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Abstract

It is proposed that if quantum states of space-time are coherent on null surfaces,

holographic Planck-scale �uctuations of in�ationary horizons dominate the for-

mation of primordial scalar curvature perturbations. It is shown that the reduc-

tion of quantum states on nearly-spherical emergent horizon surfaces around

each observer creates a distinctive pattern whose correlations in the angular

domain differ from the standard quantum theory of in�ation. Causal constraints

are used in a semiclassical model to formulate candidate directional symme-

tries. It is suggested that this hypothesis could provide a physical explanation

for several well known anomalies measured in CMB anisotropy. New exact

symmetries are predicted, such as a vanishing temperature correlation function

at 90 degrees angular separation, that can be tested with current data.

Keywords: cosmic background radiation, in�ation, holography, cosmic

perturbations

(Some �gures may appear in colour only in the online journal)

1. Introduction

A standard cosmologicalmodel [1] is now supported by a considerable body of evidence, espe-

cially precisemeasurements of correlations in cosmicmicrowave background radiation (CMB)

[2–13]. The early evolution is generally described by slow-roll in�ation [14–16], duringwhich

the repulsive gravity of an exotic, metastable scalar in�ation �eld vacuum drives an acceler-

ating expansion. In�ation shapes the structure of the universe on the largest scales—a large,

nearly-uniform, nearly-�at geometry, with nearly-scale-invariant primordial perturbations in

curvature that give rise to cosmic structure. In the standard picture, the cosmic perturbations

are created by quantum�uctuations of the in�ation �eld vacuum, coupled by linearized gravity

to the classical background geometry.

It is possible that all the classical elements of this picture are essentially correct, but that

the quantum mechanical model is radically incomplete, because its approximations omit a
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fundamental coherence of emergent quantum gravity on causal surfaces. Instead of linearized

quantum �elds, cosmic perturbations could be dominated by spatially-coherent holographic

degrees of freedom of Planck scale quantum geometry. Such holographic or ‘spooky’ scenar-

ios [17, 18] do not assume a pre-existing, determinate classical background metric; instead,

the perturbations are associated with the noisy emergence of space and time from a quan-

tum system. Some theoretical motivations for this approach are summarized in the appendix

below.

Unlike the standard scenario based on quantized in�ation �eld modes, holographic in�ation

posits that the in�ationary horizon of every observer, de�ned as its past light cone at the end

of in�ation, is a coherent nonlocal quantum object, like a whole atom. A similar hypothesis

has recently been applied to the horizon in some quantum models of black holes [19–23]. In

this picture, the quantum state of the horizon is a superposition of slightly deformed horizon

surfaces, whose deformations are coherent at large angular separations. The cosmic time at

which decoherence occurs at a given comoving position depends on the observer. Spatial pro-

jections and correlations of geometrical quantum states ‘collapse’ onto the nearly-spherical

horizons instead of spatially in�nite plane wave modes, so that primordial perturbations are

laid down coherently, with nonlocal quantum correlations, on a nearly-spherical horizon in all

directions.

The magnitude of the holographic perturbations depends only on H, the expansion rate

during in�ation in units of the Planck time tP ≡
√

~G/c5. Because of the coherence, the dimen-

sionless perturbation power of scalar perturbations 〈∆2〉 ≈ HtP from Planck scale quantum

gravity is much larger than the standard perturbations from quantum perturbations of in�a-

tion �eld modes on scale, 〈∆2〉 ≈ (HtP)
2ǫ−1, where ǫ denotes a slow-roll parameter of the

in�ation potential. In�ation therefore occurs at a lower H than in typical standard models, but

because it also depends on a slowly varying H, the predicted primordial power spectrum of

curvature in the holographic picture is indistinguishable from standard quantum in�ation [18]:

holographic in�ation still produces perturbations with a nearly scale invariant, slightly tilted

power spectrum. Post-in�ation evolution is standard, so it preserves the precise match of stan-

dard cosmology to a host of measurements that depend only on the power spectrum, including

CMB anisotropy spectra and measurements of cosmic large structure over a large range of

scales.

The most distinctive observable relics of a coherent horizon [18] are new correlations in

the initial phase and direction of classical curvature perturbations. It is proposed here that

directly measurable signatures of these holographic correlations may appear in speci�c prop-

erties of the pattern of CMB anisotropy in the angular domain. They take the form of precisely

de�ned symmetries or constraints that generally do not occur in any particular realization in

the standard picture, because of cosmic variance. Simple constraints from causal structure and

rotational symmetry in the emergent system are used here to derive precisely de�ned candidate

symmetries of correlations at large angular separations.

The properties of the pattern derived here are better motivated, and more concretely spec-

i�ed, than previously conjectured holographic correlations [24–26]. They could provide a

uni�ed physical explanation of some long-known, seemingly unrelated statistical anomalies

in the CMB [4, 8, 13]. Moreover, they lead to new predictions for properties that have no par-

ticular signi�cance in the standard picture: for example, the most robust new prediction here

is that the angular correlation function of curvature should exactly vanish at 90 degree angu-

lar separation. Perturbations can also naturally be generated with signi�cant anticorrelation at

large angular separations, at a level unlikely to occur in the standard picture. These predictions

can be used to implement new, sharply formulated statistical comparisons with the standard

quantum model of in�ation.
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Figure 1. Causal structure of a classical in�ationary universe, with two spatial dimen-
sions suppressed. Vertical axis represents the world line of an observer O, horizontal
axis represents the end of in�ation tI, and left and right halves represent antipodal spa-
tial directions. The horizon H forms the outer boundary of causal diamonds that end
on O before tI. Dashed lines represent spatial hypersurfaces of constant cosmic time
t, and dotted lines are world lines of constant comoving position r. In standard in�a-
tion, the amplitude of a plane wave mode freezes out casually everywhere at the time
when its wavelength matches the horizon, so quantum states of geometry collapse into
eigenstates of wave modes on 3D spacelike hypersurfaces of constant t; in holographic
in�ation, geometrical states collapse on boundaries of causal diamonds de�ned byH.

2. Holographic perturbations

2.1. Classical inflationary space-time

An unperturbed in�ationary universe has a Friedmann–Lemâitre–Robertson–Walker metric,

with space-time interval

ds2 = a2(t)[c2dη2 − dΣ2], (1)

where t denotes proper cosmic time for any comoving observer, dη ≡ dt/a(t) denotes a con-
formal time interval, and a(t) denotes the cosmic scale factor, determined by the equations of

motion. The spatial 3-metric in comoving coordinates is

dΣ2
= dr2 + r2dΩ2, (2)

where the angular interval in standard polar notation is dΩ2 = dθ2 + sin2θdφ2. Future and past

light cones from an event are de�ned by a null path,

dΣ = ±cdη. (3)

Causal diagrams for an in�ationary metric are shown in �gures 1 and 2. The end of in�ation tI
is taken to be the time when the expansion changes from accelerating, ä > 0, to decelerating,

ä < 0. A causal diamond for an observerO with boundary at tI corresponds to an interval with

equal conformal time before and after tI.

