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Abstract

Numerical methods are presented that can determine the perpendicular velocity space diffusion coefficient from
kinetic simulation results. The methods are applied to hybrid simulation results using particle protons and a
massless, quasi-neutralizing electron fluid for a case of quasi-perpendicular turbulence. During the quasi-steady
phase of the turbulence, the evolution of the grid-averaged, gyrotropic, and peculiar velocity distribution of protons
with velocity components perpendicular to the background magnetic field is found to be adequately described by
diffusion. The estimated diffusion coefficient varies with perpendicular proton speed. A relative maximum occurs
at a speed of zero. About the thermal speed, the coefficient decreases with increasing speed consistent with a power
law with index −3. A relative minimum occurs at larger speeds, and the diffusion coefficient rises among the
fastest protons contained in the simulation. The functional form of the diffusion coefficient appears to be the result
of two sources. At speeds less than the relative minimum, the diffusion is dominated by turbulence generated
fluctuations, while at greater speeds the diffusion arises from the large-scale fluctuations that initiated the turbulent
energy cascade. Results are compared with theoretical predictions for the diffusion coefficient and with results
presented from a previous simulation. Implications for generating suprathermal protons from quasi-perpendicular
turbulence are also discussed.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Interplanetary turbulence (830); Space plasmas (1544)

1. Introduction

Interplanetary turbulence largely heats the solar wind
protons near 1 au (e.g., Verma et al. 1995; Vasquez et al.
2007; Stawarz et al. 2009; Coburn et al. 2012; Hellinger et al.
2013; Lamarche et al. 2014). Near the Sun, the turbulent energy
cascade could also be an important factor in forming the solar
wind, contributing both thermal energy and bulk acceleration
(e.g., Hollweg 1986; Hollweg & Johnson 1988; Dmitruk et al.
2003; Cranmer & van Ballegooijen 2005). Kinetic processes
must be involved in the heating since a turbulence dissipation
range forms at proton kinetic scales and nonthermal ion
distributions are observed (e.g., Marsch et al. 1982; Kohl et al.
1998; Leamon et al. 1998; Hamilton et al. 2008; Smith et al.
2012; Hellinger et al. 2013). Proton heating in the solar wind is
mostly perpendicular to the background magnetic field and
opposes the adiabatic cooling with increasing heliocentric
distance in a spherically expanding wind (Marsch et al. 1983;
Hellinger et al. 2013).

In order for simulations to examine the processes of
dissipating the energy cascade and heating the solar wind, the
proton kinetic scales must be resolved. This required resolution
does not allow the inclusion of the spatial dependency of the
heating and acceleration of the solar wind that arises for much
larger scales. Calculations that treat the larger scales of the
wind can be made with a less complete description of the
kinetic physics. One such approach uses a guiding center
treatment of the ions and includes the kinetic effects through
diffusion coefficients based on fluctuation–ion interactions
(e.g., Isenberg & Vasquez 2009, 2011, 2015).

Alfvénic turbulence in the interplanetary medium is known
to energize primarily fluctuations with wavevectors that are
mostly perpendicular to the background magnetic field (e.g.,
Shebalin et al. 1983; Oughton et al. 1994; Matthaeus et al.
1998; Cho & Vishniac 2000; Vasquez et al. 2014). In accord

with solar wind observations, kinetic simulations have shown
that protons are heated perpendicularly in association with
these cascades although the mechanism for this heating is not
definitively known (e.g., Parashar et al. 2009; Vasquez &
Markovskii 2012; Vasquez 2015; Yang et al. 2017). Two
processes have been considered that model this heating as a
perpendicular diffusion. One is stochastic heating, which is also
referred to as magnetic moment breaking, wherein electric field
variations from fluctuations about the gyroscale of the ions,
scatter the ions and lead to a net gain of energy at the expense
of the fluctuations (e.g., Chandran et al. 2010; Klein &
Chandran 2016; Isenberg et al. 2019). The second mechanism
involves kinetic Alfvén wave cyclotron resonant damping on
ions (Isenberg & Vasquez 2019). In this view the energy
cascade produces fluctuations that, at least in part, mimic these
waves for a short duration, but long enough that a quasilinear
diffusion coefficient (e.g., Kennel & Engelmann 1966) for the
resonant waves can be applied.
By averaging over the gyration spatial scales, an estimate of

the diffusion coefficient from kinetic simulation results can be
made. The coefficient can be compared with existing predic-
tions and be incorporated into calculations of solar wind
heating and acceleration. Arzamasskiy et al. (2019) conducted
hybrid simulations with particle protons and fluid electrons for
quasi-perpendicular turbulence and presented proton energy
diffusion coefficients derived from these simulations. However,
their analysis neglected a significant term and did not consider
the sign of the remaining term. We will discuss these results in
Section 4.
In the present analysis, the numerical methodology to obtain

a velocity or energy diffusion coefficient from kinetic
simulations is outlined that neglects neither sign nor terms.
The results are applied to a well studied case in Vasquez (2015)
of quasi-perpendicular turbulence using hybrid numerical
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simulations. The velocity diffusion coefficient maximizes at
zero speed and then declines sharply above the thermal speed.
A subsequent increase in the diffusion coefficient at the largest
proton speeds is likely due to interactions with the large-scale
fluctuations that include the initial seed spectrum of the
turbulence.

The outline of this paper is as follows: Section 2 briefly
describes the particular simulation run to be examined. The
numerical methods and simulation results for the diffusion
coefficient are given in Section 3. The method used in
Arzamasskiy et al. (2019) is discussed in Section 4, and
Section 5 addresses the production of suprathermal protons.
Section 6 summarizes the methods and findings.

2. Simulation Parameters

Three-dimensional hybrid numerical simulations have been
carried out with particle protons and a quasi-neutralizing,
massless electron fluid to investigate the development of quasi-
perpendicular turbulence. This paper considers run IVb in
Vasquez (2015) as a representative example. In this run, the
grid has 2563 cells. Along the x direction is a constant
background magnetic fieldB0, and here the grid length LP,
normalized by proton inertial lengths c/ωpp, is 142.16, where c
is the speed of light and ωpp is the proton plasma frequency.
Along the perpendicular directions y and z, the grid length L⊥ is
25.13 so that the aspect ratio of the grid LP/L⊥ is 5.66. Triply
periodic boundary conditions are used.

