"), = €L3(0,T;H"),

such that
J. = J, inL>®(0,T;H"), 0J, >J,, inL>(0,T;L?),
Oy — Iy, in L2(0,T; H"),
Ve = v, in L>(0, T;Hl), Vy — v in LZ(O, T;Hz),
vy — vy, inL*(8,T;HY), V6 € (0,7),
T, =, in L>(0, T;Hl), om, — m, in L%(O, T;H"),
and

J, = J, inC([0,T];C(]0,L])),
vy = v, in C([6,T]; C([0,L])) NL*(8,T; H'), V6 € (0,T),

m =, inC([0,T]; C([0, T))).

(3.2)
(3.3)

(34)

(3.5)
(3.6)
(3.7)
(3.8)

(3.9)

(3.10)
(3.11)

(3.12)

Here, —, _., and * denote, respectively, the strong, weak, and weak-x convergence in
the corresponding spaces. Thanks to (3.5)—(3.11), one can take the limit n — oo to show
that (J,v,7) is a solution to system (1.11)—(1.13), on (0,L) x (0, T). Moreover, recalling

(Jns ) le=0 = (Jo, 7o), it is clear from (3.10) and (3.12) that (J, ) |;=0 = (Jo, 70)-

One needs to verify the regularities of (J,v, 7) and that (9ov)|;=0 = ovo. Using (3.1) and

(3.8), by the lower semi-continuity of the norms, one deduces

T T
/ I/aom|Rdr < lim / \/@omdmalPdr < €
5 n—oo J§
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forany § € (0, T), and for a positive constant C independent of 0, and, thus, ,/gov; € L*(0, T; L?).
The desired regularities J, 7 € C([0, T]; H') follow from (3.2) and (3.4).

It remains to verify gov € C([0, T]; L?) and (gov)|i=0 = 0ovo. To this end, noticing that
(3.3) and (3.4) imply v € C((0, T]; H'), it suffices to show that (gov)(,#) — govo, strongly in

L%, as t — 0. Using (3.1), it follows
t t
00n / Ovads|| < C / |7/ 00nOrvn]|2ds
0 2 0

< C\/Z:H\/QOnatVn”Lz(O,T;L?) < OV, (3.13)

00n(va — vo) |2 =

for a positive constant C independent of n. Recalling (3.11) and g, — g9, for any ¢ > 1, one
has

(00avn) (1) = (0ov)(-»2), in L?, Vt>0. (3.14)

It follows from (3.13) that

loo(v = vo)ll2(#) < ll2ov = Gonvall(2) + [l on (v = vo)[l2(7) + [|(20n = 20)0ll2

<
< |loov — 0onval|(£) + CV't + C|loon — 00]]2,

where C is independent of n, from which, recalling (3.14), one can take the limit n — oo to get

loo(v — wo)l2(r) < CV.

This proves the continuity of gov at # = 0 and verifies gov|,—o = goVvo.

Therefore, (J,v,7) is a global solution to system (1.11)—(1.13), subject to the initial and
boundary conditions (1.14)—(1.15), satisfying the regularities stated in theorem 1.1. This
proves the existence part of theorem 1.1.

Uniqueness. Let (J1, vy, ) and (Ja, vz, 72) be two solutions to system (1.11)—(1.13), sub-
ject to (1.14)—(1.15), and denote (J,v, ) := (J; — J2,v; — vo,m — m2). Then, straightfor-
ward calculations lead to

5=, (3.15)
vy Jvzy>
vi—pl2) +p(=2) +m,=0, 1
00V “(J1>y u<mz S (3.16)
S TVl n vy Jmavay _ ( _ 1) Viy n Vay Yy o Jvl
A N A R A VA al YAV YA
317

Multiplying (3.15)—(3.17), respectively, with J,v, and 7, and integrating the resultants over
(0, L), one gets from integration by parts and using the Young inequalities that
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1d

