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Abstract
We study travelling wave solutions, u ≡ U(x − ct), of the nonlocal Fisher-
KPP equation in one spatial dimension,

ut = Duxx + u (1 − φ ∗ u) ,

with D � 1 and c � 1, where φ ∗ u is the spatial convolution of the population 
density, u(x, t), with a continuous, symmetric, strictly positive kernel, φ(x), 
which is decreasing for x  >  0 and has a finite derivative as x → 0+, normalized 
so that 

∫∞
−∞ φ(x)dx = 1. In addition, we restrict our attention to kernels for 

which the spatially-uniform steady state u  =  1 is stable, so that travelling 
wave solutions have U → 1 as x − ct → −∞ and U → 0 as x − ct → ∞ for 
c  >  0.

We use the formal method of matched asymptotic expansions and numerical 
methods to solve the travelling wave equation for various kernels, φ(x), when 
c � 1. The most interesting feature of the leading order solution behind the 
wavefront is a sequence of tall, narrow spikes with O(1) weight, separated by 
regions where U is exponentially small. The regularity of φ(x) at x  =  0 is a 
key factor in determining the number and spacing of the spikes, and the spatial 
extent of the region where spikes exist.
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1.  Introduction

In this paper we study travelling wave solutions of the nonlocal Fisher-KPP equation in one 
spatial dimension,

∂u
∂t

= D
∂2u
∂x2 + u

(
1 −

∫ ∞

−∞
φ(x − y)u(y, t)dy

)
,

� (1)
where D is a positive constant and the kernel, φ(x), is continuous, symmetric, strictly positive 
and decreasing for x  >  0, with finite derivative as x → 0+, normalized so that

∫ ∞

−∞
φ(x)dx = 1.� (2)

We are interested in permanent form travelling wave (TW) solutions of (1). Numerical simula-
tions suggest that minimum speed travelling waves are formed in the solution of initial value 
problems with sufficiently localized initial conditions. We focus on the case D � 1, which we 
will see is the limit in which interesting, highly nonlinear behaviour can be found.

TW solutions with speed c are of the form, u(x, t) ≡ U(z), where z  =  x  −  ct, and satisfy the 
nonlocal ordinary differential equation

−cUz = DUzz + U
(

1 −
∫ ∞

−∞
φ(z − y)U(y)dy

)
.� (3)

We will confine our attention to TW solutions that satisfy

U → 1 as z → −∞, U → 0 as z → ∞� (4)

with c  >  0 by studying kernels for which it is straightforward to show that the uniform solu-
tions u  =  0 and u  =  1 of (1) are respectively unstable and stable. TW solutions with these 
boundary conditions are right-propagating and connect the uniform steady states, U  =  1 and 
U  =  0. Note that discontinuous kernels, [1], and kernels that become negative, [2], can lead to 
instability of the steady state u  =  1, as can some smooth positive kernels such as φ ∝ e−x4

 and 
φ ∝ (1 + x4)−1. Instability of u  =  1 leads to the existence of periodic travelling wave solu-
tions, which are not the subject of the present work (see, for example, [3]).

The nonlocal Fisher-KPP equation, (1), is relevant to many different scientific areas, [3–5], 
and has been studied extensively, but mainly through proofs of the existence of travelling wave 
solutions, [6–8], and in the limit of fast travelling waves (D � 1). Fast travelling wave solu-
tions are a small perturbation of the travelling wave solution of the local Fisher-KPP equation, 
which is equivalent to (1) with φ(x) = δ(x), [9]. When D � 1, (1) can be characterised as an 
equation with short range activation and long range inhibition, which is known to lead to the 
generation of localized spikes in other reaction-diffusion systems, [10].

It is helpful to work in terms of the variable L(z) ≡ logU(z), so that (3) and (4) become

−cLz = D
(
Lzz + L2

z

)
+ 1 −

∫ ∞

−∞
φ(z − y)eL(y)dy,� (5)

subject to

L → 0 as z → −∞, L ∼ k+z as z → ∞,� (6)

with

k+ ≡ −c +
√

c2 − 4D
2D

,� (7)
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since the TW solution must connect with the stable manifold of the steady state U  =  0 as 
z → ∞. This transformation was also used in [11], which considered the formation of spikes, 
represented by delta functions, in steady and unsteady solutions of (1) on a finite domain 
using a kernel with compact support. Equation (7) suggests, as was proved rigorously in [6], 
that a TW solution with U  >  0 only exists for c � 2

√
D . It is therefore convenient to write 

D = D0c2 with D0 � 1
4  and consider the solutions of (5) when c � 1. We will find below that 

the diffusive terms in (5) are only significant ahead of the wavefront when c � 1, and we will 
later assume that D0  =  0 in order to simplify parts of the asymptotic analysis of the solution 
behind the wavefront.

We begin in section 2 with a preliminary numerical investigation of the solution of (5) for 
the two most obvious choices of kernel,

Φ1(x) ≡
1
2

e−|x|, Φ∞(x) ≡ 1
2
√
π

e−
1
4 x2

.� (8)

This motivates a discussion of how to investigate the very different forms of TW solution 
in these two cases through choices of kernel that are intermediate between the two, which 
is presented in section 3. In section 4 we construct the asymptotic solution when φ(x) has a 
discontinuous derivative at x  =  0. We study the kernel φ = Φ1 in detail, since it allows (5) 
to be written as a single ordinary differential equation. We then show how to generalize this 
analysis to other kernels with discontinuous derivative at x  =  0 by writing down an ansatz for 
the behaviour of U for all z, which includes a delta function spike behind the wavefront. We 
then discuss the asymptotic solution of (5) for other kernels, in particular a family of kernels 
(discussed in section 3) that allows us to unfold the bifurcation from a single spike solution 
when φ = Φ1 to a solution with infinitely-many spikes that exist in a finite region z∞ < z < 0 

when φ = Ψ2 ≡ 1
4 (1 + |x|) e−|x|, a kernel that is three-, but not four-, times differentiable 

at x  =  0. In section 5 we show that kernels that are twice-, but not infinitely-, differentiable 
have a similar asymptotic structure to the solution with φ = Ψ2, and discuss how the region 
z∞ < z < 0, where the spikes exist, grows as n increases for a family of kernels φ = Φn. We 
conclude in section 6 that infinitely-many spikes exist in any semi-infinite region z  <  z1 for all 
z1  <  0 when φ = Φ∞ and for other infinitely-differentiable kernels.

2.  Numerical solutions of the Fisher-KPP travelling wave equation  
for two typical kernels

Natural choices of kernel, φ(x), are either the exponential kernel, φ = Φ1, or the Gaussian 
kernel, φ = Φ∞, (8). Although these kernels are most obviously distinguished by the more 
rapid rate of decay of the latter as x → ±∞, we find that it is only their behaviour as x → 0, 
where the former has a discontinuous derivative and the latter is infinitely-differentiable, that 
has a significant effect on the qualitative nature of TW solutions of (5) as c → 0. In order to 
gain some insight into TW solutions of (5), we begin by examining numerical solutions for 
these two kernels. After truncating to a finite domain, we use central-differences to evaluate 
the spatial derivatives in (5) and two-point Gaussian quadrature to compute the integral, taking 
a linear variation in L(z) across each element, collocating at the midpoint. We took the trans-
lational invariance of (5) into account by fixing the area under the solution in the truncated 
domain of solution. We solved the resulting system of nonlinear algebraic equations using 
fsolve in MATLAB, which uses the trust region dogleg method, providing the analytical 
Jacobian to this routine to increase its execution speed. We proceeded by continuation from 
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c  =  0.1 down to a small value of c, using adaptive regridding to resolve the steep gradients of 
the solution, with the length scale estimated from 

√
U/ |Uzz| at each local maximum.

The TW solution with kernel Φ1(x), wavespeed c  =  10−12 and diffusion coefficient D0 = 1
4  

is shown in figure 1. The top panel shows the form of the TW solution on an O(1) lengthscale. 
There appears to be a single, large, narrow spike at the wavefront. Note that the U-axis has 
been restricted; the actual maximum value of the spike is close to 3 × 105 as can be seen in 
the bottom right hand panel, where the z-axis has been restricted so that the full structure of 
the spike can be seen. Note the asymmetry of the spike, with U decaying more rapidly as z 
increases than it does as z decreases. The spike contains an approximately unit area, which 
leads us to believe (correctly, as we shall see) that the leading order solution can be written as 
U(z) ∼ H(−z) + δ(z) as c → 0, up to a translation in z, with H the Heaviside step function. 
There is, however, some small scale structure to the solution, as can be seen in the bottom left 
hand panel of figure 1. There is an additional, smaller asymmetric spike to the left of the large 
spike, along with some further oscillations as z decreases. Figure 2 shows that the heights of 
the spikes scale with c−

1
2 and c−

1
8, whilst their separation scales with c

1
4 . We will analyse this 

structure in detail in section 4.1.
We now turn our attention to TW solutions with the kernel Φ∞. The solution for c  =  10−10 

(note that the existence of so many large spikes means that we are unable to resolve the solu-
tion adequately with a reasonable number of grid points for smaller values of c) and D0 = 1

4  
is shown in figure 3, where it is immediately clear that the structure of the solution is very 
different to that shown in figure 1. There is a sequence of spikes behind the wavefront with 
O(1) spacings. The bottom panels of figure 3 suggest that each is locally Gaussian, in contrast 
to the asymmetric spikes shown in figure 1 when φ = Φ1. Figure 4 indicates that the height 
of each spike scales with c−1/2 as c → 0, but decreases with each successive spike (numbered 
starting from the largest spike, which lies at the wavefront, and proceeding in the direction of 
decreasing z). The final panels of figure 4 show how the weight, wm, (computed as the integral 
of U(z) between successive minima) and spacing, ∆zm , between the spikes behaves with spike 
number, m. It appears that wm ∼ ∆zm as m → ∞, but it is not clear whether ∆zm  approaches a 
finite value or tends to zero very slowly as m → ∞. In either case, this suggests that the spikes 
fill the region behind the wavefront as c → 0. We will discuss this point further for Φ∞ and 
other infinitely-differentiable kernels in section 6.

