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Abstract. We consider a static, axially symmetric spacetime describing the superposition
of a Schwarzschild black hole (BH) with a thin and heavy accretion disk. The BH-disk
configuration is a solution of the Einstein field equations within the Weyl class. The disk
is sourced by a distributional energy-momentum tensor and it is located at the set of fixed
points of the geometry’s Z2 symmetry, i.e., at the equatorial plane. It can be interpreted
as two streams of counter-rotating particles, yielding a total vanishing angular momentum.
The phenomenology of the composed system depends on two parameters: the fraction of the
total mass in the disk, m, and the location of the inner edge of the disk, a. We start by
determining the sub-region of the space of parameters wherein the solution is physical, by
requiring the velocity of the disk particles to be sub-luminal and real. Then, we study the null
geodesic flow by performing backwards ray-tracing under two scenarios. In the first scenario
the composed system is illuminated by the disk and in the second scenario the composed
system is illuminated by a far-away celestial sphere. Both cases show that, as m grows, the
shadow becomes more prolate. Additionally, the first scenario makes clear that as m grows,
for fixed a, the geometrically thin disk appears optically enlarged, i.e., thicker, when observed
from the equatorial plane. This is to due to light rays that are bent towards the disk, when
backwards ray traced. In the second scenario, these light rays can cross the disk (which is
assumed to be transparent) and may oscillate up to a few times before reaching the far away
celestial sphere. Consequently, an almost equatorial observer sees different patches of the
sky near the equatorial plane, as a chaotic “mirage”. Indeed, for neighbouring observation
angles, different sets of oscillating light rays can end up on distinct regions of the far away
sky. As m→ 0 one recovers the standard test, i.e., negligible mass, disk appearance.
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1 Introduction

Ground-breaking observations by the Event Horizon Telescope collaboration provided the
first imaging of horizon scale structure, and in particular the lensing ring of an astrophysical
black hole (BH) [1, 2]. Many astrophysical BHs are believed to be surrounded by accretion
disks. Typically, the latter are modelled as having a minor effect on the spacetime geometry,
and treated as test disks. The first computer image of a BH surrounded by an emitting
accretion thin disk was obtained in 1979 by Luminet, under this assumption [3]. For compar-
ison purposes with the results in this paper, an image of a Schwarzschild BH surrounded by
an emitting, thin and negligible mass accretion disk, produced from the setup in this work,
is exhibited in figure 1. It is nonetheless theoretically, and perhaps even astrophysically,
interesting to inquire what would be the effect of a heavy accretion disk, which backreacts
non-negligibly on the spacetime geometry. How does such a disk distort the BH shadow and
the lensing of light by a BH? This paper will address this question.

Tackling such question finds, however, the immediate hurdle that the Einstein field
equations are non-linear. No superposition principle holds, in general, allowing a simple,
preferably analytic, construction of a spacetime describing a BH with a heavy accretion
disk, even if the solutions describing these two ingredients were separately known. There
are, however, two remarkable instances where a superposition principle holds in the fully
non-linear theory of general relativity, describing strong gravity systems.

The first instance occurs in Einstein-Maxwell theory. An appropriate ansatz makes
the full Einstein-Maxwell equations reduce to a single harmonic equation. Such a linear
equation admits the superposition of different harmonic functions, with poles at different
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Figure 1. A Schwarzschild BH surrounded by a thin, test, accretion disk. The disk is static. So
there is no left-right asymmetry, unlike the classical image in [3]. Radiation is sourced by the disk,
which is on the equatorial plane (θ = 90◦) and it is opaque. It has an inner edge at the innermost
stable circular orbit (ISCO), a decaying luminosity profile, and an outer edge at certain radius. The
observer is at θ = 86◦ and at an areal radius of 20M , where M is the BH mass. The frontal part
of the disk (with respect to the observer) is seen at the equator, whereas the part behind the BH is
seen above and below the BH shadow, due to light bending. The BH shadow is surrounded by a thin
bright ring, corresponding to the spherical photon orbit.

spacetime points. This multi-centre solution was found, historically, by Majumdar [4] and
Papapetrou [5]. In electro-vacuum, it was correctly interpreted by Hartle and Hawking [6] as
the spacetime of many extremal Reissner-Nordström BHs, in equilibrium due to a no-force
condition, resulting from the cancellation of their mutual gravitational attraction by their
precisely equal mutual electric repulsion. This is an example of a complete linearisation of
the full Einstein equations which finds many cousin examples in supergravity theories —
see e.g. [7] —, being closely connected to supersymmetry [8, 9]. Due to the necessity of
gauge charges, however, it has met little astrophysical interest, and no connection to the
setup of an astrophysical BH surrounded by a heavy accretion disk can be envisaged from
this construction.

The second instance occurs in vacuum. Weyl [10] first considered the problem of static,
axially symmetric solutions of the vacuum Einstein field equations. In the appropriate gauge,
the field equations for one of the two metric functions, φ, yield a harmonic equation in an
(auxiliary) flat Euclidean 3-space. This equation admits a superposition principle. The
second function, however, is determined non-linearly by the first function, so that Weyl
solutions retain the non-linearities of the full theory. Nonetheless, one can superimpose
two (or more) Weyl solutions in an unambiguous fashion by considering the sum of the
corresponding φ solutions. In this way, for instance, a superposition of two [11] (or more,
if collinear, [12]) Schwarzschild BHs can be constructed. The BHs interact and are actually
sustained by conical singularities [13]. More relevant for our goal, one can superimpose a BH
with a heavy accretion disk.

