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Abstract
We discuss a class of models that generalize the two-state Landau–Zener
Hamiltonian to both the multistate and multitime evolution. It is already known
that the corresponding quantum mechanical evolution can be understood in
great detail. Here, we present an approach to classify such solvable models,
namely, to identify all their independent families for a given number N of inter-
acting states and prove the absence of such families for some types of inter-
actions. We also discuss how, within a solvable family, one can classify the
scattering matrices, i.e., the system’s dynamics. Due to the possibility of such
a detailed classification, the multitime Landau–Zener model defines a useful
special function of theoretical physics.
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1. Introduction

Modern quantum science encounters considerable new mathematical challenges. In studies of
explicitly time-dependent phenomena, such as quantum annealing, dynamic phase transitions,
control of quantum devices, quenching, and thermalization we deal with strongly nonequi-
librium complex systems that are often not accessible to numerical modeling at the desired
scales. Standard analytical tools, however, are too limited for such applications. Efforts to keep
physical models analytically tractable often lead to considerable over-simplifications, so that
generalizations become unjustified and misleading. It is desirable to develop tools to study
explicitly time-dependent Hamiltonians with complexity of, e.g., models that are commonly
studied by methods of the conformal field theory and the Bethe ansatz.

Recently [1], the conditions on a time-dependent Hamiltonian were found that lead to con-
siderable understanding of the corresponding dynamics. However, the integrability conditions
in [1] only provided a test for integrability. So far, there is no straightforward path to a system-
atic classification of such integrable models. Integrability conditions have been used either to
validate hypotheses or to generate integrable time-dependent models within the already known
class of Gaudin magnet Hamiltonians [2].

In this article, we develop an approach for detailed classification of solvable time-dependent
Hamiltonians that have a specific unifying property. We will also discuss that there is an analyt-
ical solution for the corresponding scattering problem. Hence, this solvable family defines an
unusual new special function that can play a similar role in complex time-dependent quantum
physics as the parabolic cylinder function plays in time-dependent two-state physics [3–6].

This article is organized as follows. Sections 2 and 3 are still introductory. In section 2,
we define the class of models that we will mainly consider—the multitime Landau–Zener
(MTLZ) models, and in section 3 we discuss the difference between separable and nontrivial
integrable models. In section 4, we show that integrability conditions for MTLZ models can be
conveniently presented by the data on graphs, and sketch a scheme for retrieving independent
solvable models for such data. Sections 5–8 are applications of the graph method described
in section 4 to specific graph geometries with N � 10. Discussions and conclusions are left to
section 9.

2. Linearly time-dependent Hamiltonians

The simplest time-dependent Hamiltonian is the one with linearly changing parameters. Hence,
we will consider the Schrödinger equation

i
d
dt
ψ = H(t)ψ, H(t) = A + Bt, (1)

where A and B are constant Hermitian N × N matrices with real entries (we set � = 1), and
ψ is a vector with N components. It is a natural generalization of the two-state Landau–Zener
(LZ) model for spin 1/2 in a linearly time-dependent magnetic field [4, 5]. The eigenvalues and
eigenvectors of the matrix Bt are called diabatic energies and diabatic states, respectively. Off-
diagonal elements of the matrix A, in the basis of diabatic states, are called couplings. Any two
diabatic states are called coupled if the matrix element of A between these states is nonzero.

The general solution of equation (1) is not known. Nevertheless, in our recent article [7],
we pointed that considerable understanding can be obtained when such Hamiltonians create a
family of some M > 1 Hamiltonians of the form

H j (x) = Bk jx
k + A j, j, k = 1, ..., M, (2)
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where x = (x1, . . . , xM) is called a time-vector, and Bj, Aj are real symmetric matrices; here and
in what follows we will assume summations over repeated upper and lower indices. Within this
family, the state vector must satisfy simultaneously M equations:

i∂ψ(x)/∂x j = H j(x)ψ(x), j = 1, . . . , M, M > 1. (3)

The parameter xj in Hj can be identified with the physical time. Note that if we set xk = const
in (3) for all k �= j and identify xj with t, then each of the equation (3) becomes an independent
multistate LZ model of the form (1). Moreover, the evolution of the system (3) along a path
given by a linear combination of time variables xj is equivalent to a model of the form (1). For
this property, the system of equation (3) with the set of Hamiltonians of the form (2) was called
the multitime Landau–Zener (MTLZ) model.