5 21 < el + a3

L ot ]| 22| < el o miB o ol I12)
2dl 2 \/ﬂz\ yi2 € 2 Yyiloo 2)s
1d

I < el + Colmpli + vyl + Il VI + I R),

where the fact that J; and J, have positive lower bounds on (0, L) x (0, T) for any finite 7 has
been used. Adding up the previous three inequalities and choosing € sufficiently small, one
obtains

d 2

Yy

VIl

3 (MIZ + 1veovll3 + II3) + u‘
< C(1+ [vnyll3o + Ivay e + ImlZ) (V13 + NI l13),

from which, noticing that ;, v;, € L?(0,T;L>),i = 1,2, and by the Gronwall inequality, one
obtains J = m = ,/gov = v, = 0. Thanks to this, by the Poincaré inequality, the uniqueness
follows. O
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Appendix. Local well-posedness, i.e. proof of proposition 2.1

In this appendix, we prove the local well-posedness of system (1.11)—(1.13), subject to
(1.14)—(1.15), for the case that the the initial density g¢ is uniformly away from vacuum. In
other words, we give the proof of proposition 2.1.
For positive time T € (0, 0o), denote
Qr == (0,L) x (0,T), Xg:=L>(0,T;H}) NL*(0,T; H?),

and

T 2
Il o= (suw i+ [ Inlar)
0<t<T 0

For positive numbers M and T, we denote
T = {v € Xz, [[vy|lv, <M}.

By the Poincaré inequality, one can verify that .%#), 7 is a closed subset of X7.
Given (09, Jo, vo, T ), satisfying

0<o<o<o<00, 0<J<]y<T <00, (A1)
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T =0, (00,Jo,m) €H', vy € H), (A.2)

for positive numbers p, g, J, and J.
Define three mappings 2, %, and .# as follows. First, for v € ), r, define J = 2(v) as
the unique solution to
J[ :Vy, J|[:() :JO.
Next, for given v € ) 7, and with J solved as above, define 7 = %(v) as the unique solution
to

vy 2
7 s 7T|z:0:770-

And finally, for given v € %), 7, and with J and 7 solved as above, define V = .% (v) as the
unique solution to

V.
m+77y7rzu(7—1)(

Vieugs = — (e +2), inor,
V(0,1) = V(L,t) =0, te€(0,7), (A.3)
V(y,0) = vo(y), y € (0,L).

It is clear that

Q) =Jo+ /Ot wds, Z(v)=2% )+ ply — )% (v),
where

%, (v) = T exp {—7 fot %ds} ,
() = [y (5)" exp {7 [1 s} ar,

In order to prove the local existence and uniqueness of solutions to system (1.11)—(1.13),
subject to (1.14)—(1.15), and recalling the definitions of the mappings 2, %, and .%, it suf-
fices to show that the mapping % has a unique fixed point in X7, which will be proved by the
contractive mapping principle.

For simplicity of notations, throughout this section, we agree the following:

J=2), m=2%Wv), Ji=20Ww), m=2%Wv), i=12,
(SJ:Jl—Jg, (57T=7T1—7T2, (SV:V1—V2,

with J = 2(v).

for arbitrary v, vy, v, € 7. By the Poincare and Gagliardo—Nirenberg inequality, there is a
positive constant C; depending only on L, such that

1 1
Wylloe < Cullvyli2 v l2- (A4)

This kind inequality for v will be frequently used without further mentions, and we use C
specifically to denote the constant in the above inequality.

In the rest of this section, we always assume that M and T are two positive constants, to be
determined later, satisfying

MTi <1, T<I. (A.5)
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Proposition A.1.
(i) For any v € Xy, it follows that
1 3
vyllzzrzeey < CiTHPvyllves  [Ivylleiorizee) < CLTH|vy v,

(ii) Consequently, for any v € £y 1, one has

||Vy||L2(0,T;L°°) < C, ||Vy||L1(0,T;L°°) <G

Proof. For any v € X7, by the Holder inequality and (A.4), one deduces

T 5 T 5
lizarasy = ([ i) <o ( [ Ilallhor)

l

1
<ci s ol ([ olir) | <cirtini,

0<I<T

which leads to the first inequality in (i). The second inequality in (i) follows from the first one
by simply applying the Holder inequality. The inequalities in (ii) follow from those in (i) by
using the conditions in (A.5). O

A.1. Properties of 2

Proposition A.2.
(i) It holds that
10y 2(0) = 07:22) < Moll2 + 1,
12(v1) = 202)[lL<(0r) < CITH[3y(v1 = v2)llvs
10y(2(01) = 2(02)) |z 0122y < T2 18y(vi = v2) v,
for any v, vy, vy € Hy 7.
(ii) Assume, in addition, that T < ( ) Then,

N~

< 2(v)<2J, onQr,
foranyv e .

