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Abstract
Affinity has proven to be a useful tool for quantifying the non-equilibrium 
character of time continuous Markov processes since it serves as a measure for 
the breaking of time reversal symmetry. It has recently been conjectured that 
the number of coherent oscillations, which is given by the ratio of imaginary 
and real part of the first non-trivial eigenvalue of the corresponding master 
matrix, is constrained by the maximum cycle affinity present in the network. 
In this paper, we conjecture a bound on the whole spectrum of these master 
matrices that constrains all eigenvalues in a fashion similar to the well known 
Perron–Frobenius theorem that is valid for any stochastic matrix. As in other
studies that are based on affinity-dependent bounds, the limiting process that 
saturates the bound is given by the asymmetric random walk. For unicyclic 
networks, we prove that it is not possible to violate the bound by small 
perturbation of the asymmetric random walk and provide numerical evidence 
for its validity in randomly generated networks. The results are extended to 
multicyclic networks, backed up by numerical evidence provided by networks 
with randomly constructed topology and transition rates.

Keywords: Markov processes, stochastic matrices, stochastic 
thermodynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

Real valued matrices with positive entries (with exception of the diagonal) can be encountered 
in many different fields of mathematics and physics. They show up in many forms and under 
different names throughout the literature. In graph theory they appear as the Laplacian matrix 
of (weighted) graphs [1], the time evolution of Markov chains is governed by a transition 
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matrix that falls under this category, and most importantly for the scope of this article, the 
time evolution of a continuous time jump process is generated by a matrix of this type. Efforts 
to understand the structure of the spectrum of such matrices can ultimately result in insights 
into the studied system.

While many well known results like the Perron–Frobenius theorem or Gershgorin disks 
are quite general [2–4], in a physical context bounds on the spectrum that may be less general 
but depend on physically meaningful quantities are more desirable since they could be used 
to infer otherwise hidden properties of the system. In particular, for non-equilibrium systems 
coupled to thermal or chemical reservoirs such a strategy is called thermodynamic inference 
[5]. A recent, prominent example for such a relation is the thermodynamic uncertainty rela-
tion, which provides a lower bound to the rate of entropy production based on the observable 
precision of thermodynamic currents [6–9].

Recent efforts to understand relations between the entropy production associated with 
maintaining biochemical oscillations [10–12] have sparked interest in fundamental con-
nections between the non-equilibrium character of such reactions and the properties of the 
observed oscillations. It was conjectured that the affinity of the chemical network can be used 
to find a bound to the number of coherent oscillations shown by the dominant contribution to 
the corresponding relaxation process [13].

This finding begs the question, whether the dominant eigenvalue of the generator that gov-
erns the long time behavior is the only one for which affinity-dependent bounds apply or 
whether there are global bounds valid for all eigenvalues, i.e. for all timescales of the relaxa-
tion process. In this paper we argue that indeed the later is the case and there exist such a 
bound for the whole spectrum of the master equation.

This study is concerned with time continuous Markov processes on a discrete set of N 
states. The state of the system jumps with rates wij � 0 from state i to state j . Consequently, the 
probability p i(t) to occupy a certain state i at time t evolves according to the master equation

∂tpi(t) =
∑

j

Mi,jpj(t)� (1)

with the generator Mi,j  that is of the form

Mi,j = wji − δi,jri,� (2)

where the exit rate ri is the sum of all rates of jumps away from state i, i.e. ri =
∑

j wij.
An important subclass of such networks that will be used as paradigmatic examples are 

unicyclic networks where the states are arranged in a cyclical fashion and only jumps between 
next neighbors are allowed. The generator then takes the form

Mi,j = wj+δi,j+1 + wj−δi,j−1 − (wj+ + wj−)δi,j,� (3)

where we assume circular boundary conditions in the indices, i.e. we identify N + 1=̂1.
The objective of this article is to motivate and conjecture a bound that interpolates between 

the generic case covered by the Perron–Frobenius theorem and the special case of thermal 
equilibrium, where detailed balance holds.

2.  Conjecture

An asymmetric random walk on a cycle of states is uniquely defined by the forward rate w+ , 
the backward rate w−, and the number of states N. It can alternatively be defined using the 
exit rate w0 = w+ + w−, the affinity A = N ln(w+/w−), and N. The corresponding generator 
reads
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M(0)
i,j = w+δi,j+1 + w−δi,j−1 − (w+ + w−)δi,j� (4)

with the rates

w+ = w0
eA/(2N)

2 cosh(A/(2N))
and w− = w0

e−A/(2N)

2 cosh(A/(2N))
.� (5)

It is a special case of a unicyclic system with wi+ and wi− in equation (3) chosen uniformly 
for each link. This matrix is circulant and as such it can be diagonalized analytically leading 
to the eigenvectors

|ν0
n〉 =

1√
N

N−1∑
k=0

exp(−2πink/N)|k〉,� (6)

with the corresponding eigenvalues

λn = w0 [−1 + cos(2πn/N) + i tanh(A/2N) sin(2πn/N)] .� (7)

They lie on an ellipse on the complex plane. We conjecture that the eigenvalues of the genera-
tors of all unicyclic processes that have the same affinity, defined as A =

∑
i ln(wi+/wi−), the 

same maximum exit rate w0 = maxi(wi+ + wi−), and the same number of states, lie within 
the ellipse defined by the corresponding asymmetric random walk, as it is illustrated in fig-
ure 1. For multicyclic networks, we conjecture that the eigenvalues lie within the ellipse corre
sponding to the cycle C present in the network that maximizes the ratio AC/NC, where AC and 
NC denote the affinity and the number of states contained in cycle C, respectively.