The initial proton plasma has a uniform density with 200
particles per cell. The ratio of proton to magnetic pressure βp is
set to 0.1. The electron pressure is neglected to emphasize ion
kinetic effects.

The initial fluctuations are energized at the lowest modes and
have fluctuating bulk velocities and magnetic fields in accord
with Alfvén waves. The initial proton distribution is a
Maxwellian about the spatially varying bulk velocity. The
initial rms of the combined average of the velocity fluctuations
and magnetic field fluctuations in Alfvén units is 0.17 VA

2,
where VA is the background Alfvén speed. The developed
turbulence is freely decaying.

3. Results for the Diffusion Coefficient

Figure 1 shows the change with time in the parallel ΔWther,P
and perpendicular ΔWther,⊥ thermal energy density averaged
over the entire grid. The thermal energy densities are normal-
ized by n m Vp0 A

2 where n0 is the background proton number
density and mp is the proton mass. The parallel and
perpendicular directions are with respect toB0. The proton
thermal energy or temperature is assessed from the peculiar
distribution function where the bulk velocity at each particle
position has been removed from its total velocity. The quasi-
steady turbulent phase begins after 80 W-

p
1 where Ωp is the

angular proton cyclotron frequency. Most of the heating occurs
perpendicular toB0. The heating slows after 300 W-

p
1 because

the turbulent fluctuations decay.
Near and below c/ωpp, electric field gradient effects produce

nongyrotropic peculiar distribution functions about the local
magnetic field that vary with position. When the peculiar
velocity distribution is computed for the entire grid, whose
lengths well exceed c/ωpp, the cancellation will average away
the local variations of nongyrotropy aboutB0. Comparison of
the bin velocity distribution in vy and vz, integrated over the

grid, confirms this result. There do remain bin-scale fluctua-
tions in the calculated distributions due to finite particle
numbers. Numerically, the optimal estimate of the gyrotropi-
cally averaged distribution can be gained first by finding the
distribution based on combined y and z components of speed
and then calculating from that an average gyrotropic
distribution.
Proton particle speeds vr perpendicular toB0 are determined

by = +v v vr y z
2 2 1 2( ) . Hereinafter, all speeds are normalized by

VA and time is normalized by W-
p

1. Starting from vr=0,
particles are assigned to bins of width dv, where dv=0.01, and
are then counted to produce a distribution function fr (vr)
applied over the entire simulation box at a fixed time. The
resulting fr (vr) is normalized by the sum of all counts (i.e.,
200·2563) and also by n V0 A

3.
The distribution fr provides the basis for estimating a

gyrotropic distribution perpendicular toB0 along a single
coordinate direction. This distribution is denoted by f⊥ and is
given by f⊥ (v⊥)=fr/(2 π vr,1/2 dv), where vr,1/2 is the bin
centered speed and v⊥=vr,1/2. Figure 2 shows f⊥ (v⊥) at
t=200 during the quasi-steady phase of the turbulence using a
solid line. The dashed line in the plot is the equivalent
Maxwellian distribution based on the perpendicular thermal
speed vther,⊥=0.33 at t=200. The obtained gyrotropic
distribution function has a maximum about zero speed, but
otherwise differs from the equivalent Maxwellian. There are
fewer particles about zero speed and at high plotted speeds than
for the Maxwellian, and more particles near the thermal speed.
From the lowest speeds, the addition of heat to the protons

can be compared to a model of diffusion. Diffusion would act
to redistribute greater concentrations of protons at lower speeds
to higher speeds through heat addition.
The change in f⊥ with time is modeled by

¶
¶

=
¶
¶

¶
¶

^

^ ^
^ ^^

^

^

f

t v v
v D

f

v

1
, 1( )

⎛
⎝⎜

⎞
⎠⎟

where D⊥⊥ is the perpendicular velocity space diffusion
coefficient, normalized by WVA

2
p, which depends on v⊥ and

time t. The equation can be recognized as a diffusion equation

Figure 1. Change from the initial time in the space averaged proton thermal
energy density as a function of time. Parallel thermal energy is plotted with a
dashed line and perpendicular with a solid line. The initial total thermal energy
density is n m V0.075 p0 A

2 , and the value of βp is 0.1. The sum of fluctuating
magnetic energy and total proton energy is conserved to better than 0.06%.
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in cylindrical coordinates with v⊥ in place of the radius. Since
the simulation provides f⊥ (v⊥), D⊥⊥ is sought.

Below, two numerical methods to fit D⊥⊥ are described, and
then fits from simulation results and comparison with
predictions are made. Section 3.1 fits D⊥⊥ using Equation (1)
directly, which is a differential equation, and this approach is
referred to as method I. Section 3.2 presents method II, which
develops an integro-differential equation to fit D⊥⊥ that can
complement method I and is especially useful if higher-order
accuracy is needed. Section 3.3 describes the D⊥⊥ found from
our simulation, while Section 3.4 compares that D⊥⊥ with
predictions based on particular mechanisms of turbulence
dissipation.

3.1. Method I: Fitting with Differential Equation

To obtain D⊥⊥ from the time evolution of f⊥ (v⊥), we use a
finite difference representation of Equation (1) based on the
second-order velocity space and first-order time accurate
implicit approach. (A Crank–Nicholson scheme that provides
second-order time accuracy gives similar results to those
reported here.) The velocity derivative is evaluated using a
uniform grid with cell width Δv, designating f⊥ at midpoints
between grid points and D⊥⊥ at grid points. In general, the
midpoint approach conserves the number density with time
when 2πv⊥f⊥Δv is summed over all grid points. The grid
points are indexed by i and run from i=0 where v⊥=0 to
i=Nr where f⊥ approaches zero. The index for time is given
by n. The discretization of Equation (1) at the i+1/2 index
and time level n is given by