These numerical solutions of (5) suggest that the structure of the TW solution is very dif-
ferent for these two typical kernels. In the rest of this paper, we will try to understand what 
controls these differences. We begin by presenting some families of kernels that allow us to 
unfold the bifurcation structure of the TW solution as the kernel changes from Φ1 to Φ∞.

3.  Some families of kernels

A fact that we will use extensively in section 4 is that Φ1(x) ≡ 1
2 e−|x| is a Green’s function, 

since it satisfies

Φ1 −
d2Φ1

dx2 = δ(x).� (9)

The smooth kernel Φ∞(x) ≡ 1
2
√
π

e−
1
4 x2

 is not a Green’s function. However, consider the 

bounded function Φn(x) that satisfies

J Billingham﻿Nonlinearity 33 (2020) 2106
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(
1 − 1

n
d2

dx2

)n

Φn = δ(x).� (10)

For positive integer values of n, this is easy to solve analytically, for example,

Φ2 =
1
4

(√
2 + 2 |x|

)
e−

√
2|x|, Φ3 =

3
√

3
16

(
1 +

√
3 |x|+ x2

)
e−

√
3|x|.

In general, Φn has 2n  −  2 continuous derivatives at x  =  0. The Fourier transform of (10) is

F [Φn] =

(
1 +

1
n

k2
)−n

,� (11)

and hence

F [Φn] ∼ e−k2
as n → ∞.

Figure 1.  The TW solution with kernel Φ1(x) ≡ 1
2 e−|x|, c  =  10−12 and D0 = 1

4 . Note 
the various restrictions to the axes in the three panels, which highlight different aspects 
of the structure of the solution.

J Billingham﻿Nonlinearity 33 (2020) 2106



2111

This shows that it is consistent to define Φ∞ = 1
2
√
π

e−
1
4 x2

, and that the sequence of kernels 

defined by (10) connects Φ1 to Φ∞ as n increases. Moreover, it is also possible to invert (11) 
for non-integer values of n to obtain the general result,

Φn(x) =
n

n
2 +

1
4

√
πΓ (n)

(
1
2

x
)n− 1

2

Kn− 1
2

(√
nx
)

,� (12)

where Kn− 1
2
 is a modified Bessel function of the second kind. This gives us a means of varying 

a parameter, n, that transforms the kernel Φ1 to Φ∞ as n → ∞ whilst smoothly changing the 
regularity of the function at the origin, since the Taylor series of Φn has a non-analytic part of 
O(|x|2n−1) as |x| → 0. The kernel Φn(x) is shown in figure 5 for various values of n.

We will see below that it is also of interest to consider kernels whose slope at the origin varies 
smoothly without a change of regularity. An obvious candidate is φ(x) = (1 − k) Φ1(x) + kΦ2(x) 
with 0 � k � 1. However, by defining Ψn(x) to be the bounded solution of

(
1 − d2

dx2

)n

Ψn = δ(x),� (13)

and using

Φ̃k(x) ≡ (1 − k) Φ1(x) + kΨ2(x),� (14)
a kernel that reduces (5) to a very simple ordinary differential equation, we are able to inves-
tigate analytically the effect of changing the slope of φ(x) at the origin. We will also consider 
the kernel

Φ̄k(x) ≡ (1 − k) Φ1(x) + kΨ3(x),� (15)

Figure 2.  The height (left panel) and separation (right panel) of the two spikes in the 
TW solution with kernel Φ1(x) ≡ 1

2 e−|x| and D0 = 1
4 , plotted as functions of c. The 

solid lines are the heights and separation of the two largest maxima in U, whilst the 
broken lines are the indicated powers of c.
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along with a couple of others, to illustrate additional possible features of TW solutions. Note 
that

Ψ2(x) ≡
1
4
(1 + |x|) e−|x|, Ψ3(x) ≡

3
16

(
1 + |x|+ 1

3
x2
)

e−|x|.� (16)

The results that we obtain in this paper are summarized in table 1.

4.  Kernels that are not twice-differentiable

We begin our investigation of kernels that are not twice-differentiable at the origin by con-
sidering φ(x) = Φ1(x) in section 4.1. We then generalize this analysis to similar kernels in 
section 4.2. In sections 4.3 and 4.4 we study the kernel φ(x) = Φ̃k(x), and show that, as k 
increases, a second spike appears when k = 3

4 and that the number of spikes tends to infinity 
as k → 1.

Figure 3.  The TW solution for φ(x) = Φ∞, a Gaussian kernel, when c  =  10−10 and 
D0 = 1

4  (upper panel). The two lower panels show magnified images of the first spike 
(left panel) and a spike further from the wavefront (right panel). In each case, the profile 
is locally symmetric and Gaussian. Note the different axes in each panel.

J Billingham﻿Nonlinearity 33 (2020) 2106
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4.1.  Asymptotic solution when φ = Φ1 and c � 1

When φ = Φ1 ≡ 1
2 e−|x|, if we define

v ≡
∫ ∞

−∞
φ(z − z′)eL(z′)dz′,

Figure 4.  The size of the local maxima of the spikes as a function of c (left panel), and, 
with c  =  10−10, separation and weight (right panel) of the spikes as a function of spike 

number, m, in the TW solution with kernel Φ∞(x) ≡ 1
2
√
π

e−
1
4 x2

 and D0 = 1
4 .

Figure 5.  The kernel Φn(x) given by (10) for n  =  1, 32, 2, 5, 10 and ∞. Note that Φn(0) 
is a decreasing function of n.

J Billingham﻿Nonlinearity 33 (2020) 2106
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we can use the fact that Φ1 satisfies (9) to rewrite (5) as

−cLz = D0c2 (Lzz + L2
z

)
+ 1 − v, v − vzz = eL,� (17)

and hence, by eliminating v,

cLzzz − cLz = 1 − eL + D0c2 (Lzz + L2
z − Lzzzz − 2LzLzzz − 2L2

zz

)
,� (18)

subject to (6). Being able to reformulate (5) as an ordinary differential equation is extremely 
helpful, as we can use formal asymptotic methods without having to postulate a global form 
for U(z) ≡ eL(z) to substitute into the convolution integral.

In its current form, (18) gives L  =  0 when c  =  0, which reproduces the boundary condition 
(6). Two obvious rescalings that bring in more terms at leading order are L = O(1/c), with 
L  <  0, z = O(1), which we will find gives the leading order problem ahead of the wavefront, 
and L = O(1), z  =  O(c1/3), which controls the solution behind the wavefront, and will be the 
starting point for our analysis. We define

L = L̃, z = c1/3z̃,

with L̃, z̃ = O(1) as c → 0, so that

L̃z̃̃z̃z = 1 − eL̃ + c2/3L̃z̃ + D0c2/3
{

c2/3 (Lz̃̃z + L2
z̃

)
− Lz̃̃z̃z̃z − 2Lz̃Lz̃̃z̃z − 2L2

z̃̃z

}
,

�

(19)

subject to

L̃ → 0 as z̃ → −∞.� (20)

At leading order,

L̃z̃̃z̃z = 1 − eL̃.� (21)

When L̃ � 1, this gives L̃z̃̃z̃z ∼ −L̃, so that

L̃ ∼ l0e
1
2 z̃ cos

{√
3

2
(z̃ − z̃∞)

}
as z̃ → −∞,� (22)

with l0 and z̃∞ constants. Note that when L̃ is large and negative, L̃z̃̃z̃z ∼ 1, so that L̃ increases 
like z̃3. When L̃ is large and positive, L̃z̃̃z̃z is large and negative and L̃ rapidly decreases. 
These qualitative observations suggest that the oscillations in the solution that are present 

Table 1.  Summary of our main results on TW solutions of (3) as c → 0.

Kernel
Number of spikes 
with O(1) weight

Extent of region 
containing spikes

Φ1 ≡ 1
2 e−|x| 1 O(c1/3)

Not differentiable
e.g. 

Φ̃k ≡
{ 1

2 (1 − k) + 1
4 k (1 + |x|)

}
e−|x|,

Finite O(1)

3
4 < k < 1
Differentiable, but not analytic
e.g. Φn, Ψn, 2 � n < ∞ Countably infinite O(1)
Analytic

e.g. Φ∞ ≡ 1
2
√
π

e−
1
4 x2 Countably infinite Semi-infinite, 

z  <  0

J Billingham﻿Nonlinearity 33 (2020) 2106
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as z̃ → −∞ persist as L̃ moves away from equilibrium. A typical solution, obtained using 
ode15s in MATLAB, is shown in figure 6 and confirms that the initial oscillations grow as z̃ 
increases. Although the solution cannot have L̃ → −∞ as z̃ → ∞, the rapid growth of −L̃ 
shown in figure 6 means that we are unable to find a numerical solution beyond the value of 
z̃ shown.

