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Abstract
We present a method to compute dispersive shock wave solutions of the 
Korteweg–de Vries equation  that emerge from initial data with step-like 
boundary conditions at infinity. We derive two different Riemann–Hilbert 
problems associated with the inverse scattering transform for the classical 
Schrödinger operator with possibly discontinuous, step-like potentials and 
develop relevant theory to ensure unique solvability of these problems. We 
then numerically implement the Deift–Zhou method of nonlinear steepest 
descent to compute the solution of the Cauchy problem for small times and in 
two asymptotic regions. Our method applies to continuous and discontinuous 
initial data.

Keywords: inverse scattering, step-like data, Riemann–Hilbert problems, 
dispersive shock waves
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1.  Introduction

Consider the Korteweg–de Vries (KdV) equation in the form

ut + 6uux + uxxx = 0, x ∈ R,� (1)

which is completely integrable [12] and admits soliton solutions that decay exponentially 
fast as x → ±∞. For initial initial data with sufficient smoothness and decay on a zero back-
ground, the solution of the Cauchy initial-value problem is given asymptotically by a sum of 
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1-solitons in the (soliton) region x/t  >  C for some constant C  >  0 as t → +∞ [15]. Presence 
of non-zero boundary conditions at infinity, however, gives rise to a fundamentally different 
long-time solution profile. Monotone initial data u(x, 0) = q(x) with boundary conditions

lim
x→−∞

q(x) = ql and lim
x→+∞

q(x) = qr,� (2)

gives rise to generation of a number of dispersive shock waves (DSWs) if ql > qr [16]. If 
ql < qr, however, the dynamics generate a rarefaction fan and the solution is asymptotically 
given by (x  −  x0)/(6t) for qlt < x − x0 < qrt  as t → +∞ [2]. An asymptotic description for 
the solution is much more complicated in the former case, where DSWs emerge [9].

The generation of DSWs is also closely related to the regularization of shock waves 
in Burgers’ equation  ut + 6uux = 0 using the small-dispersion KdV (sKdV) equa-
tion ut + 6uux + ε2uxxx = 0, x ∈ R, 0 < ε � 1. The initial-value problem for the sKdV equa-
tion with so-called ‘single hump’ initial data was considered in the seminal work of Lax and 
Levermore [22] and the subsequent series of papers [23–25] where inverse scattering trans-
form methods were used to obtain the limiting solution as ε ↓ 0 for fixed t  >  0. The methodol-
ogy of Lax–Levermore was then extended by Venakides [41] to ‘single potential-well’ initial 
data where the reflection coefficient plays a significant role as ε ↓ 0. Formation of DSWs, rel-
evant asymptotics and the relation to the boundary conditions (2) in this small dispersion limit 
ε ↓ 0 of the sKdV equation were studied numerically in the works of Grava and Klein [13, 14].  
Recently, the generation of DSWs have been studied in various physical contexts, such as 
viscous fluid conduits [26]. A pseudospectral numerical method was developed by Fornberg 
and Whitham to study the solutions of (1) with initial step and well profiles in [11]. Long-time 
asymptotic behavior of solutions for (1) with step-like initial data satisfying ql > qr (the case 
where a DSW is generated) in a region near the wave front was investigated by Hruslov in 
[18]. Recently, Rybkin presented an inverse scattering theory to solve the initial value problem 
with bounded initial data that decays rapidly to 0 as x → +∞ but unrestricted otherwise [33]. 
For a review on DSWs, see [3] and the articles in this special issue (in particular, see [4, 10, 
27, 34, 36]).

We consider solutions of (1) from computational special functions point of view. Owing 
to the integrability of the KdV equation, solutions of (1) have representations in the form 
of Riemann–Hilbert problems (from the associated inverse scattering transform) that can be 
phrased as small-norm singular integral equations  in various asymptotic regions for large 
values of x or t with the aid of the Deift–Zhou method of nonlinear steepest descent. When 
implemented numerically this framework leads to a robust numerical method for computing 
solutions for all values of x and t [32]. This is in analogy with classical special functions, e.g. 
the Airy function, where many software packages are available for robust computations with 
arbitrarily large values of parameters. Solutions of the KdV equation  should therefore be 
computable with the same robustness that, Airy functions, for example, are computable. This 
framework also allows one the freedom of performing nonlinear superpositions that are oth-
erwise beyond reach [37, 38]. Specifically, we consider the solution of the KdV equation with 
Heaviside initial data, as displayed in figure 1, to be a special function. Taking a more ambi-
tious stance, we aim to compute solutions of (1) with (2) for all x and t. This paper is the first 
step in that direction. We anticipate that this full development will allow the investigation and 
classification of new and well-known phenomena within the KdV equation such as identifying 
the spectral signature of a DSW.

Unlike classical time-stepping methods, the numerical inverse scattering approach requires 
no spatial discretization, no integration in time and no domain approximation (i.e. approxi-
mating the solution on R  with a solution on a large interval). The only two sources of error 
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are (1) error in computing the scattering data and (2) error in solving the inverse problem (i.e. 
error in computing the solution of a Riemann–Hilbert problem). We point out that (1) is effec-
tively present in time-stepping routines when the initial data is approximated in some basis. 
The error (2) can be seen to be the counterpart of integration error but unlike classical meth-
ods, the ‘integration’ error does not increase in time. This can be seen to be a consequence of 
the ability to analyze the Riemann–Hilbert problem asymptotically [32].

More precisely, we consider solutions of the KdV equation (1) with step-like asymptotic 
profile

|u(x, t)− Hc(x)| = o(1), |x| → ∞,� (3)

for all t ∈ R�0, where

Hc(x) :=
{
−c2 x > 0,

0 x � 0,
� (4)

for c ∈ R>0. To specify the initial data for the KdV equation, we write

u(x, 0) = u0(x) + Hc(x)� (5)

and u0 is a real-valued function. Our theoretical developments require u0, which we refer to 
as a perturbation, to be in a polynomially-weighted L1 space while our computational results 
require more: u0 should be at least piecewise smooth and in an exponentially-weighted L1 
space. We develop the relevant Riemann–Hilbert (RH) theory for the inverse scattering trans-
form (IST) associated with the KdV equation (i.e. for the classical Schrödinger operator with 
step-like potentials u(·, t)) and pose two different RH problems that are amenable to numerical 
computations using the framework introduced in [39]. We then make use of this RH theory 
to compute the solution of the Cauchy initial-value problem for the KdV equation with the 
boundary conditions (3) for small t � 0. Figure 1 gives the solution of the KdV equation with 
u0(x)  =  0, c =

√
2  at t  =  1.

Remark 1.1.  Let ũ solve (1) with

ũ(x, 0) = u(x, 0)− a,� (6)

Figure 1.  The spatial extent solution of the KdV equation at t  =  1 when u(x,0)  =  c2,x  <  0 
and u(x, 0) = 0, x � 0, c =

√
2 . The initial data is discontinuous and the solution is 

highly oscillatory for all t  >  0. Note that this solution does not satisfy (3) but remark 1.1 
gives the method for obtaining this solution directly from one that does.
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then

u(x, t) = ũ(x − 6at, t) + a.� (7)

This is the so-called Galilean boost symmetry of the KdV equation. Using this, any solution ũ 
of (1) satisfying (2) with ql � qr can be obtained from a solution u satisfying (3) by

ũ(x, t) = u(x − 6qlt, t) + ql, c2 = ql − qr.� (8)

1.1.  Outline of the paper

In section 2, we present the necessary scattering theory for Schrödinger operators with step-like 
potentials in context of the direct scattering transform for the KdV equation (1). Some of this 
material is based on the work of Kappeler and Cohen [6, 19], and also on the work of Deift and 
Trubowitz [8]. As smoothness and decay properties of various spectral functions are important 
in obtaining a robust numerical inverse scattering transform, we include the details on scattering 
theory as they become necessary. In section 3, we define the right and left reflection coefficients 
on R, derive their decay and smoothness properties as well as relations between left and right 
scattering data. We then pose two RH problem formulations of the inverse scattering transform 
for the KdV equation, one using the left scattering data and another using the right scattering 
data. We note that one needs to use both of these problems to have an asymptotically accurate 
computational method. This discussion unifies the work in [9] with that of Cohen and Kappeler.

In section  4, we give integrability conditions on the perturbation u0 necessary for the 
deformations of the RH problems to be made in the subsequent sections and give details on 
computation of the scattering data. In section 5 we introduce contour deformations (analytic 
transformations) of RH problems 3 and 4 to apply the Deift–Zhou method of nonlinear steep-
est descent and compute the inverse scattering transform associated with the KdV equation for 
all x ∈ R at t  =  0. Having done that, we extend these deformations to small t  >  0 in section 6 
to compute the solution u(x, t) of the Cauchy problem for the KdV equation in two asymptotic 
regions of the (x, t)-plane. In section 7 we present the computed solutions u(x, t) for various 
step-like initial data and present comparison with solutions obtained via time-stepping.

The inclusion of solitons (if any) by incorporating residue conditions in these RH problems 
and derivation of the time dependence for the scattering data is performed in appendix A. We 
prove theorems on the unique solvability of these RH problems in appendix B. We apply the 
dressing method [42] to establish a posteriori that the RH problems we pose produce solutions 
of the KdV equation, see theorem 3.16. Establishing unique solvability of the RH problems, 
without assuming existence of the solution of the KdV equation, is necessary to apply the 
dressing method. Additionally, in the process, we show that a singular integral operator that 
we encounter in the numerical solution of a RH problem is invertible. For these reasons we 
expend considerable effort in appendix B.

Remark 1.2.  We consider the setting ql > qr. The case ql < qr can be treated by mapping 
(x, t) �→ (−x,−t) as this leaves (1) invariant, noting that theorem 3.16 applies.

Notation. We use the following notational conventions:

	 •	�We denote the following weighted Lp  spaces on an oriented (rectifiable) contour Γ:

L p(Γ, dµ) =

{
f : Γ → C

∣∣∣
∫

Γ
|f (s)| p dµ(s) < ∞

}
.� (9)
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		 Also, L p(Γ) := L p(Γ, |ds|) where |ds| refers to arclength measure.
	 •	�We use σ1 to denote the first Pauli matrix

σ1 =

[
0 1
1 0

]
.� (10)

	 •	�In the discussion of RH problems we use the following notation. For a function f  defined 
on a subset of C with a non-empty interior, we will use f (z) to refer to the values of f . For 
a function f  defined on a contour Γ ⊂ C we will use f (s) to refer to values of f .

	 •	�Given a point s on an oriented contour Γ ⊂ C, f + (s) (resp. f −(s)) denote the non-tangential 
boundary values of f (z) as z → s from left (resp. right) with respect to orientation of Γ.

	 •	�We use bold typeface to denote matrices and vectors with the exception of σ1 defined in 
(10).

2. The scattering problem and its solution

The spatial part of the Lax pair for the KdV equation is the spectral problem

Lψ = Eψ, Lψ := −ψxx − u(x, t)ψ, E = z2,� (11)

where u satisfies the KdV equation (1) and L is the Schrödinger operator. The temporal part 
of the Lax pair is the evolution equation

ψt = Pψ, Pψ := −4ψxxx − 3u(x, t)ψ − 6u(x, t)ψx.� (12)

To compute scattering data associated with the given Cauchy initial data we proceed with the 
construction of the Jost solutions of the spectral problem (11). We first solve the scattering 

problem at t  =  0. It is convenient to define the complementary functions ul/r
0 (x) by

ul
0(x) =

{
u0(x) x � 0,
u0(x)− c2 x > 0,

and ur
0(x) =

{
u0(x) x � 0,
u0(x) + c2 x < 0.� (13)

Recall that we assume that the Cauchy initial data is

u(x, 0) = ul
0(x).� (14)

2.1.  Asymptotic spectral problem as x → −∞

On the left-end of the spatial domain, formally, (11) is asymptotically

ψxx = −z2ψ,� (15)

which has a fundamental set of solutions given by { e+izx, e−izx}. Therefore, for z ∈ R, (11) 
has the following two independent solutions that are uniquely determined by their asymptotic 
behavior as x → −∞:

φp(z; x) = eizx(1 + o(1)), x → −∞,� (16)

φm(z; x) = e−izx(1 + o(1)), x → −∞.� (17)
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These functions can be defined through Volterra integral equations

φp(z; x) = eizx +
1

2iz

∫ x

−∞

(
eiz(x−ξ) − eiz(ξ−x)

)
ul

0(ξ)φ
p(z; ξ)dξ,

φm(z; x) = e−izx − 1
2iz

∫ x

−∞

(
eiz(ξ−x) − eiz(x−ξ)

)
ul

0(ξ)φ
m(z; ξ)dξ

� (18)

which can be solved by Neumann series for z ∈ R and u0 ∈ L1(R, (1 + |x|)dx). See [6, 
chapter 1] and also [8, section 2] for a detailed construction.

2.2.  Asymptotic spectral problem as x → +∞

Since u(x) → −c2 as x → +∞, we consider, formally, the problem (11) asymptotically:

ψxx − c2ψ = −z2ψ,� (19)

and the eigenvalues associated with this differential equation are doubly-branched. More pre-
cisely, we have the fundamental set of bounded solutions to (19) given by { eiλx, e−iλx}, 
where λ depends on z through the algebraic relation λ2 = z2 − c2 (characteristic equation for 
the eigenvalues iλ of the constant coefficient equation (19)) which defines a Riemann surface 
with genus 0. To be concrete, we define λ(z) to be the function analytic for complex z with the 
exception of a horizontal branch cut

Σc := [−c, c] ⊂ R,� (20)

between the branch points z = ±c, whose square coincides with z2 − c2 and satisfies 
λ(z) = z + O(z−1) as z → ∞. With these properties, λ(z) is a scalar single-valued complex 
function that is analytic in the region C \ Σc.

We now define two more independent solutions of the problem (11) that are determined, for 
λ(z) ∈ R (i.e. z ∈ R \ Σc), by their asymptotic behavior as x → +∞:

ψp(z; x) = eiλ(z)x(1 + o(1)), x → +∞� (21)

ψm(z; x) = e−iλ(z)x(1 + o(1)), x → +∞.� (22)

The existence of such solutions is again established through Volterra integral equations

ψ̂p(z; x) = eizx +
1

2iz

∫ ∞

x

(
eiz(x−ξ) − eiz(ξ−x)

)
ur

0(ξ)ψ̂
p(z; ξ)dξ,

ψ̂m(z; x) = e−izx − 1
2iz

∫ ∞

x

(
eiz(ξ−x) − eiz(x−ξ)

)
ur

0(ξ)ψ̂
m(z; ξ)dξ

� (23)

with ψp/m(z; x) = ψ̂p/m(λ(z); x). Again, the solutions ψ̂p/m(z; x) are well-defined for 
z ∈ R, and hence ψp/m(z; x) are well-defined for λ(z) ∈ R (i.e. for z ∈ R \ Σc) and 
u0 ∈ L1((1 + |x|)dx). See again [6, chapter 1] and also [8, section 2] for details.

2.3.  Left and right reflection coefficients

The left (resp. right) reflection coefficient Rl (resp. Rr) are defined through the scattering rela-
tions for z ∈ R \ Σc

ψp(z; x) = a(z)φp(z; x) + b(z)φm(z; x),
φm(z; x) = B(z)ψp(z; x) + A(z)ψm(z; x).
� (24)
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Remark 2.1.  It is important to note that while ψp/m and φp/m  are each sets of two linearly 
independent solutions of the same differential equation for all x ∈ R, if x  =  0, we can replace 

ul/r
0  with u0 in the associated integral equations (18) and (23). Then the scattering theory is 

interpreted as the traditional scattering theory for the one-dimensional Schrödinger operator, 
where one set of eigenfunctions is modified via the z �→ λ(z) transformation.

The system (24) can be solved for a(z), b(z) and A(z), B(z) using Wronksians 
W( f , g) = fg′ − gf ′. Doing so, we define for z ∈ R and λ(z) ∈ R,

Rl(z) :=
b(z)
a(z)

=
W(ψp(z; ·), φp(z; ·))
W(ψp(z; ·), φm(z; ·)) ,� (25)

Rr(z) :=
B(z)
A(z)

= −W(φm(z; ·), ψm(z; ·))
W(φm(z; ·), ψp(z; ·)) .� (26)

These are the so-called left (Rl) and right (Rr) reflection coefficients. We note that 
W(φp, φm) = −2iz  and W(ψp, ψm) = −2iλ(z). Other important formulæ are

a(z) =
W(ψp(z; ·), φm(z; ·))
W(φp(z; ·), φm(z; ·)) =

W(φm(z; ·), ψp(z; ·))
2iz

,

b(z) =
W(φp(z; ·), ψp(z; ·))
W(φp(z; ·), φm(z; ·)) = −W(φp(z; ·), ψp(z; ·))

2iz
,

A(z) =
W(ψp(z; ·), φm(z; ·))
W(ψp(z; ·), ψm(z; ·)) =

W(φm(z; ·), ψp(z; ·))
2iλ(z)

,

B(z) =
W(φm(z; ·), ψm(z; ·))
W(ψp(z; ·), ψm(z; ·)) =

W(ψm(z; ·), φm(z; ·))
2iλ(z)

.