D

D
=

D

D

+
D

D

^ + ^ ^^
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^ +

^ +

^ + ^^ +
+

^ +

^ +
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By symmetry f⊥,−1/2,n equals f⊥,1/2,n. The values of D⊥⊥ are at
the nth time. Equation (2) can be solved for D⊥⊥,i+1 as
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To evaluate Equation (6), the time difference Δt must be
sufficiently large so that the distributions are distinguishable.
Near v⊥=0, the difference between f⊥ at v⊥,1/2 and at v⊥,3/2
will generally be small, and as such this region about v⊥=0
imposes the limits on the velocity space resolution needed to
determine D⊥⊥. For the present analysis, Δv⊥=0.02 and
Δt=40 are used in the case of the distribution in Figure 2
at t=200.
The value of D⊥⊥,1 can be found without knowing D⊥⊥,0,

assuming that v⊥D⊥⊥,0 vanishes in the limit of v⊥=0. From
here the value of D⊥⊥,i for successively larger v⊥=iΔv can be
calculated from the value at i−1. Finally, the value of D⊥⊥,0

can be determined by extrapolating from neighboring D⊥⊥
values and by using as a boundary condition ∂D⊥⊥/∂v⊥=0 at
v⊥=0.
The evaluation of D⊥⊥,i+1 from Equation (6) can be marched

out from i=0 through a continuous range of nonzero f⊥,i+1/2.
The evaluation ends at the first occurrence of f⊥,i+1/2=0. As a
practical manner, bins with very few particles from the
simulation could generate bins with no particles interspersed
with those that have a few at the highest occupied speeds. At
this point, finite differences of f⊥ would certainly not be
accurate and so there would be no reason to continue the
calculation of D⊥⊥,i+1.
The diffusive model is applicable where D⊥⊥ is positive definite

over the range where f⊥ is determined to be significant. The case of
interest here for f⊥ would be one where it decreases monotonically
with increasing v⊥; any deviations from that would occur only
where f⊥ becomes affected by numerical uncertainties. In this case,
the first term in Equation (6) is greater than zero if D⊥⊥,i>0. The
second term in Equation (6) has a sign that depends on Δt f⊥,i+1/2
and is negative if Δt f⊥,i+1/2>0 and positive if Δt f⊥,i+1/2<0.
Thereby, a negative diffusion coefficient would result if both
Δt f⊥,i+1/2>0 and the magnitude of the second term is greater
than the first term.
Finding a negative coefficient could lead to a rejection of the

diffusion model for the case at hand. However, the rejection
should be made only after testing different Δv and Δt to see if
the situation can be remedied. If acceptable values can be
found, then those should be used for neighboring times to see if
parameters hold consistently. If the results are not consistent,
then the evolution of f⊥ is potentially nondiffusive in at least
some aspects of that evolution. From here the accuracy of the
scheme could be increased for further tests, such as with a
Crank–Nicholson approach for time accuracy or with even

Figure 2. Plot of the gyrotropic averaged distribution f⊥ as a function of v⊥.
The solid line shows f⊥ at t=200. The dashed line is a plot of a Maxwellian
function p-

^
- - ^ ^v e v v1
ther,

2 2
ther,
2

for vther,⊥=0.33.
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higher-order schemes for velocity space derivatives. The
recommended approach, however, is to use method II in which
the higher-order schemes are more readily implemented.
Additional tests would consider improving f⊥ by conducting
simulations with greater numbers of particles per cell. If all
these attempts fail, then one could conclude that the evolution
of f⊥ is actually nondiffusive to some degree.

3.2. Method II: Fitting with the Integro-differential Equation

Multiplying Equation (1) by v⊥ and integrating over v⊥
yields

ò ¢
¶
¶

¢ =
¶
¶

^
^ ^^

^

^

^
v

f

t
dv v D

f

v
. 7

v

0
( )

The value of D⊥⊥ at a particular v⊥ can be assessed from
Equation (7) without reference to the coefficient at other v⊥ as
occurs in method I. This gives a numerically independent way
to find D⊥⊥ and to compare results with method I.

A first-order time accurate and second-order velocity space
accurate difference scheme for D⊥⊥,i is given by
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for i�1. The value of D⊥⊥,0 is found by extrapolation as
employed with method I. The obtained coefficients are all at the
nth time.

In the cases examined below, Equation (8) gives nearly the
same values as Equation (6). The difference schemes for the
derivatives present in Equation (7) could be upgraded to higher
accuracy in truncation order by simply substituting the relevant
schemes. Method I is more difficult to implement in this regard
because high-order velocity space differencing would couple
values of D⊥⊥ at more than two velocity space points per
equation and so generally require the simultaneous solution of
these equations.

3.3. Perpendicular Velocity Diffusion Coefficient Found in
Simulation Results

Method I is used to examine the evolution of f⊥ from the
hybrid simulation results described in Section 2. Figure 3
shows D⊥⊥ for the distribution displayed in Figure 2 at
t=200. Similar D⊥⊥ values are obtained at t=160 and
t=240 for v⊥<0.8. The coefficient approaches a relative
maximum at small v⊥ and so is consistent with ∂D⊥⊥/∂v⊥=0
at v⊥=0. Beginning near v⊥=0.3 and extending to 0.8, the
value of D⊥⊥ steeply declines with a slope of about −3. A
distinct minimum is obtained near v⊥=0.9 after which D⊥⊥
increases steeply toward larger speeds with a slope near 7. The
minimum is persistent in time but its value at t=160 and
t=240 has D⊥⊥ about 3 times that at t=200. So the value of
D⊥⊥ near the minimum is likely inaccurate to some degree, but
is reproducible with different Δv and Δt. Beyond v⊥=1.1,
statistical fluctuations in D⊥⊥ and large differences in
consecutive values of D⊥⊥ occur. Here the inaccuracy in the
diffusion coefficient has increased for two reasons. First, the
overall particle numbers in the simulation at such speeds are
too small to provide the statistics needed to model diffusive-
like behavior. Second, the faster particles have larger gyroradii
(up to 0.06L⊥) and so likely interact with fluctuations of
larger scales. The perpendicular wavenumbers k⊥ of these

fluctuations are associated with gradients that are of order of
the inverse of the gyroradii, and so these fluctuations have
k⊥1. The smallest k⊥ represented on the grid is 0.25, so the
statistical behavior is likely informed by the finite box size in
the simulation.
The appearance of a relative minimum in D⊥⊥ is suggestive

