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Abstract
We theoretically investigate the electronic structure and optical absorption spectrum of
armchair-edged black phosphorene nanoribbons (APNRs) with and without uniaxial strain
based on the tight-binding Hamiltonian and Kubo formula. We analytically obtain the energy
spectrum and wavefunction, and reveal the band gap scaling law as 1/(N + 1)2 for APNRs in
the presence and absence of uniaxial strain, where N is the number of armchair dimer across
the ribbon. We find the band gap of APNRs linearly increases (decreases) with increasing
in-plane uniaxial tensile (compressive) strain εx/y, but shows contrary dependence on the
out-of-plane uniaxial strain εz. The effective mass versus strain exhibits the same behavior to
that of band gap but with nonlinear dependence. Under an incident light linearly-polarized
along the ribbon, we demonstrate that the inter-band optical transitions obey the selection rule
Δn = n − n′ = 0, but the intra-band transitions are forbidden for both pristine and strained
APNRs originating from the orthogonality between the transverse wavefunctions of the
sublattices belonging to different subbands. Importantly, the transverse electric field or
impurities can release the optical selection rules by breaking the wavefunction orthogonality,
which results in that the optical transitions between any subbands are all possible. Our findings
provide further understanding on the electronic and optical properties of APNRs, which may
pave the way for designing optoelectronic devices based on phosphorene.

Keywords: phosphorene nanoribbons, energy spectrum and wavefunction, uniaxial strain,
optical transitions, tight-binding and Kubo formula

(Some figures may appear in colour only in the online journal)

1. Introduction

Two-dimensional (2D) black phosphorus (BP), as a promising
candidate of future nanoelectronic components, has attracted
intensive research attention [1–9] in recent years due to its
unique electronic and optical properties. Unlike graphene,
BP possesses a layer-dependent direct band gap ranging

3 Authors to whom any correspondence should be addressed.

from 0.3 eV in the bulk to 1.8 eV in the monolayer [1,
10–12]. The field-effect-transistor (FET) based on monolayer
BP (termed as phosphorene) exhibits an on/off ratio of 103

and a carrier mobility of 800 cm2 V−1 s−1 [13]. Sizable
band gap and relatively high mobility in phosphorene bridge
the gap between graphene and monolayer transition metal
dichalcogenides (TMDs), which are important for future nan-
odevices [8, 9, 12]. Inside phosphorene, phosphorus atoms
are covalently bonded with three adjacent atoms to form a
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puckered honeycomb structure due to the sp3 hybridization
[11]. Arising from the low symmetric and high anisotropic
structure, BP exhibits strongly anisotropic electrical [2,
14–17], optical [10, 12, 18, 19] and transport [20] properties.

Tailoring a 2D phosphorene into 1D nanoribbons provide
a freedom to tune its electronic and optical properties aris-
ing from the quantum confinement and unique edge effects
[19, 21–26]. Very recently, few-layer and monolayer BP
nanoribbons are successfully synthesized in experiment
[27–29]. The phosphorus atom configuration on the edge of
phosphorene nanoribbons (PNRs) have two typical morpho-
logic shapes, namely the armchair and zigzag. The armchair-
edged PNRs (APNRs) are semiconductors with direct band
gap depending on the number of armchair dimers N with scal-
ing law of 1/(N + 1)2 [19, 21, 25], while the bare zigzag-
edged PNRs (ZPNRs) are always metallic due to the quasi-flat
edge states [22, 23]. First principle and numerical tight-
binding (TB) calculations have shown that the band structure
of APNRs can be effectively modified by strain [26, 30], and
external electric [23, 25, 31] or magnetic field [14]. Mechan-
ically, phosphorene can hold up to 30% (27%) uniaxial ten-
sile strain along the armchair (zigzag) direction predicted by
the first-principle calculations [32]. Although there are already
many research works on PNRs, the analytical calculation on
the band structure of PNRs are rarely reported [22, 25, 33].
Most of the previous works are based on the first-principles
calculation [19, 22, 26, 31] or numerical diagonalization uti-
lizing the TB model [23, 25]. The analytical energy dispersion
and wavefunction of ZPNRs based on TB model have been
derived in our previous work [34]. For APNRs, the analyti-
cal forms of the energy spectrum and wave functions within
the low energy regime have been worked out based on the
low energy k·p Hamiltonian [25], which is qualitatively con-
sistent with the TB calculations. A more accurate analytical
calculations call for the TB method. Meanwhile, less atten-
tion has been paid to the optical property of APNR [21, 35],
particularly the optical transition selection rule and the strain
effect on them. However, optical spectrum measurements are
fundamental approach to detect and understand the crystal
band structure, which have been successfully performed for
2D phosphorene [12].

