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Abstract.  There are various dynamic networks around us. Many researchers 
have investigated the fitness, i.e. ability to get edges from other nodes, and 
popularity eects on network growth. The fitness-popularity dynamic network 
(FPDN) model was introduced recently. In the FPDN model, the fitness of a 
node is assumed invariant for a given period of time. In many real networks, 
however, the fitness may change over time in various ways. Herein, we propose 
a varying fitness-popularity dynamic network (V-FPDN) model by allowing 
variable fitness. Through the V-FPDN model, we can estimate the strength of 
fitness and popularity eects and show how the fitness of the nodes changes. 
The magnitude of these eects and fitness values are estimated simultaneously 
using the expectation-maximization (EM) algorithm combined with the Markov 
chain Monte Carlo (MCMC) method. We apply the FPDN and V-FPDN model 
to the Facebook wallpost network and compare the results. The YouTube 
subscription network is investigated using the V-FPDN model in various 
categories. We explain the superiority of the proposed model with remarkable 
interpretations.
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1.  Introduction

1.1. Background and motivation

A network is a way of representing relationships among members. There are a variety 
of networks around us, including social networks, citation networks, biological net-
works, and semantic networks. These have been actively studied in various fields. Many 
researchers have investigated snapshots of network data and found important char-
acteristics, such as community structures [1–4] and influential nodes [5–7]. However, 
many real networks do not stay in a fixed state. They usually change over time in a 
complicated way. It is essential to understand how this change occurs, and in fact there 
are many studies on the mechanisms supporting network growth [8–15].

Among the growth mechanisms, the rich-get-richer and fit-get-richer phenomena are 
commonplace. In the rich-get-richer phenomenon, popular nodes become more popular. 
This phenomenon has been observed in many real networks [16–20]. In the YouTube 
subscription network, popular videos get more exposure to users, and the popular chan-
nels are likely to receive more subscribers and become more popular. Conversely, if a 
popular node becomes stagnant, it is called a rich-get-poorer phenomenon. By contrast, 
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in the fit-get-richer phenomenon, capable nodes become more popular. The ability to 
sing and dance, as well as the ability to edit videos, will have a major impact on the 
improvement in the channel’s popularity. We can explain it through the concept of 
fitness. In the complex network theory, fitness is defined as the intrinsic ability to 
establish connections with other nodes.

Researches abound in literature on the popularity eect in the fields of statistical 
physics and social networks. Barabasi and Albert (1999) [21] proposed the BA model 
that explains the popularity eect using the preferential attachment rule. The degree 
of the node is considered as a popularity measure, and a node with a higher degree is 
assumed to be more likely to be connected to a new node. The following process sup-
ports the network growth model.

	•	 �Growth: At each time point, a node enters the network. Then the node tries to 
connect with mBA nodes in the network.

	•	 �Preferential attachment: The newly entering node connects with node i with a 
probability that is proportional to the popularity of node i.

This mechanism explains the existence of hub nodes, which have high connectivity in 
real networks. Many variant models followed the BA model [22–36].

Among them, Bianconi and Barabasi [37] proposed the fitness model, i.e. the BB 
model, leveraging both fitness and popularity eects on network growth. They assign 
an inherent fitness value to each node and assume that the connection probability is 
related to fitness as well as popularity. Many associated models have been developed 
where the growth mechanism is aected by the fitness and popularity of nodes [15, 
38–41]. However, these models are not suitable for comparing the strength of fitness 
and popularity eects. Besides, they are essentially based on the growth mechanism of 
the BA model whereby an edge is only generated when a new node enters the system. 
To address these problems, Jung et al [42] proposed the fitness-popularity dynamic net-
work (FPDN) model that can estimate the two eects on an equal footing in terms of 
magnitude and allows flexibility on node deletion and addition, edge formations among 
the existing nodes, and so on.

In the FPDN model, popularity changes over time, while fitness remains constant. 
In many real networks however, it is appropriate to assume that fitness changes over 
time. For example, the singing, dancing, video editing skills, and activeness of channel 
operators vary over time in YouTube. In Facebook, fitness is linked to the extrover-
sion and sociability, and it is not proper to be assumed as constant. The FPDN model 
cannot capture the change in node fitness and applying this model to these types of 
networks can yield inaccurate estimates of fitness and strengths of the two eects. As a 
remedy for this weakness, the varying fitness model is proposed as a possible solution.

1.2. Key contributions and outline

In this paper, we propose a varying fitness-popularity dynamic network (V-FPDN) 
model that allows fitness change and enables a more flexible inference on fitness and 
popularity eects. The estimation algorithm presented can estimate fitness change and 
the strength of the two eects simultaneously using the EM (expectation maximization) 
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algorithm combined with the Markov chain Monte Carlo (MCMC) method. We dem-
onstrate the validity of our model by carrying out experiments on synthetic networks 
in which the number of nodes increases over time. The Facebook data is analyzed by 
the proposed model, whose performance is compared favorably with the FPDN model. 
Moreover, we observe the prevalence of the rich-get-richer phenomenon in YouTube, 
and the fitness change in channels is investigated with noteworthy interpretations.

The remainder of this paper is organized as follows. We provide a brief review of 
the preceding works in section 2. In section 3, we propose the V-FPDN model and 
explain popularity measures. The estimation procedure for model parameters and vary-
ing fitness values are described in section 4. In section 5, we apply the V-FPDN model 
to a synthetic network and investigate the validity of the estimation procedure. In 
section 6, we compare the proposed model with the FPDN model using the Facebook 
wallpost network data. Moreover, we analyze the strength of the fitness and popular-
ity eects on the YouTube subscription network with several case studies. Finally, we 
close the paper with some concluding remarks in section 7.

2. Related works

Many network scientists have worked on the popularity eect through preferential 
attachment. Barabasi and Albert [21] proposed the BA model and explained the scale-
free nature of the network. Preferential attachment is the notion that the probability 
of the connection between a new node and an existing node i at time t is proportional 
to the degree ki(t) of node i. They explained the existence of hub nodes in real networks 
and derived a power-law degree distribution.

Many successive models based on the growth mechanism of the BA model have 
been developed. There were several works using attachment exponents α where a node 
i is connected with a new node with a probability proportional to ki(t)

α rather than 
directly proportional to the degree [43, 44]. Many generalized versions of the BA model 
have been proposed in the presence of degree correlation [26], accelerating growth [27–
29], aging of nodes [30, 31], internal link formation [24, 25], and node deletion [32–36].

The fitness eect has been investigated in the context of network growth. The node 
fitness can aect various properties such as the degree distribution of the network [45]. 
The BB model [37] assumes that the connection probability of node i is proportional to 
the product of fitness and degree. Pham et al developed the model PAFit [40] assum-
ing that the connection probability is proportional to the product of the degree-related 
and fitness-related terms, similarly to the BB model. They estimate both preferential 
attachment and fitness eects simultaneously with no assumption on the specific forms 
of fitness and popularity. Wang et al [15] analyzed the paper citation dynamics by 
adding a time-dependent aging term. They employ fitness and preferential attachment 
together with the assumption of a decreasing number of citations over time. Similarly, 
the aging phenomenon on fitness has been investigated [38, 39]. Ghoshal et al [41] con-
sidered combining edge and node deletion with fitness and popularity. Recently, Jung 
et al [42] proposed the FPDN model to compare fitness and popularity on an equal 
footing.
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Many dynamic network models have been developed to explain the change of the 
network topology. They attempt to explain the characteristics of social networks by 
taking into account various features of nodes and networks. These dynamic network 
models can be classified into non-latent variable models and latent variable models.

Concerning the non-latent variable models, the temporal exponential random graph 
model (TERGM) [46] is a very general model for the analysis of the network and node-
related features on the growth of a network. An actor-oriented model [47] was devel-
oped to measure the influence of factors, such as activity, reciprocity, and transitivity 
on network growth. Recently, the temporal extension of stochastic block model (SBM) 
[48] was developed to consider the community structure on network dynamics.

