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Abstract

In this paper we prove the existence of a unique global strong solution for
the Cauchy problem associated to the one dimensional Navier—Stokes
equations with general degenerate viscosity coefficients. The cornerstone of
the proof is the introduction of a new effective pressure which allows to obtain
an Oleinik-type estimate for the so called effective velocity. In our proof we
make use of additional regularizing effects on the velocity which requires to
extend the techniques developed by Hoff for the constant viscosity case.
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1. Introduction

We consider the compressible Navier Stokes system in one dimension with x € R:

Op + O(pu) =0,
Oi(pu) + Ou(pu?) — Du(u(p) D) + 8P (p) = 0, (1.1)
(p, u)i=0 = (po, uo)-

Here u = u(t,x) € R stands for the velocity field, p = p(t,x) € R is the density, P(p) = p”
is the pressure. We denote by u(p) the viscosity coefficient of the fluid and (pg, uo) are the
initial data. In the sequel we shall consider only viscosity of the form:

wip) = p (1.2)

with a > 0. This choice is motivated by physical considerations. Indeed it is justified by
the derivation of the Navier—Stokes equations from the Boltzmann equation through the
Chapman-Enskog expansion to the second order (see [2]), the viscosity coefficient is then a
function of the temperature. If we consider the case of isentropic fluids, this dependence is
expressed by a dependence on the density function (we refer in particular to [14]). We mention
that the case p(p) = p is related to the so called viscous shallow water system. This system
with friction has been derived by Gerbeau and Perthame in [6] from the Navier—Stokes system
with a free moving boundary in the shallow water regime at the first order. This derivation
relies on the hydrostatic approximation where the authors follow the role of viscosity and fric-
tion on the bottom.

We are now going to rewrite the system (1.1) following the new formulation proposed in
[11] (see also [7-9]), indeed setting:

“éf), (1.3)

called the effective velocity, we can rewrite the system (1.1) as follows:

Op + Ox(pu) = 0,
PO + pudw + 9,.P(p) = 0.

v=u+ M’g}) O,p with ' (p) =

(1.4)

The existence of global weak solution has been obtained by Jiu and Xin in [16] for viscos-
ity coefficients verifying (1.2). In passing we point out that a large amount of literature is
essentially dedicated to the study of the compressible Navier—Stokes equations with constant
viscosity coefficients. In particular the existence of global strong solution with large initial
data for initial density far away from the vacuum has been proved for the first time by Kanel
[17] (see also [12, 18]). In [15] the authors proved that vacuum states do not arise provided
that the initial density is positive almost everywhere. We would like also to mention the results
of Hoff in [13] who proved the existence of global weak solution for constant viscosity coeffi-
cients with initial density admitting shocks (we refer also to [20, 24, 25]). The author exhibited
regularizing effects on the velocity via the use of tricky estimates on the convective derivative:

it = Ou + udyu, (1.5)

we will generalize these techniques in the present paper to the case of general viscosity coeffi-
cients. In [10], the second author proved also the existence of global weak solution for general
viscosity coefficients with initial density admitting shocks and with initial velocity belonging
to the set of finite measures. In opposite to [13], the initial data satisfy the BD entropy but not
the classical energy, it allows in particular to show some regularizing effects on the density
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inasmuch as the density becomes instantaneously continuous. It is due to the regularity of the
effective velocity v which express the coupling between the velocity and the density.

The problem of existence of global strong solution for system (1.1) with large initial data
and with general viscosity coefficients verifying (1.2) is not yet completely solved. Indeed
when o > 1 it requires conditions of sign on the so called effective flux (see [12, 20]). This
quantity represents the force that the fluids exerts on itself and a priori has no reason to be
signed. In the following we are going to present the current state of art concerning the exist-
ence of global strong solution for system (1.1) with viscosity coefficients verifying (1.2).

It has been first proved by Mellet and Vasseur (see [21]) in the case 0 < o < % The main
argument of their proof consists in using the Bresch-Dejardins entropy (see [1]) in order to
estimate the L°° norm of % and using the parabolicity of the momentum equation of (1.1). It is
important at this level to point out that the Bresch-Dejardins entropy gives almost for free the
control of||%||L;§> when a < 1.

In [7], the second author has proved similar results for the case % < a < 1 where he
exploited the fact that the effective velocity v satisfies a damped transport equation. It enables
to obtain L°° estimates for v and using the maximum principle one gets L* control on %.

More recently Constantin et al in [3] have extended the previous results. More precisely, in
the range a € (3, 1] under the condition > 2a, the authors obtain global existence of strong
solutions for initial data belonging to H>. They prove that the same result also holds true in the
case a > 1 with  belonging to [a, « + 1] provided that the initial data satisfy:

Owug < pg~ . (1.6)

We point out that the condition (1.6) is equivalent to consider a negative effective flux (see
for example [12, 20]) at initial time. The main idea of their proof consists in proving via a
maximum principle that the effective flux remains negative for all time. This is sufficient to
control the L norm of 1,

In the present paper, our goal is double inasmuch as we wish both to show the existence of
global strong solution for the case o > % without any sign restriction on the initial data and
with minimal assumptions in terms of regularity. In [3], Constantin et al proved a blow-up
criterion for o > % which is relied to estimating the ;7 norm of %. In order to apply this blow-

up criterion, we introduce a new effective pressure y = agv + F>(p) with pF}(p) = %p) and

Fi(p)="=L ;;((;; ))p . We observe then that y satisfies the following equation:
P
Oy + udvy + Fi(p)y — Fi(p)F2(p) + F (p)m(v —u)* =0. (1.7)

This last equation enables us to prove that if yo < C with C € R then y remains bounded on
the right all along the time which implies in particular that:

ov(t,x) < Ci(1) V(t,x) € RT x R, (1.8)

with C| a continuous increasing function. Using maximum principle for the mass equation of
(1.4) allows us to prove that% is bounded all along the time. In order to show the uniqueness of
the solutions, we extend Hoff’s techniques to the case of general viscosity coefficients which
enables us to prove that d,u belongs to L] .(L>°(R)). Passing in Lagrangian formulation (see
the appendix and the references therein), we get the uniqueness of the solutions. Finally, we
would like to mention that the estimate (1.8) is reminiscent of the so-called Oleinik estimate
(see [4, 23]) for scalar conservation law with a flux strictly convex or concave. If we consider
the following equation with f regular:
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O + Of (u) =0, u(0,-) = up € L°(R),

the Kruzhkov theorem (see [19]) asserts that there exists a unique entropy solution for initial
data up € L*°(R). In addition if f is genuinely non linear, Oleinik has proved the following
estimate in the sense of measures for C > 0 and for any (t,x) € RT x R:

Ovu(t, x) < g (1.9)

This estimate gives regularizing effects on u since instantaneously u(z,-) with 7> 0 is in
BV (R). In our case, we have no regularizing effects on v. A possible explanation is the fact
that v satisfies a damped transport equation which is in some sense linearly degenerate.

2. Main results

We are now in position to state our main theorem.