� (27)

Remark 2.2.  Presence of the step-like boundary conditions rules out the existence of re-
flectionless solutions (e.g. pure solitons). Indeed, setting both reflection coefficients Rl(z) 
and Rr(z) equal to 0 enforces λ(z) = z, which holds if and only if c  =  0, resulting in a zero-
background (vanishing boundary conditions at infinity). Additionally, u(x,t)  =  Hc(x) is not a 
stationary solution of (1).

2.4.  Regions of analyticity

To analyze regions of the complex plane where the functions ψp/m(z; x), φp/m(z; x) are ana-
lytic in the variable z, we consider the Jost functions

Np(z; x) := φp(z; x) e−izx, Nm(z; x) := φm(z; x) eizx,

M̂p(z; x) := ψ̂p(z; x) e−izx, M̂m(z; x) := ψ̂m(z; x) eizx,

Mp(z; x) := M̂p(λ(z); x), Mm(z; x) := M̂m(λ(z); x).

� (28)

From (18) and (23) it immediately follows that the functions Np/m(z; x) and Mp/m(z; x) sat-
isfy the following Volterra integral equations for z ∈ R

Np(z; x) = 1 +
1

2iz

∫ x

−∞

(
1 − e2iz(ξ−x)

)
ul

0(ξ)N
p(z; ξ)dξ,� (29)
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Nm(z; x) = 1 − 1
2iz

∫ x

−∞

(
1 − e2iz(x−ξ)

)
ul

0(ξ)N
m(z; ξ)dξ,� (30)

M̂p(z; x) = 1 +
1

2iz

∫ ∞

x

(
1 − e2iz(ξ−x)

)
ur

0(ξ)M̂
p(z; ξ)dξ,� (31)

M̂m(z; x) = 1 − 1
2iz

∫ ∞

x

(
1 − e2iz(x−ξ)

)
ur

0(ξ)M̂
m(z; ξ)dξ.� (32)

For (29) and (30) x − ξ � 0 and x − ξ � 0 for (31) and (32). This immediately implies that 
(29) and (32) can be analytically continued for Im z < 0 while (30) and (31) can be analytically 
continued for Im z > 0. It also follows from the asymptotics of λ(z) that (Im z)(Im λ(z)) > 0 
for z �∈ R. We note that these considerations immediately imply that a(z) and A(z) are ana-
lytic for Im z > 0.

We now consider the large z asymptotics of the above solutions, Np/m and M̂p/m assum-
ing z is in the appropriate region of analyticity.

Lemma 2.3.  If u0 ∈ L1(R) then for fixed x ∈ R, Np/m(z; x) = 1 + O(z−1) and 
M̂p/m(z; x) = 1 + O(z−1) as z → ∞.

Proof.  We concentrate on one function, Nm, as the proof is the same for all. For |z| > 1 
consider the Volterra integral equation

Nm(z; x) +
1

2iz

∫ x

−∞

(
1 − e2iz(x−ξ)

)
ul

0(ξ)N
m(z; ξ)dξ = 1,� (33)

which can be rewritten as (I +Kz)Nm(z; ·) = 1, where Kz  is the Volterra integral operator 
given as

[Kzf ](z; x) :=
1

2iz

∫ x

−∞

(
1 − e2iz(x−ξ)

)
ul

0(ξ) f (z; ξ)dξ.� (34)

We proceed by showing that the Neumann series for the inverse operator (I +Kz)−1 conv
erges in the operator norm on C0((−∞, X]) for fixed X ∈ R. Standard estimates yield

‖Kn
z ‖C0((−∞,X]) �

∫ X

−∞

∫ X

s1

∫ X

s2

· · ·
∫ X

sn−1

n

∏
j=1

|ul
0(sj)|dsn · · · ds1

= −
∫ X

−∞

∫ X

s1

∫ X

s2

· · ·
∫ X

sn−�

1
�!

d
dsn−�+1

(∫ X

sn−�+1

|ul
0(s)|ds

)�

dsn−�+1

n−�

∏
j=1

|ul
0(sj)|dsn−� · · · ds1

�
1
n!
(‖u0‖L1(R) + c2|X|)n, n ∈ Z>0.

�

(35)

This implies that ‖(I +Kz)−1‖C0((−∞,X]) � e‖u0‖L1(R)+c2|X|
 for |z| > 1. Then directly  

estimating (33), we have that

|Nm(z; x)− 1| �
‖u0‖L1(R) + c2|X|

|z| e‖u0‖L1(R)
+c2|X|, |z| > 1,� (36)

proving the result for Nm. Note that for X  <  0, we can omit the c2|X| term from these  
estimates.� □ 
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Remark 2.4.  The reason it is enough to assume u0 ∈ L1(R) to prove lemma 2.3 is because 
z is away from zero. The additional decay assumption u0 ∈ L1(R, (1 + |x|)dx) in construc-
tion of the Jost solutions is required to handle the case when z  =  0, i.e. in general, for z ∈ R.

We now compute the coefficients of the terms that are proportional to z−1 in the large-z 
asymptotic series expansions of these functions.

Lemma 2.5.  For fixed x, As |z| → ∞, Im z > 0,

2iz(Nm(z; x)− 1) →
∫ x

−∞
ul

0(ξ)dξ,

2iz(M̂p(z; x)− 1) →
∫ ∞

x
ur

0(ξ)dξ.
� (37)

For fixed x, As |z| → ∞, Im z < 0,

2iz(Np(z; x)− 1) → −
∫ x

−∞
ul

0(ξ)dξ,

2iz(M̂m(z; x)− 1) → −
∫ ∞

x
ur

0(ξ)dξ.
� (38)

Proof.  We only prove this for Nm. The proofs for other functions are similar. Consider, as 
|z| → ∞, Im z > 0,

2iz(Nm(z; x)− 1) =
∫ x

−∞

(
1 − e2iz(x−ξ)

)
ul

0(ξ)(1 + O(z−1))dξ

=
∫ x

−∞

(
1 − e2iz(x−ξ)

)
ul

0(ξ)dξ + O(z−1)

=
∫ x

−∞
ul

0(ξ)dξ −
∫ x

−∞
e2iz(x−ξ)ul

0(ξ)dξ + O(z−1).
� (39)

The claim follows if we show 
∫ x
−∞ e2iz(x−ξ)ul

0(ξ)dξ = o(1) as |z| → ∞, Im z > 0. Indeed, 
this is the case since setting y := ξ − x we have

∫ 0

−∞
e−2izyul

0(y + x)dy → 0, |z| → ∞� (40)

by the Riemann–Lebesgue lemma.� □ 

It is important to note that from this lemma we obtain

lim
|z|→∞, Im z>0

2iz(Mp(z; x)− 1) = lim
|z|→∞, Im z>0

2i
z

λ(z)
λ(z)(M̂p(λ(z); x)− 1) =

∫ ∞

x
ur

0(ξ)dξ,

lim
|z|→∞, Im z<0

2iz(Mm(z; x)− 1) = −
∫ ∞

x
ur

0(ξ)dξ.

�

(41)

Lemma 2.6.  If u0 ∈ L1(R), for Im z > 0, a(z)  =  1  +  O(z−1) as z → ∞. Furthermore

lim
z→∞, Im z>0

2iz(a(z)− 1) =
∫ ∞

−∞
u0(ξ)dξ.� (42)
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Proof.  We use the representation of a(z) given in (27) in terms of a Wronskian

a(z) =
W(φm(z; ·), ψp(z; ·))

2iz
,� (43)

with

φm(z; x) = e−izxNm(z; x),
∂

∂x
φm(z; x) = e−izx ∂

∂x
Nm(z; x)− iz e−izxNm(z; x),

ψp(z; x) = eiλ(z)xMp(z; x),
∂

∂x
ψp(z; x) = eiλ(z)x ∂

∂x
Mp(z; x) + iλ(z) eiλ(z)xxMp(z; x).

� (44)

We find, by evaluating at x  =  0,

a(z) =
1

2iz

(
φm(z; x)

∂

∂x
ψp(z; x)− ψp(z; x)

∂

∂x
φm(z; x)

)

=

(
z + λ(z)

2iz

)
Nm(z; 0)Mp(z; 0)

+
1

2iz

(
Nm(z; x)

∂

∂x
Mp(z; 0)− Mp(z; x)

∂

∂x
Nm(z; 0)

)
.

� (45)

It then follows that ∂
∂x Nm(z; 0) = O(z−1) and ∂

∂x Mp(z; 0) = O(z−1) so that�

□

lim
|z|→∞

2iz(a(z)− 1) =
∫ ∞

−∞
u0(ξ)dξ.� (46)

2.5.  Differentiability with respect to z on R

We now consider the conditions on u0 under which ψ̂p/m and φp/m  and their first order  
x- derivatives both evaluated at x  =  0, are differentiable k times with respect to z for z ∈ R.

Lemma 2.7.  Let k be a non-negative integer and suppose that u0 ∈ L1(R, (1 + |x|)k+1 dx). 
Then for each fixed x ∈ R

ψ̂p/m(·; x), ψ̂
p/m
x (·; x), φp/m(·; x), φ

p/m
x (·; x) ∈ Ck(R).� (47)

Furthermore, for fixed x, the �th derivative with respect to z, � � k, is continuous as a function 
of u0 ∈ L1(R, (1 + |x|)�+1 dx) and z ∈ R.

Proof.  We prove this only for φm(z; x) as the proofs for the others are similar. And to prove 
this for φm(z; x), it suffices to prove this for the renormalized function Nm(z; x). We begin 
with rewriting the Volterra integral equation (30) as

Nm(z; x)−
∫ x

−∞
K(z; x − ξ)ul

0(ξ)N
m(z; ξ)dξ = 1, K(z; x) :=

1
2iz

(
e2izx − 1

)
,� (48)

which has the form (I +Kz)[Nm(z; ·)] = 1 with Kz  denoting the Volterra integral operator
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Kz[ f ](x) := −
∫ x

−∞
K(z; x − ξ)ul

0(ξ) f (ξ)dξ.� (49)

For h �= 0, the difference function Nm
h (z; x) := Nm(z + h; x)− Nm(z; x) satisfies the equa-

tion

Nm
h (z; x)−

∫ x

−∞
K(z; x − ξ)ul

0(ξ)N
m
h (z; ξ)dξ =

∫ x

−∞
[K(z + h; x − ξ)

−K(z; x − ξ)] ul
0(ξ)N

m(z + h; ξ)dξ.
�

(50)

Because the operator (I +Kz) on the left-hand side is invertible on C0((−∞, X]), for any 
fixed X ∈ R, uniform continuity of Nm(z; x) in the spectral variable z follows if we show 
that the right-hand side tends uniformly to zero as h → 0. We fix X ∈ R. The modulus of the 
expression on the right-hand side of (50) is bounded above by

I(x) :=
∫ X

−∞

∣∣∣K(z + h; x − ξ)− K(z; x − ξ)ul
0(ξ)N

m(z + h; ξ)
∣∣∣ dξ, x ∈ (−∞, X),� (51)

since z ∈ R. Thus, we will show that I(x) → 0 as h → 0. We write K(z; x) =: κ(zx)x, with

κ(s) :=

{
e2is−1

2is s ∈ R \ {0},
1 s = 0,

� (52)

which is bounded and differentiable for s ∈ R, with all of its derivatives being also bounded 
for all s ∈ R. Now, since for any fixed x, Nm(z; x) is bounded uniformly in z ∈ R (see the 
proof of lemma 2.3) by, say, M  >  0, we have

I(x) � M
∫ X

−∞
|κ((z + h)(x − ξ))− κ(z(x − ξ))| |x − ξ|

1 + |ξ| |u
l
0(ξ)|(1 + |ξ|)dξ, x ∈ (−∞, X].

� (53)

Now, let ε > 0. Because κ is a bounded function and u0 ∈ L1((1 + |x|)dx) there exists 
� = �(ε) � X  such that

M
∫ �

−∞
|κ((z + h)(x − ξ))− κ(z(x − ξ))| |x − ξ|

1 + |ξ| |u
l
0(ξ)|(1 + |ξ|)dξ < ε

� (54)

for all x � X . Therefore

I(x) � ε + M
∫ X

�
|κ((z + h)(x − ξ))− κ(z(x − ξ))||x − ξ||ul

0(ξ)|dξ, x ∈ (−∞, X]� (55)

since z ∈ R. On the other hand, by the fundamental theorem of calculus we have

κ((z + h)(x − ξ))− κ(z(x − ξ)) = (x − ξ)
∫ z+h

z
κ′(s(x − ξ))ds,� (56)

which tends to zero, uniformly for ξ ∈ [�, x], for any x � X , as h → 0 because κ′ is bounded 
(|κ′(s)| � 1 for all s ∈ R). Since ε > 0 in (55) can be made arbitrarily small, this establishes 
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uniform continuity of Nm(z; x) with respect to z ∈ R.

To generalize this to existence and continuity of the z-derivatives of Nm(z; x) for z ∈ R, we 
first use boundedness of κ and all of its derivatives on R  and immediately obtain the estimate

|∂ j
zK(z; x)| � Cj|x| j+1, j = 0, 1, 2, . . . .� (57)

We then use integral equation satisfied by the difference quotient Ñm
h (z; x) := Nm

h (z; x)/h:

Ñm
h (z; x)−

∫ x

−∞
K(z; x − ξ)ul

0(ξ)Ñ
m
h (z; ξ)dξ =

∫ x

−∞

K(z + h; x − ξ)− K(z; x − ξ)

h
ul

0(ξ)N
m(z + h; ξ)dξ.

� (58)

If we can show that the right-hand side converges to
∫ x

−∞
∂zK(z; x − ξ)ul

0(ξ)N
m(z; ξ)dξ� (59)

in C0((−∞, X]), for fixed X ∈ R, as h → 0 then we have shown that ∂zNm(z; x) exists, and 
is given by

∂zNm(z; x) = (I +Kz)
−1

∫ x

−∞
∂zK(z; x − ξ)ul

0(ξ)N
m(z; ξ)dξ.� (60)

To establish this, we proceed as before. Fix X ∈ R, x � X , and consider the difference
∫ x

−∞
∂zK(z; x − ξ)ul

0(ξ)N
m(z; ξ)dξ −

∫ x

−∞
∂zK(z; x − ξ)ul

0(ξ)N
m(z; ξ)dξ

� (61)

whose modulus is bounded above by

I1(x) :=
∫ X

−∞

∣∣∣∣
(

K(z + h; x − ξ)− K(z; x − ξ)

h
− ∂zK(z; x − ξ)

)
ul

0(ξ)N
m
h (z + h; ξ)

∣∣∣∣ dξ.� (62)

Using the bound

|K(z + h; x − ξ)− K(z; x − ξ)|
|h| � C1|x − ξ|2,� (63)

for h �= 0 and the fact that u0 ∈ L1((1 + |x|)2 dx), for any ε > 0 there exists � = �(ε) � X  
such that
∫ �

−∞

∣∣∣∣
(

K(z + h; x − ξ)− K(z; x − ξ)

h
− ∂zK(z; x − ξ)

)
ul

0(ξ)N
m
h (z + h; ξ)

∣∣∣∣ dξ < ε� (64)

and hence

I1(x) � ε +
∫ X

�

∣∣∣∣
(

K(z + h; x − ξ)− K(z; x − ξ)

h
− ∂zK(z; x − ξ)

)
ul

0(ξ)N
m
h (z + h; ξ)

∣∣∣∣ dξ.

� (65)

Multiplying and dividing by the factor (1 + |ξ|)2 inside the integral, using  
 u0 ∈ L1((1 + |x|)2 dx) and boundedness of Nm(z; x) for x ∈ R, it now remains to show that
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lim
h→0

sup
��ξ�x�X

1
(1 + |ξ|)2

∣∣∣∣
K(z + h; x − ξ)− K(z; x − ξ)

h
− ∂zK(z; x − ξ)

∣∣∣∣ = 0.

� (66)

To this end, we set s = x − ξ > 0, and observe that

K(z + h; s)− K(z; s)
h

− ∂zK(z; s) = s
(

κ((z + h)s)− κ(zs)
h

− κ′(zs)s
)

=
s2

h

∫ z+h

z
(κ′(τs)− κ′(zs))dτ,

�

(67)

and since z � τ � z + h , by the mean value theorem κ′(τs) = κ′(zs) + κ′′(τ0)(τs − zs) for 
some τ0 ∈ (zs, τs). Then, since κ′′ is bounded on R , say, by L ∈ R, we have
∣∣∣∣
s2

h

∫ z+h

z
(κ′(τs)− κ′(zs))dτ

∣∣∣∣ =
∣∣∣∣
s3

h

∫ z+h

z
κ′′(ξ)(τ − z)dτ

∣∣∣∣ � L
|s|3
|h|

∫ z+h

z
|τ − z|dτ =

L
2
|s|3|h|.

� (68)

Therefore I1(x) → 0 as h → 0, and we have indeed shown that the right-hand side of (58) 
converges in C0((−∞, X]), implying that ∂zNm(z; x) exists and is given by (60). We also, 
then note that for fixed x, (60) is continuous as a function of u0 ∈ L1(R, (1 + |x|)2 dx) and 
z ∈ R because Kz , as an operator on C0((−∞, X]), is continuous as a function of these 
same variables, and (59), as an element of C0((−∞, X]) is then continuous as a function of 
u0 ∈ L1(R, (1 + |x|)2 dx) and z ∈ R.