According to reference [1], an MTLZ system may be solvable if equation (3) are consistent
with each other. For real symmetric matrices Hj this happens when two conditions are satisfied:

[Hi, H j] = 0, (4)

∂Hi/∂x j = ∂H j/∂xi, i, j = 1, . . . , M. (5)

We will call (4) and (5) the integrability conditions.
In reference [7], we focused only on the general properties of MTLZ systems. In particular,

we already proved that the scattering problem for any multistate LZ model that can be generated
from such a family can be solved explicitly in terms of the matrix product ansatz, and that
parameters of such models are constrained to have several common properties. For example,
we showed that, when plotted as functions of one time variable xj, the energy levels of the
Hamiltonian Hj from the family (2) pass through a known number of exact crossing points.
Here, in contrast, we are going to discuss classification of such systems.

3. Separable and nontrivial integrable models

A trivial example of an integrable family (2) is found among Hamiltonians of noninteracting
spins that experience independent LZ evolution [7]:

H(t) = H1 ⊗ 1̂2 ⊗ · · · ⊗ 1̂2 + 1̂2 ⊗H2 ⊗ 1̂2 ⊗ · · · ⊗ 1̂2 + · · ·+ 1̂2 ⊗ · · · ⊗ 1̂2 ⊗HN , (6)

where 1̂2 is a unit matrix acting in the space of the corresponding spin and

Hk =

(
β1kt + ε1k γk

γk β2kt + ε2k

)
, k = 1, . . . , N, (7)

are the two-state LZ Hamiltonians with different constant parameters β1,2, ε1,2 and γ. Any
such H(t) has N − 1 linearly independent Hamiltonians with the same structure and satisfying
relations (4) and (5).

The solution of the Schrödinger equation for the model (7) is also trivial. Since all spins are
independent, the evolution operator is a direct product of such operators for each spin:

U(t) = U1(t) ⊗ · · · ⊗ UN(t), (8)

where any Uk(t) is known because the LZ model is solved in terms of the parabolic cylinder
functions.
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Despite the simplicity of the model (6), many studies of quantum annealing and a dynamic
passage through a phase transition were based on reducing a problem to independent two-state
dynamics. A notable example is the Ising spin chain in a transverse magnetic field [8, 9]. Our
goal, however, is to find MTLZ families that do not have the trivial form (6) in any fixed basis.
An example of a nontrivial family is the γ-magnets [11]:

H1(t, ε) = ε

N∏
j=1

σz
j +

N∑
j=1

(
β jtσ

z
j + g jγ j

)
, (9)

H2(t, ε) = t
N∏

j=1

σz
j +

N∑
j=1

(
ε

β j
σz

j +
g j

β j
γ̃ j

)
. (10)

where β i, and gi are constant parameters; σα
j are the Pauli operators for jth spin, and

γ1 = σx
1, γ2 = σx

2σ
z
1, . . . , γN = σx

N

N−1∏
k=1

σz
k,

γ̃1 = σx
1

N∏
k=2

σz
k, . . . , γ̃N−1 = σx

N−1σ
z
N , γ̃N = σx

N . (11)

For the two-time vector

τ ≡ (t, ε), (12)

H1 and H2 satisfy (4) and (5).
In figure 1, we plot the energy spectrum of the Hamiltonian H1(t) for different values of t

and fixed other parameters. Integrability of this model can be inferred from the large num-
ber of points with exact crossings of energy levels. According to [7], the number of such
exact pairwise level crossings in solvable multistate LZ models should be the same as the
number of zero direct couplings between the diabatic states. This property holds true for the
Hamiltonian H1.

The diabatic states are the eigenstates of the time-dependent part of the Hamiltonian. In the
model (9), they are the spin projection states along the z axis, such as |↑↑ . . . ↑〉. According
to the adiabatic theorem, when energy levels are well separated, transitions between them are
suppressed. This happens for the spectrum in figure 1 as t →±∞. However, for the time inter-
val and the parameters that we used in this figure, different pairs of levels experience avoided
crossings, i.e. places where levels do not cross exactly but appear very close to each other for
a short time interval. After passing them, the system has finite amplitudes to stay on the initial
level or to jump to a new one. Thus, for evolution from t = −∞ to t = +∞, one can estimate
the amplitude of transitions between any pair of diabatic states by drawing all semiclassical
trajectories that connect the initial state at t = −∞ and the final state at t = +∞, and then
summing the amplitudes of these trajectories for a given transition.

