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Abstract

We study the effect of quenched disorder in square arti�cial spin ice by means of numerical

simulations. We introduce disorder in the length of magnetic islands using two kinds of

distributions: Gaussian and uniform. As the system behavior depends on its geometrical

parameters, we focus on studying it in the proximity of the ice regime which is quite dif�cult

to thermalize both in experiments and simulations. We show how length disorder affect the

antiferromagnetic and (locally) ferromagnetic ordering, by inducing the system, in the case of

weak disorder, to intermediate or mix states. Moreover, in the case of strong disorder,

ferromagnetic plaquettes prevail regardless of whether the mean length of the islands

corresponds to an antiferromagnetic ordering.
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1. Introduction

Arti�cial spin ice (ASI) consists of a lithographically

manufactured two-dimensional array of ferromagnetic

nanoislands with a strong shape anisotropy resulting in

single-domains that behave like giant Ising spins [1]. In nat-

ural spin ices, such as, for example, the rare earth pyrochlore

Ho2Ti2O7, the local ordering of magnetic moments is particu-

larly dif�cult to measure [2]. But arti�cial frustrated magnetic

systems make possible to access directly the degrees of

freedom, i.e. the spins [3–10]. This advantage allows to test

and reproduce theoretical models, as well as to understand

more about their three-dimensional analogs. But even more

importantly, it allows us to design a system rather than discover

it [11].

In 2006,Wang and collaborators created experimentally an

ASI with ferromagnetic islands forming a square lattice [11].

The magnetic force microscopy measurement of these sam-

ples showed a strong orientation of the magnetic moments in

the longitudinal direction of each island; then, each island can

1 Author to whom any correspondence should be addressed.

be modeled as an in-plane spin. The point where four islands

concur is called a vertex. For each vertex, there are 24 possible

con�gurations, according to the orientation of the four spins

that form the vertex, which in turn can be grouped into four

topologically different types (see �gure 1). Type I and II have

two spins pointing inwards and two outwards of the vertex,

meeting the so-called ice rule. This rule was originally pro-

posed by Pauling for the proton orderings in water ice, but a

perfectmappingwith thesemagneticmaterialswas found later,

hence the name spin ice [2, 12–16] The difference between

these two types is that, unlike Type II vertices, Type I have

null magnetization. In contrast, Type III and IV vertices do not

meet the ice rule; in this context, they are usually called defects.

If the orientation of the spins were completely random, the fol-

lowing vertex population is expected according to the number

of con�guration each group has: 12.5% Type I, 25% Type II,

50% Type III and 12, 5%Type IV. At room temperature,Wang

et al measured that more than 70% of the vertices met the ice

rule and that this percentage was reduced by increasing the lat-

tice spacing [11]. The greater the spacing, the more similar the

situation to having a randomcon�guration,which is equivalent
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Figure 1. There are 16 possible con�gurations for each vertex
according to the orientation of its spins. Furthermore, these can be
classi�ed into four different topological groups. Type I and II satisfy
the ice rule while Type III and IV do not. Type II and III vertices
have a net magnetization.

to having non-interacting islands. In this way, they managed to

observe the spin-ice behavior in these arti�cial systems.

Inspired by these results, Möller and Moessner modeled

this system and performed numerical simulations with an

array of spins under dipolar interactions [17]. They added a

height separation between the spins oriented vertically and

those oriented horizontally. In a tetrahedrical lattice, such

as the one found in natural spin ices, the distance between

any pair of spins (belonging to the same tetrahedron) is the

same, and therefore, the dipolar energy has the same value

for any pair. On the contrary, in the square ASI, the dis-

tance between collinear spins is different from the distance

between perpendicular spins. Hence, the need to add this

height parameter. In this way, this system is halfway between

three-dimensional (natural) and two-dimensional (arti�cial)

spin ices [18]. Another lattice that is also studied in the

cited article and in reference [19], and which is usually used

to model its three-dimensional counterpart, is the kagome.

Unlike the square lattice, the distance between the spins of

each plaquette in a kagome lattice is the same, so the height

parameter is no longer necessary.

The study of these two geometries is very extensive, either

through simulations or experiments, and allowed to under-

stand more about spin ices and frustrated systems in bulk

materials [3, 15, 20–24]. In particular, it allowed to under-

standmore about the interactions.Variousmodelswere studied

where both short and long-ranged interactionswere considered

[25–28].