Proof.

(i) Recalling the expression of 2, it is clear that

P t
i+ [ wwar| <155+ [ ladr
2

1 1
< Wollz + T2 vy llzzory < Moll2 + T2M < [l Jgll2 + 1.

10:2()]> =
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where (A.5) has been used. Similarly,

10,(2() — 20) ] = ]

t
/ (vi = v2)yyd7
0

1
< T2[(vi = v2)yllvy-

2

By (i) of proposition A.1, one deduces
<

12(1) = 2(2) | = H / (1 = va)ydr

3
< CiTH|(vi = va)yllvs-

o0

() IfT < (%)2, it follows from (ii) of proposition A.1 that

t
H/ vydT
0

and, consequently,

1 1 J
ST wylleoriey < CiT? < 3,
o0

N~

t
QW) =Jy —|—/ vdr >
0

I~
I
NI~ NI~

~
+
/N
[\S)
-~

t
20) =Jy —|—/ VdT <
0

proving the conclusion.

1
< T2|(vi = v2)plleon

|(vi — V2)y||L‘(O,T;L°°)

O

Due to proposition A.2, in the rest of this section, we always assume, in addition to (A.5),

that T < (2171) 2, 50 that (ii) of proposition A.2 applies.

Proposition A.3. The following estimates hold:

sz

2(v2)

EG

2(v1)

12(0,T;L>)

and

Viy

t
exp {_7/

o@m)ds} o {‘” / e@?iz)ds}

1
< CT#|0y(vi = v2)lvys

’ o0

3
< CT#H|0y(vi = v2)llvys

forany 0 < 7 <t < T, andvi,va € K1, where C is a positive constant depending only on

v, L, J.

Proof. Applying propositions A.1 and A.2, one deduces
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va

\

2
2 2
<M= wlaras + (3) 1200 = 200l ool liarac

2
2C) 1 2C 3
< <‘]1T4 + (‘]1> T}‘> ||(V1 - V2)y||Vr

1
< CTH[(vi = va)yllvy-

L2(0.T5L>)
(i =)y (2(v1) — 2(m))vay
2(v) 2(v1)2(v2)

L2(0,T;L>)

(A.6)

By the mean value theorem, there is a number 1 € (0, 1), such that
ool [ gt [ 2]
e {_7 /rt (n% +{a=n) QV&)) ds} /TI (Qv(ljl) - 3‘1(252)) &
Thus, using (A.6), it follows from propositions A.1 and A.2 that
|

t t
_ Viy _ _ Vay
exp { 'y/ 20n ds} exp{ 7/T 20n) ds}

< ve ( H9<‘1> HL'(OTLOO) 1—77)| %“2) |L'(U.T;L°°) ’ _ Vay
2vi)  2(wn) L'(0,T;L>)
% 1 Vay 3
<t g - < Tl =)l
20n)  2072) ll207.05) o
proving the conclusion. O
Proposition A.4. The following estimates hold
e ) <CO+M+ |7
|G, uroran < €M+ Wl
My sz) < C(1+ [T ]1) 18y (vy —
(207~ 207), Jiy < COF MR = vl
and
t t
Vly sz
19) - d
' <exp{ 7/T 2(n1) } exp{ + 2(n) S}) L2 (0,T;L?)

C(L+ 1) T2 [0y (v = v2) v

forany0 < 7 <t < T, and for any v,vi,vy € 1, where C is a positive constant depending
onlyon~,L,and J.
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it follows from propositions A.l and A.2 that
Dy Q

Proof. Note that (%), = = Jyvy

I(a),

Vyy

| Vy 2 (0.T:L>)

L2(Qr) H L2(Qr) Lo°(0,T3L2)

oM (2)\?
= (J) (Wglla+ 1)C < C(1+ M+ |J5]1)

The L'(0,T; L?) estimate for ( vav) )y follows from the above inequality by simply using the
Holder inequality.

