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Abstract. A lattice of three-state stochastic phase-coupled oscillators exhibits
a phase transition at a critical value of the coupling parameter a, leading to
stable global oscillations. On a complete graph, upon further increase in a,
the model exhibits an infinite-period (IP) phase transition, at which collective
oscillations cease and discrete rotational (C5) symmetry is broken. The IP phase
does not exist on finite-dimensional lattices. In the case of large negative values
of the coupling no synchronization is expected, but nonetheless it was shown
that travelling-wave steady states are stable, displaying local order (Escaff
et al 2014 Phys. Rev. E 90 052111). Here, we verify the IP phase in systems
with long-range coupling but of lower connectivity than a complete graph and
show that even for large positive coupling, the system sometimes fails to reach
global order. The ensuing travelling-wave state appears to be a metastable
configuration whose birth and decay (into the previously described phases) are
associated with the initial conditions and fluctuations.
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1. Introduction

Systems of coupled oscillators exhibit diverse symmetry-breaking transitions to a glob-
ally synchronized state. In the paradigmatic Kuramoto model, for instance, oscillators
with distinct intrinsic frequencies w; coupled via their continuous phases 6; can exhibit
stable collective oscillations, breaking time-translation invariance [1-5]. Amongst dis-
crete-phase models, the paper-scissors-stone game is an example of a system with three
absorbing states that can exhibit either global oscillations or spontaneous breaking of
discrete rotational (C5) symmetry [6-10]. More recently, Wood and coworkers proposed
a family of models of phase-coupled three-state stochastic oscillators that undergo a
phase transition to a state exhibiting global oscillations (GO) [11-14] for sufficiently
strong coupling. We shall refer to these as Wood’s cyclic model (WCM). Although the
WCM also has (5 symmetry, it has no absorbing state. In addition to their intrinsic
interest in the context of nonequilibrium phase transitions, this family of models serve
as a highly simplified description of collective neuronal behavior.

The first WCM [11] was found to undergo a second phase transition upon further
increase of the coupling [15], at which the period of oscillation becomes infinite, thereby
breaking (5 symmetry. In [15], this infinite-period (IP) transition was studied on a
complete graph (all-to-all coupling), and a novel order parameter, involving the mean
rate of change of the probability distribution, was proposed. On the basis of a nucle-
ation scenario, the authors of [15] argued against the existence of an IP transition on
finite-dimensional lattices with short-range interactions, but left open the question of
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its occurrence on networks with nonlocal interactions. Here we study a WCM on (1)
regular rings with interactions up to 2K-neighbors, varying the interaction range K,
and (2) small-world networks. Using numerical simulations to study the order param-
eter and its variance, we verify the existence of GO and IP phase transitions on these
structures. For regular rings of N nodes, the degree of connectivity is characterized by
a = K/N such that « € (0,0.5). A key question is the minimum value of a necessary
to observe the GO and IP phases as N — oo. Our results suggest that any a > 0 is
sufficient.

We also provide evidence that for intermediate interaction ranges, global synchroni-
zation depends sensitively on initial conditions: some realizations with a random initial
configuration show no global synchronization. Such events persist even as the number
of neighbors grows in proportion to the system size. In this situation, the final state
may be a travelling wave, as observed by Escaff et al [16] in the case of anti-crowding,
i.e. interactions favoring anti-synchronization between neighbors.

The remainder of this paper is organized as follows. In section 2 we review the WCM
and the essentials of the transitions to the GO and IP phases. We report our results
on the GO and IP phase transitions on regular rings, and on small-world networks, in
sections 3 and 4, respectively. Our conclusions are discussed in section 5.

2. Model

In the WCM, the state j, at site z (x =1,...,N) can take one of three values,
Jz € {0, 1,2}, corresponding to a phase ¢, = 27j, /3. The only allowed transitions are
those from j to j+ 1 (modulo 3) (see figure 1), which implies that detailed balance is
violated. If site z is in state j, its transition rate to state j+ 1 is:

)

a(ng 1 — nm‘)]

gjj+1 = g €xp [ >

where g is a constant rate, a is the coupling parameter, n, is the number of nearest
neighbors of site z in state k, and z is the number of nearest neighbors. Since these rates
are invariant under cyclic permutation of the state indices, the model is invariant under
the group (5 of discrete rotations.