The effect of disorder is still an open question and a �eld to

study in ASI [15–17, 29]. Budrikis et al (2012) studied from

the point of view of theory, simulations and experiments the

in�uence of disorder on the response of the system to an exter-

nal �eld [30]. To do this, in the simulations, they proposed that

each spin had an internal (coercive) �eld given by a Gaussian

distribution. With this model, they managed to estimate the

strength of disorder in a sample. There are several works that

quantify the disorder [3, 4, 31, 32], what is new in Budrikis’

work is that they also study how disorder affects the dynamics

of ASI. Chern et al (2014) take this same idea to model disor-

der and study the avalanches and critical behavior in square

and kagome ASI when a magnetic �eld is applied in-plane

[33]. This system shows a phase transition out-of-equilibrium

induced by disorder strength. Reichhardt et al show that the

avalanche distributions of this process follow a power law [34].

Another way to include disorder in the system is to discon-

nect the islands by eliminating a given percentage of them at

random. Greenberg et al showed through simulations that this

system changes its thermal behavior as the percentage of holes

increases [35]. These results coincide with what was observed

experimentally in diluted spin ice [36, 37], once again showing

that the study ofASI allowsmodeling and better understanding

of the behavior of spin ice.

The aim of this paper is to study, through simulations and

an energetic analysis, the effect of geometrical disorder on an

square ASI. To do this, we propose to include disorder in the

length of the islands. In this way, the strength of disorder could

be easily controlled and designed experimentally.

This article is organized as follows. Firstly, in section 2,

we present the details about the model and the way to intro-

duce disorder.We calculate the energy for this system and ana-

lyze the relationship between the strength of disorder and the

spin interactions. In section 3, we show the results of numeri-

cal simulations, �rst, without disorder, to verify with previous

results, and then, with disorder. We present the effect on ther-

modynamic regimes and analyze the results by studying how

the energy contained in each type of vertex changes with the

strength of disorder. Also, we characterize the spin dynamics

under the effect of disorder. Finally, in section 4, we present

the conclusions.

2. Modeling an artificial spin-ice

2.1. Description of the system

The square ASI is formed by islands of length d arranged as

shown in �gure 2; the lattice spacing is a. In this model, the

width of the islands is considered negligible. In turn, as said

in the previous section, we consider a height gap h between

the spins oriented in different directions. In the �gure, this is

marked with different shades of gray. In the experiments, the

islands are formed by a ferromagnetic material and due to the

strong shape anisotropy, the magnetization of these is forced

to align along the easy axis. In this way, the islands behave

effectively like Ising spins. Then, each magnetic moment can

have only two possible orientations.

2.2. Hamiltonian

The system is described by the Hamiltonian

H =
1

2

∑

α,β(α 6=β)

εαβ , (1)

where εαβ is the interaction energy between two spins and

the sum is done over all pairs in the lattice. To calculate εαβ ,

we take the spin Sκ = µŜκ as a magnetic dipole with uni-

form magnetic density. This needle-shaped islands create a

2
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Figure 2. Square ASI array with dipolar interactions: a is the lattice
spacing and d is the island length; the width is considered negligible.
There is a height gap h between the position of islands which are
oriented in perpendicular directions; this means that dark-gray
shaded islands are located at height z = h while light-gray shaded

islands are located at height z = 0. Each spin Sκ = µŜκ is
considered as a magnetic dipole, with uniform magnetic density,
whose magnetic �eld is equivalent to that of two effective charges
±qκ = µ/dκ located one at each end of the island. Two islands
which are �rst nearest-neighbors are marked in blue, and two islands
which are second nearest-neighbors are marked in red.