In order to understand how to construct the asymptotic solution of the full problem, we need 
to understand the structure of solutions such as that shown in figure 6 as L̃ varies between a 
large negative local minimum, a large positive local maximum and back to a large negative 
minimum. We can do this by considering the asymptotic solution of (21) subject to the initial 
conditions

L̃ = −ε−1, L̃z̃ = 0, L̃z̃̃z = ε−
1
3 Â > 0 at z̃ = 0,� (23)

with Â = O(1) as ε → 0, so that we have, without loss of generality, placed a large negative 
minimum in L̃ with L̃ = −ε−1 at z̃ = 0. Note that this approach was used in [12, appendix 
A] to study a similar third order ordinary differential equation. As we shall see, the solution 
in this case can be constructed as a sequence of asymptotic regions centred on either a local 
minimum (Region Am) or a local maximum in L̃ (Region Bm).

4.1.1.  Region Am+1.  In region Am+1, we rescale using

L̃ = ε−1L̂, z̃ = ε−1/3ẑ, with L̂ < 0,

so that

L̂ẑ̂ẑz = 1 − eL̂/ε,� (24)

subject to

L̂ = −1, L̂ẑ = 0, L̂ẑ̂z = Â at ẑ = 0.� (25)

Figure 6.  A typical solution of (21). Although we know that the solution cannot have 
L̃ → −∞ as z̃ → ∞, it changes so rapidly that the numerical method used, ode15s in 
MATLAB, is unable to compute accurate solutions for L̃ large and negative.

J Billingham﻿Nonlinearity 33 (2020) 2106
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To all algebraic orders, this gives

L̂ =
1
6

ẑ3 +
1
2

Âẑ2 − 1,� (26)

which has a local maximum at ẑ = −2Â, where L̂ = −1 + 2
3 Â3. We shall see below that 

matching to the preceding Region Bm+1 forces L̂ to be zero at this maximum, and hence 
Â ≡ (3/2) 1/3 ≈ 1.145. This means that the remaining root of (26) is simple, and lies at 
ẑ = Â. The solution is shown in figure 7. As ẑ → Â, L̂ ∼ Â5(ẑ − Â), and L̂ becomes positive 
for ẑ > Â. We must therefore rescale into a new asymptotic region, which we denote Region 
Bm.

4.1.2.  Region Bm.  By matching with Region Am+1, we find that appropriate scalings are

L̂ = −2ε log ε+ εL̄, ẑ = Â − 2Â−5ε log ε+ εz̄,

with L̄, z̄ = O(1) as ε → 0. In terms of these scaled variables, (24) becomes

L̄z̄̄z̄z = ε2 − eL̄.� (27)

In this region we need to develop a two term asymptotic expansion, so we write

L̄ = L̄0 + ε2L̄1 + O(ε4),� (28)

with L̄0, L̄1 = O(1) as ε → 0. At leading order, we have

L̄0̄z̄z̄z = −eL̄0 ,� (29)

subject to the matching condition

L̄0 ∼ Â5z̄ as z̄ → −∞.� (30)

Note that (29) is invariant under the transformation

z̄ → λz̄, L̄0 → L̄0 − 3 log λ.� (31)

Although this does not allow us to solve (29) analytically, we can solve (29) numerically sub-
ject to the generic boundary condition

L̄0 ∼ z̄ as z̄ → −∞,� (32)

Figure 7.  The leading order solution, L̂(ẑ), in Region Am+1.

J Billingham﻿Nonlinearity 33 (2020) 2106
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to obtain the solution L̄0(z̄) = L̄(z̄), which is shown in figure 8. This has maximum value 
L̄max ≈ −0.867. For L̄ large and negative, eL̄ is exponentially small, so L̄ ∼ − 1

2 az̄2 as z̄ → ∞, 
and we find that a ≈ 1.302. It is this asymmetry in the behaviour of L̄ in Region Bm that leads 
to the asymmetry of the spike in the TW solution, shown in figure 1. From the boundary condi-
tion (30) and the invariance (31), we can see that

L̄0(z̄) = L̄(Â5z̄) + 15 log Â,

which has a maximum value L̄max = L̄max + 15 log Â ≈ 1.160. As z̄ → ∞, L̄0 ∼ − 1
2 āz̄2, with 

ā ≡ Â10a ≈ 5.030.
At O(ε2) we have

L̄1̄z̄z̄z = 1 − eL̄0 L̄1,

and hence L̄1 ∼ 1
6 z̄3 as z̄ → ∞. This shows that

L̄ ∼ −1
2

āz̄2 +
1
6
ε2z̄3 as z̄ → ∞

for ε � 1. This expansion becomes non-uniform when z̄ = O(ε−2), L̄ = O(ε−4), and we must 
rescale into a new asymptotic region, which we label Region Am.

4.1.3.  Region Am.  We define new scaled variables

L̄ = ε−4 ¯̄L, z̄ = ε−2¯̄z,

with ¯̄L, ¯̄z = O(1) as ε → 0, so that (27) becomes

¯̄L¯̄z̄̄z̄̄z = 1 − ε−2e
¯̄L/ε4

.� (33)

Figure 8.  The solution L̄(z̄) that satisfies (29) subject to (32) in Region Bm.
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At leading order

¯̄L¯̄z̄̄z̄̄z = 1,

to be solved subject to the matching condition

¯̄L ∼ −1
2

ā¯̄z2 as ¯̄z → 0.

This has solution

¯̄L =
1
6
¯̄z3 − 1

2
ā¯̄z2,

with a minimum of ¯̄Lmin = − 2
3 ā at ¯̄z = 2ā.

By matching the solutions in Regions Am and Am+1, where L̃ is cubic at leading order, 
through Region Bm, we have been able to obtain the leading order asymptotic values of the 
maximum and minimum in L̃ that follow a large, negative minimum in L̃. After rewriting the 
solutions in terms of the original variable, L̃, we find that after the first minimum,

L̃ = L̃min1 ≡ −ε−1,� (34)

Figure 9.  Minima and preceding/following maxima (upper/lower panel). Also shown 
as broken lines are the leading order asymptotic expressions given by (34) to (36),which 
are in excellent agreement as L̃max → ∞.
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the following maximum is

L̃ = L̃max = −2 log ε+ L̄max ≈ −2 log ε+ 1.160,� (35)

and the following minimum

L̃ = L̃min2 ≡ −2
3

ā3ε−4 ≈ −84.84ε−4.� (36)

This shows that a deep minimum is followed by a moderate maximum, and then a much 
deeper minimum, as can be seen in figure 6. By solving (19) subject to (22) for various values 
of l0 and z̃0, we can plot the values of the maxima and minima of L̃ in figure 9 and find excel-
lent agreement between the numerical solution and the leading order asymptotic solutions, 
(34) to (36). Note the huge difference in size between the maxima and minima. For example, 
when L̃max ≈ 3, U ≈ 20, whilst L̃min2 ≈ −3100 so that U ≈ 5 × 10−1347. It is this disparity in 
scales that leads to the sequence of spikes of rapidly decreasing height that we discuss below.

4.1.4.  Region A1.  We have constructed an infinite sequence of asymptotic regions, Am and 
Bm, with m  =  1, 2, …. The final step is to determine how to choose the artificial parameter ε 
so that the terms of O(c2/3) in (19), which are neglected in the analysis above, become active 
in Region A1. By considering the size of these terms after rescaling, we find that we need 
ε = O(c1/4) as c → 0, so without loss of generality we take ε = c

1
4. The leading order problem 

in Region A1 is then

¯̄L¯̄z̄̄z̄̄z − ¯̄L¯̄z = 1 + D0

(
¯̄L2
¯̄z − 2¯̄L¯̄z ¯̄L¯̄z̄̄z̄̄z − 2¯̄L2

¯̄z̄̄z

)
,

which, using the fact that it comes from (17), can be written as
(

D0
¯̄L2
¯̄z +

¯̄L¯̄z + 1
)
¯̄z̄̄z
−
(

D0
¯̄L2
¯̄z +

¯̄L¯̄z + 1
)
= 0,

with solution

¯̄L =

∫ ¯̄z

0

−1 +
√

1 − 4D0 (1 − e−s)

2D0
ds.

