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Abstract
Affinity has proven to be a useful tool for quantifying the non-equilibrium
character of time continuous Markov processes since it serves as a measure for
the breaking of time reversal symmetry. It has recently been conjectured that
the number of coherent oscillations, which is given by the ratio of imaginary
and real part of the first non-trivial eigenvalue of the corresponding master
matrix, is constrained by the maximum cycle affinity present in the network.
In this paper, we conjecture a bound on the whole spectrum of these master
matrices that constrains all eigenvalues in a fashion similar to the well known
Perron—Frobenius theorem that is valid for any stochastic matrix. As in other
studies that are based on affinity-dependent bounds, the limiting process that
saturates the bound is given by the asymmetric random walk. For unicyclic
networks, we prove that it is not possible to violate the bound by small
perturbation of the asymmetric random walk and provide numerical evidence
for its validity in randomly generated networks. The results are extended to
multicyclic networks, backed up by numerical evidence provided by networks
with randomly constructed topology and transition rates.

Keywords: Markov processes, stochastic matrices, stochastic
thermodynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

Real valued matrices with positive entries (with exception of the diagonal) can be encountered
in many different fields of mathematics and physics. They show up in many forms and under
different names throughout the literature. In graph theory they appear as the Laplacian matrix
of (weighted) graphs [1], the time evolution of Markov chains is governed by a transition
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matrix that falls under this category, and most importantly for the scope of this article, the
time evolution of a continuous time jump process is generated by a matrix of this type. Efforts
to understand the structure of the spectrum of such matrices can ultimately result in insights
into the studied system.

While many well known results like the Perron—Frobenius theorem or Gershgorin disks
are quite general [2—4], in a physical context bounds on the spectrum that may be less general
but depend on physically meaningful quantities are more desirable since they could be used
to infer otherwise hidden properties of the system. In particular, for non-equilibrium systems
coupled to thermal or chemical reservoirs such a strategy is called thermodynamic inference
[5]. A recent, prominent example for such a relation is the thermodynamic uncertainty rela-
tion, which provides a lower bound to the rate of entropy production based on the observable
precision of thermodynamic currents [6-9].

Recent efforts to understand relations between the entropy production associated with
maintaining biochemical oscillations [10—12] have sparked interest in fundamental con-
nections between the non-equilibrium character of such reactions and the properties of the
observed oscillations. It was conjectured that the affinity of the chemical network can be used
to find a bound to the number of coherent oscillations shown by the dominant contribution to
the corresponding relaxation process [13].

This finding begs the question, whether the dominant eigenvalue of the generator that gov-
erns the long time behavior is the only one for which affinity-dependent bounds apply or
whether there are global bounds valid for all eigenvalues, i.e. for all timescales of the relaxa-
tion process. In this paper we argue that indeed the later is the case and there exist such a
bound for the whole spectrum of the master equation.

This study is concerned with time continuous Markov processes on a discrete set of N
states. The state of the system jumps with rates w;; > 0 from state i to state j. Consequently, the
probability p;(¢) to occupy a certain state i at time ¢ evolves according to the master equation

Opi(t) = Mijp;(1) 8))
J

with the generator M;; that is of the form
M;j = wj; — 6;ri, 2

where the exit rate r; is the sum of all rates of jumps away from state i, i.e. r; = Zj wij.

An important subclass of such networks that will be used as paradigmatic examples are
unicyclic networks where the states are arranged in a cyclical fashion and only jumps between
next neighbors are allowed. The generator then takes the form

Mij = wisOijr + wi-bij1 — (Wit + wj- )i, 3)

where we assume circular boundary conditions in the indices, i.e. we identify N + 1=1.

The objective of this article is to motivate and conjecture a bound that interpolates between
the generic case covered by the Perron—Frobenius theorem and the special case of thermal
equilibrium, where detailed balance holds.

2. Conjecture

An asymmetric random walk on a cycle of states is uniquely defined by the forward rate w. ,
the backward rate w_, and the number of states N. It can alternatively be defined using the
exit rate wo = w4 + w_, the affinity A = NIn(w, /w_), and N. The corresponding generator
reads
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Figure 1. Scheme of regions in the complex plane within which the eigenvalues of a
master matrix must lie. For generic master generators the Perron—Frobenius theorem
restricts the eigenvalues to a circle on the negative half plane. If the system is in thermal
equilibrium, in addition, all eigenvalues must be real. We conjecture an elliptical bound
that depends on the maximum cycle affinity per state.