However, the non-latent variable models are not suitable for explaining hidden fea-
tures on network dynamics, such as the fitness of nodes. It is often useful to investigate 
network changes using static or time-varying latent features, and a review on the latent 
variable models can be found in [49]. Sarkar and Moore [50] proposed the dynamic 
social network in latent space (DSNL) model, which is the generalization of [51]. The 
hidden Markov [52] and the mixed eect models [53] are statistical models involving 
latent variables, and several related studies have been conducted on network dynamics 
[54, 55]. Mazzarisi et al [56] recently proposed the model that concerns the link persis-
tence and node-specific latent variables. Finally, several generalizations of non-latent 
variable models, TERGM and temporal SBM, were introduced in [57, 58].

3. Fitness-popularity dynamic network model with varying fitness

3.1. Model

Let us assume that we have time series network data G0,G1, · · · ,GT . The directed 
graph Gt = (V t,Et), t = 0, 1, · · · ,T  consists of a node set V t and an edge set Et. Let 
V = ∪T

t=0V
t and express it as V = {1, · · · ,N}, unless any confusion arises. Let At be 

the adjacency matrix of Gt. The in-degree and out-degree of node i in Gt are expressed 

as Dt
in,i =

∑
j A

t
ji and Dt

out,i =
∑

j A
t
ij. In addition, the fitness and popularity of node i 

at time t are expressed as f t
i  and ut

i, respectively.
Let θtij be the connection probability from node i to node j . It is defined in the 

V-FPDN model as

θtij = g
(
β0 + β1f

t−1
j + β2u

t−1
j

)
, t = 1, 2, · · · ,T ,� (1)

where g(x)  =  1/(1  +  e−x). As mentioned before, the fitness of node j , f t
j , changes over 

time.
Specifically, if node j  enters and leaves the system at time t0,j  and t1,j , i.e. j ∈ V t 

if and only if t = t0,j, t0,j + 1, · · · , t1,j, then the distribution of fitness f t
j  is assumed as 

follows:

f
t0,j
j ∼ N(0, 1),

f t
j = f t−1

j + εtj, εtj ∼ N(0, σ2
j ), t = t0,j + 1, · · · , t1,j − 1.

� (2)

https://doi.org/10.1088/1742-5468/ab7754
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Throughout this paper, we assume that the fitness variability σ2
j  of node j  has an expo-

nential distribution with rate λ = 100. When node enters the system, it may link with 
existing nodes. Note that t1,j   =  T if node j  does not leave the system.

As for the edge, we assume

At
ij ∼ Bernoulli(θtij).

We assign 0 to θtij for the pair of nodes, i and j , for which connection is impossible.
The β0 is an intercept parameter related to the average number of edges created over 

time. The parameters β1 and β2 represent the magnitude of the fitness and popularity 
eects, respectively. A large β1 implies that the fitness of a node has great influence on 
network growth. A positive β2 indicates that the rich-get-richer eect is in order, and 
a negative β2 to the other direction, namely the rich-get-poorer eect.

In this model, we assume that the connection probability of a receiver node is 
aected by the fitness and popularity of the node as it is in the FPDN model. We also 
consider the normal distribution for the node fitness.

3.2. Popularity measures

The popularity is an indicator of fame and preference among network members. There 
are several popularity measures including centrality measures, and the measure depends 
on the characteristics of a network [59]. In this paper, we consider the following two 
measures:

	•	 �In-degree: It is obvious that popular nodes have a large in-degree. We use the 
logarithm transformation of the in-degree given as

ut
j = ln(1 +Dt

in,j).� (3)

		 The logarithmic value is used because the in-degree is usually right-skewed [60]. 
Pham et al [40] used similar measures.

	•	 �Betweenness centrality: The betweenness centrality of a node can be interpreted 
as the ratio of the short cuts between nodes that pass through the node. The 
betweenness centrality of node j  is defined as

ut
j =

∑
i �=j,k �=j

ηtik( j)

ηtik
,� (4)

		 where ηtik is the number of shortest paths from node i to k at time t and ηtik( j) 
is the number of shortest paths from node i to k that pass through j  at time t. A 
node with a high betweenness centrality usually has many nodes adjacent to it.

https://doi.org/10.1088/1742-5468/ab7754
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4. Estimation

4.1. Likelihood functions

In the proposed model, the fitness and popularity of the sender node are assumed not 
to aect the connection probability. We also assume that there are no edge deletions 
to focus on the fit-get-richer and rich-get-richer phenomena. Suppose that node j  has 

ytj incoming edges from nodes in V t−1 at time t. Then, we have

ytj = Dt
in,j −Dt−1

in,j − wt
j + vtj, t = t0,j + 1, · · · , t1,j,

where wt
j =

∑
i∈V t\V t−1 At

ij is the number of incoming edges from the newly entered 
nodes at time t and vtj =

∑
i∈V t−1\V t At

ij is the number of dropped-out incoming edges 

by the nodes that left the system at time t  −  1. For two sets A and B, A \B is the set 
of all elements of A that are not included in B.

Let nt
j be the number of possible connections to receiver node j  at time t. As men-

tioned above, the subscript i is a dummy variable in θtij, and we will write θtj instead. 

We regard a connection as the random behavior between nodes, and the random vari-

able ytj follows a binomial distribution,

ytj ∼ Binomial(nt
j, θ

t
j),

with the probability mass function (pmf)

p(ytj|θtj) =
(
nt
j

ytj

)(
θtj
)ytj (1− θtj

)nt
j−ytj .

Using equation (1), we can write the pmf as a function of the fitness, popularity, and 
the model parameters as

p(ytj|f t−1
j , ut−1

j , β) =

(
nt
j

ytj

)(
g(β0 + β1f

t−1
j + β2u

t−1
j )

)ytj

·
(
1− g(β0 + β1f

t−1
j + β2u

t−1
j )

)nt
j−ytj ,

where β = (β0, β1, β2) and g(x)  =  1/(1  +  e−x). The pmf can be reexpressed as

p(ytj|f t−1
j , ut−1

j , β) =

(
nt
j

ytj

)
exp

(
ytj(β0 + β1f

t−1
j + β2u

t−1
j )

)

·
(
1 + exp

(
β0 + β1f

t−1
j + β2u

t−1
j

))−nt
j .

�
(5)

For simplicity, we denote the vector of variables by omitting the superscript t as 
follows:

	•	 �yj = (y
t0,j+1
j , y

t0,j+2
j , · · · , yt1,jj )

	•	 �fj = ( f
t0,j
j , f

t0,j+1
j , · · · , f t1,j−1

j )

	•	 �uj = (u
t0,j
j , u

t0,j+1
j , · · · , ut1,j−1

j )

https://doi.org/10.1088/1742-5468/ab7754
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Similarly, we express the data for all the nodes by omitting the subscript j :

	•	 �y = (y
t0,1+1
1 , · · · , yt1,11 , · · · , yt0,N+1

N , · · · , yt1,NN )

	•	 �f = ( f
t0,1
1 , · · · , f t1,1−1

1 , · · · , f t0,N
N , · · · , f t1,N−1

N )

	•	 �u = (u
t0,1
1 , · · · , ut1,1−1

1 , · · · , ut0,N
N , · · · , ut1,N−1

N )

	•	 �σ2 = (σ2
1, σ

2
2, · · · , σ2

N)

We write the probability distribution of y j  given fj, uj, β as

p(yj|fj, uj, β) =

t1,j∏
t=t0,j+1

p(ytj|f t−1
j , ut−1

j , β).

The probability distribution of fitness f j  given σ2
j  is given by

p( fj|σ2
j ) = p( f

t0,j
j )

t1,j−1∏
t=t0,j+1

p( f t
j |f t−1

j , σ2
j ),

where p( f
t0,j
j ) is the probability density function (pdf) of N(0, 1) and p( f t

j |f t−1
j , σ2

j ) is 

the pdf of N( f t−1
j , σ2

j ) as specified in (2). Then we have the probability distribution of 

y j , f j , σ
2
j  given uj , β for node j ,

p(yj, fj, σ
2
j |uj, β) = p(σ2

j ) p( fj|σ2
j ) p(yj|fj, uj, β).

