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Abstract
We investigate the superfluid-to-normal zero temperature quantum phase transitions of
asymmetric two-component Fermi gases as a function of the chemical potential imbalance h. The
calculations are performed for homogeneous and trapped imbalanced systems. We concentrate at
unitarity, characterized by a divergent interaction parameter kF a, where most of the current
experiments are realized. For homogeneous systems, we determine the critical chemical potential
imbalance hc at which possible phase transitions occur. In the case of trapped gases, we show
how hc can be consistently determined from experimental observations.

Keywords: superfluidity of a cold Fermi gas, imbalanced Fermi gas, superfluid-normal quantum
phase transition
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Introduction

The extraordinary experimental advances in the physics of
ultracold atoms in the last few years, has given to these systems
the possibility to serve as a laboratory for the investigation (and
simulation) of several theoretical ideas of physics, from con-
densed matter to high energy physics [1]. Indeed, the recent
observation of superfluidity in ultracold Fermi gases paved the
way between atomic and solid state physics [2, 3].

Fermionic particles with different spin configurations,
occupying states with equal and opposite momenta close to
their common Fermi surface, form pairs. This is explained by
the well known BCS theory of superconductivity. The presence
of spin imbalance prevents this mechanism, since there are two
Fermi surfaces now, that do not coincide and pairing with zero
total momentum are disadvantageous to occur [4]. At zero
temperature T and for small asymmetries between the two spin
species, the system is still a superfluid. However, when the
imbalance between the two Fermi surfaces is too large, super-
fluidity is broken apart and the system undergoes a quantum
phase transition toward a normal state. The existence of such a
transition at a critical value of the polarization was first pro-
posed by Clogston [5] and Chandrasekhar [6], who predicted
the occurrence of a first-order phase transition from the super-
fluid to the normal state. This is acknowledged as the CC limit

of superfluidity, and was originally conjectured in the context of
conventional superconductivity, as ‘the maximum field at which
a superconductor maintains superconductivity’ [6]. The CC
transition takes place when the polarization is large enough such
that the normal phase becomes energetically more favorable
than the superfluid state.

Experimental investigations with ultracold imbalanced
Fermi gases, where the number of atoms in the two spin states
is different, have shown that there can be more than (only) the
distinct superfluid and normal phases. The first order trans-
ition between the superfluid at equal spin population and the
imbalanced normal mixture brings about a phase separation
between coexisting normal and superfluid phases in three-
dimensional (3d) [7, 8] and two-dimensional (2d) systems
[9–11]. Recent experiments using tomographic techniques,
have found a sharp separation between a superfluid core and a
partially polarized (PP) normal phase [12].

Thus, the exploration of a two-component Fermi gas with
imbalanced populations is an active area of research in the
field of ultracold atoms from both theoretical [4, 13–15] and
experimental points of view [16–20], which has given the
opportunity for testing old and new ideas. As examples, we
point out the search for the elusive FFLO phase, and for a
connection between quantum phase transitions and quantum
information [1, 21], respectively.
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In this work we investigate the main zero temperature
(quantum) superfluid-normal phase transitions that may occur
in Fermi gases with imbalanced spin populations. We study
the phase transitions that happens induced by an increase in
the chemical potential imbalance h=(μ↑−μ↓)/2, both in
homogeneous and trapped 3d systems, and focus on the
universal regime, at which the dimensionless parameter kF a
diverges. We find the critical chemical potential imbalance
responsible for the phase transitions from the superfluid to the
normal-mixed and from the normal-mixed to a fully polarized
(FP) phase and finally, from the FP phase to the vacuum, for
homogeneous and non-homogeneous systems. For the non-
homogeneous (i.e. trapped) situation, we use the ratios of the
cloud radii provided by experimental measurements in a
trapped imbalanced Fermi gas by Shin et al [22] in order to
determine

m
rhc ( ) consistently, where r is the position in the

trap. We set = 1 throughout this paper.

Equilibrium in homogeneous systems

The position of the phase transition from the superfluid to the
normal phase can be found analytically, by imposing that the
chemical potentials and pressures in the superfluid and normal
phases match [7, 8, 23]. The mean-field (MF) pressure of an
ideal PP normal state, is given by
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where μ↑=μ+h, and μ↓=μ−h are the chemical
potentials of the spin-up and spin-down particles, and m is the
fermion mass.