Theorem 2.1. Let a> 3, v > max(l,@), (po, -) € (L=(R))% (po — 1,u0) € (L*(R))>
In addition we assume that vy € L*(R) and that there exists C € R such that for any x >y
we have:

vo(x) —vo(y)
X—y

Then there exists a unique global strong solution (p,u) for the Navier-Stokes system (1.1)

< Gy. 2.1)

with the following properties. For any given T > 0, L > 0 there exist a positive constant C(T),
a positive constant C(T,L) depending respectively on T, L and on ||po — 1||12, || (pos %) | oo,
leto]] 22, ||vol| 2 and on the constant appearing in (2.1) such that, if o(t) = min(1;¢), then:

L%

C(T)~' < p(T,-) <C(T) ae, 2.2)

sup_(llp(t,-) = gz + (e, ) llzz + 19ep(t, )2 + 0 ()2 | Braa(t, ) | 2

0<t<T

+ 0 (1) ([ie(t, )| + |9:(p* Duu(t,-) = P(p) + P(1))|12) < C(T), (23)

/0 [0t )72 + 10s0(t )72 + o (@) iz, )| + o (0)| Oz, -)l|7)dr < C(T),

2.4)
r 1
/ 07 (1) [|0wu (7) || d7 < C(T), (2.5)
0
1
sup o(2)2[|Owu(t, )| < C(T), (2.6)
0<i<T
Ivllsv(or <L) < C(T,L). (2.7)
Furthermore for any x >y and t > 0, we have almost everywhere:
t,x) — v,
w <G (t), (2.8)

X—=y
with C; a continuous increasing function.
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Remark 2.1. It is important to point out that our theorem requires that d,py belongs to

L?(R). Indeed if we consider ¢ the primitive of £ gf ) which is 0 in 0, since Oy (po) = vo — U

with vg € L?(R) and uy € L*(R), this implies that 8, (po) € L*(R). Since % isin L= (R), we
deduce that d,py is in L*(R).

Furthermore since ¢(pg) — 1is also in L?(IR) using that % and pg are in L (R), we deduce
that (po) — 1is in H'(R). The initial density py is then necessarily a continuous function
which prevents us from considering shock-type initial data.

Remark 2.2. We would like to mention that any solution (p,u) of system (1.1) in the
sense of distributions which verifies the regularity assumptions of theorem 2.1 is also a
strong solution i.e. (p,u) satisfy the system (1.1) almost everywhere on R* x R. Setting
wi(t,x) = p®Owu(t,x) — P(p(t,x)) + P(1) the effective flux, we get from (2.2) and (2.3) that
for any ¢ > O:

{a(r)énaxwl(r, e < €,
(1) 0wt )iz + [IP(p) (2, -) — P()]|12 < C(2),

for C a continuous increasing function. This implies that wy belongs to L\ (R*, H!(R)).

Using now the fact that (P(p) — P(1)) belongs to L (H'(R)), we deduce that p*d,u is in

loc
L (H'(R)). Using (2.2), the fact that (55 — 1) belongs to L2 (H' (R)) we get using product
law in Sobolev spaces that d,u is in L] (H'(R)). In particular Oy is in L} (L*(R)). In other
words it is easy to observe that each term of (1.1) isin L} (R* x R) which ensures that (p, u)

loc
satisfies (1.1) almost everywhere.

Remark 2.3. Letus point out that compared with [3], we deal with the range v > max(a, 1)
whereas in [3] the authors treat the case o < v < a+ 1, a > 1 provided that O,uy < pa’fa.
In a certain sense the method that we developed in our proof unifies the different situations,
v > a+1and a < v < a + 1. Furthermore we do not require any condition of sign on the
initial data.

Remark 2.4. The condition (2.1) is a condition of Oleinik-type which implies that vy is in
BVioc(R). Indeed we recall that for any x € R we have Ixl = (2x); — x with (x); = max(0, x).
It yields then that for any interval [a, b] such that vy(a) and vo(b) are finite and any increasing
subdivision (x,),=1.... 5 Of the interval [a, b] with N € N*, we have using (2.1) and taking
Xo=a, xyr1 =bifx; >aand xy < b:

N

S oleiar) = w0l < 3 olsier) — vo(xo)|
i=1 i

i=0

<2 (wolxir1) = vo(x)) 4 + vo(a) — vo(b)
i=0

<20 (w1 — x;) + vola) — vo(b)
i=0

< 2C(b —a) + vo(a) — vo(b).
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In particular this shows that vy is necessarily in L2? (R). Furthermore (2.8) implies that the
Oleinik estimate (2.1) is preserved all along the time. In addition since x — v(z,x) — C;(f)x is
non-increasing, we deduce that v(z, -) has left and right-hand limits at each points for almost
t>0.

Remark 2.5. Our theorem does not require high regularity assumption on the initial veloc-
ity. Indeed, we assume only that uo and v are respectively in L?(R) and L?(R) N BV (R).
This is however sufficient in order to ensure uniqueness.

Remark 2.6. We can observe that in the case % < a < 1, our assumption on ~ is optimal
from a hyperbolic point of view since we need only v > 1. This extends the results of [3, 7].

Remark 2.7. We can observe that (2.5) and (2.6) give us a L (L>°(RR)) control on d,u. In
particular, this enables us to define the flow associated to the velocity u (we refer for more
details to the appendix).

We would like to emphasize that the condition (2.1) is automatically satisfied provided
that 0yvg € L. A necessary condition for this latter condition to hold is to take initial data

(% —1,p0 -1, uo) in the following Sobolev spaces (H* (R))? x H*~! (R) withs; > 3. Asa

by-product of theorem 2.1 and the explosion criterion announced bellow in theorem 3.1 (the
proof can be found in the appendix), we establish the following result:

Theorem 2.2. Consider o > %, v > max (1, «) and

1 .
( — 1,p0 — 1,u0> S (Hs (R))z X I‘F_l (R) s
Po
with s > % Then, the compressible Navier—Stokes system (1.1) admits a unique solution
(p—1,u) € CR,,H (R) x H~'(R)).
In the section 3, we prove the theorem 2.1. An appendix is devoted to the definition and

basic properties of the Lagrangian framework, we give also a sketch of the proof of the theo-
rem 3.1 below.

3. Proof of the theorem 2.1

A first ingredient is the following blow-up criterion.

Theorem 3.1. Assume that o> 3% and ~>max(a—1,1) and let s>3 and
(po — 1,up) € H*(R) with % € L>®(R). Then there exists T* > 0 such that (p,u) is a strong
solution on (0,T") with:

(p—1) € C(0,T,H(R)), uc C(0,T,H*(R)) NL*(0,T,H* T (R)), VT € (0,T"),
and for all t € (0,T*):

1
”;(t")”b’o < C(1),
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where C(1) < +oc ift € (0,T*). In addition, if:

1
sup ||=(t,)|lLe < C < 400,
t(0.1*) P

then the solution can be continued beyond (0,T).