In this work, we theoretically study the electronic struc-
ture and optical absorption spectrum of APNRs in the
presence and absence of uniaxial strain utilizing the TB Hamil-
tonian and Kubo formula. By solving the discrete Schordinger
equation, in contrast to the method of numerical diagonaliza-
tion on Hamiltonian, we analytically obtain the energy spec-
trum and wavefunction for APNRs with and without strain.
Using the analytical result, we find that the band gap of APNRs
scales as 1/(N + 1)2 with N the number of armchair dimers
across the ribbon, which was revealed previously by numeri-
cal TB [25] and first principle [19, 21] calculations. According
to our results, this scaling law still holds even under uniaxial
strain. Further, in the presence of uniaxial strain, we demon-
strate that the band gap of a APNR increases (decreases) with
increasing in-plane tensile (compressive) strain (εx/y), while
the band gap dependence on the out-of-plane strain (εz) shows
contrary behaviors to that of the in-plane one. The effective

mass versus strain exhibits identical trend to that of band gap
but with nonlinear dependence. For incident light linearly-
polarized along the ribbon, the inter-band optical transitions
obey the rule Δn = n − n′ = 0, but the intra-band transitions
are forbidden for both pristine and strained APNRs origi-
nating from the orthogonality between the wavefunctions of
the A and B sublattices belonging to different subbands.
The transverse electric field or impurities can release
the optical selection rules by breaking the wavefunctions’
orthogonality, leading to that the optical transitions between
any subbands are all possible.

This paper is organized as follows. In section 2, we ana-
lytically calculate the band structure and the optical transi-
tion selection rule for N−APNR. In section 3, we present
some examples and discussions on the band structure, effec-
tive mass and optical absorptions spectrum of APNRs. Finally,
we summarize our results in section 4.

2. Electronic structure and optical selection rule
for APNRs

2.1. Numerical diagonalization

In the top view of a typical N-APNR shown in figure 1(a),
a1 and a2 are the primitive vector of 2D phosphorene with
a1 = 4.38 Å and a2 = 3.32 Å , and a = 2.207 Å is the
bond length between two adjacent atoms with bond angle
α = 96.79◦ [36]. There are four phosphorus atoms per unit
cell with two in the lower layer and the other two in the upper
one. Owing to the inversion symmetry [23], there are only
two inequivalent atoms in the unit cell of 2D phosphorene
sheet. We termed them as A and B in figure 1(a). The hor-
izontal distance of two atoms in different sub-layers is c =
0.706 Å. The integers 1, 2, . . . , N describe the number of dimer
(two phosphorus sites) lines for APNRs, and the ribbon width
is (N − 1)a2/2. The band structure of phosphorene can be
well described by a five-parameter TB model [36, 37] shown
in figure 1(a). In the presence of in-plane transverse electric
field and impurities, the Hamiltonian of 2D phosphorene is
given by

H =
∑
〈i, j〉

ti jc
†
i c j +

∑
i

(eEtyi + Ui)c
†
i ci, (1)

where the summation 〈i, j〉 runs over all neighboring atomic
sites with hopping integrals tij, and c†i (cj) is the creation
(annihilation) operator for atom site i (j). A transverse elec-
tric field Et will shift the on-site energy to eEtyi with yi the
atom coordination in the y-direction and Ui is the impurities
potential. For pristine phosphorene, the five related hopping
parameters [see figure 1(a)] are t1 = −1.22 eV, t2 = 3.665 eV,
t3 =−0.205 eV, t4 =−0.105 eV, and t5 =−0.055 eV [36]. For
an N-APNR with the number of dimers N across the width,
by applying the Bloch’s theorem the TB Hamiltonian in the
momentum space is [38]

H = H00 + H01eikxa1 + H†
01e−ikxa1 , (2)
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Figure 1. (a) Top view of a typical N−APNR with |a1| = 4.38 Å
and |a2| = 3.32 Å. The bond length between two adjacent atoms is a
= 2.207 Å with bond angle α = 96.79◦. (b) Sketch maps for a
APNR under typical uniaxially tensile and compressive strain
applied in the y-direction. The band structure of 30-APNR (c)
without strain and (d) with uniaxial tensile strain εz = 12%, where
the (red) dashed lines represent the analytical subbands expressed in
equation (11) and the (blue) solid lines indicate the numerical results
based on the TB model. (e) Density of states corresponding to (c)
and (d).

where H00 (H01) describes the intra (inter)-supercell [see
the (black) dashed-line rectangles in figure 1] interactions,
kx is the wavevector along the armchair direction. In our
calculation, we accordingly choose the basis ordered as
(|1A〉, |1B〉, |2A〉, |2B〉, . . . , |mA〉, |mB〉, . . . , |NA〉, |NB〉)T to
write done H00 and H01 in the form of (2N × 2N) matrix for
the supercell adopted. Then, we can obtain the energy spec-
trum En,kx and the corresponding wavefunction |n, kx〉 for the
system by numerical diagonalization.