The total probability distribution of the model can be written by

p(y, f , σ2|u, β) =
∏
j∈V

p(yj, fj, σ
2
j |uj, β).

Our goal is to estimate the latent variables f , σ2 and the model parameter β . We 
use the EM algorithm for the estimation by regarding the latent variables f  and σ2 as 
missing. We need a complete data likelihood function for the EM,

L(β|f , σ2, u, y) = p(y, f , σ2|u, β),

and the complete data log-likelihood function is thus given by

l(β|f , σ2, u, y) = lnL(β|f , σ2, p, y).

4.2. Algorithm

The EM algorithm consists of the expectation step (E-step) and the maximization step 

(M-step). In the E-step, we compute the expected value Q(β|β̂(s)) of the complete data 

log-likelihood function for the given parameter value β̂(s) = (β̂
(s)
0 , β̂

(s)
1 , β̂

(s)
2 ). Formally, 

we have

https://doi.org/10.1088/1742-5468/ab7754
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Q
(
β|β̂(s)

)
= E

[
l(β|f , σ2, u, y)|u, y, β̂(s)

]

=

∫
l(β|f , σ2, u, y) p( f , σ2|u, y, β̂(s))d( f , σ2),

� (6)

where the expectation is over p( f , σ2|u, y, β̂(s)). The superscript s is the iteration count 
in the EM process. This log-posterior of the static parameter β is to be maximized in 
the M-step.

The integral is hard to handle analytically due to a complicated formula for 

p( f , σ2|u, y, β̂(s)). An alternative is an approximation method through sampling. We 
are interested in the problem of inferring f  and σ2 when the observations y  are given 
for all time points. In this paper, we use the MCMC method with a Gibbs sampler to 

approximate the joint distribution of fitness f  and fitness variability σ2 given u, y , β̂(s).
For j ∈ V  and t = t0,j + 1, t0,j + 2, · · · , t1,j − 1, we have, using the Markov structure 

of the network and the Bayes theorem,

p( f t−1
j |f \ { f t−1

j }, σ2, u, y, β̂(s))

= p( f t−1
j |f t−2

j , f t
j , σ

2
j , u

t−1
j , ytj, β̂

(s))

∝ p( f t
j |f t−1

j , σ2
j ) p(y

t
j|f t−1

j , ut−1
j , β̂(s)) p( f t−1

j |f t−2
j , σ2

j ),

� (7)

where p( f t−1
j |f t−2

j , σ2
j ) is replaced by p( f

t0,j
j ) when t  =  t0,j   +  1.

When t  =  t1,j , we have

p( f
t1,j−1
j |f \ { f t1,j−1

j }, σ2, u, y, β̂(s))

= p( f
t1,j−1
j |f t1,j−2

j , σ2
j , u

t1,j−1
j , y

t1,j
j , β̂(s))

∝ p(y
t1,j
j |f t1,j−1

j , u
t1,j−1
j , β̂(s)) p( f

t1,j−1
j |f t1,j−2

j , σ2
j ).

� (8)

We can readily check that the product of two normal distributions is also normal 
under the following condition.

Proposition 1.  Suppose that X|Y ∼ N(Y , σ2
X|Y ) and Z|X ∼ N(X, σ2

Z|X) for random 
variables X, Y and Z. Then the distribution of X given Y and Z follows the normal dis-

tribution with mean µX|Y ,Z and variance σ2
X|Y ,Z , i.e. X|Y ,Z ∼ N(µX|Y ,Z , σ

2
X|Y ,Z), where

µX|Y ,Z =
Y/σ2

X|Y + Z/σ2
Z|X

1/σ2
X|Y + 1/σ2

Z|X
, σ2

X|Y ,Z =
1

1/σ2
X|Y + 1/σ2

Z|X
.

From proposition 1, the function in (7), p( f t
j |f t−1

j , σ2
j ) p( f

t−1
j |f t−2

j , σ2
j ) 

is proportional to the pdf of N
(
( f t−2

j + f t
j )/2, σ2

j/2
)
 for 

t = t0,j + 2, t0,j + 3, · · · , t1,j − 1, and p( f
t0,j+1
j |f t0,j

j , σ2
j ) p( f

t0,j
j ) is proportional to the pdf 

of N
(
(1/σ2

0 + 1/σ2
1)

−1f 1
j /σ

2
1, (1/σ2

0 + 1/σ2
1)

−1
)
 for t  =  t0,j   +  1.

https://doi.org/10.1088/1742-5468/ab7754
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For the σ2 part, we have

p(σ2
j |f , σ2 − {σ2

j}, u, y, β̂(s))

= p(σ2
j |fj, uj, yj, β̂

(s))

∝ p(σ2
j ) p( fj|σ2

j ).

� (9)

Now we have obtained the required conditional distributions, and we are ready to 
run the Gibbs sampling algorithm. The procedure is summarized in algorithm 1.

Algorithm 1.  Gibbs sampling.

   input: �Initial values fj(0) =
(
f
t0,j
j(0), f

t0,j+1

j(0) , · · · , f t1,j−1

j(0)

)
 and σ2

j(0), j ∈ V , and parameter  

estimate β̂(s).
1 for b = 1, 2, · · · ,B do
2     for j ∈ V  do
3          for t = t0,j + 1, 2, · · · , t1,j − 1 do
4               �Sample f t−1

j(b) from p( f t−1
j |f − { f t−1

j }, σ2, u, y, β̂(s)) according to (7) em-

ploying f t′−1
j = f t′−1

j(b)  for t′ = t0,j + 1, t0,j + 2, · · · , t− 1, f t′−1
j = f t′−1

j(b−1) for 

t′ = t+ 1, t+ 2, · · · , t1,j, and σ2
j = σ2

j(b−1).
5          end

6          �Sample f
t1,j−1

j(b)  from p( f
t1,j−1
j |f − { f t1,j−1

j }, σ2, u, y, β̂(s)) according to (8) employing 

f t′−1
j = f t′−1

j(b)  for t′ = t0,j + 1, 2, · · · , t1,j − 1 and σ2
j = σ2

j(b−1).

7          Sample σ2
j(b) from p(σ2

j |f , σ2 − {σ2
j}, u, y, β̂(s)) according to (9) employing fj = fj(b).

8    end
9 end

    output: Gibbs samples fj(b) =
(
f
t0,j
j(b), f

t0,j+1

j(b) , · · · , f t1,j−1

j(b)

)
 and σ2

j(b), j ∈ V , b = 1, 2, · · · ,B.

The B samples of fitness f (b) and fitness variability σ2
(b), b = 1, · · · ,B are extracted 

from the conditional distribution p( f , σ2|u, y, β̂(s)) through algorithm 1. The sampling 
distributions are described in (7)–(9). They are products of several distributions, and 
we use adaptive rejection sampling (ARS) [61] to sample ad-hoc distributions in a rela-
tively stable and eective manner. The requirement is that the target distribution is 
log-concave.

Proposition 2.  The probability density function in equation (5), p(ytj|f t−1
j , ut−1

j , β) is a 
log-concave function of the variable f t−1

j .

Proof.  By taking the logarithm of p(ytj|f t−1
j , ut−1

j , β), we obtain

ln p(ytj|f t−1
j , ut−1

j , β)

= ln

(
nt
j

ytj

)
+ ytj(β0 + β1f

t−1
j + β2u

t−1
j )

− nt
j ln

(
1 + exp

(
β0 + β1f

t−1
j + β2u

t−1
j

))
.