We then can proceed as before, to show that ∂zNm(z; x) is (uniformly) continuous and 
then show that ∂2

z Nm(z; x) exists and is uniformly continuous if L1(R, (1 + |x|)3 dx). Higher 
derivatives follow, inductively, in a similar manner because all derivatives of κ with respect to 
s are bounded.� □ 

3. Two Riemann–Hilbert problems

In this section we assume that a(z) �= 0 for z ∈ C+  (hence there are no solitons in the solu-
tion of the Cauchy problem), and relax this assumption in the following sections. See the 
notational remark at the end of section 3.6 for the notational conventions.

We continue with some basic definitions for Riemann–Hilbert problems. The following 
sequence of definitions can essentially be found in [39].

Definition 3.1. 

	(1)	�As a point of reference, we first define the classical Hardy spaces on the upper- and 
lower-half planes. The Hardy spaces H2(C±) consists of analytic functions f : C± → C 
which satisfy the estimate

sup
r>0

‖f (· ± ir)‖L2(R) < ∞.� (69)

	(2)	�Γ ⊂ C is said to be an admissible contour if it is finite union of oriented, differenti-
able curves Γ = Γ1 ∪ · · · ∪ Γk, called component contours, which intersect only at their 
endpoints and tend to straight lines at infinity, the connected components of C \ Γ can 
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be grouped into two classes C+ and C− such that for Ω1, Ω2 ∈ C± the arclength of 
∂Ω1 ∩ ∂Ω2 is zero, and −Γ = {−s : s ∈ Γ} = Γ  with a reversal of orientation.

	(3)	�For a connected component Ω ⊂ C \ Γ, the class E2(Ω) is defined to be the set of all ana-
lytic functions f  in Ω such that there exists a sequence of curves (γn)n�1 in Ω satisfying

sup
n

∫

γn

|ds|
|s − a|2 < ∞, for some a ∈ C \ Ω,� (70)

		 that tend to ∂Ω in the sense that γn eventually surrounds every compact subset of Ω such 
that

sup
n

∫

γn

|f (s)|2|ds| < ∞.� (71)

	(4)	�For an admissible contour Γ, define the Hardy space H±(Γ) to be the class of all analytic 
functions f : C \ Γ → C such that f |Ω ∈ E2(Ω) for every connected component Ω of 
C \ Γ. This is a generalization of (1). We also use the notation H2

±(Γ) if just modification 
of the orientations of the component contours make Γ admissible.

For f ∈ L2(Γ), define the Cauchy integral

CΓf (z) =
1

2πi

∫

Γ

f (s)
s − z

ds, z �∈ Γ.� (72)

We have the following standard facts.

	(1)	�From standard theory (see, [39], for example) it follows that CΓ : L2(Γ) → H2
±(Γ).

	(2)	�Furthermore, the Cauchy operator CΓ maps L2(R) onto H2
±(Γ), and therefore every func-

tion f ∈ H2
±(Γ) has two L2(Γ) boundary values on Γ, one taken from C+ and the other 

taken from C−. We use C±
Γ f (s) to denote these boundary values, and note the identity that 

C+
Γ f (s)− C−

Γ f (s) = f (s) for a.e. s ∈ Γ.

	(3)	�The last fact we need is that C±
Γ  are bounded operators on L2(Γ) if Γ is admissible3.

Definition 3.2.  An L2 solution N to an RH problem on an admissible contour Γ

N+(s) = N−(s)J(s), s ∈ Γ, N(z) =
[
1 1

]
+ O(z−1),� (73)

is a solution N(·)−
[
1 1

]
∈ H2

±(Γ) such that N+(s) = N−(s)J(s) is satisfied for a.e. 
s ∈ Γ.

Note that an L2 solution does not necessarily satisfy the uniform O(z−1) condition at infinity.

3.1.  Left Riemann–Hilbert problem

We use the scattering relation, combined with another equation, for z ∈ R and λ(z) ∈ R,

ψp(z; x) = a(z)φp(z; x) + b(z)φm(z; x)

ψm(z; x) = b̂(z)φp(z; x) + â(z)φm(z; x).
� (74)

These two equations are used to formulate jump conditions for a sectionally analytic function.

3 The necessary and sufficient condition is that Γ is a Carleson curve [5].
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Remark 3.3.  To deduce properties of a, b, â, b̂ we need only evaluate this relation at x  =  0 
and recall remark 2.1 and apply lemma 2.7 at x  =  0, for example.

3.1.1.  Jump relation for s2 > c2.  First, note that ψm(−z; x) = ψp(z; x) since λ(z) is 
odd for z �∈ (−c, c). Additionally, there is a conjugate symmetry because u0 is real-val-
ued: ψm(z; x) = ψp(z; x), and ψp/m(z; x) enjoys the same symmetry. Thus, we find that 
b(z) = b(−z) = b̂(z) and a(z) = a(−z) = â(z). We also know that φp and ψm are analytic 
functions of z in the lower-half plane while the others, φm and ψp, are analytic in the upper-
half plane. Define the sectionally-analytic function

L1(z) = L1(z; x) :=





[
ψp(z; x) φm(z; x)

]
Im z > 0,

[
φp(z; x) ψm(z; x)

]
Im z < 0.

� (75)

Then assuming that a(z) �= 0 for Im z � 0, we have for s2 � c2

L+
1 (s) =

[
ψp(s; x) φm(s; x)

]

=
[[

1 − b(s)
a(s)

b(−s)
a(−s)

]
φp(s; x) + b(s)

a(s)
1

a(−s)ψm(s; x) 1
a(−s)ψm(s; x)− b(−s)

a(−s)φp(s; x)
] [a(s) 0

0 1

]

= L−
1 (s)

[
1 0
0 1

a(−s)

] [
1 − |Rl(s)|2 −Rl(−s)

Rl(s) 1

] [
a(s) 0

0 1

]
.

�

(76)

We now define

K1(z) =





L1(z)

[
1

a(z) 0

0 1

]
Im z > 0,

L1(z)

[
1 0
0 1

a(−z)

]
Im z < 0,

� (77)

which is analytic on C \R and satisfies

K+
1 (s) = K−

1 (s)
[

1 − |Rl(s)|2 −Rl(−s)
Rl(s) 1

]
, s2 � c2.� (78)

3.1.2.  Jump relation for −c � s � c .  We find that for −c � s � c

ψ(s; x) := lim
ε↓0

ψp(s + iε; x) = lim
ε↓0

ψm(s − iε; x).� (79)

Then, again for −c � s � c we define ã(s) and b̃(s) by

ψ(s; x) = ã(s)φp(s; x) + b̃(s)φm(s; x),� (80)

because ψ is a solution of (11). From this, it follows that

K+
1 (s) = K−

1 (s)


 0 − ã(s)

b̃(s)
a+(−s)
a+(s)

a+(−s)
b̃(s)


 , −c � s � c.� (81)
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But then we solve for b̃ and ã to find

b̃(s) =
W(ψ(s; ·), φp(s; ·))

2is
,

ã(s) =
W(φm(s; ·), ψ(s; ·))

2is
.

� (82)

Since both ψ and φp have analytic continuations for Im z < 0, it follows that b̃(z) has an ana-
lytic continuation for Im z < 0. And then for Im z > 0

b̃(−z) = −W(ψm(−z; ·), φp(−z; ·))
2iz

=
W(φm(z; ·), ψp(z; ·))

2iz
= a(z).

� (83)
This implies that a+(s) = b̃−(−s) = b̃(−s). It also follows that ã(z) = a(z) for Im z > 0 so 
that ã+(s) = a+(s). So,

K+
1 (s) = K−

1 (s)


 0 − a+(s)

a+(−s)
a+(−s)
a+(s) 1


 , −c � s � c.� (84)

To finish the setup of the RH problem we extend the definition of Rl as

Rl(s) =




b(s)
a(s) s2 > c2,
a+(−s)
a+(s) −c � s � c,

� (85)

and define

N1(z) = K1(z) e−ixzσ3 , z �∈ R.� (86)

Remark 3.4.  This definition of Rl(s) for −c � s � c can be justified by noting that if u0 
decays exponentially so that ψ̂p/m and φp/m  have analytic extensions to a strip containing the 
real axis then, b(z) has an extension to a set (B \ [−c, c]) ∩C+ where [−c, c] ⊂ B, B is open, 

and Rl(s) =
b+(s)
a+(s)  for −c � s � c.

Theorem 3.5 ([6, 8]).  For all x ∈ R, componentwise, we have

N1(·)−
[
1 1

]
∈ H2

±(R).� (87)

Using the jump conditions (78) and (81) satisfied by K1 and the extension of Rl given in 
(85) we have arrived at the following RH problem satisfied by N1.

Riemann--Hilbert Problem 1.  The function N1 : C \R → C1×2 is analytic on its do-
main and satisfies

N+
1 (s) = N−

1 (s)

[
1 − |Rl(s)|2 −Rl(s) e2isx

Rl(s) e−2isx 1

]
, s ∈ R, N1(z) =

[
1 1

]
+ O(z−1), z ∈ C \ R,

� (88)

with the symmetry condition

N1(−z) = N1(z)σ1, z ∈ C \ R.� (89)
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Remark 3.6.  While setting up this RH problem one verifies that

lim
|z|→∞, Im z>0

z
(
N1(z)−

[
1 1

])
= lim

|z|→∞, Im z<0
z
(
N1(z)−

[
1 1

])
,� (90)

using lemmas 2.5 and 2.6. This is a necessary condition for the solution of a singular integral 
equation we pose below in (147) to have an integrable solution. We are purposefully vague 

about in what sense the limits N±
1  exist as this is made precise below.

3.2.  Right Riemann–Hilbert problem

We now use the other scattering relation, combined with yet another equation, for 
z ∈ R, λ(z) ∈ R,

φm(z; x) = B(z)ψp(z; x) + A(z)ψm(z; x)

φp(z; x) = Â(z)ψp(z; x) + B̂(z)ψm(z; x).
� (91)

We find that B(z) = B(−z) = B̂(z) and A(z) = A(−z) = Â(z) and A(z) has an analytic 
continuation into the upper-half plane. This is now used to determine the jump relations for 
another sectionally analytic function.

3.2.1.  Jump relation for s2 > c2.  Define the sectionally-analytic function

L2(z) = L2(z; x) :=





[
φm(z; x) ψp(z; x)

]
Im z > 0,

[
ψm(z; x) φp(z; x)

]
Im z < 0.

� (92)

Then assuming that A(z) �= 0 for Im z � 0, we have for s2 � c2

L+
2 (s) =

[
φm(s; x) ψp(s; x)

]

=
[[

A(s)− B(s)B̂(s)
Â(s)

]
ψm(s; x) + B(s)

Â(s)
φp(s; x) φp(s;x)

Â(s)
− B̂(s)

Â(s)
ψm(s; x)

]

= L−
2 (s)

[
1 0
0 1

Â(s)

] 
1 − B(s)B̂(s)

A(s)Â(s)
− B̂(s)

Â(s)
B(s)
A(s) 1



[

A(s) 0
0 1

]
.

�

(93)

In a similar way as above define

K2(z) =





L2(z)

[
1

A(z) 0

0 1

]
Im z > 0,

L2(z)

[
1 0
0 1

Â(z)

]
Im z < 0

� (94)

so that for s2 � c2 we have the jump relation

K+
2 (s) = K−

2 (s)
[

1 − |Rr(s)|2 −Rr(−s)
Rr(s) 1

]
.� (95)
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3.2.2.  Jump relation for −c � s � c .  For −c � s � c, the second entry of L+
2 (s) is equal to 

the first entry of L−
2 (s). From (80) it follows that

φm(s; x) =
1

a+(−s)
ψ(s; x)− a+(s)

a+(−s)
φp(s; x).� (96)

For −c � s � c this gives the relations

L+
2 (s) = L−

2 (s)




1
a+(−s) 1

− a+(s)
a+(−s) 0


� (97)

which implies

K+
2 (s) = K−

2 (s)




1
a+(−s)A+(s) 1

− a+(s)A+(−s)
a+(−s)A+(s) 0


 ,� (98)

and then

K+
2 (s) = K−

2 (s)

[
1

a+(−s)A+(s) 1

1 0

]
.� (99)

The definition of Rr(s) for −c � s � c is much more complicated that for Rl(s). We first 
establish an identity involving Rr(s), a+(s), and A+(s) under the assumption that u0(x) 
decays exponentially as x → ±∞ implying that there exists neighborhoods of Vc, V−c of 
c and  −c, respectively, such that Rr(s) has an analytic extension to V±c \ [−c, c]. For ε > 0 
sufficiently small, and for −c � s � −c + ε we claim

lim
ε↓0

Rr(s + iε)− lim
ε↓0

Rr(−(s − iε)) =
1

a+(−s)A+(s)
.� (100)

The left-hand side is equal to

R+
r (s)− R+

r (−s) =
B+(s)A+(−s)− B+(−s)A+(s)

A+(−s)A+(s)
.� (101)

We then use a+(s) = s
λ+(s)A+(s) to write

R+
r (s)− R+

r (−s) = −λ+(s)
s

B+(s)A+(−s)− B+(−s)A+(s)
a+(−s)A+(s)

.� (102)

From the Wronskian representations we obtain A+(−s) = − s
λ+(s)b+(s) from which it fol-

lows that

R+
r (s)− R+

r (−s) =
B+(s)b+(s) + B+(−s)b+(−s)

a+(−s)A+(s)
.� (103)

Then working with Wronskians for functions f , g, h, k  we find by brute force

W( f , h)W(g, k)− W(g, h)W( f , k) = W( f , g)W(h, k).� (104)

Then using that the boundary values from above of ψp/m are even in s and φp(−s; x) =  
φm(s; x), we find that B+(s)b+(s) + B+(−s)b+(−s) = 1 and the claim (100) follows. Then, 
compute
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[
1 −R+

r (−s)
0 1

] [
0 1
1 0

] [
1 0

R+
r (s) 1

]
=

[
1

a+(−s)A+(s) 1

1 0

]
.� (105)

Note that R+
r (−s) can be extended to an open set in the lower-half plane, R+

r (s) can be 
extended to an open set in the upper-half plane. The same factorization holds near c on 
[c − ε, c].

Removing the assumption of exponential decay of u0, but keeping the condition 
u0 ∈ L1(R, (1 + |x|)3 dx), we extend the definition of Rr to [−c, c] so that it has an approxi-
mate analytic extension. This extension is given by

Rr(s) =




B(s)
A(s) s2 � c2,

1
2+

�(s)

s
√

c2−s2

a+(−s)A+(s) −c + ε � s � c − ε,
B+(s)
A+(s) s ∈ (−c,−c + ε) ∪ (c − ε, c),

� (106)

where �(s) is an even function of s on (−c, c). The intent of this definition is for it to make 
sense even when ε = 0, and the third case never applies. Furthermore, we have

Rr(s)− Rr(−s) =
1

a+(−s)A+(s)
, s ∈ (−c, c).� (107)

Now choose � to match the behavior of Rr at  −c in the following way. Set

�(s) = αs2 + β
√

c2 − s2,� (108)

and assume

1
a+(−s)A+(s)

= κ1
√

s + c + κ2(s + c) + O(|s + c|3/2)� (109)

as s → −c, s  >  −c. Such an expansion is valid by lemma 2.7. We find

1
2 + �(s)

s
√

c2−s2

a+(−s)A+(s)
= −κ1

α
√

c√
2

+

(
κ1

2
− κ1

β

c
− κ2

α
√

c√
2

)√
s + c + O(|s + c|), s → −c, s > −c.

� (110)

We choose α so that κ1
α
√

c√
2
= 1 and choose β so that κ1

2 − κ1
β
c − κ2

α
√

c√
2
= −iγ where γ  is 

determined by

Rr(s) = −1 + γ
√
−s − c + O(|s + c|), s → −c, s < −c.� (111)

This process succeeds because κ1 �= 0. This implies that4

Rr(s) = −1 + γg(s) + O(|s + c|), s → −c, s < −c,
1
2 + �(s)

s
√

c2−s2

a+(−s)A+(s)
= −1 + γg+(s) + O(|s + c|), s → −c, s > −c,

� (112)

where g(z) =
√
−z − c has an analytic extension to the upper-half plane, using the principal 

branch of the square root.

4 The fact that lims→−c, s<−c Rr(s) = −1 is established in theorem 3.13 below directly from a ratio of Wronskians.
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Then, as a consequence of Rr(−s) = Rr(s) , s2 > c2, and the fact that a+(−s)A+(s) is an 
odd function of s, we have

Rr(s) = −1 + γ̄
√

s − c + O(|s − c|), s → c, s > c,
1

a+(−s)A+(s)
= −κ1

√
c − s +−κ2(c − s) + O(|s − c|3/2), s → c, s < c,

� (113)
and therefore

1
2 + �(s)

s
√

c2−s2

a+(−s)A+(s)
= −κ1

α
√

c√
2

+

(
−κ1

2
− κ1

β

c
− κ2

α
√

c√
2

)√
c − s + O(|c − s|), s → c, s < c,

= −1 + (−iγ − κ1)
√

c − s + O(|c − s|), s → c, s < c,

= −1 + iγ̄
√

c − s + O(|c − s|), s → c, s < c,
�

(114)

because the following lemma holds.