On the other hand, strain is a powerful method to tune the
electronic properties of phosphorene and its nanoribbons [26],
and it is almost inevitable in fabricated monolayer nanostruc-
tures, manifesting as the formation of ridges and buckling.
Figure 1(b) presents the schematics for a APNR under typi-
cal uniaxial compressive (εy = −6%) and tensile (εy = 6%)
strain exerted along the y-direction. The arrows indicate the
directions of the external forces which produce uniaxial strain.
Uniaxial strains applied along the x- or z-direction are sim-
ilar to that in the y-direction. For briefness, we use positive
(negative)εr to denote the tensile (compressive) strain through-
out the paper. Mechanically, phosphorene can hold up to 30%
(27%) uniaxial tensile strain along the armchair (zigzag) direc-
tion predicted by first-principle calculations [32]. In our cal-
culation, we only consider the strain within 15% in order to
fulfill to the linear deformation condition. When the phospho-
rene subjected to uniaxial strain, the hopping parameters ti
will change. Considering a uniaxial strain ε = diag(εx, εy, εz),

the deformed coordinates r = (x, y, z) are related to the
original ones r0 = (x0, y0, z0) by the relation [39]: (x, y, z)
= ((1 + εx)x0, (1 + εy)y0, (1 + εz)z0). In the linear deformed
regime, expanding the norm of r to the first order of ε, the
deformed r can be expressed as

ri/r0 = 1 + αx
i εx + αy

i εy + αz
iεz (3)

where the coefficients are αx
i = x2

i0/r2
0,αy

i = y2
i0/r2

0,αz
i =

z2
i0/r2

0. According to the Harisson rule [40, 41], the hopping
parameters for p-orbital are related to the bond length as t′i ∝
r−2

i and the angular dependence can be described by the hop-
ping integrals along the σ or π bonds. Though the changes in
angles are almost noticeable, the modification of the hopping
parameters is much smaller than the effect resulting from the
bond lengths deformation. Hence, one can consider only the
variation of the bond lengths in the hopping modulation. Then,
the strain-dependent hopping energy in the linearly deformed
regime is given by

t′i = ti(ri/r0
i )−2 ≈ ti[1 − 2(αx

i εx + αy
i εy + αz

iεz)]. (4)

In order to obtain the band structure and corresponding wave-
function in the presence of uniaxial strain, we only need to
replace the hopping parameters ti in Hamiltonian (2) with ti′.

2.2. Analytical calculation

In this subsection, we outline a solution of the eigenvalue
problem for an N-APNR. Neglecting the influence of the per-
pendicular direction, we only need to consider two inequiva-
lent atoms in the supercell [23, 42]. The electron wavefunction
in a APNR can be written in the form

ψ = CA|ψA〉+ CB|ψB〉, (5)

where ψA/B and CA/B are wavefunctions and combination
coefficients corresponding to A/B sublattices, respectively.
Based on the translational invariance, we choose the plane-
wave basis along the x−direction [see figure 1(a)]. Within the
TB framework, the wavefunctions at two sublattice sites can
be written as

|ψA〉 =
1

NA

N∑
m=1

eikxxmAφmA|mA〉,

|ψB〉 =
1

NB

N∑
m=1

eikxxmBφmB|mB〉,

(6)

where φmA/B are the wave functions at the mth A/B sublattices
in the y−direction and NA/B are the normalized coefficients,
respectively. |mA〉 and |mB〉 are the wave functions of the
hybrid wannier orbit of phosphorous located at A and B sub-
lattices [36], respectively. To solve φmA and φmB, we employ
the hard-wall boundary condition

φ0A = φ0B = 0, φN+1A = φN+1B = 0. (7)

Choosing φmA = φmB = sin(pm) and substituting them into
equation (7), we obtain

p =
nπ

N + 1
= nθ, (8)

3
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where n = 1, 2, 3, . . . , N is the subband index, p is the dis-
cretized wave vector in the y-direction, and θ = π

N+1 . Apply-
ing the normalization condition 〈ψA|ψA〉 = 〈ψB|ψB〉 = 1, we

have NA = NB =
√

Nx(N+1)
2 , where Nx is the number of unit

cells along the x−direction. For a perfect and uniform ribbon
we just need to consider one super-cell, therefore, from here
on we set Nx = 1. Then, the wavefunction ψ in equation (5)
can be written as

ψn,kx =
N∑

m=1

(CAeikxxmAφn
mA|mA〉 ± CBeikxxmBφn

mB|mB〉), (9)

where φn
mA = φn

mA =
√

2/(N + 1) sin
(

nπ
N+1 m

)
is the wave-

function along the y-direction in equation (6), and ± indicates
the conduction/valence band.

By substituting equations (9) and (1) into the Schrodinger
equation Hψ = Eψ, we can easily obtain the following matrix
expression: (

h11 h12

h21 h22

) (
CA

CB

)
= E

(
CA

CB

)
, (10)

where h11 = 4t4′cos(kxa1/2)cos(p), h12 = 2 cos(p)(t′−ikxd
1 +

t′ikx(2c+d)
3 ) + (t′−ikx(2d+c)

5 + t′ikxc
2 ) and h21 = h∗

12. Then, we
immediately obtain the solution for the energy as

En,kx = 4t′4 cos(kxa1/2) cos p± |h12| , (11)

with the normal of h12 given by

|h12| = [4t′21 cos2 p+ t′22 + 4t′23 cos2 p+ t′25

+ 4t′3t′5 cos p cos(3kxa1/2) + 2(4t′1t′3 cos2 p+ t′2t′5)

× cos(kxa1) + 4(t′1t′5 + t′1t′2 + t′2t′3)

× cos p cos(kxa1/2)]1/2.