In 1994, Lemos and Letelier found a family of Weyl solutions describing a relativistic
thin disk around a BH, with interesting physical properties [14]. The Lemos-Letelier disk,
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dubbed LL disk hereafter, has support on the equatorial plane only, wherein a non-zero
energy-momentum tensor exists, defined as a Dirac delta function distribution. Moreover,
the disk has an inner edge at some radial coordinate, making it possible, this way, to eliminate
the necessity for unphysical matter in the energy-momentum tensor. Such unphysical matter
was a necessity in previous Weyl disk-BH solutions, wherein the disk extended all the way
until the event horizon [15].

In this paper we shall use the composed Weyl solution describing the superposition of
a Schwarzschild BH with the LL disk, the BH+LL disk solution found in [14], as a proxy
to a realistic BH + heavy accretion disk system, to infer the impact of having a non-test
accretion disk on the lensing and BH shadow — see e.g. [16, 17] for reviews on lensing and
BH shadows. To do so we shall perform backwards ray-tracing on this background using the
code and setup we have developed previously — see e.g. [18–20] and in particular [21, 22]
for previous applications to Weyl solutions. A second independent code was developed for
this work, as reported below, with consistent results. As we shall see, a heavy accretion disk
introduces qualitatively new features. In particular there is a deformation of the shadow
shape, becoming more prolate as the disk contributes to a higher fraction of the total mass.
Moreover, there is an optical enlargement of the thin disk, which appears thicker when
observed from the equatorial plane, since light rays are bent towards the disk. Finally, when
the disk is assumed to be transparent, light rays can oscillate a few times around the heavy
disk and yield an observation of different patches of the sky, as a sort of chaotic mirage, near
the (would be) image of the equatorial plane. An earlier study of timelike geodesics on this
(and other) BH plus disk background(s) can be found in [23–27], where, in particular, chaotic
behaviour was also described.

This paper is organised as follows. In section 2 we briefly review Weyl solutions and
present the Weyl description of the Schwarzschild BH, the LL disk solution, and the composed
BH+LL disk system. In particular we analyse the parameter space determining the part
wherein the physically most relevant solutions exist. In section 3 we describe briefly the ray-
tracing codes and the two physical setups that will be used in the next section. In section 4
we present our result, including a gallery of images obtained from the ray-tracing to assess the
impact of a progressively more massive disk. The discussion of some photon trajectories is
also presented to interpret the ray-tracing images. Closing remarks are presented in section 5,
where we exhibit the analogue of figure 1 for a composed BH+LL disk system, to visually
illustrate in a didactic way the impact of a heavy accretion disk. An appendix discusses
a particular feature in some ray-tracing images, that we dub “earlobes”. Natural units
G = 1 = c will be assumed throughout the paper.

2 Weyl solutions

2.1 Weyl ansatz and field equations

The ansatz for a static and axisymmetric spacetime is given, in Weyl coordinates (t, ρ, z, ϕ), by

ds2 = −eφ(ρ,z)dt2 + e−φ(ρ,z)
[
eν(ρ,z)(dρ2 + dz2) + ρ2dϕ2

]
, (2.1)

where the metric functions φ(ρ, z) and ν(ρ, z) only depend on ρ and z. Inserting the
ansatz (2.1) into the vacuum Einstein’s equations, Rµν = 0, yields a Laplace equation

∆E3φ = 0 , (2.2a)
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where E3 is flat Euclidean 3-space in cylindrical coordinates and ∆ is the Laplacian operator
on this space. The function ν is then determined as a line integral from the derivatives of φ:

ν[φ] =
1

2

∫
ρ
[
(φ2,ρ − φ2,z)dρ+ 2φ,ρφ,zdz

]
. (2.2b)

The linearity of Laplace’s equation guarantees that a superposition of two or more solutions
is still a solution. However, the same does not hold for ν[φ]. If φ = φ1+φ2, then, from (2.2b):

ν[φ1 + φ2] = ν[φ1] + ν[φ2] + ν[φ1, φ2] , (2.3)

where

ν[φ1, φ2] =

∫
ρ
[
(φ1,ρφ2,ρ − φ1,zφ2,z)dρ+ (φ1,ρφ2,z + φ1,zφ2,ρ)dz

]
, (2.4)

encodes the impact of the non-linearities on ν.
In the following we shall superpose a Schwarzschild BH and a thin massive LL disk

using this formalism [14].

2.2 The Schwarzschild BH in Weyl coordinates

The Schwarzschild BH in Weyl coordinates (2.1) is described by the following φ = φBH

function:

φBH = log

(
d+ + d− − 2MBH

d+ + d− + 2MBH

)
, (2.5)

where
d± ≡

√
ρ2 + (z ±MBH)2 . (2.6)

This φ-potential is defined by a single parameter, the BH mass, MBH. This potential rep-
resents the Newtonian gravitational potential of an infinitesimally thin rod located at ρ = 0
and −MBH 6 z 6MBH. This becomes clear when plotting this potential, which is exhibited
in figure 2 (left panel) in Weyl coordinates. The second metric function for the Schwarzschild
BH in Weyl coordinates reads

νBH = log

[
(d+ + d−)2 − 4M2

BH

4d+d−

]
. (2.7)

2.3 The LL disk

2.3.1 The metric potentials of the LL disk

The LL disk was obtained from an earlier disk solution, the Morgan-Morgan disk [15]. The
latter possesses an outer edge, but not an inner edge. This makes it less physically relevant,
as some of the particles that compose the disk would extend all the way up to the location of
the BH horizon and would possess tachyonic speeds [14]. The LL disk [14] is then found by
inverting the Morgan-Morgan disk. This yields a static disk with an inner edge, made of two
streams of counter-rotating particles [28–30], with “as many particles rotating to one side
as to the other” [14]. The result of this counter-rotation is a zero net angular momentum,
which allows the existence of a static disk in equilibrium with the BH.