of the superposition of two distinct sources of diffusion where
different processes acting at lower and higher v⊥ intersect.
From lower speeds in Figure 3, diffusion arises mostly from
turbulence generated fluctuations in the dissipation range and
the higher-end inertial range (k⊥>1). At higher speeds, larger
scale fluctuations contribute the most to the diffusion. Since
these larger scale fluctuations are few in number and have the
largest amplitudes in the simulation box, proton–fluctuation
interactions at these scales may be more coherent than those
experienced among smaller scale turbulence generated fluctua-
tions. The shortness of the inertial range (0.5<k⊥<2) in the
simulation makes the distinction between diffusion associated
with the coherent-like energy containing scales and the
turbulence generated inertial range unclear. However, a more
realistic inertial range of considerable extent should be energy
conserving and so proton–fluctuation interactions in the inertial
range would be associated with little proton heating. Where
turbulence generated fluctuations more clearly determine D⊥⊥,
diffusion for v⊥>vther,⊥ tends to decrease significantly with
increasing v⊥. Extrapolating to an extensive inertial range, the
expectation, at present, would have D⊥⊥ to continue to
decrease at even larger v⊥.
Another representation for the proton behavior considers the

energy diffusion coefficient De,⊥⊥ which is defined as
=^^ ^ ^^D v De,

2 . Figure 4 plots De,⊥⊥ as a function of v⊥ for
t=200 from the values shown in Figure 3. The value of De,⊥⊥
increases from small speeds to a relative maximum near but
below the thermal speed and then decreases to a relative
minimum near v⊥=0.9. At the relative maximum, energy
diffusion is most rapid, and protons are most impacted by the

Figure 3. Plot of D⊥⊥ as a function of v⊥ at t=200. The value of D⊥⊥ has
been calculated up to v⊥=1.4. Method I is used in the calculation. Method II
gives similar results, and values for v⊥�0.9 differ by less than 0.04% relative
to those plotted.
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turbulence. Because the relative maximum is near the thermal
speed, the turbulence preferentially heats protons near the
thermal gyroradius associated here with fluctuations having
k⊥∼3. This was the conclusion reached in Vasquez (2015)
based on simulations with an additional and competitive source
of turbulent dissipation based on an anomalous resistivity.

From t=400 and afterwards, diffusion diminishes and
eventually fails to model the evolution of the distribution past
t=600. Figure 5 shows the evolution of D⊥⊥ during this
period. At corresponding times, Figure 1 shows that the
thermal energy gain decreases significantly. The decrease is
due to the smaller amplitude of the decaying turbulence, which
leads to a significant reduction in the energy cascade rate
proportional to the amplitude cubed. With slower changes,
Equation (6) is evaluated using Δv⊥=0.03 and Δt=80 to
obtain the plotted results in Figure 5. Between t=400 and
560, D⊥⊥ decreases with time for v⊥ below the thermal speed,
and the maximum of D⊥⊥ about v⊥=0 eventually disappears.
Above the thermal speed, D⊥⊥ changes only slowly and
maintains its overall form about the minimum near v⊥=0.9.
This behavior is expected since the slower cascade causes the
energy at smaller scales to decay first. Thus, the slower
diffusion will appear first in the protons with the smallest
gyroradii. Sufficient energy does remain above the thermal
gyroradius scale where the inertial range is present so as to
support continued diffusion. At longer times, application of
Equation (6) gives negative D⊥⊥ values at low speeds, so that
proton evolution becomes potentially nondiffusive.

3.4. Comparison with Theoretical Predictions

To compare these simulation results with currently available
theoretical predictions of perpendicular diffusion, we take the
coefficient values shown in Figure 3 and consider the behavior
between v⊥=0.1 and 0.7, which contains vther,⊥=0.3. Below
this range, D⊥⊥ varies only slowly, and values above this range
do not seem to represent processes due to turbulent dissipation.

The values of D⊥⊥ between v⊥=0.1 and 0.7 can be
suitably fitted with a form that asymptotes to a power law, with
an exponential function of some form, or with a combination of
these fitted forms. In this range D⊥⊥ varies over two orders of
magnitude, but that is not sufficient to determine definitively its
actual form.
Isenberg & Vasquez (2019) derived quasilinear proton

diffusion coefficients due to resonant interactions with a
turbulence-like spectrum of kinetic Alfvén waves. In their
idealized model, the kinetic Alfvén waves were described by a
two-fluid dispersion relation and the resonances were taken to
be infinitesimally narrow. This last assumption is not
appropriate to represent turbulence, since it invokes interac-
tions with periodic waves of infinite duration. The authors
acknowledged that a more realistic model would use
substantially broadened resonances, but at present this work
has not been extended.
The idealized kinetic Alfvén waves yield a very strong

Landau resonance, but Isenberg & Vasquez (2019) showed that
the low β proton response to the Landau interaction would be
small. Apart from an initial parallel energization, the proton
evolution in that work was dominated by the perpendicular
heating caused by the cyclotron resonance. The form of D⊥⊥ in
that paper (see their Figure 5) has a relative maximum at
v⊥=0 and decreases gradually until v⊥∼0.1, above which it
approximates a power law with index −1.
A least-squares power-law fit to D⊥⊥ in Figure 3 was applied

to the subrange v⊥=0.3 to 0.7 where the power-law fit
appears to be more appropriate. The fit yields a slope of
−3.2±0.9, which is much steeper than the behavior in
Isenberg & Vasquez (2019). It is not clear whether this
difference is due to a fundamental discrepancy in the physical
mechanism or to a resolvable detail of the theoretical model.
For instance, the shape of the diffusion coefficient will depend

Figure 4. Plot of energy diffusion coefficient De,⊥⊥ as a function of v⊥ at
t=200. The plotted De,⊥⊥ is calculated from ^ ^^v D2 using the D⊥⊥ values in
Figure 3.

Figure 5. Plot of D⊥⊥ as a function of v⊥ for t=400 (diamonds), t=480
(triangles), and t=560 (squares). At t=560 there are two off-scale values of
D⊥⊥: D⊥⊥ (v⊥=1.26)=2×10−7 and D⊥⊥ (v⊥=1.29)=8×10−7. The
range of calculated D⊥⊥ is shorter for later times. As the energy cascade
diminishes with time, the slowest particles are affected the most whereas
protons above the thermal speed (≈0.35) at these times continue to diffuse at
nearly the same rate. Method I is used in the calculation.
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on the choice of the turbulence spectrum. It would also be
interesting to see if resonance broadening in the quasilinear
calculations could yield diffusion coefficients with steeper
dependencies on v⊥.