On the other hand, the Schrodinger equation Hψ = Eψ also
results in CB = ±CAe−iϕ(kx ,p), where ϕ(kx, p) is the argument
of h21. To fulfill the normalized condition |CA|2 + |CB|2 = 1,
we choose CA = 1/

√
2 and CB = ±e−iϕ(kx ,p)/

√
2 [43, 49].

Therefore, equation (9) is written as

ψn,kx =
1√
2

N∑
m=1

(eikxxmAφn
mA|mA〉 ± e−iϕ(kx ,p)

× eikxxmBφn
mB|mB〉) . (12)

Subsequently, the density of states (DOS) can be calculated
accordingly

D(E) =
1

2π

∑
n

∫
BZ
δ(E − En,kx)dkx, (13)

where the kx integration runs over the first Brillouin zone (BZ).
Meanwhile, the effective mass can also be calculated by using
m∗ = (∂2E/�

2∂k2
x )−1.

In the absence of strain, APNRs are always semiconductors.
According to equation (11), the band gap is

EN
g = 2|t2 + t5 + 2(t1 + t3) cos θ|. (14)

In the 2D limit (N →∞, θ → 0), the band gap reduces to the
bulk band gap E2D

g = 2|t2 + t5 + 2(t1 + t3)| = 1.52 eV. For
large N, we have cos θ ≈ 1 − θ2/2, in this case, the band gap
can be rewritten as

EN
g = 2|t2 + t5 + 2(t1 + t3) − (t1 + t3)π2/(N + 1)2|, (15)

which shows a 1/(N + 1)2 band gap scaling law for APNRs
recovered in previous work reported by first principle [19] and
numerical TB calculations [25]. In the presence of uniaxial
strain within the linear deformation regime, we just need to
replace the hopping parameters expressed in equation (15) to
obtain the band gap as

EN
g (εr) = 2

∣∣EN
g (0) − 2εr[t2αr

2 + t5α
r
5

+ 2
(
t1α

r
1 + t3α

r
3

)
cos θ]

∣∣ , (16)

where εr (r = x, y, z) is the tensile (compressive) uniaxial
strain applied along the r direction. Equation (16) shows that
the 1/(N + 1)2 band gap scaling law of APNRs still holds even
in the presence of uniaxial strain. It also indicates that the
band gap of APNRs linearly depend on the uniaxial (tensile
or compressive) strain along the r direction.

The band structures of 30-APNR without and with uniax-
ial tensile strain εz = 12% are presented in figures 1(c) and
(d), respectively. As shown in the figures, our energy spectra
analytically obtained from equation (11) [see the (red) dashed
lines] perfectly matches the numerical TB dispersions [the
(blue) solid lines] in both cases. In comparison figure 1(c)
with figure 1(d), it indicates that the uniaxial strain effectively
modifies the band structure of APNR. Under a 12% uniax-
ial tensile strain along the z-direction which may be realized
experimentally by creating nanobubbles as that in graphene
[44], the band gap is closed, leading to a semiconductor–metal
transition with Dirac dispersion, which is consistent with the
results in previous work [45]. The semiconductor–metal tran-
sition is also reflected in the density of states (DOS) depicted
in figure 1(e). In the absence of strain, the DOS is zero near the
Fermi energy. In contrast, there is a finite DOS near the Fermi
level under the critical uniaxial strain along the z-direction. In
addition, the number of peaks and the shape of the DOS in
figure 1(e) reflect the main features of the band structure shown
in figures 1(c) and (d). There are a sequence of sharp peaks in
the DOS outside the band gap, which correspond to Van Hove
singularities [46] induced by the extreme of their quantized
subbands.

3. Optical selection rule

In order to detect the above calculated band structure of APNR,
next we explore its optical response in this subsection. One
useful physical quantity to understand the optical property
is the joint density of states (JDOS) representing all possi-
ble optical transitions among the subbands, which is generally
given by

DJ(ω) =
gs

Lx

∑
n,n′,kx

[ f (En,kx) − f (En′,kx )]δ(En,kx − En′,kx + �ω),

(17)

4
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where the sum runs over all states |n, kx〉 and |n′, kx〉, gs is 2
for spin degree, Lx the ribbon length, �ω the photon energy,
and f(E) = 1/[exp(E − EF)/kBT + 1] the Fermi–Dirac distri-
bution function with Boltzman constant kB and temperature
T. Here, we take a Lorenz broadening 1

π
Γ

(En,kx−En′ ,kx
+�ω)2+Γ2

to approximate the δ-function, where Γ is a phenomenologi-
cal constant accounting for the energy level broadening factor.
Meanwhile, assuming the incident light is polarized along the
longitudinal (x-)direction, the optical conductance based on
the Kubo formula is given by [47, 48]

σ(ω) =
gs�e2

iLx

∑
n,n′,kx

[ f (En,kx) − f (En′,kx )]|〈n, kx|vx|n′, kx〉|2
(En,kx − En′,kx )(En,kx − En′,kx + �ω + iΓ)

,

(18)
where vx = ∂H/∂px is the velocity operator, which is valid and
independent of the band structure model, and |n, kx〉 = ψn,kx

is the electron wavefunction in a APNR. For a linear polar-
ized light, the optical transition matrix elements satisfy vn,n′(kx)
= 〈n, kx|vx|n′, kx〉 = 〈ψn,kx |vx|ψn′,kx 〉, which determines the
optical transition selection rules. A zero matrix element
vn,n′(kx) means a forbidden transition. The integral of the inter-
band optical transition matrix elements Vn,n′ =

∫
dkx|vn,n′(kx)|2

is proportional to the transition probability between the nth and
n′th subband.