Lemma 3.7.  If u0 ∈ L1(R, (1 + |x|)2 dx), −iγ − κ1 = iγ̄.

Proof.  If the initial condition has compact support, we have local analytic continuations of 
Rr to the upper-half plane in the neighborhood of ±c and therefore using that Rr(−z) = Rr(z)

R+
r (s) = −1 − iγ

√
s + c + O(|s + c|), s → −c, s > −c.

R+
r (s) = −1 + iγ

√
c − s + O(|s − c|), s → c, s < c.

� (115)

The identity

R+
r (s)− R+

r (−s) =
1

a+(−s)A+(s)
,� (116)

establishes the claim for initial data with compact support. For general data, we approximate 
it in L1(R, (1 + |x|)2 dx) with data having compact support and then lemma 2.7 implies the 
claim in the limit because γ  and κ1 are continuous as functions on L1(R, (1 + |x|)2 dx).� □ 

Remark 3.8.  The definition of Rr on [−c + ε, c − ε] can be modified, assuming 
u0 ∈ L1(R, (1 + |x|)k+1 dx), so that more terms in its series expansion at ±c match from the 
left and right.

We finally define

N2(z) = K2(z) eiλ(z)xσ3� (117)

and arrive at the following problem satisfied by N2.

Riemann--Hilbert Problem 2.  The function N2 : C \R → C1×2 is analytic on its do-
main and satisfies
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N+
2 (s) = N−

2 (s)

[
1 − |Rr(s)|2 −Rr(−s) e−2iλ(s)x

Rr(s) e2iλ(s)x 1

]
, s2 > c2,

N+
2 (s) = N−

2 (s)




e2iλ+(s)x

a+(−s)A+(s)
1

1 0


 = N−

2 (s)

[
1 −Rr(−s) e−2iλ−(s)x

0 1

]
σ1

[
1 0

Rr(s) e2iλ+(s)x 1

]
, −c � s � c,

N2(z) =
[
1 1

]
+ O(z−1), z ∈ C \ R,

with the symmetry condition

N2(−z) = N2(z)σ1, z ∈ C \ R.� (118)

3.3.  Decay properties of Rl/r on R

Definition 3.9.  Define Dn, n � 2 to be the class of functions f  on R  such that 
f ∈ L1(R, (1 + |x|)dx) has n  −  1 absolutely continuous derivatives in L1(R), f (n) is piece-
wise absolutely continuous5 and in L1(R), and f (n+1) ∈ L1(R).

If n  =  1 define Dn to be the class of functions f  on R  such that f ∈ L1(R, (1 + |x|)dx), f  is ab-
solutely continuous and f (1) is piecewise absolutely continuous and in L1(R), and f (2) ∈ L1(R).

If n  =  0 define Dn to be the class of functions f  on R  such that f ∈ L1(R, (1 + |x|)dx), f  
is piecewise absolutely continuous and f (1) ∈ L1(R).

Lemma 3.10 ([19]).  For n � 0, suppose that u0 ∈ Dn. Then

Rl/r(s) = O(|s|−2−n), as s → ±∞.� (119)

Remark 3.11.  In [19] the author imposes moment conditions on derivatives of u0 in the 
proof of a more general version of lemma 3.10 that gives decay rates of the derivatives of the 
reflection coefficients. Since we only focus on the decay rate of the function itself in the pre-
sent work, these conditions are unnecessary.

3.4.  Relations between left and right scattering data

In some of the calculations that follow, it is convenient to have specific equalities that relate 
A, B, a and b. First, consider the system (74) for z ∈ R, λ(z) ∈ R, combined with its deriva-
tive with respect to x

[
ψp(z; x) ψm(z; x)
ψ

p
x (z; x) ψm

x (z; x)

]
=

[
φp(z; x) φm(z; x)
φ

p
x (z; x) φm

x (z; x)

] [
a(z) b(−z)
b(z) a(−z)

]
.� (120)

5 A function f  is piecewise absolutely continuous on R  if there exists a partition −∞ = x0 < x1 < . . . < xN = +∞ 

such that f |[xn,xn+1]
 can be made absolutely continuous by modifying the values of f (xn) and f (xn+1).
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This gives

a(z)a(−z)− b(z)b(−z) =
W(ψp(z; ·), ψm(z; ·))
W(φp(z; ·), φm(z; ·)) =

λ(z)
z

,

A(z)A(−z)− B(z)B(−z) =
z

λ(z)
.

� (121)

From this, one finds,

1 − Rl(z)Rl(−z) =
λ(z)

z
1

a(−z)a(z)
=

1
A(z)a(−z)

.� (122)

Next, we claim that for z ∈ R, λ(z) ∈ R

B(z) = −b(−z)A(−z)
a(−z)

= −b(−z)
z

λ(z)
.� (123)

This follows because ψp(−z; ·) = ψm(z; ·), φp(−z; ·) = φm(z; ·), and A(z) = a(z) z
λ(z) .

3.5.  Smoothness properties of Rl/r on R

Definition 3.12.  The initial perturbation u0(x) = u(x, 0)− Hc(x) is said to be generic if

W(φm(c; ·), ψp(c; ·)) �= 0 and W(ψm(0; ·), φp(0; ·)) �= 0.� (124)

The term genericity is used because this is expected to hold on a open, dense subset of ini-
tial data [8]. We note that this fact was not established in [19]. We do not establish this here 
because we can verify it numerically in all cases we consider. It will be considered in a future 
work.

Genericity implies, by evaluating at x  =  0,

W(φm(c; ·), ψ̂p(0; ·)) �= 0,� (125)

giving

0 �= W(φm(c; ·), ψ̂p(0; ·)) = W(φp(c; ·), ψ̂m(0; ·)) = W(φm(−c; ·), ψ̂p(0; ·)).
� (126)

Next, by again evaluating at x  =  0,

0 �= W(ψm(0; ·), φp(0; ·)) = W(ψ̂m(c; ·), φp(0; ·)).� (127)

Here ψ̂m and φp are solutions of the same Schrödinger equation with decaying potential u0(x). 
We find that (127) with u0(x) replaced with u0(−x) is the same condition as (126).

Theorem 3.13.  Suppose that k is a non-negative integer and u0 ∈ L1(R, (1 + |x|)k+1dx) 
and assume u0 is generic. Then Rl(s) satisfies6

Rl(s) =
k

∑
j=0

cj(
√
−s − c) j + o(|s + c|k/2), s → −c, s < −c,

Rl(s) =
k

∑
j=0

c̃j(
√
−s − c) j

+ + o(|s + c|k/2), s → −c, s > −c,

� (128)

6 A similar condition at s  =  c is implied by Rl(−s) = Rl(s).
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and cj = c̃j for j = 0, 1, . . . , k. Furthermore, Rl/r are Ck functions on R \ {c,−c} satisfying

Rr(±c) = −1, Rl(0) = −1.� (129)

Proof.  Recall that from (25) and (85)

Rl(s) =





b(s)
a(s) |s| > c,
a+(−s)
a+(s) |s| � c.

� (130)

Consider the truncation u0,L(x) = u0(x)χ{|x|�L}(x), L  >  0, which has compact support so 
that

Rl(s; L) =
k

∑
j=0

cj,L(
√
−s − c) j + o(|s + c|k/2), s → −c, s < −c,

Rl(s; L) =
k

∑
j=0

c̃j,L(
√
−s − c) j

+ + o(|s + c|k/2), s → −c, s > −c

� (131)

and cj,L = c̃j,L for j = 0, 1, . . . , k. Next, we show that these expressions remain valid as 
L → ∞, implying (128). Indeed this follows by lemma 2.7 as the limit can be applied term-
by-term in the Taylor expansion. A similar argument holds at  +c. The argument for Rr is 
simpler as once we know the Taylor expansions exist, (106) gives the result.

Now,

a+(s) =
W(ψm(s; ·), φp(s; ·))

2is
� (132)

so that for s �= 0 we have

a+(s)
a+(−s)

= − W(ψm(s; ·), φp(s; ·))
W(ψm(−s; ·), φp(−s; ·)) .� (133)

Then, under the condition that W(ψm(0; ·), φp(0; ·)) �= 0 we find that Rl(0) = −1. Then to 
establish the required equalities at ±c we consider for s2 > c2, assuming the corresponding 
denominators do not vanish

Rr(±c) =
W(φm(±c; ·), ψ̂m(0; ·))
W(φm(±c; ·), ψ̂p(0; ·))

.� (134)

But then ψ̂p(0; ·) = ψ̂m(0; ·) so that Rr(±c) = 1.

Rr(±c) = − W(ψ̂p(0; ·), φp(±c; ·))
W(ψ̂p(0; ·), φm(±c; ·))

.� (135)
□ 

3.6. The final Riemann–Hilbert problems

To finalize the setup of the RH problems, we must introduce time-dependence and residue 
conditions from the existence of solitons in the solution whenever a(z) has a simple zero. This 
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process is detailed in appendix A. Specifically, it follows from the decay assumptions on u0 
that a(z) = a(z; 0) does not vanish on R  and has a finite number of simple poles {z1, . . . , zn} 
in the open upper-half plane, all lying on the imaginary axis [6]. Then define Σ1, . . . Σn  to 
be disjoint circular contours in the open upper-half plane of radius δ > 0 with z1, . . . , zn 
as their centers and clockwise orientation. Additionally, give −Σj := {−z : z ∈ Σj} counter-
clockwise orientation.

Riemann−Hilbert Problem 3.  The function N1 : C \R → C1×2, N1(z) = N1(z; x, t) is 
analytic on its domain and satisfies

N+
1 (s) = N−

1 (s)

[
1 − |Rl(s)|2 −Rl(−s) e2isx+8is3t

Rl(s) e−2isx−8is3t 1

]
, s ∈ R,

N+
1 (s) = N−

1 (s)

[
1 0

− c(zj)
s−zj

e−2izjx−8iz3
j t 1

]
, s ∈ Σj,

N+
1 (s) = N−

1 (s)

[
1 − c(zj)

s+zj
e−2izjx−8iz3

j t

0 1

]
, s ∈ −Σj,

N1(z) =
[
1 1

]
+ O(z−1), z ∈ C \ R,

� (136)

with the symmetry condition

N1(−z) = N1(z)σ1, z ∈ C \ Γ, Γ = R ∪
⋃

j

(Σj ∪−Σj).� (137)

Theorem 3.14.  There exists a unique L2 solution of RH problem 3 provided Rl is any 
function on R  that is continuous and square-integrable, decays at infinity, and satisfies 
Rl(−s) = Rl(s).

For the proof of theorem 3.14, see appendix B.1.

Riemann−Hilbert Problem 4.  The function N2 : C \R → C1×2, N2(z) = N2(z; x, t) is 
analytic on its domain and satisfies

N+
2 (s) = N−

2 (s)

[
1 − |Rr(s)|2 −Rr(−s) e−2iλ(s)x−8iϕ(s)t

Rr(s) e2iλ(s)x+8iϕ(s)t 1

]
, s2 > c2,

N+
2 (s) = N−

2 (s)

[
1 −Rr(−s) e−2iλ−(s)x−8iϕ−(s)t

0 1

]
σ1

[
1 0

Rr(s) e2iλ+(s)x+8iϕ+(s)t 1

]
, −c � s � c,

N+
2 (s) = N−

2 (s)

[
1 0

−C(zj)
s−zj

e2iλ(zj)x+8iϕ(zj)t 1

]
, s ∈ Σj,

N+
2 (s) = N−

2 (s)

[
1 −C(zj)

s+zj
e2iλ(zj)x+8iϕ(zj)t

0 1

]
, s ∈ −Σj,

ϕ(s) = λ(s)3 +
3
2

c2λ(s),
�

(138)

with the symmetry condition

N2(−z) = N2(z)σ1, z ∈ C \ R.� (139)
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Theorem 3.15.  Assume

	(1)	�a, b, A, B : R \ [−c, c] → C are 1/2-Hölder continuous functions such that a(s) and b(s), 
can be extended to 1/2-Hölder continuous functions on R \ (−c, c).

	(2)	�The symmetries (122) and (123) hold for s2 > c2.
	(3)	�For s2 > c2, a(s) = a(−s) and b(s) = b(−s)
	(4)	�a+, A+ : (−c, c) → C are 1/2-Hölder functions such that sa+(s), λ+(s)A+(s) can be 

extended to 1/2-Hölder continuous functions on [−c, c] and a+(±c) = a(±c).
	(5)	�a, b satisfy

a(s) = α1,− + α2,−
√
−s − c + O(|s + c|), s → −c, s2 > c2,

b(s) = −α1,− + β2,−
√
−s − c + O(|s + c|), s → −c, s2 > c2,

a(s) = α1,+ + α2,+
√

s − c + O(|s − c|), s → c, s2 > c2,

b(s) = −α1,+ + β2,−
√

s − c + O(|s − c|), s → c, s2 > c2,

� (140)

		 for some αj,±, βj,± ∈ C.
	(6)	�a+ satisfies

a+(s) = ζ1,− + ζ2,−
√

s + c + O(|s + c|), s → −c, s > −c,

a+(s) = −ζ1,− + ζ2,+
√

c − s + O(|s − c|), s → c, s < c,
� (141)

		 for some ξ1,− and ζ2,± ∈ C.
	(7)	�A+(s) = a+(s) s

λ+(s)
 for s ∈ (−c, c)

	(8)	�Neither a(s) nor sa+ (s) vanish within their domains of definition.
	(9)	�Rl(s) is given by (85).
	(10)	�Rr(s) is given by (106), and (112) and (114) hold.
	(11)	�Rr/l(s) = O(s−1)  as |s| → ∞.

Then there exists a unique L2 solution of RH problem 4.

For the proof of theorem 3.15, see appendix B.2 of the appendix. We can now prove our 
theorem about the existence of solutions of the KdV equation via RH problems.

Theorem 3.16.  Suppose u0 is generic. Then the following hold:

	(1)	�If u0 ∈ L1(R, (1 + |x|)dx) then RH problem 3 has a unique solution.
	(2)	�If u0 ∈ L1(R, (1 + |x|)3 dx) then RH problem 4 has a unique solution.
	(3)	�If either u(·, 0) ∈ D3 or u0 ∈ L1(R, eδ|x| dx) for some δ > 0 then by the dressing method 

these solutions produce the solution of the KdV equation for t  >  0:

lim
z→∞

2iz(N1(z)−
[
1 1

]
) =

[
−
∫ x
−∞ u(x′, t)dx′

∫ x
−∞ u(x′, t)dx′

]
,

lim
z→∞

2iz(N2(z)−
[
1 1

]
) =

[
−
∫ ∞

x [u(x′, t) + c2]dx′
∫ ∞

x [u(x′, t) + c2]dx′
]

.
� (142)

Proof.  Parts (1) and (2) follow from lemma 2.7 and theorems 3.14 and 3.15. Part (3) is the 
application of the dressing method and the conditions imposed are sufficient for the solu-
tion of the RH problem to be differentiable both in x and t the required number of times. For 
u(·, 0) ∈ D3 see lemma 3.10 and for u0 ∈ L1(R, eδ|x| dx), see the deformations in section 6 
which induces exponential decay of the jump matrix.� □ 
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Remark 3.17.  It is important to note that if one solves RH problem 3 for large values of x, 
the recovery formula (142) produces a quantity that grows as x increases. This indicates that 
the operator one is inverting is not well-conditioned in this limit. Thus there is a reason based 
on numerical stability for including both RH problems 3 and 4.

4.  Contour deformations and numerical inverse scattering

Throughout this section  we assume u0 ∈ L1( e2ν|x| dx) for some ν > 0. This immediately 
implies that, in addition to other analyticity properties, φp/m  and ψ̂p/m and their x-derivatives 
have analytic extensions as functions of z within the open strip Sν := {z ∈ C : |Im z| < ν} 
and continuous in the closure. Define

Sλ
ν = {z ∈ C : |Im λ(z)| < ν}.� (143)

See figure 2 for a plot. It is clear that R \ [−c, c] ⊂ Sλ
ν  for any choice of λ. Then, for example, 

it follows that ψp(z; x) is an analytic function of z within the region

Sλ,+
ν := C+ ∪ Sλ

ν \ [−c, c],� (144)

while ψm(z; x) is an analytic function of z within the region

Sλ,−
ν := C− ∪ Sλ

ν \ [−c, c].� (145)

It then follows that Rl(s) has a meromorphic extension to Sλ,+
ν  while Rr(s) has a meromor-

phic extension to only Sλ,+
ν ∩ Sλ,−

ν . These regions of analyticity are sufficient to make all the 
deformations outlined below.

4.1.  Computing Rr/l

We note that the computation of the reflection coefficients is no different than that in the case 
of decaying data [40]. Indeed, we compute the scattering data by evaluating at x  =  0, see 
remark 2.1.