Mi(f;) = W4 0ijp1 +w_0ij—1 — (Wq +w_)d;; 4)
with the rates
e A/(2N) o—A/(2N)
wy = Wom and w_ = Wom. 4)

It is a special case of a unicyclic system with w;; and w;_ in equation (3) chosen uniformly
for each link. This matrix is circulant and as such it can be diagonalized analytically leading
to the eigenvectors

N—1
1
W0 = — exp(—2mink/N)|k), (6)
P
with the corresponding eigenvalues
A = wo [—1 + cos(2mn/N) + itanh(A/2N) sin(27n/N)] . (7)

They lie on an ellipse on the complex plane. We conjecture that the eigenvalues of the genera-
tors of all unicyclic processes that have the same affinity, defined as A = ), In(w;; /w;_), the
same maximum exit rate wy = max;(w;; + w;_ ), and the same number of states, lie within
the ellipse defined by the corresponding asymmetric random walk, as it is illustrated in fig-
ure 1. For multicyclic networks, we conjecture that the eigenvalues lie within the ellipse corre-
sponding to the cycle C present in the network that maximizes the ratio A¢ /N¢, where A¢ and
Nec denote the affinity and the number of states contained in cycle C, respectively.

3. Motivation

Having stated the conjecture, we provide some rationale as to why this should be the case. If
the system is in equilibrium, the transition rates have to satisfy detailed balance relations that
connect the transition rates to the free energy J; associated with the states according to [5]
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= exp (F; - F). ®)

Wi

A suitable set of free energies can be found if and only if the cycle affinity

Wi
Ac = In -2
¢ Z Wii ®)
i—jeC
of all cycles in the network vanishes. As a consequence of the detailed balance relation, the
generator satisfies the symmetry relation

exp(Fj/2)M;; exp(—Fi/2) = exp(Fi/2)M;j exp(=7;/2) (10)

and is thus similar to a symmetric matrix which means that its spectrum is real. This result
agrees with our conjecture when taking the limit A — 0 in which case the ellipse degenerates
to a line on the real axis.

For arbitrary affinities the Perron—Frobenius theorem guarantees that no eigenvalue of the
generator lies outside the circle centered at —w, on the complex plane that touches the imagi-
nary axis. This bound corresponds to our conjecture in the limit A/N — co.

An early indication that there is a connection between the distance from equilibrium and
the spectrum can be found in works of Dimitriev and Dynkin on refinements of the Perron—
Frobenius theorem (originally published in [14, 15] for a translation see [16]). There, it was
proven that the master generators capable of saturating the Perron—Frobenius bound on the
eigenvalues, are up to a multiplicative constant and permutations of states matrices of the form

MY = bijr1 — bij. (11)

Remarkably, this is the generator of an asymmetric random walk in the limit A — oo, which
shows that the affinity must diverge if the bound from the Perron—Frobenius theorem is to be
saturated.

Moreover, related studies that are concerned with bounds to certain physical quantities like
the Fano factor of thermodynamic currents [7, 9, 17] or the number of coherent oscillations
[13] share several important aspects that can serve as guiding principles to identify a bound on
the spectrum that depends on the non-equilibrium nature of the process.

(1) The maximum cycle affinity per state, i.e.

A
max = (12)
C NC

is the quantity of choice to characterize the distance of the system from thermodynamic
equilibrium.

(ii) The asymmetric random walk with the desired affinity per state is the process that is
extremal in the sense of the considered bound, i.e. a cyclic process with uniform back-
wards and forward rates leads to saturation of the bound. For example, in the case of
the affinity-dependent bounds on the Fano factor, it turned out that out of all unicyclic
processes with the same affinity and number of states, the asymmetric random walk is
the one with the lowest Fano factor. In a similar vein, the number of coherent oscillations
turned out to be maximal in the case of an asymmetric random walk.

(iii) It became evident that these bounds, which where initially formulated for unicyclic
networks, can be generalized to multicyclic networks by identifying the cycle that cor-
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responds to the weakest bound. The bound generated by this cycle serves as a global
bound for the whole system.

Following this line of reasoning, the conjecture stated in section 2 is nothing but the appli-
cation of these principles to the complete spectrum of the master equation. To substantiate the
conjecture, we show in section 4 for the unicyclic case, that the eigenvalues corresponding to
the asymmetric random walk are locally optimal in the sense that there exists no perturbation
to the corresponding generator that shifts the eigenvalues outside of the conjectured bound. In
section 5 we present numerical evidence obtained by numerical diagonalization of generators
of unicyclic systems with randomly generated rates at fixed affinity. We also show results of a
numerical optimization procedure designed to find a violation of the bound, failing to do so.
Results for randomly generated multicyclic networks are presented in section 6. They conform
with an elliptical bound obtained by the cycle that has the maximum link affinity.

4, Perturbation theory around the asymmetric random walk

The conjecture implies that the asymmetric random walk is an extremal process in the sense
that the eigenvalues of its generator lie on the conjectured bound for all other processes with
the same affinity and number of states. The goal of this section is to prove that it is indeed not
possible for the eigenvalues to move outside of the ellipse defined by the random walk if the
random walk is perturbed in a fashion that preserves the affinity and the topological structure
of the network through second order perturbations. We also show that these perturbations can
not vanish, which means that the ellipse corresponding to the eigenvalues of the asymmetric
random walk can be considered a local optimum of the optimization problem of finding the
least eccentric ellipse that contains all eigenvalues of a unicyclic generator for a given affinity.
Whether it is also a global bound as we conjecture remains to be proven.
We assume a perturbation of the form

0 1

Throughout this section we normalize M such that the maximum exit rate takes the value 1,
i.e. we set wo = 1. This is possible without loss of generality since we assumed that the maxi-
mum exit rate is known. Results for any value of wy # 1 can be obtained by rescaling in time.
As shown in appendix, the eigenvalues can be approximated by

v M) (v MO J277)
Y

A= X MO + 237
mn
where \? and [") are the nth eigenvalue and eigenvector of the unperturbed asymmetric ran-
dom walk, respectively.