The above result says that a regular solution might blow-up is if and only if the L>-norm
of % blows-up in 7*. Theorem 3.1 is essentially an adaptation to the whole space of the blow-
up criterion proved in Constantin et al (see theorem 1.1. from [3]) in the case of the torus. We
refer the reader to the appendix for a sketch of the proof. The plan of the proof of theorem 2.1
is the following

e We regularize the initial data in the following way
PG = Jn * P05
Vo = Jn * V0, 3.1)
ug = vo — 0 () »
with j, a regularizing kernel, j,(y) = nj(ny) with 0 <j < 1, [pj(y)dy =1, j € C>°(R)

and suppj C [—2,2]. We deduce that (p} — 1, v{) belong to all Sobolev spaces H*(R) with
s > 5/2 and that:

1
0<H
o

< 6 < llpoll < +o0. (3:2)
LOO

By the composition theorem we know that ¢(pf) — (1) belongs to H*(R) for any k > 0
and consequently we obtain that u}} € H*(R) for k > 3. Finally, for x > y, using (2.1) we

have:
vi(x) — v volx —2) —voly —2) . .
0( ) O(y) _ /( 0( ) O(y ))]n(Z)dZ < Gy,
X=Yy R xX=Yy
and in particular we deduce that for any x € R, we have:

0w (x) < Co, (3.3)

where Cj is the constant appearing in (2.1).

e Next, theorem 3.1 ensures the existence of solutions (p,, u,) of the Navier—Stokes system
that live on a time interval (0, 7,,). Furthermore theorem 3.1 provides us with a blow-up
criterion which ensures that the solution is global as soon as we control uniformly on

(0, T,) the L*-norm of pi. This represents the delicate part of the proof: finding bounds

for ’ that only depend on*

1
‘/’” HL,“’L
l[uollz » [1voll 2 » [loll o - 111/ poll o< 18xpoll 2 ITE (po) = TL(1)][,: and Co,(3 5

where Cy is the constant from (2.1). In order to achieve this,

— the first step is to prove that we have uniform bounds for || pu|| o . This is done with
the help of the basic energy estimate along with the BD entropy see (3.6) and (3.7) from
below.

4 For a definition of II see relation (3.8) below.
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— Armed with this uniform estimate, we show that
Oy (1,x) < C (1), (3.5)
where C (¢) depends only on the constants appearing in (3.4) and on time.

— The estimate (3.5) is sufficient in order to control ’

L ‘ uniformly in n and only the
pﬂ LtOO LOO

norms of the initial data appearing are needed. This is the objective of section 3.4
e Once we obtain the uniform control on H pi H , we deduce that 7, = +oo for all n. In
nllLpepoe

order to pass to the limit and conclude the proof of theorem 2.1, we still need to recover
some regularity-estimates that are independent of n and that depend only on the constants
appearing in relation (3.4). This is done by adapting Hoff’s techniques to the case of
density dependent viscosities. We achieve this step in section 3.2. Finally, classical com-
pactness arguments can be used to pass to the limit, see section 3.4.

In the remaining part of this section, let us recall the basic energy and the BD-entropy esti-
mates. Indeed by multiplying the momentum equation by u, and integrating we deduce that
there exists C > 0 such that for any # > 0 we have:

[ lontenlin (60 + 1o 00) = 10+ [ [ (o) @unsnPasax < c - @36)
R 0 R

Multiplying the equation satisfied by v, by v,, see equation (1.4) we see that

! n Pl n
Lloatcono.0) + 1o 1) ~ 110+ [ [ HEPED g s pasac < €, o)
R 0 JR n
where
pT—=p
II(p) = .
(p) po—
The fact that in the above inequalities C can be chosen independently of n is due to the fact
that there exists C; > 0 such that:

(3.8)

IVollzzwy < Crs oo — Ulzzry < €1 and [|0xpf|r2) < Ci-
Combining (3.6) and (3.7), we deduce that for C > 0 large enough we have for any ¢ € (0, T.F):
lon (2, ) = Uy @) < Co Va0 (pn) |2 () < C. 3.9)

We refer to [20] for the definition of Orlicz spaces L (R). Using (3.9) and Sobolev embedding
we get that for C > 0 large enough and independent on n we have (see [10, 16] for details):

| pnll o< (f0.727.L) < C- (3.10)
3.1 New effective pressure y, and uniform estimates for i

We recall now that the effective velocity v, verifies the momentum equation of the system
(1.4), namely:

Oy + u,Oyvy, + OF(pn) =0,

with:

OcF (pn) = W(W — Uy).
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Let us set now w, = J,v,, we observe that w, satisfies the following equation:

Pl n n P, n n Pl n n
Owy, + u, 0wy, + Oxutyw,, + (Pn)p Wy, — (pn)p Oty + Ox( (pn)p V(v — up) = 0.

wlpn) " nlpn) 14(pn)
If we set Fi(p) = PI;((’;))", we have:
2
ath + u,,aan + 8xunwn + Fl (pn)wn - Fl (pn)axun + Fi (pn) HZI; ) (Vn - un)z =0.

Let us multiply the previous equation by i, we get then:

Wn Wnp Wn Fl (pn) /! Pn 2
Oi(—) + u, 0 (—) + Fi(py)— — Oy, + F1(pn Vi ) =0
t(pn) (pn) l(p)pn O ](p)M(Pn)( )
We set now y, = % + Fa(pn) with p,F}(pn) = F';’)”), we obtain then:
Pn
atyn + unax))n + Fl(pn)yn - Fl(pn)F2<pn) + Fi (pn) M(P )(VV! - uﬂ)z =
3.11)

We recall now that P(p) = p), u(p,) = pS and we get:
FZ(pn): Wizéilpz_a_l lf’y—Oé—l #0,
Fy(pn) =vlnp, ify=a+1, (3.12)
Fi(pn) = vp) ™"

Owing to the fact that the solution (p,, u,) is regular we get that y, is continuous on [0, 7;,) x R
and in view of lim y,(,x) = F,(1), we deduce that for all # € [0,T,) we have:
x—Foo

sup y,(t,x) = F>(1).
xeﬁy( )2 (1) (3.13)

The function

t — sup y,(t,x)
xeR

is continuous on [0,7;,) and since the set

D= {t > 0:supy,(t,x) > FZ(l)}
xeR

is open in [0,7;) (with the topology induced from R) we conclude that

{t > 0:supy,(t,x) > Fz(l)} =LhU U I,
x€R jeN~

where (Ij) ., with I; = (a;, ;) are open disjoint intervals and Io = 0 if sup y,(0,x) = F> (1)
~ x€R
(indeed from (3.13) supy,(0,x) > F, (1)) and I = [0,by) for some by € (0,T,) if
xeR
sup y,(0,x) > F(1). From the definition of /; we have that sup y,(a;,x) = F»(1) and for all
x€ER x€ER

t € I; since ya (2, +) is continuous, it reaches its maximum in R. In other words, for any j € N
and any ¢ € I; there exists a point x; € R such that:

def.
sup y, (1, x) = yIr‘z/I(t) = ya(t,x]).
xeR
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For any t € (Iy U Upenslj), we know that sup,cg ya(t,x) = F»(1). Thus, in order to provide
an estimate of yfl” on [0,T,) we have to show that we can control yﬁ,” on Ip UUensl; and so,
we are going to study the behaviour of y¥ on all intervals J;. To fix the ideas let us fix jo € N
and let us analyse what happens on [j,.