By using the commutator vx = i
�

[x, H] combined with
some arithmetic (see details in appendix), the optical transition
matrix elements are obtained as

〈n, kx| vx |n′, kx〉 =
i

2�

N∑
m=1

[Gn,n′(1 − ei[ϕ(kx ,pn)−ϕ(kx ,pn′ )])

+ Fn,n′e
−iϕ(kx ,pn′ ) + F∗

n,n′e
iϕ(kx ,pn) ] Kn,n′ ,

(19)

where Gn,n′ = 4it4′cos(n′θ)(c + d)sin[kx(c + d)], Fn,n′ =

2 cos(n′θ)[t′−ikxd
1 − t′ikx(2c+d)

3 ] + [(2d + c)t′−ikx(2d+c)
5 − ct′ikxc

2 ],
and the overlap integral Kn,n′ between the wavefunction of A
and B atoms corresponding to different subbands is given by

Kn,n′ =
N∑

m=1

φn
mAφ

n′
mB = δn,n′ . (20)

From equation (20), we find explicitly that the inter-band opti-
cal selection rule for APNR is Δn = n − n′ = 0 regardless
of the ribbon width, while the intra-band optical transitions
are forbidden due to the orthogonality of the wavefunction
corresponding to different sublattice i.e., the A and B atoms
indicated in figure 1(a). In the presence of impurities or trans-
verse electric field, the wavefunction in the y−direction does
not have a simple sine form as expressed in equation (9). The
overlap integration Kn,n′ will be a little bit complicated (see the
appendix) and the orthogonality between the wavefunction of
A and B sublattices belonging to different subbands will break
down, leading to an enhanced optical absorption as shall be
discussed later.

Figure 2. The band gap of APNRs as a function of (a) the number
of dimers N and (b) uniaxial strain for N = 30. The effective masses
of APNRs around CBM versus (c) the number of dimers N and (d)
uniaxial strain for N = 30. The arrows in (a) and (b) represent the
counterpart in 2D phosphorene. The red, blue and black lines in (b)
and (d) indicates the uniaxial strain along the x−, y− and
z−direction, respectively.

4. Results and discussions

In this section, we will show some examples for the band
structure and optical absorption spectra both with and with-
out strain. The temperature is 4 K and the level broadening
Γ is 4 meV here. In our work, we choose 30-APNR as a
representative, and the Fermi level is 0 eV throughout the
paper.

Figures 2(a) and (b) present the band gap of APNRs ver-
sus the number of dimers N and uniaxial strain with N = 30,
respectively. As shown in figure 2(a), the band gap of pris-
tine APNRs sensitively depend on the number of dimers N
due to the quantum confinement [19, 23]. As expressed in
equation (14), the band gap decreases rapidly to that of the
2D phosphorene sheet E2D

g = 1.52 eV scaling as 1/(N + 1)2,
which is the same as that reported by the previous first
principle [19] and numerical TB [25] calculations. Accord-
ing to figure 2(b), the APNR’s band gap linearly increases
(decreases) with increasing in plane uniaxial tensile (compres-
sive) strain εx/y (see the red and blue lines) with different slope.
In contrast, it linearly decreases (increases) with the increas-
ing of out-of plane uniaxial tensile (compressive) strain εz

(see the black line). In principle, the both in-plane and out-of
plane strains can close the band gap and induce a semicon-
ductor–metal transition, but the critical in-plane strain is too
large to realize experimentally. In our calculation, the criti-
cal strains closing the band gap along z-directions is εz = 12%
tensile strain, which may be realized experimentally by creat-
ing nanobubbles as that in graphene [44]. At the critical value
εz = 12%, there is a Dirac dispersion as shown in figure 1(c),
leading to a semiconductor–metal transition. Similarly, the
effective masses around the CBM and VBM versus the the
number of dimers are depicted in figure 2(c). As shown in
the figure, both the effective masses around the CBM and

5
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Figure 3. (a) The inter-band JDOS [(red) dashed-dotted lines] and
the optical absorption [(blue) solid lines] as a function of incident
photon energy with σ0 = 2e2/h for 30-APNR. The Fermi level EF is
chosen as 0 eV. (b) The integral of the inter-band optical transition
matrix elements Vn,n′ =

∫
dkx|vn,n′ (kx)|2 as a function of the ribbon

width N.