+0(€), (14)

4.1. First order perturbation of the asymmetric random walk
The perturbation has to comply with the following rules

1) Mi(;) is nonzero only if Ml.(})) is also nonzero as we only want to perturb existing rates and
not introduce new connections between states of the network.

(ii) The columns of M()) must sum up zero, since the resulting matrix must still be a Markov
generator.
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(ii1) Since we normalized the matrix M such that the maximum exit rate wy is equal to 1, the
diagonal entries of M(!) must not be negative and ¢ can only take on positive values.

(iv) The entries of the perturbation matrix have to be chosen in such a way that the affinity is
preserved under the perturbation.

An ansatz that satisfies the first two constraints is given by the choice

M = kg 81 — k=031 + (ki + k=)0 (15)
while the third constraint corresponds to the condition
kit +k_ >0 Vi (16)
Fixed affinity of the perturbed system translates to
N N—1
Wi\ L ap (A L Lizo (v — ekis) _ o - 02
— ) =exp(A) = N—1 TN wh— Tt (€).
w_ IS, (w— —eki) Y —el_wl
a7)
For perturbation theory of first order this condition needs only to be satisfied up to first order,
which reads
N N N=1, N -1, N
w w F wi —T_w"
(*) = <+> - = £ +0(e) (18)
w_ w_ w2

with the sum over all perturbations of all forward or backward rates defined as 'y = ), ki.
Satisfying these conditions fixes the ratio of the two sums to
F+ wy

T (19)

According to the perturbative solution derived in the appendix, the perturbation to the
eigenvalues are in first order given by

( 0|M(1)|I/ Zexp 27r1(m k)n/N) (5mk(kk+ +kk ) kk+6m,k+1—kk_6m,k_1)

m,k

= % Z(kk+ + ky—) — kgy exp(2win/N) — ky— exp(—2min/N)
k

1
=y 4 +T_ — T4 exp(2min/N) — I'_ exp(—2min/N)] (20)
in which only the sums I'4 appear. This, in combination with the fact that the ratio between
the two sums is fixed as per equation (19), makes it possible to treat every perturbation that
conforms with the constraints with one relation by introducing the mapping

I, =Cexp(A/(2N)) and T_ = Cexp(—A/(2N)) 1)

defining the rate constant I', which is the only parameter relevant for the first order correction
and needs to be non negative to satisfy equation (16).

By inserting the mapping into equation (20) and applying trigonometric relations, one finds
that the perturbation can be put into the rather simple form

<1/,?|M(1)|1/2> = % {cosh <%> (1 — cos <%)) —isinh (;) sin <%)] , (22)
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which is in fact always a multiple of the unperturbed eigenvalue allowing us to write

[yt AN Lo
A = {1 Y cosh (2N>} A, + O(€%). (23)

Note that the prefactor in square brackets cannot exceed 1 since both € and I" are non-negative.
This result has the interesting consequence that the first order perturbation always shifts the
eigenvalue towards the origin of the complex plane. This statement is generically true, with
the possible exception that the first order perturbation vanishes, i.e. for I' = 0. Not only does
this confirm that it is not possible to leave the ellipse defined by the eigenvalues of the asym-
metric random walk, it also confirms the bound conjectured in [13] in first order around an
asymmetric random walk. There, it was conjectured that the dominant non-zero eigenvalue
is contained within a cone spanning from the origin to the corresponding eigenvalue of the
asymmetric random walk with the same affinity, i.e.

SO _ SO
RO~ RO
From equation (23) it is obvious that this bound is saturated for first order perturbations. In

contrary to the conjecture in [13], this result is not limited to the first non-trivial eigenvalue
but holds for arbitrary n.

(24)

4.2. Second order perturbation in case of vanishing first order

While the first order perturbation always points inside the conjectured bound, it is not guaran-
teed that it is nonzero. In this section we want to study cases in which the first order vanished
and the second order becomes the dominant one for small e.

The first order vanishes if and only if I" = 0. As the perturbations to the rates k; must also sat-
isfy condition (16), this implies that k1 + k;— = 0 must hold individually for all i, which means
that the perturbation is not allowed to change the exit rates of the asymmetric random walk.

Rather than expanding the Taylor series of the affinity in equation (18) up to second order
and to derive a further condition on the perturbation, we opt to include the fixed affinity condi-
tion directly into a suitable ansatz for the transition rates. The ansatz is given by the choice

exp(A/(2N) + ¢fi) exp(—A/(2N) — ¢fi)

= and w;,_ = =1—wy,

Wik = 2 cosh(A/(2N) + ;) " 2cosh(A/(2N) +¢f;) 03)

where the parameters f; characterize the perturbation and € is a small amplitude. Forward and
backward rate sum up to unity as it is necessary for a vanishing first order perturbation. In
order to keep the affinity fixed at .A, the parameters f; must sum up to zero, i.e.