3.  Motivation

Having stated the conjecture, we provide some rationale as to why this should be the case. If 
the system is in equilibrium, the transition rates have to satisfy detailed balance relations that 
connect the transition rates to the free energy Fi  associated with the states according to [5]

�(λ)

�(λ)w0

arbitrary affinity
affinity fixed
equilibrium

•
•

•

•

•

••

Figure 1.  Scheme of regions in the complex plane within which the eigenvalues of a 
master matrix must lie. For generic master generators the Perron–Frobenius theorem 
restricts the eigenvalues to a circle on the negative half plane. If the system is in thermal 
equilibrium, in addition, all eigenvalues must be real. We conjecture an elliptical bound 
that depends on the maximum cycle affinity per state.
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wij

wji
= exp (Fj −Fi) .� (8)

A suitable set of free energies can be found if and only if the cycle affinity

AC =
∑

i→j∈C
ln

wij

wji� (9)

of all cycles in the network vanishes. As a consequence of the detailed balance relation, the 
generator satisfies the symmetry relation

exp(Fj/2)Mj,i exp(−Fi/2) = exp(Fi/2)Mi,j exp(−Fj/2)� (10)

and is thus similar to a symmetric matrix which means that its spectrum is real. This result 
agrees with our conjecture when taking the limit A → 0 in which case the ellipse degenerates 
to a line on the real axis.

For arbitrary affinities the Perron–Frobenius theorem guarantees that no eigenvalue of the 
generator lies outside the circle centered at  −w0 on the complex plane that touches the imagi-
nary axis. This bound corresponds to our conjecture in the limit A/N → ∞.

An early indication that there is a connection between the distance from equilibrium and 
the spectrum can be found in works of Dimitriev and Dynkin on refinements of the Perron–
Frobenius theorem (originally published in [14, 15] for a translation see [16]). There, it was 
proven that the master generators capable of saturating the Perron–Frobenius bound on the 
eigenvalues, are up to a multiplicative constant and permutations of states matrices of the form

M∞
i,j = δi,j+1 − δi,j.� (11)

Remarkably, this is the generator of an asymmetric random walk in the limit A → ∞, which 
shows that the affinity must diverge if the bound from the Perron–Frobenius theorem is to be 
saturated.

Moreover, related studies that are concerned with bounds to certain physical quantities like 
the Fano factor of thermodynamic currents [7, 9, 17] or the number of coherent oscillations 
[13] share several important aspects that can serve as guiding principles to identify a bound on 
the spectrum that depends on the non-equilibrium nature of the process.

	 (i)	�The maximum cycle affinity per state, i.e.

max
C

AC

NC
� (12)

		 is the quantity of choice to characterize the distance of the system from thermodynamic 
equilibrium.

	(ii)	�The asymmetric random walk with the desired affinity per state is the process that is 
extremal in the sense of the considered bound, i.e. a cyclic process with uniform back-
wards and forward rates leads to saturation of the bound. For example, in the case of 
the affinity-dependent bounds on the Fano factor, it turned out that out of all unicyclic 
processes with the same affinity and number of states, the asymmetric random walk is 
the one with the lowest Fano factor. In a similar vein, the number of coherent oscillations 
turned out to be maximal in the case of an asymmetric random walk.

	(iii)	�It became evident that these bounds, which where initially formulated for unicyclic 
networks, can be generalized to multicyclic networks by identifying the cycle that cor-
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responds to the weakest bound. The bound generated by this cycle serves as a global 
bound for the whole system.

Following this line of reasoning, the conjecture stated in section 2 is nothing but the appli-
cation of these principles to the complete spectrum of the master equation. To substantiate the 
conjecture, we show in section 4 for the unicyclic case, that the eigenvalues corresponding to 
the asymmetric random walk are locally optimal in the sense that there exists no perturbation 
to the corresponding generator that shifts the eigenvalues outside of the conjectured bound. In 
section 5 we present numerical evidence obtained by numerical diagonalization of generators 
of unicyclic systems with randomly generated rates at fixed affinity. We also show results of a 
numerical optimization procedure designed to find a violation of the bound, failing to do so. 
Results for randomly generated multicyclic networks are presented in section 6. They conform 
with an elliptical bound obtained by the cycle that has the maximum link affinity.

4.  Perturbation theory around the asymmetric random walk

The conjecture implies that the asymmetric random walk is an extremal process in the sense 
that the eigenvalues of its generator lie on the conjectured bound for all other processes with 
the same affinity and number of states. The goal of this section is to prove that it is indeed not 
possible for the eigenvalues to move outside of the ellipse defined by the random walk if the 
random walk is perturbed in a fashion that preserves the affinity and the topological structure 
of the network through second order perturbations. We also show that these perturbations can 
not vanish, which means that the ellipse corresponding to the eigenvalues of the asymmetric 
random walk can be considered a local optimum of the optimization problem of finding the 
least eccentric ellipse that contains all eigenvalues of a unicyclic generator for a given affinity. 
Whether it is also a global bound as we conjecture remains to be proven.

We assume a perturbation of the form

M = M(0) + εM(1).� (13)
Throughout this section we normalize M such that the maximum exit rate takes the value 1, 
i.e. we set w0  =  1. This is possible without loss of generality since we assumed that the maxi-
mum exit rate is known. Results for any value of w0 �= 1 can be obtained by rescaling in time. 
As shown in appendix, the eigenvalues can be approximated by

λn = λ0
n + ε〈ν0

n |M(1)|ν0
n〉+ ε2

∑
m�=n

〈ν0
n |M(1)|ν0

m〉〈ν0
m|M(1)|ν0

n〉
λ0

n − λ0
m

+O(ε3),� (14)

where λ0
n and |νn〉 are the nth eigenvalue and eigenvector of the unperturbed asymmetric ran-

dom walk, respectively.