For simplicity of notations, for vi, v, € Jy7, we denote v = vy — v, J; = 2(v),i = 1,2,
and 0J = J; — J,. By direct calculations

(Vﬁ _ @) _ vy Jyvy <V2y.v B J2yv2y>

L h nor L R
Svyy  OJvayy 0Jyviy (J1 + J2)oJ Jay
=——— | —5— —Jzyvlyzi (5 .
I I iz 272 2

Therefore, it follows from propositions A.1 and A.2 that

H (5=,
L2(Qr)

2
2
2 Iovlzen +( ) 167 = con ]l 20

2\ 2
+ 7 165 ||zoe 0.7:2) IViyll 20,7200

_/2\*
+47 (2) Wnlmioran 1071~ ol s

2 2
+ (J) HJ2y||L<>C(0,T;L2)H5VyHL2(o,T;L°°)

2 2\’ :
< 1wl + (3) MaT o

2 4
2 - (2 ;
+(3) artiontv +47 (3) G 1T o,

2\? )
+(3) as oy,

/ (A7)
C(1+ [[Toll2)l|6vyllv,-

Straightforward computations yield
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t t
0y (exp{—’y/ vjllyds} —exp{—v/ ijzyds}>
tV], IVZV ! Vay
= —7 (exp{—'y/ Jl)ds}—exp{—'y/ bds})/ (Jj) ds
T T T y
t t
Viy Viy Vay
— - —d — — — | ds.
Vexp{ V/T Ji S}/T (Jl 12>V ’

Therefore, it follows from propositions A.1, A.3, and 4 that

"y " vy
‘ Oy (exp {—’y/ leds} — exp {—7/ J;ds})
T T 2
1% ! V1 ! 1%
<y (Jy> exp{—'y/ J’Vds} —exp{—’y/ Jyds}H
250l (0,T:12) T T 72 oo
Viy Viy Vay
vl )
{ Jl L (O,T;L(x’) Jl J2 y
G
Ji 2/,

< C(1+ I ]1)T7 |dv,

L'(0,T;12)
2~C

<vye I T

=

+ C(1+ M+ [ Il12)T | 6vylv,
L2(Qr)

|V1’

proving the conclusion.

A.2. Properties of #
Proposition A.5. It holds that
10y(Z1(vi) = Z1(v2)) |2 (0r) < CTNOy(vi = v2) vy
for any vi,v2 € Hy 1, and for a positive constant C depending only on v, L, J, ||Jy]2, ||7o]|ccs
and ||

Proof. For simplicity of notations, we denote dv =v; — vy, J; = 2(v;), i = 1,2, and
0J = J; — J,. Note that

t t
O(Z1(v1) — Z1(v2)) = mo0y (exp {—7/ ‘.)llyds} — exp {—'y/ ijyds}>
o Ji o J2
t t
+ (exp {—7/0 ‘;llyds} - exp{—’y/o vJ?ds}) 7

It follows from propositions A.3 and 4 that
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10y(%1(v1) — %1 (v2)) |l 201)

t t
Vly /sz }
exp{ — —dsp —expq — —ds
p{ 7/0 Ji } p{ 7 o J2

+ [I7olle |0

<

7ol
L2(0,T:L)

ex /lmds —expq — /t@ds
Py o ) Py =7 o
exp {—7 /t mds} — exp {—’y/t Eds}
o Ji 0 2

+ |[molloo T

L2(Qr)

o=

<T

lImoll2
L (Qr)

(o [of ool 50))
| expq — —dsp —expq — —=ds
y Py =7 o i Py =7 o )

B 1
< CllmollaT + lImolloaT?)[1vy v,

L (0,T;12)

proving the conclusion.