Z fi =0. 26)

Expanding the master matrix corresponding to our ansatz in a Taylor series up to second
order leads to

M =M + M + M@ 4 O() 27)

with the perturbation matrices

M) = af; (601 — 6ij-1) (28)
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and
M = =bf? (3ije1 = bij1) (29)
containing the constants
o 2ODAN) L 2N AN -
(exp(A/N) + 1) (exp(A/N) +1)

Up to second order in € the eigenvalues of the matrix M are given by the expression

OV [0V 0 V(D [0
M= X+ GO+ €2<Z e L ll70) T NET)
mtn n m

We proceed by calculating the matrix elements of the perturbation matrices in the eigen-basis
of the unperturbed system. For M(!) we find

1 2mi
<u2|M(1)|y21> =5 Zexp {W(kn — lm)] M,(C},)

kil

= — Z exp { (kn — lm)] af; (Oki+1 — Oki—1)

= % (e%” - e_%"> Zexp {%l(n - m)} fi. (32)

Since the eigenvectors only contain terms of the form e ¥ the discrete Fourier-transform
defined as

~ 1 i
fi= = T (33)
VN <
arises naturally, which allows us to write

44> 2 2
MO ) MO0y = — 2L gin ( u ) sin < il )

2

foom| 5 (34

N N

where we have used the symmetry relation f,,- = fl* that holds because all f; are real.
Following analogous calculations, the matrix elements of M(®) entering equation (31) read

VM@ [0 Zexp [n lk)} M,E,zl)

_ 7% (77— o) ;fﬁ (35)

In order to combine the corrections arising form MO and M@, we make use of the fact
that the discrete Fourier transformation preserves the norm of the transformed vector, which
can be shown as follows

SO = S ifidu = S fiie O
l Lk

lkm

- (G () - Sl oo
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Furthermore, we know that the f; sum up to zero, so the zeroth Fourier coefficient must van-
ish. Combined with equation (36) this allows us to write the correction from M(?) in the same
form as equation (34)

0ma(2 b . (2w
WOM@|0) = _21N sin (Nn) Z
m#n

This means that the second order correction can be split up into a sum over all Fourier
components of the perturbation parameters f;. The N coefficients f, are, however, not inde-
pendent. They have to fulfill the symmetry relation foi= fi*, which, in combination with the
periodic boundary condition fi+n = fi, leads to the result f; = £ .. This leaves us with [N /2]
independent terms in the sums in equations (34) and (37). The eigenvalues of the perturbed

system can thus be cast in the form

2 2 o s
0, € . (2« 4a® sin (32 m) .
)\n = )\n —+ N Sin <Nn> E [—M — 2b1
m#n

~ ‘ 2

o

(37)

:

Jrm

(38)

€2 2 /2] ~ 12
£+m(O§:mh’ (39)

N N
k=1
with the fundamental directions

4 ? si z . . .

%M — 2bi if Nisevenandk = N/2
n n—k

Znk = 2 (2w 2 i (2m

4a sm(W(n—k)) 4a sm(W(n-‘rk)) . .

I VI P Ve —4bi  otherwise.

(40)

It is important to note that, unlike the first order, the second order cannot vanish unless all
f; are zero, which would mean that there is no perturbation at all. Consequently, there is no
need to consider higher orders of perturbation to understand the behavior of the eigenvalues in
the vicinity of the asymmetric random walk.

Figure 2 shows the fundamental directions attached to their respective eigenvalues for a
nine state system. Since the second order perturbations are a superposition of the fundamental
directions, the eigenvalue can only be shifted in a direction contained in the cone spanned by
two extremal directions. For the eigenvalue highlighted in the inset this cone is, for example,
spanned by the directions z; ; and z; 4. In any case, the entire cone of possible directions points
to the inside of the conjectured bound shown as a gray ellipse.

To better visualize z, in the general case, we calculate the angle on the complex plane
between z,,x and

_ 27 .27
ALn = —tanh(A/(2N)) cos (Nn) —isin (N”) , 41)

a complex number that is perpendicular on the ellipse and points to the inside at the position
of the unperturbed eigenvalues. This angle can be written in the form

%(Z’l,k}‘i,n) )

42
kLol (42

@i = arcsin (

and depends only on the affinity and the number of states N. Graphical representations of the
affinity-dependence of this angle are presented for different NV in figure 3. For better orientation

9
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Figure 2. Fundamental directions z, x of the second order correction to the eigenvalues
of the asymmetric random walk with N = 9 states and affinity A = 2.3. The unperturbed
eigenvalues are connected by dashed lines. The inset shows a magnification of the first
non trivial eigenvalue. All corrections point to the inside of the ellipse on which the
unperturbed eigenvalues lie.

the direction of the neighboring eigenvalues and the angle to the downwards direction are also
plotted. It is evident that the angle is always between — /2 and 7/2 meaning that z,,; points
inwards. For small affinities, i.e. close to equilibrium, the fundamental perturbation direc-
tions either point in positive or negative direction or along the imaginary axis, so the angles
are either /2, —m /2 or 0. Note, however, that the non degenerate perturbation theory as it is
used here is only valid for A # 0, since all non-trivial eigenvalues of the master matrix for a
random walk become degenerate as A approaches zero.