Figure 2.  The domain Sλ
ν  for analyticity for ψp/m(·; x) when u0 ∈ L1( e2ν|x| dx) with 

varying values of ν and c  =  1. Specifically, this plot gives the level curves of |Im λ(z)|.
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4.2.  Computing {zj }, C(zj ) and c(zj )

The authors in [40] used Hill’s method [7] to compute the (negative) eigenvalues of the opera-
tor (11) at t  =  0 and therefore find the zeros a(z) in the upper-half plane. This required initial 
data with decay, so that one can approximate the eigenvalues with those from a operator on a 
space of periodic functions. Here, we choose L  >  0 so that |u0(x)| < ε  for |x| > L  and ε is on 
the order of machine precision. Then (11) can be approximated by

−D2
N,L − diag u(�xN,L, 0)� (146)

where DN,L is the first-order Chebyshev differentiation matrix [35] for �xN,L , the vector of Nth-
order Chebyshev points scaled to the interval [−L, L]. For sufficiently large L, N, the eigenval-
ues of (146) near the negative real axis approximate the eigenvalues of (11).

4.3. The numerical solution of Riemann–Hilbert problems

The numerical solution of an L2 RH problem is based around the representation of H2
±(Γ) 

functions as the Cauchy integral of L2(Γ) functions and consequently, the equivalency 
between solving the RH problem for N and solving the singular integral equation

u − C−
Γ u · (G − I) = G − I, N = CΓu + I.� (147)

This integral equation  is discretized (see [31, 39]) using mapped Chebyshev polynomials. 
Suppose

Γ =
S⋃

�=1

Γ�,� (148)

where Γ� = M�([−1, 1]) and M�(x) = a�x + b� is an affine function. Then we construct a 

basis of L2(Γ�) denoted (φ(�)
j )j�0 and defined by

φ
(�)
j (s) = Tj ◦ M−1

� (s), j = 0, 1, 2, . . . , m�(n), . . . ,� (149)

where Tj(cos θ) = cos jθ is the j th Chebyshev polynomial of the first kind. The integer m�(n) 
allows one to use a different number of basis functions on each Γ� . It is simple to check that

1
2πi

∫

Γ�

f (s)
s − z

ds =
1

2πi

∫

Γ�

f (M�(x))

x − M−1
� (z)

dx.

Define the finite-dimensional space

Xn =
{

f ∈ L2(Γ) : f |Γ�
∈ span{φ

(�)
0 , . . . , φ

(�)
m�(n)

}
}

.

Provided that one can compute

C[−1,1]Tj(z), z �∈ [−1, 1] and C±
[−1,1]Tj(x), x ∈ (−1, 1),

one can compute CΓ�
φ
(�)
j  and C±

Γ�
φ
(�)
j  away from the endpoints of Γ� . We then define a sub-

space X(0)
n  of Xn where we impose the condition

f ∈ X(0)
n if and only if f ∈ Xn and sup

z �∈Γ
|CΓf (z)| < ∞.
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This imposes a condition on function values at all endpoints or self-intersection points of Γ 
called the zero-sum condition, see [39, definition 2.47]. Then, with this condition one can 
show that C±

Γ f , f ∈ X(0)
n  is well defined for every point in Γ. There then exists an interpolatory 

projection Pn, derived via the discrete cosine transform, that maps

{ f ∈ L2(Γ) : f |M�((−1,1)) is continuous and extends continuously to Γ�, � = 1, 2, . . . , S}

onto Xn. All these considerations extend trivially to vector- or matrix-valued functions. In 
order to compute an approximate solution of an RH problem (G, Γ), one then looks for a solu-
tion un of

Pn(un − C−
Γ un · (G − I)) = Pn(G − I), un ∈ X(0)

n .� (150)

Careful study of this system would lead one to think it is overdetermined but if G satisfies the 
product condition [39, definition 2.55] this is not true [39, lemma 6.11]. An implementation of 
this methodology for finding un can be found in RHPackage [30].

The convergence rate is closely tied to the smoothness of solutions [32] and invertibil-
ity of the associated operator on high-order Sobolev spaces is required [39]. Fortunately, 
this is immediate following theorems 3.14 and 3.15, and the fact that the jump matrix G we 
encounter, after deformation, will satisfy the kth-order product condition [39, definition 2.55] 
for every k. If the solution is known to be analytic then the convergence rate as n → ∞ is expo-
nential, provided that the condition number of the linear system constructed in the solution of 
(150) grows at an (at most) polynomial rate [39, Assumption 7.4.1].

The deformation of a RH problem is an explicit transformation (G, Γ) �→ (G̃, Γ̃) such 
the solutions of the two problems are in correspondence. The goal is for the operator 

u �→ u − C−
Γ̃

u · (G̃ − I) to be better conditioned than the original operator (147), i.e. have 
a smaller condition number. To have any analytic expressions for the solution, one needs the 
condition number to tend to one in an asymptotic limit, while numerically, one just aims to 
have a bounded quantity.

4.4.  Recovery of u(x , t)

Once the solution of (147) has been computed, one then seeks ∂xu = ux, see (142). To do this, 
we solve the equation satisfied by ux:

ux − C−
Γ ux · (G − I) = (C−

Γ u + I)Gx, Nx = CΓux.� (151)

And then, formally,

lim
z→∞

zNx(z) = − 1
2iπ

∫

Γ
ux(s)ds.� (152)

Assuming the operator in (147) is invertible, these formal manipulations are justified provided 
Gx ∈ L1 ∩ L∞(Γ) and C−

Γ u + I ∈ L∞(R).

5.  Numerical inverse scattering at t  =  0

We divide this computation into two cases, x  <  0 and x � 0. We first ignore the jumps on the 
contours Σj , −Σj.
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5.1.  x  <  0

Under our assumptions, Rl has a meromorphic extension to ν � Im z > 0, decaying at infin-
ity within this strip. And because Rl has a finite number of poles in this strip, we can use the 
factorization
[

1 − Rl(s)Rl(−s) Rl(−s) e−2ixs

−Rl(s) e2ixs 1

]
= M1(s)P−1

1 (s) =
[

1 Rl(−s) e−2ixs

0 1

] [
1 0

−Rl(s) e2ixs 1

]
,

�
(153)

noting that Rl(s) = Rl(−s), to deform RH problem 3 within a possibly smaller strip α � δ. 
One does this by the so-called lensing process: given N1 define

Ñ1(z) =
{

N1(z)P1(z) 0 < Im z < α,
N1(z)M1(z) −α < Im z < 0,� (154)

and then Ñ1(z) satisfies the RH problem depicted in figure 3. The jumps matrices decay expo-
nentially to the identity matrix as x → −∞.

Figure 3.  The initial deformation of RH problem 3 for t  =  0, x  <  0. The jumps on the 
contours Σj  and −Σj surrounding the poles zj  and  −zj  are unchanged at this stage. The 
matrices M1 and P−1

1  are the resulting jump matrices supported on the indicated arcs.

Figure 4.  The initial deformation of RH problem 4 for t  =  0, x � 0. The jumps on the 
contours Σj  and −Σj surrounding the poles zj  and  −zj  are unchanged at this stage. The 
matrices J2, M±1

2 , and P±1
2  are the resulting jump matrices supported on the indicated 

arcs.
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5.2.  x � 0

The situation for x � 0 is more complicated because the jump condition in RH problem 4 
is discontinuous. Furthermore, we can only lens the jump matrix within as subregion of Sλ

ν . 
See figure 4 for a depiction of the jump contours and jump matrices after lensing. But this 
RH problem, even though it is uniquely solvable in an L2 sense, has a jump matrix that is not 
smooth, in the sense of the product condition [39, definition 2.55] at ±c. A local deformation 
is required, using (B.37) below with jump matrices and jump contours depicted in figure 4. 
Then define two neighborhoods B±c of ±c, by first defining Bc shown in figure 5 and setting 
B−c = {−z : z ∈ Bc}. Now, define a new unknown

N̂2(z) = Ñ2(z)
{

W∓1(z) z ∈ B±c,
I otherwise

� (155)

where W is defined in (B.37). We point out that this definition is made to both solve the jump 
on the small intervals near ±c and to preserve the symmetry condition: if a function satisfies 
N(−z) = N(z)σ1 and we want a new function N̂(z) = N(z)C(z) to satisfy the same condi-
tion, then:

N̂(−z) = N(−z)C(−z) = N(z)σ1C(−z),� (156)

and one concludes that σ1C(−z) = C(z)σ1 is a sufficient condition. In the case of W, we see 
that σ1W−1(−z)σ1 = W(z).

5.3.  Jump matrices on Σj

Consider a RH problem with jump conditions the form

N+(s) = N−(s)





[
1 0
α

s−zj
1

]
s ∈ Σj,

[
1 β

s+zj

0 1

]
s ∈ −Σj.

� (157)

Figure 5.  The second deformation of RH problem 4 for t  =  0, x � 0. The jumps on the 
contours Σj  and −Σj surrounding the poles zj  and  −zj  are unchanged at this stage.The 
matrices J2, M±1

2  and P±1
2  are the resulting jump matrices supported on the indicated 

arcs. This transformation removes the jumps on the arcs connecting ±c to the boundary 
of the lens shaped regions—see the jump-free regions B±c.
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Define

Q(z) =




z−zj
z+zj

0

0 z+zj
z−zj


 ,

M(z) = N(z)T(z; zj, α, β),

� (158)

and

T(z; zj, α, β) =




Q(z) z outside Σj and − Σj,[ z−zj
z+zj

1
α(z+zj)

−α(z + zj) 0

]
z inside Σj,

[
0 β(z − zj)

− 1
β(z−zj)

z+zj
z−zj

]
z inside − Σj.

� (159)

Then the jump conditions satisfied by M(z) are given by

M+(s) = M−(s)




Q−1(s)

[
1 0
α

s−zj
1

] [ s−zj
s+zj

1
α(s+zj)

−α(s + zj) 0

]
s ∈ Σj,




s+zj
s−zj

−β(s − zj)
1

β(s−zj)
0



[

1 β
s+zj

0 1

]
Q(s) s ∈ −Σj,

= M−(s)





[
1 1

α(s−zj)

0 1

]
s ∈ Σj,

[
1 0
1

β(s+zj)
1

]
s ∈ −Σj.

� (160)
When α and β are both large, this transformation allows us to convert the jump to one that is 
near-identity. We will only need to apply this transformation in the case α = β, in which case 
we use the notation T(z; zj, α) = T(z; zj, α, β).

To see how to employ this in the context of the KdV equation define two index sets, depend-
ing on x and t

S1(x, t) = { j : |c(zj) e−2izj−8iz3
j | > 1}, S2(x, t) = { j : |C(zj) e−2iλ(zj)−8iϕ(zj)| > 1},� (161)

and two matrix functions defined on C \
(⋃

j(Σj ∪−Σj)
)

Q1(z) = ∏
j∈S1(x,t)

T(z; zj,−c(zj) e−2izj−8iz3
j ), Q2(z) = ∏

j∈S2(x,t)
T(z; zj,−C(zj) e−2iλ(zj)−8iϕ(zj)).

� (162)
Our final step before solving the RH problem for Nj will be to instead consider the RH prob-
lem for NjQj. This includes our calculations for t  >  0 below. We do not present the final RH 
problem, after this modification, as the preceding calculations allow one to directly derive the 
new jumps.
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6.  Numerical inverse scattering for two asymptotic regions

We now discuss simple deformations that lead to asymptotically accurate computations in two 
regions. The full deformation of the RH problem to compute asymptotic solutions in the entire 
(x, t)-plane will be presented in a forthcoming work.

6.1.  x � −2c2t

We begin with a simple but important calculation. For s ∈ (−c, c) and ζ ∈ R consider

h(s) = 2iλ+(s)ζ + 8iϕ+(s) = −
√

c2 − s2
[
2ζ + 12c2 − 8(c2 − s2)

]
.

� (163)
This function, evidently, has a local minimum at s  =  0 where h(0) = −|c|(2ζ + 4c2). This 
remains non-positive provided that ζ � −2c2. Thus the jump in RH problem 4 on (−c, c) has 
its (1, 1) entry less than unity, in absolute value, provided that x � −2c2t. For this regime, we 
can use the deformation depicted in figures 5 and 6, using RH problem 4.

Before the deformed RH problem is solved numerically, the deformation detailed in sec-
tion 5.3 is performed.

6.2. 
√

−x
12t � c + δ

In this region we use RH problem 3 exclusively. Recalling that Rl(s) = Rl(−s) we consider, 
formally,
[

1 − Rl(s)Rl(−s) Rl(−s) e−2isx−8is3t

−Rl(s) e2isx+8is3t 1

]
= M1(s)P−1

1 (s) =

[
1 Rl(−s) e−2ixs−8is3t

0 1

] [
1 0

−Rl(s) e2ixs+8is3t 1

]

= L(s)D(s)U−1(s) =

[
1 0

−Rl(s)
T(s) e2ixs+8is3t 1

] [
T(s) 0

0 1/T(s)

] [
1 Rl(−s)

T(s) e−2ixs−8is3t

0 1

]
,

�

(164)

Figure 6.  A zoomed view of the second deformation of RH problem 4 for t  =  0, x � 0. 
All contours intersecting the real axis make the same angle with the real axis. The angle 
π/3 is chosen so that e±iλ3(z) decays exponentially, for large z, in the appropriate 
quadrants.
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with

T(s) := 1 − |Rl(s)|2 = 1 − Rl(s)Rl(−s).� (165)

The first factorization is valid for s ∈ R. The second factorization fails when |Rl(s)| = 1 
which occurs for s ∈ [−c, c].

As is customary, we use the stationary phase points z∗ = ±
√
−x/(12t) to guide the 

deformation. Given α > 0 define six polygonal regions in C:

Ω1 = {z : 0 < Im z < α, Im z < Re z − z∗},
Ω2 = {z : 0 < Im z < α, Im z < −Re z + z∗, Im z < Re z + z∗},
Ω3 = {z : 0 < Im z < α, Im z < −Re z − z∗},
Ω4 = {z : −α < Im z < 0, Im z > −Re z + z∗},
Ω5 = {z : −α < Im z < 0, Im z > Re z − z∗, Im z > −Re z − z∗},
Ω6 = {z : −α < Im z < 0, Im z > Re z − z∗}.

� (166)

There exists α > 0, sufficiently small, so that L has an analytic extension to Ω4 ∪ Ω6 and U 
has an analytic extension to Ω1 ∪ Ω3. Similarly, P1 and M1 have analytic extensions to Ω2 
and Ω5, respectively. So, define

Ñ1(z) = N1(z)





U(z) z ∈ Ω1 ∪ Ω3,
P1(z) z ∈ Ω2,
L(z) z ∈ Ω4 ∪ Ω6,
M1(z) z ∈ Ω3.

� (167)

The jump contours and jump matrices for the Ñ1 are depicted in figure 7.
We aim to have jumps that are localized at ±z∗, and need to remove the jump on 

(−∞,−z∗) ∪ (z∗, ∞). Consider the RH problem

∆+(s) = ∆−(s)D(s), s ∈ (−∞,−z∗) ∪ (z∗, ∞), ∆(s) = I + O(s−1) s → ∞.� (168)

This is easily solved via the Cauchy integral

∆(z) = diag (∆(z), ∆−1(z)), log ∆(z) =
1

2πi

∫

(−∞,−z∗)∪(z∗ ,∞)

log T(s)
s − z

ds.

� (169)

Figure 7.  The jump contours and jump matrices for the unknown Ñ1 defined in (167). 
The contours are deformed within a strip of width 2α. The matrices U±1, D, L, M±1

1 , 
and P−1

1  are the jump matrices supported on the indicated arcs.
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Figure 8.  The jump contours and jump matrices for the unknown N̂1 defined in (171). 
The contours are deformed within a strip of width 2α.

Figure 9.  A zoomed view of the jump contours and matrices for N̂1.
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Now, fix 0 < r < δ, and define

Σ(z) =




∆−1(z) z �∈ (−∞,−z∗) ∪ (z∗, ∞), |z ± z∗| > r,
I |z + z∗| < r, 3π

4 < arg(z + z∗) < π,
D(z) |z + z∗| < r, − π < arg(z + z∗) < −3π/4,
L(z)D(z) |z + z∗| < r, − 3π

4 < arg(z + z∗) < −π
4 ,

P(z)U−1(z) |z + z∗| < r, − π
4 < arg(z + z∗) < π

4 ,
U−1(z) |z + z∗| < r, π

4 < arg(z + z∗) < 3π
4 ,

I |z − z∗| < r, 0 < arg(z − z∗) < π
4 ,

D(z) |z − z∗| < r, − π
4 < arg(z − z∗) < 0,

L(z)D(z) |z − z∗| < r, − 3π
4 < arg(z − z∗) < −π

4 ,
P(z)U−1(z) |z − z∗| < r, − π < arg(z − z∗) < − 3π

4 ,
P(z)U−1(z) |z − z∗| < r, 3π

4 < arg(z − z∗) � π,
U−1(z) |z − z∗| < r, π

4 < arg(z − z∗) < 3π
4 .

� (170)

From this we define

N̂1(z) = Ñ1(z)Σ(z).� (171)

The jump contours and jump matrices for N̂1(z) are displayed in figure 8 with a zoomed 
view given in figure 9. Before this RH problem is discretized and solved, the transformation 
discussed in section 5.3 is performed.

This deformation, following the arguments in [39], give accurate computations for all (x, t) 
such that z∗ � c + δ, even as t → ∞. As t increases, one has to vary r and r ∼ t−1/2 is seen 
to be an acceptable choice [40].