� (10)

On the right-hand side of equation  (10), the first term does not depend on f t−1
j  
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and the second term is linear in f t−1
j . The second-order derivative of the last term 

−nt
j ln

(
1 + exp

(
β0 + β1f

t−1
j + β2u

t−1
j

))
 is given by

−nt
jβ

2
1 exp

(
β0 + β1f

t−1
j + β2u

t−1
j

)
(
1 + exp

(
β0 + β1f

t−1
j + β2u

t−1
j

))2 ,

which is negative for any f t−1
j . This means that the last term is concave in f t−1

j . There-

fore, the log-concavity of p(ytj|f t−1
j , ut−1

j , β) with respect to f t−1
j  holds true.� □ 

By the log-concavity of a normal distribution and proposition 2, the probabil-
ity density functions in the right-hand-side of (7) and (8) are log-concave. Since the 
product of log-concave functions is log-concave, the target distribution on fitness 

p( f t−1
j |f − { f t−1

j }, σ2, u, y, β̂(s)), t = t0,j + 1, t0,j + 2, · · · , t1,j are log-concave in f t−1
j .

Unfortunately, p(σ2
j |f , σ2 − {σ2

j}, u, y, β̂(s)) in (9) is not log-concave in σ2
j . Hence, we 

make a change of variable ηj = ln(σ2
j ). The idea is that we sample ηj instead of σ2

j , from

p(ηj|f , σ2 − {σ2
j}, u, y, β̂(s))

= p(σ2
j = eηj |f , σ2 − {σ2

j}, u, y, β̂(s))

∣∣∣∣
dσ2

j

dηj

∣∣∣∣ ,

which can be easily shown to be a log-concave function in ηj using the convexity of the expo-

nential function. Then we can obtain a sample σ2
j = eηj from p(σ2

j |f , σ2 − {σ2
j}, u, y, β̂(s)).

We set the initial value fj(0) = (0, 0, · · · , 0) and σ2
j(0) = 0.12 for the first step of the 

EM algorithm. Then, we use the values f j (B) and σ2
j(B) sampled from the Gibbs sam-

pling using the parameter estimate β̂(s−1) which is obtained at the previous step. It is 
well known that the early samples from the Gibbs sampler are susceptible to the initial 
fitness values. This is why the first B0(<B) samples are not used for making inferences. 
We set B  =  250 and B0  =  50 for data analysis.

For suciently large B0 and (B  −  B0), we have

Q
(
β|β̂(s)

)
≈ 1

B − B0

B∑
b=B0+1

l(β|f(b), σ2
(b), u, y)

=
1

B − B0

B∑
b=B0+1

∑
j∈V

ln p(yj, fj(b), σ
2
j(b)|uj, β).

Table 1.  Parameter estimation results for the synthetic networks.

Synthetic 
network

β0 (intercept) β1 (fitness) β2 (popularity)

Estimate S.E. Estimate S.E. Estimate S.E.

SD1 −7.8632 0.1542 1.0692 0.1471 0.4765 0.1456
SD2 −7.9277 0.1159 1.0748 0.1496 19.1191 5.2388
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In a nutshell, we begin the EM process with the initial values β̂(0). At the (s+ 1)th 

iteration, s = 0, 1, · · ·, the E-step consists of computing the function Q
(
β|β̂(s)

)
 and the 

M-step consists of finding β(s+1) as

β̂(s+1) = argmax
β

Q
(
β|β̂(s)

)
.

We repeat the E- and M-steps until β̂(s) converges. Let β̂ be the final estimate of β .

4.3.  Inference on the model parameter and fitness

Throughout this subsection, let f (b) and σ2
(b), b = 1, 2, · · · ,B be samples from algorithm 

1 using the converged parameter β̂ . The observed information matrix of β is given by 
[62]

I(β̂) ≈−∇2Q
(
β̂|β̂

)
+
[
∇Q

(
β̂|β̂

)] [
∇Q

(
β̂|β̂

)]′

− 1

B − B0

B∑
b=B0+1

[
∇l(β̂|f(b), σ2

(b), u, y)
] [

∇l(β̂|f(b), σ2
(b), u, y)

]′

where ∇ = (∂/∂β0, ∂/∂β1, ∂/∂β2)
′ . An estimate of the asymptotic covariance matrix of 

β is 
[
I(β̂)

]−1

. The standard error of β̂ is approximated by the square root of the diago-

nal elements of 
[
I(β̂)

]−1

.

Let σ̂2
j  be a point estimate of the fitness variability σ2

j  of node j , given by

σ̂2
j =

1

B − B0

B∑
b=B0+1

σ2
j(b).

Similarly, let f̂ t−1
j  be a point estimate of the fitness of node j  at time t  −  1, given by

f̂ t−1
j =

1

B − B0

B∑
b=B0+1

f t−1
j(b) .� (11)

We will now discuss how the inference on fitness depends on the amount of data 

y . To simplify, we omit the popularity uj , the fitness variability σ̂2
j , and the param

eter estimate β̂ hereafter. The in-degree increments of node j , ytj, up to time t, are 

denoted by yt
j = {yt0,j+1

j , y
t0,j+2
j , · · · , ytj} and we define yt

j as the empty set for t � t0,j 

and {yt0,j+1
j , y

t0,j+2
j , · · · , yt1,jj } for t � t1,j. Let f

t|t′
j = E

(
f t
j |yt′

j

)
 and ξ

t|t′
j = V ar

(
f t
j |yt′

j

)
 be 

the conditional mean and variance of f t
j  given yt′

j .

The operation, smoothing, is the process of collecting information about f t−1
j , given 

all the data up to T, yT
j . We already discussed how the fitness samples are obtained. 

The sample mean and variance of { f t−1
j(b)}b=B0+1,··· ,B are approximations of f

t−1|T
j  and 

ξ
t−1|T
j , respectively.

It is often important to directly estimate the fitness value at time t  −  1 when the 
observed data is given at time t. In other words, we can get information on the fitness 
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in real time, and this is called filtering. In this case, the quantities like f
t−1|t
j , ξ

t−1|t
j , f

t|t
j  

and ξ
t|t
j  are important measures of fitness. Again, due to the non-Gaussian nature of 

the observation and the non-linearity, distributions are not explicit. Instead, estimates 
can be obtained by algorithm 2.

Algorithm 2.  Getting estimations of f
t−1|t
j , ξ

t−1|t
j , f

t|t
j , and ξ

t|t
j .

1 Initialize: Let f̂
t0,j |t0,j
j = 0 and ξ̂

t0,j |t0,j
j = 1.

2 for t = t0,j + 1, 2, · · · , t1,j do

3    Sample zt−1
j1 , zt−1

j2 , · · · , zt−1
jm  from p( f t−1

j |yt
j).

4    Let f̂
t−1|t
j  and ξ̂

t−1|t
j  be the sample mean and variance of {zt−1

j1 , zt−1
j2 , · · · , zt−1

jm }.

5    Let f̂ t|t
j = f̂

t−1|t
j  and ξ̂

t|t
j = ξ̂

t−1|t
j + σ̂2

j .
6 end

   output: f̂
t−1|t
j , ξ̂

t−1|t
j , f̂

t|t
j , and ξ̂

t|t
j , t = t0,j + 1, t0,j + 2, · · · , t1,j.

The proposed model assumes that the distribution of f
t0,j
j  follows a nor-

mal distribution with mean 0 and variance 1 as described in (2). Then we have 

f
t0,j |t0,j
j = E( f

t0,j
j |yt0,j

j ) = E( f
t0,j
j ) = 0 and ξ

t0,j |t0,j
j = Var( f

t0,j
j |yt0,j

j ) = V ar( f
t0,j
j ) = 1. 

With these starting values, we can obtain f̂
t−1|t
j , ξ̂

t−1|t
j , f̂

t|t
j , and ξ̂

t|t
j , for t = t0,j + 1, · · · , t1,j 

through an iterative process. For ease of computation, we approximate f t−1
j |yt−1

j  by the 

normal distribution with mean f
t−1|t−1
j  and variance ξ

t−1|t−1
j . Note that these distributions 

Table 2.  Parameter estimates for the V-FPDN model based on YouTube 
subscription network data. 15 categories of YouTube are analyzed. The rich-get-
richer phenomenon is observed in every category.