Let N; be the total number of sites in state j, so that Ny + Ny + N, = N, the total
number of sites. As discussed in [15], the mean-field (MF) approximation, obtained
by replacing n,;/z in the argument of the exponential of equation (1) with the corre-
sponding state fraction, n; = N;/N, yields three nonequilibrium phases, separated by
two continuous phase transitions. For small coupling (a < a.= 1.5), the disordered
phase, with n = (1/3,1/3,1/3) = ny3, is the stable stationary solution of the MF equa-
tions. (n denotes the vector of state fractions.) For a between a. and a higher value,
a® =~ 3.102439915 64, there is no stable stationary solution and the MF equations admit
an oscillatory solution (a limit cycle) in which states 0, 1 and 2 periodically assume the
role of the majority. As a is increased above a,, the frequency w of oscillation decreases
continuously, becoming zero at a°, signalling the IP transition. For a > a‘, three sta-
tionary solutions, n; appear, such that state ¢ represents the (permanent) majority.
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Figure 1. Transition rates for an isolated unit.

Thus C3 symmetry is broken for a > a°. (The three solutions are, naturally, related via
cyclic permutation of indices in state space.)

The WCM is characterized by a pair of order parameters. First, one has the familiar
Kuramoto synchronization parameter [1, 3, 11],

r=((|v]),),, (2)
where
1L
v= N;el%. (3)

In equation (2), (), denotes a time average over a single realization (in the stationary
state), and (), an average over independent realizations. Note that 7> 0 is consistent
with, but does not necessarily imply, globally synchronized oscillation. The latter is
characterized by a periodically varying phase of v [17-20].

In the MF analysis, the transition to the synchronized regime (the GO transition) is
associated with a supercritical Hopf bifurcation at a = a. = 1.5: the trivial fixed point
n; /3 loses stability at a = a., and a limit cycle encircling this point appears. For a 2 a.,
sustained oscillations in n; characterize synchronization among the oscillators (figure
2(a)). Correspondingly, r grows continuously ~ (a — a.)” at the transition (figure 2(c)),
with a mean-field exponent 5 = 1/2 [11]. The scaled variance

xr = L [(()7), = r*] (4)

diverges with the system size at criticality, as shown in figure 2(d) for simulations on
the complete graph [15]. The GO transition is associated with breaking of the continu-
ous time-translation symmetry: the nj(t), are periodic for a 2 a.. Increasing a above a,
enhances synchronization among the oscillators, leading to increasing oscillation ampl-
itudes, as shown in figure 2(b).

Wood et al found that the increasing amplitude of oscillation is accompanied by a
decreasing angular frequency w = 27/(7), where (7) is the mean time between peaks in
ny. (figures 2(a)—(c)). This can be understood qualitatively from the exponential depend-
ence of the transition rates of equation (1) on the neighbor fractions: when a state is
highly populated, the rate at which oscillators leave it becomes very small. In mean-
field theory, when a reaches the upper critical value af, three symmetric saddle-node
bifurcations occur simultaneously, and the period of the collective oscillations diverges
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Figure 2. Panels (a) and (b) show the evolution of P, for a=1.6 and a=3,
respectively. Points: simulations of a complete graph of N nodes; lines: mean-field
solution. (c) Dependence of r and w on a, exhibiting the two phase transitions.
(d) x, versus a, showing peaks at the transitions (system sizes as in (c)).

[15]. Above a°, there are three symmetric attractors in the system, and 3-fold rotational
(C3) symmetry is spontaneously broken. As in condensation or a ferromagnetic phase
transition [21], freezing of the majority state does not imply that individual oscillators
freeze as well. The transition rates of individual oscillators do decrease with increasing
a, but only vanish in the limit a — oo, when one of the states is fully occupied.
It is convenient to define an order parameter 1 that is identically zero (in the
infinite-size limit) for a > a°. Assis et al proposed [15],
R
|”(M = N Z (507jz + e2ﬂ/351,jz + 6_27”/352,]'1) Yol )

r=1

where 0;; is the Kronecker delta and v, = g, j,+1 is the transition rate at site z (see
equation (1)). Thus |¢| involves not only the configuration, but the rate at which the
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Figure 3. Order parameter (|¢|) as a function of coupling a in mean-field theory
and on the complete graph, for sizes as indicated. Reproduced from [15]. © IOP
Publishing Ltd. All rights reserved.

latter evolves. On the complete graph, 7, is the same for all sites z in the same state j.
Denoting this rate by +;, the order parameter can be written (in MF analysis) as

2

W =D (g — myoao)* )

J=0

Both the disordered phase (a < a.) as well as the IP phase (a > a“) have stable, sta-
tionary solutions, n*. Since n; = 0 implies njy; = nj_;7;-1, i.e. zero net change in the
probability of state j, we have |[¢)| = 0 in equation (6) for both cases (a similar line of
reasoning can be applied directly to equation (5)).