The Morgan-Morgan disk potential [15] is most easily expressed in ellipsoidal coordinates
(ξ, η), where −1 6 η 6 1 and 0 6 ξ <∞:

φMMD = −2MMMD

a

{
cot−1 ξ +

1

4

[(
3ξ2 + 1

)
cot−1 ξ − 3ξ

]
×
(
3η2 − 1

)}
. (2.8)
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Figure 2. The φ potential for the Schwarzschild BH (left panel) and LL disk (right panel) with
a = 3.0, in Weyl coordinates. Lines with φ = constant are represented in black. All quantities are
normalised to the corresponding total mass.

The ellipsoidal coordinates are related to Weyl coordinates by:

ρ2 = a2(1 + ξ2)(1− η2) , z = aξη . (2.9)

Eq. (2.8) depends on two parameters: MMMD is the mass of the disk and a sets the outer
edge of the disk, which is at ρ = a.

The inversion yielding the LL disk is a Kelvin transformation [31], that maps harmonic
functions into harmonic functions. This transformation acts on the Weyl coordinates as

(ρ, z)→ a2

ρ2 + z2
(ρ, z) , (2.10)

so that ρ = a becomes now the inner edge of the LL disk. The Kelvin transformation acts
on the potential (2.8) as

φLLD(ρ, z) =
a√

ρ2 + z2
φMMD

(
a2ρ

ρ2 + z2
,

a2z

ρ2 + z2

)
. (2.11)

This yields:

φLLD =
MLLD

√
a2 + χ− ρ2 − z2

(
−3a2 + 3χ+ ρ2 + z2

)
√

2π (ρ2 + z2)2

−
2MLLD

[
a2
(
2z2 − ρ2

)
+ 2

(
ρ2 + z2

)2]
π (ρ2 + z2)5/2

tan−1

(√
2(ρ2 + z2)

a2 + χ− ρ2 − z2

)
,

(2.12)

where

χ(ρ, z) ≡
√
a4 + 2a2(z2 − ρ2) + (ρ2 + z2)2 . (2.13)

In (2.12) the relation cot−1(ξ) = tan−1(1/ξ) (ξ ≥ 0) was used.
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Eq. (2.12) depends on two parameters: MLLD is the mass of the LL disk and a now sets
the inner edge of the disk, which is at ρ = a. The relation between the masses MMMD and
MLLD appearing in equations (2.8) and (2.12), is [14]

MLLD =
3

4
πMMMD . (2.14)

The potential (2.12) is exhibited in figure 2 (right panel) in Weyl coordinates. The po-
tential is sourced at the equatorial plane z = 0. It is everywhere continuous, but (generically)
not smooth at z = 0. This allows us to define the energy-momentum tensor of the disk as
a distribution. The ν metric function of the LL disk can be obtained either from (2.2b) or
from the Kelvin transformation of the corresponding potential of the Morgan-Morgan disk.
Its expression is, however, long and we shall not display it here.

2.3.2 The energy-momentum tensor of the LL disk

The z-derivatives of the LL disk metric, at the disk, are discontinuous. Expanding the metric
immediately above (+) and below (−) the plane of the disk at z = 0 yields [14] (see [32] for
a pedagogical treatment, see also [33]):

gµν = g0µν + z g±µν,z

∣∣
z=0

+
1

2
z2 g±µν,zz

∣∣
z=0

+ . . . , (2.15)

where g0µν is the value of the metric at z = 0. The discontinuities of the metric z-derivatives
are denoted

bµν ≡ g+µν,z
∣∣
z=0
− g−µν,z

∣∣
z=0

. (2.16)

Then, the discontinuities of the Christoffel symbols are denoted as[
Γαµν
]
≡ Γα+µν − Γα−µν =

1

2
(δzµb

α
ν + δzνb

α
µ − gαzbµν) . (2.17)

The Riemann tensor is defined as a distribution on the disk, Rαβµν = [Rαβµν ] δ(z). One
obtains for the Ricci tensor and scalar:

[Rβν ] = gαµ [Rαβµν ] =
1

2

(
δzβb

z
ν − gzzbνβ + δzνb

z
β − δzβδzνbαα

)
. (2.18)

[R] = gβν [Rβν ] = bzz − gzzbαα . (2.19)

Thus, the distributed energy-momentum tensor [Tµν ] of the disk is obtained as

8π [Tµν ] = [Rµν ]− 1

2
δµν [R] . (2.20)

The energy-momentum tensor, Tµν = [Tµν ] δ(z), has the following non-zero components, in
terms of the potentials φ, ν and derivatives defined in the (+) branch:

ε = −T tt = eφ−ν(2− ρφ,ρ)φ,z δ(z) , (2.21a)

pϕϕ = Tϕϕ = eφ−νρφ,ρφ,z δ(z) , (2.21b)

T ρρ = T zz = 0 , (2.21c)

where ε is the energy density, pϕϕ is the pressure density [29], and the factor of 8π is absorbed
into the definition of [Tµν ].
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Figure 3. The φ potential for the composed Schwarzschild BH plus LL disk system, in Weyl co-
ordinates. (Left panel) m = 0.1. (Right panel) m = 0.6. For both cases a = 3.0. As m increases,
corresponding to a disk with a larger fraction of the total mass, the potential φBH+LLD becomes less
smooth on the equator and the source on the z axis decreases in size.