Category Na

β0 (intercept) β1 (fitness) β2 (popularity)

Estimate S.E. Estimate S.E. Estimate S.E.

Animals 237 −15.1684 0.0299 2.2689 0.0043 0.7086 0.0021
Autos 242 −17.0107 0.0255 2.5127 0.0026 0.8650 0.0018
Comedy 246 −19.9789 0.0197 5.2138 0.0016 1.0461 0.0013
Education 243 −17.2405 0.0221 2.0177 0.0033 0.8968 0.0015
Entertainment 240 −16.2190 0.0153 3.0139 0.0014 0.8105 0.0009
Film 247 −17.9354 0.0256 2.7234 0.0054 0.9284 0.0018
Games 241 −15.5797 0.0237 3.5885 0.0052 0.7615 0.0015
Howto 247 −14.1884 0.0162 3.5489 0.0017 0.6888 0.0010
Music 241 −21.2754 0.0167 7.0531 0.0048 1.0706 0.0010
News 244 −10.9966 0.0184 2.3082 0.0021 0.4752 0.0013
Nonprofit 242 −18.4771 0.0284 2.9152 0.0036 0.9533 0.0021
People 244 −16.8054 0.0265 3.1533 0.0030 0.8444 0.0017
Sports 243 −18.9790 0.0158 2.6886 0.0028 1.0080 0.0010
Tech 246 −12.3753 0.0176 2.8151 0.0026 0.5525 0.0011
Travel 248 −13.5024 0.0198 2.7528 0.0053 0.6063 0.0015
Average 243.4 −16.3821 0.0214 3.2383 0.0033 0.8144 0.0014

a N is the total number of channels.
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are Gaussian when t  =  t0,j   +  1. In practice, they are close to a normal distribution due 
to the similarity of the normal and binomial distributions [63]. Since the relation 

p( f t−1
j |yt

j) ∝ p(ytj|f t−1
j ) p( f t−1

j |yt−1
j ) holds, we can obtain samples zt−1

j1 , zt−1
j2 , · · · , zt−1

jm  
from p( f t−1

j |yt
j). Again, we employ the ARS method because the target distribution 

p( f t−1
j |yt

j) is log-concave according to proposition 2. We approximate f
t−1|t
j  and ξ

t−1|t
j  

using the sample mean and variance of m (= 200) ARS samples {zt−1
j1 , zt−1

j2 , · · · , zt−1
jm }. 

Finally, we compute f̂
t|t
j  and ξ̂

t|t
j  by using the equations,

f
t|t
j = E( f t

j |yt
j) = E( f t−1

j + εtj|yt
j) = f

t−1|t
j ,

ξ
t|t
j = Var( f t

j |yt
j) = Var( f t−1

j + εtj|yt
j) = ξ

t−1|t
j + σ̂2

j .

They are derived by applying independence between εtj and yt
j.

5. Synthetic data analysis

We set up a true model using various popularity measures discussed earlier. In this 
section, we generate time series networks according to (1) and (2), and we apply the 
V-FPDN model and check whether it can satisfactorily estimate parameters and fitness 
values. In addition, we apply the filtering and smoothing techniques to detect changes 
in the fitness values.

We generate two synthetic network datasets by using in-degree and between-
ness centrality as popularity measures. For each dataset, there are 200 nodes in total 
and 11 time points, i.e. N  =  200 and T  =  10. Let an initial network G0 be composed 
of 110 nodes, V 0 = {1, 2, · · · , 110}, where it consists of a random network with 100 
nodes {1, 2, · · · , 100} (the edge connection probability is 0.01) plus 10 isolated nodes 
{101, 102, · · · , 110}. Ten new nodes {10t+ 101, 10t+ 102, · · · , 10t+ 110} enter the sys-
tem as isolated nodes at each time t = 1, 2, · · · , 9. The fitness levels of nodes are gener-

ated according to (2) with σ2
j = 0.12, j = 1, 2, · · · , 200. We assume that every connection 

is possible, i.e. nt
j = |V t−1| −Dt−1

in,j − 1. We set the β2 values dierently considering the 
scale of each measure and two dynamic network datasets, SD1 and SD2, are generated.

	•	 �SD1: We use the in-degree popularity measure given in equation  (3) and the 
parameter is set as β = (−8.0, 1.0, 0.5).

	•	 �SD2: We use the betweenness centrality given in equation (4) and the parameter 
is set as β = (−8.0, 1.0, 20.0).

We apply the V-FPDN model to the two datasets and estimate the parameters and 
fitness values. Table 1 shows the parameter estimation results. The algorithm of the 
V-FPDN model is successful in the estimation of the model parameters. We have the 

average estimated fitness variability 1
N

∑
j σ̂

2
j = 0.0366 and 0.0365 for SD1 and SD2, 

respectively.
Next, we discuss the inference of fitness. The smoothed, filtered, and true fitness val-

ues are plotted in figure 1, for which three nodes are chosen corresponding to the first, 
second, and third quartiles of the true fitness values at the initial time. In addition, the 

https://doi.org/10.1088/1742-5468/ab7754


On the analysis of fitness change: fitness-popularity dynamic network model with varying fitness

15https://doi.org/10.1088/1742-5468/ab7754

J. S
tat. M

ech. (2020) 043407

approximated confidence intervals for the true fitness are displayed according to the 
formulae,

f̂
t−1|T
j ± 2

√
ξ̂
t−1|T
j and f̂

t−1|t
j ± 2

√
ξ̂
t−1|t
j ,� (12)

corresponding to the smoothing and filtering, respectively.
We can see in figure 1 that almost every true fitness value lies inside the confidence 

intervals. The smoother contributes to a smaller variability over time than the filter. 
On the other hand, the filtering tends to yield a relatively large variability over time. 

The standard deviation 
√

ξ̂
t−1|T
j  of the smoothed estimate is smaller than that of the 

filtered estimate because the smoother employs a larger amount of observed data than 
the filtering.

6. Real data analysis

6.1. Comparison with existing model

The strength of the fitness and popularity eects in the Facebook wallpost network is 
analyzed in Jung et al [42], where the FPDN model was used. In this section, we apply 

(a)

(b)

Figure 1.  The estimated and true fitness values based on the network data, SD1 
and SD2. The nodes corresponding to the first, second, and third quartiles of the 

true fitness values at the initial time are shown in order. The true fitness value 

f t−1
j , the smoothed estimate f̂

t−1|T
j , and the filtered estimate f̂

t−1|t
j  are expressed 

in black, red, and blue, respectively. In addition, the approximated confidence 

intervals are shown in dotted lines. The formulae of the intervals are in (12).
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both models, i.e. FPDN and V-FPDN, and analyze the dierence between the models. 
In the Facebook wallpost network [64, 65], the nodes are users, and the directed edge 
from i to j  is created when user i posts a message on user j ’s wall. In this network, the 
flow of posting is important. Therefore, we use the betweenness centrality as the popu-
larity measure and standardize it for comparison.

We use data from September 14, 2006 to November 22, 2008. We construct the 
initial network G0 based on the edges created up to T0  =  400 days. The time interval 
is ∆T = 40 days and T  =  10 time points after the initial network is considered. As in 

Jung et al [42], N  =  1000 nodes are sampled and applied to the model with nt
j = 300. 