Proposition A.6. It holds that
10y (2 (v1) = Z2(v2))l120p) < CT2 |0y (vi = v2)llvss

for any vi, vy € Hy 1, and for a positive constant C depending only on +y, L, J, and ||J§||2
Proof. For simplicity of notations, we denote dv =v; — vy, J; = 2(v;), i = 1,2, and
0J = Jy — J,. Straightforward calculations yield

(%2 (v1) — %2(v2))

_ /’w (M ) (v gy
0 Ji Jo /N y

J>

Aty %1 %) Vi 1%
eI (e ) (- )
/0 Ji N Ji

Jr

t
_ —y fL s (&)d(ﬁ @)(&_@)d
7/ / S AU A
! f' )dc f'v—dr %) 2
+/f”~(“ —e ) () as
0

J>

o (R () 0
0 y

Jro \Jp
=hL+hL+5L+1+Is.

Estimates for I;, i =1, 2, 3, 4 5, are given as follows. By propositions A.1 and 4

,
112 < eW”%;VI\L1<o,T;Loo>/ (HVUH V2YH )H(VU _ V2Y)
~
7 (|5 NG - 7)
L2(0,T:L>) Jy /s

yL2(Qr)
< Cllov .

2

N

12(0,T;L>)
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Similarly, it follows from propositions A.1, A.3, and 4 that

2“/C1 v V.
I < e ([(5), ] gy 1),
L2(Qr)

LZ(QT)>

H Viy Vay
J2

< CT (L M+ )T 6, v, < Cllvyllv,-

where we have used (A.5). It follows from propositions A.1-4 that

29¢; V] Vi 1% Vi
<2 [ () ) 2|

Vly sz
Ji J>

<@
L'(0,T;L2)

LZ(OTLOO)’

12(0,T5L°°)

Yiy V2>’
J>

< C(1+ M+ [T 16 Iy, < Cllovy v,

where (A.5) has been used. By propositions A.1-4, one deduces

t ‘I» s _ t Y2y s V
[4]l2 < /H@ s e )rd d)” H 2

1 V2
e+ Wy w2

and
t t Vly t ‘2)
[LE[EES 2/ [e7 - me el

I(Z),
12(0,T;L>°) )

< CTH(M + ||Jo||2)||5vy||vT < Cllovylvr

Vz
< CT|[ovy v, || 7>

where MT7 has been used. Therefore, we have

5

o0

ds < CH(SVYHVT’

L2(Qr)

10y(Z2(v1) = Za(v2)) 200y < D, IHllizor) < CT2|6W,lvr,

i=1
proving the conclusion.

Proposition A.7. Foranyv € 7, it holds that
10, Z (V) |2 (0r) < C

e

12(0,T;L>°)

LG e

Jfor a positive constant C depending only on 7y, i, L, J, ||Jy]|2, || 70 || 00> and ||mg]|2-

Proof. Note that Z(0) = my, it follows from propositions A.5 and A.6 that

102 () |20r) < 10:%(0) 1201y + 1105(2(v) —

2205

Z(0)l22(0r)

1 1 1
< Imhllizier) + CTHMllv, < T impll2 + CMT?

N
a
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where (A.5) has been used. This proves the conclusion. O

A.3. Properties of F

Proposition A.8. Foranyv € 1, it holds that
16yZ (W)|lvy < C,

Jor a positive constant C depending only on ~y, i, L, 0, 0, J,

2 and [|vg 2.

Joll2» l[molloc- [l

Proof. Denote J = 2(v),m = Z(v), and V = .Z (v). Testing (A.3) with —2= and noticing

J Q0
2 L
Ty Jyvy>
= — 4+ p—=—=| Vy,dy
2 /0 (QO Joo)

5 <J < 2J, one deduces
< ellViyllz + Ce(llmyll5 + v 12 1915),

LV + g
de' 2 vJoo

for any positive €, which, choosing ¢ sufficiently small and applying propositions A.1, A.2,
and A.7, gives