4.1.  First order perturbation of the asymmetric random walk

The perturbation has to comply with the following rules

	 (i)	�M(1)
i,j  is nonzero only if M(0)

i,j  is also nonzero as we only want to perturb existing rates and 

not introduce new connections between states of the network.
	(ii)	�The columns of M(1) must sum up zero, since the resulting matrix must still be a Markov 

generator.
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	(iii)	�Since we normalized the matrix M such that the maximum exit rate w0 is equal to 1, the 
diagonal entries of M(1) must not be negative and ε can only take on positive values.

	(iv)	�The entries of the perturbation matrix have to be chosen in such a way that the affinity is 
preserved under the perturbation.

An ansatz that satisfies the first two constraints is given by the choice

M(1)
i,j = −kj+δi,j+1 − kj−δi,j−1 + (kj+ + kj−)δi,j� (15)

while the third constraint corresponds to the condition

ki+ + ki− � 0 ∀ i.� (16)

Fixed affinity of the perturbed system translates to
(

w+

w−

)N

= exp (A)
!
=

∏N−1
i=0 (w+ − εki+)∏N−1
i=0 (w− − εki−)

=
wN
+ − εΓ+wN−1

+

wN
− − εΓ−wN−1

−
+O(ε2).

� (17)
For perturbation theory of first order this condition needs only to be satisfied up to first order, 
which reads

(
w+

w−

)N

=

(
w+

w−

)N

− ε
Γ+wN−1

+ wN
− − Γ−wN−1

− wN
+

w2N
−

+O(ε2)� (18)

with the sum over all perturbations of all forward or backward rates defined as Γ± ≡
∑

i ki±. 
Satisfying these conditions fixes the ratio of the two sums to

Γ+

Γ−
=

w+

w−
.� (19)

According to the perturbative solution derived in the appendix, the perturbation to the 
eigenvalues are in first order given by

〈ν0
n |M(1)|ν0

n〉 =
1
N

∑
m,k

exp(2πi(m−k)n/N) (δm,k(kk+ + kk−)−kk+δm,k+1−kk−δm,k−1)

=
1
N

∑
k

(kk+ + kk−)− kk+ exp(2πin/N)− kk− exp(−2πin/N)

=
1
N

[Γ+ + Γ− − Γ+ exp(2πin/N)− Γ− exp(−2πin/N)]

�

(20)

in which only the sums Γ± appear. This, in combination with the fact that the ratio between 
the two sums is fixed as per equation (19), makes it possible to treat every perturbation that 
conforms with the constraints with one relation by introducing the mapping

Γ+ = Γexp(A/(2N)) and Γ− = Γexp(−A/(2N))� (21)

defining the rate constant Γ, which is the only parameter relevant for the first order correction 
and needs to be non negative to satisfy equation (16).

By inserting the mapping into equation (20) and applying trigonometric relations, one finds 
that the perturbation can be put into the rather simple form

〈ν0
n |M(1)|ν0

n〉 =
2Γ
N

[
cosh

(
A
2N

)(
1 − cos

(
2πn
N

))
− i sinh

(
A
2N

)
sin

(
2πn
N

)]
,� (22)
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which is in fact always a multiple of the unperturbed eigenvalue allowing us to write

λn =

[
1 − ε

2Γ
N

cosh

(
A
2N

)]
λ0

n +O(ε2).� (23)

Note that the prefactor in square brackets cannot exceed 1 since both ε and Γ are non-negative. 
This result has the interesting consequence that the first order perturbation always shifts the 
eigenvalue towards the origin of the complex plane. This statement is generically true, with 
the possible exception that the first order perturbation vanishes, i.e. for Γ = 0. Not only does 
this confirm that it is not possible to leave the ellipse defined by the eigenvalues of the asym-
metric random walk, it also confirms the bound conjectured in [13] in first order around an 
asymmetric random walk. There, it was conjectured that the dominant non-zero eigenvalue 
is contained within a cone spanning from the origin to the corresponding eigenvalue of the 
asymmetric random walk with the same affinity, i.e.

−�(λ1)

�(λ1)
� −�(λ0

1)

�(λ0
1)

.� (24)

From equation (23) it is obvious that this bound is saturated for first order perturbations. In 
contrary to the conjecture in [13], this result is not limited to the first non-trivial eigenvalue 
but holds for arbitrary n.

4.2.  Second order perturbation in case of vanishing first order

While the first order perturbation always points inside the conjectured bound, it is not guaran-
teed that it is nonzero. In this section we want to study cases in which the first order vanished 
and the second order becomes the dominant one for small ε.

The first order vanishes if and only if Γ = 0. As the perturbations to the rates ki must also sat-
isfy condition (16), this implies that ki+ + ki− = 0 must hold individually for all i, which means 
that the perturbation is not allowed to change the exit rates of the asymmetric random walk.

Rather than expanding the Taylor series of the affinity in equation (18) up to second order 
and to derive a further condition on the perturbation, we opt to include the fixed affinity condi-
tion directly into a suitable ansatz for the transition rates. The ansatz is given by the choice

wi+ =
exp(A/(2N) + εfi)

2 cosh(A/(2N) + εfi)
and wi− =

exp(−A/(2N)− εfi)
2 cosh(A/(2N) + εfi)

= 1 − wi+,

� (25)
where the parameters f i characterize the perturbation and ε is a small amplitude. Forward and 
backward rate sum up to unity as it is necessary for a vanishing first order perturbation. In 
order to keep the affinity fixed at A, the parameters f i must sum up to zero, i.e.