Klein & Chandran (2016) derived a prediction for the energy
diffusion coefficient De,⊥⊥ based on turbulent dissipation due
to stochastic heating or magnetic moment breaking of protons.
The particular form was based on an inertial range that obeyed
an Iroshnikov–Kraichnan (IK) spectral power law with index
−3/2 (Iroshnikov 1963; Kraichnan 1965). Using the IK form,
the equivalent velocity diffusion coefficient for stochastic
heating gives µ -^^ ^

-
^D v d vexp1 4

IK
3 4( ), where dIK is a

constant. The value of dIK is related to the c2 constant present in
the Chandran et al. (2010) cascade rate predictions and is given
by =d c A kvIK 2 0

1 4, where Av is the rms velocity amplitude
normalized by VA, and k0 is the outer scale perpendicular
wavenumber normalized by (c/ωpp)

−1. For the simulations
here, k0 equals 0.25, which is the wavenumber of the largest
perpendicular wavelength represented on the simulation grid.
At t=200, we find Av=0.09. Klein & Chandran (2016)
consider the relevant value of c2 for their work to be 0.2 where
this value for c2 is the best estimate gained from test particle
calculations involving phase-random Alfvénic waves (Xia et al.
2013). This then yields dIK=3.14 for the simulation results.

From the values of D⊥⊥ in Figure 3 in the range of v⊥=0.1
and 0.7, a fit has been made to the functional form

-^
-

^v d vexp1 4
IK

3 4( ). This fit finds dIK=7.7±1.0. The
simulation determined D⊥⊥ does decrease far faster with v⊥
than does the prediction. The value of c2(=Avk

1/4
0 dIK) for

simulation results is 0.49. In the limit v⊥=0, the predicted
form has the coefficient approaching infinity but would still
satisfy the condition ^ ^^v D 0 as v̂ 0 used in method I.
Klein & Chandran (2016) noted that a steepening of the IK
spectral form in a small-scale dissipation range would prevent
this infinite limit as v̂ 0 (see also Isenberg et al. 2019).

Taking a Kolmogorov spectrum with power-law index 5/3
modifies the above prediction so that the coefficient near
v⊥=0 behaves in a regular manner. This approach better suits
the simulations because the inertial range power spectrum in
the simulation has a slope that approximately matches the
Kolmogorov prediction and the determined proton heating rate
also follows a generalized Kolmogorov prediction (Vasquez
2015). For the Kolmogorov case, stochastic heating gives

µ -^^ ^D d vexp K 41
2 3( ), where =d c A kK v41 2 0

1 3. Using
c2=0.2 and simulation values for Av and k0, the expected
dK41 is 2.65. When D⊥⊥ in Figure 3 is fitted with this form,
dK41 is found to be 8.7±1.1, implying c2=0.49. Thus, the
difference with the Kolmogorov prediction remains about the
same as for the IK prediction.

Considering all the test particle calculations made in Xia
et al. (2013), c2 ranges anywhere from c2=0.15 to 0.44. Thus,
at the upper end of the range of values, the difference with the
simulation would appear to be small. However, there may not
be a true match between the constant in the exponential term
and c2 with regards to the present self-consistent kinetic
simulations. Vasquez (2015) directly sought c2 by evaluating
the proton heating rate as a function of rms amplitude and
found no discernible exponential cutoff at appropriately small
amplitudes, implying that c2 is negligible. In self-consistent
simulations, nonlinearity at large scales determines the rate of
energy cascade toward small scales, and the electromagnetic
fields at the small scales are reactive to the incoming energy

cascade. The electromagnetic fields at the small scales then
adjust to the energy cascade and can develop a statistical steady
state wherein the rate of exchange between electromagnetic
energy and proton thermal energy matches the cascade rate.
Test particle calculations, such as those in Xia et al. (2013), use
specified electromagnetic fields and so are not reactive.

4. Comparison with Arzamasskiy et al.ʼs Approach

Arzamasskiy et al. (2019) estimated the proton perpendicular
energy diffusion coefficient De,⊥⊥ for the turbulent heating in
their simulations. To follow their method, let = ^W v 22 , where
W is a kinetic energy per unit mass, and transform Equation (1)
to

¶
¶

=
¶
¶

¶
¶

^
^^

^f

t W
D

f

W
. 9e, ( )

⎛
⎝⎜

⎞
⎠⎟

A quantity Q⊥ is then defined that is proportional to the
perpendicular energization rate per unit mass with an indefinite
integral by

òº
¶
¶

^
^Q W
f

t
dW , 10( )

so that ∂Q⊥/∂W is given by

¶
¶

=
¶
¶

^ ^Q

W
W

f

t
. 11( )

Multiplying both sides of Equation (9) by W finds ∂Q⊥/∂W as

¶
¶

=
¶
¶

¶
¶

^
^^

^Q

W
W

W
D

f

W
. 12e, ( )

⎛
⎝⎜

⎞
⎠⎟

In Arzamasskiy et al. (2019) an expression is pursued by
integrating over W and evaluating the right-hand side through
integration by parts. Central to integration by parts is the
expansion of the right-hand side in accord with the chain rule.
Hence, Equation (12) can be rewritten as

¶
¶

=
¶
¶

¶
¶

-
¶
¶

^
^^

^
^^

^Q

W W
WD

f

W
D

f

W
. 13e e, , ( )

⎛
⎝⎜

⎞
⎠⎟

Arzamasskiy et al. (2019) effectively evaluate De,⊥⊥ from
(13) by using assessed values of ∂Q⊥/∂W and ∂f⊥/∂W but
neglecting the first term on the right-hand side. Moreover only
the magnitude of De,⊥⊥ was obtained because the sign of the
∂Q⊥/∂W as a function of W was not considered. Because the
adopted relation for De,⊥⊥ is a differential equation, the results
in Arzamasskiy et al. (2019) will be compared to results
obtained with method I.
Generally, diffusion from lower to higher speeds occurs such

that particles are lost at low speeds and gained at higher speeds.
In the turbulence simulations this occurs about vther,⊥ where the
energy change from particles lost or gained passes through
zero, implying that ∂Q⊥/∂W changes sign there. With the
method in Arzamasskiy et al. (2019), the magnitude of De,⊥⊥
has a relative minimum near the thermal speed. If the sign were
retained, De,⊥⊥ would have been negative for v⊥<vther,⊥ and
positive above. When all terms are retained, as used for the
calculation of De,⊥⊥ in Figure 4 by method I, De,⊥⊥ is positive
throughout and is near a relative maximum at vther,⊥.
It will be interesting to see the behavior of the diffusion

coefficient from the Arzamasskiy et al. simulations, as obtained
through one of the methods presented in Section 3.
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5. Production of Suprathermal Protons

Interplanetary turbulence features an extensive inertial range of
over three decades. If the associated turbulence velocity diffusion
coefficient falls off with increasing v⊥ as steeply as a power law
with index −3, then even the energy diffusion coefficient
decreases with index −1. Even less diffusion could be expected
at larger v⊥ if the coefficient is exponentially decreasing.

