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Abstract

We perform numerical simulations of hydrodynamic (HD) and magnetohydrodynamic (MHD) turbulence driven
by compressive driving, to study the generation of solenoidal velocity components and the small-scale magnetic
field. We mainly focus on the effects of mean magnetic field (B0) and the sonic Mach number (Ms). The
dependence of solenoidal ratio (i.e., ratio of solenoidal to kinetic energies) and magnetic energy density on Ms in
compressively driven turbulence is already established, but that on B0 is not yet. We also consider two different
driving schemes in terms of the correlation timescale of forcing vectors: a finite-correlated driving and a delta-
correlated driving. Our findings are as follows. First, when we fix the value of B0, the solenoidal ratio after
saturation increases as Ms increases. A similar trend is observed for generation of magnetic field when B0 is small.
Second, when we fix the value of Ms, HD and MHD simulations result in similar solenoidal ratios when B0 is not
strong (say, MA5, where MA is Alfvén Mach number). However, the ratio increases when MA5. Roughly
speaking, the magnetic energy density after saturation is a linearly increasing function of B0 irrespective of Ms.
Third, generation of the solenoidal velocity component is not sensitive to numerical resolution, but that of magnetic
energy density is mildly sensitive. Finally, when initial conditions are same, the finite-correlated driving always
produces more solenoidal velocity and small-scale magnetic field components than the delta-correlated driving. We
additionally analyze the vorticity equation to understand why higher Ms and B0 yield a larger quantity of the
solenoidal velocity component.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Interplanetary turbulence (830);
Interstellar medium (847); Interstellar magnetic fields (845); Magnetohydrodynamical simulations (1966);
Intracluster medium (858)

1. Introduction

Turbulence is ubiquitous in almost all astrophysical media,
ranging from the interstellar medium (ISM) (e.g., Larson 1981;
Elmegreen & Scalo 2004; Mac Low & Klessen 2004; McKee
& Ostriker 2007) to the intracluster medium (ICM) (e.g.,
Kulsrud et al. 1997; Schuecker et al. 2004; Ryu et al. 2008;
Hitomi Collaboration et al. 2016; Vazza et al. 2017).
Turbulence in cold (10 K) and dense interstellar molecular
clouds has Mach numbers (Ms) of ∼a few or even larger than
10 (see, e.g., Larson 1981). Such supersonic turbulence plays
essential roles in star formation processes in the ISM (see Mac
Low & Klessen 2004 for a review). Unlike this, ICM
turbulence is usually subsonic, with Ms1/2 (see, e.g., Ryu
et al. 2008; Brunetti & Jones 2014). It also has crucial impacts
on astrophysical phenomena in the ICM, including amplifica-
tion of weak seed magnetic fields (e.g., Schekochihin et al.
2004; Ryu et al. 2008; Cho 2014; Federrath 2016).

Magnetic fields permeated in turbulence appear in a variety
of astrophysical objects and have huge impacts on them. For
instance, they significantly affect the evolution of molecular
clouds and the fragmentation process of cores in the ISM; for a
review, see Hennebelle & Inutsuka (2019) and Krumholz &
Federrath (2019). Moreover, magnetic fields and turbulence in
the ICM can accelerate cosmic-ray electrons and protons (see
Brunetti & Jones 2014 and references therein).

The strength of magnetic fields varies from the ISM to the
ICM. Observations of dust polarization in interstellar molecular
cloud cores suggest that the strength is typically ∼mG (see

Crutcher 2012 and references therein). On the other hand,
observations of synchrotron emission from galaxy clusters and
Faraday rotation reveal that magnetic fields on the order of μG
exist in the ICM (see, e.g., Carilli & Taylor 2002; Govoni &
Feretti 2004; Ryu et al. 2012).
Turbulence in astrophysical media has a mixture of both

solenoidal ( · v=0) and compressive (∇×v=0) velocity
components, where v is velocity. Similarly, the turbulence
driving force (f) can also have solenoidal (∇·f=0) and
compressive (∇×f=0) components. In turbulence studies,
solenoidal driving has been predominantly used. However,
there also have been multiple works that made use of
compressive driving. Earlier studies have shown that the
driving mechanism affects characteristics of turbulence or
related physical phenomena. For example, compressively
driven turbulence has a wider probability density function
(PDF) of density (Federrath et al. 2008, 2010), produces more
intermittent structures (Federrath et al. 2009; Yoon &
Cho 2019), and yields much more efficient star formation
rates (Federrath & Klessen 2012) than solenoidally driven
turbulence.
When solenoidal driving forces turbulence, it is evident that

solenoidal energy dominates over compressive. This is indepen-
dent of both its Mach number (see, e.g., Bertoglio et al. 2001;
Federrath et al. 2011) and its degree of magnetization; for
hydrodynamic turbulence, see Kritsuk et al. (2007), Federrath
et al. (2010), and Federrath (2013), and for magnetohydrodynamic
turbulence, see Boldyrev et al. (2002), Cho & Lazarian (2003),
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Kritsuk et al. (2010), Federrath et al. (2011), and Porter et al.
(2015).

When compressive driving forces turbulence, previous
numerical studies have shown that the solenoidal velocity
component in such turbulence can be generated at shocks and
amplified by vortex stretching (Federrath et al. 2011; Porter
et al. 2015). In particular, Federrath et al. (2011) found that
solenoidal energy accounts for up to ∼40% of total kinetic
energy when turbulence is supersonic and a weak mean
magnetic field is present. However, since they considered only
a single mean magnetic field strength, the dependence of the
solenoidal ratio (i.e., the ratio of solenoidal to total kinetic
energies) on the mean magnetic field strength in compressively
driven turbulence is not yet fully determined. In this regard, we
mainly aim at determining the solenoidal ratio in compressively
driven turbulence by taking various strengths of the mean
magnetic field into account. We also investigate the role of the
magnetic fields in the generation of solenoidal modes.

Amplification of magnetic field on scales comparable to or
smaller than the driving scale by turbulent motions is known as
the small-scale turbulence dynamo. In this process, turbulent
motions stretch, twist, and fold magnetic field lines, which in
turn results in conversion of kinetic energy of turbulence to
magnetic energy (see, e.g., Batchelor 1950; Cho & Vishniac
2000; Haugen et al. 2004; Schekochihin et al. 2004, 2007;
Brandenburg & Subramanian 2005; Cho et al. 2009; Federrath
2016 for details; see also Appendix in Cho 2014). Since the
dynamo action is mainly achieved by solenoidal motions of
turbulence, it is apparent that the types of driving have an
influence on the process. For solenoidal driving, comprehen-
sive studies exist related to the turbulence dynamo. Those
studies have numerically shown that solenoidal driving
efficiently amplifies small-scale magnetic field via field line
stretching, and the resulting magnetic energy becomes
comparable to kinetic energy at saturation (Cho & Vishniac
2000; Haugen et al. 2003; Schekochihin et al. 2004, 2007; Ryu
et al. 2008; Cho et al. 2009; Federrath et al. 2011; Cho &
Yoo 2012; Porter et al. 2015). On the other hand, compressive
driving cannot efficiently excite a small-scale magnetic field
because it does not produce a great enough solenoidal velocity
component to amplify the magnetic field. As a result, the
amplified magnetic field after turbulence reaches the saturation
stage is dynamically insignificant (Federrath et al. 2011; Porter
et al. 2015). Apart from its inefficiency, earlier studies have
revealed relatively fewer facts regarding the turbulence dynamo
in compressively driven turbulence. In this paper, we provide a
more comprehensive study on this topic. To be specific, we
consider a wide range of the mean magnetic field strengths and
try to estimate an upper limit on the magnetic saturation level in
compressively driven turbulence when numerical resolution is
very high and the mean magnetic field is very weak.

The paper is organized as follows. We explain our numerical
method in Section 2. We present results related to generation of
solenoidal modes and small-scale magnetic fields in Sections 3
and 4, respectively. We discuss our findings in Sections 5 and
6, and give a summary in Section 7.

2. Numerical Method

2.1. Numerical Code

We use an essentially non-oscillatory scheme (see Cho &
Lazarian 2002) to solve the ideal magnetohydrodynamic

(MHD) equations in a periodic box of size 2π:
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with an isothermal equation of state p= rcs
2 , where cs is the

sound speed, ρ is the density, p is the gas pressure, f is a driving
force (see Section 2.2 for details), v is the velocity, and B is the
magnetic field divided by p4 . For hydrodynamic (HD)
simulations, we only solve Equations (1) and (2) withB=0.
The magnetic field consists of two components: a uniform
mean field (B0) and a fluctuating random field (b), so
that B=B0 + b. At t=0, the density and velocity are set
to one and zero, respectively, to assume a static medium with a
constant density. In cases of MHD, only a mean magnetic field
exists at the beginning.