First of all y¥ is Lipschitz continuous on any interval [0, T] with T € (0, T,,). Indeed from
the triangular inequality we have for (71,7,) € (0,T;):

() = () < sup [y (t1,%) = (2, )| < NOynlleoe (i o)y [0 — ]
xe

According to Rademacher’s theorem, y,,M is differentiable almost everywhere on [0,7;,). We
are going to verify now that for ¢ € I;, we have (y},)’(f) = Oya(t, x}). Indeed we have:

Vit + 1) — vy (1) i Yalt 4 hoxpyy) —Y'(6,x7)

n\/ _ : —
04)' (1) = h£r§+ h o hir(r)l‘*' h
. (4 Ry X)) — Yy (e X!
%%¢< j>*”:mmm

Similarly, we have:

OL) (1) = Tim 2l = V(= h) alts ) =yt — h X7 y)

= ]
h—0+ h hg})lJr h
et x]) =¥t — h,x))
<1 = Oy, (8, x7).
Parei 8 h (1)

We deduce from (3.11) using the fact that 0,y,(#,x) = 0 since y,(f, ) reaches its maximum
in x} and that for jj and for almost all ¢ € I;, we have:

Pn
1(pn

iy (1) + Fi (o) (6:X7)Y3 (1) = Fi(pa) F2 () (6:X7) = Fi(p) ] (v = a)*(2.37). (3.14)

Basic computations give now:

Z .
Fi(p)Fa(p) = s=5=p" 727 i y#a+1,
Fi(p)F2(p) =7 Inpp?~* if y=a+1,
P)p

FM((p) oy — )T, (3.15)
Fi(p) =~p" .
Recall now that
ya(aj,) = Fa(1), (3.16)
such that owing to v > «, (3.14) and (3.15) we get that for v # o« + 1 and € [;:
2
Ouala) + Fipn) (! Ay (6) < masx(0, —— )t )72 17y

From (3.15) and (3.17), we get that for any ¢ € I;, one has with C, = max(0, 7%;71)
0 (Vi (r)e Jori "8y < € |y (, ) |72 e Jo T (s (3.18)
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It yields for any ¢ € I

— j;’].o oy T (sx)ds

Yult) <e Vi (o)
t
+€ [ (el terta g, O
aj,
From (3.16) and (3.19) and since p,, is positive, we obtain that for # € I;;:
t
) <R+ €, [ Il e (3.20)
ajO

Combining (3.10) and (3.20), we deduce that for any 7 € (0, 7)) we have:
yu(1) < C(1), (3.21)

with C a continuous function on RT when v # a + 1 (indeed we use the fact that C, =0
when v < a + 1). From (3.21), the definition of F, and the uniform L°° control on p, we get
for a continuous increasing function C; and any (¢,x) € (0,7,) x R:

Ocvn(t,x)
————= < Ci(p). 3.22
ey <a (3:22)
Next we recall that we have:
1 1 1
O (—) + u,0(—) — — O, = 0.
t(pn P’ Pn
We can rewrite the equation as follows:
1 1 1 . 1 1 1
0) + () = oy = Mo ) - o) =0

Again, the value of # is fixed at 400 for al > 0. By considering the set

1
{t >0:sup —(t,x) > 1)} =QyU U 0;,
x€R Pn jEN
where for j > 1, Q; are open disjoint intervals. A maximum principle and following the same
arguments as previously, we set now:
1
zu(t) = sup — (#,x),
XER Pn

and, we know that in any interval Q;, there is a point, still denoted x7 such that z,(f) = ST

Pn (IJC?’)
We have then as previously for any ¢ € Q)

diza(t) = P o (L) + Lo (n).

pl’l n pl’l

From the definition of y,, (3.21) and since 8xx(p—1n)(t,x;’) < 0 (indeed 7 is a point where i
reaches its maximum) we deduce that for any # € Q)
v —a—1 n
Dyza(t) < C(1) + mpz (t,x7). (3.23)
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If ¥ > a + 1 we obtain the existence of a continuous function C; on R such that for any
t € Qj, we have:

(1) < Ga(1).

If v € [, @ + 1) the same conclusion holds by applying Gronwall’s lemma because (3.23)
becomes

Dizn(t) < C(t) + Cornz ™77, (3.24)
and a + 1 — v € [0, 1). This implies that for any ¢ € (0, T,,) we get:

1
Hp*(f’ Nz < Co(). (3.25)

Combining the blow-up criterion in theorem 3.1 and (3.25), we obtain that 7,, = 4+-co and for
any > 0:

1
Hp*(f’ Nz < Co(1), (3.26)

with C; a continuous function on R*. From (3.22), (3.10) and (3.26), we get again for any
t€(0,T,)and x € R wheny # a + 1

Owvn(t,x) < Ci(1), (3.27)

with C; a continuous increasing function. We can easily prove similar results for v = o + 1.

3.2. Estimates a la Hoff

In the sequel for simplifying the notation we drop the index n. Introducing the convective
derivative

it = O + udu,
we rewrite the momentum equation as
pit — O (p%uy) + Oxp” = 0.
Let us observe that:
1
— / Ox (p%Opu) Ou = / po‘axuaf,u == / PO, ((&Cu)z)
R R 2 Jr
1d ) 1 5
=-— ) — = | O:p™(Oxu)”. 3.28
o A KL (3.29)

Next, we see that:
—/BX (p*Oxu) udu = —/u@xpa(axu)z—/pauafxuaxu
R R R
= —/u@xp“(axu)z—l—l/@x (up™) (Oeu)?
R 2 Jr
1

= 7/uaxpa((f)xu)2+f/pa(3xu)3+l/uaxpa(axu)z
R 2 Jr 2 Jr

—_1 fol 2 1 fot 3
= z/Ruf)xp (Opu)” + 2/Rp (Oyu)”.
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Thus, we gather that:

« _l 1 « 3
/8 Oclt) it 2dt Rp (Beu)’ /8,p (Ou)? 2/u0xp (Oeu)? + 2/Rp (Oxut)

d [ o d+a [,
S R WAL

Moreover, we see that:

/ Ovp” (Opu + udeu) = — / P Opu + / uOyp” Ot
R R

= i 78u+/8,p8u+/u5‘p8u

d
= —— 2 — Y
5 Rp Ot 'y/Rp (Ouu)?.

Multiplying the momentum equation with # yields:

/pu + jt { 1 / (D)’ — /R;ﬂaxu} _ 1 ; a /R,o“(axu)3 +7/Rp7(3xu)2. (3.29)

Let us multiply the previous estimate by o (f) = min(1,#) and integrate in time on [0, ] with
t > 0, we have then:

"T(’) /R P® () (0un)? (1) + / t / o pi?
()/ -1 au+/mm{”}/[ (D) (pv—l)axu}
- l—iz—a/o /Rapa(axu)3+7/o /]Rap"*(axu)2

Let us denote by:

a0 =" [ w0+ [ [ o

Let us observe that using (3.6), (3.10) and (3.26) we have:

S </R o (1) p (1) (O)? <t>> :

+3 Lo 0@ 0

/ﬂ—l
pZ

a(r)/R<m—1>axu< =0

p =1

LeL?

<O +1 /R o (1) ™ (1) (Dt (1) (3.30)

with C and C; continuous on R*. Next, we see that owing to the estimate (3.6), (3.10) and
(3.26), we have that:

(3.31)
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with C; a continuous function on R™. Combining (3.29)—(3.31), we thus get for all > 0
1 1
A(p,u)(t)éC(t)—&-Z/a(t) o (1) (Do) +a//0p (Ou)®
R
1 1
<)+ 5A () ()~ 122 / JRZGCOR
2 2 Jo Jr

with C; a continuous function on RT. Consequently it yields:

Alpu) () < C(1) +(1+a) / / op° (B)’,

which also implies that (C can be chosen to be increasing in #):

sup A(p) (7) < €0+ (1 +0) [ l [ or (332

T€[0,1]

Let us observe that for all € > 0 we have using Gagliardo—Nirenberg inequality (3.6) and
(3.10):