The in�ationary horizon H is an inbound null surface that arrives at an observer O at the

end of in�ation. For our purpose, the exact choice of null surface (and tI) does not matter; the
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Figure 2. Formation of perturbations in holographic in�ation. The geometry of the
shaded region inside the horizon H has a coherent quantum relationship with the exter-
nal region, and curvature perturbations in relation toO are matched to external classical
values at the comoving location of its boundary. Each causal diamond surface centered
on O is a 2-sphere of comoving radius rO(t0) with coherent perturbations relative to
O, indicated here by a �lled oval. The relative potential of a comoving location is
�xed when it exits O’s in�ationary horizon, when according to O, it decoheres, or
‘collapses’ into a classical curvature perturbation. Other observers have different in�a-
tionary horizons (some of their causal diamonds are also shown as shaded regions) so the
system as a whole, and in particular transverse positions onH, remain in a superposition
until tI.

important thing is that H forms the future boundary of a series of causal diamonds of nearly

constant area 4π(c/H)2 during the slow-roll phase.

2.2. Holographic inflation

To calculate quantum perturbations in the classical picture, the standard quantum model of

in�ation uses a straightforward extrapolation of �eld theory, including linearized quantum

general relativity. The holographic hypothesis holds that this model is radically incomplete,

because the linearized approximation to quantum gravity neglects the effects of nonlocal cor-

relations in coherent geometrical states, including information that controls the spatial structure

of quantum collapse and state reduction in transverse directions for each mode. Estimates of

the physical effects of coherent quantum gravity in other contexts, such as �at space-time and

black holes, are summarized below in the appendix.

With new holographic correlations of emergent quantum gravity, linearized general relativ-

ity no longer produces the most important scalar curvature �uctuations on the horizon scale,

so it omits the dominant effect. The physical difference from the standard scenario is that

quantum geometry collapses on coherent light cone states instead of linear plane wave states

(�gures 1–3). The relic classical curvature perturbations, relative to an observer’s world line,

originate on the horizon. During in�ation, they are indeterminate inside the horizon, and some

of their properties are frozen outside. Holographic correlations within the horizon create the

new features of the relic pattern discussed here.
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Figure 3. Two dimensions of a spatial hypersurface at a single cosmic time during in�a-
tion. The shaded region lies in the interior of the event horizon H. Incoming arrows
indicate directions of incoming null information onH coming from different directions
in that frame. Dotted lines indicate the coherently perturbed outgoing comoving sphere
that carries the reduced quantum state, which emerges as a conserved classical curva-

ture perturbation∆(~Ω, rO(t)). The distribution of ∆ on this spherical comoving surface

is correlated between all directions ~Ω, and matches the constraints of holographic causal
symmetries on H.

In a semiclassical model of holographic in�ation [18], perturbations are due to quantum

variations of holographic geometry in a nearly-uniform background that approximates stan-

dard slow-roll in�ation. The amplitude is dominated by the new geometrical uncertainty, so the

model can omit the effect of in�ation �eld perturbations. As usual, the initial power spectrum is

nearly scale-invariant, with a small tilt that �ts cosmological data with a simple effective poten-

tial. However, new symmetries are generated on the horizon, associated with new holographic

constraints.

In particular, collapse on the spherical horizon surface imprints large scale correlations on

the initial state of classical perturbations in the directional domain. The phase correlations

occur between directions around any observer, from the projection of the causal diamond states

of the quantum system onto emergent classical wave vectors (�gure 3). Consistency requires

directionally coherent holographic correlations throughout causal diamonds. Phase correla-

tions have a distinctive 3D structure different from any nongaussian �eld: coherent collapse

occurs onto spherical horizons around every world line, rather than in�nite plane waves [18].

The directional entanglements are most conspicuous on horizon scales similar to mode wave-

length and at large angles, where the spherical curved surface of a horizon entangles different

directions.

Features of holographic cosmology on subhorizon scales depend on the details of the funda-

mental degrees of freedom. Ultimately, a radical conceptual reworking of quantum geometry

from holographic effects should lead to a new mechanism of in�ation, and may lead to new

quantum effects that extrapolates to small scales, including estimated nonlinear effects from

virtual black holes [17, 27]. In a comprehensive theory of quantum gravity the new geometri-

cal states are connected with emergence of locality, inertial frames, angular momentum, and

internal spin. The simpler semiclassical model adopted here and in reference [18], based on
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linear perturbations of a classical background, is adequate to model the amplitude and some

symmetries of new, nonlocal horizon-scale perturbations.

At the deeper level, a full theory of emergent gravity should account for the emergence

of the cosmological background. Measurable geometrical relationships on emergent causal

diamonds are invariant, but the distinction between perturbation and background is observer-

dependent. For each even frozen perturbation mode, the part that projects onto the monopole

harmonic on the sphere is absorbed into the background curvature for each observer; for

each odd mode, the part that projects onto the dipole harmonic collapses the observer’s

world line to the local cosmic rest frame. An emergent background allows every observer

to observe the same directional symmetries. The symmetries are the same over time for each

observer, aside from changes in the fractionally small time variations from the slowly retreating

horizon.

2.3. Semiclassical model of perturbations

The premise of holographic in�ation is that nonlocal space-time indeterminacy creates coher-

ent scalar curvature perturbations on horizons of the emergent in�ationary metric. We adopt a

semiclassical model where exotic geometrical correlations on the light coneH imprint corre-

lations on the emergent curvature of comoving world lines as they pass throughH, as shown

in �gures 2 and 3.

Adopting standard conventions for linear perturbations [14–16], denote the invariant cur-

vature perturbation [28] in comoving 3-space by∆(~r), and its spectral transform in comoving

wavenumber space ~k on surfaces of constant cosmological time by

∆̃(~k) =

∫

d~r∆(~r)ei
~k·~r

= |∆̃(~k)|eiθ(
~k). (4)

The following analysis concentrates on directional correlations, so perturbations will be

described in the polar coordinates adopted for the metric,∆(r, θ,φ).
Usually, quantum coherence is assigned and matched to the gravitational effect of plane-

wave modes of amplitude ∆̃(~k) on in�nite spacelike hypersurfaces. In the holographic model,

the relic curvature perturbations are matched to �uctuations of the quantum system projected

on spherical causal diamond boundaries of the in�ationary horizonH. The �uctuations freeze

in as differences of potential∆ from the observer when a comoving world line passes through

the horizon.

As discussed in the appendix, the physical effects of coherent states [18], not accounted for

in linearized gravity, can be estimated using standard classical relativity and quantummechan-

ics. The fractional �uctuation power of dimensionless perturbations on a coherent horizon of

radius c/H is given by

〈∆2〉 = Htp, (5)

where observed perturbations [2–12] have ∆2 ∼ 10−9. Perturbations that scale like

equation (5) with slowly varying H produce a nearly-scale-invariant power spectrum indis-

tinguishable from standard cosmology [17, 18], so they agree with standard spectral measure-

ments of CMB anisotropy and cosmic structure for a suitable choice of in�ationary potential.

However, unlike the standard model, the coherent horizon has correlations among different

spatial directions, and over a broad band of k.
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Figure 4. Spherical footprints of horizons for three world lines A,B,C, at particular
comoving times in the frame of A. Slices of spheres are shown at the end of in�ation
at the right. Along any spatial line after this time, the sum of antipodal differences and
sums must agree for any set of tangent spheres with centers on the line. Intersections of
spheres centered on each other’s boundaries requires symmetries in correlations of polar
values with azimuthal averages. The special case of equal size spheres is associated with
polar angles Θ = ±30◦, as shown at lower right.