2.2. Forcing Schemes

In our simulations, we drive turbulence in Fourier space using
either solenoidal (∇·f=0) or compressive (∇×f=0) driving.
We consider two different types of driving in terms of different
correlation timescales of forcing vectors: a finite-correlated driving
and a delta-correlated driving. In the former, forcing vectors
continuously change with a correlation timescale comparable
to the large-eddy turnover time (see Cho & Ryu 2009; see also
Federrath et al. 2010). In the latter, both the direction and
amplitude of driving change on a very short timescaleΔt=0.001
in code units, which roughly corresponds to a few thousandths of
the large-eddy turnover time; for details, see Yoon et al. (2016). In
summary, we consider the following forcing schemes:

1. Finite-correlated compressive driving.
2. Finite-correlated solenoidal driving.
3. Delta-correlated compressive driving.
4. Delta-correlated solenoidal driving.

2.3. Simulations

We use up to 10243 grid points in our periodic computational
box. In all simulations, energy injection peaks at k ≈2.5, where
k is the wavenumber; see Cho & Ryu (2009) for details about
the forcing wavenumbers. The strength of the mean magnetic
field (B0) ranges from 0.001 to 1.0 in MHD turbulence
simulations, which is actually the Alfvén speed of the mean
magnetic field (i.e., prºV B 4A 0 0 , where ρ0 is equal to
one and 4π does not appear in our units). In our simulations,
the rms velocity (vrms) is roughly one when turbulence is
fully developed. Therefore, the Alfvén Mach number (MA≡
vrms/vA) can be regarded as -B0

1 in our simulations. We change
the isothermal sound speed cs to control the sonic Mach
number ºM v cs srms . The resulting sonic Mach number ranges
from ∼0.5 to ∼10. When we present time evolutions of
physical quantities, we use a normalized time: t=tcode/ted.
Here, tcode is time in code units, and ted=Lf/vrms is large-eddy
turnover time. The driving scale of turbulence Lf is about
2.5 times smaller than the computational box.

2

The Astrophysical Journal, 893:75 (16pp), 2020 April 10 Lim, Cho, & Yoon



Table 1
Results of Simulations

Run Driving Resolution Ms
a MA (~ -B0

1)b vsol
2 /vtot

2 c b2/vtot
2 d (t1, t2)

e

F1024MS1-B00.1 Finite-correlated compressive 10243 ∼1 10.0 0.262 0.194 (3, 5.5)

F512MS0.5-B00.05 5123 ∼0.5 20.0 0.099 0.059 (5, 10)
F512MS0.5-B00.1 5123 ∼0.5 10.0 0.099 0.091 (5, 10)
F512MS1-B00.001 5123 ∼1 1000.0 0.249 0.033 (40, 70)
F512MS1-B00.01 5123 ∼1 100.0 0.246 0.044 (20, 30)
F512MS1-B00.05 5123 ∼1 20.0 0.280 0.091 (3, 5.5)
F512MS1-B00.1 5123 ∼1 10.0 0.275 0.162 (3, 5.5)
F512MS1-B00.2 5123 ∼1 5.0 0.307 0.250 (3, 5.5)
F512MS1-B00.6 5123 ∼1 1.7 0.491 0.441 (3, 5.5)
F512MS1-B01 5123 ∼1 1.0 0.654 0.526 (3, 6)
F512MS1-Hydro 5123 ∼1 L 0.317 L (3, 6)

F256MS0.5-B00.001 2563 ∼0.5 1000.0 0.147 0.004 (140, 180)
F256MS0.5-B00.01 2563 ∼0.5 100.0 0.130 0.011 (30, 75)
F256MS0.5-B00.05 2563 ∼0.5 20.0 0.096 0.042 (8, 12)
F256MS0.5-B00.1 2563 ∼0.5 10.0 0.093 0.072 (8, 12)
F256MS0.5-B00.2 2563 ∼0.5 5.0 0.101 0.102 (8, 12)
F256MS0.5-B01 2563 ∼0.5 1.0 0.447 0.475 (3, 10)
F256MS1-B00.001 2563 ∼1 1000.0 0.245 0.015 (80, 160)
F256MS1-B00.01 2563 ∼1 100.0 0.237 0.026 (30, 160)
F256MS1-B00.05 2563 ∼1 20.0 0.272 0.065 (3.5.5)
F256MS1-B00.1 2563 ∼1 10.0 0.262 0.128 (3, 5.5)
F256MS1-B00.2 2563 ∼1 5.0 0.284 0.209 (3, 5.5)
F256MS1-B00.6 2563 ∼1 1.7 0.459 0.415 (3, 5.5)
F256MS1-B01 2563 ∼1 1.0 0.615 0.504 (3, 6)
F256MS3-B00.001 2563 ∼3 1000.0 0.332 0.018 (80, 160)
F256MS3-B00.01 2563 ∼3 100.0 0.336 0.024 (30, 50)
F256MS3-B00.05 2563 ∼3 20.0 0.367 0.084 (5, 12)
F256MS3-B00.1 2563 ∼3 10.0 0.452 0.157 (5, 12)
F256MS3-B00.2 2563 ∼3 5.0 0.560 0.275 (5, 12)
F256MS3-B01 2563 ∼3 1.0 0.761 0.423 (3, 10)
F256MS10-B01 2563 ∼10 1.0 0.761 0.355 (3, 10)
F256MS0.5-Hydro 2563 ∼0.5 L 0.132 L (3, 10)
F256MS1-Hydro 2563 ∼1 L 0.256 L (80, 160)
F256MS3-Hydro 2563 ∼3 L 0.350 L (3, 10)

D512MS1-B00.01 Delta-correlated compressive 5123 ∼1 100.0 0.161 0.023 (20, 30)
D512MS1-B01 5123 ∼1 1.0 0.471 0.511 (3, 6)

D256MS0.5-B00.01 2563 ∼0.5 100.0 0.063 0.006 (70, 95)
D256MS1-B00.01 2563 ∼1 100.0 0.130 0.012 (40, 100)
D256MS3-B00.01 2563 ∼3 100.0 0.259 0.018 (40, 80)
D256MS0.5-B01 2563 ∼0.5 1.0 0.309 0.376 (3, 10)
D256MS1-B01 2563 ∼1 1.0 0.417 0.467 (3, 6)
D256MS3-B01 2563 ∼3 1.0 0.590 0.384 (3, 10)
D256MS10-B01 2563 ∼10 1.0 0.641 0.306 (3, 10)
D256MS0.5-Hydro 2563 ∼0.5 L 0.066 L (3, 10)
D256MS1-Hydro 2563 ∼1 L 0.165 L (3, 10)
D256MS3-Hydro 2563 ∼3 L 0.255 L (3, 10)

Sol-F256MS1-B00.001 Finite-correlated solenoidal 2563 ∼1 1000.0 0.958 0.262 (30, 80)

Sol-D256MS1-B00.001 Delta-correlated solenoidal 2563 ∼1 1000.0 0.886 0.091 (30, 80)

Notes.
a The sonic Mach number.
b The Alfvén Mach number (MA≡vrms/vA) of the mean magnetic field. Note that the rms velocity is ∼1 in our simulations and vA=B0 in our units. Therefore, in
our simulations, ~ -M BA 0

1. See Section 2.3 for details.
c The solenoidal ratio after saturation. Here, vsol is solenoidal velocity component and vtot is total velocity.
d The magnetic saturation level after saturation. Here, b2 is small-scale magnetic energy density.
e The time interval in the unit of large-eddy turnover time (ted) for averaging the physical quantities.
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Table 1 lists our simulations. We use the notation X X1 2
MSX3-B0X4, where X1=F or D refers to either the finite-
correlated or the delta-correlated driving3; X2=256, 512, or
1024 refers to the number of grid points in each spatial
direction; X3=0.5, 1, 3, or 10 refers to the sonic Mach
number; X4=0.001, 0.01, 0.05, 0.1, 0.2, 0.6, or 1.0 refers to
the strength of the mean magnetic field; and B0X4=Hydro
refers to the HD simulation.

We use the following notations in this paper:

1. vtot (ºvsol + vcomp): total velocity.
2. vsol, vcomp: solenoidal and compressive velocity compo-

nents, respectively.
3. vsol

2 /vtot
2 (ºá ñ á ñv vsol

2
tot
2 ): we refer to this as solenoidal

ratio. Here, á ñ denotes spatial average.
4. B (º +B b0

2 2 ): total magnetic field strength.
5. B0: mean magnetic field strength. Note that, in our units,

B0 is actually the Alfvén speed of the mean field.
6. b (º á ñb2 ): random magnetic field strength.
7. b2/vtot

2 (ºá ñ á ñb v2
tot
2 ): we refer to this as the magnetic

saturation level.