/ ot (1) (0" — ") (1) 2 <2 / o (1) (0Bt — (07 — 1)) ()| + 21
0 0

< 2/0 J% (T) ||(/0aaxu - (P’Y - 1)) (T)Hlﬁ Hax (paax” - p’y) (T)HLZ +2t
<C. / (p™ Oy — (p7 = 1)) (7|72 + ¢ / o (1) 10 (p™Oyu — p7) (T) |72 + 21

t

<C. /0 [(p% e — (p7 = 1)) ()72 + ¢ /O o (1) |lpie (7)]17 + 2t
< C(10) + ellpll i (pupumrd (0o0) (1) (3.33)
< C(t,e) +eCoA (p,u) (1), (3.34)

with C a continuous function on R*. We are going now to estimate the last term of (3.32) and
using (3.6), (3.10), (3.26) and (3.34) with e = 1/(2 (1 + «) Cp) we obtain that:

//Jp (D)’ // (00”0t — p )—i—/[/ap'y(@xu)z
</0<04H( “ Ot — p )(T)\|Lma4/(8u) (T>d7'+//0'p (Oeu)?
ccw+ [t Olprou-m @+ [ o o) ([ @ar ) )

2c

<CO+ a0+ ﬁ A owr e
<CO+ 5ragA ) (€ (0 0 (7) d [ (0 (7)
<CO+ Al (0426, 0) / Alp.) (7 / (0w () . (335)
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with C and C; continuous increasing functions. Finally, putting together (3.32) and (3.35) we
get that

sup A(pt) () < G0+ C0) [ Ay () [ (00 () dr,
0 R

T€[0,1]

with C, an increasing continuous function. Using Gronwall’s lemma and (3.6) leads to

sup A (p,u) () < C (1),
T€[0,1] (3.36)
with C an increasing continuous function. The control over A (p,u) and (3.34) yields

/0 o2 (1) | (p" B — p7) (7)ll} e dT < C (1),

and consequently we get using in addition (3.10):

/0’ L) 0 ()2 dr < € 0). (3:37)

The last inequality also provides an estimate in L! (L*°) of d,u for any ¢ > 0 using Cauchy—
Schwarz inequality:

/OIH&CM(T)HLwdTi (/Ota_é(r)dr) (/Ot 5 (1) |0t (7 )||iw)2 <c@).

Next, we aim at obtaining estimate for the L*norm of O,it. This will be useful in order to
recover regularity properties of u. The idea is to apply the operator J; + u0, to the velocity’s
equation:

1

S

(01 + udy) (pit) — (0 4 udi) O (p*uy) + (9:P(p) + ud:P(p)) = 0,
and to test it with min{1, 7}i. We begin by observing that

/(.) /u+1/ di2 1d .2+1/ p
u - .
 P= P o 2de S T2

We remark that:

/Ruax(pit) /pu(’) uit) /aupu + = /( u), i

Summing the above two relations ylelds:

/R (O + udy) (pi)it = 5 dt pu / Oupic®. (3.38)

Next, we take a look at the second term:

f/(3,+u3x)6x (paaxu)u:/a,paaxuaxu+/paaxu,axa+/ax(paaxu)ax(uu). (3.39)
R R R R
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Let us treat separately the last term appearing in the above inequality:
/ax(paaxu)ax(uu)
R
:/axpa(axu)2u+/uaxpaaxuaxwr/paafxuaxuwr/p“uafxuaxu
R R R R
:/8Xp“(8xu)2u+/u8xpa6xu8xit
R R

1

— = / (8eu) 20 (p™it) + / PO (uOeu) Ot — / (Bu)” p© Byt (3.40)
2 R R R

1
= 7/8xpo‘(8xu)2it+/u@xpaaxuaxit—é/(axu)zpaaxit—i—/paax(uaxu)axit. (3.41)
2 Jm R 2 Jm R

Combining the two identities (3.39) and (3.41) we get that
—/(8,+u8x)8x (paaxu)uz/a[paaxuaxwr/uaxpaaxuaxu
R R R
+/p“axu,axu+/paax(uaxu)axuf5/(6xu)2p“axu+1/axpa(axu)zu
R R 2 Jr 2 Jr
1
— / (a0t + / P (Buit) — 2 / (D)2 p* Dt + - / Do (D)t
R R 2 Jr 2 Jr

_f arg v 3 o 29, 1 o 2. 3.42
f/Rp (Oxtt) <a—|— 2) /Rp (Oxut) Ot + Z/R(‘?xp (Ocu)it. (3.42)

Remark 3.1. The last term of the above identity, § Jg Oxp™(Oxu)?ic will appear with sign
minus in the next identity

Let us observe that

/ (0py + udp” )i = — / pi Ot + / udypi
R R R
:/u@xp75'xit+’y/p”@xuaqur/uafxp”u

R R R
= —/axuaxpm%"’Y/Pvaxuax”

R R

:/8xupu2—/8xu8x (p”‘c’)xu)lit+'y/p“’8xu8xu,

R R R
:/8xupit2+/po‘8xu8x (itaxu)+'y/p78xu8x1}t,

R R R
:/axupa2+/pa(axu)zaxwr/upaaxuaixwry/pmxuaxu,

R R R R

1

:/8xupu2+/po‘(8xu)28xit— f/Bx(upo‘)(axu)z+7/p78xu8xit,

R R 2 Jr R

1 1
:/&Cupitz—&—f/po‘(axuf@xu—f/it@xpo‘(axuf—i—’y/p”axu@xu,
R 2 Jr 2 Jr R
(3.43)
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where we have used the equation of the velocity to replace
—0kp” = pit — Ox(p“Osut).
We sum up the relations (3.38), (3.42) and (3.43) in order to obtain that:

pu +/ (Oyit)? )/po‘(axu)2axit—7/p76xu3xu.
2dt . e

Multiplying with o (t) and integrating in time on [0, 7] with # > 0 leads to:

B (=5 [ o0 // 1) o™ (B4i)?
/mm(“)/pu+a+1)//0p D) 0t — //o—p i, (3:44)

Obviously using (3.36) we have that,
min(1,f)
/ /Pftz <A(pu)(1)<C (3.45)
0 R

for all + > 0. Next, we infer using (3.10) that:

et (] ) ([ o)
C(n)+ B(p, u) (1), (3.46)

with C a continuous increasing function. Finally, using again (3.36), (3.6) and (3.26), we get:

(a+1 //ap (Ou)? //ap (Oyit)? a+1)2/t/ap“(8xu)4
Lm(LOC)//Up 814
8o 0+ () [ alloouli [ 50w

< 2B (p.u) (1) + C (1) sup o (1) [(p"Oxue) (M= -
T€[0,]

<*B(p, ) (1) + (a+1)

—-lk\»—ﬂ N

Let us observe that for all # > 0 we have using Gagliardo—Nirenberg inequality, (3.10) and
(3.26):

0 (1) 10° 0 (1) < 20 (0™t = (o7 = 1) () +201(57 = 1) ()=

<20 (o0 — (o7 = 1)) ()l 0: (o0 — (07 = 1) (D)2 + € (1
<20 (lp*0ll2 + € (1) llo = Ulz) el + € (1)

<C() (0% | p“Ocul| > + C(t)) ot
<C(t

(1) (4% (o) (1)) + C (1)) BY (o) () + C ().

‘ oIt
pra|| ,+C(1)

(3.47)
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Thus, we get from (3.36) and Young inequality:

(a+1) //ap D) ZB( )(r)+C(r)(A%(p,u)(t)+cu))3%(p,u)(z)+C(t)

\C()—i—% (po10) (1) (3.48)

Gathering (3.45), (3.46) and (3.48) yields the fact that B is also bounded:
B(p,u) (1) < C(1), (3.49)

with C a continuous increasing function. The control over H % H , A(p,u)and B (p,u) gives
LOO

us, via the estimate (3.47) the following

o (1) [|0u()][ = < C (1), (3.50)
forany r > 0.