For large affinities z,; points along the imaginary axis, since in this case b > @ holds in
equation (30), while all other terms in equation (39) stay finite. For this reason all curves in
figure 3 collapse onto the curve indicating the vertical direction as A goes to infinity.

5. Numerical evidence

The asymmetric random walk has proven to be the limiting case in established bounds that
depend on the affinity. In order to further substantiate the bound beyond the second order per-
turbation theory, in this section, we will present abundant numerical evidence for this bound
in the unicyclic case by randomly generating rates that lead to a desired value of the affinity as
well as numerical optimization schemes that put the conjectured bound to the test.

5.1. Randomly generated unicyclic systems

The rates for the randomly generated unicyclic networks are generated using the ansatz

wip = wiexp(AF;/2) and w;— = w;exp(—AF;/2), (43)

10
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--= neighbors -+ vertical

Figure 3. Angles between the fundamental directions of the second order perturbation
and the direction perpendicular to the ellipse on which the unperturbed eigenvalues
lie. All possible perturbations are a superposition of these directions, so the eigenvalue
can only move in directions between the extremal angles. All fundamental direction
form an angle between —m/2 and 7/2 to the perpendicular direction, showing that
there exists no perturbation that moves the eigenvalues outside of the ellipse. For better
orientation the directions of the neighboring eigenvalues are indicated as dashed lines.
The vertical direction is shown as a dotted line. As the affinity rises all perturbation
directions converge to the vertical direction.

introducing the timescales w; and the free energy differences between connected states AF. In
order to achieve the desired affinity the free energy differences have to sum up to .A. For this
reason, we first draw N values AF independently from a uniform distribution on the interval
(—0.5,1.5) and calculate the energy differences as AF; = AAF;/ 3", AF;. The interval is
asymmetrical in order to make divisions by values close to zero less likely, thereby increasing
numerical stability.

1
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The timescales w; are drawn from a uniform distribution between 0 and 1. After calculating
all rates, the timescales are adjusted such that the largest exit rate takes the value 1. For this
reason the width of the interval from which the w; are drawn is irrelevant.

The results obtained by perturbing the asymmetric random walk show that there is a fun-
damental difference between systems with arbitrary exit rates (generic case) and systems that
have uniform exit rates in all states. We therefore also specifically generate systems with the
same exit rate in each state by rescaling the rates such that this is the case after drawing them
as described above.

For each combination of N and A that we study, we draw 10 000 sets of rates both for
the generic and for the case of uniform exit rates and calculate the eigenvalues of the corre-
sponding generator. As an example the results for N=15 and A = 1.2 are presented in

figure 4. The color indicates whether the states are drawn with random exit rates (blue) or
with the same exit rate in each state (gray). Also shown are the directions of the first order
perturbation according to section 4.1 and the different fundamental directions of perturbations
of second order in case the first order vanishes (see section 4.2).

All eigenvalues lie within the ellipse defined by the eigenvalues of the asymmetric ran-
dom walk. As already conjectured in [13], the nontrivial eigenvalue with the largest real part
always lies below a line connecting the origin with the first non-trivial eigenvalue of the corre-
sponding asymmetric random walk. From the numerical data it is evident that such a relation
also holds for the other eigenvalues when compared to their corresponding eigenvalue of the
random walk.

Furthermore, it is interesting to note that the results obtained through perturbation theory
describe the behavior of the eigenvalues rather well, even if the system is not close to the
asymmetric random walk. The eigenvalues of systems with uniform exit rate stay roughly
within the cone derived from the extremal directions introduced in section 4.2. This begs
the question to which extend the second order perturbation derived there constitutes a good
approximation for large €.

To investigate this further, we calculate the eigenvalues of unicyclic systems with rates
as defined in equation (25) for finite € numerically. As we have seen, perturbations that cor-
respond to the fundamental directions of the second order result are produced by the choice
of f; such that its discrete Fourier-transform only contains one selected mode. For this reason
we choose fi(k) = cos(27ik/N). The results are shown in figure 5 as solid lines parametrized
by € € [0, 10]. By definition these curves leave the eigenvalues in parallel to the fundamental
direction corresponding to the selected Fourier mode. The curves stay approximately linear,
which shows that, in this case, the perturbative result can qualitatively describe the spectrum of
all systems that show oscillations and therefore have corresponding eigenvalues with nonzero
imaginary part. Even for larger €, where the non-linearity becomes more pronounced, we see
that the curves still approximately envelope the eigenvalues for randomly generated systems.

The process has been repeated for values of N between 3 and 13 and values of A in the
range between 0 and 20 with the same qualitative result (data not shown).