Universality at the unitary limit allows one to write the
pressure in the superfluid phase (SP) as [24, 25]
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where ξ is an universal parameter, which is obtained from
theoretical (quantum Monte Carlo (QMC)) calculations [23,
26–28], as well as from experiments [17, 29–31].

The equilibrium between the two phases is reached when
m m=P PN S( ) ( ), and m m m= +  2( ) [7, 8], which gives
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As pointed out in [32], the authors of [23] assumed that the
transition is between the SP and the FP normal phase , which

implies in setting h=μ in equation (3), yielding
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On the other hand, at the universal regime the pairing gap is
Δ=β μ, where QMC results give ξ∼0.42(1) and β∼1.2
(1). Then, they found [23]
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However, one striking feature of [16] is the observation
of three different regions (phases) in the cloud. At the center,
they observed a superfluid core, where the densities of the two
spin states are equal, then an intermediate normal shell,
containing equal densities of the two spin states, and finally
an outer region, with only atoms of the majority component.

Based on this fact, we now consider both populations in
the intermediate normal phase, and expand equation (3) up to
second order in h/μ and combine this result with the gap at
the universal regime to find the ratio
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Plugging the values of ξ and β into the above equation we
find hc/Δ;0.81.

However, this result is not reliable since this equation
gives an wrong result for the maximum chemical potential
imbalance
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This result is wrong by three reasons:
(i) it was obtained under the assumption that mh 1 ,

and the value found is >1;
(ii) this hc>hmax, where hmax is the maximum value for

the MF pressure in equation (1), which is hmax=μ such that
hmax/μ=1 (meaning that from equation (1) the normal
phase is FP at hmax);

(iii) it was obtained from expression(1) which com-
pletely neglects interactions in the normal phase.

Then, we have seen that the problem in obtaining the
correct critical chemical polarization at which the SP−N
phase transition occurs is not only due to do not taking into
account both species in the normal phase as in equation (4),
but also, and mainly, due to the fact that the superfluid
pressure PS(μ) in equation (2) is valid at unitarity, while

mPN ( ) in equation (1) is the pressure of an ideal (not-
interacting) imbalanced Fermi gas.

Let us now take the MF pressure in the BCS state
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where mD = p-e
e

k a
0

2 7 3 2 F( ) ∣ ∣ is the BCS pairing gap.

Equating the pressures of the BCS and normal state we find
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As before, we expand the above equation up to second order
in h/μ, which gives
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whose solution gives the well known Chandrasekhar-Clog-
ston (CC) limit of superfluidity
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Therefore, the weak-coupling MF solution is consistent and
valid.

Effect of interactions in the normal phase

One of the main effects of interactions is the modification of
the chemical potentials of the spin- and spin- species. The
failure of equation (1) in describing the SF-N phase transition
is due to the fact that this equation can not be used beyond the
weak-coupling MF limit, as in equation (11). To have a
correct description of the phase transition in the strong cou-
pling limit and mainly, in the unitary limit, the chemical
potentials have to be modified accordingly in order to take
into account the effects of the interactions. In other words, the
chemical potentials μ↑ and μ↓ in equation (1) are the initial
ones, which do not depend on the interactions.

We have just seen that at the unitary limit m x= EF ,
where EF is the Fermi energy of a noninteracting gas of
density = = n n n , and ξ is the universal parameter we have
introduced before.

We follow [33] and write the equation of the pressure of
a normal mixed (N-M) state, as a sum of the pressures of an
ideal gas of majority atoms with chemical potential m and an
ideal gas of polarons with chemical potential given at uni-
tarity by m m= Ap , with A=−0.61,
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where m* is the effective polaron mass, and h m mº  .
We rewrite equation (2) as
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The equilibrium conditions (m m m= +  2( ) and m =PS( )
m-
PN M ( )) between the N-M and S phase give
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We solve this equation for m*=1.22 m and find

h ~ 0.061, 15c1 ( )

which is near the experimental value ηc1∼0.065, [18].
The ratio η of the chemical potentials can be written as
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equation (4) is given by using the above equation by
ηc=(2ξ)3/5−1∼−0.099. However, as we have men-
tioned before, this value of hc/μ (and consequently ηc) cor-
responds to a transition from the SP to a FP normal phase,
which is not the situation found in experiments [16].