3. Generation of Solenoidal Modes

In this section, we investigate generation of the solenoidal
velocity component in compressively driven turbulence. In
Section 3.1, we consider HD turbulence. We describe effects of
the sonic Mach number (Ms) and the mean magnetic field (B0)
for MHD turbulence in Sections 3.2 and 3.3, respectively.

3.1. Effects of the Sonic Mach Number in HD Turbulence

Figure 1 shows the time evolution of á ñvtot
2 and á ñvsol

2 in HD
turbulence driven by compressive driving. Panels (a) and (b)
are for comparison of the finite-correlated compressive driving
with the delta-correlated compressive driving at 2563 resolu-
tion, which are represented as black and magenta curves,
respectively. Figure 1(c) shows a resolution study for the finite-
correlated compressive driving, in which blue, black, and red
curves denote 1283, 2563, and 5123 resolutions, respectively.

The sonic Mach number is ∼0.5 in the left panel, and ∼1 in the
middle and the right panels.
As we can see from the figure, turbulence seems to saturate

before approximately 3ted, and the level of á ñvsol
2 at the

saturation stage is much lower than that of á ñvtot
2 in all

simulations presented. In addition, we can clearly see from
Figure 1(a) and (b) that the finite-correlated compressive
driving (see black curves) yields nearly the same levels of á ñvtot

2

regardless of Ms, but á ñvsol
2 for Ms∼1 is larger than that for

Ms∼0.5. For the delta-correlated compressive driving (see
magenta curves), the level of both á ñvtot

2 and á ñvsol
2 for Ms∼1 is

larger than that for Ms∼0.5. Regarding numerical resolution
effect, Figure 1(c) clearly shows that the time evolutions for
three simulations with 1283, 2563, and 5123 resolutions are
virtually identical, which means that the generation of
solenoidal modes is very insensitive to the numerical
resolution.
Figure 2 shows the average values of the solenoidal ratio as a

function of Ms. Black and magenta circles correspond to the
finite-correlated and the delta-correlated compressive drivings,

Figure 1. Time evolution of á ñvtot
2 (solid curves) and á ñvsol

2 (dotted curves) for HD turbulence driven by compressive driving, where á ñ denotes spatial average. (a)
Ms∼0.5 and 2563 resolution. (b) Ms∼1 and 2563 resolution. (c) Resolution study only for the finite-correlated compressive driving and Ms∼1. Black and magenta
curves in the left and the middle panels represent the finite-correlated and the delta-correlated compressive drivings, respectively. Blue, black, and red curves in the
right panel correspond to 1283, 2563, and 5123 resolutions, respectively.

Figure 2. Average values of the solenoidal ratio (vsol
2 /vtot

2 ) as a function of the
sonic Mach number (Ms) for the HD simulations. Black and magenta circles
indicate the finite-correlated and the delta-correlated compressive drivings for
2563 resolution, respectively. Error bars represent standard deviations. In
Table 1, the average values and the time intervals for taking an average are
shown.

3 We additionally consider two simulations with solenoidal driving. They are
notated by Sol-D256MS1-B00.001 and Sol-F256MS1-B00.001, respectively.
All other simulations, which do not start with Sol-, are for compressive driving
(see Table 1).
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respectively. The figure apparently presents that solenoidal
ratios increase as Ms increases. When Ms∼3, the solenoidal
ratio is ∼0.35. For comparison, Federrath et al. (2010), who
used a finite-correlated driving, obtained a ratio of ∼0.4 in
compressively driven HD turbulence at Ms∼5. The higher
ratio they obtained may stem from having had a value of Ms

that was higher than ours. On top of that, when Ms is similar,
solenoidal ratios of the finite-correlated compressive driving
are always higher than those of the delta-correlated compres-
sive driving. Therefore, in HD turbulence driven by compres-
sive driving, generation of solenoidal motions is dependent on
both Ms and driving schemes.

3.2. Effects of the Sonic Mach Number in MHD Turbulence

Here, we mainly study how the sonic Mach number Ms

influences generation of solenoidal motions in MHD turbulence
driven by compressive driving. We study effects of driving
schemes and numerical resolution as well. We consider weak
mean magnetic field cases (B0 � 0.1) in Section 3.2.1 and a
strong mean magnetic field case (B0=1.0) in Section 3.2.2.

3.2.1. Weak B0 Cases ( B0 0.1)

Figures 3 shows time evolution of á ñvtot
2 and á ñvsol

2 in MHD
turbulence driven by compressive driving. Blue, red, and green
curves in Figures 3(a) and (b) correspond to Ms∼0.5, ∼1, and
∼3, respectively. We separately consider the finite-correlated

and the delta-correlated compressive drivings in Figures 3(a)
and (b), respectively. According to those two figures, the
evolution of á ñvtot

2 is similar irrespective of Ms. However, the
level of á ñvsol

2 at saturation increases as Ms increases in both
driving schemes.
Figure 3(c) shows the effects of numerical resolution and B0

in the case of Ms∼1 and the finite-correlated compressive
driving. We plot the results of six simulations. In the figure,
different colors of curves represent different values of B0: cyan,
black, and magenta colors correspond to B0=0.001, 0.01, and
0.1, respectively. Each color has two different line styles: solid
and dashed curves correspond to 2563 and 5123 resolutions,
respectively. As in the case of HD turbulence, the resolution
effect seems insignificant: in the figure, solid and dashed curves
with the same color virtually coincide, which means that results
are nearly resolution-independent. In addition, time evolution
of all curves looks similar, which means that the effect of B0

also seems insignificant for Ms∼1 and B0�0.1 (see
Section 3.3 for B0 higher than 0.1).
Figure 4 shows the averaged solenoidal ratio as a function of

Ms for simulations with Ms3 and B0�0.1. Panels (a)–(c) in
Figure 4 correspond to the ratios for B0=0.001, 0.01, and 0.1,
respectively. In Figure 4(a) and (c), we consider only the finite-
correlated compressive driving. In Figure 4(b) (see the middle
panel), black and magenta circles (squares) correspond to the
finite-correlated and the delta-correlated compressive drivings
for 2563 (5123) resolution, respectively.

Figure 3. Time evolution of á ñvtot
2 and á ñvsol

2 for MHD turbulence simulations with B0�0.1. (a) Finite-correlated compressive driving with B0=0.01. (b) Delta-
correlated compressive driving with B0=0.01. (c) Resolution study for B0�0.1 and Ms∼1. Blue, red, and green solid (dotted) curves in the left and the middle
panels represent á ñvtot

2 (á ñvsol
2 ) for Ms∼0.5, ∼1, and ∼3, respectively. In the right panel, cyan, black, and magenta solid (dashed) curves correspond to B0=0.001,

0.01, and 0.1 for 2563 (5123) resolution, respectively. Only the finite-correlated driving is considered in the right panel.

Figure 4. Average values of the solenoidal ratio (vsol
2 /vtot

2 ) as a function of the sonic Mach number (Ms) for the MHD simulations with B0�0.1. (a) B0=0.001. (b)
B0=0.01. (c) B0=0.1. In the left (B0=0.001) and the right panels (B0=0.1), we present the ratio of the finite-correlated compressive driving only. In the middle
panel (B0=0.01), black and magenta circles (squares) indicate the finite-correlated and the delta-correlated compressive drivings for 2563 (5123) resolution,
respectively. Error bars in each panel denote standard deviations. In Table 1, the average values and the time intervals for taking average are shown.
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As in the case of HD turbulence, we can observe the
following trends in Figure 4. First, for Ms effects, we can
clearly see that as Ms increases, the solenoidal ratio also
increases regardless of B0. WhenMs∼3, the ratio is as large as
∼0.35 for B0=0.001 and 0.01, and ∼0.45 for B0=0.1. The
trend we observe is consistent with the result from Federrath
et al. (2011), who considered a much lower mean magnetic
field strength than ours and used a finite-correlated compressive
driving. They obtained solenoidal ratios of ∼0.10, ∼0.27, and
∼0.32 for Ms∼0.5, ∼1.0, and ∼3.0, respectively. Those
values are similar to ours: ∼0.13, ∼0.24, and ∼0.33 for similar
values of Ms and B0=0.01. This implies that the solenoidal
ratio is not sensitive to B0 as long as B0 is sufficiently small (see
Section 3.3 for further discussion). Second, as we showed in
Figure 4(b), the solenoidal ratio does not seem sensitive to
numerical resolution. This can also be supported by comparing
the result of Porter et al. (2015) with ours. They forced
turbulence using a delta-correlated compressive driving to have
Ms∼0.5 and considered a mean magnetic field strength of
B0∼0.001 in our units. The solenoidal ratio is ∼0.07 in their
simulation with a 10243 resolution. Taking into account the fact
that the solenoidal ratio is insensitive to numerical resolution,
we can conclude that their result is consistent with ours of
∼0.06 from a 2563 resolution (Run D256MS0.5-B00.01).
Third, we can see from Figure 4(b) that, when Ms is similar and
numerical resolution is same, the finite-correlated compressive
driving results in a higher solenoidal ratio than does the delta-
correlated compressive driving.