2.4 The composed system: BH+LL disk

Due to the linearity of the φ equation (2.2a), the composed BH-disk system has a φ potential
given by

φBH+LLD = φBH + φLLD , (2.22)

where the two pieces are given by (2.5) and (2.12), respectively. The ν potential can be
obtained by integrating (2.2b), which can always be done numerically.

The composed system is described by three parameters: the BH and disk masses,
MBH,MLLD and the ρ coordinate of the inner edge of the disk, a. We can interpret the
total mass as setting an overall scale. Moreover, we normalise the total mass to unity, i.e.,
we use units where the total mass sets the scale:

MLLD +MBH = 1 . (2.23)

Thus, the phenomenology will depend on, say, the fraction of the total mass in the disk:

m ≡ MLLD

MLLD +MBH
, m ∈ [0, 1] . (2.24)

In figure 3 we plot the potential φBH+LLD for two different mass ratios of the composed
system, for the same value of a.

2.5 The parameters space of astrophysical solutions

As mentioned before, solutions describing Morgan-Morgan disks around a BH always possess
some particles with tachyonic speeds. This pathology can be cured by replacing the latter
disks by LL disks; but since the inner edge of the disk is a free parameter, there are also
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Figure 4. Assessment of the physical viability of the composed BH-disk solutions in the (m,a)
domain. The regions in grey, classified as I or II, are physically excluded on the grounds of the disk
having tachyonic particles, particles with complex speed or both (for different sets of particles). The
non-excluded region is divided into subregions A, B and C — see text for details, see also figure 5.

solutions with this pathology within the LL class. Thus, one has to study what are the
solutions describing the composed system of a BH with a LL disk that are physically sound.

The velocity of the disk particles is given by [14, 30]

V 2 =
pϕϕ
ε
, (2.25)

where pϕϕ and ε are defined in (2.21). A compact expression is provided by:

V 2 =
κ

1− κ
, κ ≡ m

ρ

(
1− 3

2

a2

ρ2

)
+

1−m√
ρ2 + [1−m]2

.

A physical disk would necessarily satisfy (0 6 V 2 6 1) for all ρ > a. If a spacetime obeys
either of the two following conditions it must be excluded, on physical grounds:

• (Exclusion type I): V 2 > 1 for some ρ > a. The disk contains particles with tachyonic
speeds;

• (Exclusion type II): V 2 < 0 for some ρ > a. The disk contains particles with non-real
speeds;

The exclusion conditions I and II are independent. For a subset of backgrounds, both can
be satisfied, each at a different open set of points in the disk. Using these conditions, we can
find numerically which composed BH-disk systems are excluded in the space of parameters
{m, a} — figure 4. The three regions in grey in figure 4 are all unphysical, either satisfying
condition I, II or both.
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Figure 5. Schematic classification of the subregions in the non-excluded region in figure 4, according
to the stability of circular timelike geodesics on the disk.

Let us now turn to the non-excluded region. To perform a finer assessment of the
physical properties of the solutions in this region we consider the stability of the circular
geodesics in the disk region. First, we observe that the composed BH-disk system has, on
the equatorial plane, an innermost stable circular orbit (ISCO). Recall that the ISCO for
the Schwarzschild BH is located at an areal radial coordinate r = 6MBH, which in Weyl
coordinates corresponds to ρ = 2

√
6MBH ' 4.9MBH. This is point P0 in figure 4. Then, one

can divide the non-excluded solution domain into three sub-regions according to the following
criteria, examining the stability of equatorial circular timelike geodesics, see figure 4:

• In region A, the ISCO coincides with the inner edge of the disk (at ρISCO = a). All
equatorial circular orbits on the disk region are stable and all equatorial circular orbits
outside the disk region are unstable;

• In region B, the ISCO is situated at ρISCO < a. All equatorial circular orbits on the disk
region (ρ > a) are stable and some equatorial circular orbits outside the disk region are
also stable (with ρISCO < ρ < a);

• In region C there are some unstable equatorial circular orbits inside the disk region.
Region C can be further subdivided into region C1 (for which ρISCO = a) and into
region C2 (for which a < ρISCO). In both cases all equatorial circular orbits outside the
disk are unstable.

For the sake of clarity, figure 5 contains an illustration of typical stability profiles within each
subregion A,B,C.

The boundary between these regions merits some further discussion. Configuration P0 in
figure 4 corresponds to the familiar case of a Schwarzschild BH with a massless disk (m = 0),
where its edge coincides with the ISCO (ρISCO = a). The red line in figure 4, starting from
P0, corresponds to configurations that possess a disk edge with marginally stable equatorial
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circular orbits. Between P0 and P1, this line separates subregions A and C2. Point P1 is
a bifurcation point. The remaining red line, between P1 and P2, separates subregions C1

and C2; but from P1 another boundary emerges, that between subregions A and C1, which
terminates on the boundary of the excluded region II. Point P2 is at the boundary of the
excluded region I. At this point the disk edge allows for circular photon orbits. Thus, the disk
is on the verge of admitting tachyonic speeds (excluded region I). The blue curve starting
from P2 to P3 corresponds to configurations wherein the disk edge is a circular photon orbit.
The end point P3, is a Schwarzschild BH with a massless disk (m = 0) with an edge at
its unstable circular photon orbit. This occurs at the (areal) radial coordinate r = 3MBH,
corresponding, in Weyl coordinates, to ρ =

√
3MBH ' 1.7MBH.