Figure 3 shows (|¢|) versus a in MF theory, and on the complete graph (the latter
via numerically exact solution of the master equation), confirming that |¢| functions as
an order parameter to detect both the GO and IP phase transitions. The MF critical
behavior is (|¢]) ~ (a — a.)'/? for a \, a. and (||} ~ (a® — a)'/? for a * a®. On the com-
plete graph, the order parameter decays with system size as (|1)|) ~ N~*/* at a = a. and
as N704203®3) at ¢ = @ The first result is typical of mean-field-like scaling with system
size at a continuous phase transition, as argued in [15].

The results for the IP transition in MF and on a complete graph are in sharp con-
trast to what is found on finite-dimensional lattices. The absence of such a transition
was verified numerically on hypercubic lattices in dimensions d < 4 in [15]. This ref-
erence also provides a quantitative argument showing that on finite-dimensional lat-
tices, a j-state majority cannot persist indefinitely: it is always susceptible to change
via nucleation of a cluster of state 7 + 1. The authors of [15] conjectured that the IP
transition would occur on structures in which a site interacts with a nonzero fraction
of all other sites (as the system size tends to infinity). In the following sections we test
this conjecture on two structures, regular rings with extended interactions, and small-
world networks.
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Figure 4. A regular ring is an undirected graph with N nodes arranged in circular
fashion, with each connected to its K nearest neighbors in each direction. Here we
show an example with N =12 and K = 2.

3. The WCM on regular rings

A regular ring is constructed starting from a graph of N nodes arranged in circular
fashion. Considering one node at a time in a clockwise manner, we connect it to its K
nearest neighbors in the clockwise direction; an example of such a structure is shown
in figure 4. We define the connectivity of a regular ring graph by a = K/N, such that
a = 1/N signifies a one-dimensional chain while a = 0.5 represents a complete graph.
Thus, one can interpolate from the one-dimensional to an infinite-dimensional hyper-
cubic lattice (complete graph) varying a over the interval (O, %} It is known that the
WCM on hypercubic lattices of dimensions 1 and 2 cannot sustain ordered phases [11,
15]. Since a = 0.5 represents the complete graph, there must be at least one threshold
a = o above which one or both phase transitions (GO and IP) occur, varying a.

Different from hypercubic lattices, in which coupling is local, for a > 0 the coupling
on ring graphs is nonlocal. The manner in which the interaction range scales as N — oo
can be chosen in different ways; the simplest, which we consider here, is to fix o so that
K o« N (More precisely, K = [aN] where [z] denotes the smallest integer larger than
x). It is reasonable to expect that phase transitions occur for any fixed o > 0, since the
interaction range K then tends to infinity with N.

3.1. Scaling behavior: phase boundary

The dynamics as N increases can be studied by defining the scaled variances of the
order parameters. These quantities are expected to diverge in the thermodynamic limit
when the system undergoes a continuous phase transition [22]. The scaled variances of
order parameters r and ¥ can be defined through equations (3) and (5) as:

X = N [{o)2). = (o)),

xo =N [((1wh:), = ({5, (M
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where (), and (), are averages over time and over independent realizations, respectively.

In simulations, the system is allowed to relax to a steady state, starting from its
initial configuration. Once the steady state has been attained, the order parameters
are averaged over the remainder of the evolution. As we will see, the choice of initial
condition is important for some values of the interaction range K; we will focus on
two different setups: random initial configurations, in which the initial phase of each
oscillator is chosen uniformly and independently among the three possible values in
{0,27/3,47/3}, and a uniform initial condition, in which ¢; = 0, Vi.