Note that this has ¯̄L ∼ − 1
2
¯̄z2 as ¯̄z → 0. The factor of ā has been scaled back into the solution 

in the other asymptotic regions, but we omit the details here (see section 4.2 for the general 
case). In addition, ¯̄L ∼ k+¯̄z as ¯̄z → ∞, where the solution remains uniform. The constant k+ is 
defined in (7), and it is here, ahead of the wavefront, that the minimum wave speed condition, 
c � 2

√
D , and hence D0 � 1

4 , is determined.
We now know the asymptotic scalings for the successive Regions Am+1, Bm and Am, along 

with the fact that ε = c1/4 in Region A1. The scalings of z̃ in the Regions Am give the distances 
between the sequence of spikes, whilst the scalings of z̃, L and hence U, in the Regions Bm 
give the widths and heights of the spikes. By comparing successive Regions Am, we find that, 
in terms of z̃ = c−1/3z, the (large) width decreases by a fourth root, as does the size of L as m 
increases to m  +  1. The width of the spike Region Bm scales with the inverse square root of 
the width of Region Am, whilst the size of U in Region Bm scales with the square root of the 
size of L in Region Am. When we put all of this together in terms of the original variables, z 
and U = eL , we find that the asymptotic scalings are:

In Region Am : z = O
(

c
1
3 (1−2−2(m−1))

)
, L = O

(
c−2−2(m−1)

)
.� (37)
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In Region Bm : z = O
(

c
1
3 (1+2−(2m−1))

)
, U = O

(
c−2−(2m−1)

)
.� (38)

Specifically, in successive Regions Am, z = O(1), z  =  O(c1/4), z  =  O(c15/48), …, which gives 
the spacings between the spike Regions Bm. The solution in each Region Bm, viewed in terms 
of the population density, U = eL , takes the form of a spike of width and height given by 
(38), specifically, height U  =  O(c−1/2), O(c−1/8), O(c−1/32), … and width z  =  O(c1/2), O(c3/8), 
O(c5/16), …. The integral of U over each scaled Region Bm, which we refer to as the weight of 

the spike, is of O
(

c
1
3 (1−2−(2m−2))

)
, specifically of O(1), O(c1/4), O(c5/16), ….

To summarize, the solution consists of a sequence of spikes in the neighbourhood of 

z = zm = O
(

c
1
3 (1−2−2(m−1))

)
 of decreasing weight and separation as m increases, as c → 0, in 

apparent contradiction of the form of the solution shown in figure 1. However, the scalings for 
the mth spike are only asymptotic provided that c is small enough that the height of the spike 
is large, so that the number of spikes in the solution is

m ≈ m0(c) ≡
log (− log c)

log 4
.� (39)

For c  =  10−12, the value used in figure 1, m0(c) ≈ 2.4, so we see just two spikes. For z < zm0, 
the solution has L � 1, and hence U ∼ 1, at leading order. To obtain, for example, m0 ≈ 3, 
we would need c ≈ 10−28 so, for all practical purposes, there are no more than two clearly 
defined spikes. Figure 10(a) shows the numerically-calculated heights of the first two spikes 
in U and their leading order asymptotic approximations. The agreement is very good, noting 
that the second spike has height of O(c−1/8) and is far slower to converge to the leading order 
approximation than the first spike. Figure  10(b) shows the numerically-calculated spacing 
between the first two spikes, which is also in excellent agreement with the leading order 
asymptotic solution.

Figure 10.  (a) The height of the first two spikes in the solution for φ = Φ1. The 
broken lines show the asymptotic approximations Umax1 ∼ eL̄max a−3/2 ≈ 0.283 c−1/2 
and Umax2 ∼ eL̄max (2/3) 3/4a−15/8c−1/8 ≈ 0.189 c−1/8 as c → 0. (b) The distance 
between the first two spikes. The broken line shows the asymptotic approximation 
z2 ∼ 61/2a−1/4 c1/4 ≈ 2.294 c1/4 as c → 0.
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4.2.  Generalization to other non-differentiable kernels

We have been able to construct a complete asymptotic solution when φ = Φ1 ≡ 1
2 e−|x| because 

this is the Green’s function for a simple, constant coefficient, ordinary differential equation, so 
that (5) can be written as a single ordinary differential equation. If φ is not twice-differentiable 
at the origin but not a Green’s function, and we can formally write

φ′′(x) = −κδ(x) + φ̄′′(x),� (40)

where φ̄′′(x) ≡ φ′′(x) for x �= 0, φ̄′′(0) = limx→0± φ′′(x) and

κ ≡ −2φ′(0+) > 0,� (41)

we can show that the asymptotic structure of the solution is qualitatively the same as for 
φ = Φ1 (note that for φ = Φ1, κ = 1). This means that after differentiating (5) twice we obtain

cLzzz = −κeL +

∫ ∞

−∞
φ̄′′(z − z′)eL(z′)dz′ + D0c2 (Lzz + L2

z

)
zz .� (42)

We can now proceed by using the ansatz

U ≡ eL ∼ U∞(z)H (−z) + w1δ(z) as c → 0.� (43)

In other words, we assume that the leading order structure of the solution is the same as that 
for φ = Φ1. If this gives a consistent asymptotic solution, we have a post hoc justification for 
using (43). In (43), the function U∞(z) is the leading order solution for −z � c1/3. When 
φ = Φ1, U∞ = 1, but for other kernels, U∞ need not be constant.

On substituting (43) into (5) and (42), we obtain

−cLz ∼ 1 −
∫ 0

−∞
U∞(z′)φ (z − z′) dz′ − w1φ(z) + D0c2 (Lzz + L2

z

)
,� (44)

and

cLzzz + κeL ∼
∫ 0

−∞
U∞(z′)φ̄′′ (z − z′) dz′ + w1φ̄

′′(z) + D0c2 (Lzz + L2
z

)
zz .

� (45)
It now becomes clear after using the scalings (37) and (38) that, apart from some differences in 
constant terms, we recover the same leading order problems and structure that define the solu-
tion when φ = Φ1. Specifically, in Region A1, where L  =  O(c−1) and z = O(1), the solution 
of (44) matches with the solution in Region B1 provided that Lz(0)  =  0, so that

w1 =
1

φ(0)

(
1 −

∫ 0

−∞
U∞(z′)φ (z′) dz′

)
.� (46)

In the far field, for −z � c1/3, where L � 1, (44) and (46) show that Ū(z) ≡ U∞(z)− 1 satis-
fies the integral equation

∫ 0

−∞
Ū(z′)φ (z − z′) dz′ +

(
1
2
−

∫ 0

−∞
Ū(z′)φ (z′) dz′

)
φ(z)
φ(0)

=

∫ ∞

−z
φ(z′)dz′.

� (47)
Note that when φ = Φ1, (47) has solution U∞ = 1, Ū = 0. Indeed, (47) shows that the only 
kernel that leads to the constant solution U∞ = 1 is φ = Φ1 and scalings thereof.
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To illustrate how this works, we solved (47) numerically, using the trapezium rule to evalu-
ate the integrals, for the kernel

φ(x) =
1

erfc
( 1

2

)√
π

e−|x|−x2− 1
4 .� (48)

The asymptotic solution, along with the numerical solution for c  =  10−12, is shown in fig-
ure 11, and the agreement is excellent. The numerical solution of the full problem also shows 
the spike at z  =  0 which appears as a delta function when z = O(1) as c → 0. We use the 
kernel (48) to illustrate, firstly that this asymptotic solution structure correctly describes the 
solution for a kernel that does not allow (5) to be reduced to an ordinary differential equation, 
and secondly that, since this kernel decays like a Gaussian as |x| → ∞, the far field behaviour 
of the kernel is not its most important feature; the behaviour in the neighbourhood of the ori-
gin determines the structure of the solution as c → 0.

In Regions Bm, where the spikes exist, (45) shows that the leading order equation is

cLzzz = −κeL.

After scaling z to remove the factor of κ, this is the leading order equation that we found for 
φ = Φ1. In Regions Am with m  >  1, (45) gives

cLzzz = A ≡
∫ 0

−∞
U∞(z′)φ̄′′ (z′) dz′ + w1φ̄

′′(0),

at leading order as c → 0. Note that for φ = Φ1, A  =  1 and that for the kernel given by (48), 
A ≈ 0.255. The solution is again cubic in z, and the whole asymptotic structure is the same.

Figure 11.  The asymptotic solution as c → 0, U = U∞(z) and the numerical solution 
of the full travelling wave equation, (5) with c  =  10−12 for the kernel given by (48).
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By matching together these asymptotic regions we are able to obtain the leading order 
asymptotic solution and in particular show that, if we define

κ1 =

∫ 0

−∞
U∞(z′)φ′(z′)dz′ − w1φ

′(0+), κm =

(
2
3

)1/2 A1/2

a1/4κ1/6 κ
1/4
m−1 for m > 1.� (49)

Region Bm lies at z  =  zm, where

z1 ≡ 0, zm ∼ −3κm

A
c

1
3 (1−2−2(m−1)) for m > 1,� (50)

with local maximum U = Umaxm, where

Umaxm ∼ c−2−(2m−1)
eL̄max

κ
3/2
m

κa3/2
� (51)

as c → 0. Figure 10 shows the excellent agreement between these leading order asymptotic 
expressions for φ = Φ1. Figures 12 shows the same comparisons for the kernel given by (48) 
which are also in good agreement, although the rate of convergence is somewhat slower for 
the second spike.

4.3.  Numerical solution for φ = Φ̃k

Although it appears at first sight that we now have a complete asymptotic theory, there are 
other possibilities, which we can investigate by considering the kernel Φ̃k(x) defined by (14). 
The slope of this kernel changes by (1 − k) at x  =  0, and Ψ̃k = Ψ2 when k  =  1. Figure 13 
shows the travelling wave solution for c  =  10−12 and various values of k. For k  <  k1 (we will 
demonstrate below that k1 = 3

4), the structure of the TW solution is of the form (43), with a 
single spike of O(1) weight separating regions where U  >  0 and U  =  0. However, as k → k1, 
U∞(0) → 0 and as k increases past k1 a new spike of O(1) weight is formed. The original 

Figure 12.  (a) The height of the first two spikes in the solution for the kernel given 
by (48). The broken lines show the asymptotic approximations Umax1 ∼ 0.243 c−1/2 
and Umax2 ∼ 0.0357 c−1/8 as c → 0. (b) The distance between the first two spikes. The 
broken line shows the asymptotic approximation z2 ∼ 4.426c1/4 as c → 0.
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spike remains, isolated at z  =  z1, whilst the new spike, at z  =  z2, has the sequence of small 
spikes of decreasing height to its left at z  =  zm with m  >  2.