Although subregions B and C are not necessarily unphysical, we shall focus our analysis
below on illustrative examples in region A, as accretion disk models with their edge at
the ISCO are commonly used, e.g. the Novikov-Thorne model. Thus, in our numerical
imaging below, we will consider a sequence of solutions in region A, which are highlighted
in figure 4 as the sequence of points (a) → (f). These solutions have a = 3 and m =
0.1; 0.2; 0.3; 0.4; 0.5; 0.6. We found this sequence of solutions representative of the generic
features observed in region A, as m is increased.

3 Ray-tracing

Two independent codes were used to image the shadow and lensing of the composed BH+LL
disk system. The first code was the same used in e.g. [18–22]. The second one was a code
written in python3, and consists of a Runge-Kutta-Fehlberg algorithm [34] that numeri-
cally integrates the null geodesic equations ẍµ + Γναβẋ

αẋβ = 0. This numerical integration
represents the propagation of photons from the observer backwards towards the source or
the BH (backwards ray-tracing). We consider two scenarios:

I) In the first scenario the disk is the radiation source. The integration stops when the
photon reaches either the BH, or the disk, or numerical infinity. Thus, the disk is
opaque. Photons that end up (via backwards ray-tracing) on the disk/numerical in-
finity/BH are shown as white/grey/black pixels in the image. For this scenario, the
visualisation of a Schwarzschild BH surrounded by a test accretion disk, with inner
edge at the ISCO, is shown in figure 6 (left panel).

II) In the second scenario a “far away” celestial sphere is the radiation source. The integra-
tion stops when the photon reaches either the BH or the celestial sphere. In this case
the disk is taken to be transparent. The numerical infinity (or emitting celestial sphere)
setup is similar to the one described in [35], being endowed with a two colour pattern
to more easily identify the final position of the light rays on that sphere. Concretely,
the celestial sphere is divided into two hemispheres, respectively above and below the
equatorial plane, with each hemisphere being endowed with a colour: red (blue) for
the North (South) hemisphere. The point in the celestial sphere immediately behind
the BH, from the observer perspective, is attributed a white colour. For this scenario,
the visualisation of a Schwarzschild BH surrounded by a test accretion disk, with inner
edge at the ISCO is shown in figure 6 (right panel).

In both scenarios, the celestial sphere surrounds the BH, (part of) the disk and the
observer. At the observer’s position, we setup a local observer basis {ê(t), ê(ρ), ê(z), ê(ϕ)}
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Figure 6. Observation of a Schwarzschild BH surrounded a test accretion disk with inner edge at
the ISCO and no outer edge, under the two scenarios described in section 3. (Left panel) Emission
from the disk. (Right panel) Emission from a “far away” two colours celestial sphere.

analogous to [20], where the photons’ initial momentum is parameterised by two angles [20],
α (vertical) and β (horizontal). The results presented in the next section were obtained by
discretising the angles α and β in two arrays of 1000 values each, with both angles set in the
interval [− tan−1(10/15) ; tan−1(10/15)] ' [−0.6, 0.6]. The celestial sphere has a perimetral
radius [20] of r̃ = 30Mtotal. Some remarks regarding the impact of this choice on the results
are made at the end of the next section. Moreover, the observer is placed at the disk plane in
both scenarios, with a coordinate ρobs obtained by solving the (perimetral radius) equation
r̃obs =

√
gϕϕ(ρobs, zobs) = 15Mtotal, with zobs = 0.

The images in figure 6 correspond to the lensing and shadow of a Schwarzschild BH,
under the two aforementioned scenarios. When considering a heavy backreacting accretion
disk, in the next section, these images will be deformed. Thus, let us summarise the main
features of the images in figure 6.

Consider first the left panel of figure 6, starting from the outermost features. The large
white annular region corresponds to light rays that are bent by the BH and hit (part of) the
backward half of the accretion disk, with respect to the observer. It is a perfect double copy,
north-south symmetric, since the observation is done from the equatorial plane. The forward
half of the accretion disk (on the observer’s side) is not seen covering the shadow, unlike
the case of the non-equatorial observation in figure 1. Indeed, for an equatorial observation,
only a measure zero set of photons — those with precisely vanishing z-momentum — hit the
forward section of the disk. The smaller grey annular region corresponds to light rays that
are bent more strongly by the BH so that they cross the equatorial plane inside the inner
edge of the disk, ending up at (the numerical) infinity. This produces an inverted copy of
part of the sky: the north (south) hemisphere would be seen in the bottom (top) part of grey
annulus. Light rays that approach even more the Schwarzschild photonsphere are bent even
more and can end up in the forward half of the accretion disk. This corresponds to the tiny
white ring around the central black region. An infinity succession of further, increasingly
thinner, grey and white annular regions would be revealed by an infinite resolution, corre-
sponding to light rays that skim, increasingly closer, the photonsphere. The black region is
the BH shadow, corresponding to photons with an impact parameter smaller than that of
the photonsphere (

√
27M).

The analysis of the right panel of figure 6 is similar. In particular, the aforementioned
north-south inversion in the grey annular region of the left panel becomes now manifest. In
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fact, such inversion occurs in a larger angular region, which in the first scenario is partly
covered by the disk. The main qualitatively new feature is the lensing of the white dot
precisely behind the BH, with respect to the observer, into an Einstein ring. One can see its
angular size coincides with the outer boundary of the large white annulus in the left panel.
Thus, this outer boundary corresponds to a single point of the outer edge of the disk (which
is at infinity): the point along the line of sight of the observer and the BH. For more on the
lensing by a Schwarzschild BH see, e.g. [36].