Remark 6.1.  For a solution without solitons it follows directly from our deformation of 
RH problem 4 that as x increases for x � −2c2t, N2 →

[
1 1

]
 exponentially. Furthermore, 

if 
√

−x
12t � c + δ as t → ∞ the standard asymptotic analysis for the dispersive tail of the KdV 

equation applies [15]. This implies that neither of these regions contain a dispersive shock 
wave and the so-called dispersive shock wave region must be contained within

−12c2t � x � −2c2t.

If we instead consider initial data q(x) with limx→−∞ q(x) = c2 and limx→+∞ q(x) = 0 we 
apply the Galilean boost to find the region

−6tc2 � x � 4c2t.

We can recover the results of [16] for the leading and trailing edges of the shock wave region 

by setting c2  =  1/6 (i.e. −t � x � 2
3 t).

Remark 6.2.  We can also examine soliton amplitudes and velocities using our formulation. 
A soliton of amplitude η > 0 on a background of height h ∈ R has velocity v = 2η + 6h. The 
soliton speed for x � 0 corresponding to a zero zj = iα can be determined from the exponent 
in the residue conditions for N1 (RH problem 3):

−2izjx − 8iz3
j t = −2i(iα)x − 8i(iα)3t = 2α(x − 4α2t).

And the velocity is 4α2 on a zero background—the amplitude is 2α2. Then for x � 0 we 
examine the exponent in the residue conditions for N2 (RH Problem 4):
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2iλ(zj)x + 8iϕ(zj)t = 2iλ(iα)(x − 4α2t + 2c2t).

The velocity is 4α2 − 2c2  on a background of height  −c2—the amplitude is 2α2 + 2c2 . There-
fore the amplitude of a soliton that passes through a dispersive shock wave of offset height c2 
is increased by 2c2.

Remark 6.3.  Another important consequence is that all solitons to the right of a dispersive 
shock wave move with a velocity that greater than  −2c2 (the velocity of the dispersive shock 
wave itself). This indicates that if one chooses q(x) ≈ c2 + Hc(x) + Asech 2(

√
A/2(x − x0)) 

for x0 � 1 and 0  <  A  <  2c2, where the dispersive shock wave moves with velocity 4c2, no 
soliton is produced by the evolution. This sech 2 profile evolves in a similar fashion to a soli-
tary wave for intermediate time scales at a speed that is less than the shock wave and is even-
tually absorbed. Numerical experiments indicate that this manifests itself as a region where 
the reflection coefficient is large due to a(z) being small but non-vanishing for z ∈ (−c, c). 
Recall that a(z) may not vanish on the real axis (see section 3.6). This scenario is in agreement 
with so-called ‘pseudo-embedded eigenvalues’ observed for ‘trapped solitons’ in the case of 
rarefaction in [1].

7.  Numerical examples

Combining the two deformations discussed in the previous section, numerical computations 
will be accurate asymptotically7 for

x � −12(c + δ)2 and − 2c2t � x.� (172)

This leaves a rather large sector of the (x, t) plane unaccounted for. A future work will focus 
on properly filling this gap.

Nevertheless, we can compute the entire solution profile for a restricted interval of t values, 
provided that c is not too large. To accomplish this, we made an ad hoc modification of z*:

z∗m = max{z∗, c + δ},� (173)

where, in practice we set δ = 1/10. And then we use the deformation and RH problem dis-
played in figure 8 for x  <  −2c2t with z* replaced with z∗m and the deformation and RH prob-
lem displayed in figure 5 for x � −2c2t.

The initial data u(x, 0) in our examples satisfies

u(x, 0) → c2, x → −∞ and u(x, 0) → 0, x → +∞.� (174)

It is simple to use the Galilean boost to map such a solution to one satisfying (5), see remark 
1.1.

Remark 7.1.  Evaluating u(x, t) for small t can be difficult if Rl(z) and Rr(z) do not decay 
quickly as z → ±∞. This issue is analogous to computing the Fourier transform of a func-
tion that decays slowly at infinity — one cannot truncate the domain of integration enough to 
allow for the capturing of oscillation. But for t  >  0, the deformations outlined in the previous 
section induce exponential decay, alleviating this issue to an extent. Indeed, as t ↓ 0 the ad-

7 This means that computations will be accurate for all x and t in these regions including both large and small 
values.
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ditional decay is reduced.

For infinitely smooth initial data u(x, 0), from lemma 3.10, this is not an issue even as t 
approaches zero. So, we are able to evaluate the solution profile for all x and t ∈ [0, T ]. In our 
computations T ≈ 1.

For discontinous initial data u(x, 0), t ↓ 0 is a singular limit and the deformations described 
only allow for the computation for all x but t ∈ [ε, T ], ε > 0, see figure 10.

7.1.  u0  =  0

When u0  =  0, the functions A, B, a and b can be determined explicitly

Figure 10.  The solution of the KdV equation  at t  =  1 when u(x, 0) = Hc(x) + c2, 
c  =  1 (top), c =

√
2  (middle) and c =

√
3  (bottom). The gray curve indicates the initial 

condition.

D Bilman and T Trogdon﻿Nonlinearity 33 (2020) 2211



2248

A(z) =
1
2

(
1 +

z
λ(z)

)
, B(z) =

1
2

(
1 − z

λ(z)

)
,

a(z) =
z + λ(z)

2z
, b(z) =

z − λ(z)
2z

.
� (175)

We display the solution of (1) with u(x, 0) = Hc(x) + c2 for various values of c, all evaluated 
at t  =  1.

7.2.  Smooth soliton-free data

An example of smooth data that fits into the described framework is

u(x, 0) = −1
4
(1 + erf(x))2,� (176)

where erf(x) is the error function [29]. In this case, computing Rl and Rr is non-trivial. We 
display these functions in figures 11(a) and (b), noting that the decay of u0 makes A, B, a and 
b analytic functions of z for all z off the cut [−c, c]. The corresponding solution is given in 
figure 12.

7.3.  Smooth data with a soliton

An example of smooth data that fits into the described framework but produces a soliton is

u(x, 0) = −1
4
(1 + erf(x))2 + 2 e−x2/2.� (177)

The reflection coefficients are given in figures 13(a) and (b). The data associated to the pole 
in the RH problem is given by

(a) (b)

Figure 11.  The right and left reflection coefficients for the smooth soliton-free initial 
data (176) u(x, 0) = − 1

4 (1 + erf(x))2. (a) The real (solid) and imaginary (dashed) 
parts of Rl(z) when u(x, 0) is given in (176). (b) The real (solid) and imaginary (dashed) 
parts of Rr(z) when u(x, 0) is given in (176).
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z1 ≈ 0.950 681i,
c(z1) ≈ 3.481 19i,
C(z1) ≈ 3.903 51i.
� (178)

The corresponding solution is displayed in figure 14.

Remark 7.2 (Soliton speed).  The speed of the soliton can be easily read off from the RH 
problem. For example, the jump on Σj  in RH problem 3 is determined by

e−2izjx−8iz3
j t = e−2izj(x+4z2

j t).� (179)

This indicates a velocity of −4z2
j  for x � 0, in the case of data decaying to 0 at −∞ and tend-

ing to  −c2 at +∞. In the current setting, this gives a velocity of −4z2
j + 6c2. Similarly, for 

Figure 12.  The solution of the KdV equation  at t = 1, 2, 3 when 
u(x, 0) = − 1

4 (1 + erf(x))2, the smooth soliton-free initial data in (176). The gray 
curve indicates the initial condition.

D Bilman and T Trogdon﻿Nonlinearity 33 (2020) 2211



2250

x � 0 we consider the exponential in the jump on Σj  in RH problem 4

e2iλ(zj)x+8iλ3(zj)t+12ic2λ(zj)t = e2iλ(zj)(x+6c2t+4(z2
j −c2)t).� (180)

This indicates a velocity of −4z2
j − 2c2, in the case of data decaying to 0 at −∞ and tend-

ing to  −c2 at +∞. For the current setting of (177), the velocity is −4z2
j + 4c2, a decrease in 

velocity of 2c2.

7.4.  Validation and comparison with time-stepping routines

In this section we first demonstrate that the numerical IST has accuracy advantages over tradi-
tional time-stepping routines. We then demonstrate that our approach converges exponentially 
with respect to the number of collocation points used.

7.4.1.  Periodic approximation and time-stepping.  We descibe a well-known numerical 
method for the KdV equation and use it to confirm the accuracy of our numerical inverse scat-
tering transform. Consider the initial-value problem for L  >  0

pt + 6ppx + pxxx = 0,
p(x, 0; L) = q(x)ψL(x), x ∈ [−L, L),
p(x, t; L) = p(x + 2L, t; L).

� (181)

Recall that q is the initial data for the initial-value problem (1). Here ψL is a C∞ function with 
support in (−L, L) and ψL(x) = 1 for x ∈ [−L + δ, L − δ], δ > 0. As L → ∞, we expect 
p(x, t; L) → u(x, t). To examine this, we solve (181) using an exponential integrator which we 
now derive. General references for this are [17, 20, 21]. Let F  denote the Fourier transform

a = Fu, u ∈ L1([−L, L]), aj =
1

2L

∫ L

−L
e−πijx/Lu(x)dx.

Define

a(t) = Fu(·, t).

(a) (b)

Figure 13.  The right and left reflection coefficients for the smooth initial data (177) that 

gives rise to a soliton: u(x, 0) = − 1
4 (1 + erf(x))2 + 2 e−x2/2. (a) The real (solid) and 

imaginary (dashed) parts of Rl(z) when u(x, 0) is given in (177). (b) The real (solid) and 
imaginary (dashed) parts of Rr(z) when u(x, 0) is given in (177).
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We define two operators ST  and D  by

(ST a)j = ei( πj
L )

3
Taj, (Da)j = i

(
πj
L

)
aj.

Then set â(t) = S−ta(t). We look for the equation satisfied by â(t):

d
dt

â(t) = S−t

(
d
dt

a(t) +D3a(t)
)
= −6S−tF

(
(F−1Da)(F−1a)

)

= −3S−tDF
(
(F−1St â)2

)
=: F(â(t), t).

This gives a bi-infinite system of non-autonomous nonlinear ordinary differential equa-
tions (ODEs). If we replace F  with the discrete (or fast) Fourier transform (FFT), the system 

Figure 14.  The solution of the KdV equation at t = 1, 2, 3 when u(x, 0) is the smooth 
initial data (177) that gives rise to a soliton: u(x, 0) = − 1

4 (1 + erf(x))2 + 2 e−x2/2. 
The gray curve indicates the initial condition.
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becomes simply a finite system of non-autonomous ODEs and we use the fourth-order 
Runge–Kutta scheme to integrate this system. We use a time step of ∆t = 0.00005 to force the 
local truncation error to be on the order of machine precision. We use n  =  212 coefficients in 
the FFT which ensures that the highest-order coefficients decay to be on the order of machine 
precision in all computations. Lastly, we use

ψL(x) =
1
4
(1 + tanh(x + L/2)) (1 − tanh(x − L/2)) .

While this function does not have its support within (−L, L), it differs from one that does by 
less than numerical underflow if, for example, L � 100.

In figure  15 we display the numerically computed difference |u(x, t)− p(x, t; L)| when 
q(x) = 1 − 1

4 (1 + erf(x))2 for L = 100, 200, 300, 400. The figure  indicates that the errors 
decay exponentially as L increases. This is indicative of the fact that the errors in the numer
ical computation of both u(x, t) and p(x, t; L) is much smaller than the actual difference 
|u(x, t)− p(x, t; L)|. But, one also sees that there is significant grown in errors from t  =  1 
to t  =  2. The high velocity of the dispersive tail for x  <  0 prevents p(x, t; L) being a good 
approximation of u(x, t) as t increases.

7.5.  Convergence rate of the numerical approximation of the IST

To demonstrate the convergence of the approximation of the solution of the KdV equation we 
perform the following experiment. In considering the assumption (148) we divide the contours 
{Γ�} into two categories. If Γ�  is in the first category, we set m�(n) = n in (149). If Γ�  is in 
the second category, we set m�(n) = 3n. This allows us to use more collocation points on 
contours where we expect the solution of the singular integral equation to have larger deriva-
tives. Recall that the convergence of the method is tied to the size of the derivatives of the 

Figure 15.  The numerically computed difference |u(x, t)− p(x, t; L)| when the 
initial condition is given by q(x) = 1 − 1

4 (1 + erf(x))2 for L = 100, 200, 300, 400. 
The periodic approximation improves as L increases. Additionally, this validates the 
accuracy of the numerical computation of the inverse scattering transform. The figure is 
given on a log scale and from this one can see that the error decreases approximately 
exponentially with respect to L. From the asymptotic formula for the solution (see [9], 
for example) one can predict that the errors, for fixed L, should increase exponentially 
in t. In the lower panel, one sees the significant increase in errors as t increases.
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solution. Then we fix N  >  2 and compute the solution of the KdV equation by solving8 (150) 
for n = 2, 3, . . . , N  and compare it to the solution computed with n  =  2N. We call this the 

Cauchy error. We do this with u(x, 0) = − 1
4 (1 + erf(x)) 2 for two different values of (x, t) 

and give the errors in figure 16 on a log scale. The (approximately) constant slope in these 
plots indicates (approximately) exponential convergence with respect to n.

As an additional check on the behavior of the errors of our numerical method, we look 
beyond the region where time-stepping methods are applicable, again using the notion of 
Cauchy error. We choose two rays in the (x, t) plane: (x, t) = (−14t, t) (were the deformation 
depicted in figure 8 is applicable) and (x, t) = (t, t) (where the deformation depicted in fig-
ure 5 is applicable). We choose to look along rays because that allows the same deformation 
to be used for all t  >  0. The Cauchy error remains small, see figure 17. Note that the solution 

Figure 16.  A demonstration that the convergence rate of the proposed numerical 
method of the KdV equation  is almost exponential by examining the Cauchy error 
plotted on a log scale. Left panel: the convergence to the solution at (x, t) = (−16, 1) 
with N  =  24. This is the evaluation of the solution using the deformation depicted in 
figure 8. Right panel: the convergence to the solution at (x, t) = (4, 1) with N  =  40. 
This is the evaluation of the solution using the deformation depicted in figure 5.

Figure 17.  A demonstration that the error of the proposed numerical method for the 
KdV equation  remains small along certain rays in the (x, t)-plane. Left panel: the 
difference of the approximate solution with N  =  20 along the ray (−14t, t) as t increases 
beyond 104. This is the evaluation of the solution using the deformation depicted in 
figure 8. Right panel: the Cauchy error with N  =  20 along the ray (t, t) as t increases 
beyond 104. This is the evaluation of the solution using the deformation depicted in 
figure 5.

8 Note that the linear system (150) is of dimension ∑S
�=1 m�(n).
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tends exponentially to  −c2 along this the ray (x, t) = (t, t) and the solution method captures 
this, giving good relative accuracy.
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Appendix A.  Solitons and time-dependence

We derive time dependence of the scattering data under the assumption that 
u0(·, t) = u(·, t)− Hc(·) and its x derivative decay rapidly at infinity for all t. After the time 
dependence is determined, one can appeal to the so-called dressing method to show that if the 
solution of the RH problem exists and is unique, then it produces a solution of the KdV equa-
tion (see [39, proposition 12.1], for example).

We have defined the (partial) scattering map Su0 = (Rl, Rr). Define Rr(z; t) and Rl(z; t) 
by the mapping

S(u(·, t)− Hc) = (Rl(·; t), Rr(·; t))� (A.1)

where u(x, t) is the solution of the KdV equation with initial data u0 + Hc. The map gives only 
the partial scattering data because we have not yet incorporated discrete spectrum, i.e. soli-
tons. Define a(z; t), b(z; t), A(z; t) and B(z; t) to be the functions corresponding to u(·, t)− Hc.