∑
i

fi = 0.� (26)

Expanding the master matrix corresponding to our ansatz in a Taylor series up to second 
order leads to

M = M(0) + εM(1) + ε2M(2) +O(ε3)� (27)

with the perturbation matrices

M(1)
i,j = afj (δi,j+1 − δi,j−1)� (28)

M Uhl and U Seifert﻿J. Phys. A: Math. Theor. 52 (2019) 405002
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and

M(2)
i,j = −bf 2

j (δi,j+1 − δi,j−1)� (29)

containing the constants

a ≡ 2 exp(A/N)

(exp(A/N) + 1)2 and b ≡ −2 exp(A/N) (exp(A/N)− 1)

(exp(A/N) + 1)3 .� (30)

Up to second order in ε the eigenvalues of the matrix M are given by the expression

λn = λ0
n + ε〈ν0

n |M(1)|ν0
n〉+ ε2


∑

m�=n

〈ν0
n |M(1)|ν0

m〉〈ν0
m|M(1)|ν0

n〉
λ0

n − λ0
m

+ 〈ν0
n |M(2)|ν0

n〉


+O(ε3).� (31)

We proceed by calculating the matrix elements of the perturbation matrices in the eigen-basis 
of the unperturbed system. For M(1) we find

〈ν0
n |M(1)|ν0

m〉 =
1
N

∑
k,l

exp

[
2πi
N

(kn − lm)

]
M(1)

k,l

=
1
N

∑
k,l

exp

[
2πi
N

(kn − lm)

]
afl (δk,l+1 − δk,l−1)

=
a
N

(
e

2πi
N n − e−

2πi
N n

)∑
l

exp

[
2πi
N

l(n − m)

]
fl.

�

(32)

Since the eigenvectors only contain terms of the form e
2πi
N nm, the discrete Fourier-transform 

defined as

f̃i ≡
1√
N

∑
k

e−
2πi
N kifk,� (33)

arises naturally, which allows us to write

〈ν0
n |M(1)|ν0

m〉〈ν0
m|M(1)|ν0

n〉 = −4a2

N
sin

(
2π
N

n
)
sin

(
2π
N

m
) ∣∣∣ f̃n−m

∣∣∣
2

,� (34)

where we have used the symmetry relation f̃−i = f̃ ∗i  that holds because all f i are real.
Following analogous calculations, the matrix elements of M(2) entering equation (31) read

〈ν0
n |M(2)|ν0

n〉 =
1
N

∑
k,l

exp

[
2πi
N

n (l − k)
]

M(2)
k,l

= − b
N

(
e

2πi
N n − e−

2πi
N n

)∑
l

f 2
l .

�

(35)

In order to combine the corrections arising form M(1) and M(2), we make use of the fact 
that the discrete Fourier transformation preserves the norm of the transformed vector, which 
can be shown as follows

∑
l

f 2
l =

∑
l,k

fl fkδl,k =
1
N

∑
l,k,m

fl fke
2πi
N m(k−l)

=
∑

m

(
1√
N

∑
l

fle−
2πi
N lm

)(
1√
N

∑
k

fke
2πi
N km

)
=

∑
m

∣∣∣f̃m
∣∣∣
2

.

�

(36)
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Furthermore, we know that the f i sum up to zero, so the zeroth Fourier coefficient must van-
ish. Combined with equation (36) this allows us to write the correction from M(2) in the same 
form as equation (34)

〈ν0
n |M(2)|ν0

n〉 = −2i
b
N

sin

(
2π
N

n
)∑

m�=n

∣∣∣ f̃n−m

∣∣∣
2

.� (37)

This means that the second order correction can be split up into a sum over all Fourier 
components of the perturbation parameters f i. The N coefficients f̃i are, however, not inde-
pendent. They have to fulfill the symmetry relation f̃−i = f̃ ∗i , which, in combination with the 
periodic boundary condition f̃i+N = f̃i, leads to the result f̃i = f̃ ∗N−i. This leaves us with �N/2� 
independent terms in the sums in equations (34) and (37). The eigenvalues of the perturbed 
system can thus be cast in the form

λn = λ0
n +

ε2

N
sin

(
2π
N

n
)
∑

m�=n

[
−

4a2 sin
( 2π

N m
)

λ0
n − λ0

m
− 2bi

] ∣∣∣ f̃n−m

∣∣∣
2


� (38)

= λ0
n +

ε2

N
sin

(
2π
N

n
) �N/2�∑

k=1

zn,k

∣∣∣f̃k
∣∣∣
2

� (39)

with the fundamental directions

zn,k =




4a2 sin( 2π
N n)

λ0
n−λ0

n−k
− 2bi if N is even and k = N/2

− 4a2 sin( 2π
N (n−k))

λ0
n−λ0

n−k
− 4a2 sin( 2π

N (n+k))
λ0

n−λ0
n+k

− 4bi otherwise.
� (40)

It is important to note that, unlike the first order, the second order cannot vanish unless all 
f̃i are zero, which would mean that there is no perturbation at all. Consequently, there is no 
need to consider higher orders of perturbation to understand the behavior of the eigenvalues in 
the vicinity of the asymmetric random walk.

Figure 2 shows the fundamental directions attached to their respective eigenvalues for a 
nine state system. Since the second order perturbations are a superposition of the fundamental 
directions, the eigenvalue can only be shifted in a direction contained in the cone spanned by 
two extremal directions. For the eigenvalue highlighted in the inset this cone is, for example, 
spanned by the directions z1,1 and z1,4. In any case, the entire cone of possible directions points 
to the inside of the conjectured bound shown as a gray ellipse.