VBM rapidly reduce to the counterpart of 2D phosphorene
sheet [14] m∗

cx = 0.167m0, m∗
vx = 0.183m0 with increasing rib-

bon width. The effective mass around the CBM for 30-APNR
versus uniaxial strain is presented in figure 2(d). As shown
in the figure, we find the effective mass around CBM non-
linearly depend on not only the out-of-plane component of
the strain but also the in-plane strain because the dispersion
is non-linearly dependent on the strain [see equation (11)]. In
specification, the effective mass non-linearly increases with
the increase of in-plane uniaxial strain εx/y but decreases with
the increase of out-of plane uniaxial strain εz. At the crit-
ical strain i.e., εz = 12%, which closes the band gap, the
effective mass becomes zero. The effective mass around the
VBM versus uniaxial strain is not discussed here because
there is little difference from that around CBM for a certain
APNR.

Figure 3(a) presents the inter-band JDOS and the optical
absorption as a function of incident photon energy for pristine
30-APNR. As shown by the (red) dashed line, we find JDOS
peaks at different photon energy known as van Hove singu-
larities, which present all possible optical transitions among
subbands. Since pristine APNRs are always semiconductor,
the JDOS peaks appear only when the photon energy is higher
than the band gap. As disscussed in the section 3, in pristine or
uniaxial strained APNRs, the interband optical selection rule
is Δn = n − n′ = 0 arising from the orthogonality between
the wavefunctions of the A and B sublattice belonging to
different subbands [see equation (20)]. This is explicitly
reflected in the optical absorption spectrum. Compared the
optical absorption spectrum with the JDOS one, we find that
many absorption peaks are missing and only the absorption
peaks satisfying the selection rule Δn = 0 appear, which
is similar to that in gapped armchair graphene nanoribbons
[49, 50]. Moreover, it should be noted that there is a little dis-
crepancy between the JDOS and the optical absorption

spectrum since the optical transition matrix element
〈n, kx|vx|n′, kx〉 sensitively depends on the derivatives
∂E/∂�kx of each subbands. The intra-band optical absorption
are not discussed here because all intra-band transitions are
forbidden according to equation (20). Figure 3(b) shows
the integral of the interband velocity matrix element Vn,n′

which is proportional to the optical transition probability
between the nth and n′th subbands as a function of the
number of armchair dimer N, where the blue/black solid line
indicates V1,1/V2,2. Here, we only need to consider the n = n′

case due to the optical transition rules in equation (20). As
shown in the figure, we find both V1,1 and V2,2 gradually
decrease to a identical value with the increasing of the ribbon
width (∼ N). From equation (19), we know the Vn,n was
related to the ribbon width by cos2(θn). For wider APNRs,
we have θ → 0 and cos(θn) → 1, which means all of the
allowed transition integrals trend to a identical value which
are just the transition integrals of 2D phosphorene. If the
light polarized perpendicularly to the ribbon axis, i.e., the
zigzag (y-)direction, the optical transition selection rules
will be different from the results reported here arising from
the anisotropic optical absorption in 2D phosphorene [18].
Meanwhile, the corresponding optical conductance is smaller
than the results discussed in this work because the effective
mass along the zigzag direction is larger than that along the
armchair direction.

Figure 4 presents the contour plot of the interband opti-
cal absorption conductance versus photon energy and uniax-
ial strain for 30-APNR. According to equation (19) or (20),
the optical selection rule Δn = 0 still holds in the pres-
ence of uniaxial strain. Hence, we find only several con-
ductance peaks in the absorption spectra and the resonance
photon energy increased rapidly [see figures 4(a)–(c)] under
a certain uniaxial strain. The photon energy of the band-edge
absorption (BEA), namely the energy of the first absorption
peak, which is just the band gap of APNRs under uniax-
ial strain, namely EN

g (εr). As shown in the figure, the ener-
gies of BEA are blue (red) shifted with increasing in-plane
uniaxial tensile (compressive) strain εx/y [see figures 4(a)
and (b)], while it is red (blue) shifted with increasing out-of
plane uniaxial tensile (compressive) strain εz [see figure 4(c)].
These mean that the energy of BEA can be used to deter-
mine the strain tunable band gap EN

g (εr) in equation (16).
Compared with the unstrained data in figure 3(a), there are
quantitative difference between them since the uniaxial strain
modifies the effective masses significantly [see figure 2(d)].
Therefore, although the uniaxial strain does not change opti-
cal selection rule of APNRs, it modulates the optical absorp-
tion effectively by changing the band gap and effective
masses.