2.4. Correlations on spherical horizon footprints

Even without a theory of quantum gravity, the semiclassical model allows application of prin-

ciples governing coherent holographic emergence of a classical metric during in�ation. The

process should preserve statistical homogeneity, isotropy, and near-scale-invariance, so invari-

ant scalar perturbations∆(~Ω, rO(t)) freeze on nearly-spherical horizons de�ned by the homo-

geneous solution. In any observer’s frame, the horizons around any world line de�ne spherical

‘footprints’ at the end of in�ation (�gure 4), that intersect on circles. As usual in in�ation,

smaller spheres freeze later, with coherent displacements. Thus, smaller circles and angular

positions also freeze later. Frozen values are coherent on circles for each sphere, so some sta-

tistical properties of∆ on equatorial circles freeze before those of smaller circles. The outcome

at the end of in�ation is classical and determinate, so the perturbations on the spheres are not

independent: in particular, the linear sum of polar differences or sums of curvature along any

line matches the total difference or sum.

De�ne the angular correlation function for angular separation Θ for any sphere,

C∆(Θ) ≡ 〈∆(~Ω)〈∆〉
Θ,~Ω〉~Ω, (6)

where 〈〉
Θ,~Ω denotes an azimuthal mean on a circle at a polar angleΘ about direction ~Ω. This

quantity is measurable on any sphere after the end of in�ation. The holographic spherical coher-

ence places new constraints onC∆(Θ); for example, we expect that frozen circles are correlated

with frozen polar values only for intersections with smaller spheres that freeze out later. The

intersections of equal-radius spheres centered on each other de�ne particular angles where

consistency requires exact, universal symmetries in the angular domain.

2.5. Candidate symmetries

We seek to test the hypothesis that the pattern of relic curvature∆(r, θ,φ) is a coherent projec-
tion of a quantumstate on the comoving sphere rwhen it leavesH. The observed classical value
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Figure 5. How azimuthal averages of emergent perturbations are constrained by causal
symmetries of state reduction. The 2D spherical surface of O’s horizon is shown in
comoving 3-space at one time during in�ation. Dashed lines represent the normal sur-
faces to a classical emergent polar direction around the observer, the tangent planes of
incoming null surfaces on the horizon. Since this information from polar directions along
any axis reaches the observer only at the end of in�ation, it cannot be correlated with
the mean perturbation on the equator, so the angular correlation function of curvature
vanishes atΘ = 90◦. The equilateral triangle and dotted lines show a similar causal sym-
metry that affects global azimuthal averages of a collapsed causal diamond at Θ = 30◦:
the polar information arrives at both the observer and the horizon equator at the end of
in�ation together with that from Θ = 30◦.

depends on the quantum phase of the state when it decoheres. The semiclassical model relates

information �ow in the classical world outside the horizon among events where it affects the

phase of ∆ when and where it decoheres, as a function of comoving position r, θ,φ. It allows
us to identify candidate symmetries of correlations in curvature perturbations in θ,φ at a �xed

r, derived from causal principles proposed to govern how emergence works. The candidate

directional symmetries are based on the idea that emergent scalar curvature perturbations in

different directions have nonlocal relationships determined by coherent states of a quantum

system with some fundamental symmetries.

2.5.1. Azimuthal symmetries. One consequence of emergent causality is that incoming phase

information that determines polar values of potential along any given axis on the horizon only

reaches the equatorial plane at the end of in�ation, so it cannot affect the potential for points

in that plane (see �gure 5). As shown in the examples given in the appendix, the essential

nature of coherent holographic uncertainty is that it is entirely transverse to the direction of

propagation.

Uncorrelated incoming polar information produces the following exact global equatorial

symmetry of relic curvature on each sphere around an observer:

〈∆(~Ω)〈∆〉⊥~Ω〉~Ω = 0. (7)

where 〈〉⊥~Ω denotes the azimuthal mean on the great circle normal to direction ~Ω, and 〈〉~Ω
denotes an average over all directions ~Ω. Since by de�nition the point average vanishes,
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〈∆(~Ω)〉~Ω = 0, equation (7) follows if the average 〈∆〉⊥~Ω on each great circle is uncorrelated

with the sum of its polar values,∆(~Ω)+∆(−~Ω).
Such an exact equatorial symmetry would follow if there were exactly odd point parity, or if

all great circles have vanishing mean (〈∆〉⊥~Ω = 0). However, it does not require either of these

to hold: it speci�es an orthogonal rather than an antipodal relationship, and can hold exactly

even if antisymmetry is not exact. It arises if perturbations on orthogonal axes are always

independently generated. Equation (7) is equivalent to

C∆(90
◦) = 0. (8)

This symmetry does not apply in the standard scenario. In that case, equatorial azimuthal

symmetry occurs only by chance, and only approximately: in a harmonicdescription, it requires

a global ‘conspiracy’ of phases of even-parity modes. From this point of view, an exact equa-

torial azimuthal symmetry is the most simple and direct signature of emergent causal structure

in holographic in�ation.

As shown in �gure 5, certain assumptions about how emergence works could also lead to

an equilateral azimuthal symmetry. Consider the correlations of a polar value with points on

its 30◦ azimuthal circle, both again determined by incoming phase information from the polar

direction. Data from any polar point and from its 30◦ circle on the same sphere reach both the

observer and the equator at the end of in�ation. If the azimuthal mean is independent of its

polar value, the global mean vanishes, so

C∆(30
◦) = 0. (9)

In a multipole expansion, a C∆(30
◦) = 0 symmetry constrains odd as well as even spherical

harmonics. In particular, a nonzero dipole contributes C∆(30
◦) 6= 0: thus, for C∆(30

◦) = 0 to

appear on a dipole-subtracted sky, it must apply in the frame of an observer where the dipole

vanishes. For this to occur independent of the cosmic rest frame, the intrinsic dipole, as viewed

in the local matter rest frame, should itself vanish due a new symmetry that governs how the

cosmic comoving frame emerges from a quantum system. The complementary azimuthalmean

at Θ = 180◦ − 30◦ = 150◦ could be small but nonzero, depending on the origin of the local

cosmic rest frame and global parity violation.

2.5.2. Constant variance on great circles. The global equatorial symmetry still allows mean

values of∆ on great circles to vary according to random incoming polar information associated

with each axis. A separate symmetry may be associated with nonlocal correlations of variance

normal to each axis. It is possible that the variance on great circles is a constant, that is, it

depends only on basic physics, rather than being a random variable.

This symmetry appears in a toy model described in the appendix. In (equation (38)),

the commutator on the left-hand side that is responsible for the exotic quantum �uctuation

has projected directional components orthogonal to the components on the right-hand side,

related by the antisymmetric tensor ǫi jk, and leads to an uncertainty, equation (46). Thus, an

eigenstate with δτ 3 = 0 has an irreducible uncertainty in the sum of orthogonal components,

〈δτ 21 + δτ 22 〉.
A similar symmetry applied to curvature during in�ation would relate perturbation power in

orthogonal directions. A possible consequence is that a directional average in the plane normal

to any direction, say 3, obeys the same relation:

9
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〈∆2〉⊥3 = 〈δτ 21 + δτ 22 〉/τ
2
> 〈∆2〉. (10)

Suppose that cosmology preserves the symmetry of statistical isotropy, that is, statistical

quantities are independent of direction. In order for equation (10) to hold for any direction

in a single statistically isotropic distribution, the bound must saturate in all directions: if any

direction were to exceed the overall average, another direction would need to have less than

the lower bound. This leads to a symmetry of the azimuthal average variance:

〈∆2
⊥〉φ ≡

∫

dφ′[∆(φ′, θ′ = π/2)]2 = 〈∆2〉, (11)

for any orientation of polar coordinates (θ′,φ′). That is, the variance of curvature perturbations

on any great circle is equal to the variance for the whole sky.