In the following we describe results for uniform initial conditions. In figure 5 we
plot the order parameters and their associated variances for K= 1 (i.e. « = 1/N). Both
quantities are shown to decrease with system size (for the 1D case in particular this
behavior is the same regardless of initial configuration), indicating the absence of phase
transitions. In figure 6, the same quantities are shown for regular rings with N = 1000
and various « values. As expected, the order parameters and their variances approach
the complete-graph limit as a nears the value 1/2. Denoting by o* the value associated
with a change from one to two maxima in x,, we identify o ~ 0.06 for N = 1000 in
figure 6. Performing similar analyses for different system sizes we obtain a* as a func-
tion of N. To infer the scaling behavior, we define A = N~! and look at the o* versus
VA curve near A = 0. The resulting data, shown in figure 7, suggest that o* tends to
zero as N — oo. This supports the conjecture stated previously that in this limit, and
for any fixed a > 0, the WCM on a regular ring lattice exhibits both GO and IP phase
transitions.

3.2. Scaling behavior: order parameter

To better understand the scaling behavior we look at the order parameters as N — oo
with fixed a. If both r and % tend to zero, there is no global synchronization. Both
order parameters tending to positive values indicates the presence of global or inter-
mittent synchronization among large populations of oscillators, while ¢ — 0 with r ~ 1
defines an infinite-period phase.

In this context it is useful to plot the order parameter versus A = 1/N. An upward
(downward) curvature as A — 0 signals a nonzero (zero) value of the order parameter.
In figure 8, such plots are shown for selected values of a! and system sizes up to N = 10%.
In panel (b) we see evidence of the GO transition for the value o = 0.0017 in the form
of an inversion in curvatures for lines of constant coupling strength, which happens at
a. ~ 2. The inset in this same panel shows that for large « there is a clear split near the
complete graph value a. = 1.5. In the case of the IP transition we observe that there is
no upward curvature at any point, but rather a sharp increase in density of the lines of
constant a for higher values of «, as seen in the bottom inset of figure 8 where the lines
a=3.375 and a = 3.306 have collapsed to the same point near the origin.

Inspecting individual realizations of the dynamics in the small-a regime (figure 9)
we see that the system never shows global synchronization. It instead exhibits wave-
like patterns that propagate in both directions, similar to what is observed for large
negative coupling [16], but here for a positive . The amplitude and period of the wave

1 See full animations of figure 8: GO transition, IP transition.
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Figure 5. Order parameters and their scaled variances for one-dimensional rings
(K =1). Both the order parameters and their respective variances decrease as the
system size is increased, with r = ¢ ~ 0 across a wide range of coupling strengths.
Points represent an average over 3000 independent realizations with random
initial configurations. For the 1D chain, the same behavior is observed regardless
of initial configuration.
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Figure 6. Order parameters and scaled variances for regular rings of size N = 1000
and various values of the connectivity «. Points represent an average over 4000
independent realizations with uniform initial configurations.
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Figure 7. Plot of o* versus v/A. Starting from uniform initial configurations, o > o*
means Xy, and X, exhibit two maxima, whereas for o < o* only a single broad
maximum is observed. Full circles represent data obtained from simulations and
solid curve is a linear fit with equation y = —0.018 37 4 2.1271x. The band around
the fitted curve represent the uncertainty associated with the linear intercept.

increase with @ and with system size (for fixed «), which suggests there is an IP phase
in the limit N — oo.

3.3. Initial-configuration dependence

Up to this point, all the results discussed were obtained using uniform initial configurations
(ICs). In figure 10 shows X, and Xy for random ICs. The striking difference, compared
to the results for uniform ICs, is the presence of a middle peak between the two
identified previously. The scaling behaviors (panels b and d) suggest that the effect
persists for large system sizes if « is held constant. High values of x result from mul-
tiple realizations of the dynamics that produce net averages of the order parameter
that differ from one to another. At the (continuous) GO and IP phase transitions, the
values of the order parameter fluctuate strongly, giving rise to the peaks at a = 1.5 and
a ~ 3.1. Another situation which may lead to high yx values is a bistability between
configurations that have large values of the order parameter and others having a small
one, even when fluctuations associated with each configuration are small. This suggests
a discontinuous phase transition where for some values of o the system can relax to
multiple steady states.