�eld equivalent to that of two effective charges ±qκ = µ/dκ
located one at each end of the island, r+κ and r−κ , and separated

a distance dκ [19] (see �gure 2). Then, the potential created by

a magnetic dipole is simply

Φκ(r) =
qκ

4πǫ0

(

1

|r− r
+
κ |

−
1

|r− r−κ |

)

. (2)

Then, the interaction energy between two spins Sα and Sβ is

εαβ = qβ

[

Φα(r
+

β )− Φα(r
−
β )
]

. (3)

Replacing the equations (2) in (3) and taking into account

that r±κ = rκ ±
1
2
dκ Ŝκ (with κ = α, β) and rαβ = rβ − rα, the

equation can be rewritten as

εαβ =
D

dαdβ

(

1

|rαβ +
1
2
(dβŜβ − dαŜα)|

+
1

|rαβ −
1
2
(dβŜβ − dαŜα)|

−
1

|rαβ +
1
2
(dβŜβ + dαŜα)|

−
1

|rαβ −
1
2
(dβŜβ + dαŜα)|

)

,

(4)

where D = µ0µ
2/4π. It can be shown that the limit dκ → 0

(κ = α, β) for this expression is

lim
d→0

εαβ = D

(

Ŝα · Ŝβ
r3αβ

− 3
(Ŝα · r̂αβ)(Ŝβ · r̂αβ)

r5αβ

)

, (5)

which corresponds to the energy for point-like magnetic

dipoles.

To study the effect of disorder, we consider that the length

of each island dκ is given by a Gaussian distribution with

mean d and standard deviation σ, which determines the

Figure 3. (a) Contour plots for the ratio J2/J1 (equation (8)) as a
function of the geometrical parameters when there is no disorder in
the lattice; these results match the ones from reference [17]. When
J2/J1 < 1, Type I vertices have a lower energy and so the
antiferromagnic ordering is expected. While, when J2/J1 > 1, Types
II vertices have lower energy and so the (locally) ferromagnetic
ordering is predicted. (b) Contour plots for the ratio J2/J1 when
island lengths d1 and d2 are different (equations (9) and (10)). The
length of each island is given by a Gaussian distribution with mean d
and standard deviation σ, or by a uniform distribution. The color
map (a histogram of lengths) was obtained for d = 0.702 and
σ = 0.1. The circles indicate where the �rst σ of the distribution
would be if the deviation were 0.01, 0.05 or 0.1. The case of uniform
disorder, with∆ = 0.298, is indicated with a solid-line rectangle. In
addition, the restriction dk < a imposed to avoid island overlapping
is indicated with dashed lines.

disorder strength. The distribution is cut to dκ < a to avoid

island overlapping. To implement strong disorder, we use an

uniform distribution with interval [−∆,∆].

2.3. First and second nearest-neighbors bond energy

While the interactions considered in this model are long-

ranged (see equation (4)), a good prediction of the ground

state can be made by analyzing only the bond energies of

�rst and second nearest-neighbors, J1 and J2, respectively

[17, 38]. In �gure 2, the two islands marked in red are �rst

nearest-neighbors and the two blue ones are second nearest-

neighbors. Replacing Ŝα = (0, 1, 0), Ŝβ = (1, 0, 0) and rαβ =

(a/2, a/2, h) in equation (4), the bond energy of two �rst

nearest-neighbor spins is

J1 =
D

d2

[

|(a/2+ d/2, a/2− d/2, h)|−1

+ |(a/2− d/2, a/2+ d/2, h)|−1

− |(a/2+ d/2, a/2+ d/2, h)|−1

− |(a/2− d/2, a/2− d/2, h)|−1
]

=
D

a d2

[

2

(

1+ (d/a)2

2
+ (h/a)2

)−1/2

−

(

(1+ d/a)2

2
+ (h/a)2

)−1/2

−

(

(1− d/a)2

2
+ (h/a)2

)−1/2
]

.

(6)

While, replacing Ŝα = (0, 1, 0), Ŝβ = (0, 1, 0) and rαβ =

(0, a, 0) in equation (4), the bond energy of two second nearest-

neighbors is

3
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J2 =
D

d2

(

2

a
− |(0, a+ d, 0)|−1 − |(0, a− d, 0)|−1

)

=
D

a d2

(

2− |1+ d/a|−1 − |1− d/a|−1
)

.