A transverse electric field (TEF) can induce a Stark effect
[51–53] for APNR which makes a significant change of the
band structure and wavefunctions. Figure 5(a) depicts the
inter-band JDOS [(red) dash-dotted line] and optical absorp-
tion [(blue) solid line] spectrum for 30-APNR under a TEF
Et = 0.00 eV Å−1 with corresponding band structure shown
in figure 5(b). In the presence of TEF, the wavefunctions φn

mA
and φn

mB are no longer the simple sine function described in
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Figure 4. The inter-band optical absorption conductance in unit of σ0 = 2e2/h as a function of the incident photon energy �ω and uniaxial
strain along the (a) x−, (b) y− and (c) z−direction for 30-APNR. The arrows indicate the band gap versus uniaxial strained for
30-APNR.

equation (9), which will break the orthogonality relation in
equation (20) (see the appendix). Therefore, the optical transi-
tions are all possible between any different subbands. Indeed,
compared the optical absorption data with that of pristine 30-
APNR [see figure 3(a)], all missed optical absorption peaks
reappear one to one correspondence to the JDOS due to the
break down of the selection rule Δn = 0 arising from the
invalidation of the orthogonality between the wavefuncions in
the transverse direction. A stronger TEF can close the band
gap and lead to the inversion of conduction and valence bands
[52, 53] [see figure 5(d)]. Again, a TEF will release the opti-
cal selection rules regardless of its strength because it breaks
the wavefunction orthogonality, which results in that the opti-
cal transitions between any subbands are all possible. There-
fore, most of the optical absorption peaks are reappeared cor-
responding one to one with the JDOS shown in figure 5(c).
However, many of the optical conductance peaks in the low
frequency regime (�ω < 1 eV) are still missing. The reason is
that the Stark effect induced by the TEF will reduce the over-
lap integral between the wavefunctions of the electron and hole
state s [53], which influences the optical transition selection
rules directly [see equation (A3)]. Therefore, in the band inver-
sion regime, the optical transitions between the subbands with
zero overlap integral are forbidden. This mainly happens in the
low frequency regime since the wavefunction of the electron
and hole states in the low energy regime are spatially sepa-
rated [53]. Hence, the optical conductance in figure 5(c) in
the low frequency regime is quite small [see the (blue) solid
line].

In real experiment, it is difficult to avoid impurities and
defects in samples, which may consequently affect the optical
properties of APNRs by changing the band structure and wave-
function. Figure 5(e) presents the JDOS and optical absorp-
tion peaks for 30-APNR with impurities distribution on the
ribbon center (the 15th dimer line). We model the impurity
effect by changing the on-site energy of the corresponding
atoms, which is widely used in previous works [54]. The

Figure 5. The inter-band JDOS [(red) dashed-dotted lines] and the
optical absorption [(blue) solid lines] for 30-APNR under a uniform
transverse electric field (a) 0.005 eV Å−1, (c) Et = 0.057 eV Å−1

and (e) with impurities localized at the ribbon center (the 15th row)
with impurities potential Ui = 2 eV. The corresponding band
structure of (a), (c) and (e) are shown in (b), (d) and (f),
respectively.

impurities potential Ui equals to 2 eV and the correspond-
ing band structure is shown in figure 5(f). From figure 5(f),
we find the subbands contributed by the impurities are shifted
but other subbands remain unchanged. However the impurities
change the wavefunction of the APNRs and hence forth the
optical transition selection rule. As shown in figure 5(e), we
find some extra peaks in the optical absorption spectrum com-
pared with that of the pristine 30-APNR. The reason is that the

7
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wavefunctions of APNRs along the transverse direction in
the presence of impurities are no longer the sine function
expressed in equation (9). Hence, the orthogonality between
the transverse wavefunction of the pristine APNRs, namely
equation (20) become invalid (see the appendix), contributing
to that the optical transitions among all subbands are possi-
ble. As a result, all the optical absorption peaks appear one to
one correspondence to JDOS, which consequently enhances
the optical absorption.

5. Summary

In summary, we have analytically studied the uniaxial strain
effect on the electronic structure and optical absorption prop-
erties of APNRs utilizing the TB Hamiltonian and Kubo for-
mula. We obtained the energy spectrum of APNRs under uni-
axial strain analytically and reveal the 1/(N + 1)2 band gap
scaling law directly. In the presence of uniaxial strain, we find
the band gap of a APNRs increases (decreases) with increas-
ing tensile (compressive) in-plane uniaxial strain εx/y, while
the band gap dependence on the out-of-plane uniaxial strain
εz shows contrary behavior to that of the in-plane one. The
effective mass versus strain exhibits the same trend as that
of the band gap but with nonlinear dependence. Under an
incident light linearly-polarized along the ribbon, we found
that the inter-band optical selection rule is Δn = n − n′ = 0,
but the intra-band optical transitions are forbidden for both
pristine and strained APNRs originating from the orthogo-
nality between the wavefunctions of the A and B sublat-
tice belonging to different subbands. Both the transverse
electric fields and impurities can break the wavefunctions’
orthogonality, and release the optical selection rules. Our
results shed light on the optical transitions of APNRs, which
may be useful in designing optoelectronic devices based on
phosphorene.
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Appendix

To present the optical transition selection rule, we calculate
the optical transition matrix element in equation (19). Utiliz-
ing the commutator vx =

i
�

[x, H] [55] combined the general
wavefunction equation (12)

ψn,kx =
1√
2

N∑
m=1

(eikxxmAφn
mA|mA〉 ± e−iϕ(kx ,p)

× eikxxmBφn
mB|mB〉) , (A1)

then the optical transition matrix elements for inter-band tran-
sition are obtained as

vn,n′(kx) = 〈n, kx| vx |n′, kx〉 =
i
�
〈ψn,kx |Hx − xH |ψn′,kx 〉 .