3.8. Uniform BV-estimates for the effective velocities v,
Owing to the estimate (3.26) and (3.6) we recover the following estimates:

o

1

”axun”L}(U) <

C(t)’ ”\/'(T”M"HL,Z(LZ) <G (t) s

mLPe(Le)

where C, C; are increasing continuous functions. From Sobolev embedding, we get that for
any ¢ > 0, there exists C () such that

[[ttnll ) ey < C (1) (3.51)

Let us introduce the flow of u,, i.e.

X, (t,x) =x+ /0’ Uy (7, X, (T,x)) dT. (3.52)
We immediately get that:

—ll =€) < X (r)| < lxl +C (o),
which implies that for any L > 0 the segment

(X, ' (t.—L).X, " (t,L)] <[-L—C(t),L+ C(1)].

This information is useful in order to show that we can propagate the L norm of v,. Indeed,
let us recall that:

P . 2 N
Orvn + upOxvy + MM(P )ax w =0,

wipn) P}
rewrites as
/ ( 2
Pn) P
Oy + u,0cv, + 2 (v, —u,) =0. 3.53
' 1 (pn) ( ) 533
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Passing into Lagrangian coordinates (see appendix) i.e.
(T;n”lzl’l? ﬁn) (t? 'x) = (Vn’ um pn) (t7 Xn (t’ x)) ”
we see that (3.53) rewrites as:

P (5n) P~ P (Pn) P~
(Pn) P P Bw) ou (3.54)
14 (Pn) 14 (Pn)

The last relation implies using (3.10) and (3.26):

Ovn +

= P (pu (7. %)) (7. x)
v, (1, % <vnxexp(—/ — r d7>‘
OIS e (= T G )
' TP (P (7.2) (7.%)) \ P (B (5%)) (s, %)
+ / exp f/ — dr . r u, (s,x)ds
g ( L G () W)
t
< (o 1+ [ 6l a5)
SC@) 1+ [von () ])
and consequently for any # > 0, x € R:
(12| < € 1) (1+ von (%7 (1) )
Thus, we see that:
1V (D] oo (.27 < C (1) (1 + ||V0"||L°°([—L—C(z),L+C(t)])) : (3.55)
In addition (v§)nen is uniformly bounded in L2 (R). Indeed since vo is in Li? (R) (see the

remark 2.4), we have for any x € [—L,L] and any n € N:

1
n . Yy
o(x)| < / J)vo(x — ;)dy < vollzss (—z=1.2+1))- (3.56)
—1
This piece of information along with the estimate:
Oy (1,x) < C (1),
ensures that v" is uniformly bounded in L>° ([0, T]; BVioc(R)). Ideed, the function
wy (t,x) = v, (t,x) — C (1) x,
being nonincreasing, it holds using (3.55) that:
TV rywa(t,) = vu (t, —L) = vy (,.L) + 2C () L< C (1) (L + ||V0nHLoo([_L—c(z),Hc(t)])) :
Owing to the fact that
Ve = wy (t,x) + C (1) x,

we get that:

TVi_Lnva(t,-) < C (1) (L + ”vonHLOO([foc(t),LJrC(t)])) : (3.57)
From (3.55)-(3.57), we get:

Vo Ol gy(-r.0y < C(T.L). (3.58)
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Owing to (3.10), (3.26), (3.51), (3.55) and (3.54) we get that:

”alf‘jnHL‘([O,T]x[fL,L]) <C(T.L). (3.59)
Next, fix ¢ € Cp ([0, T] x [—L, L]) with:

&0l oo 0.1y x[—207) < 1

and let us write that:

/ ' / (13 O (1.3) dudt

X (tL) ) pn (t,x)

(t,x 8,\/ (t,x) ———dx | dr
X(l L) Pon(x)

( X (tL) (t,x) Ov, (2, %) Pn (1) dx) dr

X (1, L) Pon(x)

X(tL) 3 (t
(62) T (1) Do (1)) 22 g ) e
X(t L) Pon(x)

- X, (2,L) N 5 (
7/0 </Xn(z,L)¢(t %) 0% (1) Pon(x) )dt / / ¢ (1)t (1,%) Ouvn (1, %)) dxdr.

Owing to (3.10), (3.26), (3.51), (3.58) and (3.59) and using the fact that ¢u, belongs to
L'([0,T], C°(R)), we conclude that

T L
/ o (t,x) Oy, (t,x)dxdt| < C(T,L). (3.60)
0o J-L

Combining (3.60) and (3.57) gives us for any 7> 0, L > 0:
||Vn||3v([0,T]><[7L,L]) <C(T.L). (3.61)

3.4. Compactness

We recall the previous estimates that we have obtained, for every T > 0 we have for C a con-
tinuous increasing function independent on n and any n € N:

C(T)™" < palT,-) < C(T), (3.62)

Sup (lon () = Ulzz + lla e, Ylzz + 19cpa(t, Wiz + 0 (1) [ Duttn(1, )12

IS

+0(0)2 (it ) |1 + 10505 Butan (1) = P(pa) + P(1)[12) < C(T),

(3.63)

/Hlaun( Nz + 10epu(t, 72 + o (@) ltin(t, )17 + o (1) [[Dutin(2, ) |I721de < C(T), (3.64)
T 1

/Oof(T) |1xtty (7) ][ dT < C(T)., (3.65)
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sup o (1)} |0u (1, )1 < C(T). (3.66)
0<t<T
Using classical arguments (see [16, 22]), we prove that up to a subsequence, (p,, i, )neN CONV-
erges in the sense of distributions to (p, u), a global weak solution of (1.1). Furthermore the
limit functions p, u inherit all the bounds (3.62), (3.63)—(3.65), (2.7) and (3.66) via Fatou
type-lemmas for the weak topology.

We wish now to prove (2.8), to do this we are going to prove that up to a subsequence
(va)nen converges almost everywhere to v on R™ x R. This is a direct consequence of the
estimate (3.61), indeed since (v,)nen is uniformly bounded in BVi,((0,7) x R) for any
T > 0, we deduce that up to a subsequence (v,),en converges to v in Ll ((0,T) x R). In par-
ticular up to a subsequence (v, ),cn converges almost everywhere to v in (0, +00) X R. Using
now (3.27) and the fact that v, converges almost everywhere to v on R* x R implies (2.8)
since for all x >y and ¢ > 0 we have:

Va(t, %) = va(t,y) _ ly/ Ovn(t,2)dz < C(1),
y

xX—y X —

with C a continuous function on R¥. It concludes the proof of (2.8).