To better visualize zn,k in the general case, we calculate the angle on the complex plane 
between zn,k and

λ⊥,n ≡ − tanh(A/(2N)) cos

(
2π
N

n
)
− i sin

(
2π
N

n
)

,� (41)

a complex number that is perpendicular on the ellipse and points to the inside at the position 
of the unperturbed eigenvalues. This angle can be written in the form

φn,k = arcsin

(�(zn,kλ
∗
⊥,n)

|zn,k||λ⊥,n|

)
� (42)

and depends only on the affinity and the number of states N. Graphical representations of the 
affinity-dependence of this angle are presented for different N in figure 3. For better orientation 
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the direction of the neighboring eigenvalues and the angle to the downwards direction are also 
plotted. It is evident that the angle is always between −π/2 and π/2 meaning that zn,k points 
inwards. For small affinities, i.e. close to equilibrium, the fundamental perturbation direc-
tions either point in positive or negative direction or along the imaginary axis, so the angles 
are either π/2, −π/2 or 0. Note, however, that the non degenerate perturbation theory as it is 
used here is only valid for A �= 0, since all non-trivial eigenvalues of the master matrix for a 
random walk become degenerate as A approaches zero.

For large affinities zn,k points along the imaginary axis, since in this case b � a2 holds in 
equation (30), while all other terms in equation (39) stay finite. For this reason all curves in 
figure 3 collapse onto the curve indicating the vertical direction as A goes to infinity.

5.  Numerical evidence

The asymmetric random walk has proven to be the limiting case in established bounds that 
depend on the affinity. In order to further substantiate the bound beyond the second order per-
turbation theory, in this section, we will present abundant numerical evidence for this bound 
in the unicyclic case by randomly generating rates that lead to a desired value of the affinity as 
well as numerical optimization schemes that put the conjectured bound to the test.

5.1.  Randomly generated unicyclic systems

The rates for the randomly generated unicyclic networks are generated using the ansatz

wi+ = wi exp(∆Fi/2) and wi− = wi exp(−∆Fi/2),� (43)

−2.00 −1.75 −1.50 −1.25 −1.00 −0.75 −0.50 −0.25 0.00
�(λ)

−0.10

−0.05

0.00

0.05

0.10

�
(λ

)

n = 1

k = 1
k = 2
k = 3
k = 4

Figure 2.  Fundamental directions zn,k of the second order correction to the eigenvalues 
of the asymmetric random walk with N  =  9 states and affinity A = 2.3. The unperturbed 
eigenvalues are connected by dashed lines. The inset shows a magnification of the first 
non trivial eigenvalue. All corrections point to the inside of the ellipse on which the 
unperturbed eigenvalues lie.
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introducing the timescales wi and the free energy differences between connected states ∆F. In 
order to achieve the desired affinity the free energy differences have to sum up to A. For this 
reason, we first draw N values ∆F̃ independently from a uniform distribution on the interval 
(−0.5, 1.5) and calculate the energy differences as ∆Fi = A∆F̃i/

∑
i ∆F̃i. The interval is 

asymmetrical in order to make divisions by values close to zero less likely, thereby increasing 
numerical stability.

Figure 3.  Angles between the fundamental directions of the second order perturbation 
and the direction perpendicular to the ellipse on which the unperturbed eigenvalues 
lie. All possible perturbations are a superposition of these directions, so the eigenvalue 
can only move in directions between the extremal angles. All fundamental direction 
form an angle between −π/2 and π/2 to the perpendicular direction, showing that 
there exists no perturbation that moves the eigenvalues outside of the ellipse. For better 
orientation the directions of the neighboring eigenvalues are indicated as dashed lines. 
The vertical direction is shown as a dotted line. As the affinity rises all perturbation 
directions converge to the vertical direction.
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The timescales wi are drawn from a uniform distribution between 0 and 1. After calculating 
all rates, the timescales are adjusted such that the largest exit rate takes the value 1. For this 
reason the width of the interval from which the wi are drawn is irrelevant.

The results obtained by perturbing the asymmetric random walk show that there is a fun-
damental difference between systems with arbitrary exit rates (generic case) and systems that 
have uniform exit rates in all states. We therefore also specifically generate systems with the 
same exit rate in each state by rescaling the rates such that this is the case after drawing them 
as described above.

For each combination of N and A that we study, we draw 10 000 sets of rates both for 
the generic and for the case of uniform exit rates and calculate the eigenvalues of the corre
sponding generator. As an example the results for N  =  5 and A = 1.2 are presented in  

figure 4. The color indicates whether the states are drawn with random exit rates (blue) or 
with the same exit rate in each state (gray). Also shown are the directions of the first order 
perturbation according to section 4.1 and the different fundamental directions of perturbations 
of second order in case the first order vanishes (see section 4.2).

All eigenvalues lie within the ellipse defined by the eigenvalues of the asymmetric ran-
dom walk. As already conjectured in [13], the nontrivial eigenvalue with the largest real part 
always lies below a line connecting the origin with the first non-trivial eigenvalue of the corre
sponding asymmetric random walk. From the numerical data it is evident that such a relation 
also holds for the other eigenvalues when compared to their corresponding eigenvalue of the 
random walk.

Furthermore, it is interesting to note that the results obtained through perturbation theory 
describe the behavior of the eigenvalues rather well, even if the system is not close to the 
asymmetric random walk. The eigenvalues of systems with uniform exit rate stay roughly 
within the cone derived from the extremal directions introduced in section  4.2. This begs 
the question to which extend the second order perturbation derived there constitutes a good 
approximation for large ε.

To investigate this further, we calculate the eigenvalues of unicyclic systems with rates 
as defined in equation (25) for finite ε numerically. As we have seen, perturbations that cor-
respond to the fundamental directions of the second order result are produced by the choice 
of f i such that its discrete Fourier-transform only contains one selected mode. For this reason 

we choose f (k)
i = cos(2πik/N). The results are shown in figure 5 as solid lines parametrized 

by ε ∈ [0, 10]. By definition these curves leave the eigenvalues in parallel to the fundamental 
direction corresponding to the selected Fourier mode. The curves stay approximately linear, 
which shows that, in this case, the perturbative result can qualitatively describe the spectrum of 
all systems that show oscillations and therefore have corresponding eigenvalues with nonzero 
imaginary part. Even for larger ε, where the non-linearity becomes more pronounced, we see 
that the curves still approximately envelope the eigenvalues for randomly generated systems.