From equation (16) one quickly finds
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This equation allows us to obtain dm m m= hc c1 1 as a
function of ηc1 from equation (15)
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which is between the values found by Frank et al [34], which
obtained (δμ/μ)c=1.09, Lobo et al [35], that found
(δμ/μ)c=0.96, and Boettcher et al, which found
(δμ/μ)c=0.83 [36]. The (δμ/μ)c from equation (18) yields

dm
bD

= »
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0.74, 19c ( )

where the MF result from equation (11) gives »dm
D

0.71c .

There is also the investigation of the ratios dm
m c

( ) and
dm
D

c with

MF plus first order of kFa corrections [37].
The δμc found above sets the transition from the super-

fluid to a normal mixed or, as we have mentioned earlier,
intermediate phase. There is another phase transition that
occurs from this normal polarized (mixed) to a FP normal
phase, that we now discuss. The pressure of the (non-
interacting) FP normal phase is given by
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Equating the pressures of the N-M and N-FP normal phases,
we immediately find
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which has a (unique) solution
h = - = -A 0.615, 22c2 ∣ ∣ ( )

which is in agreement with the interval obtained by Chevy in
[25] by a different manner: −0.62<ηc2<−0.61. The ratio

3

J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 085301 H Caldas



ηc2 fixes the corresponding saturation field (h/μ)s [34]
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Equilibrium in trapped systems

As we have seen in the previous section, the superfluid-nor-
mal and mixed-normal-fully polarized quantum phase tran-
sitions are driven by the ratio h/μ. This ratio has been
inferred from in situ imaging of the density profiles in a
trapped imbalanced Fermi gas by Shin et al [22].

Thus, since experiments take place in the presence of a
trapping potential V(r), we want to investigate the effects of
the trap in these phase transitions. To account for the effect of
an external harmonic confining potential, the system is taken
to be locally uniform within the local density approximation
(LDA), with a spatially varying local chemical potential,
which is given by
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where m m=  h 2( ) are the global chemical potentials we
defined before, and we consider a spherical trap without loss
of generality w=V r m r1

2
2 2( ) . Here ω is the radial trap fre-

quency, and r is the spatial extent of the cloud in the radial
direction.

It is interesting to notice that the average chemical
potential is independent of the ‘field’ h but varies (with
respect to the position r) across the trap
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where m m m= +  2( ) , while the chemical potential differ-
ence

dm dm= = =r r h0 2 , 26( ) ( ) ( )

is constant throughout the trap, but depends on h.
The concentric spheres with the different phases have the

following radii hierarchy < < R R RSF [12, 22]. For
r<RSF the gas is in the superfluid (fully paired) state,

< < R r RSF is the rim of the normal intermediate phase, and
< < R r R is the region where the gas is FP.
The critical radius RSF is determined through the CC

criterion mD = =p-R R e h2SF e SF
k R a2 7 3 2 F SF( )( ) ( ) ( ) ∣ ∣ . We

approximate the solution for RSF neglecting the dependence
of the local Fermi wave vector m=k R m R2F SF SF( ) ( ) on
RSF, and find
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Besides, a simple calculation shows that =RTF
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The chemical potential ratio in the trap is given by [22]
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the thermodynamic equilibrium condition requires m =
m m+  2( ) . Then we have
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The global chemical potential μ of a fully-paired superfluid in
the core is given m x x p= = n m6 2F s

2 2 3( ) , where òF is the
local Fermi energy and ns is the majority (or minority) density
at the center of the trap. Besides, m p= n m6 22

0
2 3( ) . This

finally yields
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where º x r R .
The measured values [22] for the ratio of the radius Rc of

the balanced superfluid in the center of the trap to the outer
radius R of the FP gas at the edge is =R R 0.43c , and the
normalized central density ns/n0=1.72, with ξ=0.42
equation (32) gives h h= =R R 0.03c c( ) .

In figure 1 we show the behavior of η(x) as a function of
x for ξ=0.42 and ns/n0=1.72. The region between zero
and the blue point is the region in the trap with the balanced
superfluid (SF). The region between the blue and green point
corresponds to the PP normal phase, while the green and
some another point (not shown) refers to the FP region.

The condition η(x)=0 yields the value of x at which the

ratio
m

m




r

r

( )
( )

changes sign along the (radial) position in the trap.