The symmetry represented by equation (11) does not hold for random-phase noise in stan-

dard quantum in�ation. It arises from the rotational symmetry of the quantum system, and the

holographic absence of one independent rotational degree of freedom. Thus, it can be used to

differentiate the distribution from the random Gaussian noise predicted in the standard model.

As usual, there is a zero mean variation averaged over all directions ~Ω,

〈∆〉~Ω ≡

∫∫

dφdθ sin(θ)∆(φ, θ) = 0, (12)

so ∆ can be decomposed into a linear sum of spherical harmonic components Ymℓ . To satisfy

the symmetry of great circle variance (equation (11)) they must have a coherent relationship

that appears as a conspiracy of alignments and amplitudes. It is useful to illustrate with an

example that uses a few low order spherical harmonics: octopole (ℓ = 3), quadrupole (ℓ = 2),

and dipole (ℓ = 1).

Suppose there is a dipole aligned along the z axis, with∆1 ∝ cos θ. It represents the intrinsic
dipole of curvature in the polar direction, as viewed in the local cosmic rest frame. By itself,

it obeys equation (11) for all great circles that pass through the pole, with normal directions in

the x, y plane.

For the dipole alone, the variance on the equator θ = π/2 vanishes so it does not sat-

isfy equation (11). The other multipole moments must organize around this direction to

have perturbations satisfying equation (11) in all directions. The �t improves if we add

to the dipole a precisely aligned sectoral octopole (ℓ = |m| = 3), with angular depen-

dence ∆3 ∝ e3iφ sin3 θ, and a precisely aligned sectoral quadrupole (ℓ = |m| = 2), with

angular dependence ∆2 ∝ e2iφ sin2 θ. The dipole variance vanishes along the equator, while

the octopole and quadrupole variances are maximized for an equatorial great circle. To create

a pattern consistent with equation (11) in all directions requires correlations and alignments of

higher multipoles, although the symmetry could apply over only a limited range of ℓ, depend-
ing on the angular coherence scale of correlations. Somemanifestations ofmultipole alignment

in the CMB are outlined below.

2.5.3. Antipodal anticorrelation and parity violation. The in�ationary horizon could also dis-

play antipodal anticorrelation, a tendency of opposite points in the sky to have opposite signs.

It occurs in quantum models of eternal black hole horizons [19–21], where antipodes on the

horizon are actually identi�ed, and time-reversed conjugate particle states are entangled at

opposite spatial poles, even on macroscopic scales. In �at space-time, a toy model of quantum

nonlocality (see the appendix below) derives point-parity antisymmetry directly from the Dirac

light cone structure (equation (33)), which carries over into geometrical operators:

10
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τ̂ (xκ) = −τ̂ (−xκ). (13)

In our model of emergent in�ation, the antipodal outgoing states of geometry on the hori-

zon become antipodal curvature perturbations of the emergent metric. As discussed above,

antipodal relationships are entangled with the emergence of local cosmic rest frame.

In standard in�ation, any measured asymmetry in antipodal perturbation power is entirely

due to ‘cosmic variance’ from the zero expected value of the ensemble. In the range of possible

realizations, the bulk of the point-parity antisymmetry (or symmetry) is almost always con-

tributed by a small number of harmonic modes on large angular scales, especially the intrinsic

dipole and quadrupole.

In the holographic model, as in black holes, a coherent holographic horizon can provide a

global constraint on even and odd parity relationships between opposite points in the sky for

any realization. Indeed there may be no cosmic variance in the ratio of odd to even perturbation

power; its value may be set by underlying asymmetric physics. In general, violation is not

con�ned to low-ℓ modes.

To start with, consider the extreme case: frozen metric perturbations with exact antisymme-

try similar to eternal black holes, so that the curvature in direction ~Ω satis�es

∆(~Ω) = −∆(−~Ω), (14)

an exactly odd point parity of perturbations. Microscopic spookiness is manifested macro-

scopically: points in opposite directions ‘know about each other’ like nearby ones do. Unlike

the standard picture, spooky correlation does not separate scales: it applies to �ne-grain

angular detail (that is, high resolution ℓ ≫ 1), even at large angular separation. In this

extreme example, the all-sky distribution has an antipodal variance equal and opposite to the

single-point variance:

〈∆(~Ω)∆(−~Ω)〉 = −〈∆2〉. (15)

We should allow for the possibility of a less extreme imbalance of odd and even perturba-

tions. In cosmology, as in a realistic time-asymmetric black hole, an exact antipodal antisym-

metry can be broken by a background system that is not in a time-symmetric equilibrium or

ground state. The exact antipodal antisymmetry of �at-space-time may not apply for in�ation-

ary perturbations, since the classical in�ationary backgroundbreaks the time-displacement and

boost symmetries of classical relativity, and the vacuummatter �elds that couple to gravity also

in general violate parity. The magnitude of time-direction symmetry breaking is related to how

much the in�ationary solution departs from that of the maximally symmetric de Sitter in�a-

tionary solution. One direct measure of time asymmetry comes from the slight tilt of the power

spectrum from exact scale invariance, measured [10, 11] to be 1− nS = 0.035± 0.004, which
arises from the small fractional decrease in the expansion rate during each e-folding of in�a-

tion [18]. We adopt a cosmological symmetry breaking parameter E < 1, so that equation (15)

becomes

〈∆(~Ω)∆(−~Ω)〉 = −〈∆2〉(1− E), (16)

where the ratio of even to odd perturbation power is E .
In general, E depends on angular wave number ℓ. The �ne grain character of parity asymme-

try is best revealed by harmonic analysis. An analysis of temperature anisotropy can be found

for example in �gure 25 of reference [13], where the value of E for temperature anisotropy at

11
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each ℓ is denote by RTT. It shows a detection of ET ≈ 0.3 at ℓ of order a few, and a signi�cant
detection of power asymmetry up to ℓ ≈ 30.

3. Patterns in CMB anisotropy

It is useful to de�ne measures of symmetry that can be used for empirical tests based on

CMB anisotropy. The symmetries of curvature lead to simple predictions that can be used

as the basis for tests on large angular scales, Θ = O(1). The most distinctive signature of

exotic symmetries is that they constrain this large-angle pattern even at high resolution,

ℓ ≫ 1.

On large angular scales, CMB temperature anisotropy is dominated by perturbations within

a relatively thin sphere at the epoch of last scattering, with some secondary effects from the

interveningvolume [29–31]. The direct effect of scalar perturbations on anisotropy is described

by the Sachs–Wolfe approximation [29]; in this approximation, the pattern of δT preserves the

pattern (and symmetries) of ∆. However, the �ne-grained temperature distribution for har-

monics ℓ ≫ 1 is signi�cantly affected by Doppler motions, and these must be included in tests

of precise symmetries, even at large angular separation, Θ ∼ O(1). Because the pattern of

Doppler anisotropy for each 3D wave vector differs from the scalar pattern, a linear algorithm

may be used to reconstruct the pattern of the primordial potential from measurements of tem-

perature and/or polarization [32, 33], although this has not yet been done for an all-sky CMB

map.

3.1. Symmetries of the correlation function

The two-point correlation function de�ned above (equation (6)) can also be written in terms of

an empirical estimator

C∆(Θ) = 〈∆a∆b〉∠ab=Θ, (17)

an all-sky average over all pairs of points a, b at angular separation ∠ab = Θ. Relics of pri-

mordial symmetries on the in�ationary horizon survive in∆(θ,φ) at last scattering, and can be
reconstructed from measurements.

In the particular case of angular separation Θ = 90◦, the Doppler contribution vanishes.