The process has been repeated for values of N between 3 and 13 and values of A in the 
range between 0 and 20 with the same qualitative result (data not shown).

5.2.  Numerical optimization procedure

While studying randomly generated systems can capture the generic behavior of the eigen-
values, in this section we describe a numerical method that aims to find possible violations 
of the conjectured bound (and fails to do so). The goal is to use standard numerical optim
ization algorithms to find a set of rates that produces the maximum imaginary part of a specific 
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eigenvalue while keeping its real part fixed at a predetermined value and also obeying the 
constraints on affinity and exit rates.

This is done using the sequential least squares programming algorithm as it is implemented 
in the python library for scientific computing scipy [18], with a randomly chosen initial guess 
for the rates. As it is to be expected for a heavily constrained non-linear optimization prob-
lem, the algorithm converges rather poorly without case specific tweaking of the optimization 
parameters and the initial guess. Nevertheless it is possible to find extremal cases in some 
intervals of the real part, typically in the vicinity of the eigenvalues of the asymmetric random 
walk. The results are depicted as solid lines in figure 5. They show that the eigenvalues can 
not leave the ellipse defined by the random walk even if the rates are specifically designed to 
do so. Apparently it is not even possible to exceed the straight line connecting the origin to the 
corresponding eigenvalue of the asymmetric random walk, which shows once more that the 
results conjectured in [13] can be extended to subdominant eigenvalues.

6.  Multicyclic case

In previous studies of affinity-dependent bounds [13, 17], it turned out that the results obtained 
for unicyclic systems can be extended to multicyclic systems since the coupling of two or 
more cycles to each other can be handled by identifying the cycle that produces the weakest 

−2.00 −1.75 −1.50 −1.25 −1.00 −0.75 −0.50 −0.25 0.00
�(λ)

−0.2

−0.1

0.0

0.1

0.2

�
(λ

)
finite ε

k = 1
k = 2

homogeneous exit rate
random exit rate

1st order
2nd order

Figure 4.  Scatter plot of eigenvalues for systems with N  =  5 states and A = 1.2. 
Random systems with unconstrained exit rates are plotted in blue. Systems with exit 
rates constrained to 1 are shown in gray. The solid lines show the eigenvalues of systems 

with rates constructed with f (k)
i = cos(2πik/N) and finite ε. The arrows indicate the 

directions of the perturbation results of first and second order, respectively. From the 
distribution of eigenvalues it can be seen that the results obtained by perturbing the 
asymmetric random walk seem to extend beyond the validity of the perturbation theory 
in the sense that the curves corresponding to the extremal directions of the perturbation 
theory form approximate bounds to the eigenvalues not only in the immediate vicinity 
of the asymmetric random walk but for all systems with eigenvalues that have an 
imaginary part different from zero.
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bound. In our case, the weakest bound is based on the cycle that maximizes the ratio AC/NC of 
cycle affinity and number of states in the cycle. In this section we provide numerical evidence 
that the elliptical bound can be extended to multicyclic networks following this rationale.

6.1.  Simple multi cyclic network

One of the arguably simplest models to study multicyclic behavior is a network consisting 
of merely two fundamental cycles that share one link. Figure 6 shows an example of such a 
network that was previously used to illustrate universal bounds on the cumulant generating 
function of the distribution of entropy production (‘house network’) [17]. In this section we 
aim to study the influence of coupled cycles on the bounds discussed above.

As this example is intended to serve as a case study, we want to keep the number of differ-
ent rates as low as possible, while still maintaining the possibility to fix the affinity of each 
cycle individually and having a meaningful parameter Ω that allows us to select which of the 
cycles has the dominant influence on the eigenvalues. For this reason we assume that each 
transition that belongs uniquely to one of the two fundamental cycles has the same forwards 
and backwards rates, respectively. This leaves us with three tuples of transition rates, w1± for 
transitions of cycle 1, w2± for transitions within cycle 2, and κ± for the transition coupling 
the two cycles.

−2.00 −1.75 −1.50 −1.25 −1.00 −0.75 −0.50 −0.25 0.00
�(λ)

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

�
(λ

)

Figure 5.  Scatter plot showing the eigenvalues of a cyclic Markov process with seven 
states and an affinity of A = 1.2. The eigenvalues are sorted by increasing real part and 
are colored accordingly. Black curves show results of a numerical optimization scheme 
with the goal to find the process which leads to the largest (smallest) imaginary part of 
a specific eigenvalue with the real part fixed at a given value. Black crosses indicate 
the eigenvalues of the asymmetric random walk with affinity A. The numerical results 
suggest that it is not possible to find a process at fixed affinity with eigenvalues that lie 
outside a certain region that is bounded by the ellipse on which the eigenvalues of the 
asymmetric random walk lie.
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We want to fix the affinities of the cycles. A suitable ansatz is

w1+ =
1

w0
exp[(A1 −Alink)/4] w1− =

1
w0

exp[−(A1 −Alink)/4]� (44)

w2+ =
1

w0
Ωexp[(A2 +Alink)/6] w2− =

1
w0

Ωexp[−(A2 +Alink)/6]� (45)

κ+ =
max {1,Ω}

w0
exp(Alink/2) κ− =

max {1,Ω}
w0

exp(−Alink/2)� (46)

that fixes the affinity of cycle 1 to A1 and the affinity of cycle 2 to A2. It also introduces the 
parameter Ω that determines the ratio between the timescales of the two cycles. The rate w0 is 
chosen such that the maximum exit rate is 1. This means that if Ω = 0 only cycle 1 is active, 
while Ω → ∞ corresponds to the case in which only cycle 2 is active.

