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Bouncing a ball at rest on
a surface
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Abstract
A ball at rest on a surface can be made to bounce up by pushing it down then
releasing the downward force as fast as possible. Measurements and
calculations are presented to show how it can best be done.
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One of the tricks that a tennis player learns early
on is to strike a ball at rest on the court with a
tennis racquet. That way, the ball will bounce up
without the player having to bend down to pick
up the ball by hand. The player might need to
strike the ball several times to achieve a satis-
factory outcome, but the physics of the process
deserves investigation. The basic physics is easy
to understand. That is, when a ball is compressed,
it stores elastic potential energy. That energy can
be recovered, and the ball will bounce up, if the
compression force is released faster than the ball
can expand on its own. In the case of a tennis ball,
the relevant expansion time is only about 0.002
seconds. A typical result, filmed at 300 fps, is
shown in supplementary video Tennis.mov (avail-
able online at stacks.iop.org/PhysED/55/035021/
mmedia).

Consider the problem shown in figure 1. A
ball of mass m and stiffness k2 is at rest on a hori-
zontal surface. The stiffness of the ball is repres-
ented by two linear springs, one above and one
below the ball, since both the top and the bottom
of the stationary ball compress when m is struck
by the falling ball. The falling ball has mass M

and stiffness k1 and is incident vertically at speed
v1. After the collision, the incident ball bounces
upwards at speed v2, and the ball that was at rest
bounces up at speed V. The question is, what is
the best combination of M and k1 to maximise V,
assuming v1 remains constant?

To investigate the problem, I gathered up
seven different balls and threw each one on each of
the others, one at a time, and filmed each outcome.
It was almost impossible to bounce a stationary
billiard ball in that way. However, it was easy
to bounce a soft rubber ball by impacting it with
the billiard ball, as shown in supplementary video
9594.mov. The rubber ball was placed on top of a
piezoelectric disk to measure the impact force on
the disk, in order to compare with theoretical cal-
culations, with good agreement. A related exper-
iment, performed by many physics teachers, is to
drop a basketball on the floor with a tennis ball at
rest on top of the basketball [1]. But that is a dif-
ferent experiment and does not provide the answer
I was looking for. I wanted the ball at the bottom
to bounce as high as possible, not the ball at the
top. Another version of that experiment, equally
unhelpful, is to ‘debounce’ the bottom ball so it
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Figure 1. A ball initially at rest will bounce up at speed V if it is struck vertically by an incident ball.

does not bounce at all [2]. More relevant experi-
ments have been done by colliding gliders on an
air track [1, 3], but not with one of the gliders at
rest against an end stop and not with gliders of
variable mass and stiffness.

An approximate solution of the ball bounce
problem could be found by colliding gliders on an
air track where one glider is at rest near or against
an end stop, as shown in figure 2. Furthermore,
analytical solutions could be obtained by consid-
ering first the collision betweenM andm, then the
collision of m with the end stop, then the colli-
sion of m with M. If m bounces back towards the
end stop, further collisions would need to be con-
sidered to find the value of M that maximises the
final rebound speed ofm. Amore realistic solution
is given below to take into account the stiffness of
the two masses.

Suppose that when the incident ball collides
with the stationary ball in figure 1, the incident
ball moves vertically down by a distance x and
the centre of mass of the stationary ball moves
down by a distance y. The bottom end of the

M m

End Stop

v1
At rest

Figure 2. Equivalent air track experiment.

initially stationary ball compresses by a distance
y so it exerts a downwards force F2 = k2y on the
floor, and the floor exerts an equal and oppos-
ite upwards force on the stationary ball. The two
springs in series above the ball can be regarded
as a single spring of stiffness ks = k1k2/(k1 + k2).
If k1 ≫ k2 then ks ≈ k2. The incident ball com-
presses by a distance x− y so springs k1 and k2
in series exert a downward force F1 = ks(x− y)
on the ball underneath it and an equal and oppos-
ite force on M above it. Since the gravitational
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Figure 3. Numerical solutions showing (a) x and y versus t and (b) F1 and F2 versus t.
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Figure 4. Solutions showing vx and vy vs t.

force on the masses is much smaller than F1 and
F2 during the impact, the equations of motion are
given by

M
d2x
dt2

=−ks(x− y) (1)

and

m
d2y
dt2

= ks(x− y)− k2y (2)

ignoring energy losses in each ball. In practice,
all balls lose energy when they compress and
expand, but that effect is ignored for simpli-
city in order to get approximate solutions of the
problem. Equations (1) and (2) cannot be solved
simply by analytical means, but are easy to solve
numerically.

Typical solutions are shown in figures 3
and 4 for a case where M= 100 g, m= 50 g,
k1 = k2 = 20 kN m−1 and v1 = 1 m s−1. Results
are presented to show x and y versus t, F1 and
F2 versus t and also vx = dx/dt and vy = dy/dt
versus time. The end result is that m bounces up
at 0.161 m s−1, in a slightly complicated way.
The incident ball starts slowing down as soon as it
hits the stationary ball, and comes to a stop after
6.5 ms. After that time, the incident ball moves
upwards, so its velocity changes sign. Meanwhile,
the initially stationary ball compresses by a max-
imum distance about 1.8 mm, and the force F2

reaches a maximum after 6 ms. At t= 12ms, x= y
so F1 decreases to zero and remains zero since the
two balls lose contact after 12 ms. However, the
lower ball is still compressed, with a small value
of y> 0, so it accelerates upwards from 12 to 14.5
ms until it loses contact with the floor.

The rebound speed of the lower ball, V,
is shown in figure 5 as a function of k1 for
several values of M when v1 = 1 m s−1, m= 50 g
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Figure 5. Solutions showing V versus k1 when m= 50 g and k2 = 20 kN m−1 and when (a) M= 50g, 100 g or
160 g and (b) M= 170 g, 200 g or 500 g.
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Figure 6. Solutions withM= 170 g and k1 = 1× 105 Nm−1 showing (a) x and y versus t and (b) vx and vy versus t.

and k2 = 20 kN m−1. These parameters are
approximately those for a tennis ball. The rebound
speed depends on both the mass and stiffness
of the incident ball, the highest rebound speeds
occurring when the mass of the incident ball is
about 160 g or 170 g.

A surprising result is that V can be almost as
large as the speed of the incident ball (1 m s−1)
but it cannot be larger. The maximum rebound
speed of the incident ball is 1.0 m s−1 if all the ini-
tial energy is retained by the incident ball and the
stationary ball remains at rest after the collision.

May 2020 4 Phys. Educ. 55 (2020) 035021



Bouncing a ball at rest on a surface

If the stationary ball bounces up at a higher speed
than the incident ball (i.e. with V > v2) then the
faster ball will catch up with the slower ball and
a second collision will occur, resulting in a final
speed V < v2. A result where V = 0.88 m s−1 is
shown in figure 6. In that case, M= 170 g and
k1 = 1× 105 N m−1. Both balls bounce up at
almost the same speed, losing contact when x= y
at t= 13 ms. At that time, the lower ball is still
compressed so it accelerates upwards and reaches
nearly the same speed as the incident ball.

Even though the numerical solutions may be
beyond high school physics students, the problem
could still be investigated experimentally using
a variety of different balls. The main problem
then would be to explain the results in terms of
compression and expansion of the two balls. High
speed video film helps to explain the results.
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