Space-time plots of the dynamics with coupling a ~ 2.5 and a = 0.14 reveal that
this is indeed the case (figure 11). Three examples are shown in figure 11: on the left
is the familiar globally synchronized state, while the middle panel shows a travelling-
wave state similar to those observed in [16], (but here, for large, positive coupling).
The existence of a steady state with zero order parameter but a > a. is surprising since
figure 10 suggests that wave-like solutions persist even in the limit N — oo (with fixed
«), where interaction ranges become infinite.

The rightmost panel in figure 11 shows a fluctuation-induced change from a travel-
ling wave to global synchrony. Such transitions allow the average order parameter to
attain values between those associated with a wave state and a globally synchronized
one, being closer to one or the other depending on what fraction of time it spent at
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Figure 8. Order parameter ¢ versus inverse system size A for various values of
a, and coupling strengths a in the vicinity of the GO and IP phase transitions.
The insets in (b) and (f) show the behavior for o = 0.3, approaching the complete
graph, with GO and IP transitions near a.= 1.5 and a° ~ 3.1 respectively. Each
point represents an average over 400 independent realizations. The oscillatory
behavior seen in some panels is due to the reduction in average path lengths
caused by the introduction of new neighbors as the system size increases at fixed
«, and the fact that K must be an integer (see appendix A.1).
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Figure 9. Space-time plots, populations N;, 1 and r order parameters. In all panels
N=10% K=10 and o = 10~%. The images on the left and center-right columns
show space-time plots with position on the horizontal axis and time increasing
upward. Adjacent and to the right of each space-time plot, three graphs show the
corresponding populations, 1, and r as functions of time. Here we see that for a
large system with low connectivity there are no regular oscillations. Instead, there
are wave fronts that propagate and interfere and whose periods and amplitudes
grow with a.

that particular configuration. Starting from random ICs, about 1.6% of realizations
exhibit travelling waves, but since ¢ ~ 0 for the waves and 1 ~ O(1) for the globally
synchronized case, the variances x, and X, are sensitive even to small rates of occur-
rence. Due to fluctuations, waves do not persist in smaller systems; sizes N > 700 are
required. Smaller systems exhibit either disordered phases with domains that increase
in size and duration as the coupling grows, or global synchrony if the interaction range
K is large enough. In all cases, waves with exactly one spatial period over the system
are observed, while for negative coupling, multiple stable wave numbers are found
depending on the coupling magnitude [16].

The existence of travelling waves can be understood by noting that, for a < 0.5, the
system consists of G = N/2K domains. G represents the average path length for regular
rings. (See appendix). When G is a multiple of three, the system is capable of contain-
ing a full wavelength without oscillators in the center of the domains. The wavefronts
are then able to propagate as nucleation fronts [15] giving rise to travelling waves.
In our simulations, with N < 10%, we find only one stable wave-number (a wave with
period N). This is in contrast with the wave patterns observed in [16], where multiple
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Figure 10. Scaled variances x, and X, for random initial conditions. Left column:
fixed system size N = 1000 with increasing «. Right column: fixed a = 0.14 and
increasing system sizes. Points represent an average over 4000 independent

realizations with random initial configurations.
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Figure 11. Single realizations with random initial configurations. Left: global
oscillations. Middle: travelling wave. Right: fluctuation-induced change from a
travelling wave to global oscillations. The fraction of realizations that converge to
travelling waves is approximately 1.6%. In all panels N = 4000, K = 560, a = 2.55.

wave-numbers were identified as stable depending on the magnitude of the coupling
strength.

Although travelling waves are rare starting from random ICs, initializing with solid
blocks of 0 s, 1 s and 2 s, each occupying one third of the system, the ensuing evolution
consists of a stable travelling wave in nearly all cases. Thus the rarity for random ICs
simply reflects the low probability of provoking a wave, and does not reflect an intrinsic
instability of the travelling-wave state. ICs with smaller blocks, such that the system
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a

Figure 12. Regular rings: preliminary phase diagram in the a-a plane. Points
are simulation results and (for a = 0.5) exact values. Lines are guides to the eye.
Dashed lines represent our conjectures for how the phase boundaries continue.
Phases: disordered (D); global oscillation (GO); travelling-wave (TW); infinite-
period (IP).

contains two or more waves, invariably yield, following a transient, a travelling wave
whose wavelength equals the system size.

With the known phase transition points for @ = 0.5 and the data from figures 10
and 8 (for N < 10%) we are able to sketch the phase diagram (figure 12). While the
phase boundaries are rather insensitive to changes in the connectivity for relatively
large o values, they veer to larger couplings for small «.