These numerical solutions suggest that there exists a strictly increasing sequence, kM, with 
k0  =  0 and kM → 1 as M → ∞, and, for kM−1 < k < kM , a strictly decreasing sequence zm(k) 
for m  =  1, 2, . . .M, with zM → z∞ > −∞ as M → ∞, such that the leading order asymptotic 
solution for c � 1 is

U(z; k) = U∞(z; k)H(zM − z) +
M∑

m=1

wmδ(z − zm) for kM−1 < k < kM .� (52)

In addition, the sequence of small spikes, with small weight as c → 0, lies at z  =  zm with 
m  >  M, to the left of the final spike of O(1) weight at z  =  zM. As this notation suggests, it 
seems natural to think of the solution as consisting of an infinite sequence of spikes at z  =  zm, 

Figure 13.  The TW solution for φ = Φ̃k when c  =  10−12 and k  =  0.5, 0.73, 0.77, 0.93, 
0.97 and 1.
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with the functional form of the kernel controlling which of these have weight of O(1) as 
c → 0.

The solid lines in figure 14 show the weights, wm(k), and spacings, ∆zm(k) = zm − zm+1, 
for the travelling wave solution with c  =  10−12 as a function of k, which illustrates the emer-
gence of seven distinct spikes as k → 1. For smaller values of c, which we were unable to 
access numerically, we would expect further members of the infinite sequence of spikes to be 
visible in the numerical solution.

4.4.  Asymptotic solution for φ = Φ̃k  as c → 0

We can provide evidence for our assertion that an infinite sequence of spikes of O(1) weight 
emerges as k → 1 when φ = Φ̃k by constructing the asymptotic solution as c → 0. Note that 
in this case the TW equation (5) can be written as

Figure 14.  The weight, wm, and spacing, ∆zm , of the spikes for φ = Ψ̃k . The solid 
lines shows the numerical solution with c  =  10−12 whilst the broken lines show the 
asymptotic solution as c → 0. The squares show the analytical expression for the 
leading order asymptotic weight, w1, given by (57) for 1 − k > 1 − k1 = 1

4.
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−cLz = D0c2 (Lzz + L2
z

)
+ 1 − (1 − k) v1 − kv2,

(
1 − d2

dz2

)
v1 = eL = U,

(
1 − d2

dz2

)2

v2 = eL = U.� (53)

At leading order as c → 0 with z = O(1) and U, L = O(1), we find that the solution that is 
bounded as z → −∞ is

U∞ (z; k) = 1 + A(k) exp
(

z − zM√
1 − k

)
.� (54)

On substituting the ansatz (52) into (3), for z � zM , we obtain, at leading order as c → 0, since 
U  >  0,

F(z; k) ≡ 1 −
∫ zM

−∞

{
1 + A(k) exp

(
y − zM√

1 − k

)}
Φ̃k(z − y) dy

−
M∑

m=1

wmΦ̃k(z − zm) = 0.� (55)

For this simple kernel, we can evaluate the integral, which gives the product of a linear factor 
and an exponential, and hence find two relationships between A and wm, including

A
√

1 − k = 2 − (2 − k)
M∑

m=1

wmezM−zm ,� (56)

which we will need later (see appendix for more details). For 0  <  k  <  k1, since M  =  1, evalu-
ating (55) is sufficient to find the two unknowns, A and w1, (translational invariance allows us 
to take z1 ≡ 0) as

Figure 15.  The function A(k) plotted as a function of 1  −  k. There is a sequence of 
points where A  +  1 is zero and a new spike is born. The squares show the analytical 
expression for A given by (57).
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w1 =
1√

1 − k
, A = −

(
1√

1 − k
− 1

)2

.� (57)

Since (54) shows that U∞(zM; k) = 1 + A, we require that A � −1 for this single spike solu-
tion structure to be available. Using (57), this means that we need k � 3

4, and hence that 
k1 = 3

4, consistent with the numerical solutions shown in figure 13. Note that the weight of the 
spike, w1(k), increases monotonically from one to two as k increases from zero to k1. These 
asymptotic expressions for w1 and A for 0 � k � k1 are in excellent agreement with numerical 
solutions of (5) (see figures 14 and 15).

For k  >  k1 we expect multiple spikes, as given by (52), and we need to consider the asymp-
totic solution in the regions between the spikes, where U � 1 when c � 1. Specifically, we 
expect that L  =  O(c−1) with L  <  0, so that U is exponentially small in the regions between the 
spikes. If we define L̃ = cL, with L̃ = O(1) as c → 0, (note that this is a new definition, and 
not the notation used in section 4.1) we find that, at leading order, (5) gives

D0L̃2
z + L̃z + F(z; k) = 0,� (58)

with F(z; k), since the ansatz (52) remains the same, given by (55), which determines L̃z in 
terms of F. In particular, matching to the spike regions requires L̃z(zm) = 0, and hence

F(zm; k) = 0 for m = 1, 2, . . . , M.� (59)

It is helpful to treat these equations as a system that determines wm for given values of zm.
Matching also requires that L̃ = 0 at z  =  zm, and hence that

∫ zm

zm+1

L̃z dz = 0 for m = 1, 2, . . . , M − 1.� (60)

This can be treated as a system of equations that determines zm for given values of wm. For 
D0  >  0, L̃z is related to F(z; k) nonlinearly through the solution of the quadratic equation (58). 
However, we have found that, even for D0 = 1

4 , the maximum value of D0, which corresponds 
to the minimum speed TW solution, D0L̃z is numerically very small (typically less than 0.01) 
in all the cases that we have studied in this paper. In other words, the solution with D0  =  0 
is adequate to describe, with great accuracy, the solution for 0 < D0 � 1

4. As we saw in sec-
tion 4.1, the term D0L̃2

z  is crucial in the region z  >  0, ahead of the wavefront, and determines 
the wavespeed, but between the spikes, this diffusive term is never relevant. We therefore 
focus our attention on the case D0  =  0, since (58) and (60) then give

∫ zm

zm+1

F(z; k) dz = 0 for m = 1, 2, . . . , M − 1,� (61)

which can be evaluated analytically.
In order to determine the positions and weights of the spikes, we need to solve (56), (59) 

and (61). Note that (56) and (59) are linear in A and wm, so that these variables can be elimi-
nated. For a solution with M spikes, (61) then provides M  −  1 nonlinear equations  for the 
M  −  1 distances between the spikes, ∆zm . We solve these in MATLAB using continuation in 
k, increasing the number of spikes in the solution by one as A  +  1 passes through zero. Note 
that the linear system (59) is extremely poorly conditioned even for moderately large values 
of M, with the condition number of the corresponding matrix increasing exponentially with 
M. This is because the coefficients in (59) become very close to each other when zm − zM is 
small. We were able to compute solutions with up to 18 spikes by using variable precision 
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arithmetic in MATLAB. The asymptotic solution that we calculate is shown as broken lines in 
figure 14. This is in excellent agreement with the numerical solution, shown as solid lines. We 
are able to calculate many more spikes asymptotically than we can using the full numerical 
solution with c  =  10−12. The function A(k) is shown in figure 15, along with the analytical 
expression (57).

Before we move on to consider the TW solution for differentiable kernels, note that the 
solution for φ = Φ̃k described above, with a new spike being born next to the leftmost spike 
as k increases, and a monotonically-decreasing solution U∞(z) behind this spike, is actually a 
special case. We can illustrate this by briefly considering the solution with φ = Φ̄k, given by 
(15). In this case, (5) can be written as the equivalent system of ordinary differential equations

−cLz = D0c2 (Lzz + L2
z

)
+ 1 − (1 − k) v1 − kv3,

(
1 − d2

dz2

)
v1 = eL = U,

(
1 − d2

dz2

)3

v3 = eL = U.� (62)

Proceeding as we did for φ = Φ̃k, as c → 0, the leading order equation for z < z∞, where 
U = U∞ = O(1), is

Figure 16.  The TW solution for c  =  10−12 and φ = Φ̄k for k  =  0.905, 0.909 and 0.913.
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(1 − k)
d4U∞

dz4 − 2 (1 − k)
d2U∞

dz2 + U∞ = 1.� (63)

In contrast to (54), the solution of (63) is not monotonic, so there is no guarantee that if it 
reaches zero (indicating the birth of a new spike) this will be at the position z  =  zM of the left-
most spike. It is possible to determine the bounded solution of (63) analytically when there is 
just one spike. We do not give the details here, but note that we find k1 ≈ 0.907 94, with the 
point where U∞ reaches zero occuring away from the leftmost spike. This is consistent with 
the numerical solution of (5) for c  =  10−12 shown in figure 16, where it is clear that U∞ is not 
monotonic. Subsequent spikes are also born via this mechanism.