4 Results

4.1 First scenario — Emission from the disk

In figure 7 we exhibit the visualisation of the BH+LL disk system illuminated from the disk.
We fix a = 3.0 and vary m, in accordance to the sequence of points in figure 4. The sequence
of images starts with the smallest m = 0.1 (left top panel). In this case the forward part of
the disk (in between the observer and the BH horizon) becomes visible, unlike figure 6 (left
panel), covering a thin slice of the shadow. This means there is now an open set of initial
conditions (photons with small, but non-vanishing z-momentum) that are bent towards the
disk in between the observer and the BH. This is a main novel feature of a heavy backreacting
disk: its gravitational pull attracts photons.

The section of the disk behind the BH is seen, again, above and below the BH shadow,
due to light bending. But the corresponding white annulus now opens up at the edges, due
to light rays with large impact parameter that, nonetheless, can still fall towards large ρ
sections of the disk. The smaller grey annulus in figure 6 (left panel) also opens up now near
the equator, for a similar reason: light rays with small z-momentum fall onto the disk. In
between the shadow and the thin grey annulus, a tiny white ring can still be observed, which,
as in figure 6 (left panel), corresponding to photons that skim the fundamental photon orbits
(i.e., the generalisation of the photonsphere for non-Schwarzschild BHs, see [37]) and end up
on the disk. In the right panel of figure 8, another layer of grey between the tiny white region
and the shadow edge is still visible, corresponding to photons with impact parameters even
closer to that of fundamental photon orbits and escape to (numerical) infinity. As in the
unperturbed Schwarzschild case, one expects further white and grey regions to exist, which
would be unveiled by increasing the resolution.

As m increases we move from left to right, top to bottom in figure 7. One observes a
qualitatively similar image to that just described but with two outstanding trends. Firstly,
there is a progressive optical enlargement of the disk image covering part of the shadow
(white band), despite the fact that the disk is infinitesimally thin. This is a consequence of
the disk’s increasing “weight”. Secondly, for larger m, the shape of the shadow varies from
the familiar circular shape to a more prolate spheroid.

To illustrate the correspondence between points in the image and the behaviour of the
corresponding light rays, some of the photons’ trajectories are shown in figure 8, for a fixed
angle β ≈ 0 (specifically, we have taken β ≈ 0.006), but with different angles α, labeled by the
numbers 1 to 5. Depending on the corresponding angles α, the photons’ trajectories can end:
up hitting the BH, thus belonging to the shadow (for α = 0.1, label 2); at (numerical) infinity
(for α = 0.220, label 4); or on the disk (the trajectories corresponding to the remaining angles,
labels 1,3,5). The latter trajectories confirm that the white portions of the image correspond
to different parts of the disk:
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(a) (b) (c)

(d) (e) (f)

Figure 7. Imaging of the BH+LL disk system with fixed a = 3.0 and varying m when illuminated
from the disk: a) m = 0.1, b) m = 0.2, c) m = 0.3, d) m = 0.4, e) m = 0.5, f) m = 0.6. The α
(vertical axis) and β (horizontal axis) ranges are α, β ∈ [−0.6, 0.6].

i) The trajectory with α = 0.001 (label 1) hits the forward portion of the disk in between
the observer and the BH. The white section in the middle of the shadow corresponds
to the disk in between the observer and the BH;

ii) The trajectory with α = 0.207 (label 3) hits the portion of the disk behind the observer.
This tiny white section in between the shadow edge and the grey annulus spans the
forward portion of the disk, both behind the observer and between the observer and
the BH;

iii) The trajectory with α = 0.3 (label 5) hits the portion of the disk behind the BH. In
accordance with the description of figure 6 (left panel), the large white annular region
corresponds to (part of the) backward disk.

4.2 Second scenario — Emission from the celestial sphere

In figure 9 we exhibit the visualisation of the BH+LL disk system illuminated from a far
away celestial sphere. Again, we fix a = 3.0 and vary m, following the sequence of points in
figure 4. In this case we consider the disk transparent: the photons do not stop on the disk,
but rather pass through it.
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Figure 8. (Left panel) ρ−z trajectory of some illustrative photons in panel (f) of figure 7 — m = 0.6
and a = 3.0. The chosen photons have β ≈ 0.006 and different values of α (labels 1 to 5). The negative
values of ρ correspond to the back side of the BH, with respect to the observer, which is located at
zobs = 0 and ρobs ' 14. The BH location is represented by the black vertical line at ρ = 0, whereas
the disk is depicted by the grey horizontal line at z = 0 and |ρ| > 3. (Right panel) The trajectories
exhibited in the left panel are associated to points in a zoom of panel (f) of figure 7. The image shows
two small “earlobes”, on each side of the shadow, near the equatorial plane. These peculiar structures
are discussed in the appendix.

A few words about the transmission of the photons across the disk, due the discontinuity
of the z-derivatives of the metric. Clearly, the velocity is continuous and the acceleration is
discontinuous. The problem is analogous to a classical mechanics setup where a ball rolling
through a horizontal plane finds a slope, with the crossover being cuspy. The acceleration
has a discontinuity at the cusp; but the velocity is continuous. Our case is similar: the 4-
velocity of the photons through the disk is continuous. Thus, one applies the same 4-velocity
immediately above and below the disk, but with a different acceleration, given by the different
connection components above and below.