The reason is that for any 3D mode, the velocity perturbation vanishes for directions in the

plane. This also applies to the contribution from our own velocity, the kinematic dipole. Thus

the particular case of equatorial azimuthal symmetry (equation (8)) is particularly robust:

a reconstruction is not necessary, and the symmetry survives in the temperature. An exact

global equatorial symmetry of curvature (equation (8)) implies exactly vanishing temperature

correlation at 90 degrees:

CT (90
◦) = C∆(90

◦) = 0. (18)

This exact property of the correlation function applies even at high angular resolution in a

holographic model with the exact symmetry given by equation (7); it can occur by chance

in some realizations of a conventional cosmology, but only very rarely to a very high

precision.

Causal constraints on correlation of polar and azimuthal information (�gure 5) could also

lead to exact symmetries at other angles, for example at 30◦ (equation (9)), but in this case, a

reconstruction is necessary; the exact symmetry does not survive in δT .

12
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The distribution on the sky is often described in terms of spherical harmonics Aℓm. The

angular power spectrum

Cℓ =
1

2ℓ+ 1

m=+ℓ
∑

m=−ℓ

|Aℓm|
2 (19)

has the same information as the angular correlation function; contributions of odd and even

spherical harmonics to the correlation function are given by the standard formula (e.g.,

[4, 34, 35])

C(Θ) =
1

4π

∑

ℓ

(2ℓ+ 1)CℓPℓ(cos Θ), (20)

where Pℓ are the Legendre polynomials, with the property that Pℓ(0) = 0 for odd ℓ, Pℓ(0) 6= 0

for even ℓ.
In the harmonic description, a simple exact symmetry in the angular domain, such as

equation (18), appears as a conspiracy of many spherical harmonic coef�cients. The conspir-

acy extends to high ℓ, even for symmetries at largeΘ. In particular, agreement withC(90◦) = 0

requires a sum of even mode contributions to vanish at high precision up to the map resolution

ℓ, which is very unlikely if they are drawn independently from random distributions as in the

standard picture.

3.2. Interpretation of well known CMB anomalies

The holographic model provides a uni�ed physical interpretation that accounts in a general

way for several long-studied features of measured CMB anisotropy at low ℓ that are statis-

tically anomalous in the standard model [4, 8, 13, 34, 36–38]. We �rst summarize a pro-

posed interpretation of some well known empirical anomalies, then suggest more sharply

de�ned theory-motivated tests that can differentiate holographic in�ation from the standard

picture.

1. Axes de�ned by the quadrupole and octopole are closely aligned. The WMAP all-sky

maps [2–4] revealed a remarkably close agreement in direction for quadrupole (ℓ = 2) and

octopole (ℓ = 3) harmonics. The aligned direction is de�ned by the axis that maximizes the

sum of the squares of aℓ,ℓ and aℓ,−ℓ spherical harmonic coef�cients, that is, maximizes polar

asymmetry. A variety of studies have con�rmed the close alignment to be highly unlikely in

the standard model [34]. In our model, as discussed above, the principal axes of harmonics

have to be aligned to satisfy the constraints imposed by a holographic information de�cit with

rotational symmetry, such as constant variance on great circles (equation (11)). Note that the

alignments depend on theAℓm’s but not theCℓ’s, so this is a higher-order symmetry not captured

by symmetries of C(Θ).

Since the alignment axis is associated with physical primordial modes in three dimen-

sions, whose orientation is correlated on different scales, the model could account for why

‘secondary’ integrated Sachs–Wolfe (ISW [29–31]) contributions from gravitational effects

in the intervening volume do not spoil the precise alignment.

2. The two-point temperature correlation function is small at large angular separation [8,

13, 34]. An unexpected lack of large angle correlation power has been apparent since the �rst

measurements with COBE [35].

In the WMAP analysis of C(Θ), based on 7 years of data [4], the authors comment on the

(true) fact that there is no signi�cant con�ict with the standard random-phase scenario, and

no signi�cant de�cit of large-scale power: ‘C(Θ) lies within the 95% con�dence range of the
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best-�t Λ CDMmodel for allΘ, as determined by Monte Carlo simulations. This supports the

conclusion that there is no statistically signi�cant lack of large-scale power on the full sky.’

At the same time, compared with a standard ensemble of random-phase CMB realizations,

C(Θ) is both anomalously close to zero around 90 degrees, and anomalously negative near 180

degrees.

By contrast, the published WMAP plot of CT(Θ) appears to agree remarkably well with

the simple and exact global equatorial symmetry (equation (18)) of holographic in�ation: the

measured CT(Θ) appears to have a value at 90 degrees consistent with zero.

3.The quadrupoleand other even harmonics are smaller than expected. As discussed above,

an excess of odd over even �uctuation power [8, 13, 34], measured in harmonic decomposition,

shows signi�cant anomalous antipodal anticorrelation on angular scales much smaller than the

dipole, which also appears as a signi�cant negative correlation in CT (Θ) near 180 degrees.

Both are interpreted here as direct signatures of antipodal anticorrelation on the horizon, with

E < 1 over a wide range of ℓ (equation (16)).

3.3. New tests

In holographic in�ation, precision tests of symmetries are possible on large angular scales

without the usual cosmic-variance penalty on signi�cance: predictions for symmetries are not

in�uenced by the random variables of realizations as they are in the standard scenario. This

feature allows for powerful parameter-free comparisons with standard theory.

3.3.1. Global azimuthal symmetries. The exact value of C(Θ) has no particular signi�cance

in the standard scenario, so a very close agreement with zero can indicate a likelihood with a

strong preference for the holographic theory. Such a precise null test of equatorial symmetry

(equation (18)) will require more attention to speci�c biases of foreground subtraction and

masking than needed in large scale tests of the standard picture, whose predictions have a

large scatter from cosmic variance.

PublishedWMAP and Planck plots disagree in detail. In the case of theWMAP ILC all-sky

map [4],CT(90
◦) appears to be consistent with zero. In the case of Planck [8, 13], four different

foreground removal techniques agree with each other, and CT(90
◦) differs slightly but signif-

icantly from zero in all of them. Recently, these maps were re-analyzed ([39]) with uniform

masking. The result of this analysis was that the least biased measurements of C(Θ) from the

two satellites and most of the different foreground removal techniques are in good agreement

with each other near Θ = 90◦, and fall into a remarkably narrow range around C(90◦) = 0. A

new, more precise likelihood comparison with standard theory should be possible with closer

attention to foregrounds, and with a reconstruction of C∆, perhaps including polarization data

[32, 33].

3.3.2. Intrinsic dipole. In emergent cosmology, it is plausible that (unlike the standard sce-

nario) there is a vanishing intrinsic dipole, because enclosed matter and its bounding CMB

horizon share a common causal past (see �gure 2): they are bounded by the same causal dia-

mond, whose boundary lies at the end of in�ation. As the classical metric emerges from a

quantum system, the cosmic rest frame de�ned by the sum of cosmic matter within the hori-

zon (that is, into which its geometrical position state collapses) should be the same as the frame

de�ned by the bounding horizon.

This symmetry is testable in principle. The intrinsic dipole can be estimated by measur-

ing and subtracting the contribution from galaxy �ows on very large scales (> 200Mpc) that

account for the dipole contributed by peculiar velocity. If the intrinsic dipole vanishes, the pre-

diction is that the motional dipole agrees with the sky dipole. Because the �rst order dipole
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induced by motion is so much larger than even the standard expected primordial curvature-

induced intrinsic dipole, a precision test is dif�cult in practice: it requires a comprehensive

survey of precise cosmic distances (e.g., reference [40]).