5.  Kernels that are twice-, but not infinitely-, differentiable

We begin by discussing the governing equation in the spike regions when φ(x) is twice-, but 
not infinitely-, differentiable. If the first discontinuous derivative of φ is the p th with p   >  2 
(we will discuss the case of infinitely-differentiable kernels in section 6), and if, following 
(40) and (41), we can write

d pφ

dx p = −κδ(x) +
d pφ̄

dx p ,� (64)

where d pφ̄/dx p ≡ d pφ/dx p for x �= 0, d pφ̄/dx p(0) = limx→0± d pφ/dx p(x) and

κ ≡ −2
d p−1φ

dx p−1 (0
+),� (65)

then, after differentiating (5) p  times we obtain, neglecting the diffusive terms as c → 0,

c
d p+1L
dz p+1 + κeL =

∫ ∞

−∞

d pφ̄

dz p (z − z′)eL(z′)dz′.� (66)

In the narrow spike regions, the only possible leading order balance is between the two terms 
on the left hand side of (66). However, for a spike with weight of O(1), so that eL = O(dL/dz), 
the leading order equation for p   >  2, is simply d p+1L/dz p+1 = 0, and the first p  derivatives 
of the outer solution match across the spike region. In particular, apart from a constant cor-
rection of O(log c), the leading order solution simply reproduces the quadratic term in the 
inner limit of the outer expansion for L̃ ≡ cL, and the spike is therefore Gaussian with width 
of O(c1/2), weight of O(1) and hence height of O(c−1/2), all determined from matching to the 
outer solution, consistent with numerical solutions of the full TW problem with c � 1. The 
spike regions are entirely passive in terms of the asymptotic structure of the solution.

The results of section 4 suggest that when the kernel has a continuous derivative at x  =  0, 
an infinite number of spikes of O(1) weight exist behind the wavefront, so we use an ansatz 
of the form

U(z) = U∞(z)H(z∞ − z) +
∞∑

m=1

wmδ(z − zm).� (67)

We will confine our attention to the sequence of kernels φ = Φn, for which we can reduce the 
TW equation to an ordinary differential equation and U∞ = 1, and only consider the case of 
n a positive integer, even though the kernel (12) can be used in (5) for non-integer n. It would 
be interesting to use fractional calculus as a framework to investigate the non-integer case in 
detail (see (83) below), but we have not attempted this here.
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Guided by the analysis of the case φ = Φ̃k given in section 4.4, we postulate that the asymp-
totic solution of (5) for c � 1 when φ = Φn takes the form (67) with U∞ = 1 (the unique solu-
tion when L = O(1) as c → 0). Proceeding as before, we find that the positions and weights 
of the spikes are determined by the infinite system of equations

F(zm) = 0 for m = 1, 2, . . . ,� (68)

and, taking D0  =  0 for the reasons discussed on page 22,
∫ zm

zm+1

F(z) dz = 0 for m = 1, 2, . . . ,� (69)

where

F(z) ≡ 1 −
∫ z∞

−∞
φ(z − y) dy −

∞∑
m=1

wmφ(z − zm).� (70)

In order to solve (68) and (69) numerically, we need to know the functional form of the far 
field solution, wm and ∆zm ≡ zm − zm+1 for m � 1. We can gain some insight into this by 
considering the case φ = Ψ2. Note that Ψ2 = Φ̃k when k  =  1.

Figure 17(a) shows wm and ∆zm  for the numerical solution of (59) and (61) when 
1  −  k  =  10−10, which we expect to be close to the solution when k  =  1, but with a finite 
number of spikes. This strongly suggests that both wm and ∆zm  decay exponentially as 
m → ∞, and that wm, ∆zm = O(δm) for some 0 < δ < 1 is an excellent approximation even 

Figure 17.  (a) The leading order asymptotic values of the weight, wn, and spacing, 
∆zn, of the spikes for φ = Φ̃k with 1  −  k  =  10−10. The broken line is the geometric 
progression 4δm, with δ ≈ 0.4805. This value of δ is determined analytically from the 
far field of the asymptotic solution (the factor of four is not). (b) The ratio of the weight, 
wn, and spacing, ∆zn. The broken line is w∞/∆z∞ ≈ 1.4054 determined analytically 
from the far field of the asymptotic solution.
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for moderate values of m. We also note from figure 17(b) that wm/∆zm appears to asymptote 

to a constant ratio as m → ∞. We can confirm this analytically for φ = Ψ2 ≡ 1
4 (1 + |z|) e−|z| 

and D0  =  0, in which case

F(z) = −L̃z = 1 − v2,
(

1 − d2

dz2

)2

v2 = eL̃/c.� (71)

If we define Fm(z) to be F(z) for zm+1 � z � zm, then, noting that eL̃/c � 1 for L̃ = O(1) < 0, 

we find by solving the leading order equation 
(

1 − d2

dz2

)
2v2 = 0 that

Fm(z) = 1 + {am + bm (z − zm+1)} ez−zm+1 + {cm + dm (z − zm+1)} ezm+1−z.
� (72)

By applying the three conditions Fm(zm+1) = Fm(zm) = 0 and 
∫ zm

zm+1
Fm(z)dz = 0, we can 

determine the constants am, bm, cm and dm in terms of the as yet unknown slope F′
m(zm+1), 

using computer algebra in Mathematica. Now noting that, from the definition (70), F(z) is as 
smooth as φ(z − zm) at z  =  zm, we can see that F′ and F′′ are continuous at z  =  zm. This leads 
to

F′
m+1(zm+1) = F′

m(zm+1), F′
m(zm+1) = F′

m(zm)− f (∆zm),� (73)

the first equation being simply a continuity condition and the second coming from (72) with 
the constants determined by computer algebra, which gives

f (∆zm) ≡ ∆zm + 4
cosh∆zm − 1 − 1

2∆z2
m

sinh∆zm −∆zm
∼ 1

60
∆z3

m as ∆zm → 0.� (74)

After substituting the definition of φ = Ψ2 into (70), evaluating the integral and comparing to 
(72) we find that

am = −1
4

m∑
p=1

wp (1 + zp − zp+1) ezp+1−zp , bm = −1
4

m∑
p=1

wpezp+1−zp ,

cm = −1
4
(2 + zm+1 − z∞) ez∞−zm+1 − 1

4

∞∑
p=m+1

wp (1 + zp+1 − zp) ezp−zp+1 ,

dm = −1
4

ez∞−zm+1 − 1
4

∞∑
p=m+1

wpezp−zp+1 .

By comparing these expressions in the limit m → ∞ with those that we obtained from 
Mathematica, we find that there are two constraints that the far field behaviour of F′

m(zm+1) 
must satisfy, namely

F′
m(zm+1) ∼

1
30

∆z3
m − 1

12
∆z2

m

∞∑
p=m+1

(wp −∆zp) ,� (75)

and
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F′
m(zm+1) ∼

1
6
(zm+1 − z∞)

3 − 1
2

∞∑
p=m+1

wp (zp − zm+1)
2 .� (76)

Along with (73) and (74), these expressions strongly suggest that wm = O(∆zm) as m → ∞. 
If we write

wm ∼ W∞δm, ∆zm ∼ ∆Z∞δm as m → ∞,� (77)

and substitute into (73), (75) and (76), we find, after rearranging and summing various geo-
metrical series, that

W∞

∆Z∞
= 1 +

2 − 3δ3

5δ (1 + δ + δ2)
=

(1 + δ)
(
1 + δ + δ2

) (
−2 + δ + 4δ2 + 7δ3

)
5δ (−1 + δ2 + 7δ3 + 5δ5)

.

� (78)
On simplifying, we find that δ is a solution of

δ4 − δ3 − 2δ2 − δ + 1 = 0.� (79)

The only root with 0 < δ < 1 is

Figure 18.  The upper panel shows the values of W∞, ∆Z∞ and their ratio as a function 
of n, calculated from the full numerical solution of (5) when c  =  10−12 and φ = Φn. 
The lower panel shows the value of δ calculated in the same way, either from curve 
fitting to wm or ∆zm . As indicated on the figure, either method of estimating δ gives an 
almost identical result. In each case, the squares are the values obtained from the far 
field asymptotic analysis described in section 5.
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δ =
1
4

(
1 +

√
17 −

√
2 + 2

√
17

)
≈ 0.4805,� (80)

and hence

W∞

∆Z∞
=

1
40

(
21 + 5

√
17 +

√
106 + 26

√
17

)
≈ 1.4054.� (81)

The broken lines in figure 17 show that these constants are in excellent agreement with the 
numerically-calculated far field solution for m � 5.

This far field analysis can also be carried out for the kernels φ = Ψn, making use of the con-
tinuity of higher derivatives of Fn. This has to be done entirely using computer algebra, and, 
since the polynomial that determines δ is of order greater than four for n  >  2, no analytical 
expressions for the solutions are available. We find that the kernel φ = Φn gives n  −  1 possible 
values for both δ and W∞/∆Z∞. The values corresponding to the largest value of δ in each 
case are plotted for n � 7 in figure 18. These are shown in comparison to the values obtained 
from the numerical solution of (5) with c  =  10−12 and φ = Φn by curve fitting. These are inev-
itably rather crude estimates because of the limited number of spikes that emerge in each case, 
even for such a small value of c. However, the agreement is good, and indicates that the far 
field asymptotic analysis captures the behaviour of the solution. Note that figure 18 includes 
some results for 1  <  n  <  2 that are consistent with δ → 0 and z∞ → 0 as n → 1. For values 
of n sufficiently close to one it is difficult to resolve the tightly packed spikes that exist behind 
the wavefront in the full numerical solution. As n → ∞, a key observation, see figure 19, is 
that the far field and numerical solutions strongly suggest that δ → 1 and W∞/∆Z∞ → 1, and 

hence that z∞ → −∞. Recall that as n → ∞, Φn(x) → Φ∞(x) ≡ 1
2
√
π

e−
1
4 x2

. This is therefore 

consistent with our earlier assertion that for the Gaussian kernel, φ = Φ∞, the TW solution 
consists of an infinite sequence of spikes that fills the region z  <  0 behind the wavefront.