3.2.2. A Strong B0 Case (B0=1)

Figure 5 is similar to Figure 3, but we consider B0=1 and
Ms up to ∼10. In Figures 5(a) and (b), blue, red, cyan, and
orange solid (dotted) curves represent ( )á ñ á ñv vtot

2
sol
2 forMs∼0.5,

∼1, ∼3, and ∼10, respectively. Panels (a) and (b) of Figure 5
are for the finite-correlated and the delta-correlated compres-
sive drivings, respectively.

First of all, when we compare Figure 5 with Figure 3, we can
note that the levels of á ñvsol

2 at saturation are much higher.
Second, as we can see from Figure 5(a), the finite-correlated
compressive driving yields similar levels of á ñvtot

2 irrespective
of Ms. However, á ñvsol

2 shows dependence on Ms. Roughly
speaking, the level of á ñvsol

2 increases asMs increases forMs3
(see Figure 6 for a more quantitative evaluation of this). Third,
as we can see in Figure 5(b), the level of á ñvsol

2 increases withMs

for the delta-correlated compressive driving.

Figure 5(c) shows results of our resolution study for the
finite-correlated compressive driving in the case of Ms∼1.
Dashed and solid curves are for 2563 and 5123 resolutions,
respectively. Similar to the case of B0=0.01, the effect of
resolution on á ñvsol

2 does not seem very significant.
Figure 6 shows the solenoidal ratio as a function of Ms for

B0=1.0. Black and magenta circles (squares) correspond to
the finite-correlated and the delta-correlated compressive
drivings for 2563 (5123) resolution, respectively. In the figure,
we can observe the same trend of the solenoidal ratio as in
Figures 2 and 4; the ratio increases with Ms and is larger for the
finite-correlated compressive driving than for the delta-
correlated compressive driving at a similar Ms. It is worth
noting that the solenoidal ratio exceeds 0.5 for both driving
schemes in the supersonic regime. This means that, although
turbulence is driven by compressive driving, solenoidal modes
eventually dominate over compressive ones in the presence of a
strong mean magnetic field. This result may imply that Alfvén
modes become more important than compressive modes in the
regime.

3.3. Effects of the Mean Magnetic Field

In this subsection, we deal with effects of the mean magnetic
field (B0) on the generation of solenoidal modes in turbulence
driven by compressive driving. For this purpose, we consider
Ms3 and B0 ranging from 0.001 (very weak mean field case)

Figure 5. Similar to Figure 3, but for B0=1.0. Blue, red, green, and orange curves in the left and the middle panels represent Ms∼0.5, ∼1, ∼3 and ∼10,
respectively. In the right panel, dashed and solid curves correspond to 2563 and 5123 resolutions for the finite-correlated compressive driving, respectively.

Figure 6. Same as Figure 4(b), but for B0=1.0. We consider Ms up to ∼10.
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to 0.6 (marginally strong mean field case). We do not study
effects of driving schemes here; we consider only the finite-
correlated compressive driving.

Figure 7 shows time evolution of á ñvtot
2 and á ñvsol

2 in MHD
turbulence driven by compressive driving. Cyan, brown, blue,
orange, and black curves in Figures 7(a) and (b) correspond to
B0=0.01, 0.05, 0.1, 0.2, and 0.6, respectively. The numerical
resolutions in panels (a) and (b) of Figure 7 are 2563 and
5123, respectively. Figure 7(c) shows simulation results for
B0�0.01, in which magenta, blue, cyan, red, and black curves
correspond to Run F512MS1-B00.01, Run F256MS1-B00.01, Run
F512MS1-B00.001, Run F256MS1-B00.001, and Run F256MS1-
Hydro, respectively. Note that all solid curves virtually coincide
and so do all dotted curves.

First, á ñvtot
2 and á ñvsol

2 for all simulations in Figure 7 seem to
saturate roughly after 3ted. Second, in Figure 7(a) and (b), the
evolution of á ñvtot

2 is almost same irrespective of both B0 and the
numerical resolution. Furthermore, when B0�0.2, the evolution
of á ñvsol

2 at saturation is nearly indistinguishable in both numerical
resolutions (i.e., in both Figure 7(a) and (b)). On the other hand,
the level of á ñvsol

2 for B0=0.6 at saturation is notably higher
than those for B0�0.2 in both numerical resolutions. Third,
according to Figure 7(c), it is noticeable that both numerical
resolution and the degree of magnetization do not strongly affect
the evolutions of á ñvtot

2 and á ñvsol
2 when B0 is weak or zero.

Figure 8 shows average values of the solenoidal ratio as a
function of B0. Panels (a)–(c) in Figure 8 correspond to the
ratios for Ms∼0.5, ∼1, and ∼3, respectively. In Figure 8(c),
we present the results of simulations with 2563 resolution only.
In Figure 8(a) and (b), blue and red circles represent 2563 and
5123 resolutions, respectively. The gray shaded region in each
panel indicates the 1σ dispersion about the average solenoidal
ratio from the HD simulations.
First, Figure 8 clearly shows that the solenoidal ratio is lower

when Ms is lower at the same B0, as we discussed earlier in
Sections 3.1 and 3.2. Second, when B0 is small, the solenoidal
ratio is virtually the same as the HD value. However, as B0

exceeds a certain strength, the ratio begins to deviate from the
HD value. The solenoidal ratio seems to exceed 0.5 when
B0�0.6 for Ms∼1 and B0�0.2 for Ms∼3. Third, we note
that deviation of the ratio from the HD values occurs roughly at
B0=0.1. However, it shows a weak dependence on Ms. When
Ms1, the solenoidal ratios for B0�0.2 are not considerably
different from the ratio of the HD simulations. On the contrary,
in the case of Ms∼3, this happens at a smaller B0 (∼0.05).
Last, in Figure 8(a) and (b), the numerical resolution does not
seem to have substantial impacts on the ratio, especially for
B0�0.1. Although the ratio slightly depends on numerical
resolution, the difference is within the error bar.

Figure 7. Time evolution of á ñvtot
2 (solid curves) and á ñvsol

2 (dotted curves) for MHD turbulence simulations with Ms∼1. (a) Finite-correlated compressive driving with
2563 resolution. (b) Finite-correlated compressive driving with 5123 resolution. (c) Comparison of HD and MHD simulations. Cyan, brown, blue, orange, and black
curves in left and middle panels represent B0=0.01, 0.05, 0.1, 0.2, and 0.6, respectively. In the right panel, black curves represent Run F256MS1-Hydro simulation.
Blue and magenta curves correspond to Run F256MS1-B00.01 and Run F512MS1-B00.01, respectively. Red and cyan curves correspond to Run F256MS1-B00.001
and Run F512MS1-B00.001, respectively.

Figure 8. Average values of the solenoidal ratio (vsol
2 /vtot

2 ) as a function of the mean magnetic field (B0) for the MHD simulations with Ms3. (a) Ms∼0.5. (b)
Ms∼1. (c)Ms∼3. In the right panel (Ms ∼ 3), we present results from 2563 resolution simulations only. In the left and the middle panels, blue and red circles denote
the solenoidal ratios of the simulations with 2563 and 5123 resolutions, respectively. Gray shaded region in each panel shows the 1σ dispersion about the average ratio
from HD simulations. Error bars show standard deviations. In Table 1, the average values and the time intervals for taking average are shown.
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4. Generation of Small-scale Random Magnetic Fields

In this section, we investigate the generation of small-scale
magnetic field in compressively driven turbulence. The strength
of the small-scale magnetic field is defined by b= -B B2

0
2

as we described in Section 2. At the beginning of simulations,
no random magnetic field exists. Then, as simulations go on,
turbulence develops and amplifies small-scale magnetic field
via the stretching effect, which is mainly provided by the
solenoidal velocity component. In Sections 4.1 and 4.2, we deal
with the effects of the sonic Mach number (Ms) and the mean
magnetic field (B0), respectively.

4.1. Effects of the Sonic Mach Number

4.1.1. Weak B0 Cases (B0=0.01)

Figure 9 shows the time evolution of á ñvtot
2 and á ñb2 in MHD

turbulence driven by compressive driving. Blue, red, and green
curves in Figure 9(a) and (b) correspond to Ms∼0.5, ∼1, and
∼3, respectively. Figures 9(a) and (b) are for the finite-
correlated and the delta-correlated compressive drivings,
respectively. Figure 9(c) shows results of resolution study. In
the figure, different colors of curves represent different driving
schemes and different line styles different numerical resolu-
tions. Black dashed and black solid curves indicate the finite-
correlated compressive driving for 2563 and 5123 resolutions,
respectively. Cyan dashed and cyan solid curves indicate the
delta-correlated compressive driving for 2563 and 5123

resolutions, respectively. The vertical axis is in logarithmic
scale in all panels.