4. The WCM on small-world networks

Regular rings can be used as the starting point for constructing small-world networks,
which are characterized by a small degree of separation between nodes while maintain-
ing local regions tightly clustered. A well known algorithm for generating this type of
network from regular rings was introduced by Watts and Strogatz [23]. Starting from
a regular ring, for each edge in the graph, the clockwise node of that edge is swapped
with probability p for another randomly selected node, forbidding self-connections or
repeated edges. Some care may be taken to avoid disconnected graphs as a result of this
process, but this is unlikely for most parameter triplets (N, K, p) considered here [23].
An example of such a rewired ring is shown in figure 13.
To characterize a network as small-world, we define two quantities:

e Mean path length L: for nodes i and j in network G, let L;; be the number of edges

in the shortest path connecting these nodes. Then the average path length of G is
L = (L;;), where the average is over all pairs (4, j) with 7 < j.
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Figure 13. Example of a rewired regular ring with N =12, K=2 and p =0.1.

o (Clustering coefficient C: if node ¢ has n; neighbors, then the maximum possible
number of connections among its neighbors is m; = W Let m} be the number

of connections among the neighbors of node ¢ in network G. Then the clustering

coefficient of G is C' = <7::L >, where the average is over all nodes 1.

Evidently, the maximum possible value for C'is C'= 1 and the minimum possible value
for L is L =1. For networks generated by rewiring a regular ring graph, C' and L are
functions of the ring-graph parameters N and K, as well as the rewiring probability
p: L=L(N,K,p), C =C(N,K,p). As shown in the appendix, for regular rings (i.e.
p = 0), we have:

0, if K <2
15,U) = 9 12K246K—6KN+N2—3N+2 ¢ N—1 N )
IK2 9K , S <K <5
1, otherwise

KG(G-1)+rG - < N
L(N,K,O):{ N=1 if K < >

1, otherwise, )
where G is the largest integer smaller than % or, using the floor operator,
N -1
G=|——]|.
)

For nonzero values of p we generate graphs and take the averages for C' and L, as
shown in figure 14. For rewiring probabilities p € (0.001,0.1), rewiring preserves the
clustering property while greatly reducing the average path length, thus characterizing
small-world networks.

Since rewiring creates long-range interactions that reduce path lengths globally, we
expect it to facilitate synchronization. This is shown to be the case in figure 15, where
p is gradually increased: realizations starting from random initial conditions are shown
to readily synchronize for very small values of p, leading to the usual three phases
identified for the complete graph. This means that the introduction of very few global
connections is sufficient to destabilize travelling waves; they are virtually absent for
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Figure 14. Clustering coefficient C' and mean path length L versus rewiring
probability p for networks of N = 5000 nodes. K = 250, 50, 25 for red, blue, green
curves respectively. The data represent averages over 400 independently generated

networks.
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Figure 15. Small-world networks: scaled variances, x, and Xy, for increasing
rewiring probabilities. N = 1000, K = 129, o = 0.129 with random initial conditions.
For p ~ 0.01 the curves follow their complete graph counterparts, even though the
number of connections is half as many, and travelling waves become unstable.

p ~ 0.0L. In figure 16 a histogram of the average order parameter per realization, (¢),,
shows that the fraction of time spent in wave configurations is drastically reduced by
the introduction of the rewiring procedure. When p > 0.01 and a. < a < a®, the system
quickly converges to the GO phase even if it initially acquired a wave-like solution (see
figure 17). Moreover, if system size is increased at constant «, smaller values of p are
sufficient to cause the same effect, which is consistent with the fact that the number of
long-range connections is proportional to NK.

Following the same procedure as before, we plot in figure 18 the order parameters
versus inverse system size . Here we fix a at a low value (a = 0.0052) and vary p>.
Comparing these results with panels (d) and (h) of figure 8 we see that the mean abso-
lute value of ¥ is much greater when p lies in the small-world region, indicating greater

2 See full animations of figure 18: GO transition, IP transition.
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Figure 16. Networks with N= 1000, K = 129 and coupling a = 2.5. Histograms
of (1), for 9000 realizations without rewiring (yellow), and 9000 realizations with
rewiring probability p =0.01 (black). The reduced frequency of small order-
parameter values for p =0.01 compared with p =0 is evidence that rewiring
destabilizes travelling waves, which are characterized by small values of .