Extend the solutions φp,m(z; x) and ψp,m(z; x) to functions φp,m(z; x, t) and ψp,m(z; x, t) 
by replacing u0(x) with u(x, t). These functions satisfy the following scattering and evolution 
equations (scalar Lax pair):

−φxx − u(x, t)φ = z2φ,

φt = (4z2 − 2u(x, t))φx + (ux(x, t) + 1)φ.
� (A.2)

The compatibility condition φxxt = φtxx with the condition zt  =  0 gives the KdV equation (1). 
Consider, now with time dependence, for z ∈ R,

ψp(z; x, t) = a(z; t)φp(z; x, t) + b(z; t)φm(z; x, t),
φm(z; x, t) = B(z; t)ψp(z; x, t) + A(z; t)ψm(z; x, t).
� (A.3)

So, for t and z2 > c2 fixed, we have

at(z; t)φp + a(z; t)φp + bt(z; t)φm + b(z; t)φm

= (4z2 − 2u(x, t))a(z; t)φp
x + (4z2 − 2u(x, t))b(z; t)φm

x + (ux(x, t) + 1)(a(z; t)φp + b(z; t)φm).
� (A.4)

Then as x → −∞,

φ
p
x (z; x, t) = izφp(z; x, t)(1 + o(1)), φm

x (z; x, t) = −izφm(z; x, t)(1 + o(1)).
� (A.5)

Using that u(x, t), ux(x, t) → 0 as x → −∞, we find

(at(z; t)− 4iz3a(z; t))φp + (bt(z; t) + 4iz3b(z; t))φm = o(1), x → −∞.
� (A.6)
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This implies that

a(z; t) = a(z; 0) e4iz3t, b(z; t) = b(z; 0) e−4iz3t� (A.7)

and therefore

Rl(z; t) = Rl(z; 0) e−8iz3t.� (A.8)

This also holds for −c � z � c. Now, consider

Bt(z; t)ψp + B(z; t)ψp
t + At(z; t)ψm + A(z; t)ψm

t

= (4z2 − 2u(x, t))B(z; t)ψp
x + (4z2 − 2u(x, t))A(z; t)ψm

x + (ux(x, t) + 1)(B(z; t)ψp + A(z; t)φm)
� (A.9)

and then as x → +∞,

ψ
p
x (z; x, t) = iλ(z)ψp(z; x, t)(1 + o(1)), ψm

x (z; x, t) = −iλ(z)ψm(z; x, t)(1 + o(1)),� (A.10)

and u(x, t) → −c2, ux(x, t) → 0. Therefore as x → +∞

(Bt(z; t)− iλ(z)(4z2 + 2c2)B(z; t))ψp + (At(z; t) + iλ(z)(4z2 + 2c2)A(z; t))ψm = o(1).� (A.11)

Therefore,

B(z; t) = B(z; 0) e4iλ3(z)t+i6c2λ(z)t, A(z; t) = A(z; 0) e−4iλ3(z)t−i6c2λ(z)t.
� (A.12)

This then gives for s2 > c2

Rl(s; t) = Rl(s; 0) e8iλ3(s)t+i6c2λ(s)t,� (A.13)

and Rl(s; t) = Rl(s; 0) e8iλ3
+(s)t+i6c2λ+(s)t for −c � s � c.

Next, assume a(z) = a(z; 0) (and hence A(z)) has a simple zero at z′ ∈ C+. We then must 
incorporate a residue condition because N1 and N2 will no longer be analytic for z �∈ R. So, 
consider

Resz=z′ N1(z) = Resz=z′ L1(z)

[
1

a(z) 0

0 1

]
e−izxσ3 =

[
Resz=z′

ψp(z;x,t)
a(z;t) e−izx 0

]
=

[
ψp(z′;x,t)
a′(z′;0) e−izx−4iz3t 0

]

� (A.14)
because the second entry is analytic at z = z′. Then the fact that a(z′x, t) = 0 implies that 
there exists bz′(t) ∈ C such that

ψp(z′; x, t) = bz′(t)φ
m(z′; x, t), bz′(t) = bz′(0) e−4iz′3t� (A.15)

and therefore

[
ψp(z′;x,t)
a′(z′;0) e−izx−4iz3t 0

]
=

[
φm(z′; x, t)

bz′ (0)
a′(z′;0) e−iz′x−8iz′3t 0

]
= lim

z→z′
N1(z)

[
0 0

bz′ (0)
a′(z′;0) e−2iz′x−8iz′3t 0

]
.

� (A.16)
Similarly, at z = −z′

Resz=−z′ N1(z) = Resz=−z′N1(−z)σ1 = lim
z→−z′

(z + z′)N1(−z)σ1 = lim
z→z′

(−z + z′)N1(z)σ1

= − lim
z→z′

N1(z)

[
0 0

bz′ (0)
a′(z′;0) e−2iz′x−8iz′3t 0

]
σ1 = lim

z→−z′
N1(z)σ1

[
0 0

− bz′ (0)
a′(z′;0) e−2iz′x−8iz′3t 0

]
σ1.

� (A.17)
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Completing the analogous calculation for N2(z), we find

Resz=z′ N2(z) = Resz=z′ L2(z)

[
1 0
0 1

A(z;x,t)

]
eiλ(z)xσ3 =

[
Resz=z′

φm(z;x,t)
A(z;t) eiλ(z)x 0

]

=
[

φm(z′;x,t)
A′(z;0) eiλ(z′)x+4iλ(z′)t+6ic2λ(z′)t 0

]

= lim
z→z′

N2(z)

[
0 0

1
bz′ (0)A

′(z′;0) e2iλ(z′)x+8iλ(z′)t+12ic2λ(z′)t 0

]
�

(A.18)

and

Resz=−z′ N2(z) = lim
z→z′

N2(z)σ1

[
0 0

− 1
bz′ (0)A

′(z′;0) e2iλ(z′)x+8iλ(z′)t+12ic2λ(z′)t 0

]
σ1.� (A.19)

For such a value of z′ , define

c(z′) =
bz′(0)

a′(z′; 0)
, C(z′) =

1
bz′(0)A′(z′; 0)

.� (A.20)

A.1.  From residues to jumps

It will be inconvenient in what follows for us to treat residue conditions directly. So, we 
deform them to jump conditions on small circles. Assume N(z) is a vector-valued analytic 
function in a open neighborhood U of z′  that satisfies

Resz=z′ N(z) = lim
z→z′

N(z)
[

0 0
−α 0

]
, α ∈ C.� (A.21)

Choose ε > 0 small enough so that {|z − z′| = ε} ⊂ U  and define

M(z) =




N(z)
[

1 0
α

z−z′ 1

]
|z − z′| < ε,

N(z) otherwise.
� (A.22)

Then it follows that M is analytic in U \ {|z − z′| = ε} and if {|z − z′| = ε} is given a clock-
wise orientation, then

M+(s) = M−(s)
[

1 0
α

s−z′ 1

]
, |s − z′| = ε.� (A.23)

In such a way, residue conditions are equivalent to rational jump conditions.

Appendix B.  Unique solvability of the Riemann–Hilbert problems

B.1.  Unique solvability of RH problem 3

Before proving theorem 3.14 we establish some elementary facts.

Lemma B.1.  Assume Γ is an admissible contour that satisfies Γ = −Γ, with a reversal of 
orientation. Then F(z) =

[
F1(z) F2(z)

]
, where F1, F2 ∈ H2

±(Γ) satisfies

F(−z) = F(z)σ1, z ∈ C \ Γ� (B.1)
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if and only if F(z) = CΓf(z) for some f ∈ L2(Γ) (componentwise) satisfying

−f(−s) = f(s)σ1, s ∈ Γ.� (B.2)

Proof.  Assume f ∈ L2(Γ) satisfies (B.2). And consider, for z �∈ Γ,

F(z) =
1

2πi

∫

Γ

f(s)
s − z

ds =
1

2πi

∫

−Γ

f(−s)
s + z

ds =
1

2πi

∫

Γ

f(s)
s + z

σ1 ds = F(−z)σ1.

� (B.3)

Conversely, we have that F = CΓf for some f ∈ L2(Γ) and if F satisfies (B.1) then for all 
z ∈ C \ Γ

0 =
1

2πi

∫

Γ
(f(s) + f(−s)σ1)

ds
s − z

.� (B.4)

Because C+
Γ f(s)− C−

Γ f(s) = f(s) for a.e. s ∈ Γ, we find that (B.2) holds.� □ 

Definition B.2.  If Γ is admissible, define

L2
s (Γ) = L2

+s(Γ) =
{

f =
[
f1 f2

]
, f1, f2 ∈ L2(Γ), f(s) = −f(−s)σ1

}
,

L2
−s(Γ) =

{
f =

[
f1 f2

]
, f1, f2 ∈ L2(Γ), f(s) = f(−s)σ1

}
.

� (B.5)

Lemma B.3.  If Γ is admissible then

L2(Γ) = L2
s (Γ)⊕ L2

−s(Γ).� (B.6)

Proof.  For u ∈ L2(Γ) define

Pu(s) =
1
2
(u(s)− u(−s)σ1).� (B.7)

Then P is a projection onto L2
s (Γ). It also follows that I − P  maps L2(Γ) onto L2

−s(Γ).� □ 

Lemma B.4.  Suppose Γ is admissible.

	 •	� If u ∈ L2
±s(Γ) then

C−
Γ u(−s)σ1 = ±C+

Γ u(s),� (B.8)

		 and therefore

C+
Γ u(−s)σ1 = ±C−

Γ u(s).� (B.9)

	 •	�If M, P : Γ → C2×2, M, P ∈ L∞(Γ) satisfy

M(s) = σ1P(−s)σ1� (B.10)

		 then the operator

u �→ C+
Γ u · P − C−

Γ u · M = u − C−
Γ u · (P − M)� (B.11)
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		 maps L2
±s(Γ) to itself.

Proof.  The calculation above implies the first part. Let u ∈ L2
±s(Γ). Then the second part 

follows from

C+
Γ u(−s)P(−s)σ1 − C−

Γ u(−s)M(−s)σ1 = C+
Γ u(−s)σ1M(s)− C−

Γ u(−s)σ1P(s)

= ±
(
C−

Γ u(s)M(s)− C+
Γ u(s)P(s)

)
= ∓

(
C+

Γ u(s)P(s)− C−
Γ u(s)M(s)

)
.

� (B.12)□ 

Theorem B.5.  Suppose Γ is admissible and M, P : Γ → C2×2, M, P ∈ L∞(Γ) satisfy 
(B.10). Further, suppose the operator

u �→ Cu := u − C−
Γ u · (P − M)� (B.13)

is invertible on L2(Γ). Then C|L2
s (Γ)

 is invertible on L2
s (Γ).

Proof.  It suffices to show that if Cu = f where f ∈ L2
s (Γ) then u ∈ L2

s (Γ). Suppose 
u = v+ + v− where v± ∈ L2

±s(Γ), and v− �= 0. Then Cv− ∈ L2
−s(Γ), and Cv− �= 0. But 

this contradicts that f ∈ L2
s (Γ).� □ 

So, we find that any L2 solution N1 of RH problem 3 must satisfy N1 = CΓu for some 
u ∈ L2

s (Γ) and

u(s)− C−
R u(s) · (J1(s)− I) =

[
1 1

]
· (J1(s)− I),

J1(s) =




[
1 − |Rl(s)|2 −Rl(s) e2isx+8is3t

Rl(s) e−2isx−8is3t 1

]
s ∈ R,

[
1 0

− c(zj)
s−zj

e−2izjx−8iz3
j t 1

]
s ∈ Σj,

[
1 − c(zj)

s+zj
e−2izjx−8iz3

j t

0 1

]
s ∈ −Σ.

� (B.14)

We note that the operator u �→ u − C−
Γ u · (J1 − I) does not map L2

s (Γ) to itself. So, we need 
to decompose J1 first. Write

J1(s) = M1(s)P−1
1 (s) =

[
1 −Rl(−s) e2isx+8is3t

0 1

] [
1 0

Rl(s) e−2isx−8is3t 1

]
, s ∈ R,

J1(s) = P−1
1 (s), M1(s) = I, s ∈ Σj,

J1(s) = M1(s), P1(s) = I, s ∈ −Σj.

� (B.15)

Lemma B.6.  The operator

u �→ u · P1 − C−
Γ u · (M1 − P1)� (B.16)

is bounded on L2
s (Γ) to itself and if Rl ∈ L2(R) then

[
1 1

]
· (M1(·)− P1(·)) ∈ L2

s (Γ).� (B.17)

D Bilman and T Trogdon﻿Nonlinearity 33 (2020) 2211



2259

Proof.  It follows that

σ1M1(−s)σ1 = P1(s).� (B.18)

Then from lemma B.4 the lemma follows.� □ 

Lemma B.7.  The operator

u �→ u · P1 − C−
Γ u · (M1 − P1)� (B.19)

is Fredholm on L2
s (Γ) with index zero provided that Rl is continuous and decays at infinity.

Proof.  The fact that this operator is Fredholm on L2(Γ) follows from standard arguments 
[39]. This implies that the operator is Fredholm on the invariant subspace L2

s (Γ). Then replace 
Rl with αRl for 0 � α � 1. For α sufficiently small, the operator is invertible and is therefore 
index zero. It must therefore be index zero for all α.� □ 

Proof of theorem 3.14.  The unique solvability of RH problem 3 is implied by the invert-
ibility of (B.19). And to this end, because the Fredholm index of the operator is zero, it suffices 
to show that the kernel is trivial. Assume u ∈ L2

s (Γ) is an element of the kernel and define 
N(z) = CRu ∈ H2

±(Γ). It follows that N solves the L2 RH problem

N+(s) = N−(s)J1(s), s ∈ Γ, N(z) = N(−z)σ1, z ∈ C \ Γ.� (B.20)

We use another symmetry of the contour Γ. If U is a connected component of C \ Γ then so is 
U := {z̄ : z ∈ U}. Thus for f ∈ E2(U), f (·̄) ∈ E2(U) and if f ∈ E2(U) and g ∈ E2(U) then

∫

∂U
f (s)g(s̄)ds = 0.� (B.21)

We select U to be the connected component in the upper-half plane that contains the real axis 
in its boundary. The positively oriented boundary for U is then the real axis, and ∪jΣj with 
reversed orientation. Therefore

0 =
∫

R
N+(s)N−(s)

T
ds − ∑

j

∫

Σj

N−(s)N+(s̄)
T

ds,� (B.22)

0 =
∫

R
N−(s)N+(s)

T
ds − ∑

j

∫

−Σj

N+(s)N−(s̄)
T

ds.� (B.23)

Here the second line arises from similar considerations for U . Taking orientation into account 
and using the symmetry of N
∫

Σj

N−(s)N+(s̄)
T

ds = −
∫

−Σj

N−(−s)N+(−s̄)
T

ds = −
∫

−Σj

N+(s)N−(s̄)
T

ds.� (B.24)

Thus, adding (B.22) and (B.23), we have

0 = Re
∫

R
N+(s)N−(s)

T
ds.� (B.25)
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We use this to show that N(z) = 0 for z �∈ R which implies that u ≡ 0. If we set 
N(z) =

[
N1(z) N2(z)

]
, we find

∫

R
N+(s)N−(s)

T
ds =

∫

R

[∣∣N+
1 (s)

∣∣2 [1 − |Rl(s)|2] +
∣∣N+

2 (s)
∣∣2

+ N+
2 (s)N+

1 (s)Rl(−s) e2isx+8is3t + N+
2 (s)N+

1 (−s)Rl(s) e−2isx−8is3t
]

ds.
�

(B.26)
Taking the real part of this expression, we find

0 =
∫

R

[∣∣N+
1 (s)

∣∣2 [1 − |Rl(s)|2] +
∣∣N+

2 (s)
∣∣2] ds� (B.27)

implying that N+(s) = 0 and therefore N(z) = 0, because |Rl(s)| < 1 for a.e. s ∈ R [19].
� □ 

B.2.  Unique solvability for RH problem 4

The jump matrix for RH problem 4 is discontinuous and the Fredholm theory no longer 
applies. We have to perform a lengthy regularization process and then we use the fact that RH 
problem 3 has a unique solution to show that RH problem 4 has a unique solution. We peform 
deformations under the assumptions of theorem 3.15. In this section when we refer to assump-
tion (j), we are referring the j th assumption in theorem 3.15. For simplicity we assume n  =  0, 
i.e. no solitons. Because all deformations are performed in a neighborhood of the real axis the 
result immediately applies to the case of n  >  0.

The remainder of this section constitutes the proof of theorem 3.15

Proof of theorem 3.15.  From assumptions (1, 4–6, 8, 10), Rr(s) is continuous for s ∈ R 
and satisfies

Rr(s) = L−c(s) + E−c(s), E−c(s) = O(|s + c|), s → −c,� (B.28)

and L−c has an analytic extension to a neighborhood {|z + c| < ε, Im z > 0}. Note that 
Rl(s) = Rl(−s) follows from assumptions (2, 3, 7, 9). Then

N+
2 (s) = N−

2 (s)M2(s)P−1
2 (s) = N−

2 (s)
[

1 −Rr(−s) e−2iλ(s)x−8iϕ(s)t

0 1

] [
1 0

Rr(s) e2iλ(s)x+8iϕ(s)t 1

]
.

�
(B.29)

We factor

M2(s) =
[

1 −Lc(−s) e−2iλ(s)x−8iϕ(s)t

0 1

] [
1 −Ec(−s) e−2iλ(s)x−8iϕ(s)t

0 1

]
= M2,o(s)M2,e(s),

P2(s) =
[

1 0
−L−c(s) e2iλ(s)x+8iϕ(s)t 1

] [
1 0

−E−c(s) e2iλ(s)x+8iϕ(s)t 1

]
= P2,o(s)P2,e(s).

� (B.30)

Then, consider the jump matrix near s  =  −c, s  >  −c:

N+
2 (s) = N−

2 (s)M2(s)
[

0 1
1 0

]
P−1

2 (s).� (B.31)
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Fix ε > 0, and for z �∈ R∪ {z : |z + c| = ε} define

N2,1(z) = N2(z)





I |z + c| > ε,
M2,o(z) Im z < 0 and |z + c| < ε,
P2,o(z) Im z > 0 and |z + c| < ε.

� (B.32)

Then the sectionally analytic function N2,1 has the following jumps when we give the circle 
{s : |s + c| = ε} a clockwise orientation:

N+
2,1(s) = N−

2,1(s)





M2(s)P−1
2 (s) s < −c − ε and s > c,

M2,e(s)P−1
2,e (s) −c − ε < s < −c,

M2,e(s)σ1P−1
2,e (s) −c < s < −c + ε,

M2,o(s) Im s < 0, |s + c| = ε,
P2,o(s) Im s > 0, |s + c| = ε.