First of all, panels (a) and (b) of Figure 9 obviously reveal
the effect of Ms on the growth of á ñb2 : although the level of á ñvtot

2

at saturation is almost identical regardless of Ms, that of á ñb2

depends on Ms. When we compare á ñb2 for Ms∼0.5 (see the
blue dotted curves) and ∼1 (see the red dotted curves) in those
figures, the values for Ms∼1 are larger. However, when we
compare á ñb2 for Ms∼1 and ∼3 (see the green dotted curves),
the behaviors of the finite-correlated (left panel) and the delta-
correlated (middle panel) drivings are different: the finite-
correlated compressive driving yields similar level of á ñb2

between Ms∼1 and ∼3, while the delta-correlated compres-
sive driving produces larger á ñb2 for Ms∼3. Second, both
panel (a) and panel (b) have a common feature: á ñb2 grows fast

when t 5 and it gradually levels off when t5. In some
simulations, á ñb2 reaches saturation level relatively quickly,
while in others, it does more or less slowly. Finally, as opposed
to the case of á ñvsol

2 , Figure 9(c) clearly shows resolution
dependence of á ñb2 , with the level of á ñb2 at saturation being
increasing with the numerical resolution for both driving
schemes. Previous numerical studies reported such a resolution
effect on turbulence dynamos for solenoidally driven turbu-
lence: for the case of incompressible MHD turbulence, see,
e.g., Cho et al. (2009); for compressible MHD turbulence, see,
e.g., Ryu et al. (2008).
Figure 10 summarizes the results from Figure 9. The figure

shows the magnetic saturation level as a function of Ms. Black
and magenta circles (squares) correspond to the finite-
correlated and the delta-correlated compressive drivings at
2563 (5123) resolution, respectively. The magnetic saturation
level is clearly dependent on Ms, driving schemes, and the
numerical resolution. First, for the range of Ms presented in
Figure 10, the two driving schemes show different behaviors

Figure 9. Time evolution of á ñvtot
2 and á ñb2 for MHD turbulence simulations with B0=0.01. (a) Finite-correlated compressive driving. (b) Delta-correlated

compressive driving. (c) Resolution study for both the finite-correlated and the delta-correlated compressive drivings in the case of Ms∼1. Blue, red, and green solid
(dotted) curves in the left and the middle panels represent á ñvtot

2 (á ñb2 ) for Ms∼0.5, ∼1, and ∼3, respectively. In the right panel, black dashed and solid curves
correspond to 2563 and 5123 resolutions for the finite-correlated compressive driving, respectively. Cyan dashed and solid curves correspond to 2563 and 5123

resolutions for the delta-correlated compressive driving, respectively. For á ñb2 , the red dotted curves in the left and the middle panels are the same as the black dashed
and cyan dashed curves in the right panel, respectively.

Figure 10. Averaged values of the magnetic saturation level (b2/vtot
2 ) as a

function of the sonic Mach number (Ms) for B0=0.01. Black and magenta
circles (squares) indicate the finite-correlated and the delta-correlated
compressive drivings for 2563 (5123) resolution, respectively. The error bars
represent standard deviations. In Table 1, the average values and the time
intervals for taking average are shown.
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when we fix the numerical resolution: although it keeps
increasing as Ms increases for the delta-correlated compressive
driving, it is not the case for the finite-correlated compressive
driving. That is, the magnetic saturation level for the finite-
correlated compressive driving peaks at Ms∼1 and slightly
decreases for Ms1. Second, for the same numerical
resolution, we can clearly see that the finite-correlated
compressive driving yields a larger magnetic saturation level
than the delta-correlated compressive driving at a similar Ms.
Third, when we compare the magnetic saturation level for 2563

and 5123 resolutions, it is larger for the latter resolution.

4.1.2. Strong B0 Cases (B0=1)

Figure 11 shows time evolution of á ñvtot
2 and á ñb2 for B0=1.

We consider the finite-correlated and the delta-correlated
compressive drivings separately in Figure 11(a) and (b),
respectively. In the figures, blue, red, cyan, and orange solid
(dotted) curves represent ( )á ñ á ñv btot

2 2 for Ms∼0.5, ∼1, ∼3, and
∼10, respectively. The levels of á ñb2 at saturation in the figures
are not very sensitive to Ms for both driving schemes.
Figure 11(c) shows results of resolution study for the finite-
correlated compressive driving in the case of Ms∼1. Dashed
and solid curves denote 2563 and 5123 numerical resolutions,
respectively. We can see from Figure 11(c) that the resolution
effect on á ñb2 is not very significant.

Figure 12 shows the magnetic saturation level as a function
of Ms for B0=1.0. Black and magenta circles (squares)
correspond to the finite-correlated and the delta-correlated
compressive drivings for 2563 (5123) resolution, respectively.
Although weak, the magnetic saturation level shows depend-
ence on Ms: it goes up as Ms increases when Ms1 and it
decreases as Ms increases when Ms1 for both driving
schemes. In addition, numerical resolution effect on the
magnetic saturation level is hardly pronounced especially for
the finite-correlated compressive driving.

4.2. Effects of the Mean Magnetic Field

In this subsection, we deal with the effect of the mean
magnetic field B0 on small-scale dynamo in turbulence driven
by compressive driving. Figure 13 shows time evolution of
á ñvtot

2 (solid curves) and á ñb2 (dotted curves) for different mean
magnetic field strengths for the finite-correlated compressive
driving. From left to right, panels (a)–(c) are for Ms∼0.5, ∼1,
and ∼3, respectively. Cyan, brown, blue, orange, and black
curves in each panel indicate B0=0.01, 0.05, 0.1, 0.2, and 0.6,

respectively. Note that we present results for various values of
B0 in each panel. The vertical axis is in logarithmic scale in all
panels. As we can see from the figure, the level of á ñb2 at
saturation increases with B0 for all values of Ms. In general,
when B0 is weaker, the saturation level is lower and it takes
more time to reach it.
In Figure 14, we present time evolutions of á ñvtot

2 and á ñb2

from additional MHD simulations with either higher numerical
resolutions or different values of B0. In Figure 14(a), we
present results for 5123 resolution. In Figure 14(b), we present
results for B0=0.001. In Figure 14(c), we compare the effects
of numerical resolution for fixed B0 and Ms.
Figure 14(a) is the same as Figure 13(b), but for 5123

resolution: in this figure, cyan, brown, blue, orange, and black
solid (dotted) curves denote time evolution of á ñvtot

2 (á ñb2 ) for
B0=0.01, 0.05, 0.1, 0.2, and 0.6 at Ms∼1, respectively. We
can clearly see almost the same evolutions of both á ñvtot

2 and á ñb2

as those for 2563 resolution (compare Figure 14(a) with
Figure 13(b)). However, 5123 resolution gives slightly higher
saturation values of á ñb2 than 2563 resolution (see Figure 15 for
details).
Figure 14(b) simultaneously shows effects of both Ms and

numerical resolution on á ñb2 in the case of B0=0.001. In this
figure, blue solid, red solid, and green solid curves correspond
to Ms∼0.5, ∼1, and ∼3 for 2563 resolution, respectively. Red
dotted curves are for 5123 resolution in the case of Ms∼1.
First of all, the time evolution of á ñb2 for Ms∼0.5 clearly

Figure 11. Similar to Figure 9, but for B0=1.0. Blue, red, green, and orange curves in the left and the middle panels represent Ms∼0.5, ∼1, ∼3, and ∼10,
respectively. In the right panel, dashed and solid curves correspond to 2563 and 5123 resolutions for the finite-correlated compressive driving, respectively.