5.2. Numerical optimization procedure

While studying randomly generated systems can capture the generic behavior of the eigen-
values, in this section we describe a numerical method that aims to find possible violations
of the conjectured bound (and fails to do so). The goal is to use standard numerical optim-
ization algorithms to find a set of rates that produces the maximum imaginary part of a specific

12
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Figure 4. Scatter plot of eigenvalues for systems with N =35 states and A = 1.2.
Random systems with unconstrained exit rates are plotted in blue. Systems with exit
rates constrained to 1 are shown in gray. The solid lines show the eigenvalues of systems
with rates constructed with fi(k) = cos(2mik/N) and finite €. The arrows indicate the
directions of the perturbation results of first and second order, respectively. From the

distribution of eigenvalues it can be seen that the results obtained by perturbing the
asymmetric random walk seem to extend beyond the validity of the perturbation theory
in the sense that the curves corresponding to the extremal directions of the perturbation
theory form approximate bounds to the eigenvalues not only in the immediate vicinity
of the asymmetric random walk but for all systems with eigenvalues that have an
imaginary part different from zero.

eigenvalue while keeping its real part fixed at a predetermined value and also obeying the
constraints on affinity and exit rates.

This is done using the sequential least squares programming algorithm as it is implemented
in the python library for scientific computing scipy [18], with a randomly chosen initial guess
for the rates. As it is to be expected for a heavily constrained non-linear optimization prob-
lem, the algorithm converges rather poorly without case specific tweaking of the optimization
parameters and the initial guess. Nevertheless it is possible to find extremal cases in some
intervals of the real part, typically in the vicinity of the eigenvalues of the asymmetric random
walk. The results are depicted as solid lines in figure 5. They show that the eigenvalues can
not leave the ellipse defined by the random walk even if the rates are specifically designed to
do so. Apparently it is not even possible to exceed the straight line connecting the origin to the
corresponding eigenvalue of the asymmetric random walk, which shows once more that the
results conjectured in [13] can be extended to subdominant eigenvalues.

6. Multicyclic case
In previous studies of affinity-dependent bounds [13, 17], it turned out that the results obtained
for unicyclic systems can be extended to multicyclic systems since the coupling of two or

more cycles to each other can be handled by identifying the cycle that produces the weakest
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Figure 5. Scatter plot showing the eigenvalues of a cyclic Markov process with seven
states and an affinity of A = 1.2. The eigenvalues are sorted by increasing real part and
are colored accordingly. Black curves show results of a numerical optimization scheme
with the goal to find the process which leads to the largest (smallest) imaginary part of
a specific eigenvalue with the real part fixed at a given value. Black crosses indicate
the eigenvalues of the asymmetric random walk with affinity A. The numerical results
suggest that it is not possible to find a process at fixed affinity with eigenvalues that lie
outside a certain region that is bounded by the ellipse on which the eigenvalues of the
asymmetric random walk lie.

bound. In our case, the weakest bound is based on the cycle that maximizes the ratio A¢ /Nc of
cycle affinity and number of states in the cycle. In this section we provide numerical evidence
that the elliptical bound can be extended to multicyclic networks following this rationale.

6.1. Simple multi cyclic network

One of the arguably simplest models to study multicyclic behavior is a network consisting
of merely two fundamental cycles that share one link. Figure 6 shows an example of such a
network that was previously used to illustrate universal bounds on the cumulant generating
function of the distribution of entropy production (‘house network’) [17]. In this section we
aim to study the influence of coupled cycles on the bounds discussed above.

As this example is intended to serve as a case study, we want to keep the number of differ-
ent rates as low as possible, while still maintaining the possibility to fix the affinity of each
cycle individually and having a meaningful parameter € that allows us to select which of the
cycles has the dominant influence on the eigenvalues. For this reason we assume that each
transition that belongs uniquely to one of the two fundamental cycles has the same forwards
and backwards rates, respectively. This leaves us with three tuples of transition rates, w4 for
transitions of cycle 1, wo for transitions within cycle 2, and x4 for the transition coupling
the two cycles.
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Figure 6. Schematic depiction of house network consisting of two fundamental cycles.
There is a total of three possible cycles. Each cycle on its own implies an elliptical
bound the eigenvalues depending on its cycle affinity. The weakest of these bounds is
generated by the cycle with the maximum value of A¢ /N and holds even if the cycles
are coupled.

We want to fix the affinities of the cycles. A suitable ansatz is

1 1

wiy = —exp[(A; — Aink) /4] wi_ = — exp[—(A; — Ajink) /4] (44)
wo wo
1 1

Wy = %Q exp[(Az + Ajink) /6] wa— = Wiog exp[—(Az + Aink) /6] (45)

exp(Aiink/2) k- = %P (—Alink/2) (46)

~ max{1,Q} max{l,Q}e
w wo

0

that fixes the affinity of cycle 1 to .4, and the affinity of cycle 2 to A,. It also introduces the
parameter £ that determines the ratio between the timescales of the two cycles. The rate wy is
chosen such that the maximum exit rate is 1. This means that if 2 = 0 only cycle 1 is active,
while {2 — oo corresponds to the case in which only cycle 2 is active.