An implication of the above fall off is that protons
substantially beyond vther,⊥ would not be readily accelerated.
In the solar wind, suprathermal ions form a tail with respect to
the thermal population and can be injected into acceleration
processes that produce energetic particles in the solar wind
(e.g., Gosling et al. 1981; Dayeh et al. 2009). The time τ for
velocity diffusion for suprathermals can be estimated from our
simulation results by taking a few steps to rescale them. First,
take the dimensional value of D⊥⊥ at vther,⊥=0.3 in Figure 3,
which is ´ W- V5 10 5

A
2

p. Second, note that the simulation uses
about twice the amplitude for fluctuations at comparable scales
as found in fast winds, where amplitudes are generally greatest.
The diffusion rate should vary with the cube of amplitude in
accord with the heating and cascade rate found in simulations,
and so the coefficient magnitude in the solar wind is 8 or more
times smaller. Lastly, the diffusion coefficient for v⊥>vther,⊥
can be treated as a power law with index −3 since an
exponential would yield even less diffusion. With these steps,
the solar wind diffusion coefficient ^^DSW at large speeds can be
expressed by

´ W^^
-

^
-
D v V1.7 10 , 14SW 7

,
3

A
5

p ( )

where vå,⊥ is the dimensional speed. This estimate specifically
applies to solar wind plasmas with βp,⊥ near 0.1. The diffusion
time τ can be estimated from t ~ ^ ^^v D,

2 SW, which would
correspond to the time needed to significantly alter a velocity
distribution from a Maxwellian distribution to one with a
suprathermal tail. Using Equation (14), the resultant time can
be expressed by

t ´ W^ -
v

V
5.9 10 . 15p

6 ,
5

A
5

1 ( )

At 1 au, suprathermals have speeds more than about 4 times
larger than VA, and Ωp is about 0.5s

−1. With these values, τ in
Equation (15) is greater than 380 yr. It would appear that quasi-
perpendicular Alfvénic fluctuations that evolve in broadband
(nonshock) turbulence could not contribute significantly to the
suprathermal proton population.

Future simulations can make progress in understanding
suprathermals by establishing whether or not the form of D⊥⊥
due to turbulence generated fluctuations continues to decrease
with increasing v⊥ when the inertial range is extensive. The
required simulations will need large grid sizes, especially for
L⊥, so as to separate better the dissipation and energy
containing scales. Simulations with large βp and thermal
speeds will also need the larger grid sizes so as not to overlap
these scales. With a warm electron plasma, more significant
proton parallel heating occurs, and diffusion associated with
this energization should also be considered (Parashar et al.
2014). Heavier and minor ions may be accelerated differently
than protons, and so the diffusion of these ions should also be
investigated.

6. Summary

Hybrid simulation results for proton velocity distributions
averaged over the entire grid have been examined for a case of
quasi-perpendicular Alfvénic turbulence. The heating of
protons in the simulation occurs mainly in the direction
perpendicular to the background magnetic field. The averaged
perpendicular distribution function was transformed to a
gyrotropically average distribution. The evolution of the
gyrotropic distribution with time was then modeled with
Equation (1) for velocity space diffusion. A method that
derives the perpendicular velocity diffusion coefficient D⊥⊥

from the differential equation, given by Equation (1), was
developed along with an additional method using an integro-
differential equation. Results from each method agree well with
one another. These methods correct the procedure of
Arzamasskiy et al. (2019). During the quasi-steady phase of
the turbulence, the simulation case presented here gives a
diffusion coefficient that is positive, and so proton kinetics are
adequately described as diffusive during that phase.
The value of D⊥⊥ as a function of v⊥ was determined from a

case considered in Vasquez (2015) with βp=0.1. The form of
D⊥⊥ has a relative maximum of about v⊥=0 but decreases
around the thermal speed v⊥=0.3 (in units of VA)
approximately according to a power law with index −3. This
decreasing portion of D⊥⊥ may also be fitted with steep
exponential functions. A relative minimum is reached near
v⊥=0.9 beyond which the value rises rapidly but soon
becomes inaccurate due to the lack of higher speed particles in
the simulation. The corresponding energy diffusion coefficient
De⊥⊥(= ^ ^^v D2 ), from small v⊥ increases to a relative maximum
near v⊥=0.2 and then decreases as a power law with index
−1 until reaching the relative minimum near v⊥=0.9.
The form of D⊥⊥ is suggestive of the occurrence of two

sources of diffusion whose associated functional dependencies
on v⊥ intersect near the relative minimum. From v⊥<0.9,
turbulence generated fluctuations contribute more to diffusion
while from v⊥>0.9 the energy containing fluctuations are
mainly promoting the diffusion. With this interpretation, the
portion of D⊥⊥ due to turbulence would be expected to
continue to decrease beyond v⊥=0.9 as it does from smaller
v⊥. When the form of D⊥⊥ between v⊥=0.1 and 0.7 is
compared to theoretical models (Klein & Chandran 2016;
Isenberg & Vasquez 2019), it found to be significantly steeper
than predicted by either model. The steepness of D⊥⊥, when it
is assumed to continue to large v⊥, could also limit the
contribution of quasi-perpendicular turbulence to the formation
of suprathermal protons in the solar wind.

The authors are grateful for valuable communications with L.
Arzamasskiy and M. Kunz. B.V. and S.M. were supported by the
NASA Solar and Heliospheric Physics grant 80NSSC19K0832
to the University of New Hampshire (UNH). B.V. and P.I. were
supported by both NASA Heliophysics Grand Challenges
Research grant 80NSSC17K0009 and Solar and Heliospheric
Physics grant 80NSSC18K1215 to UNH. The simulation results
were obtained from the Cray XE6m-200 supercomputer Trillian
at UNH. Trillian was purchased and administered with the
support of NSF MRI grant PHYS-1229408 to UNH.