3.5. Uniqueness

Consider two solutions (p;, u;), i € {1,2} verifying the estimates (2.2)—(2.6) and generated by
the same initial data:

&pi + 8,6 (p,-u,-) = 0,
O (piui) + Oy (piu7) — O pi)Dti) + Oupi = 0, (3.67)
(pi|t:0’ ui|t:0) = (po, up) -

We define now the flows generated by u;

t
Xi(t,x) =x+ / u; (1,X (7,x))dr,
0
and denoting with tildes the functions
Fl\/ll' (Z,)C) =V; (t,Xi ([,X)) ,
for v € {p,u}. We get that (according to the results from the appendix):
o (39) =0

podii; — O (P2 0.0 ) + OP(57) = 0, (3.68)

1
Xi(t,x) :x+/ﬁi (t,x)dr
0

for i = 1,2. Setting du = u; — u,, by difference we have that:

000,57 — O (%ﬁ)”%ﬁ) = 0,Gy + 8:Go, (3.69)
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where

— Po — — £
G *P(lﬂ;;ax[ﬁz]) P(1+f0 u1]>
G, = (70'1;4(761) _ ﬁzu(ﬁz)) Byl

Po xHhes

Po

We multiply (3.69) by du, integrate it over R and by obvious manipulation we get for ¢ > 0:

;/po(x)( )(tx)dx—k% inf /71(Sxp0(x $%) //(8 (87i(s,x)))* ds dx

s€]0,1].x
(0 / @+ / [ @1 (3.70)

with C a continuous increasing function. In the following we will estimate G| and G». First,
we we get using (A.11) forz > 0 and x € R:

~ W@ @ —pe) o) dr
0p (t,x) = dp1 — dp2 = — = ,
Pl =0 00 = e e Tk Lo X (600X )

107 (63| < ViC (1) ( / |0y <T,x>|2d7)§, (3.71)

and consequently using (A.9) we get:

po (x) ‘fot 0,0u (7, x) dT‘ 1 3
G (t,x) < su P (s < VIC (¢ (/ o.0u (1,x 2d7'> s
R P N F S U oS Cl o] AV

with C a continuous increasing function. It implies that

/ / G))? (s,x)dsdx < £2C (1) /0 t /R (0,611)? (s, x)dsdx. (3.72)

Let us turn our attention towards G,. We first write that for any (,x) € R* x R, we have:

Go(t,) = (51M(51) B ﬁzﬂ(ﬁz)) Diia(t,)

£0 £o

= ! (:u)l (at,xﬁl (t’ x) + (1 - Ht,x) ﬁZ(t, X)) 5ﬁ(t, x)axﬂz(t, X).
po(x)

Thus, we get using (2.2) and (3.71) that for ¢ > 0:

‘Gz(l,x)|2<C()(t‘au2tx (/|65~7‘X|d7')
< ((o! 010 0+ 1y 0) 10200, )” ([ 03577 0r).

such that by integration and using (2.6), (A.10) and (2.2) we have:

166 < / [otsits o) Paxas. (3.73)

Putting together the inequalities (3.70), (3.72), (3.73) and integrating in time, we get that for
t>0:
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: / pula) (01, )+ 5 int ] (L“((ﬁ) (5:) / / (Ou(B(s. )))? ds dx

<1C1(1) /0 t /R 10:(57(s, %)) [2dx ds, (3.74)

with C; a continuous increasing function. Taking 7y > 0 small enough, we have using a boot-
strap argument for any 7 € [0, Tp]:

L o L (60 p(pr (6%) [ 2
7/0 ol + 5 ing LD /O/O (0.(57))> < 0Vr € [0,To].

2 4 tx

Thus, we get a local uniqueness property. Reiterating this process gives us the uniqueness of
the two solutions on their whole domain of definition.
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Appendix

In this appendix, we gather a few useful facts regarding the 1D Navier—Stokes equations in
Lagrangian coordinates. The results belong to the mathematical folklore and can be found
in, by now classical papers devoted to the 1D Navier—Stokes system, see [18, 24, 25]. The
Lagrangian framework offers an elegant method of obtaining a priori estimates (for example
on the L* norm of p) either uniqueness of solutions (see the relatively recent paper [5]).

Let us first derive the Lagrangian formulation of the Navier—Stokes system. We will supose

that we are give (p,u) € L ([0,00) x R) x L® (L*(R)) N L? (H (R)) a solution of the
Navier—Stokes system

pr + Ox (pu) =0,
O; (pu) + Oy (pu*) — Ox (11 (p) Bxut) + P (p) = 0, (A.1)
(p|t:07 u‘l:()) = (p07 I/t()) .

First, we recall the definition of the flow of .

Proposition A.1. Consider T > 0 and

u € L*((0,T); L (R)) with du € L' ((0,T); L™ (R)).

Then, for any x € R there exists a unique solution X (-,x) : [0,00) — R of

X (1,x) :x+/0u(t,X(t,X)), (A2)
X (0,x) = x.
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Moreover X (t,x) verifies the following properties:

e X € BV ([0, T] X R) for any T > 0. In addition, for all t > 0 and for almost all x € R

t
0uX (t,x) = exp (/ Owut (1, X (7, %)) d’T) .
0
e Foreacht >0, X (t,-) is a homeomorphism from R to R.
o We have that 9,X,0,X € L*(L>°) and 0, X, 0.X~" € L>®(LX).
Notation A.1. For any function v : [0,00) X R — R, we denote by v the function defined as:
V(t,x):=v (X (tx)).

‘We note that

t t
X(t,x)=x+/ u(T,X(T,x))zx—i—/ﬁ(T,x)dT
0 0
and thus

ox Lo~
P (tx)=1 —l—/o Ot (7,x) dr.
Owing to

O (1,x) = Oy (2, x) g—f (t,x), (A3)

we obtain that

1
1+ [y 9 (1.x)dr

Let us investigate the first equation of (A.1). For any 1) € D ((0,T) x R) we have that:

/OT/Rpw,muaxw:o.

Owing to the fact that p, pu € L% (LIZOC) the set of test functions can be enlarged to
¥ € C°((0,T) x R)(continuous functions vanishing at the boundary) with ¢, Oyt € L% (L7..).
In view of the regularity properties of X (¢, x)it follows that forany ¢ € D ((0,T) x R),p o X!
can be used as a test function. Using this along with the fact that X (7, x) is a homeomorphism
for all ¢, we write that

O (t,x) = %f (t,x) "' 07 (1, x) =

O (t,x). (A4)

T
_ ox—! ox-!
0 —/0 /Rp(a,w X)) + pude(vp o X~ )dxdr

- / ' / 7 (0, 0 X1) + T0(Y 0 X)) OX (1) dxdr

T
- / / 30X
0 R

witch translates into

EaixN =0 AS
a\ax’) (A-5)
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Proceeding in a similar manner, we get that the velocity’s equation rewrites as

-1
po (x) Ot — Oy <(g§> 1(p) c”ﬂ) + 0:P(p) = 0. (A.6)

Putting together equations, (A.5) and (A.6) we deduce that the system (A.1) can be written in
Lagrangian coordinates as:

G (5p) =0. 1
po (x) i — O, ((%’;) 1(p) axu) 0P (5) =0,
t
X(tx) = x+ / i (r,x) dr. (A7)
0
or, equivalently
a(5n) =0
po (x) i — . (PI;—@ ax’ﬁ) +O.P(5) =0,
t
X (t,x) =x+ / u(r,x)dr. (A.8)
0

Let us close this appendix observing that if we dispose of an inequality of the following type
(it is the case in our case, see (2.2)):

ct)y ' <pltx) < C(1), (A.9)

then one may obtain from (A.8) that
1. 0X

C(1)” inf py < x (t,.x) < C (1) sup po, (A.10)

along with
—1 ~ _1
< (aX (t,x>) _ ey (A1)
inf po Ox po(x) sup po

A.1. Sketch of the proof of the theorem 3.1

In this section, we are just giving a sketch of the proof of the blow-up criterion. The part con-
cerning the existence of strong solution in finite time is classical. We begin by observing that
the Navier—Stokes system can be written under the following form:

Ot + 2udu — O (p“flaxu) =vou — P (v —u), A 12
O + udyy = —ypr—ot! (v—u). (A.12)

Let us recall a classical product law in Sobolev spaces along with the Kato—Ponce commutator
estimate

Lemma A.1 (Kato—Ponce). The following estimates hold true for any s > 0:
1A ()Nl < Ml oe (1Al 4 18l oo (1A 2 (A.13)

1A (f0x8) = fAO8l 2 < C (10 1] oo A58 2 + AL N2 1008l 0)  (A14)
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where

FAS(E) = [EPFF(E).