Figure 12. Same as Figure 10, but for B0=1.0. We consider Ms up to ∼10.
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shows slower growth of á ñb2 compared to that of Ms∼1 and
∼3: á ñb2 for Ms1 saturates roughly after 60ted, but that for
Ms∼0.5 grows until 140ted. Furthermore, the level of á ñb2 at
saturation is similar between Ms∼1 and ∼3, and that for

Ms∼0.5 is lower. Second, when we compare the time
evolution of á ñb2 for 2563 and 5123 resolutions at Ms∼1
(see red solid and red dotted curves in Figure 14(b)), it is
obvious that the á ñb2 of the latter resolution grows faster and
exhibits a higher level of á ñb2 than that of the former resolution.
Figure 14(c) shows a resolution study for the case of

B0=0.1 and Ms∼1. Dotted, dashed, and solid curves
indicate 2563, 5123, and 10243 resolutions, respectively.
According to the figure, three different resolution simulations
produce almost the same time evolution of á ñvtot

2 . On the other
hand, a simulation with a higher numerical resolution results in
a higher level of á ñb2 at saturation. However, we can clearly see
that the change of the level of á ñb2 at saturation with numerical
resolution is not significant in compressively driven turbulence.
Figure 15 denotes the magnetic saturation level as a function

of B0 for the simulations with Ms3. Blue, red, and green
circles indicate Ms∼0.5, ∼1, and ∼3 for 2563 resolution,
respectively. Blue and red stars correspond toMs∼0.5 and ∼1
for 5123 resolution, respectively. The figure reveals an
approximately linear relation between B0 and the magnetic
saturation level,

( )á ñ á ñ = +b v cB d, 52
tot
2

0

regardless of Ms and numerical resolution. Here, c and d are
constants with proper dimensions. If we compare circles (2563)
and stars (5123) at the same Ms (i.e., the same color), we can
clearly see that 5123 resolution gives higher saturation levels
than 2563 resolution. The slopes of the linear relation are very

Figure 13. Time evolution of á ñvtot
2 (solid curves) and á ñb2 (dotted curves) for MHD turbulence simulations with 2563 resolution and Ms 3. (a) Ms∼0.5. (b) Ms∼1.

(c) Ms∼3. In each panel, cyan, brown, blue, orange, and black curves represent B0=0.01, 0.05, 0.1, 0.2, and 0.6, respectively.

Figure 14. Time evolutions of á ñvtot
2 and á ñb2 for MHD turbulence simulations with high numerical resolutions and different values of B0. (a) Same as Figure 13(b), but

for 5123 resolution. (b) Comparison for Ms and numerical resolution effects in the case of B0=0.001. Solid curves with blue, red, and green colors represent
Ms∼0.5, ∼1, and ∼3 for 2563 resolution, respectively. Red dotted curves denote 5123 resolution simulation with Ms∼1. (c) Resolution study only for B0=0.1 and
Ms∼1. Dotted, dashed, and solid curves indicate 2563, 5123, and 10243 resolutions, respectively.

Figure 15. Average values of the magnetic saturation level as a function of the
mean magnetic field (B0) for MHD turbulence simulations with Ms 3 and
B0�0.2. Circles with blue, red, and green colors represent 2563 resolution
simulations withMs∼0.5, ∼1, and ∼3, respectively. Blue and red stars denote
5123 resolution simulations with Ms∼0.5 and ∼1, respectively. Error bars
show standard deviations. In Table 1, the average values and the time intervals
for taking an average are shown.
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similar for both resolutions. Note, however, that the increase of
the magnetic saturation level with numerical resolution is not
significant compared to that for solenoidally driven turbulence
(see Section 6 for further discussion). If we compare results for
different values of Ms, the slope becomes slightly steeper as Ms

increases at the same numerical resolution.

5. Discussion on Solenoidal Ratio

In Section 3, we have studied the effects of both the sonic
Mach number (Ms) and the mean field strength (B0) on the
generation of solenoidal velocity components in compressively
driven turbulence. We have found that the solenoidal
component produced by compressive driving is dependent on
Ms and B0. In addition, when Ms is similar and the numerical
resolution is same, the finite-correlated compressive driving
generates a greater solenoidal velocity component than does the
delta-correlated compressive driving. We discuss these findings
and their implications in this section.

5.1. Dependence of Solenoidal Ratio on Ms and B0

Let us discuss how larger Ms and B0 result in a higher
solenoidal ratio. To study the generation of solenoidal velocity
components, it is helpful to write down the vorticity equation,4

“which is obtained from the curl of the Navier–Stokes equation
with magnetic (Maxwell) stresses, j×B, added” (Porter et al.
2015):

· ( ) ( · )

( ) ( )
⎛
⎝⎜

⎞
⎠⎟

r
r

r
n

¶
¶

=- +  +  ´ 

+  ´ +  +  ´ +  ´

w
v w v

T
G f

t
w P

w

1

, 6

T2

2

where w (=∇×v) is the vorticity, PT (=p + PB) is the sum of
the gas pressure, p, and the magnetic pressure, PB=(1/2)B2, T
(= B·∇B) is the magnetic tension, and ν is the kinematic
viscosity. In the viscous term,G is defined byG=(1/ρ)
∇ρ·S, where S is the standard traceless strain tensor (see, e.g.,
Mee & Brandenburg 2006).

In our simulations, velocity and hence vorticity are zero at
the beginning. How then is vorticity generated later on? We
note that the last term on the right-hand side (rhs) in
Equation (6) is zero in our simulations with compressive
driving. In addition, since we assume the isothermal equation
of state, p∝ρ, the baroclinic source term by gas pressure,
( )( )r r ´ p1 2 , where p is the gas pressure, vanishes. Next,
let us first assume that B0 is zero or extremely small. In this
case, all terms except the viscous term (the penultimate term in
Equation (6)), on the rhs are either exactly zero or almost zero
when time is small. Our numerical simulations are for ideal
MHD, such that ν is formally zero. However, on the grid
resolution–scale, numerical dissipation can resemble the
viscosity, which makes it possible for the viscous term to act
numerically. Therefore, the viscous term can seed the vorticity

across density gradients even in the absence of initial vorticity
in compressively driven turbulence (Mee & Brandenburg 2006;
Federrath et al. 2011). If B0 is not very small, it is possible that
the fourth term on the rhs generates vorticity even from the
beginning.5 Once seed vorticity is generated, the second term
on the rhs can contribute to amplification of vorticity.
Here, we quantify the following source/amplification terms:

the vortex stretching term, ( · )w v, the magnetic pressure
term, ( )( )r r ´ P1 B

2 , and the magnetic tension term,
( )r ´ T . We consider only the finite-correlated compres-

sive driving in this subsection.
Figure 16 shows PDFs of the source terms of vorticity for

Run F512MS1-B00.01 (upper panels) and Run F512MS1-B01
(lower panels). Dotted, dashed, and solid curves in each panel
denote the logarithms of the vortex stretching, magnetic
pressure, and magnetic tension terms, respectively. The left
and the right panels correspond to the PDFs calculated before
and after saturation, respectively. We show the time at which
each PDF is calculated in the left side of each panel.
We can note from the figure that the magnetic pressure and

tension effects are not dominant in the case of B0=0.01 (see
dashed and solid curves in the upper panels); the former is
weakest, and the latter is comparable to the stretching effect
irrespective of whether turbulence saturates or not. On the other
hand, in the case of B0=1, we can clearly see that the
magnetic tension effect is strongest, and the other two effects
are weaker than the tension term and comparable with each
other. Hence, we can suggest that, when B0 is very strong, the
magnetic tension effect is highly effective in generating
vorticity and the solenoidal velocity component. In fact, we
can explain the trend in Figure 8(b) in terms of the magnetic
tension term: as B0 increases, the magnetic tension effect
increases, which in turn produces a greater solenoidal velocity
component.
Figure 17 illustrates the effect of Ms on the vorticity equation

for 2563 resolution and B0�0.6. From left to right, panels (a)–
(c) show the average values of ∣ ∣rá  ´  ñ

r
PB

1
2 , ∣ ∣á  ´ ñ

r
T , and

∣( · ) ∣á  ñw v at saturation, respectively. In each panel, blue, red,
and green circles correspond to Ms∼0.5, ∼1, and ∼3,
respectively. The horizontal axis in each panel is total magnetic
energy density (B2).
First, we can clearly note that the magnetic pressure and

tension terms are roughly proportional to B2 for all values of
Ms, with those forMs∼3 being especially sensitive to B2. This
is understandable because the former contains B2 and the
latter · B B. Second, according to Figure 17(c), the vortex
stretching term does not show strong dependence on B2 for all
values of Ms. More precisely, it stays nearly constant when
B20.1 and deviates slightly from the constant when
B2>0.1. Third, if we compare the scales of the vertical axes
in those panels, the magnetic tension term is the largest, in
general. Last, the middle panel of Figure 17 shows that the
magnetic tension term is larger when Ms is larger, which means
that compressively driven turbulence with a higher Ms can
generate vorticity more efficiently than that with a lower Ms,
mainly via the magnetic tension effect.
Figures 18 and 19 are for the examination of the effect of B0

in the case of Ms∼1 and 5123 resolution. In those figures,

4 As noted by Porter et al. (2015), the solenoidal velocity component and the
vorticity are not exactly same. While the former, vsol∝l1/3, is dominant at the
energy-injection scale, the latter, w∝l−2/3, concentrates near the dissipation
scale, where l is a scale in the inertial range and vsol and w are solenoidal
velocity and vorticity associated with the scale, respectively. However, since
the vorticity is essentially solenoidal and the generation of vorticity is
accompanied by that of solenoidal velocity, we expect that the vorticity
equation can trace the generation of the solenoidal velocity component.