Since we already established that the asymmetric random walk is the limiting case for 
unicyclic networks, it is favourable to have this case within our parameter space. This can be 
achieved by making the affinity of the link between the two cycles dependent on Ω in such 
a way that it interpolates between the values present in a random walk with three states and 
affinity A1 and a random walk with four states and affinity A2. A suitable choice is

Alink =
A1/3 +ΩA2/4

1 +Ω
.� (47)

Figure 7 shows the resulting eigenvalues as a function of Ω for the affinities A1 = 6 and 
A2 = ±4 together with the bounds resulting from the average link affinities present in each of 
the three cycles. From the curves it becomes clear that coupling the two cycles (Ω � 1) does 
not drive the eigenvalues outside the loosest elliptical bound. To a certain extent the behavior 
of the eigenvalues can be understood intuitively. When both affinities are positive (left panel), 

1 2

34

5

w2+

w2+

κ−

w2+w2−

κ+

w2−

w2−

w1+w1+

w1− w1−

C2

C1

Figure 6.  Schematic depiction of house network consisting of two fundamental cycles. 
There is a total of three possible cycles. Each cycle on its own implies an elliptical 
bound the eigenvalues depending on its cycle affinity. The weakest of these bounds is 
generated by the cycle with the maximum value of AC/NC and holds even if the cycles 
are coupled.
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the two cycles sustain oscillations even when coupled, since they do not compete with each 
other on their shared link. The two cycles behave analogously to two interlocked gears rotat-
ing in opposite directions. For this reason the imaginary part of the complex eigenvalue does 
not vanish for any Ω. However, the situation changes when the affinities have different signs 
(right panel). Now, the two cycles compete over the shared link and consequently oscillations 
disappear for intermediary values of Ω manifesting in real valued eigenvalues.

6.2.  Numerical case study

While the simple example used in section 6.1 can serve as an illustrative case study for a 
multi-cyclic network, it is by no means sufficient to make a claim for the generalizability of 
the unicyclic bound to arbitrary Markov processes. In this section we will widen the scope of 
our case studies to randomly generated networks with fixed number of states but randomly 
generated network topology.

Because the loosest bound is produced by the cycle with the largest affinity per link and 
the topology is random, it is rather challenging to prescribe the desired bound and then gener-
ate networks randomly that should satisfy this bound as we did in the previous case studies. 
Instead, we opt for the reversed approach, drawing the network first without constraints and 
computing the corresponding bound afterwards.

A network is generated by first drawing for each state the numbers of connections it should 
have from the uniform distribution of integers in the range [2, N − 1]. This procedure guaran-
tees that there are no dead ends and each state is part of at least one cycle. If the configura-
tion is feasible, a graph with this configuration is generated deterministically and randomized 
afterwards by swapping target and source states of randomly selected connections. The spe-
cific procedure is implemented using the graph-tool python package [19]. The rates for each 
link are drawn from the exponential distribution

p(wi) = exp(−wi).� (48)
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Figure 7.  Eigenvalues for the house network as function of Ω for A1 = 6 and A2 = 4 
(left) and A2 = −4 (right) . The elliptical bounds resulting from the average link affinity 
in each cycle are shown as dashed lines. The parameter Ω is defined such that a value 
of 0 corresponds to an asymmetric random walk with affinity A1 in the upper circle and 
Ω → ∞ corresponds to an asymmetric random walk with an affinity A2 in the lower 
circle. For intermediate values the two cycles are coupled. Nonetheless the eigenvalues 
stay within the loosest of the three bounds.
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Note that the overall timescale, which could be fixed using a factor in the exponent, is irrel-
evant in this case, since the rates are normalized afterwards such that the largest exit rate takes 
the value 1.

Networks generated in this manner do, in general, not share the same elliptical bound, since 
the cycle affinities and even the cycles themselves are different for each network. To check 
whether the bound is satisfied, we iterate over all cycles contained in the network using the 
algorithm described in [20] and identify the maximum of AC/NC.

We performed this procedure 106 times for each N up to 7 and did not come across a single 
violation of the bound. To visualize the results in a single scatter plot for a given number of 
states, we scale the imaginary part of the eigenvalues by a factor of (tanh (A∗/N∗))−1, which 
maps all individual bounds valid for each system to the unit circle around  −1, thus making 
networks with different critical cycles comparable. Figure 8 shows the result for N  =  5. The 
different colors indicate the length N* of the cycle responsible for the bound.

7.  Application to time discrete Markov chains

While the term affinity is commonly used only for time continuous Markov processes, our 
results are not limited to this specific case. Just as the Perron–Frobenius theorem, they are 
equally applicable to time discrete Markov jump processes that are described by the evolution 
of the probability p(i, n) to be in state i at the discrete time step n according to

p(i, n + 1) =
∑

j

p(i|j) p( j, n)� (49)

with the transition probability p(i|j).
The definition of the affinity of a cycle translates to the logarithmic ratio of the probabil-

ity to observe a forward trajectory along this cycle and the probability to observe the time-
reversed one, i.e.

Adisc =
∑
i→j

ln

(
p( j|i)
p(i|j)

)
,� (50)

where the sum runs over all links from i to j  of the specific cycle.
The eigenvalues of the propagator of a unicylic system with equal forward and backward 

jump probability, respectively that is the counterpart of a time continuous random walk, are 
given by

λdisc,n = λ(0)
n /w0 + 1 = cos(2πn/N) + i tanh(A/2N) sin(2πn/N).� (51)

In regards to the elliptical bound, the treatment of time discrete processes has the advantage 
that the timescale, which is explicitly present as w0 in the time continuous case, is inherently 
fixed by the discreteness of the process. As a result, the bound does no longer rely on the 
knowledge of a parameter other than the affinity per state, which could prove useful for infer-
ring the discrete affinity from measurements of correlation functions.