Although we were able to solve (68) and (69) numerically to find wm and ∆zm  when n  =  2, 
for larger values of n, the system is so ill-posed that we could not obtain a numerical solution. 
We were, however, able to find a numerical solution for n  =  2, 3 and 4, but not for larger n, 

Figure 19.  The behaviour of 1 − δ and W∞/∆Z∞ − 1 as a function of n. The broken 
lines are 1/n2 and 1/n3.
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by taking a different approach that does not involve wm directly, and which also allows us to 
explain why the largest possible value of δ is appropriate in the far field solution. Instead of 
using (70) directly, we write

F ≡ −L̃z = 1 − vn,� (82)

where, for φ = Φn,
(

1 − 1
n

d2

dz2

)n

vn = 1 +

(
1 − 1

n
d2

dz2

)n dL̃
dz

= eL̃/c.� (83)

At leading order as c → 0, in the regions, zm+1 < z < zm = zm+1 +∆zm between the spikes, 
we therefore have

L̃ ≡ L̃m = A(m) − (z − zm+1)

+

n∑
k=1

(z − zm+1)
k−1

(
a(m)

k en1/2(z−zm+1) + b(m)
k e−n1/2(z−zm+1)

)
.� (84)

In addition, (70) shows that L̃z is as smooth as φ = Φn, so that

d pL̃m

dz p =
d pL̃m+1

dz p at z = zm, for p = 0, 1, . . . 2n − 1.� (85)

We must also have

L̃m =
dL̃m

dz
= 0 at z = zm,� (86)

so that the solution matches with the spike regions in the neighbourhood of z  =  zm. This gives 
2n  +  2 conditions for the 2n  +  2 unknowns, Am, am

k , bm
k  and ∆zm  in each region between the 

spikes.
For z  >  z1  =  0, we have

L̃0 = −B1 − z +

{
B1 +

(
1 + n1/2B1

)
z +

n∑
k=3

Bk−1zk−1

}
e−n1/2z,� (87)

which satisfies eL̃0 → 0 as z → ∞, and L̃0 = dL̃0/dz = 0 at z  =  0, and involves n  −  1 
unknown constants. In order to close this system we therefore need n  −  1 conditions as 
m → ∞, so we must consider the far field solution.

As m → ∞, ∆zm → 0, so we rescale using

z = zm+1 +∆zmz̄, L̃m = ∆z2n+1
m L̄m,� (88)

so that (83) with c  =  0 becomes
(
∆z2

m − 1
n

d2

dz̄2

)n dL̄m

dz̄
= −1.� (89)

At leading order as ∆zm → 0,
(
−1

n

)n d2n+1L̄m

dz̄2n+1 = −1.

Since L̄m = dL̄m/dz̄ = 0 at z̄ = 0 and z̄ = 1, the solution is the polynomial
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L̄m = z̄2 (1 − z̄)2
2n−2∑
k=1

α
(m)
k z̄k−1,� (90)

with

α
(m)
2n−2 =

(−1)n+1 nn

(2n + 1)!
.� (91)

For given values of the 2n  −  2 constants ∆zm  and α(m)
k , the continuity conditions (85) are

∆z2n+1−p
m

d pL̄m

dz̄ p

∣∣∣∣̄
z=0

= ∆z2n+1−p
m+1

d pL̄m+1

dz̄ p

∣∣∣∣̄
z=1

for p = 2, 3, . . . 2n − 1,� (92)

and determine ∆zm+1 and α(m+1)
k . We can think of this as a linear recurrence relation between 

∆zm  and the vector

αm ≡
(
α
(m)
1 ,α(m)

2 , . . . α(m)
2n−2

)T
,

and αm+1, with ∆zm+1 determined nonlinearly from (91). If we define the vector of derivatives

L̄m ≡
(

d2L̄m

dz̄2 ,
d3L̄m

dz̄3 , . . .
d2n−1L̄m

dz̄2n−1

)T

,� (93)

and a diagonal matrix ∆m with diagonal elements
(
δ2n−1

m , δ2n−2
m , . . . δ2

m

)
,

where

δm ≡ ∆zm+1

∆zm
,

we can write (92) as

L̄m
∣∣̄
z=0 = ∆m L̄m+1

∣∣̄
z=1 .� (94)

Since (90) is linear in α(m)
k , we can also write

L̄m
∣∣̄
z=0,1 = M0,1αm,� (95)

where M0,1 are two (2n − 2)× (2n − 2), constant, square matrices that can be calculated from 
(90) (using computer algebra for large n). For example, when n  =  2,

M0 =

(
2 0

−12 6

)
, M1 =

(
2 2
12 18

)
.

We can now write

M0αm = ∆mM1αm+1.� (96)

For given αm we can solve (96) to find αm+1, and then (91) fixes δm. Equilibrium solutions 
have αm+1 = αm, and δm = δ, which can be found from det (M0 −∆M1) = 0. This leads to 
the same n  −  1 values of δ that we found in section 5. We also note that
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W∞

∆Z∞
= (−n)−n

(
1
δ

d2nL̄
dz̄2n

∣∣∣∣̄
z=0

− d2nL̄
dz̄2n

∣∣∣∣̄
z=1

)

= 1 +
1 − δ

δ

(
(2n)!
(−n)n α2n−3 +

2
2n + 1

)
.

It is also straightforward, using computer algebra, to linearise (91) and (96) about the equi-
librium solution and find that each of the n  −  1 equilibrium solutions has a stable manifold 
of a different dimension. In order to solve numerically, we truncate at large, finite m and need 
n  −  1 boundary conditions, one of which is to specify ∆zm , so we need the solution with an 
(n − 2)-dimensional stable manifold. This, consistent with numerical solutions of the TW 
equation, is the solution with the largest value of δ. This gives us enough information to be 
able to solve the nonlinear system of equations given by (84) to (87) using fsolve in MATLAB. 
We used the Advanpix multiprecision computing toolbox, [13], to increase the precision of 
the computation, up to 66 digits of accuracy for n  =  4. For n  >  4 the system was too stiff for 
convergence to be achieved. The results, which are in excellent agreement with full numerical 
solutions of (5), are shown in figure 20, along with the far field behaviour indicated by ∆zm , 
wm = O(δm).

We note that neither of the two numerical approaches described above is entirely satisfac-
tory, and further work is required to devise a method better suited to this challenging system 
of equations. We have included these brief details of both methods here, since the former is 
more intuitive and leads naturally to the analytical results noted above, whilst the latter is more 
numerically stable.

Finally, we note that the case φ = Φn is unusual since it has U∞ = 1. A more typical 
solution, with a kernel that is a linear combination of the Gaussian, Φ∞, and Ψ2, is shown in 
figure 21. For z < z∞ ≈ 17, U is oscillatory. This solution would be very hard to understand 
without the context provided by the preceding analysis.

Figure 20.  The spacing, ∆zm , and weight, wm of the spikes for n � 7, determined 
from the numerical solution (crosses and circles) and the asymptotic solution (dots 
and squares). The broken lines have slope given by δ, calculated from the far field 
asymptotic solution.
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6.  Infinitely-differentiable kernels

When the kernel, φ, is infinitely-differentiable, the results of section 5, specifically that δ → 1 
as n → ∞, indicate that z∞ → −∞ as n → ∞, and that for φ = Φ∞ and other infinitely-
differentiable kernels, the whole of the region behind the wavefront is filled with spikes in 
the limit c → 0. There is no obvious way to determine the large n asymptotic limit of the TW 
solution when φ = Φn, specifically the solution of (89) when n−1 � ∆zm � 1, and the limit 
n → ∞ for (83) may not be well-defined, as discussed in [14].

Taking all of this into account, an appropriate ansatz for infinitely-differentiable kernels is

U(z) =
∞∑

m=1

wmδ(z − zm),� (97)

and hence

−L̃z = 1 −
∞∑

m=1

wmφ(z − zm).

� (98)
After integrating (98), it is convenient to write the solution as

L̃ = A − z +
∞∑

m=1

wm {I(z − zm)− 1} ,

� (99)
with A a constant and

I(z) ≡
∫ z

−∞
φ(z′)dz′.

Since I(z − zm) → 0 as z → −∞, this means that wm ∼ ∆zm as m → ∞ and 
A =

∑∞
m=1 (wm −∆zm), so that

Figure 21.  The TW solution of (5) when c  =  10−12 and φ = 0.999Ψ2(x) + 0.001Φ∞(x).
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L̃ = −z +
∞∑

m=1

{wmI(z − zm)−∆zm} .� (100)

Note that this is consistent with the result W∞ ∼ ∆Z∞ as n → ∞ (see figure 19). The condi-
tions L̃ = L̃z = 0 at each spike then lead to the infinite system of nonlinear equations

∞∑
m=1

wmφ(zp − zm) = 1,� (101)

∞∑
m=1

{wmI(zp − zm)−∆zm} = zp, at z = zp for p = 1, 2, . . . ,� (102)

for ∆zm  and wm. Since there is no ordinary differential equation  that determines L̃, solv-
ing (101) and (102) is the only way to investigate the behaviour of the spikes for infinitely-
differentiable kernels. In order to do this numerically, we need to quantify the behaviour of 
the far field solution. Although we have seen that ∆zm ∼ wm as m → ∞, it is not clear how to 
determine the individual behaviour of ∆zm  and wm. We can, however, show that ∆zm  cannot 
asymptote to a constant as m → ∞.