(7)

If the ratio J2/J1 < 1, Type I vertices are expected

to be favored since they have lower energy (−JŜα · Ŝβ).
While if J2/J1 > 1, Type II vertices will prevail. In

�gure 3(a), contour plots are shown for the expression

J2/J1 =
2− |1+ d/a|−1 − |1− d/a|−1

2
(

1+(d/a)2

2
+
(

h
a

)2
)−1/2

−
(

(1+d/a)2

2
+
(

h
a

)2
)−1/2

−
(

(1−d/a)2

2
+
(

h
a

)2
)−1/2

, (8)

as a function of the geometrical parameters h and d. By appro-

priately selecting these parameters, it can be obtained an anti-

ferromagnetic system, where all the vertices are Type I, or

a (locally) ferromagnetic system, where all the vertices are

Type II. In their article, Möller obtains an antiferromagnetic

system for the parameters h = 0.205 and d = 0.7, and a fer-

romagnetic for h = 0.207 and d = 0.7 (with a = 1). The goal

in choosing these values, where J2/J1 is close to 1, is to evi-

dence the ferromagnetic–antiferromagnetic transition. Nev-

ertheless, tuning the parameters so that Type I and II ver-

tices have exactly the same energy (ice-like regime) is very

dif�cult.

Equation (8) was obtained considering a system where all

islands have the same length d. If the lengths are different, the

equations for J1 and J2 take the form

J1 =
D

ad1d2

(

(

(1+ d2/a)
2

4
+

(1− d1/a)
2

4
+ (h/a)2

)−1/2

+

(

(1− d2/a)
2

4
+

(1+ d1/a)
2

4
+ (h/a)2

)−1/2

−

(

(1+ d2/a)
2

4
+

(1+ d1/a)
2

4
+ (h/a)2

)−1/2

−

(

(1− d2/a)
2

4
+

(1− d1/a)
2

4
+ (h/a)2

)−1/2
)

,

(9)

J2 =
D

ad1d2

(

∣

∣

∣

∣

1+
d2 − d1

2a

∣

∣

∣

∣

−1

+

∣

∣

∣

∣

1−
d2 − d1

2a

∣

∣

∣

∣

−1

−

∣

∣

∣

∣

1+
d2 + d1

2a

∣

∣

∣

∣

−1

−

∣

∣

∣

∣

1−
d2 + d1

2a

∣

∣

∣

∣

−1
)

.

(10)

In �gure 3(b), contour plots for the ratio J2/J1 according to
equations (9) and (10) are shown, as a function of the lengths d1
and d2; the height gap is h = 0.205. In the following, without

loss of generality, we �xed a = 1. The distribution of island

lengths for Gaussian disorder with mean d = 0.702 and stan-

dard deviation σ = 0.1 is shown as a color map. Note that to

avoid overlapping, the length is restricted to dk < a; this is

marked with a dashed line. Circles indicate the �rst σ region

of the distribution for σ = 0.01, 0.05 and 0.1, while the rect-

angle indicates the amplitude of the uniform distribution with

∆ = 0.298. These are the disorder strengths that we study in

this paper.

3. Disorder effects

3.1. Thermodynamic regimes

In this section, we present the results of numerical simulations

with different disorder strengths; see appendix A for compu-

tational details. In �gure 4, we show the vertex population and

the speci�c heat as functions of the temperature T for a system

with h = 0.205 and mean length d = 0.702 (plots (a) and (b))
or d = 0.704 (plots (c) and (d)).

Let us analyze �rst the system without disorder,

σ = 0, whose behavior is known, starting from the high

temperature regime. This corresponds, both for d = 0.702 and
d = 0.704, to the random state where the vertex population

is given according to the number of con�gurations each

group has (see �gure 1). The speci�c heat Cv shows, for both

systems, an increase for T ≈ 4 due to the disappearance of

Type III vertices. There is a crossover between the random

state and the ice regime, where there are only ice-type ver-

tices, i.e. Type I and II. This crossover is also characterized

by a the decrease to zero of the single-spin-�ip algorithm

ef�ciency, which shows the need to use other algorithm, as

discused in appendix A. Then, as the temperature decreases, a

phase transition at T ≈ 0.5 appears, evidenced by the speci�c

heat peak observed both in plots (b) and (d). Finally, the

degeneracy is lift and Type I vertices prevail for d = 0.702,
while Type II predominates for d = 0.704. Then, it is said that
for d = 0.702 the ground state is antiferromagnetic, while for

d = 0.704 it is ferromagnetic. These results agree with those

already known and published [17, 39, 40]. Let us now analyze

the effect of disorder.