Notice that with these measured values of ξ and ns/n0, η
(x)=0 at x= - »x n n2 1 0.45s 0

2 3( ) which is close to
the measured value =R R 0.43c . Besides, in order this point
to exist it is necessary to have x n n 1 2s 0

2 3( ) i.e.
m m  1 2.

With equation (17) it was found [22]
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The measured ratio of the minority to the majority radii
= R R 0.728, yielding h h= » -  R R 0.69( ) , which
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gives a saturation field
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However, equation (17) was derived for the homogeneous
situation, V(r)=0. In order to derive an equation for h/μ
which depends on the position r in the trap, we go back to the
definition of η(r), and derive an equation for h/μ which is r-
dependent
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Inverting the equation above we find h=
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x,h h ( ), which is

given by
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with η(x) given by equation (32).
With the values used before for =R R 0.43c ,

h =R R 0.03c( ) , ξ=0.42, ns/n0=1.72, and also the
measured value of »R R 0.95TF [22], from equation (36) we
find
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Notice that if one would like to know what would be the result of
equation (36) if that equation did not depend on r, we take x=0

in equation (36), which gives h= = -
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that, for η=0.03, yields h= = »
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( )( , which

is the result in equation (33). However, for η=−0.69 we find
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s
( )( , which is a much lower value

than the one in equation (34).
To find the transition from FP phase, of the majority

species with boundary at R , and the vacuum, with no parti-
cles, we insert equation (32) into equation (36), and obtain
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In homogeneous systems, the transition to vacuum is given by
m=hm ∣ ∣ [34, 38].

In figure 2 we show the sketch of the zero temperature
phase diagram of the trapped imbalanced Fermi gas at uni-
tarity. The ‘effective’ fields and order of the quantum phase
transitions are hc/μ=0.79, a first-order phase transition from
the unpolarized SF to a PP normal phase, hs/μ=1.06, a
second-order phase transition from the PP to the FP normal
phase [22, 38], and the maximum field which sets the trans-
ition from FP normal phase to the vacuum, hm/μ=1.41,
which is also of second-order.

Conclusions and outlook

We have reinvestigated the various quantum phase transitions
that may happen in a cold Fermi gas with imbalanced spin
populations, triggered by the ratio of the effective Zeeman
magnetic field h to the chemical potential μ, h/μ. The ana-
lysis has been performed for both homogeneous and trapped
systems, focusing on the phase transitions from superfluid to
normal-mixed (or PP), from normal-mixed to FP, and finally,
from FP to the vacuum.

For a comparison, some results from several approaches for
the superfluid-normal phase transition are presented in table 1.

It is important to mention that, as pointed out in [34], the
value of (h/μ)c≈0.95 found for h =R R 0.03c( ) was for a

Figure 1. The chemical potential ratio η(x) as a function of the
‘normalized’ position in the trap = x r R . The blue point
corresponds to the position =R R 0.43c , while the green one refers
to = R R 0.728.

Figure 2. The zero temperature phase diagram of a trapped
imbalanced Fermi gas at unitarity, as seen in experiments [22].

5

J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 085301 H Caldas



Bertsch parameter ξ=0.42, and that for the measured value
ξ=0.37 [41, 42], equation (32) gives h x = =R R , 0.37c( )
-0.15, which by equation (17) leads to the much larger critical
field (h/μ)c≈1.35. Besides, h = - R R 0.99( ) for ξ=0.37,
gives the value (h/μ)s≈400.6. We find that these huge values
are due to the use of (h/μ) valid for homogeneous systems,
equation (17), together with h r R( ) from equation (32), which
clearly depends on the position in the trap.

We have then derived a consistent equation for h/μ as a
function of the ratio r R , equation (36). Thus, with equation (36)
we find for ξ=0.37, (h/μ)c≈1.063, (h/μ)s≈1.4, and with
equation (39), (h/μ)m=1.86, respectively.

As mentioned in [34], a very important, and still open
issue, is the precise nature of the ground state in the regime
hc<h<hs. As plans for a future work, we intend to
investigate the possible phases that may arise in this adverse
and, at the same time, intriguing regime, and the respective
phase transitions associated to them. One phase which is a
potential candidate to appear in this regime is the elusive
Fulde–Ferrell–Larkin–Ocvhinnikov (FFLO) state [43–45].
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