In figure 9, the sequence of images starts again with m = 0.1 (top left panel). The
new features, as compared to figure 6 (right panel), occur near the equatorial plane. Firstly,
the BH shadow is not covered by the disk any longer. The new behaviour of the photons
that were falling in the forward section of the disk, under the first scenario, is illustrated in
figure 10.

Figure 10 shows how rays corresponding to a small angle α have a small z-component of
their momentum and get swayed by the disk’s potential. For small β such light rays end up
falling into the BH, thus becoming part of the shadow, as in figure 10 (bottom panel). For
sufficiently large β angle, however, the light rays still oscillate by virtue of the disk’s gravity,
but they do not fall into the BH; rather they escape to infinity, eventually. Depending on
the number of these oscillations they may end up in the north or south hemisphere of the
celestial sphere. This is illustrated in figure 11.

The manifestation of this trapping by the disk potential outside the shadow but in the
neighbourhood of the equatorial plane, i.e., for large enough β and sufficiently small α, are the
outwards, spiky features already seen in top left panel of figure 9. Close inspection reveals
an irregular pattern of neighbouring pixels with different colours, i.e., chaotic behaviour.
Increasing m, i.e., moving from left to right, top to bottom in figure 9, the spiky regions
become thicker and the chaotic regions become clearer. These are highly refractive regions,
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(a) (b) (c)

(d) (e) (f)

Figure 9. Imaging of the BH+LL disk system with fixed a = 3.0 and varying m when illuminated
from the far away celestial sphere: a) m = 0.1, b) m = 0.2, c) m = 0.3, d) m = 0.4, e) m = 0.5, f)
m = 0.6. Again, the α (vertical axis) and β (horizontal axis) ranges are α, β ∈ [−0.6, 0.6]. Red (blue)
colour represent an endpoint in the North (South) hemisphere of the celestial sphere.

reminiscent of the sky near a hot road in a summer day. Here, neighbouring light rays can
end up in distinct regions of the sky, even distinct hemispheres, producing a chaotic mirage.

The second distinctive feature in figure 9, was already mentioned in the first scenario,
but it is now clearer: the shadow varies from the familiar circular shape to a more prolate
spheroid. In this scenario, the shadow is not blocked by the disk and this deformation can be
fully appreciated. In figure 12 we exhibit just the BH shadow corresponding to the images in
figure 9, to appreciate its dependence on m. One also observes, in figure 9, that the Einstein
ring, which is perfectly circular for m = 0, becomes oblate (as opposed to the prolate shadow),
with some distortion near the equator.

As a closing remark, we have assessed how a different choice for the celestial sphere size
impacts on the final results. In figure 13 we have recomputed panel (f) of figure 9 with a much
larger celestial sphere, almost ' 13 times larger. There are some minor changes in the lensing
details, e.g. different sizes of the white ring and displacement of coloured regions. However,
the main features are robust to this modification; in particular, the shadow is invariant under
this operation.

5 Conclusions

In this paper we have analysed the impact of having a heavy, backreacting, accretion disk
around a BH in the latter’s gravitational lensing and shadow. For this purpose we have
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Figure 10. (Top panel) A similar ρ − z representation as in figure 8 but now for some illustrative
photons in panel (f) of figure 9 — m = 0.6 and a = 3.0. The chosen photons have β ≈ 0 and different
values of α. Unlike figure 8, photons can now cross the disk. Thus, the trajectory with α = 0.001 does
not stop at the first disk crossing; it continues until it falls into the horizon. (Bottom panel) Zoom
of the trajectory with α = 0.001. The light ray gets trapped by the disk’s gravitational potential,
oscillating around it; the amplitude of the oscillations decreases, together with the distance between
nodes, as ρ decreases, since the disk density’s is increasing for smaller ρ. At ρ = 3, i.e., at the inner
edge of the disk (horizontal grey line), the photon trajectory stops oscillating and falls into the BH
(represented by the vertical black line).

used a Weyl solution describing the superposition of a Schwarzschild BH with a LL disk [14],
which has an inner edge. The setup analysed in this paper does not match directly the
astrophysically observed BH plus accretion disks systems, as the disk considered has a van-
ishing total angular momentum and is infinitely thin. Nonetheless the main lensing features
obtained in this system, namely those induced by the light bending towards the heavy disk
will remain in a more realistic setup of a heavy accretion disk. Moreover, accounting for the
back-reaction of a realistic accretion flow on the spacetime geometry is both challenging and
computationally expensive. In this regard, the analysis of an exact solution, as we have done
here, can still point towards overall observational effects in a simplified way. In addition, at
a theoretically level it is interesting on its own to inquire what would be the effect of a heavy
accretion disk on the light bending close to a BH, further justifying the analysis done herein.

We chose the disk’s inner edge and the fraction of the total spacetime mass in the disk
to yield a physical configuration, where all disk particles have sub-luminal and real velocities
and, moreover, all circular timelike geodesics in the disk region are stable. The inner edge of
the disk was chosen to be at the ISCO, although this requirement could be relaxed.

The impact of the heavy disk in the images becomes more noticeably when the fraction
of the total mass in the disk increases, as expected. The heavy disk bends light. This leaves
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Figure 11. ρ−z trajectory of some illustrative photons in panel (f) of figure 9 — m = 0.6 and a = 3.
The chosen photons have β = 0.45 and different values of α. All trajectories have an initial negative z
momentum, when departing from the observation point (at ρ ' 14) in backwards ray-tracing. Thus,
they correspond to looking “down”, i.e., towards the southern hemisphere. Nonetheless, depending
on the number of oscillations, two trajectories end up in the north hemisphere (blue, α = 0.005 and
green α = 0.12) whereas two others in the south hemisphere (orange, α = 0.010 and red, α = 0.020),
as they move towards large ρ, after reaching a minimum value of ρ. So, progressively looking down,
the observer sees, alternately, north, south, north, south.