First, it can be observed that disorder, regardless of its inten-

sity, does not affect the random behavior at high temperatures,

as well as the behavior of Type III and IV vertices at all tem-

peratures. However, it does affect Type I and II for lower tem-

peratures. In the antiferromagnetic case, we found that weak

disorder, σ = 0.01, allows a small percentage of Type II ver-

tices at the ground state. As disorder increases, the amount

4
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Figure 4. Plots (a) and (c) show the population for each type of vertex, as a function of the temperature T, and plots (b) and (d) show the
speci�c heats as functions of the temperature T, for different disorder strengths σ, or ∆ in case of uniform disorder. Simulation parameters:
N = 576, rcut = 4, a = 1, h = 0.205 and d = 0.702 for (a) and (b), or d = 0.704 for (c) and (d).

of Type I vertices reduces and so Type II population grows,

and, at the same time, the phase transition peak dissolves.

A priori, one could expect this to continue until reaching the

ice regime. However, for maximumdisorder a different ground

state is found where there are 25% Type I vertices and 75%

Type II. And, what is most striking is that for the ferromag-

netic case the same sequence occurs: as disorder increases, the

population of Type II vertices reduces at �rst until it reaches

the 50%–50% ground state. And then, it grows again until

the state where 25% of the vertices are Type I and 75% are

Type II.

Simulation results show that, with disorder, the completely

antiferromagnetic or ferromagnetic ground states are lost,

and intermediate regimes are found instead. This is also

observed in the speci�c heat, in which the phase transition peak

decreases in intensity until is lost, while, at the same time, it

shifts to higher temperatures. A relevant result is that disorder

strength can be tuned to obtain the ice regime, for which the

energies of the Type I and II vertices are equal. For σ 6 0.05,
population changes until it reaches the 50–50 state. In the case

of maximum possible disorder, that is, for uniform disorder

with ∆ = 0.298 (or ∆ = 0.296 for d = 0.704), the �nal state
is the same for both systems. Regardless of whether the sys-

tem was originally (i.e. without disorder) antiferromagnetic or

ferromagnetic, for strong disorder a low temperature regime is

obtained where approximately 3/4 of the vertices are Type II

and 1/4 are Type I.
Another question that rises is whether the thermodynamic

regimes have an additional frustration created by disorder.

To study this, we perform different runs with the same seed

for generating the island lengths, i.e. the same realization of

disorder, but with different initial spin con�gurations. After

relaxation, we found that the samples evolve not only to the

same percentage of Type I and II vertices as expected, but

also to the same vertex con�guration. This means that a par-

ticular vertex always �nds the same state related to the real-

ization of disorder. In �gure 5, we show an example of two

runs for h = 0.205, d = 0.702 and σ = 0.05 with a 95% of

overlapping.

Furthermore, if wemeasure the entropy,we found that there

is no residual entropy (see �gure 5). When there is no disor-

der in the sample, the high-temperature entropy equals ln 2,

Figure 5. Entropy as a function of the temperature, with and
without disorder. Two different runs for the same disorder
realization are shown (σ = 0.05). Simulation parameters: N = 576,
rcut = 4, a = 1, h = 0.205 and d = 0.702.

which is related to the 2n possible con�gurations. Then, there

is a plateau related to the ice regime, where each vertex can

be Type I or II indistinctly. Finally, for lower temperatures, the

frustration is lifted as the system orders antiferromagnetically

or ferromagnetically according to the chosen island length d,

hence there is no residual entropy. When introducing disor-

der, we observe that the step related to the phase transition

becomes less steep, which agrees with the decreasing of the

pick in the heat capacity, but there is no residual term related to

disorder.

3.2. Vertex energy

To analyze the regimes from an energetic point of view, we

calculate the energy contained in each type of vertex and

the dispersion in their values caused by disorder. The occur-

rence of different types of vertices will be linked to these

results. To do this, we consider a vertex formed by islands

of lengths d1, d2, d3 and d4, located at r1 = (0, 0, 0), r2 =

(a/2, a/2, h), r3 = (0, a, 0) and r4 = (−a/2, a/2, h), respec-
tively. The interaction energy between any pair of islands of

the vertex, Sα and Sβ , separated a distance rαβ = rβ − rα

is given by equation (4), where εαβ = ε(rαβ , Ŝα, Ŝβ , dα, dβ).