In a similar way, the results obtained here could be generalized to arbitrary mathematical 
spectral problems of non-negative matrices, although the quantity that serves as the effective 
affinity in these cases may not have a physical interpretation as it is the case for Markovian 
systems.
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8.  Conclusion

We studied the intricate connection between the spectrum of generators of time continuous 
Markovian dynamics and the affinity, a measure for breaking time reversal symmetry. Based 
on extensive numerical case studies and results obtained from perturbation theory, we con-
jecture that the eigenvalues of such generators can be constrained by the ellipse on which the 
eigenvalues of a corresponding asymmetric random walk lie.

While we could not provide a rigorous proof for the conjecture, our results obtained for 
perturbations of the asymmetric random walk became a formal proof if it was possible to show 
that a unicyclic process with homogeneous rates is the only process with eigenvalues on the 
conjectured elliptical bound.

Figure 8.  Scatter plot of eigenvalues of randomly generated networks with N  =  5 
states. The colors encode the length N* of the cycle with maximum link affinity. The 
imaginary parts of all eigenvalues are rescaled by the factor of (tanh(A∗/(2N∗)))−1 in 
order to make the elliptical bounds of different networks comparable since these bounds 
collapse onto the unit cycle. All eigenvalues lie within the unit cycle, which allows us to 
conjecture that the elliptical bound is also valid in the multi cyclic case.
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The presented results show once again that for many aspects that involve non-equilibrium 
systems, affinity-dependent bounds can be obtained by comparing the system with the corre
sponding asymmetric random walk with the same affinity per state. This strategy has already 
proven useful in deriving affinity-dependent bounds on distributions of stochastic currents of 
which the thermodynamic uncertainty relation is the most prominent example.

Besides a rigorous proof of the conjecture put forth in this work, the most pressing open 
question is whether there is an underlying connection between these results that would explain 
why the asymmetric random walk appears time and time again as the limiting case when 
quantifying the influence of the distance from equilibrium to certain physical quantities.

Appendix.  Perturbation theory of normal matrices

Since generic master generators are not Hermitian and their eigenvectors are therefore in gen-
eral not pairwise orthogonal, the formulas of time independent perturbation theory, as they are 
known from quantum mechanics, are not directly applicable to these matrices. In the case of 
an asymmetric random walk, however, the corresponding matrix is normal, i.e.

[
M(0), M(0)†

]
= 0.

� (A.1)
As a consequence, the eigenvectors of M(0) form an orthonormal basis of the corresponding 
Hilbert space. The aim of this section is to re-derive known results from quantum mechanics 
using only the normal property of the perturbed matrix.

By virtue of being normal, the generator M(0) of an asymmetric random walk satisfies the 
relations

〈ν0
n |ν0

n′〉 = δn,n′� (A.2)

M(0)|ν0
n〉 = λn|ν0

n〉� (A.3)

M(0)†|ν0
n〉 = λ∗

n |ν0
n〉.� (A.4)

We want to calculate the eigenvalues λn and the normalized eigenvectors |νn〉 of the per-
turbed matrix

M = M(0) + εM(1)� (A.5)

up to second order in ε, i.e. we calculate a perturbative solution to the eigenvalue equation

(M − λn)|νn〉 = 0.� (A.6)

Since the eigenvectors of the unperturbed problem form an orthornormal basis, it is pos-
sible to express the perturbed eigenvector as a superposition of these, such that we can write

|νn〉 = cn|ν0
n〉+

∑
m�=n

dm|ν0
m〉,� (A.7)

where the coefficients dm are of the order ε.
The normalization condition of eigenvectors leads therefore to

〈νn|νn〉 = 1 ⇔ |cn|2 +
∑
m�=n

|dm|2 = 1
� (A.8)

which results in cn = 1 −O(ε2).
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By inserting these results into the eigenvalue equation we obtain

(M − λn) |ν0
n〉 = (M(0) + εM(1) − λn)


|ν0

n〉+
∑
m�=n

dm|ν0
m〉


+O(ε2).� (A.9)

Projection of this equation onto an eigenvector |ν0
n′〉 with n′ �= n leads to

〈ν0
n′ |M − λn|ν0

n〉 = ε〈ν0
n′ |M1|ν0

n〉+
∑
m�=n

dm

[
λ0

mδm,n′ + ε〈ν0
n′ |M(1)|ν0

m〉−λnδm,n′

]
!
= 0.� (A.10)

The leading order of this equation in ε reads

ε〈ν0
n′ |M(1)|ν0

n〉+ dn′
(
λ0

n′ − λn
)
= 0� (A.11)

from which we readily obtain the leading order of the coefficients as

dn′ = ε
〈ν0

n′ |M(1)|ν0
n〉

λn − λ0
n′

+O(ε2)

= ε
〈ν0

n′ |M(1)|ν0
n〉

λ0
n − λ0

n′
+O(ε2).

� (A.12)

Here we could replace λn with λ0
n in the second step since the difference of the two is of order 

ε and therefore negligible in the leading order.
By projection of equation (A.9) onto |ν0

n〉 and by using the results form (A.12), it is now 
possible to solve for the corrections to the eigenvalues up to order ε2

0 = 〈ν0
n |
(

M(0) + εM(1) − λn

)
|ν0

n〉+ ε
∑
m�=n

〈ν0
m|M(1)|ν0

n〉
λ0

n − λ0
m

|ν0
m〉+O(ε2)


 .

� (A.13)
Solving for λn finally yields

λn = λ0
n + ε〈ν0

n |M(1)|ν0
n〉+ ε2

∑
m�=n

〈ν0
n |M(1)|ν0

m〉〈ν0
m|M(1)|ν0

n〉
λ0

n − λ0
m

+O(ε3)�

(A.14)

which resembles closely the result used in quantum mechanics; the only difference being that 
in this more general case the matrix elements and eigenvalues can be complex.
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