� (B.33)

The jump on the real axis, inside the circle, is nearly of the form:

W+(s) = W−(s)
{

σ1 s > −c,
I s < −c.� (B.34)

To find such a solution W we first perform an eigen decomposition

σ1 =
1
2

[
1 1
−1 1

] [
−1 0
0 1

] [
1 −1
1 1

]
.� (B.35)

Then we solve a matrix problem (keeping an identity condition at infinity)

V+(z) = V−(z)
[
−1 0
0 1

]
, V(z) =

[√
z+c
z−c 0

0 1

]
.� (B.36)

We find the solution

W(z) =
1
2

[
1 1
−1 1

] [√ z+c
z−c 0

0 1

] [
1 −1
1 1

]

=
1
2




√
z+c
z−c 1

−
√

z+c
z−c 1



[

1 −1
1 1

]
=

1
2



√

z+c
z−c + 1 1 −

√
z+c
z−c

1 −
√

z+c
z−c

√
z+c
z−c + 1


 .

� (B.37)

We note that W(−z) is also a solution. Then, perform the transformation, for 
z �∈ R∪ {|z + c| = ε},

N2,2(z) = N2,1(z)
{

I |z + c| > ε,
W−1(z) |z + c| < ε.� (B.38)

For −c − ε < z < −c + ε, z �= 0, the resulting jump for the function N2,2(z) is given by

G−c(s) = W−(s)M2,e(s)W−1
− (s)W+(s)P−1

2,e (s)W
−1
+ (s).� (B.39)
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We want this to be continuous and equal to the identity jump at s  =  0. Note that for 

κ(z) =
√

z+c
z−c

H(s) = W±(s)
[

1 f (s)
0 1

]
W−1

± (s) =
1
4

[
1 1
−1 1

] [
2 − f (s) f (s)κ±(s)

−f (s)κ−1
± (s) 2 + f (s)

] [
1 −1
1 1

]
.

� (B.40)

So, if f (s) = O(|s + c|) as s → −c, H(s) = I + O(|s + c|1/2) as s → −c. While the jump 
condition for N2,2(z) behaves nicely near z  =  −c, we do not know that the solution itself does.

Let Φ : R → R be infinitely differentiable, non-negative, Φ(s) = 1 for |s| < ε/4 and 
Φ(s) = 0 for |s| > ε/2. Then consider the L2 RH problem

Riemann--Hilbert Problem 5. 

L+(s) = L−(s) [I + Φ(s − c)(G−c(s)− I)] , −c − ε < s < c + ε, L(·)− I ∈ H±(R).
� (B.41)

For ε sufficiently small, it follows that this problem is uniquely solvable because the as-
sociated singular integral operator is a near-identity operator. And because the jump matrix is 
1/2-Hölder continuous by assumptions (1, 4), so is the solution, giving 1/2-Hölder continuous 
boundary values [28]. Furthermore, det L(z) �= 0. Then set

N2,3(z) = N2,1(z)
{

I |z + c| > ε,
W−1(z)L−1(z) |z − c| < ε.� (B.42)

It follows that N2,2(z) has an identity jump in a neighborhood of z  =  −c.

Lemma B.8.  Let Γ be a differentiable curve parameterized by γ : [−1, 1] → Γ, 
γ(t) = t + i�(t), �(0) = 0 and define Γε = γ((−1 + ε, 1 − ε)). Assume g is analytic in an 

the open set 
⋃

0<|r|<R(Γ2ε + ir) and satisfies

sup
−R<2r<R, r �=0

∫

Γε

|g(s + ir)|2|ds| < ∞,� (B.43)

for some R  >  0 and 0 < ε < 1/2. Then, assume the branch of z �→ z−1/2 is chosen so that 
h(z)  =  z−1/2g(z) has an isolated singularity at z  =  0. Then h is analytic at z  =  0.

Proof. First consider f (z)  =  z1/2g(z). This has an isolated singularity at z  =  0 and it satisfies

sup
0<|r|<R

∫

Γε

|f (s + ir)|2|ds| < ∞.� (B.44)

It then follows that f ∈ E2(C±) where C± =
⋃

0<r<R/2(Γε ± ir). For sufficiently small 
ε > 0

∫

∂B(0,ε)
f (z)dz =

∫

∂B(0,ε)∩C+

f (z)dz +
∫

∂B(0,ε)∩C−
f (z)dz

+
∫

Γε∩B(0,ε)
f (z)dz −

∫

Γε∩B(0,ε)
f (z)dz = 0.

� (B.45)
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The same is true for zkf (z) for all integers k  >  0. Thus f  is analytic at z  =  0. We now claim that 
f (0) = 0. Assume

f (z) = c + o(1), z → 0, c �= 0.� (B.46)

There exists δ > O, so that for |z| < δ, |f (z)| � |c|/2. Then |h(z)| � |c||z|−1/2/2 for |z| < δ. 
Then consider for 0  <  r  <  R

∫

Γε∩B(0,δ)
|h(z + ir)|2|dz| � |c|2

4

∫

Γε∩B(0,δ)
|z + ir|−1|dz|.� (B.47)

Then using the parameterization
∫

Γε∩B(0,δ)
|z + ir|−1|dz| �

∫

Γε∩B(0,δ)

|dz|
|z|+ r

�
∫ t2

t1

dt√
t2 + �2(t) + r

, t1 < 0 < t2.
� (B.48)

Then because �(t) is differentiable and and satisfies �(0) = 0, we have |�(t)| � C|t|, 
t1 � t � t2 and we are left estimating

∫ t2

t1

dt√
t2 + �2(t) + r

�
∫ t2

t1

dt√
1 + C2|t|+ r

�
1√

1 + C2
log

(
1 +

√
1 + C2t1

r

)
.� (B.49)

This right-hand side tends to ∞ as r → 0, contradicting (B.43). Thus f (0) = 0. Then it fol-

lows that 
∫

∂B(0,ε) zkh(z)dz = 0 for all positive integers k and h must be analytic at z  =  0.� □ 

Applying this lemma to N2,3(z) near z  =  −c we find that it is indeed analytic in a neighbor-
hood of z  =  −c. Specifically, each component of N2,3, inside the circle |z + c| < ε will be of 
the form

h1(z)φ1(z) +
h2(z)φ2(z)√

z + c
,� (B.50)

where φj are bounded analytic functions for Im z �= 0 and hj  satisfy the estimate 

sup0<r<R

∫ δ
−δ |hj(s ± ir)|2 ds < ∞ for some δ > 0, R  >  0. So we apply the lemma to

g(z) =
√

z + ch1(z)φ1(z) + h2(z)φ2(z).� (B.51)

We are led to the following L2 RH problem for N2,3:

Riemann--Hilbert Problem 6.  Giving the circle {|s + c| = ε} a clockwise orientation

N+
2,3(s) = N−

2,3(s)J2,3(s) = N−
2,3(s)




M2(s)P−1
2 (s) s < −c − ε and s > c,

L−(s)G−c(s)L−1
+ (s) −c − ε < s < −c + ε,

M2(s)σ1P−1
2 (s) −c + ε < s < c,

M2,o(s)W−1(s)L−1(s) Im s < 0, |s + c| = ε,
P2,o(s)W−1(s)L−1(s) Im s > 0, |s + c| = ε

� (B.52)

with N2,3(·)− I ∈ H2
±(R∪ {|s + c| = ε}).

To complete the proof of theorem 3.15 we perform the following steps:

	(1)	�We perform a similar deformation of RH problem 4 near z  =  c using symmetry consid-
erations.
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	(2)	�Then we show the resulting singular integral operator is Fredholm, and show that it is 
index zero using a homotopy argument.

	(3)	�Then to show the kernel is trivial, we show that every distinct element of the kernel results 
in a distinct vanishing solution of RH problem 3.

Step (1) is given as a RH problem. We separate (2)–(4) into three lemmas. The fact that

σ1M2(−s)σ1 = P2(s)� (B.53)

implies

σ1M2(−z)P−1
2 (−z)σ1 = σ1M2(−z)σ1σ1P−1

2 (−z)σ1 = P2(z)M−1
2 (z) =

(
M2(z)P−1

2 (z)
)−1

.
� (B.54)

This similarly holds for

σ1M2(−s)σ1P−1
2 (−s)σ1 =

(
M2(s)σ1P−1

2 (s)
)−1

.� (B.55)

This is a necessary condition for N2(−z)
[

0 1
1 0

]
= N2(z) when N2 is a solution of RH 

problem 4.
Orient the circle {|s − c| = ε} with a clockwise orientation and define an L2 RH problem 

that is regular at ±c.

Riemann--Hilbert Problem 7.  The function N2,4(·)−
[
1 1

]
∈ H2

±(Γ)

N+
2,4(s) = N−

2,4(s)J2,4(s), s ∈ Γ,� (B.56)

where

Γ = R ∪ {|s + c| = ε} ∪ {|s − c| = ε},� (B.57)

and

J2,4(s) =

{
J2,3(s) Re s � 0,
σ1J−1

2,3 (−s)σ1 Re s > 0.� (B.58)

Furthermore, N2,4 satisfies the symmetry condition

N2,4(−z)
[

0 1
1 0

]
= N2,4(z), z ∈ C \ Γ.� (B.59)

Lemma B.9.  The operator

u �→
{

u(s)− C−
Γ u(s)(J2,4(s)− I) s ∈ Γ, Re s � 0,

u(s)J−1
2,4 (s)− C−

Γ u(s)(I − J−1
2,4 (s)) s ∈ Γ, Re s > 0,� (B.60)

is Fredholm on L2
s (Γ) where Γ is given in (B.57). Furthermore, the Fredholm index is zero.

Proof.  This RH problem satisfies the zeroth-order product condition [39, definition 2.55] 
with continuous jump matrices. Furthermore, Rr in addition to being continuous, decays at 
infinity by assumption (11), thus the operator
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u �→ u − C−
Γ u · (J2,4 − I)� (B.61)

is Fredholm on L2(Γ). This implies that the operator (B.60) is also Fredholm on L2(Γ). Be-
cause of the enforced symmetry of J2,4, this operator also maps L2

s (Γ) to itself (see lemma 
B.4), and is therefore Fredholm on L2

s (Γ). Now, to show that the index is zero, we replace Rr 
with αRr for 0 � α � 1. It follows that J2,4(s) → J∞(s), uniformly for s ∈ Γ, as α → 0 where 
J∞(s) for Re s � 0 is given by

J∞(s) =
{

σ1 −c + ε < s � 0,
W−1(s) |s + c| = ε

� (B.62)

and

J∞(s) = σ1J−1
∞ (−s)σ1, Re s > 0.� (B.63)

We construct the inverse operator to

u �→ u − C−
Γ′u · (J∞ − I) = C+

Γ′u − C−
Γ′u · J∞,

Γ′ = [−c + ε, c − ε] ∪ {|s + c| = ε} ∪ {|s − c| = ε},
� (B.64)

explicitly, and use this to show that the index of (B.60) is zero.

Consider the operator

u �→ C+
Γ′ (u · W−1

+ )W+ − C−
Γ′ (u · W−1

+ )W−,� (B.65)

and its composition with (B.64) by considering

C+
Γ′ ((C+

Γ′u − C−
Γ′u · J∞) · W−1

+ )W+ = C+
Γ′u − C+

Γ′ (C−
Γ′u · W−1

− )W+ = C+
Γ′u,

C−
Γ′ ((C+

Γ′u − C−
Γ′u · J∞) · W−1

+ )W− = C−
Γ′u.

� (B.66)

This shows that (B.65) is the left inverse of (B.64). Similar considerations show it is also the 
right inverse. Now, this implies an inverse for (B.60) on L2(Γ′) when s  =  0:

u �→ C+
Γ′ (u · Ŵ)W+ − C−

Γ′ (u · Ŵ)W−, Ŵ(z) =

{
W−1

+ (z) Re z � 0,
W−1

− (z) Re z > 0.
� (B.67)

It is then enough to show that this operator maps L2
s (Γ′) to itself9. This follows from theorem 

B.5.� □ 

Lemma B.10.  The kernel of the operator (B.60) is trivial, and therefore RH problem 7 has 
a unique L2 solution for any ε > 0 sufficiently small.

Proof.  The following transformation essentially maps the function N2 to N1, with the ex-
ception of the exponentials,

9 Note that (B.60) is the identity operator on Γ \ Γ′  for s  =  0.
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T N2(z) :=





N2(z) e−(iλ(z)x+4iϕ(z)t)σ3

[
A(z) 0

0 1

]
σ1

[
1

a(z) 0

0 1

]
Im z > 0,

N2(z) e−(iλ(z)x+4iϕ(z)t)σ3

[
1 0
0 A(−z)

]
σ1

[
1 0
0 1

a(−z)

]
Im z < 0.

� (B.68)

This should be equal to N1(z) e(ixz+4ixz3t)σ3. So, let u be an element of the kernel of (B.60). 
Define for z �∈ Γ, (Γ is given in (B.57))

Y(z) =
{
CΓu(z) |z + c| < ε, |z − c| < ε,
T CΓu(z), otherwise.� (B.69)

Of particular interest are the jumps on |s ± c| = ε. On this circle for Im s > 0

Y+(s) = Y−(s)σ1

[
1

A(s) 0

0 a(s)

]
P2,o(s)W−1(z)L−1(z) := Y−(s)R(s).

� (B.70)

We must compute the inverse of this jump matrix

R−c,+(z) = L(z)W(z)P2,o(z) e−(2iλ(z)x+8iϕ(z)t)σ3

[
A(z) 0

0 1
a(z)

]
σ1� (B.71)

and we focus on the product, with the notation f (z) = −L−c(z) e2iλ(z)x+8iϕ(z)t

W(z)P−1
2,o (z) =

1
2

[
1 1
−1 1

] [√ z+c
z−c 0

0 1

] [
1 −1
1 1

] [
1 0

−f (z) 1

]

=
1
2

[
1 1
−1 1

] [√ z+c
z−c 0

0 1

] [
1 + f (z) −1
1 − f (z) 1

]

=
1
2

[
1 1
−1 1

] [
(1 + f (z))

√
z+c
z−c −

√
z+c
z−c

1 − f (z) 1

]
.

� (B.72)

We know that A(z) blows up as a square root at z  =  −c by assumptions (2, 7), so for (B.71) to 
be bounded for |z + c| � ε, Im z > 0, f (−c) = 1 is required, and because Rr is 1/2-Hölder 
continuous, we have L−c(z) = −1 + O(|z + c|1/2). This shows that (B.71) is a bounded ana-
lytic function. Similarly,

W(z)M−1
2,o (z) =

1
2

[
1 1
−1 1

] [√ z+c
z−c 0

0 1

] [
1 −1
1 1

] [
1 −f (−z)
0 1

]

=
1
2

[
1 1
−1 1

] [√ z+c
z−c 0

0 1

] [
1 −f (−z)− 1
1 1 − f (−z)

]

=
1
2

[
1 1
−1 1

] [√ z+c
z−c −

√
z+c
z−c ( f (−z) + 1)

1 1 − f (−z)

]
,

� (B.73)
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shows that

R−c,−(z) = L(z)W(z)M−1
2,o (z) e−(2iλ(z)x+8iϕ(z)t)σ3

[
1

a(−z) 0

0 A(−z)

]
σ1,

� (B.74)

is a bounded analytic function for {|z + c| < ε}, Im z < 0 because L−c(−z) = −1+ 
O(|z + c|1/2). If we define for Re z � 0

Z(z) =



CΓu(z)R−c,+(z) |z + c| < ε, Im z > 0,
CΓu(z)R−c,−(z) |z + c| < ε, Im z < 0,
T CΓu(z), otherwise

� (B.75)

and Z(z) = Z(−z)σ1 for Re z > 0, we obtain a function with L2(R) boundary values and no 
jumps on |s ± c| = ε. Then it follows that

Z(z) e(2izx+8iz3t)σ3 ,� (B.76)

is a solution of RH problem 3, by (122) and (123), with Z ∈ H2
±(R), and therefore Z = 0. 

This implies u = 0.� □ 

The last step is to establish the following injection.

Lemma B.11.  Every L2 solution of RH problem 7 corresponds to one and only one solution 
of RH problem 4.

Proof.  The careful derivation of RH problem 7 implies that each solution of RH problem 4 
can be deformed to a solution of RH problem 7 for any ε sufficiently small. Because the func-
tions L(z)W(z)P2,o(z) and L(z)W(z)M2,o(z) are bounded analytic functions in the domains 
{|z + c| < ε, Im z > 0} and {|z + c| < ε, Im z < 0}, respectively. This allows the inversion 
of the deformations, so that each L2 solution of RH problem 7 gives an L2 solution of RH 
problem 4.� □ 

Given two distinct solutions N(1)
2  and N(2)

2  of RH problem 4, they must differ at some 

point z*, N(1)
2 (z∗) �= N(2)

2 (z∗), z∗ �∈ R. Then min{|z∗ − c|, |z∗ + c|} > δ for some δ > 0. 

We perform the deformation to RH problem 7 for 0 < ε < δ for each solution, and lemma 

B.10 gives a contradiction, and establishes uniqueness. The existence is also guaranteed by 
lemmas B.10 and B.11.
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