Then, the energy contained in a vertex is E
[

Ŝ1, Ŝ2, Ŝ3, Ŝ4

]

=

5
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1
2

∑4
α,β=1
α 6=β

εαβ . Actually, E is also a function of the lengths d1,

d2, d3 and d4, but we omit it to lighten the notation. We can

obtain the energy for each type of vertex EType by replacing

Ŝ by the corresponding values. Then, the energy of a Type I

vertex is calculated as

EI =
1

2
{E [(0,−1, 0), (−1, 0, 0), (0, 1, 0), (1, 0, 0)]

+E [(0, 1, 0), (1, 0, 0), (0,−1, 0), (−1, 0, 0)]} ,

(11)

where we averaged over the two con�gurations that belong to

the same topological group (see �gure 1). Solving the previous

equation, we get

EI =
∑

i, j={(1,2),(1,4),(2,3),(3,4)}






−



did j

√

h2 +
d2j

4
+
ad j

2
+
d2i
4

+
adi

2
+
a2

2





−1

+



did j

√

h2 +
d2j

4
+
ad j

2
+
d2i
4

−
adi

2
+
a2

2





−1

+



did j

√

h2 +
d2j

4
−
ad j

2
+
d2i
4

+
adi

2
+
a2

2





−1

−



did j

√

h2 +
d2j

4
−
ad j

2
+
d2i
4

−
adi

2
+
a2

2





−1






+
∑

i, j={(2,4),(1,3)}

[

(

did j

∣

∣

∣

∣

di

2
+
d j

2
+ a

∣

∣

∣

∣

)−1

+

(

did j

∣

∣

∣

∣

di

2
+
d j

2
− a

∣

∣

∣

∣

)−1

−
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Similarly, for the other types we have that

EII =
1

4
{E [(0, 1, 0), (1, 0, 0), (0, 1, 0), (1, 0, 0)] + E [(0, 1, 0), (−1, 0, 0), (0, 1, 0), (−1, 0, 0)]
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(13)

EIII =
1

8
{E [(0, 1, 0), (−1, 0, 0), (0, 1, 0), (1, 0, 0)] + E [(0,−1, 0), (1, 0, 0), (0, 1, 0), (1, 0, 0)]

+ E [(0, 1, 0), (1, 0, 0), (0,−1, 0), (1, 0, 0)] + E [(0, 1, 0), (1, 0, 0), (0, 1, 0), (−1, 0, 0)]
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= 0,

(14)

EIV =
1
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(15)
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Figure 6. Vertex energy spread for each topological group. Each
graph corresponds to a different disorder strength. The distribution
is in logarithmic scale so that the dispersion of the energies can be
fully appreciated.

Note that each term of the energy of Type III vertices is

zero (equation (14)). Using equations (12), (13) and (15) and

sampling over the possible values of dκ, we can calculate the

dispersion of the vertex energies due to disorder. In �gure 6,

we show the results obtained. It can be observed how as disor-

der strength increases, the dispersion in the energies increases

as well, which was expected. But, what is most interesting is to

see how it increases. As disorder increases, the energy distribu-

tions begin to overlap,whichwould allow to obtain the ice state

we mentioned in the previous section by adjusting the value

of σ. Then, while for Type I vertices the tail in the distribu-

tion extends to positive energy values, for Type II vertices this

does it toward negative values. This causes Type II vertices to

bemore likely and increase their population as seen in �gure 4.

Another interesting result is that we can see why disorder does

not allow defects to remain at low temperatures as could be

expected. The energy of Type III vertices is not affected by

Table 1. Estimated vertex population according to the energetic
analysis described in section 3.2, compared with the
lowest-temperature vertex population obtained from numerical
simulations.

NI (%) NII (%)

Disorder Energetic Numerical Energetic Numerical

strength analysis simulation analysis simulation

σ = 0.000 100 100 0 0

σ = 0.010 84.7(2) 96.6(6) 15.3(2) 3.4(6)

σ = 0.050 51.0(2) 50.3(5) 49.0(2) 49.7(5)

σ = 0.100 41.0(2) 38.1(1) 59.0(1) 61.9(1)

∆ = 0.298 30.3(1) 25.3(4) 69.7(2) 74.8(4)

disorder since it is always zero and, in addition, the disper-

sion in the energy of Type IV vertices is always greater than

that of other vertices and even their tail grows toward positive

values.