5 At t=0, the magnetic tension (T) is zero. Therefore, the fourth term on the
rhs of Equation (6) is zero at t=0. However, as soon as magnetic field lines
are perturbed by turbulent motions, the tension term begins to work.
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Figure 16. PDFs of (∣ ∣)r ´ 
r

Plog B
1
2 (dashed curves), (∣ ∣) ´

r
log T (solid curves), and {∣( · ) ∣}w ulog (dotted curves) for MHD simulations with Ms∼1 and

5123 resolution in the case of the finite-correlated compressive driving. Upper panels: B0=0.01. Lower panels: B0=1.0. PDFs in the left panels are calculated before
saturation, and those in the right panels after saturation. Time at which each PDF is calculated is shown in each panel.

Figure 17. Average values of ∣ ∣rá  ´  ñ
r

PB
1
2 (left panel), ∣ ∣á  ´ ñ

r
T (middle panel), and ∣( · ) ∣á  ñw v (right panel) for MHD simulations with 2563 resolution and

B0�0.6 as a function of total magnetic energy density (B2). Blue, red, and green circles in each panel denoteMs∼0.5, ∼1, and ∼3, respectively. Error bars represent
standard deviations. We take the average values after saturation.

Figure 18. PDFs of (∣ ∣)r ´ 
r

Plog B
1
2 (left panel), (∣ ∣) ´

r
log T (middle panel), and {∣( · ) ∣}w vlog (right panel) for MHD simulations with Ms∼1 and 5123

resolution. Cyan, brown, blue, orange, and black curves in each panel represent B0=0.01, 0.05, 0.1, 0.2, and 0.6, respectively. In the right panel, red dashed curve
indicates the HD simulation, F512MS1-Hydro. PDFs are calculated before saturation.
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cyan, brown, blue, orange, and black curves correspond to
B0=0.01, 0.05, 0.1, 0.2, and 0.6, respectively. The red dashed
lines in the right panels represent the HD simulation, Run
F512MS1-Hydro. The PDFs before saturation are drawn in
Figure 18 and those after saturation in Figure 19. It is obvious
from the figures that the PDFs for the magnetic pressure and
the tension terms have larger mean values as B0 increases, and
those for the stretching term remain almost same. Such a clear
trend illustrates that the effect of magnetic fields on generation
of solenoidal modes becomes stronger as B0 increases.

Figure 20 shows average values of ∣ ∣rá  ´  ñ
r

PB
1
2 ,

∣ ∣á  ´ ñ
r
T , and ∣( · ) ∣á  ñw v after saturation, which are denoted

by circles, “X” markers, and triangles, respectively, as a
function of B2. The gray shaded region shows 1σ dispersion
about the average value of ∣( · ) ∣á  ñw v for the HD simulation,
Run F512MS1-Hydro. The inset in the upper left corner is a
zoom-in to clearly show the trend of ∣ ∣rá  ´  ñ

r
PB

1
2 and

∣( · ) ∣á  ñw v with B2.
The figure shows that the magnetic tension term is largest—

and the inset shows that the magnetic pressure term is smallest
—for all values of B2. As in Figure 17, the magnetic tension
term is roughly proportional to B2. Note that its dependence on
B2 is very steep and it becomes much larger than others when
B20.1. This implies that, as B2 increases, the tension of
magnetic field lines becomes more important and Alfvenization
of compressively driven turbulence occurs. As a consequence,
when B0 is large (i.e., B2 is large), compressively driven
turbulence yields a significant amount of the solenoidal
velocity component via the efficient role of the magnetic
tension.

So far, we have discussed why large B0 results in substantial
solenoidal modes in turbulence driven by compressive driving.
We have found that the effect of magnetic tension is most
important. To clearly demonstrate this, we present (Figure 21)
power spectra of vsol for t t 1code ed . The upper panels of
Figure 21 show the time evolution of both á ñvsol

2 (red curves)
and á ñvcomp

2 (blue curves), and the lower panels show the power
spectra of vsol. The left, middle, and right panels correspond to
Run F512MS1-Hydro, Run F512MS1-B00.01, and Run
F512MS1-B00.6, respectively. The circles with different colors
in the upper panels denote moments at which power spectra in
the lower panels are calculated. The black curves in the lower
panels are the power spectra after saturation.

We can immediately note the difference in the power spectra.
If we compare sky-blue curves in the lower panels, the power
spectra peak at different wavenumbers. The peak wavenumber

for the HD simulation (left panel) is k ≈80, which is closer to
the dissipation scale, and moves to smaller wavenumbers as
times go on. For B0=0.6 (right panel), the power spectrum (in
sky-blue) peaks at k≈2.5, corresponding to the driving scale,
and then goes up without changing the peak wavenumber. The
weak magnetic field case (middle panel) is intermediate
between the two extreme cases.
We interpret the result of Figure 21 as follows. In the

absence of magnetic field, as in the case of Run F512MS1-
Hydro (left panel of Figure 21), we can reduce Equation (6) to

· ( ) ( · ) ( ) ( )n
¶
¶

~ - +  +  +  ´
w

v w v G
t

w w . 72

Since the first term on the rhs is conservative advection of the
vorticity, the only contributing terms to the vorticity generation
are the stretching (the second on the rhs) and the viscous
dissipation (the third on the rhs) terms. In our simulations,
vorticity is zero at the beginning and the compressive driving
does not produce any vorticity later. Therefore, the vorticity in
compressively driven HD turbulence is initially generated by
the viscous dissipation term—which is responsible for the peak
near the dissipation scale—and then amplified by the stretching

Figure 19. Same as Figure 18, but for PDFs calculated after saturation.

Figure 20. Average values of ∣ ∣rá  ´  ñ
r

PB
1
2 (circles), ∣ ∣á  ´ ñ

r
T (“X”

markers), and ∣( · ) ∣á  ñw v (triangles) at saturation as a function of total
magnetic energy density (B2). Gray shaded region represents 1σ dispersion
about the average value of ∣( · ) ∣á  ñw v for the HD simulation, Run F512MS1-
Hydro. Error bars represent the standard deviations. Inset in the upper left
corner shows a zoom-in to more clearly illustrate the trend of ∣ ∣rá  ´  ñ

r
PB

1
2

and ∣( · ) ∣á  ñw v with B2.
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effect (see also Mee & Brandenburg 2006; Federrath et al.
2011). As a consequence of the stretching effect, the peak
position moves to smaller values of k as time goes on. On
the other hand, when the mean magnetic field is initially
strong, as in the case of Run F512MS1-B00.6 (right panel of
Figure 21), the magnetic tension effect directly contributes to
generating the solenoidal velocity component from the
beginning, and thus the power spectrum can have a peak near
the driving scale. When the mean magnetic field is initially
weak, as in the case of Run F512MS1-B00.01 (middle panel
of Figure 21), the process seems more complicated, and we
suggest that the stretching and magnetic field effects play roles
in conjunction because their strengths are comparable (see
Figures 16(a) and (b)).

5.2. Effects of Correlation Timescale of Forcing Vectors

In Sections 3 and 4, we have found that the delta-correlated
compressive driving results in lower solenoidal ratios and
magnetic saturation levels than does the finite-correlated
compressive driving with a similar Ms and the same numerical
resolution. If a similar (in terms of direction and magnitude)
driving is applied for a sufficiently long time, as in the case of
the finite-correlated compressive driving, coherent generation
of the solenoidal component occurs and the solenoidal velocity
component can have a sufficiently long time to maintain its
vortical motions once generated. We can more clearly illustrate
this in terms of vorticity: if a coherent driving is applied for a
long time, continued stretching of vorticity occurs until the
forcing vector changes significantly, and as a result, stretching
can be efficient. However, if a driving changes its amplitude
and direction in a very short time interval, as in the case of the
delta-correlated compressive driving, stretching of vorticity can

be inefficient due to the frequent and abrupt change of the
forcing vector. Therefore, it is understandable that the finite-
correlated compressive driving generates a greater solenoidal
velocity component. This argument is applicable to both HD
and MHD turbulence.
In addition, the finite-correlated driving can generate a

stronger small-scale magnetic field, which in turn helps
turbulence driven by the finite-correlated driving to produce a
greater solenoidal component in MHD turbulence. Similar to
the stretching of vorticity, stretching of magnetic field lines can
be more efficient in turbulence driven by the finite-correlated
driving. Thus, the finite-correlated compressive driving can
generate a stronger random magnetic field, which implies that
the effect of magnetic field on the generation of solenoidal
velocity component is more significant in the finite-correlated
compressive driving. Therefore, we can conclude that the
finite-correlated compressive driving generates a greater
solenoidal velocity component.
Timescale of forcing vectors can also affect generation of

compressive modes in solenoidally driven turbulence. When
compressive modes are generated in solenoidally driven
turbulence, they will produce density fluctuations. If the
timescale of forcing is sufficiently long, as in the finite-
correlated solenoidal driving, there can be time for gas pressure
to (partially) counteract generation of the density fluctuations,
which will (partially) suppress generation of compressive
modes. There will not be such a suppression in the delta-
correlated solenoidal driving case. Therefore, we expect that
the latter driving scheme produces more compressive modes.
Figure 22 clearly demonstrates that this argument is valid
for solenoidally driven turbulence. In the figure, magenta and
black curves correspond to the delta-correlated and the finite-
correlated solenoidal drivings, respectively. We only consider
Ms∼1 and 2563 resolution. Unlike the other figures presented