In the case that the intrinsic dipole does not vanish, it must still ‘conspire’with other odd har-

monics to be consistent with great-circle-variance symmetry, as discussed above. In this case,

constant great-circle variance allows another test: it should be possible to uniquely reconstruct

both the axis and amplitude of the dipole from measured maps.

3.3.3. Future Holometer experiments. Nonlocal coherent �uctuations on causal diamonds, as

posited here for in�ation, should also affect light propagating between massive bodies in �at

space on macroscopic scales [41–46]. It has recently become possible to probe these coherent

Planck scale �uctuations directly in laboratory experiments, using interferometers with signal

measurement bandwidth comparable with their free spectral range.

If displacements on causal diamonds in the laboratory are governed by the same uncer-

tainty as that used for holographic cosmological perturbations (equation (5)), a differential

measurement of light paths of length L displays fractional �uctuations on timescale L/c of
order

〈δL2〉/L2 ≈ LlP. (21)

They may be observable as cross correlations, with Planck scale power spectral density,

between signals in interferometers [41–46]. The effect on the signal depends on the directional

structure of �uctuations, and the spatial structure of the light paths.

The results of such experiments depend on symmetries of the apparatus, which control its

response to coherent �uctuations of causal diamonds. It has been demonstrated experimentally

that there is no such effect for some con�gurations of the light paths. The most sensitive pub-

lished measurement [47] constrains coplanar, radial quadrupolar �uctuations to more than an

order of magnitude less than the amplitude in equation (21). Current experiments are study-

ing the possibility of purely rotational or transversal �uctuations [45]. Future experiments in

different con�gurations, including light paths extending in three dimensions, could respond

to holographically entangled �uctuations of light cones similar to that posited here for in�a-

tionary horizons. A detection of cosmological spookiness could provide both motivation and

design guidance for future experiments.

4. Conclusion

The simple geometrical symmetries proposed here are examples of holographic correlations:

they apply to the entire sky on all scales, and reduce the independence of perturbations in dif-

ferent directions. The primordial structure of curvature perturbations also survives today in

three dimensional large scale structure: the structural pattern of the galaxy distribution caused

by spooky entanglement should display the same exotic angular correlations as the CMB pat-

tern [18]. The candidate symmetries of holographic correlations analyzed here are predicted

to appear clearly in the CMB on large scales today largely because the last scattering surface

approximates a 2-sphere, like the primordial horizonwhere the correlations originated. For this

reason, CMB anisotropy at present provides the most direct tests of the holographic-in�ation

hypothesis.

Directional symmetries of emergent perturbations allow the formulation of new predictions

accessible to test at large angular scales with existing data. The new correlations arise from

entangled relationships at large separations (Θ of order unity in the angular domain), but also
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in �ne grained structural detail (ℓ ≫ 1 in the wavenumber domain)—a feature distinctly absent

in the standard scenario.

An important new feature of holographic in�ation is that its precise symmetries allow

predictions for measurements in the angular domain with no cosmic variance, so large-

angle tests can achieve unaccustomed power. It is remarkable that generic, holographically-

motivated symmetries approximately account for some well-known so-called ‘anomalies’ of

CMB anisotropy. Moreover, some new predictions are unusually speci�c: for example, emer-

gent causality leads to an exact value for the angular correlation function, CT (90
◦) = 0, that

has no particular signi�cance in the standard picture. These predictions motivate new, speci�-

cally targeted combined analyses of theWMAP and Planck data, as well as new measurements

of polarization over a large fraction of the sky, that can further reduce systematic errors from

astrophysical foregrounds.

Precise con�rmation of these emergent symmetries would lend support to the hypoth-

esis that primordial scalar curvature perturbations originate mainly from holographically

coherent quantum gravity, rather than a conventional system of quantum �elds with lin-

earized gravity. The observed perturbation pattern in that case is then a direct relic of the

deeper quantum system, and its symmetries can be used to constrain theories of emergent

space-time.
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Appendix

A. Theoretical motivation for a coherent quantum inflationary horizon

The main hypothesis of holographic in�ation is that the boundary between classical and quan-

tum descriptions of geometry is a null surface. This long-knownconcept [48] allows a covariant

reduction of quantum geometrical states to connect consistently with standard non-dynamical

‘spooky’ spacelike quantum relationships among particle states [49–51]. Standard quantum

in�ation adopts a model quantum system based on effective �eld theory and linearized gravity,

and does not have this property: its decomposition into comoving waves is motivated by linear

evolution equations based on continuous derivatives, which depend on classical locality. It is

useful to summarize some current threads of gravitational theory that motivate the holographic

model.

In an explicit quantummodel of eternal black holes that includes gravitational back-reaction

by emission and absorption of quantum particles [19–21], the horizon of a black hole is a

coherent quantum object, so that a measurement by an external observer nonlocally affects its

global state. This hypothesis allows an elegant solution of many paradoxes associated with

quantum black holes (e.g., [52–55]). The calculation has been extrapolated to causal dia-

monds in �at space-time,where it leads to directionally coherentmacroscopic �uctuations [46].

The main assumption of the current work is that the in�ationary horizon has a similar global

coherence.

Another powerful line of argument is based on a derivation of Einstein’s �eld equations [56,

57] from the requirement that any patch of a null surface behaves like a black hole horizon,

in the accelerating frame where it is the observer’s horizon. This result supports the view that
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classical space-time and gravitation are emergent, collective quantumphenomena [56–59], and

that holographic and thermodynamic properties of black hole horizons generalize to universal

properties of null surfaces in any space-time [60–62]. In holographic in�ation, the horizon is

taken to be the light cone that bounds the past of an observer at the end of in�ation; coherent

�uctuations of its nested causal diamonds freeze in as classical potentials when other comoving

locations pass through it.

Coherent properties of geometrical states have also been extensively studied in anti-de Sitter

space [63–65]. In this case, nonlocal spacelike correlations are encoded in a dual theory, that

of a conformal �eld on the lower-dimensional boundary.

B. Estimates of coherent fluctuations of causal diamonds and horizons from a semiclassical

correspondence principle

In spite of considerable theoretical attention recently to the mathematical nature of nonlocal-

ized information in black holes [66–68], there is as yet no consensus on the magnitude or

physical effects of coherent, large-angle �uctuations of horizons [22, 23] or causal diamond

surfaces [46].

Here, we estimate the magnitude and nonlocal coherence of physical effects from Planck

scale quantum gravity, using the Bohr correspondence principle for some simple systems. In

this view, the quantum system is a ‘sum over histories’, or a superposition of different metrics,

without presuming that these states decompose into independent plane-wave perturbations.

Instead, the macroscopic effect of a quantum system is required to match its classical behavior,

so that the active gravity of a quantum system of particles can have the same coherence as the

particle state. These simple examples show how such coherence ampli�es the effect of Planck

scale �uctuations on large scales, and entangles causal structure in different directions. They

indicate that the dominant quantum �uctuations of coherent causal diamonds or horizons of

any size R come from the Planck scale, rather than �uctuations of a �eld vacuum modes of

wavelength R.

B.1. Gravitational shock waves of point particles with Planck momentum in flat space-

time. Consider the classical gravitational effect of a null point particle [19–21, 69, 70],

as shown in �gure B1. A localized pointlike momentum impulse p with impact parameter

x⊥ creates an invariant coherent delocalized transverse displacement everywhere on a light

sheet,

δu = 4Gp ln(x2⊥). (22)

This displacement represents a real, physical distortion of causal structure; themotion ofmatter

‘drags’ the space-time along with it.