O PV ICE s e a=2.5 3 I werseierimpenirng i ~
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Figure 17. Wave states for N = 1000, K = 129, p = 0.01 and a = 2.53. Only 0.04%
of realizations (measured from 9000 realizations) with random initial configurations
display traveling waves, which are also much more short-lived when compared to
the p = 0 equivalent system.

synchrony among oscillators. Space-time plots for values of p > 0 show that indeed
travelling waves become unstable, so that the system exhibits only the three phases
observed on the complete graph, namely, disordered, GO and IP phases. The phase dia-
gram remains similar to the case of regular rings, displaying low sensibility to o except
for very small values where the discreteness of finite systems becomes apparent. The
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Figure 18. Order parameter ¥ versus inverse system size A for a = 0.00524 and
various values of rewiring probability p and couplings around the GO and IP
transitions. Insets show the behavior for p = 0.15, the highest rewiring probability
used.
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main difference is that for any positive p wave-like steady states are absent and thus
the phase diagram contains only three macroscopically distinct phases.

5. Conclusions

We study the WCM model, a discrete-phase oscillator model exhibiting global synchro-
nization and an infinite-period phase, on regular ring lattices and small-world networks.
Each oscillator is coupled to a nonzero fraction « of the others, but the connectivity is
in generally much smaller than for a complete graph. Our results support the conjecture
that all three phases—disordered, globally synchronized, and infinite-period—appear
for any nonzero connectivity o.

Surprisingly, travelling waves also appear in the small-a regime on regular ring
lattices; such waves may represent a long-lived metastable state. (A previous study
identified waves in the anti-coupling case [16].) In our studies travelling waves consti-
tute only about 1.6% of the steady states reached from starting from random initial
configurations, and are prone to decay into global oscillations due to fluctuations when
system size is small. The introduction of long-range interactions through rewiring (i.e.
using the Watts—Strogatz algorithm) can lead to synchronization without increasing
the total number of connections. Rewiring also suppresses travelling waves by introduc-
ing long-range interactions.

The fact that regular rings are capable of sustaining travelling waves for a > a, is
surprising, showing that networks of oscillators might fail to synchronize even in the
presence of nonlocal interactions and strong coupling, conditions which are sufficient
for the synchronization on hypercubic lattices of dimensions greater than 2 as well
as on the complete graph. This raises the possibility that WMCs admit wave-like
steady states on cubic lattices, similar to oscillations observed in the two-dimensional
Belousov—Zhabotinsky reaction.

Several other questions remain open for future study, for example, whether travel-
ling waves represent a stable phase for some range of parameters, or are always meta-
stable, and whether waves of wavelength smaller than the system size N are possible.
We have sketched a phase diagram for ring lattices, but detailed information for the
small-connectivity regime is lacking. Since the model exhibits a pair of continuous
phase transitions, it is of interest to develop a full scaling picture, including the effect of
ordering fields conjugate to the order parameters. Finally the question of what simple
external perturbations are capable of destroying synchronization or the symmetry-
broken phase may be of some practical interest.
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Appendix

A.1. Path length and clustering of regular ring lattices

A.1.1. Awverage path length. The distance L; between two nodes ¢ and j is the mini-
mum number of edges that must be traversed to connect them. The average path
length is defined as the average distance between every possible pair of nodes in the
network. For a network with N nodes this is:

2
L= 2 L (A1)

i<j

Consider the lowest node in a ring graph with N nodes and 2K neighbors per node.
Going counterclockwise (CCW), there are K nodes at distance 1, then K nodes at dis-
tance 2 and so on until we reach some region near the top. In total, there will be G
groups of nodes, each with K nodes, at distances 1,2, 3...,G from our starting point at
the bottom. G is given by the largest integer smaller than (N — 1)/(2K). This can be
written with the floor operation:

N —1
2K
This same procedure can be performed from the clockwise (CW) direction. Thus,
there are 2K nodes at distance 1 and so on up to distance G. The last group of nodes
at the top is therefore at a distance G + 1, but it contains less than 2K nodes. Indeed,

it contains a number R of nodes equal to the remainder of the integer division of N — 1
by 2K:

G=| J. (A.2)

R=N—-1-2KG. (A.3)

This reasoning can be visualized in figure Al.