In the sequel we wish to describe how to propagate for all time the H* norm of u and p — 1
for s > %
We rewrite the system (A.12) as

OiAsu + 2u0Asu — O, (po‘_'(f?xAsu) = A; (Vo) — yA; (p7 7 (v —u))
+2 [As, u] Oyu + O, ([pa_l, As] 8xu) ,
Ay + ud Ay = —yA, (070 (v —u)) + [Ay, u] O (A.15)

Multiply the first equation with Au and integrate over R, we get that:

a—1
2dt/| Su|+/ 10 Al —/8u\Au|+/ A (v0u) Agu
—v/As (/ﬂ*a (v—u)) A5u+/2[As,u] 8XuASu+/8x([p°‘71,As] 8xu) Asu. (A.16)
R R R

Multiplying the second equation of (A.15) with A,v we obtain that:

/ |Asv | = / Ot | Ay v| - 'y/ ( y—atl (v— )Asv +/ [As, u] O vA,v. (A.17)
2.dt R
If we add up (A.16) and (A.17), it yields that

1d 2 2 —1 2
A A a1 |9,A,
2dr {‘ sl + | V|} / 1Ot

/8M|Au| +/A (vOu) Asu — /A T (v—u)) Agu
—|—/ [s,]auAu—F/(? ([P " Ay] D) Ay
7/8u|A v| —7/ s (P atl (v—u)) Asv—|—/[As,u] OwAw.  (A.18)
R

In the following lines, we analyse the different terms appearing in the left hand side of (A.18).
The first two terms are treated in the following manner using lemma A.1:

/ Oyt \Asu|2 + / Ay (vOiu) Asu
R R

2
S 10l e [ Asullzz + 10xull oo 1AV 2 1 Asull 2 + (V]| oo 10 Astt]| 12 | Asel] 2
2 _allr _
S 0wl oo (1At 2+ ([ Octtll o 1AV [l 1 Asull 2 + V] [0 (0% O sut]| o [ Asie]] 2
2 2 — 2
<C Ha)c”HLoo ||ASMHL2 +C HaxL‘”Loo ||Asv||L2 HAsu”LZ +C ”V”Loo ||p1 aHLoo HAsM”L2

1 a—1 2
+ = HpTaXAsu ’
8 LZ
(A.19)
The third term can be treated as follows:
/RAS (7= (v =) At S (|07 e (A2 + [[Astll2) (Al 2
=)l [|As (277 = 1) 2) A2 (A.20)
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We have for the fourth term using lemma A.1:
[ 28] Qi S O Al (A21)
R
The fifth term:

[0l 0) 0) o
R
< C H I:pail’AS:I aXuHLZ HaxAsuHLz

11 ae 2
<l M| (00| 1Al 2 + 1Ot oo | As (0" = 1)]|,2)° + s HpT'axAsu B

_ a— 1 a—1 2
<o e (v =l sl + 90l e [[As (07" = 1),2)" + 5 || Ot
. . (A.22)
We skip the sixth term. Seventh term:
A, (prot! v—u)) Ay S| Ay Agull;» + ||Asv 2
[ A = ) A S Il [+ [ .

+ (o7 = e 1A O = )z [l = wll e ([[As (07 = 1) 12)) 1A 2

Last term:
/R [Awu] OwwAyw < (Hax"‘HLoo ||AsV||L2 + HaxV”Loo ||Asu||L2) HASVHLZ - (A24)

Let us observe that in the estimates (A.20), (A.22) and (A.23) we have to treat the H*-norm of
P~ p*~land pY~*! respectively. This is the objective of the following lines. For each 3,
we may write that

0ip” + udep” = —Bp°O.u,
and consequently

O (PP — 1) + udAs (p° — 1) = —BA; (p°0u) + [Ay,u] s (p° — 1).

We get that

1d 2 1 )
E&/]R‘As (0" = 1)” < (5 +B) ol || (0 = 1)

8 (10l [ (0 = 1)l + (67 = V)| 18002 ) [[As (67 = 1)
+ (”aquLoo ”AS (pB - l)”LZ + HGXP’BHLx HAS””LZ) HAs (pﬁ - ])HU

< Ce (0wl + [l [0 = D)5 + v = wll ) 1A (67 = 1)

am 2 A.25
+ ||Asu\|iz +€ HpTlaxAsu ; ( )

Thus putting together the estimates (A.19)—-(A.25) for B =a — 1,7 — o, v —a + 1 we get
that
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/ {10+ 1A + A (7 = 1)+ [A (77 = D A (77 = 1)} (e
R

1
+/ /po‘_1|6x/\su|2 (s,x)dsdx
0o JR

< C (u, po) exp (/Ot (1 - H <p’ %)

with § depending on o and . We mention also that C (ug, po) depends on ||uo||zs, || 0o — 1||as,

5
) (1 + || (u, v, Oxu, &;v)l&)) , (A.26)
Loo

lpo|| == and || i || Lo=. Next, let us analyse in detail the equation of v:
Oy 4+ udyy = —yp? " (v —u).
We get that

t
HV”L,""(L,?") < ||V0||Lgo + Hp770‘+1||1‘r°°(1,§>°)/0' (s, )| oo ds.
Moreover, writing the equation of d,v we see that

(D), + udy (0ev) + (Do + 7p7 ™) Dy = 7p" 0 — 7 (v — ) p? 22 (v — w)?.

From which we deduce that
8 ,
(1 + / || (e, 0Xu)\|Lm) ,
Lo (Lo°) 0

with ¢ (r) = rexpr and ¢; depending on ~ and .. Moreover, the Bresch-Desjardins entropy
allows a uniform control on [|p|| ;o ;- Let us denote by:

Apu) (1) = /R P (1) (D) (1) + /0 t /R pil®.

Using the same techniques as in the section on the Hoff estimates, we may show that

&2
Lo (L) ) ,

which, in turn, ensures a control on [|d,ul|2 ;) provided that we control ||%|| oo (L) To
1
summarize:

1
10 ) S 10070 + (1 " H (1)

A (p,u) (1) < Coexp t(l + H/])

e the Bresch-Desjardins entropy provides control on || p| 1o (1o=) forany 7> 0;

o (v, aXV)HL;x’(LOO) is controlled by || (u, Oy || (1) and H (,0, %) HLNLM ;
o the Hoff-type estimates ensure that ||O,ul| (1) is controlled by H (,0, %) H ( )§
7 (L Lo (L=

o the basic energy estimate yields that [|ul| >, is controlled by H (p, %) H ) ;
¢ \ oy Lo (L
Taking into account the estimate (A.26) we get that for any 7> 0 and any s > % the H°*-

Sobolev norm of (u, v, p — 1) is uniformly controlled by H % H (L)’
Lo (Lo
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