T
sup HVyH§+/ IViyllzde < C(Ivoll3 + ImyllZ20r) + Wy 0.1y Vol 220 72 )
0<I<T 0

< C,

proving the conclusion. O

Proposition A.9. It holds that

18,(F (1) — F () lvy < CTH (8,1 = v2)llvys  W01,v2 € Hirr,
for a positive constant C depending only on v, i1, L, 0, 8, J, | J§ |2, [|70| ocs |7 |2, and Vo |2
Proof. Denote J; = 2(v;), 7 = Z(vi),V; = Fv;,i = 1,2.SetdJ = J) — Jp, 1 =7 — 2,
and 0V = V| — V,. Then,

Va 5
OV — gV = gy [T 4 B hth

le Voy
SV = — +—<—}5V,+—}51,775]./2»2,)}.
ood1 JiJ200 0 o N2 TR B e

Testing the above with —JV,, and using proposition A.2, one deduces
1d
2dt

I
< @HWWII% + C(IIVay 3167112, + 16my 13 + (1, 1316wy

1
1V, 3 + @II(WwII%

I 2
(o]

+ vy B8 13 + 2y 13 vy 3 167112, )

which, integrating with respect to ¢, and applying propositions A.1, A.2, A.5, A.6, and A8,

2206



Nonlinearity 33 (2020) 2181 JLi

yields ;
I8V, = sup IoIE+ [ 5., e
0<I<t 0
< CIVayllfz o 10717 o) + 187311220y
+ ||J1y||%oe(o,T;L2)||5Vy||i2(0,T;L°°) + ||V2y||i2(0,T;Loo)||5Jy“1%w(0,T;L2)
+ ||J2y||i°°(O,T;L2) ||V2y||i2(0,T;L°°) ”(SJHioo(Q»,v))
< CT=[|ovy 1},
proving the conclusion. O

Corollary A.1. There is a positive constant Cy depending only on ~,u,L,0, 0,
L6125 |70l 0os [|0l12, and ||Vy |2, such that for any M > Cy, it follows

1
10yF W) lvr, <Moo [10(F (1) = F(2))llv, < 511001 = v2)llvr,
for any v,vi,vy € iy r,, where
11 :
Ty :=ming —, —,1, A .
M* 16C;t,é 2C

Proof. By propositions A.8 and A.9, there is a positive constant Cx depending only on
.1 Ly 0,8, 5 l2. Imolloc, | 5|12, and [[vg]|2, such that

18, ZW)llvy < Cs 10(F (1) = F02)lvy < CoTH vt = v2llvrs  (AB)

25

for any v, vy, vy € #y 1, and for any M, T satisfying

1 J\?
MTi <1, T<1, T<[=).
20,

For M > Cy, choose

. 11 J\?
T4 := min —,74,1, —_— .
M 16C# 2C,

Then, by (A.8), one has

1
10 F ), <M. 1(F (1) = F2)llur, < 50 = vallve,

for any v, vy, v, € Fyr ,» proving the conclusion. O

A.4. Properties of % and the local well-posedness

Proof of proposition 2.1. Let C4 be the positive constant in corollary A.l. Set
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M = Cy4 and let Ty be the corresponding positive time in corollary A.1. Recall the defini-

tion of %, r, and define |||v||| := |lvy|v,, for any v € Hj, 1. By the Poincaré inequal-
ity, one can easily check that ||| - ||| is a norm on the space Xr, and is equivalent to the
L>(0, T3 Hy) N L*(0, T3 H*) norm. Consequently, #j, 7, is a completed metric space,
equipped with the metric d(vi,v2) :=||[vi — wal|| = ||0y(vi — v2)|lv,- Let 2,Z,.F be the

mappings defined as before. By corollary A.1, .7 is a contractive mapping on #jy,, r,,.. There-
fore, by the contractive mapping principle, there is a unique fixed point, denoted by v, to .#
on iy, 1, Set Jy = 2(vy) and Ty = Z(v4). By the definitions of 2(vy) and Z(v4),
one can easily check that (J4, v, T4 ) is a solution to system (1.11)—(1.13), subject to (1.14)—
(1.15). The regularities of (J4, v, T4 ) can be verified through straightforward computations
to the expressions of 2(v) and Z(v) and using (A.3). Since the calculations are standard, we
omit the details here. O
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