Since we already established that the asymmetric random walk is the limiting case for
unicyclic networks, it is favourable to have this case within our parameter space. This can be
achieved by making the affinity of the link between the two cycles dependent on §2 in such
a way that it interpolates between the values present in a random walk with three states and
affinity 4, and a random walk with four states and affinity A;. A suitable choice is

A1/3+ QA /4
1+9Q '

Figure 7 shows the resulting eigenvalues as a function of €2 for the affinities A; = 6 and
A, = 4 together with the bounds resulting from the average link affinities present in each of
the three cycles. From the curves it becomes clear that coupling the two cycles (€2 ~ 1) does
not drive the eigenvalues outside the loosest elliptical bound. To a certain extent the behavior
of the eigenvalues can be understood intuitively. When both affinities are positive (left panel),

Alink = (47)
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Figure 7. Eigenvalues for the house network as function of ) for A; = 6 and A, =4
(left) and A, = —4 (right) . The elliptical bounds resulting from the average link affinity
in each cycle are shown as dashed lines. The parameter {2 is defined such that a value
of 0 corresponds to an asymmetric random walk with affinity .A; in the upper circle and
@ — oo corresponds to an asymmetric random walk with an affinity A4, in the lower
circle. For intermediate values the two cycles are coupled. Nonetheless the eigenvalues
stay within the loosest of the three bounds.

the two cycles sustain oscillations even when coupled, since they do not compete with each
other on their shared link. The two cycles behave analogously to two interlocked gears rotat-
ing in opposite directions. For this reason the imaginary part of the complex eigenvalue does
not vanish for any 2. However, the situation changes when the affinities have different signs
(right panel). Now, the two cycles compete over the shared link and consequently oscillations
disappear for intermediary values of {2 manifesting in real valued eigenvalues.

6.2. Numerical case study

While the simple example used in section 6.1 can serve as an illustrative case study for a
multi-cyclic network, it is by no means sufficient to make a claim for the generalizability of
the unicyclic bound to arbitrary Markov processes. In this section we will widen the scope of
our case studies to randomly generated networks with fixed number of states but randomly
generated network topology.

Because the loosest bound is produced by the cycle with the largest affinity per link and
the topology is random, it is rather challenging to prescribe the desired bound and then gener-
ate networks randomly that should satisfy this bound as we did in the previous case studies.
Instead, we opt for the reversed approach, drawing the network first without constraints and
computing the corresponding bound afterwards.

A network is generated by first drawing for each state the numbers of connections it should
have from the uniform distribution of integers in the range [2, N — 1]. This procedure guaran-
tees that there are no dead ends and each state is part of at least one cycle. If the configura-
tion is feasible, a graph with this configuration is generated deterministically and randomized
afterwards by swapping target and source states of randomly selected connections. The spe-
cific procedure is implemented using the graph-tool python package [19]. The rates for each
link are drawn from the exponential distribution

p(w;) = exp(—w;). (48)
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Note that the overall timescale, which could be fixed using a factor in the exponent, is irrel-
evant in this case, since the rates are normalized afterwards such that the largest exit rate takes
the value 1.

Networks generated in this manner do, in general, not share the same elliptical bound, since
the cycle affinities and even the cycles themselves are different for each network. To check
whether the bound is satisfied, we iterate over all cycles contained in the network using the
algorithm described in [20] and identify the maximum of A¢ /Ne.

We performed this procedure 10° times for each N up to 7 and did not come across a single
violation of the bound. To visualize the results in a single scatter plot for a given number of
states, we scale the imaginary part of the eigenvalues by a factor of (tanh (A*/N*)) ~!, which
maps all individual bounds valid for each system to the unit circle around —1, thus making
networks with different critical cycles comparable. Figure 8 shows the result for N = 5. The
different colors indicate the length N* of the cycle responsible for the bound.

7. Application to time discrete Markov chains

While the term affinity is commonly used only for time continuous Markov processes, our
results are not limited to this specific case. Just as the Perron—Frobenius theorem, they are
equally applicable to time discrete Markov jump processes that are described by the evolution
of the probability p(i,n) to be in state i at the discrete time step n according to

plin+1)= ZP(W)P(]»”) (49)

with the transition probability p(il;).

The definition of the affinity of a cycle translates to the logarithmic ratio of the probabil-
ity to observe a forward trajectory along this cycle and the probability to observe the time-
reversed one, i.e.

) ’ (50)

p(li)
.Adi = In < -
N ; plilj)
where the sum runs over all links from i to j of the specific cycle.
The eigenvalues of the propagator of a unicylic system with equal forward and backward
jump probability, respectively that is the counterpart of a time continuous random walk, are
given by

Adisen = MY /wo + 1 = cos(2nn/N) + i tanh(A/2N) sin(27n/N). (51)

In regards to the elliptical bound, the treatment of time discrete processes has the advantage
that the timescale, which is explicitly present as wy in the time continuous case, is inherently
fixed by the discreteness of the process. As a result, the bound does no longer rely on the
knowledge of a parameter other than the affinity per state, which could prove useful for infer-
ring the discrete affinity from measurements of correlation functions.