The result of the parameter estimation for the FPDN model with mFPDN = 200 [42] is 
given by

θtij = g
(
−7.3336(0.0518) + 1.2270(0.0332)fj,FPDN + 0.1260(0.0075)u

t−1
j

)
,

t = 1, 2, · · · ,T ,

where the values in parentheses are the standard errors. We can see that the impact 
of fitness on network growth is larger than that of popularity. Next, the result of the 
V-FPDN model is given by

θtij = g
(
−7.5843(0.0498) + 1.6314(0.0954)f

t−1
j,V-FPDN + 0.1071(0.0232)u

t−1
j

)
,

t = 1, 2, · · · ,T ,

with the average estimated fitness variability 1
N

∑
j σ̂

2
j = 0.0490. Compared with the 

FPDN model, β1 increases from 1.2270 to 1.6314, and the popularity eect parameter 
β2 decrease slightly, from 0.1260 to 0.1071. We can conclude that the fitness eect 
dominates the popularity eect in the V-FPDN model, which is consistent with the 
findings of Pham et al [40] and Jung et al [42]. As mentioned before, it is appropriate 
to assume that the node fitness changes in the Facebook wallpost network, and we can 
explain the network growth with higher accuracy by allowing for fitness change.

Figure 2 is a summary of the fitness estimation for three users 4769, 8610, and 
13 477. The black line represents the fitness levels estimated under the FPDN model, 
and the red line the fitness levels obtained by equation (11). The dotted line represents 
the estimated fitness plus or minus two times the standard deviation. In the V-FPDN 
model, fitness estimates for user 4769 are similar to the FPDN model and show lit-
tle variation over time. By contrast, the fitness estimates for user 13 477 exhibit a 
significant dierence and change considerably over time. The fitness of user 8610 tends 
to decrease over time. We can detect the change in the fitness levels of users through 
the proposed V-FPDN model.

The fitness, in-degree, and standardized betweenness centrality of three users are 
shown in figure  3, exposing the factors causing the fitness change in the V-FPDN 
model. The in-degree of user 8610 tends to increase slightly at the beginning and then 
stagnate afterwards. In other words, user 8610 is active at first, but then does not get 
any more messages from time t  =  4 on and this tendency is reflected in the fact that 
the fitness estimates decrease gradually. We observe that user 4769s increments of in-
degree are almost constant as shown in figure 3(b), and fitness levels show little vari-
ability. In case of user 13 477, fitness level tends to rise when the in-degree increment is 
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large. Changes in fitness are sensitive to the number of incoming edges. We also present 
the popularity measure in figure 3(c). The standardized betweenness centrality tends 
to increase as the in-degree increases, but this is not always true as shown in figure 3.

6.2. YouTube subscription network

The YouTube subscription network consists of channels with directed subscription 
relations. We obtain data from Socialblade3, a website that collects and provides pub-
licly available information from various social networks. According to the Socialblade, 
YouTube channels are divided into 16 categories such as ‘music’ and ‘sports’. In this 
paper, we use the top 250 channels based on the number of subscribers on November 
13, 2018. We use August 2018 data, and the network on August 1 is used as an initial 
network4. We then observe at every three days until August 31, 2018. In other words, 
we set ∆T = 3 days and T  =  10. We use the in-degree popularity measure in equa-

tion (3) and set nt
j = 1000 000 for analysis. We exclude channels with missing data, i.e. 

Figure 2.  Fitness estimates of three users 4769 (top), 8610 (middle), and 13 477 
(bottom). The black line represents the fitness estimates according to the FPDN 
model, and the red line the fitness estimates according to the V-FPDN model. The 
dotted line represents the estimated fitness values plus or minus two times the 
standard deviation.

3 http://socialblade.com
4 The composition of the top 250 channels changes very little over time.
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with no pages, no subscription information on at least one of the observation dates, or 
no subscriber updates in at least seven time points. The total number of the channels 
in the data are in table 2. There are a small number of negative in-degree increments, 
which are replaced with zeros for analysis. We exclude the category ‘shows’ as it has 
many missing values. Since we use the channels with many subscribers, the results are 
valid for the popular channels. The results of parameter estimation under the V-FPDN 
model are summarized in table 2. All categories have the average estimated fitness vari-

ability 1
N

∑
j σ̂

2
j  between 0.0154 and 0.0309.

According to the result, the fitness and popularity eect parameters are 3.2383 and 
0.8144 on average. The popularity eects are found significant in all the categories. 

(a)

(b)

(c)

Figure 3.  The fitness (top), in-degree (middle), and standardized betweenness 
centrality (bottom) of three users 4769 (black), 8610 (blue), and 13 477 (red). (a) 
Fitness. (b) In-degree. (c) Standardized betweenness centrality.

https://doi.org/10.1088/1742-5468/ab7754


On the analysis of fitness change: fitness-popularity dynamic network model with varying fitness

19https://doi.org/10.1088/1742-5468/ab7754

J. S
tat. M

ech. (2020) 043407

In other words, the rich-get-richer eect is working on the YouTube subscription net-
works in every category. It may be explained by easy accessibility to popular channels 
through YouTube search, recommendation, and other functions. Significant popularity 
eects are observed in all categories, especially in ‘comedy’. There are considerable 
fitness eects in active areas such as ‘comedy’ and ‘music’, and relatively benign fitness 
eects in static areas such as ‘education’, ‘animals’, and ‘news’.

Next, we examine the changes in fitness in some YouTube channels in the ‘music’ 
category, which is linked to the most significant fitness eect. Figure  4 shows the 
fitness values of the six channels, ‘NoCopyrightSounds’, ‘The Chainsmokers’, ‘Sia’, 
‘Lady Gaga’, ‘Sonotek’, and ‘Britney Spears’. American music production duo ‘The 
Chainsmokers’ released the song ‘Side Eects’ around the investigated time, and we 
can observe that the fitness increases when the ocial video5 is released some time 
between t  =  6 and t  =  7. A singer-songwriter ‘Sia’ announced the song ‘Thunderclouds’ 
on August 9, 2018. The audio version and the ocial video were uploaded in August, 
and the fitness increased rapidly. We observe that activities such as the song presenta-
tion have a great influence on fitness in the ‘music’ category, and the V-FPDN model 
captures this well.

The musicians, ‘Lady Gaga’ and ‘Britney Spears’, had little activity in or before 
August 2018. As a result, fitness continued to decline. Some channels upload videos peri-
odically with a certain theme on music-related channels such as, ‘NoCopyrightSounds’ 
and ‘Sonotek’. ‘NoCopyrightSounds’ is a music organization and one of the open-
source labels that release unlicensed musics, and ‘Sonotek’ is an Indian music company. 
We observe that the fitness levels are almost constant over time, which may be because 
they regularly upload similar videos related to a specific theme.

Figure 4.  Fitness values of the six channels in the ‘music’ category of YouTube: 
‘NoCopyrightSounds’, ‘The Chainsmokers’, ‘Sia’, ‘Lady Gaga’, ‘Sonotek’, and 
‘Britney Spears’.

5 https://youtu.be/nuckTcoZG4Q
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7. Concluding remarks

In this paper, we proposed a novel model, V-FPDN model, allowing changes in fitness 
over time in an eort to generalize the FPDN model. We presented an estimation pro-
cedure using the EM algorithm and MCMC, which worked well in the data analysis of 
networks. The inference on the change in fitness was substantiated via the smoothing 
and filtering. We analyzed various data using in-degree and betweenness centrality as 
popularity measures. Depending on the characteristics of the network, various popular-
ity measures can be employed, and the relationship between popularity and network 
growth can be inferred.

We investigated two real datasets, Facebook and YouTube. In Facebook, we esti-
mated the size of the fitness and popularity eects in the framework of varying fitness 
and compared the results with those of the FPDN model. We also investigated the 
change in fitness of the nodes and made interpretations in the context of data. We 
observed a significant rich-get-richer phenomenon in all categories of YouTube. We 
found that fitness eects are strong in active areas such as ‘music’ and ‘comedy’ and 
mild in static areas such as ‘news’, ‘education’, and ‘animals’. The proposed model is 
shown capable of analyzing changes in fitness and has successfully detected changes 
that show various patterns in the YouTube channels.