Now consider the gravitational effect of a quantum state: a pair of Planck momentum par-

ticles emitted in a spherical wave function, like a pair of antipodally propagating gamma rays

from annihilations in a PET imager. For any given emission axis, the shocks create a uni-

form inwards displacement of the surface everywhere on the equator of the axis determined

by a particle pair, as shown on the right side of �gure 6. Since the axis is indeterminate until

the particle wave collapses, the gravitational state must have the same geometrical coherence.

Thus, after a duration τ the correspondence principle requires coherent nonlocal correlations

of displacement δu everywhere on a causal diamond surface of size cτ , for consistency of GR
with any axis of the particle pair. The magnitude of displacement is independent of the size of

the diamond.

The same correlations between poles and equator apply for a random sequence of impulses

in different directions. The distortion of causal structure is additive after each shock wave
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passes, so the amplitude from many pairs does not cancel, but adds in quadrature. For Planck-

momentum �uctuations every Planck time (the scale of �uctuations in models with discrete

time at the Planck scale [71]), the sum after time τ is

〈∆2〉 ∼ tP/τ. (23)

This estimate agrees with previous estimates based on random walks of world lines, stan-

dard quantum uncertainty and wave diffraction [44, 72, 73]. This set-up explicitly shows the

coherent separation between radial and transverse (angular) degrees of freedom, and the unat-

tenuated macroscopic transverse effects of Planck scale particles on an arbitrarily large scale.

These coherent properties of classical particles should also apply to the gravitational effect

of their quantum states; the causal structure needs to inherit the same spooky, transverse

correlations.

We have invoked a similar amplitude and transverse coherence for the in�ationary horizon.

In the in�ationary system, null trajectories curve and in general acquire transverse components,

leading to the angular-domain correlations. The �at-space gravitational shock wave shows the

magnitude of the coherent Planck scale �uctuation that might appear in experimental signals,

but does not include the process of freezing on the horizon.

B.2. Classical tides from point masses added and subtracted from a black hole. The back-

reaction of quantumpoint particles entering and leaving a black hole horizon, including antipo-

dal correlations, was studied in refs. [19–21], with the gravitational effect based on the grav-

itational shock wave in the Rindler frame. Here, we use classical correspondence to estimate

the tidal distortion of the shape of the black hole horizon by point particles.

A point mass falling into a black hole of radius R raises a tide and creates a coher-

ent distortion of the horizon with a signi�cant quadrupolar component on a timescale

c/R. For addition of many point masses in a time < R/c, the mean square quadrupole

amplitude adds in quadrature. For each mass m, δR/R ∼ m/M, so N of them produce

〈(δR/R)2〉 ∼ N(m/M)2.

Quantum horizons should have similar coherence. Suppose again (e.g., as in [71]) that there

is some form of discreteness in proper time at the Planck scale. Suppose that each Planck time,

a Planck mass particle �uctuates in or out of the hole. Their mean contributions average out,

but for random orientations, their large-angle, low-multipole distortions add in quadrature. In

this case, N ∼ R/ctP, so the the variance of the horizon distortion is given by 〈∆2〉 = 〈h2〉
= 〈δR2〉/R2 ∼ ctP/R, again the same as the estimate used for holographic horizon. The states

are similarly nonlocally entangled over a time ∼ R/c like a coherent quantum spin state,

creating a superposition and entanglement of directions.

B.3. Virtual quadrupolar distortion of a black hole necessary to radiate classically at the Hawk-

ing rate. In linear gravity, a source emits gravitational radiation according to the standard

classical quadrupole formula,

hwave = (G/r)̈Ii j, (24)

where hwave is strain of the wave at distance r, and Ii j =
∫

d3xρxix j represents the quadrupole of
the matter distribution. For coherent quadrupolar vibrational distortions of a black hole horizon

of magnitude

hhorizon ∼ δR/R, (25)

we have approximately
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Figure B1. Classical gravitational shocks in nearly-�at space-time from a point mass m,
adapted from reference [69]. In null coordinates u, v, the displacement δu due to gravita-
tional drag (equation (22)) is shown as a function of v for a point particle moving in the
u direction with momentum p≫ mc. The physical displacement is axially symmetric
around the particle trajectory and independent of the impact parameter of the particle,
x⊥. At right, the spatial patterns of shock waves from counterpropagating particles are
shown.

Ïi j ∼ h2horizon(R/G). (26)

Thus,

hwave ∼ h2horizon(R/r), (27)

so in the near-wave zone with R ∼ r,

hwave ∼ h2horizon. (28)

That is, in the classical system, gravitationalwaves are second order compared to the distortions

of causal structure that generate them.

In the semiclassical, sum-over-histories view, the virtual metric �uctuations of a quantum

black hole horizon in the near �eld are also much larger than the metric �uctuations of the

Hawking radiation that escapes from the system and carries energy away. The power per area

of a classical localized gravitational-wave packet, comparable in size to wavelength∼ 2πc/ω
in all directions, is about∼ 〈h2wave〉c

3ω2/G; the metric of strain of a single gravitonwave packet

localized to the same volume is

〈h2wave〉 ∼ (tPω)
2. (29)

The typical equivalent classical strain of Hawking radiation from a black hole of size R ∼ c/ω
on the scale r ∼ R as it leaves the vicinity of the hole is 〈h2wave〉 ∼ (ctP/R)

2; the horizons in the

quantum superposition vary coherently with quadrupole amplitude

〈h2horizon〉 ∼ (ctP/R). (30)

The Hawking radiation can be viewed as an atom-like transition between these states.

During in�ation, the equivalent of hwave is the metric strain of tensor modes generated by

quantum �uctuations [74] on the horizon scale, the zero point oscillations of a �eld mode of

frequencyω = H. In holographic in�ation, the scalar perturbations arise from coherent Planck

scale �uctuations in the locations (or equivalently, clocks) of world lines on the scale R = c/H,
not zero point of �eld modes of frequencyH. Thus, as in the classical black hole,
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〈h2horizon〉 ∼ 〈h2wave〉
1/2 ∼ HtP (31)

so scalar perturbations are much larger than the tensor distortions, which have 〈h2T〉 =
(HtP)

2/2π2.

C. Spin-algebra model of coherent quantum causal diamond fluctuations in flat space-time

The physical consequences of geometrical nonlocality depend on the connection of quantum

mechanics and space-time at a basic level. If geometry and locality are emergent properties

of a quantum system, the quantum-�eld approximation to the system breaks down, as it omits

important entanglements between matter and geometrical degrees of freedom.

This section develops a covariant model of emergent, coherent quantum causal diamond

states in a �at background. It provides a concretely de�ned quantum system to illustrate

physical effects of a new form of nonlocal geometrical entanglement, not included in stan-

dard quantized linear gravity. This model does not address quantum dynamics at the Planck

scale, nor is it a substitute for other, arguably more fundamental theories of quantum grav-

ity [75–77]. It is introduced to reveal measurable physical effects of coherent causal diamond

states that differ from effective �eld theory and linearized gravity: the large �uctuations intro-

duced by coherence, and new symmetries of transverse or directional correlations. These

effects are found in a regime not easily accessible in other approaches, on scales much larger

than ctP.