Figure 21. Time evolution of á ñvcomp
2 and á ñvsol

2 (upper panels) and the power spectra of vsol (lower panels) at the beginning of simulations. Left panels: Run F512MS1-
Hydro. Middle panels: Run F512MS1-B00.01. Right panels: Run F512MS1-B00.6. Blue and red curves in the upper panels denote á ñvcomp

2 and á ñvsol
2 , respectively. Each

colored circle in the upper panels denotes the moment at which the power spectrum with matching color in the lower panels is drawn. Black curves in the lower panels
show power spectra after saturation.
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in Section 3, here we present the time evolution of á ñvcomp
2 . As

can be seen, the delta-correlated solenoidal driving produces a
higher level of á ñvcomp

2 at saturation. This argument can also
explain why the delta-correlated solenoidal driving has wider
density PDFs (Yoon et al. 2016).

6. Discussion on Small-scale Turbulence Dynamo

As mentioned in Section 4.2, a small-scale turbulence
dynamo in compressively driven turbulence is not significantly
sensitive to numerical resolution. To compare this with a
dynamo in solenoidally driven turbulence, we refer to Cho
et al. (2009), who studied small-scale turbulence dynamos in
incompressible turbulence driven by solenoidal driving.

Figure 23 shows the comparison. Blue and red circles
indicate the magnetic saturation levels for 2563 and 5123

resolutions from our simulations, respectively. Black stars and
black squares represent the magnetic saturation levels of the
simulations with 643 and 963 resolutions from Cho et al.
(2009), respectively.

First, we can see from Figure 23 that both solenoidally and
compressively driven turbulence show a linear relation between
B0 and the magnetic saturation level. However, we note that the
slopes are steeper for incompressible turbulence driven by the
solenoidal driving. Second, the figure clearly shows an
inefficient turbulence dynamo induced by the compressive
driving: when B00.01, the magnetic saturation levels from
our 2563 (blue circles) and 5123 (red circles) resolution
simulations are comparable to those from 643 resolution
simulations of solenoidally driven incompressible turbulence
(black stars). When B0>0.01, even 643 resolution simulations
of incompressible turbulence driven by the solenoidal driving
show higher magnetic saturation levels than compressible
turbulence with 5123 resolution driven by the compressive
driving. Third, for solenoidally driven turbulence, magnetic
saturation level is very sensitive to numerical resolution
(compare black squares with black stars), while it is not for
compressively driven turbulence (compare red circles with blue
ones). Therefore, the comparison suggests that a compressive
driving would not effectively amplify small-scale magnetic
fields, even though numerical resolution becomes very high.

Due to inefficiency of turbulence dynamos in compressively
driven turbulence, it is very difficult to estimate the saturation
level of magnetic energy density in the limit of a very high
numerical resolution. However, we may at least conjecture with
regard to the upper limit for the saturation level. In solenoidally
driven turbulence with magnetic Prandtl number of ∼ 1, the
magnetic saturation level is slightly less than unity. Since
solenoidal motions are mainly responsible for magnetic field
growth, it is not plausible for magnetic energy to be greater
than solenoidal energy. If this is true, we expect that the
magnetic saturation level in the limit of a very high numerical
resolution is less than 0.25 for Ms∼1, which is the solenoidal
ratio for runs with no or a very small mean magnetic field. We
will address this issue elsewhere.

7. Summary

In this paper, we have studied the generation of the
solenoidal velocity component and small-scale magnetic field
in compressively driven turbulence. In this regard, we have
quantified the effects of the sonic Mach number (Ms) and the
mean magnetic field (B0). Moreover, we have considered two
different driving schemes in terms of different correlation
timescales of forcing vectors: a finite-correlated driving and a
delta-correlated driving. Our main findings are as follows:

1. The effect of the sonic Mach number (Ms) on the
generation of the solenoidal velocity component. We
have shown that the higher Ms is, the greater the
solenoidal velocity component generated in compres-
sively driven turbulence, in both strong and weak mean
magnetic field cases.

2. The effect of mean magnetic field (B0) on the generation
of the solenoidal velocity component. We have found that
when B0 is small, compressive driving yields a solenoidal
velocity component similar to that from hydrodynamic

Figure 22. Time evolution of á ñvtot
2 and á ñvcomp

2 for solenoidally driven
turbulence with B0=0.001 and Ms∼1. Magenta and black curves denote the
delta-correlated and the finite-correlated solenoidal drivings, respectively. Note
that we show á ñvcomp

2 , not á ñvsol
2 , in this figure.

Figure 23. Comparison of the magnetic saturation level from our simulations
for Ms∼1 with that from simulations of Cho et al. (2009), who used
solenoidal driving and considered incompressible turbulence. Blue circles and
red circles correspond to the results from our 2563 and 5123 resolution
simulations, respectively. Black stars and black squares denote 64P2 and 96P
simulation results from Cho et al. (2009), respectively. According to their
notation, 64 or 96 refer to the number of grid points in each spatial direction,
and P2 or P refer to physical viscosity.
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turbulence. However, when B0 exceeds a certain value, it
produces more of the solenoidal velocity component than
hydrodynamic turbulence.

3. The effect of Ms on the generation of small-scale
magnetic field components. We have examined that,
when B0 is small, the saturation level of the small-scale
magnetic field component peaks at Ms∼1 for the finite-
correlated compressive driving and shows monotonic
increase when Ms3 for the delta-correlated compres-
sive driving. When B0 is very large, both driving schemes
show similar behaviors: they produce a maximum
saturation level at Ms∼1, and the level gradually
decreases as Ms increases.

4. The effect of B0 on the generation of small-scale magnetic
field components. We have revealed that, as B0 increases,
more small-scale magnetic field components are gener-
ated in compressively driven turbulence. Moreover, the
saturation level of the magnetic field follows an
approximately linear relation with B0 as in solenoidally
driven turbulence.

5. The effect of numerical resolution. We have shown that
generation of solenoidal velocity components is virtually
independent of numerical resolution, and that of small-
scale magnetic field is mildly sensitive to numerical
resolution in compressively driven turbulence.

6. The effect of a driving scheme. When Ms is similar and
the numerical resolution is the same, we have found that
the finite-correlated driving always generates a greater
solenoidal velocity component than does the delta-
correlated driving. The trend is also observed in the case
of solenoidally driven turbulence.

We have analyzed the vorticity equation to examine the effects
of Ms and B0 on the generation of a solenoidal velocity
component provided by compressive driving:

1. For hydrodynamic turbulence, viscous dissipation initi-
ally generates vorticity, and then vortex stretching
amplifies it.

2. For MHD turbulence with strong mean magnetic fields,
magnetic tension is in effect; it directly produces
solenoidal modes from the beginning, which is respon-
sible for large amounts of solenoidal velocity component
in cases of strong mean magnetic field. For weak mean
magnetic field cases, vortex stretching and magnetic field
play roles simultaneously.

In addition, we have discussed small-scale dynamos in
compressively driven turbulence. We have compared a small-
scale turbulence dynamo driven by compressive driving with
that due to solenoidal driving from Cho et al. (2009). We have
found that the magnetic saturation levels from our 2563 and
5123 resolution simulations are comparable to those from their
643 resolution simulations in a weak mean magnetic field
regime, which implies inefficient dynamo action in compres-
sively driven turbulence (Federrath et al. 2011). We have
obtained that the solenoidal ratio is ∼0.25 for compressively
driven turbulence with no or a very weak mean magnetic field.
Since it is not plausible for magnetic energy to be larger
than solenoidal energy, we may conjecture that the magnetic

saturation level at an arbitrarily high numerical resolution is
less than 0.25 for Ms∼1.

This paper has been expanded from a chapter of Jeonghoon
Limʼs Master thesis. This work is supported by the National R
& D Program through the National Research Foundation of
Korea Grants funded by the Korean Government (NRF-
2016R1A5A1013277 and NRF-2016R1D1A1B02015014).
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