On the other hand, to estimate the values obtained in

the simulations for the population of Type I and II vertices

at low temperatures (�gure 4), we can use the expressions

found for the energies and perform the following algorithm.

Given a vertex with islands of lengths {d1, d2, d3, d4}, if

the energy EI(d1, d2, d3, d4) (equation (12)) is smaller than

EII(d1, d2, d3, d4) (equation (13)), then that vertex is of Type

I and the number of Type I vertices, NI, increases by 1. If, on

the other hand, EI > EII, then NII increases by 1. If we repeat

this enough times, where the con�guration {d1, d2, d3, d4} is

obtained according to the distribution and intensity of the dis-

order we want to analyze, we can estimate the value of NI

and NII in the ground state for each value of σ. Performing

this algorithm for the parameters of �gure 6, we obtain the

results shown in the table 1, and we found that the energetic

analysis, regardless of its simplicity, manages to estimate the

results from the MC numerical simulation, with a specially

good match for σ = 0.05.
Using this simple algorithm, it also possible to show in

detail the ferromagnetic–antiferromagnetic transition with the

geometrical parameters. In �gure 7, for σ = 0, we show how

the population for Type I vertices changes abruptly from 100%

(antiferromagnetic state) to 0% (ferromagnetic state) while

increasing the height parameter h. We found that quenched

disorder yields a rounding in this transition. Samples with dif-

ferent values for h have beenmanufactured experimentally and

the transition observed when measuring the vertex population

for each sample is not abrupt as the non-disordered model

predicts but it is in fact rounded [38].

3.3. Slow dynamics

We characterize the spin dynamics by calculating the

spin–spin autocorrelation function

CSS(t) = 〈Si(0)Si(t)〉, (16)

where the initial orientation of each spin is compared with its

orientation at time t and brakets indicate an average over the N

sites of the lattice. In this way, we have that, at the beginning,

CSS(0) = 1 and, as time passes and the system evolves, CSS(t)

7
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Figure 7. Estimated population of Type I vertices for different
disorder strengths as a function of the height parameter, obtained
according to the algorithm described in section 3.2 for the energetic
analysis.

Figure 8. (a) Spin–spin autocorrelation CSS(t) = 〈Si(0)Si(t)〉 as a
function of MC steps for different temperatures; simulation
parameters: N = 576, rcut = 4, a = 1, h = 0.205, d = 0.702 and
σ = 0.05. (b) Relaxation time as a function of the temperature T for
different disorder strengths. Vertical lines indicate the crossover and
phase transition temperatures for σ = 0.

decreases, indicating the decorrelation and memory loss of the

original state.

In the simplest case, the functional behavior of CSS(t) is

given by an exponential e−t/τ or stretched exponential e−(t/τ )β

[41, 42], where τ is the relaxation time and β is an exponent

that takes values between 0 and 1. The stretched exponential

behavior is usually understood as the superposition of several

exponential relaxations, eachwith a different decay [43]. How-

ever, there are some caseswhereCSS(t) can not be �ttedwith an

exponential function; ours is one of them. To estimate the time

from which we can assume decorrelation, we de�ne τ 0 as the
minimum time for which CSS(t) = 0.00± 0.01 for all t > τ 0,
where the error used in this de�nition is linked to �uctuations

in our simulations. According to this de�nition, τ 0 will be sys-
tematically bigger than τ , but it will be an useful estimator for

our purposes.

In �gure 8(a), we show the spin–spin autocorrelationCSS(t)

for σ = 0.05. Different curves correspond to different temper-

atures. It can be seen that, as we lower the temperature, the

system slows down its dynamics. Note that, to measure CSS,

the parallel tempering algorithm must be off (see appendix A

for computational details).

Using this curves, we can calculate τ 0 for each temper-

ature; we show these results in �gure 8(b). We can observe

how, as disorder strength increases, low temperature dynamic

freezes, losing ergodicity. The energy map is full of local min-

ima induced by disorder and these results are an indicator of

how the system gets trapped in one of those.