Acknowledgment

Sung-Ho Kim was supported for this work by the NRF Grant (No. 2016R1D1A1B03936155) 
of the Republic of Korea and Jae-Gil Lee by the MOLIT (The Ministry of Land, 
Infrastructure and Transport), Korea, under the national spatial information research 
program supervised by the KAIA (Korea Agency for Infrastructure Technology 
Advancement) (19NSIP-B081011-06).

References

	 [1]	 Kudělka M, Horák Z, Snášel V, Krömer P, Platoš J and Abraham A 2012 Log. J. IGPL 20 634–43
	 [2]	 Lim S and Lee J G 2016 J. Stat. Mech. 123401
	 [3]	 Fortunato S 2010 Phys. Rep. 486 75–174
	 [4]	 Coscia M, Giannotti F and Pedreschi D 2011 Stat. Anal. Data Min. 4 512–46
	 [5]	 Chen D, Lü L, Shang M S, Zhang Y C and Zhou T 2012 Physica A 391 1777–87
	 [6]	 Zamora-López G, Zhou C and Kurths J 2010 Front. Neuroinform. 4 1
	 [7]	 Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E and Makse H A 2010 Nat. Phys. 6 888
	 [8]	 Braha D and Bar-Yam Y 2006 Complexity 12 59–63
	 [9]	 Hill S A and Braha D 2010 Phys. Rev. E 82 046105
	[10]	 Bringmann B, Berlingerio M, Bonchi F and Gionis A 2010 IEEE Intell. Syst. 25 26–35
	[11]	 Juszczyszyn K, Budka M and Musial K 2011 The dynamic structural patterns of social networks based on 

triad transitions Proc. IEEE ACM Int. Conf. on Advances in Social Network Analysis and Mining pp 
581–6

	[12]	 Blonder B, Wey T W, Dornhaus A, James R and Sih A 2012 Methods Ecol. Evol. 3 958–72
	[13]	 Aggarwal C and Subbian K 2014 ACM Comput. Surv. 47 10
	[14]	 Leskovec J, Kleinberg J and Faloutsos C 2005 Graphs over time: densification laws, shrinking diameters and 

possible explanations Proc. of ACM SIGKDD pp 177–87
	[15]	 Wang D, Song C and Barabási A L 2013 Science 342 127–32
	[16]	 Merton R K 1968 Science 159 56–63

https://doi.org/10.1088/1742-5468/ab7754
https://doi.org/10.1093/jigpal/jzr002
https://doi.org/10.1093/jigpal/jzr002
https://doi.org/10.1093/jigpal/jzr002
https://doi.org/10.1088/1742-5468/2016/12/123401
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1002/sam.10133
https://doi.org/10.1002/sam.10133
https://doi.org/10.1002/sam.10133
https://doi.org/10.1016/j.physa.2011.09.017
https://doi.org/10.1016/j.physa.2011.09.017
https://doi.org/10.1016/j.physa.2011.09.017
https://doi.org/10.1038/nphys1746
https://doi.org/10.1038/nphys1746
https://doi.org/10.1002/cplx.20156
https://doi.org/10.1002/cplx.20156
https://doi.org/10.1002/cplx.20156
https://doi.org/10.1103/PhysRevE.82.046105
https://doi.org/10.1103/PhysRevE.82.046105
https://doi.org/10.1109/MIS.2010.91
https://doi.org/10.1109/MIS.2010.91
https://doi.org/10.1109/MIS.2010.91
https://doi.org/10.1111/j.2041-210X.2012.00236.x
https://doi.org/10.1111/j.2041-210X.2012.00236.x
https://doi.org/10.1111/j.2041-210X.2012.00236.x
https://doi.org/10.1145/2601412
https://doi.org/10.1145/2601412
https://doi.org/10.1126/science.1237825
https://doi.org/10.1126/science.1237825
https://doi.org/10.1126/science.1237825
https://doi.org/10.1126/science.159.3810.56
https://doi.org/10.1126/science.159.3810.56
https://doi.org/10.1126/science.159.3810.56


On the analysis of fitness change: fitness-popularity dynamic network model with varying fitness

21https://doi.org/10.1088/1742-5468/ab7754

J. S
tat. M

ech. (2020) 043407

	[17]	 Tufekci Z 2010 Who acquires friends through social media and why? ‘get richer’ versus ‘seek and ye shall 
find’ 4th Int. AAAI Conf. on Weblogs and Social Media

	[18]	 Kondor D, Pósfai M, Csabai I and Vattay G 2014 PLoS One 9 e86197
	[19]	 Van de Rijt A, Kang S M, Restivo M and Patil A 2014 Proc. Natl Acad. Sci. 111 6934–9
	[20]	 Perc M 2014 J. R. Soc. Interface 11 20140378
	[21]	 Barabási A L and Albert R 1999 Science 286 509–12
	[22]	 Dorogovtsev S N, Mendes J F F and Samukhin A N 2000 Phys. Rev. Lett. 85 4633
	[23]	 Gabel A and Redner S 2013 J. Stat. Mech. P02043
	[24]	 Dorogovtsev S N and Mendes J F F 2000 Europhys. Lett. 52 33
	[25]	 Albert R and Barabási A L 2000 Phys. Rev. Lett. 85 5234
	[26]	 Fotouhi B and Rabbat M G 2013 Eur. Phys. J. B 86 510
	[27]	 Yu X, Li Z, Zhang D, Liang F, Wang X Y and Wu X 2006 J. Phys. A: Math. Gen. 39 14343
	[28]	 Jung S, Kim S and Kahng B 2002 Phys. Rev. E 65 056101
	[29]	 Dorogovtsev S N and Mendes J F 2002 (arXiv:cond-mat/0204102)
	[30]	 Dorogovtsev S N and Mendes J F F 2000 Phys. Rev. E 62 1842
	[31]	 Zhu H, Wang X and Zhu J Y 2003 Phys. Rev. E 68 056121
	[32]	 Saavedra S, Reed-Tsochas F and Uzzi B 2008 Proc. Natl Acad. Sci. USA 105 16466–71
	[33]	 Chung F and Lu L 2004 Internet Math. 1 409–61
	[34]	 Cooper C, Frieze A and Vera J 2004 Internet Math. 1 463–83
	[35]	 Moore C, Ghoshal G and Newman M E 2006 Phys. Rev. E 74 036121
	[36]	 Bauke H, Moore C, Rouquier J B and Sherrington D 2011 Eur. Phys. J. B 83 519–24
	[37]	 Bianconi G and Barabási A L 2001 Europhys. Lett. 54 436
	[38]	 Wang M, Yu G and Yu D 2008 Physica A 387 4692–8
	[39]	 Medo M, Cimini G and Gualdi S 2011 Phys. Rev. Lett. 107 238701
	[40]	 Pham T, Sheridan P and Shimodaira H 2016 Sci. Rep. 6 32558
	[41]	 Ghoshal G, Chi L and Barabási A L 2013 Sci. Rep. 3 2920
	[42]	 Jung H, Lee J G, Lee N and Kim S H 2018 J. Stat. Mech. 123403
	[43]	 Newman M E 2003 SIAM Rev. 45 167–256
	[44]	 Krapivsky P L and Redner S 2001 Phys. Rev. E 63 066123
	[45]	 Caldarelli G, Capocci A, De Los Rios P and Munoz M A 2002 Phys. Rev. Lett. 89 258702
	[46]	 Hanneke S et al 2010 Electron. J. Stat. 4 585–605
	[47]	 Snijders T A, Van de Bunt G G and Steglich C E 2010 Soc. Netw. 32 44–60
	[48]	 Peixoto T P and Rosvall M 2017 Nat. Commun. 8 582
	[49]	 Kim B et al 2018 Stat. Surv. 12 105–35
	[50]	 Sarkar P and Moore A W 2006 Dynamic social network analysis using latent space models Advances in Neu-