(A2)
There are four kinds of transitions, namely from A to
A atoms, from B to B atoms, from A to B atoms and
from B to A atoms. For the TB model of APNRs,
there are also five hoppings between the different
atoms, including 〈mA|H |m′B〉 = 〈mB|H |m′A〉 = t′1
for m′ = m ± 1, 〈mA|H |m′B〉 = 〈mB|H |m′A〉 = t′2 for
m′ = m, 〈mA|H |m′B〉 = 〈mB|H |m′A〉 = t′3 for m′ = m ± 1,
〈mA|H |m′B〉 = 〈mB|H |m′A〉 = t′4 for m′ = m ± 1, and
〈mA|H |m′B〉 = 〈mB|H |m′A〉 = t′5 for m′ = m. Then,
the transition matrix elements can be written as

vn,n′(kx) =
i

2�

N∑
m,m′=1

(xm′A − xmA)eikx(xm′A−xmA)(φn
mA)∗φn′

m′A 〈mA|H |m′A〉 − (xm′B − xmA)eikx(xm′B−xmA)e−iϕ(kx ,pn′ )(φn
mA)∗

× φn′
m′B 〈mA|H |m′B〉 − ei[ϕ(kx ,pn)−ϕ(kx ,pn′ )](xm′B − xmB)eikx(xm′B−xmB)(φn

mB)∗φn′
m′B 〈mB|H |m′B〉

+ (xm′A − xmB)eikx(xm′A−xmB)eiϕ(kx ,pn)(φn
mB)∗φn′

m′A 〈mB|H |m′A〉

=
i

2�

N∑
m=1

2it′4(c + d) sin[kx(c + d)](φn
mA)∗(φn′

m−1A + φn′
m+1A) − ei[ϕ(kx ,pn)−ϕ(kx ,pn′ )]

× 2it′4(c + d) sin[kx(c + d)](φn
mB)∗(φn′

m−1B + φn′
m+1B) − e−iϕ(kx ,pn′ )

× {[t′3(2c + d)eikx(2c+d) − t′1de−ikxd](φn
mA)∗(φn′

m−1B + φn′
m+1B) + [ct′2eikxc − (2d + c)t′5e−ikx(2d+c)](φn

mA)∗φn′
mB}

+ eiϕ(kx ,pn){[t′1deikxd − t′3(2c + d)e−ikx(2c+d)](φn
mB)∗(φn′

m−1A + φn′
m+1A) + [(2d + c)t′5eikx(2d+c) − ct′2e−ikxc](φn

mB)∗φn′
mA},

(A3)

In the absence of external electric field or impurities, substituting the wavefunction φn
mA = φn

mB =
√

2/(N + 1) sin
(

nπ
N+1 m

)
and the relation sin(x) + sin(y) = 2 sin[(x + y)/2]cos[(x− y)/2] into the above equation, the optical transition matrix elements
are obtained as
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vn,n′(kx) =
i

2�

N∑
m=1

{ 4t′4i(c + d) sin[kx(c + d)] cos(n′θ)(φn
mA)∗φn′

mA − 4t′4i(c + d) sin[kx(c + d)]ei[ϕ(kx ,pn)−ϕ(kx ,pn′ )] cos(n′θ)(φn
mB)∗

× φn′
mB − {2 cos(n′θ)[t′3(2c + d)eikx(2c+d) − t′1de−ikxd] + [ct′2eikxc − (2d + c)t′5e−ikx(2d+c)]}e−iϕ(kx ,pn′ )(φn

mA)∗φn′
mB

+ {2 cos(n′θ)[t′1deikxd − t′3(2c + d)e−ikx(2c+d)] + [(2d + c)t′5eikx(2d+c) − ct′2e−ikxc]}eiϕ(kx ,pn)(φn
mB)∗φn′

mA }

=
i

2�

N∑
m=1

[Gn,n′(1 − ei[ϕ(kx ,pn)−ϕ(kx ,pn′ )]) + Fn,n′e
−iϕ(kx ,pn′ ) + F∗

n,n′e
iϕ(kx ,pn)]Kn,n′ (A4)

where Gn,n′ = 4it4′cos(n′θ)(c + d)sin[kx(c + d)], Fn,n′

= 2 cos(n′θ)[t′1de−ikxd − t′3(2c + d)eikx(2c+d)] + [(2d +
c)t′5e−ikx(2d+c) − ct′2eikxc] and the overlap integration Kn,n′

between A and B atoms corresponding to different subband
index is given by

Kn,n′ =

N∑
m=1

φn
mAφ

n′
mB = δn,n′ . (A5)

From equation (A5), we can find explicitly that the optical
transitions obey the rules n = n′ because of the orthogonality
of wave functions. However, in presence of the external field,
the wavefunctions φn

mA and φn
mB are no longer the simple sine

function and the orthogonality relation in equation (A5) will
break down, which means that the optical transitions among
all subbands are allowed.
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