For p � 1, (101) becomes at leading order

G ≡
∞∑

m=1

∆zmφ(zp − zm)− 1 = 0.� (103)

However, 
∫∞
−∞ φ(z)dz = 1, so, for p � 1, (103) is equivalent to a simple discretization of 

this integral, and if ∆zm → ∆z∞, a constant, as m → ∞, this is the trapezium rule, which is 
spectrally-accurate for integrals of analytic functions along the real axis, [15]. For example, 
when φ = Φ∞, G ∼ 2e−4π2/∆z2

∞ as ∆z∞ → 0. A similar result holds for the smooth exponen-
tially- and algebraically-decaying kernels

Φexp ≡ 1
4

sech2
(

1
2

x
)

, Φalg ≡ 2
π(1 + x2)2 ,� (104)

that we study below, with the exponential rate at which G tends to zero controlled by the dis-
tance of the poles of φ from the real axis, [15]. Numerical calculation for these three kernels 
shows that in each case G is strictly positive, so that a far field solution of (101) cannot have a 
constant spacing of the spikes. We will see below that there is strong numerical evidence that 
∆zm  decays algebraically fast as m → ∞, but we cannot prove this.

Fortunately, ∆zm ∼ wm as m → ∞ is enough information about the far field to allow us to 
truncate the infinite set of equations (101) and (102) and solve them numerically, although we 
will see that the crude approximation to the far field that we use introduces a significant error 
into the solution. We first reinstate the constant A defined in (99) and write (102) as

∞∑
m=1

wmĪ(zp − zm) = A − zp, at z = zp for p = 1, 2, . . . ,� (105)

where

Ī(z) ≡
∫ ∞

z
φ(z′)dz′.

We now note that
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∞∑
m=M+1

wmφ(zp − zm) ∼
∞∑

m=M+1

∆zmφ(zp − zm) ∼
∫ ∞

zp−zM+1

φ(y)dy, as m → ∞.

Using a similar approach for (105), we truncate the infinite set of equations as

M∑
m=1

wmφ(zp − zm) ≈ 1 −
∫ ∞

zp−zM+1

φ(y)dy,� (106)

M∑
m=1

wmĪ(zp − zm) ≈ A − zp −
∫ ∞

zp−zM+1

Ī(y)dy, at z = zp for p = 1, 2, . . . , M.

� (107)
This is a set of 2M equations in the 2M unknowns A, wm for m  =  1, 2, . . . , M  and ∆zm  for 
m  =  1, 2, . . . , M − 1. We solve the nonlinear system for A and ∆zm  numerically in MATLAB 
using fsolve, solving the linear system for A and wm using linsolve. We begin with M  =  2, for 
which a crude inital guess converges rapidly to a solution, and then successively increase M 
by one, with an initial guess of the solution formed by extending the vector ∆zm  obtained for 
the previous value of M.

Figure 22 shows the spacing and weight of the spikes for the smooth kernels Φ∞, Φsech 
and Φalg, calculated both from the full numerical solution of (5) and from the asymptotic solu-
tion, calculated numerically from (106) and (107). We find that the asymptotic solution repro-
duces the numerical solution, but that the inaccurate far field approximation discussed above 
leads to large errors for m > 1

2 M . In each case, the spacings that we are able to compute are 
not inconsistent with the region behind the wavefront being completely filled with spikes as 
c → 0, since it appears that 1 � ∆zm � m−1 as m → ∞. In addition, there is numerical evi-
dence that for the Gaussian kernel, φ = Φ∞, an entire function, ∆zm = O(m−1/4) as m → ∞, 
whilst for the other two kernels, which have poles, at x = ±iπ for Φexp and at x = ±i for 
Φalg, ∆zm = O(m−1/2) as m → ∞. Moreover, we speculate that it is the position of the poles 
nearest to the real axis that controls this rate of decay, drawing on the results of [15], and as 
suggested by figure 22.

7.  Conclusion

In this paper we have studied the structure of slow travelling wave solutions of the nonlocal 
Fisher equation, (1), when the diffusivity, D, and hence minimum wavespeed, c = cmin ≡ 2

√
D, 

is small. For all the kernels that we used, the obvious common feature is the existence of one or 
more large, narrow spikes, with height of O(c−1/2) and width of O(c1/2). The number and spac-
ing of these spikes depend crucially on the behaviour of the kernel, φ(x), in the neighbourhood 
of x  =  0. Kernels with a discontinuous derivative at x  =  0 lead to travelling wave solutions 
with a finite number of spikes. Kernels that are differentiable, but not infinitely-differentiable, 
lead to an infinite number of spikes that fill a finite region behind the wavefront. Infinitely-
differentiable kernels lead to infinitely-many spikes that extend to infinity behind the wave-
front. Although we were able to obtain detailed information about the solution for kernels that 
are not too smooth, the leading order problem for c � 1 when the order of the discontinuous 
derivative of the kernel is greater than around eight is too poorly conditioned for the numer
ical methods that we developed to converge to a solution. For infinitely-differentiable kernels, 
we have been unable to determine analytically from the leading order equations any informa-
tion about the far field behaviour of the spikes beyond wm ∼ ∆zm as m → ∞ (the weight 
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and spacing of the spikes become identical in the far field), although numerical solutions of 
both the full travelling wave equation and the asymptotic solution for c � 1 suggest that the 
weight and spacings of the spikes decay algebraically-fast as z → −∞, and we speculate that 
the position of the poles of the kernel in the complex plane may be the controlling factor. The 
results that we have obtained in this paper are summarized in table 1.

One interpretation of the solutions that we have studied here when c � 1, using both numer
ical and asymptotic methods, is as nontrivial, steady state solutions of the nonlocal Fisher-

KPP equation, (1), for D  =  0, since they satisfy u (x)
(

1 −
∫∞
−∞ φ (x − y) u (y) dy

)
= 0. The 

limit D → 0 is, as we have demonstrated, singular, but it is worth considering whether such 

steady state solutions could be relevant in physical situations for which the nonlocal Fisher-
KPP is appropriate.

We now consider possible futher work related to the nonlocal Fisher-KPP equation that is 
suggested by the results presented in this paper. The use of fractional calculus to study travel-
ling wave solutions when φ = Φn for non-integer n, for example in (83), would be interesting, 
and could shed some light on the issue of convergence to a Gaussian kernel as n → ∞. Other 
extensions of this analysis could include kernels φ(x) that are non-monotonic, non-positive 
and/or discontinuous in x  >  0; such kernels are used extensively in theoretical neuroscience, 
[16]. The extension of our analysis to two spatial dimensions is challenging, but would also 
be of interest.

Throughout the paper we have used asymptotic and numerical methods to gain insight 
into the travelling wave solutions. Our analysis lacks rigour, not only because of a lack of 
expertise, but also because the limit D → 0 is far from that where rigorous results are cur
rently available, namely D → ∞, where the nonlocal Fisher-KPP equation asymptotes to the 

Figure 22.  The weight and spacing of the spikes determined numerically from (5) 
when c  =  10−10 and asymptotically from (106) and (107) for the smooth kernels 

φ = 1
π(1+x2)

, 1
4 sech2 ( 1

2 x
)
, 1

2
√
π

e−
1
4 x2

. The approximate algebraic rate of decay of 

∆zm ∼ wm as m → ∞ suggested by these results in each case is shown by broken lines.
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standard, local Fisher-KPP equation, [9]. It seems clear that subtle features of the kernel con-
trol the gross features of the solution when D � 1, and that the methods of modern nonlinear 
functional analysis could provide a route to a deeper understanding of this relationship.
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Appendix.  Asymptotic solution for φ = Φ̃k  as c → 0—detailed calculations

If we substitute the definition of Φ̃k(x) ≡
{ 1

2 (1 − k) + 1
4 k (1 + |x|)

}
e−|x| into (55) and evalu-

ate the integral analytically for z  <  zM, we obtain

1
4

e−zM

[
−2 + A

√
1 − k +

{
k + A

(
k − 1 −

√
1 − k

)}
(z − zM)

]
+ ...

M∑
m=1

wme−zm

{
1
2
− 1

4
k − 1

4
k (z − zm)

}
= 0.� (A.1)

Since this must hold for all z  <  zM, we have

1
4

e−zM

{
k + A

(
k − 1 −

√
1 − k

)}
− 1

4
k

M∑
m=1

wme−zm = 0,� (A.2)

and

1
4

e−zM

(
−2 + A

√
1 − k

)
+

(
1
2
− 1

4
k
) M∑

m=1

wme−zm = 0.� (A.3)

Note that (A.3) can be rearranged to give (56).
When 0  <  k  <  k1, M  =  1 and translational invariance allows us to take z1  =  0, so that (A.2) 

and (A.3) become

1
4

{
k + A

(
k − 1 −

√
1 − k

)}
− 1

4
kw1 = 0,� (A.4)

and

1
4

(
−2 + A

√
1 − k

)
+

(
1
2
− 1

4
k
)

w1 = 0.� (A.5)

Solving (A.4) and (A.5) for w1 and A gives (57).
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