Since there are N — 1 pairs between the bottom node and all other nodes in the
lattice, the average distance Ly between the bottom node and all other nodes is then
given by:

1 G
Ly=—— QKE i+ R(G+1)
0 N—l[ -
1
KG
_ _ (A.4)
Lo—(G+1)<1 N—l)

where we used equation (A.3) to substitute in for R. Because we started with an arbi-
trary node at the bottom, this result is true for any given node in a regular ring, and
thus we conclude that the average path length for the whole network is just L.

LN, K) = (G + 1) <1—NK—_Gl)

with G = L% : As)
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R < 2K
nodes

4 groups with
K nodes each

Figure Al. Counting the number of nodes at distances visually. Here G = 4 groups
at distances 1,2, 3,4 from the bottom node.

Figure A2. Counting m for k = 1,2,3. We note three contributions to m: a fully
connected group of K CW neighbors (left), a fully connected group of K CCW
neighbors (right) and connections that go ‘over’ the center node.

o ‘e . "loop around" ‘-,
connections

N<3K

"over"

. "over" N
'Q connections 'P 3 connections
node i node i

Figure A3. Connections that contribute to the clustering coefficient of node 1.
The red regions represent the CW and CCW groups of neighbors of node i, and
they are fully connected each within itself. Additional connections are made going
‘over’ node i, but when N < 3K there are additional connections that loop around

the opposite side of the lattice.

A.1.2. Average clustering. The clustering coefficient for a node 7 in the graph is
defined as: let m; be the number of neighbors of some node i. Then, there are at
most (n? —n;)/2 connections between any two of its neighbors. Let m; be the number
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of actual connections that are present in a particular graph. Then, the clustering
coefficient C; of node i is given by:

2mi
Ci=— (A.6)

n; —n;

If there are N nodes in the graph, the average clustering coefficient is thus given by:

1 N
C = ~ ; C,. (A.7)

First, consider a ‘close-up’ of a section of a regular ring where N > K. Consider
a node ¢ with K CW neighbors and K CCW neighbors. Let m be the number of con-
nections between neighbors of node i. We can manually count m for some values of K:

m =0 if K <1
m=3 if K=2
m=29 if K =3

The general case for N > K can be counted by summing the contributions of the
three groups as shown in figure A2. Two fully connected groups of K nodes each con-
tributes with (K? — K) connections. The connections that bypass node i also contribute
with (K? — K)/2 connections and thus we have.

m = S (K* - K). (A.8)
Now we divide equation (A.8) by the total number of connections between the 2K
neighbors of node i to get its clustering coefficient Cj:

3K -3

Gi(N, K) = . (A.9)
When N is not so large compared to K, additional connections between the CCW and
CW neighbors may appear by looping around the opposite side of node i, as depicted in
figure A3. These additional connections will be present whenever the remaining nodes
that are neither in the CW or CCW group are fewer than K. The number of such nodes
is just N — 2K — 1, which gives us the condition N < 3K for additional connections to
be present.

The number of ‘loop around’ connections that will be present will depend on how
many nodes there are in the remaining group after removing node ¢ and its immediate
neighbors. Let this number be denoted by D= N — 2K — 1. Then, the number of addi-
tional connections will be given by

(K—D)+(K—D—1)+...+2+1:(K_D+21)(K_D). (A.10)

Adding equation (A.10) to (A.8) we get
3 1
m:§(K2—K)+§(3K—N+1)(3K—N+2). (A.11)

And thus the clustering now becomes:

https://doi.org/10.1088/1742-5468 /ab6b18 22


https://doi.org/10.1088/1742-5468/ab6b18

Synchronization of discrete oscillators on ring lattices and small-world networks

3K -3 (BK—-N+1)(3K - N +2)
CZ(N,K)—4K_2+ 12 9K . (A.12)
This formula holds up to the point when D=0 or N=2K + 1. For all values D < 0
the regular ring is in fact a complete graph, where every node connects to every other. In
these cases the clustering coefficient is always equal to one. Formulas (A.9) and (A.12)
together offer a complete expression for the clustering of node 4. Since C; = C; Vi, j,
this is just the average clustering of the whole network and we finally get:

A if N>3K
C(N,K) = (383 BRNADER-NT) - 4f 3K > N>2K+1 . (A.13)
1 else
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