4. Conclusions

We studied the effect of disorder on the geometry of an arti�-

cial spin ice with dipolar interactions. First, we analyzed how

disorder affects �rst and second nearest-neighbor bonds, and

we selected appropriate geometrical parameters as well as the

disorder intensities for our study. Then, we studied the ther-

modynamic regimes for different disorder strengths. Without

disorder, the ground state of this system can be ferromagnetic

or antiferromagnetic dependingon the island lengths d. Specif-

ically, when d . 0.702, 100% of the vertices are of Type I

(antiferromagnetic); but, if we increase d, the ground state

will now be 100% Type II vertices (locally ferromagnetic).

This ferromagnetic–antiferromagnetic transition with d, evi-

denced by a peak at the speci�c heat, disappears when dis-

order is added in the island lengths. Instead, the ground state

is formed by a mix of Type I and II vertices. An important

result is that this means that disorder strength can be chosen

and tuned to thermalize the ice regime, where Type I and II

vertices are equally likely. Geometrical disorder shows inter-

esting intermediate regimes such as the 50%–50% ground

state for σ = 0.05, or, for strong disorder, a regime for which

approximately 3/4 of the vertices are Type II and 1/4 are

Type I.

To explain this behavior, we analyzed how disorder affects

the spread of vertex energies. To calculate this energy, we con-

sidered a single vertex and computed the interactions between

each of its four islands. By doing this, we found an asym-

metry in this distribution that makes Type II vertices more

likely. The tail of this distribution moves toward negative val-

ues, while the tail of the distribution of Type I vertices moves

toward positive values. This also allows to understand why

disorder does not permit defects at low temperatures in the nee-

dle model, contrary to expectations. Also, with this analysis,

we show in detail how the ferromagnetic–antiferromagnetic

transition with h is rounded by quenched disorder. Finally,

we found that disorder in the geometry causes a slow-

down in the dynamics of the system which increases with

disorder.
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Appendix A. Computational details

We performed numerical simulations of the described sys-

tem using the Monte Carlo (MC) method and the single-

spin-�ip [45] and short-loop-move algorithms. The latter is

used to avoid the characteristic low-temperature freezing [39,

46] (p 143–148). At low temperatures, the vertices that do

not meet the ice rule disappear (called ‘defects’ in this con-

text), leaving only Type I and II vertices. Flipping a sin-

gle spin in these circumstances implies making a defect

appear, which is unfavorable energetically. As a consequence,

the ocurrence of the single-spin-�ip algorithm drops signif-

icantly, freezing the system. The short-loop-move algorithm

consists of �nding a chain of spins and �ipping them all

together at once. This process keeps the energy constant but

allows access to a different con�guration, thus recovering

ergodicity.

We call MC step to N iterations of the single-spin-�ip

algorithm, where N is the size of the system, plus Nloop

iterations of the short-loop-move algorithm. The value of

Nloop is chosen to maximize the ef�ciency of the simulation.

The energy change is calculated according to equations (1)

and (4), and we use a cut-off distance for the dipolar sum.

According to previous works [17, 19, 39], it is known

that the value for the temperature of the phase transition

which appears in this system depends on this distance; if

one were interested in calculating a more precise value for

this transition temperature, it would be necessary to per-

form an Ewald sum. Also, we assume periodic boundary

conditions.

The use of quenched disorder also makes it necessary to

use the parallel tempering (PT) method [47, 48]. This con-

sists of running simultaneously NPT copies of the system at

different temperatures. This copies, called replicas, are ini-

tialized randomly. At the end of each MC step, the dif-

ferent temperature con�gurations are switched according to

Metropolis algorithm. In this way, the high temperature con-

�gurations become accessible at low temperature and vice

versa, accelerating considerably the dynamics and improv-

ing the ergodicity of the process. The amount of repli-

cas NPT must be chosen in such a way that the method

has high acceptance, thus guaranteeing that all temperature

con�gurations can be exchanged. We chose the parame-

ters to ensure an acceptance greater than 40% at all tem-

peratures. We used this algorithm in all numerical simula-

tions of this paper, except when spin–spin autocorrelation is

measured.

We performed thermal and disorder average to cal-

culate the values of the thermodynamic observables. To

ensure equilibrium, we measured the energy autocorrelation

and we found that at least 106 MC steps are necessary

when σ > 0.05, while 103 MC steps is enough for weaker

disorder.

The program was implemented in C++ using the Thrust

library [49], which allows parallelizing the calculation and

running the same code in both GPUs and CPU’s multicore,

and it is available on demand.
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