C.1. Dirac light cone function. Locality on light cones is conventionally de�ned by the covari-

ant four-dimensional generalization of the one-dimensional Dirac δ-function (reference [78],

section 75):

∆(x) = 2δ(xµxµ)x0/|x0|, (32)

where xµ = (t,~r) represents 4-position. It vanishes at the origin, and is nonvanishing on past

and future light cones from the origin. It is odd in timelike directions and even at spacelike

separations, with a 4D point-parity antisymmetry that combines time and space,

∆(−x) = −∆(x). (33)

It has a purely imaginary transform, of the same functional form,

∆̃(k) ≡

∫

d4x∆(x)eikx = 4π2i∆(k). (34)

C.2. Locality of quantum field states. The standard model of locality for �eld states is

based on point localization in a classical space-time background. To quantize �elds [78, 79],

the light cone function is used to write covariant commutation relations for �eld operators

Â(x),

[Âµ(x), Âν(x
′)] = gµν∆(x− x′), (35)

where gµν denotes a (classical) tensor. The explicit geometrical coef�cients on the right-hand

side are all classical objects: geometry is not part of the quantum system. There is an unwrit-

ten quantum operator on the right side which is just the identity operator on a �eld state.

Since the only position dependence on the right side comes in classical functions, there is

no entanglement of �eld states with geometry.
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For �eld dynamics, it is necessary to include conjugate momentum or derivative operators.

This leads to propagatingstates in the formof planewaves, with a commutator for the transform

of quantized wave modes

[Âµ(~k), Âν(~k
′)] = igµνδ(~k−~k′)/4π2k0, (36)

where gµν again denotes a (classical) tensor. The coef�cient depends on the spin or helicity of

the �eld, and relates internal quantum degrees of freedom to the classical inertial frame. In the

case of linearized gravity the propagating quanta are gravitons, a spin 2 tensor �eld with a very

small self coupling set by the Planck scale.

In standard in�ation, perturbations arise from linearized gravity coupled to quantum �uc-

tuations of �eld vacuum states. The ‘collapse’ of these states into a classical metric occurs

coherently in~k space, for each spatially in�nite mode. In holographic or spooky in�ation, these

perturbations are subdominant to those from new fundamental geometrical quantum degrees

of freedom that underlie holographic, emergent gravity [17, 18].

C.3. Model of coherent causal diamond fluctuations. A simple model of a geometrical quan-

tum system can be built from new geometrical operators τ̂κ, whose �uctuations will ultimately

be identi�ed as perturbations in potential. A contraction with the antisymmetric Levi-Civita 4-

tensor ǫκλµν allows us to write a Lorentz covariant generalized rotational commutative algebra

with the same light cone structure as the �eld commutator (equation (35)):

[τ̂κ, τ̂λ] = iǫκλµν τ̂
µ
∆(xν)τ0. (37)

The imaginary coef�cient in equation (37) allows for superposition and entanglement of the

geometrical states. In equation (37), geometrical quantum operators on both sides share the

same degrees of freedom, so there are new nonlocal quantum relations that cannot be described

by equation (35), even with a linearized tensor �eld to represent quantum gravity.

Equation (37) is not a fully consistent noncommutative quantum geometry, since the light

cone function ∆(xν) is not a quantum operator and a classical metric has been used for rais-

ing and lowering the indices. It projects the geometrical state onto a classical metric, and the

operator labels onto a classical inertial frame. In the physical interpretation below, the classical

metric corresponds to a measurement, and thereby a choice of observer world line and inertial

frame.

The localization scale τ 0 has the same dimensions as τ̂ . It �xes the information content of

the system in physical units. In our physical interpretation of this system, ∆(xν) is a function

of physical space-time event positions, so τ 0 represents a quantization scale of light cone states
in the frame of an emergent observer—a �nite resolution in proper time. As shown below, for

a system that obeys the holographic principle, such as emergent gravity, τ 0 = tP. This Planck-

scale normalization will be assumed in the following.

C.4. Nonlocal information, projection and uncertainty. Even though the degrees of freedom

represented by the τ̂κ’s have no local or dynamical effects, their �uctuations in time and

direction affect correlations in nonlocal measurements.

Consider projection onto a 3D spacelike surface of constant x0 6= 0. The light cone function

∆(x0) is then a δ-function on a 2-sphere of radius |x0|, which coincides with the surface of

a causal diamond. For spatial positions on this surface, we can set ν = 0 in equation (37) to

obtain a standard spin algebra in three dimensions, with relabeled indices i, j, k taking values

1, 2, 3,

[τ̂ i, τ̂ j] = iǫi jkτ̂ ktP. (38)
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Thus, when a light cone function ∆(xν) is used to project the four dimensional space-time

operators onto three dimensions—an eigenstate of proper time—it creates a fully consistent

quantum algebra that entangles curvature �uctuations in three dimensions.

We now recall some standard results of quantummechanical spin in three dimensions (e.g.,

[80, 81]). Positions in each spatial direction are related by

[τ̂ 1, τ̂ 2] = iτ̂ 3tP, (39)

and its cyclic permutations. A radial operator τ̂ 2 ≡
∑

τ̂ 2i commutes with all direction compo-

nents:

[τ̂ i, τ̂
2] = 0. (40)

The discrete states of the system are assembled using raising and lowering operators. For

direction 3,

τ̂ 3± = τ̂ 1 ± iτ̂ 2 (41)

with the commuting properties

[τ̂ 3, τ̂ 3±] = ±tPτ̂ 3±, (42)

with raising and lowering operators for the other directions again obtained by cyclical per-

mutations of 1, 2, 3. In a conventional integer-spin representation, l = 0, 1, 3, . . . , denotes the
principal quantum number, and m = −l · · ·+ l denotes projections onto a chosen axis, say 3.

The eigenvalues of τ̂ 2 are l(l+ 1)t2P, and the eigenvalues of τ̂ 3 are mltP.

For each l there are 2l+ 1 directional projection eigenstates, so the number of degrees of

freedomN scales holographically, as the surface area in Planck units:

N =

l
∑

l′=0

(2l′ + 1) ≈ (|τ |/tP)
2, (43)

where the approximation applies in the large l limit. Thus, a Planck scale normalization agrees

with holographic emergent gravity [56–59]. We interpretN as the geometrical information in

the whole (3+1D) volume enclosed by a (2+1D) causal diamond de�ned by a 1D proper time

interval.

Using standard algebraic methods [18, 80, 81], it can be shown that in an eigenstate of

τ̂ 3,

〈τ̂ 1〉 = 〈τ̂ 2〉 = 0 (44)

and

〈τ̂ 21〉 = 〈τ̂ 22〉 = 〈τ̂ 2 − τ̂ 23〉/2 = t2P[l(l+ 1)− m2]/2. (45)

Since m2 6 l2, we can write a generalized uncertainty principle for quantum �uctuations in

any three orthogonal directions:

〈δτ 2〉 ≡ 〈δτ̂ 21〉+ 〈δτ̂ 22〉+ 〈δτ̂ 23〉 > l t2P > |τ |tP, (46)

where

δτ̂ 2i ≡ 〈τ̂ i
2〉 − 〈τ̂ i〉

2. (47)
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For large l, the uncertainty (equation (46)) is much larger than t2P. In our interpretation of this

system, the δτ̂ i’s represent �uctuations in time as function of direction on causal diamond

surface of �xed radius, so the fractional �uctuations

〈δτ 2〉/|τ |2 = tP/|τ | (48)

represent perturbations in gravitational redshift, dimensionless potential or curvature as a func-

tion of direction on a surface of radius c|τ |. A causal diamond in �at space-time, or a horizon

during in�ation, has a 2D bounding surface radius with coherent quantum �uctuations of this

magnitude (as in Equation (5)), nonlocally entangled among all three directions.
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