ral Information Processing Systems pp 1145–52
	[51]	 Ho P D, Raftery A E and Handcock M S 2002 J. Am. Stat. Assoc. 97 1090–8
	[52]	 Baum L E and Petrie T 1966 Ann. Math. Stat. 37 1554–63
	[53]	 Ho P D 2005 J. Am. Stat. Assoc. 100 286–95
	[54]	 Holland P W, Laskey K B and Leinhardt S 1983 Soc. Netw. 5 109–37
	[55]	 Xing E P, Fu W and Song L 2010 Ann. Appl. Stat. 4 535–66
	[56]	 Mazzarisi P, Barucca P, Lillo F and Tantari D 2019 Eur. J. Oper. Res. 281 50–65
	[57]	 Lee J, Li G and Wilson J D 2017 (arXiv:1702.03632)
	[58]	 Xu K S and Hero A O 2014 IEEE J. Sel. Top. Signal. Process. 8 552–62
	[59]	 Landherr A, Friedl B and Heidemann J 2010 Bus. Inf. Syst. Eng. 2 371–85
	[60]	 Clauset A, Shalizi C R and Newman M E 2009 SIAM Rev. 51 661–703
	[61]	 Gilks W R and Wild P 1992 Appl. Stat. 41 337–48
	[62]	 Louis T A 1982 J. R. Stat. Soc. B 44 226–33
	[63]	 Morelande M R and Garcia-Fernandez A F 2013 IEEE Trans. Signal Process. 61 5477–84
	[64]	 Rossi R and Ahmed N 2015 The network data repository with interactive graph analytics and visualization 

Proc. Conf. AAAI Artificial Intelligence pp 4292–3
	[65]	 Viswanath B, Mislove A, Cha M and Gummadi K P 2009 On the evolution of user interaction in facebook 

Proc. Online Social Networks pp 37–42

https://doi.org/10.1088/1742-5468/ab7754
https://doi.org/10.1371/journal.pone.0086197
https://doi.org/10.1371/journal.pone.0086197
https://doi.org/10.1073/pnas.1316836111
https://doi.org/10.1073/pnas.1316836111
https://doi.org/10.1073/pnas.1316836111
https://doi.org/10.1098/rsif.2014.0378
https://doi.org/10.1098/rsif.2014.0378
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1103/PhysRevLett.85.4633
https://doi.org/10.1103/PhysRevLett.85.4633
https://doi.org/10.1088/1742-5468/2013/02/P02043
https://doi.org/10.1209/epl/i2000-00400-0
https://doi.org/10.1209/epl/i2000-00400-0
https://doi.org/10.1103/PhysRevLett.85.5234
https://doi.org/10.1103/PhysRevLett.85.5234
https://doi.org/10.1140/epjb/e2013-40920-6
https://doi.org/10.1140/epjb/e2013-40920-6
https://doi.org/10.1088/0305-4470/39/46/007
https://doi.org/10.1088/0305-4470/39/46/007
https://doi.org/10.1103/PhysRevE.65.056101
https://doi.org/10.1103/PhysRevE.65.056101
http://arxiv.org/abs/cond-mat/0204102
https://doi.org/10.1103/PhysRevE.62.1842
https://doi.org/10.1103/PhysRevE.62.1842
https://doi.org/10.1103/PhysRevE.68.056121
https://doi.org/10.1103/PhysRevE.68.056121
https://doi.org/10.1073/pnas.0804740105
https://doi.org/10.1073/pnas.0804740105
https://doi.org/10.1073/pnas.0804740105
https://doi.org/10.1080/15427951.2004.10129094
https://doi.org/10.1080/15427951.2004.10129094
https://doi.org/10.1080/15427951.2004.10129094
https://doi.org/10.1080/15427951.2004.10129095
https://doi.org/10.1080/15427951.2004.10129095
https://doi.org/10.1080/15427951.2004.10129095
https://doi.org/10.1103/PhysRevE.74.036121
https://doi.org/10.1103/PhysRevE.74.036121
https://doi.org/10.1140/epjb/e2011-20346-0
https://doi.org/10.1140/epjb/e2011-20346-0
https://doi.org/10.1140/epjb/e2011-20346-0
https://doi.org/10.1209/epl/i2001-00260-6
https://doi.org/10.1209/epl/i2001-00260-6
https://doi.org/10.1016/j.physa.2008.03.017
https://doi.org/10.1016/j.physa.2008.03.017
https://doi.org/10.1016/j.physa.2008.03.017
https://doi.org/10.1103/PhysRevLett.107.238701
https://doi.org/10.1103/PhysRevLett.107.238701
https://doi.org/10.1038/srep32558
https://doi.org/10.1038/srep32558
https://doi.org/10.1038/srep02920
https://doi.org/10.1038/srep02920
https://doi.org/10.1088/1742-5468/aaeb40
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1103/PhysRevE.63.066123
https://doi.org/10.1103/PhysRevE.63.066123
https://doi.org/10.1103/PhysRevLett.89.258702
https://doi.org/10.1103/PhysRevLett.89.258702
https://doi.org/10.1214/09-EJS548
https://doi.org/10.1214/09-EJS548
https://doi.org/10.1214/09-EJS548
https://doi.org/10.1016/j.socnet.2009.02.004
https://doi.org/10.1016/j.socnet.2009.02.004
https://doi.org/10.1016/j.socnet.2009.02.004
https://doi.org/10.1038/s41467-017-00148-9
https://doi.org/10.1038/s41467-017-00148-9
https://doi.org/10.1214/18-SS121
https://doi.org/10.1214/18-SS121
https://doi.org/10.1214/18-SS121
https://doi.org/10.1198/016214502388618906
https://doi.org/10.1198/016214502388618906
https://doi.org/10.1198/016214502388618906
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1198/016214504000001015
https://doi.org/10.1198/016214504000001015
https://doi.org/10.1198/016214504000001015
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1214/09-AOAS311
https://doi.org/10.1214/09-AOAS311
https://doi.org/10.1214/09-AOAS311
https://doi.org/10.1016/j.ejor.2019.07.024
https://doi.org/10.1016/j.ejor.2019.07.024
https://doi.org/10.1016/j.ejor.2019.07.024
http://arxiv.org/abs/1702.03632
https://doi.org/10.1109/JSTSP.2014.2310294
https://doi.org/10.1109/JSTSP.2014.2310294
https://doi.org/10.1109/JSTSP.2014.2310294
https://doi.org/10.1007/s12599-010-0127-3
https://doi.org/10.1007/s12599-010-0127-3
https://doi.org/10.1007/s12599-010-0127-3
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.2307/2347565
https://doi.org/10.2307/2347565
https://doi.org/10.2307/2347565
https://doi.org/10.1109/TSP.2013.2279367
https://doi.org/10.1109/TSP.2013.2279367
https://doi.org/10.1109/TSP.2013.2279367

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿On the analysis of ﬁtness change: ﬁtness-popularity dynamic network model with varying ﬁtness﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿1.1. ﻿﻿﻿Background and motivation
	﻿﻿1.2. ﻿﻿﻿Key contributions and outline

	﻿﻿2. ﻿﻿﻿Related works
	﻿﻿3. ﻿﻿﻿Fitness-popularity dynamic network model with varying ﬁtness
	﻿﻿3.1. ﻿﻿﻿Model
	﻿﻿3.2. ﻿﻿﻿Popularity measures

	﻿﻿4. ﻿﻿﻿Estimation
	﻿﻿4.1. ﻿﻿﻿Likelihood functions
	﻿﻿4.2. ﻿﻿﻿Algorithm
	﻿﻿4.3. ﻿﻿﻿Inference on the model parameter and ﬁtness

	﻿﻿5. ﻿﻿﻿Synthetic data analysis
	﻿﻿6. ﻿﻿﻿Real data analysis
	﻿﻿6.1. ﻿﻿﻿Comparison with existing model
	﻿﻿6.2. ﻿﻿﻿YouTube subscription network

	﻿﻿7. ﻿﻿﻿Concluding remarks
	﻿﻿﻿Acknowledgment
	﻿﻿﻿References﻿﻿﻿﻿