7

The Astrophysical Journal, 893:71 (8pp), 2020 April 10 Vasquez, Isenberg, & Markovskii



ORCID iDs

Bernard J. Vasquez https://orcid.org/0000-0001-8593-7289
Philip A. Isenberg https://orcid.org/0000-0003-0505-8546

References

Arzamasskiy, L., Kunz, M. W., Chandran, B. G. D., & Quataert, E. 2019, ApJ,
879, 53

Chandran, B. D. G., Li, B., Rogers, B. N., Quataert, E., & Germaschewski, K.
2010, ApJ, 720, 503

Cho, J., & Vishniac, E. T. 2000, ApJ, 539, 273
Coburn, J. T., Smith, C. W., & Vasquez, B. J. 2012, ApJ, 754, 93
Cranmer, S. R., & van Ballegooijen, A. A. 2005, ApJS, 156, 265
Dayeh, M. A., Desai, M. I., Dwyer, J. R., et al. 2009, ApJ, 693, 1588
Dmitruk, P., Matthaeus, W. H., Milano, L. J., et al. 2003, ApJ, 575, 571
Gosling, J. T., Asbridge, J. R., Bame, S. J., Feldman, W. C., & Zwickl, R. D.

1981, JGR, 86, 547
Hamilton, K., Smith, C. W., Vasquez, B. J., & Leamon, R. J. 2008, JGR, 113,

A01106
Hellinger, P., Trávníček, P. M., Štverák, Š., Matteini, L., & Velli, M. 2013,

JGR, 118, 1351
Hollweg, J. V. 1986, JGR, 91, 4111
Hollweg, J. V., & Johnson, W. 1988, JGR, 93, 9547
Iroshnikov, P. S. 1963, AZh, 40, 742 [English transl. 1964 SvA, 7, 566]
Isenberg, P. A., & Vasquez, B. J. 2009, ApJ, 696, 591
Isenberg, P. A., & Vasquez, B. J. 2011, ApJ, 731, 88
Isenberg, P. A., & Vasquez, B. J. 2015, ApJ, 808, 119
Isenberg, P. A., & Vasquez, B. J. 2019, ApJ, 887, 63

Isenberg, P. A., Vasquez, B. J., & Hollweg, J. V. 2019, ApJ, 870, 119
Kennel, C. F., & Engelmann, F. 1966, PhFl, 9, 2377
Klein, K. G., & Chandran, B. D. G. 2016, ApJ, 820, 47
Kohl, J. L., Noci, G., Antonucci, E., et al. 1998, ApJL, 501, L127
Kraichnan, R. H. 1965, PhFl, 8, 1385
Lamarche, L. J., Vasquez, B. J., & Smith, C. W. 2014, JGRA, 119, 3267
Leamon, R. J., Smith, C. W., Ness, N. F., Matthaeus, W. H., & Wong, H. K.

1998, JGR, 103, 4775
Marsch, E., Mühlhäuser, K.-H., Rosenbauer, H., & Schwenn, R. 1983, JGR,

88, 2982
Marsch, E., Mühlhäuser, K.-H., Schwenn, R., et al. 1982, JGR, 87, 52
Matthaeus, W. H., Oughton, S., Ghosh, S., & Hossain, M. 1998, PhRvL,

81, 2056
Oughton, S., Priest, E. R., & Matthaeus, W. H. 1994, JFM, 280, 95
Parashar, T. N., Shay, M. A., Cassak, P. A., & Matthaeus, W. H. 2009, PhPl,

16, 032310
Parashar, T. N., Vasquez, B. J., & Markovskii, S. A. 2014, PhPl, 21, 022301
Shebalin, J. V., Matthaeus, W. H., & Montgomery, D. 1983, JPlPh, 29, 525
Smith, C. W., Vasquez, B. J., & Hollweg, J. V. 2012, ApJ, 745, 8
Stawarz, J. E., Smith, C. W., Vasquez, B. J., Forman, M. A., &

MacBride, B. T. 2009, ApJ, 697, 1119
Vasquez, B. J. 2015, ApJ, 806, 33
Vasquez, B. J., & Markovskii, S. A. 2012, ApJ, 747, 19
Vasquez, B. J., Markovskii, S. A., & Chandran, B. D. G. 2014, ApJ, 788, 178
Vasquez, B. J., Smith, C. W., Hamilton, K., MacBride, B. T., & Leamon, R. J.

2007, JGRA, 112, A07101
Verma, M. K., Roberts, D. A., & Goldstein, M. L. 1995, JGR, 100, 19839
Xia, Q., Perez, J. C., Chandran, B. D. G., & Quataert, E. 2013, ApJ, 776,

90
Yang, Y., Matthaeus, W. H., Parashar, T. N., et al. 2017, PhPl, 24, 072306

8

The Astrophysical Journal, 893:71 (8pp), 2020 April 10 Vasquez, Isenberg, & Markovskii