In a similar way, the results obtained here could be generalized to arbitrary mathematical
spectral problems of non-negative matrices, although the quantity that serves as the effective
affinity in these cases may not have a physical interpretation as it is the case for Markovian
systems.
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Figure 8. Scatter plot of eigenvalues of randomly generated networks with N =5
states. The colors encode the length N* of the cycle with maximum link affinity. The
imaginary parts of all eigenvalues are rescaled by the factor of (tanh(A*/(2N*)))~!in
order to make the elliptical bounds of different networks comparable since these bounds
collapse onto the unit cycle. All eigenvalues lie within the unit cycle, which allows us to
conjecture that the elliptical bound is also valid in the multi cyclic case.

8. Conclusion

We studied the intricate connection between the spectrum of generators of time continuous
Markovian dynamics and the affinity, a measure for breaking time reversal symmetry. Based
on extensive numerical case studies and results obtained from perturbation theory, we con-
jecture that the eigenvalues of such generators can be constrained by the ellipse on which the
eigenvalues of a corresponding asymmetric random walk lie.

While we could not provide a rigorous proof for the conjecture, our results obtained for
perturbations of the asymmetric random walk became a formal proof if it was possible to show
that a unicyclic process with homogeneous rates is the only process with eigenvalues on the
conjectured elliptical bound.
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The presented results show once again that for many aspects that involve non-equilibrium
systems, affinity-dependent bounds can be obtained by comparing the system with the corre-
sponding asymmetric random walk with the same affinity per state. This strategy has already
proven useful in deriving affinity-dependent bounds on distributions of stochastic currents of
which the thermodynamic uncertainty relation is the most prominent example.

Besides a rigorous proof of the conjecture put forth in this work, the most pressing open
question is whether there is an underlying connection between these results that would explain
why the asymmetric random walk appears time and time again as the limiting case when
quantifying the influence of the distance from equilibrium to certain physical quantities.

Appendix. Perturbation theory of nhormal matrices

Since generic master generators are not Hermitian and their eigenvectors are therefore in gen-
eral not pairwise orthogonal, the formulas of time independent perturbation theory, as they are
known from quantum mechanics, are not directly applicable to these matrices. In the case of
an asymmetric random walk, however, the corresponding matrix is normal, i.e.

hN%M@W:Q
(A.1)
As a consequence, the eigenvectors of M(®) form an orthonormal basis of the corresponding
Hilbert space. The aim of this section is to re-derive known results from quantum mechanics
using only the normal property of the perturbed matrix.
By virtue of being normal, the generator M(?) of an asymmetric random walk satisfies the
relations

Walve) = bnaw (A2)
MOy = A, |v0) (A3)
MO0y = Az, (Ad)

We want to calculate the eigenvalues ), and the normalized eigenvectors |v") of the per-
turbed matrix

M =M + MV (A.5)
up to second order in €, i.e. we calculate a perturbative solution to the eigenvalue equation
M= \)|v,) =0. (A.6)

Since the eigenvectors of the unperturbed problem form an orthornormal basis, it is pos-
sible to express the perturbed eigenvector as a superposition of these, such that we can write

_ 0 0
V) —C11|Vn>+zdm|ym>’ (A7)
m#n

where the coefficients d,, are of the order e.
The normalization condition of eigenvectors leads therefore to

_ 2 2 _
W) =1 & el +m§|dml =1 (A8)

which results in ¢, = 1 — O(€?).
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By inserting these results into the eigenvalue equation we obtain

(M = X)) [p)) = (MO 4 eMD — X)) | [b2) + D dulei) | +O(E). (A9)
m##n

Projection of this equation onto an eigenvector |/¥,) with n’ # n leads to
!
(WO IM = A J0) = el |My 10) + ;dm (Nt + € MO ) =N | 20 5 1)

The leading order of this equation in € reads

WO MDY +dy (N — i) =0 (A.11)
from which we readily obtain the leading order of the coefficients as
(v MO0 2
=, o) A12
RO .
= EW + O(E )

Here we could replace )\, with \Y in the second step since the difference of the two is of order
€ and therefore negligible in the leading order.

By projection of equation (A.9) onto |?) and by using the results form (A.12), it is now
possible to solve for the corrections to the eigenvalues up to order €2

OM(I) 0
0= <1/2| (M(O) +€M(l) _ )\n) ‘1/2> + ez <Vm| |Vn> |V,(q)q> + 0(62)

0 _ )0
m;ﬁn )‘n )\m
(A.13)
Solving for A, finally yields
1M (1) 0 M(l) 0
>\n:)\2+€<’/y(l)|M(l)|V Z | |V ><V)\né| |Vn> +O(€3)
m#n " (A.14)

which resembles closely the result used in quantum mechanics; the only difference being that
in this more general case the matrix elements and eigenvalues can be complex.
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