(a) (b) (c)

(d) (e) (f)

Figure 12. The BH shadow, without the lensing, in the images of figure 9.
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Figure 13. A duplication of panel (f) of figure 9 (left panel) compared with the same solution and
setup but placing the celestial sphere at a larger radius, r̃ = 400 (right panel).

Figure 14. A composed BH+LL disk system, corresponding to configuration (f) in figure 4. As in
figure 1 the disk, which is the source of radiation, is on the equatorial plane (θ = 90◦). It has an inner
edge at the ISCO, a decaying luminosity profile, and an outer edge at certain radius. The observer is
at θ = 86◦ and at an areal radius of 20M , where M is the total mass of the system.

a clear imprint on the trajectory of photons with a small z component of their momentum
that travel close to the disk. For an equatorial observer, and a disk lit scenario, this implies
the thin disk appears thick. This thickening of the disk stretches the BH shadow, which
becomes more prolate.

The disk used in section 4.1 was endowed with a homogeneous luminosity profile that
extends to infinity. A more realistic visualisation can be obtained imposing a luminosity
profile for the disk, which decays with increasing radius and terminates at some sufficiently
large radius, providing the impression of a disk outer edge. We recall the LL disk extends all
the way to spatial infinity. Under similar observation conditions as those used for figure 1,
which in particular considers the observer outside the equatorial plane, one obtains figure 14,
using the configuration with highest m analysed in this paper: solution (f) in figure 4. The
most obvious differences with respect to figure 1 is the thickening of the disk and the smaller
BH shadow, which gets stretched into an oblate shape.

– 18 –



J
C
A
P
0
3
(
2
0
2
0
)
0
3
5

For a scenario where the illumination comes from a “far-away” celestial sphere and the
disk is transparent, allowing photons to pass through, an observer close to the equatorial
plane looking towards the sides of the shadow, will see a strong and chaotic refractive region
in the vicinity of the equator. Again, photons with a small z component of their momentum
that travel close to the disk are bent towards the disk, but this time cross it and oscillate
a few times around it before escaping towards the celestial sphere, which occurs as they get
to a larger radial coordinate and the disk becomes lighter. Then, open sets of observation
angles lead to different numbers of oscillations, and to a different hemisphere endpoint of
the photons in the far away celestial sphere. We have described this as a chaotic mirage.
As expected, this feature becomes weaker and more concentrated around the equator as one
observers the disk further out (larger β angles). This explains the spiky morphology of the
strongly refractive region.

As a direction for further work, one could enlarge the analysis herein to also consider
non-equatorial observations, as well as some illustrative examples in subregions B and C.
Moreover, it could be interesting to make the model more realistic by considering a spinning
BH and/or a spinning disk.
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A Earlobes

The right panel of figure 8 clearly shows two “earlobes” on each side of the shadow, near
the equatorial plane. These “earlobes” can actually be seen in all three bottom panels of
figure 7, becoming progressively more noticeable as m increases. These features can also be
seen in all three bottom panels of figure 9. What is causing these “earlobes”?

First, as a test on the robustness of this feature, we have checked how the size of the
“earlobes” depends on the cutoff imposed by the celestial sphere size. Figure 13 reveals
that the earlobes’ existence does not depend on this choice, albeit their size decreases when
considering a further away celestial sphere. We have considered even more distant celestial
spheres that corroborate this conclusion.

Second, to get some insight into the origin of these “earlobes” we have considered a
more distinct celestial sphere, with four colours, rather than the two used in figure 9. With
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Figure 15. (Left panel) Observation of an empty space with a celestial sphere with four colours.
(Middle panel) Image of a BH+LL disk with m = 0.6 with the same celestial sphere. (Right panel)
Zoom of the middle panel, to better appreciate the structure of the “earlobes”.

respect to the observer’s orientation these colours are: red (green) for the left (right) side of
the North hemisphere, and yellow (blue) for the left (right) side of the South hemisphere.
Such a division into four quadrants closely follows [36]. In empty space (no BH or disk), this
celestial sphere leads to the observation in figure 15 (left panel).

Placing now the configuration (f) in figure 7 within this celestial sphere one obtains
the image seen in figure 15 (middle panel). With this setup it becomes clear that the top
(bottom) earlobes on the right side of the image arise from trajectories that, approaching the
BH on its right hand side (from the observer’s perspective) bend left around the BH and end
up on the left part of the North (South) hemisphere. Thus these “earlobes” are red (yellow)
— see zoom in figure 15 (right panel). If the trajectory has a larger impact parameter, the
gravitational pull of the disk prevents this bending and the “earlobe” terminates. Figure 7,
moreover, shows that the earlobes correspond to photons that do not hit the disk. Further
analysis of the corresponding trajectories shows that as these photons approach the BH they
are pulled down by the disk’s gravity but only cross the equatorial plane at ρ < 3, thus
beyond the inner edge. Then they are pulled back up by the disk on the opposite side,
crossing again the equatorial plane before ρ = 3, again avoiding hitting the disk. That is
why the “earlobes” are shown in grey in figure 7, thus corresponding to photons that hit
numerical infinity rather than the disk. Simultaneously, they are bent around the BH ending
on the opposite meridional side of the celestial sphere.
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