https://orcid.org/0000-0001-8593-7289
https://orcid.org/0000-0001-8593-7289
https://orcid.org/0000-0001-8593-7289
https://orcid.org/0000-0001-8593-7289
https://orcid.org/0000-0001-8593-7289
https://orcid.org/0000-0001-8593-7289
https://orcid.org/0000-0001-8593-7289
https://orcid.org/0000-0001-8593-7289
https://orcid.org/0000-0003-0505-8546
https://orcid.org/0000-0003-0505-8546
https://orcid.org/0000-0003-0505-8546
https://orcid.org/0000-0003-0505-8546
https://orcid.org/0000-0003-0505-8546
https://orcid.org/0000-0003-0505-8546
https://orcid.org/0000-0003-0505-8546
https://orcid.org/0000-0003-0505-8546
https://doi.org/10.3847/1538-4357/ab20cc
https://ui.adsabs.harvard.edu/abs/2019ApJ...879...53A/abstract
https://ui.adsabs.harvard.edu/abs/2019ApJ...879...53A/abstract
https://doi.org/10.1088/0004-637X/720/1/503
https://ui.adsabs.harvard.edu/abs/2010ApJ...720..503C/abstract
https://doi.org/10.1086/309213
https://ui.adsabs.harvard.edu/abs/2000ApJ...539..273C/abstract
https://doi.org/10.1088/0004-637X/754/2/93
https://ui.adsabs.harvard.edu/abs/2012ApJ...754...93C/abstract
https://doi.org/10.1086/426507
https://ui.adsabs.harvard.edu/abs/2005ApJS..156..265C/abstract
https://doi.org/10.1088/0004-637X/693/2/1588
https://ui.adsabs.harvard.edu/abs/2009ApJ...693.1588D/abstract
https://doi.org/10.1086/341188
https://ui.adsabs.harvard.edu/abs/2002ApJ...575..571D/abstract
https://doi.org/10.1029/JA086iA02p00547
https://ui.adsabs.harvard.edu/abs/1981JGR....86..547G/abstract
https://doi.org/10.1029/2007JE003049
https://ui.adsabs.harvard.edu/abs/2008JGRA..113.1106H/abstract
https://ui.adsabs.harvard.edu/abs/2008JGRA..113.1106H/abstract
https://doi.org/10.1002/jgra.50107
https://ui.adsabs.harvard.edu/abs/2013JGRA..118.1351H/abstract
https://doi.org/10.1029/JA091iA04p04111
https://ui.adsabs.harvard.edu/abs/1986JGR....91.4111H/abstract
https://doi.org/10.1029/JA093iA09p09547
https://ui.adsabs.harvard.edu/abs/1988JGR....93.9547H/abstract
https://ui.adsabs.harvard.edu/abs/1964SvA.....7..566I/abstract
https://doi.org/10.1088/0004-637X/696/1/591
https://ui.adsabs.harvard.edu/abs/2009ApJ...696..591I/abstract
https://doi.org/10.1088/0004-637X/731/2/88
https://ui.adsabs.harvard.edu/abs/2011ApJ...731...88I/abstract
https://doi.org/10.1088/0004-637X/808/2/119
https://ui.adsabs.harvard.edu/abs/2015ApJ...808..119I/abstract
https://doi.org/10.3847/1538-4357/ab4e12
https://ui.adsabs.harvard.edu/abs/2019ApJ...887...63I/abstract
https://doi.org/10.3847/1538-4357/aaf16d
https://ui.adsabs.harvard.edu/abs/2019ApJ...870..119I/abstract
https://doi.org/10.1063/1.1761629
https://ui.adsabs.harvard.edu/abs/1966PhFl....9.2377K/abstract
https://doi.org/10.3847/0004-637X/820/1/47
https://ui.adsabs.harvard.edu/abs/2016ApJ...820...47K/abstract
https://doi.org/10.1086/311434
https://ui.adsabs.harvard.edu/abs/1998ApJ...501L.127K/abstract
https://doi.org/10.1063/1.1761412
https://ui.adsabs.harvard.edu/abs/1965PhFl....8.1385K/abstract
https://doi.org/10.1002/2013JA019529
https://ui.adsabs.harvard.edu/abs/2014JGRA..119.3267L/abstract
https://doi.org/10.1029/97JA03394
https://ui.adsabs.harvard.edu/abs/1998JGR...103.4775L/abstract
https://doi.org/10.1029/JA088iA04p02982
https://ui.adsabs.harvard.edu/abs/1983JGR....88.2982M/abstract
https://ui.adsabs.harvard.edu/abs/1983JGR....88.2982M/abstract
https://doi.org/10.1029/JA087iA01p00052
https://ui.adsabs.harvard.edu/abs/1982JGR....87...52M/abstract
https://doi.org/10.1103/PhysRevLett.81.2056
https://ui.adsabs.harvard.edu/abs/1998PhRvL..81.2056M/abstract
https://ui.adsabs.harvard.edu/abs/1998PhRvL..81.2056M/abstract
https://doi.org/10.1017/S0022112094002867
https://ui.adsabs.harvard.edu/abs/1994JFM...280...95O/abstract
https://doi.org/10.1063/1.3094062
https://ui.adsabs.harvard.edu/abs/2009PhPl...16c2310P/abstract
https://ui.adsabs.harvard.edu/abs/2009PhPl...16c2310P/abstract
https://doi.org/10.1063/1.4863422
https://ui.adsabs.harvard.edu/abs/2014PhPl...21b2301P/abstract
https://doi.org/10.1017/S0022377800000933
https://ui.adsabs.harvard.edu/abs/1983JPlPh..29..525S/abstract
https://doi.org/10.1088/0004-637X/745/1/8
https://ui.adsabs.harvard.edu/abs/2012ApJ...745....8S/abstract
https://doi.org/10.1088/0004-637X/697/2/1119
https://ui.adsabs.harvard.edu/abs/2009ApJ...697.1119S/abstract
https://doi.org/10.1088/0004-637X/806/1/33
https://ui.adsabs.harvard.edu/abs/2015ApJ...806...33V/abstract
https://doi.org/10.1088/0004-637X/747/1/19
https://ui.adsabs.harvard.edu/abs/2012ApJ...747...19V/abstract
https://doi.org/10.1088/0004-637X/788/2/178
https://ui.adsabs.harvard.edu/abs/2014ApJ...788..178V/abstract
https://doi.org/10.1029/2007JA012305
https://ui.adsabs.harvard.edu/abs/2007JGRA..112.7101V/abstract
https://doi.org/10.1029/95JA01216
https://ui.adsabs.harvard.edu/abs/1995JGR...10019839V/abstract
https://doi.org/10.1088/0004-637X/776/2/90
https://ui.adsabs.harvard.edu/abs/2013ApJ...776...90X/abstract
https://ui.adsabs.harvard.edu/abs/2013ApJ...776...90X/abstract
https://doi.org/10.1063/1.4990421
https://ui.adsabs.harvard.edu/abs/2017PhPl...24g2306Y/abstract

	1. Introduction
	2. Simulation Parameters
	3. Results for the Diffusion Coefficient
	3.1. Method I: Fitting with Differential Equation
	3.2. Method II: Fitting with the Integro-differential Equation
	3.3. Perpendicular Velocity Diffusion Coefficient Found in Simulation Results
	3.4. Comparison with Theoretical Predictions

	4. Comparison with Arzamasskiy et al.'s Approach
	5. Production of Suprathermal Protons
	6. Summary
	References