A common feature of all γ-magnets with N > 1 is that there are generally more than
one trajectory connecting an arbitrary pair of energy levels that correspond to some pair of
the Hamiltonian eigenstates at t = ±∞. An example is shown by red and blue arrows in
figure 1. This property, rather than the presence of exact crossings, is the signature of purely
quantum and nontrivial behavior. For example, consider the separable Hamiltonian for four
spins:
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Figure 1. Eigenvalues of the Hamiltonian (9) as function of t for N = 4 interacting spins.
If we count a simultaneous exact crossing of n levels in one point as n(n − 1)/2 pairwise
exact level crossings, then this figure contains 88 exact pairwise level crossings, as it is
required by integrability conditions in the multistate LZ theory. The blue and red arrows
show an example of interfering semiclassical trajectories. The choice of the parame-
ters: e = 1, β1 = 0.5, β2 = 1.7, β3 = 4.1, β4 = 7.1, g1 = 0.14, g2 = 0.15, g3 = 0.17,
g4 = 0.15.

Hsep =

4∑
i=1

[
(βit + εi)σi

z + giσ
i
x

]
. (13)

The spectrum for Hsep is shown in figure 2. It contains the same number, 88, of the exact
pairwise crossing points, as figure 1. However, careful examination of figure 2 shows that in
the semiclassical picture there is always only a single trajectory that connects one level at
t = −∞ with another level at t = +∞.

Another feature of nontrivial interactions in the γ-magnet is that the number of exact
crossings is not conserved at large values of off-diagonal couplings. The theory in [7] guar-
antees 88 such crossings for H1 at N = 4 for finite but only sufficiently small values of gi.
For example, if we increase all couplings of the model in figure 1 ten times, we find the
spectrum shown in figure 3 with fewer exact pairwise crossings. Such a reduction does not
happen with the spectrum of the separable spin model (13) because exact crossings there
are guaranteed by the lack of spin–spin interactions. Thus, both the spectrum and semi-
classical analysis of γ-magnets show features that are not present in the separable spin
models.

This comparison between separable and non-separable integrable models suggests that the
latter may describe considerably more complex dynamics. In what follows, we will develop
an approach to classify all MTLZ models on the same footings. We will find, for example,
that the separable model corresponds only to a very special and very symmetric case in such
a classification, whereas the Hamiltonian of the general case is described by a considerably
bigger set of parameters.
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Figure 2. Time-dependent spectrum of the separable Hamiltonian (13) as a function
of t for N = 4 interacting spins. Here εi = (−1)iε, and all other parameters are as in
figure 1.

Figure 3. Spectrum of the same γ-magnet model as in figure 1 but for ten times
larger couplings gi, i = 1, 2, 3, 4. Several pairs of crossings annihilated each other in
comparison to figure 1.

4. Integrability conditions for MTLZ families on graphs

Originally, we constructed the family (9) and (10) using the trial-and-error approach. More sys-
tematic classification of such solvable families is needed. Thus, we want to know whether there
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are restrictions on the numbers of independent Hamiltonians in such families, or whether we
can add extra nontrivial interaction terms in such Hamiltonians without breaking integrability.

Substituting equation (2) into (4) and (5) we find matrix relations for an MTLZ
family [7]:

Bk j = B jk, [B jk, Blm] = 0, (14)

[Bs j, Ak] − [Bsk, A j] = 0, (15)

[A j, Ak] = 0, k, j, l, m, s = 1, . . .M. (16)

Note that here the lower indices are not indices of matrix elements but rather indices that
enumerate independent Hamiltonians in an MTLZ family. We will call the number of inde-
pendent Hamiltonians, M, the dimension of the MTLZ family. Equations (14)–(16) are the
integrability conditions for MTLZ models. Due to equation (14), all matrices Bjk can be diag-
onalized in the same orthonormal basis set (ēa|a = 1, . . . , N), namely, the set of states that we
will call the diabatic states.

4.1. Algebra of forms on the connectivity graph

In order to satisfy conditions (14)–(16), the real symmetric matrices Aj must have some zero
matrix elements in the diabatic basis. Therefore, with any MTLZ family of models, it is con-
venient to associate an undirected graph Γ = (Γ0,Γ1), whose vertices a ∈ Γ0 (a = 1, . . . , N)
represent the diabatic basis states and edges α ∈ Γ1 correspond to the nonzero couplings
between the diabatic states. We will call Γ the connectivity graph. In what follows, it will also
be useful to assume that edges have orientations, which we will mark by arrows. For example,
the family of models with the Hamiltonians of the form

H(t) =

⎛
⎜⎜⎜⎝
β1t + e1 g12 0 g14

g12 β2t + e2 g23 0

0 g23 β3t + e3 g34

g14 0 g34 β4t + e4

⎞
⎟⎟⎟⎠ , (17)

where gij, βi are some constant parameters, has the connectivity graph shown in figure 4. The
meaning of its edge orientations will be explained later.

Let Λa
k j, a = 1, . . . , N be eigenvalues of the matrices Bkj. Since Bkj = Bjk, due to

equation (14), we have the obvious symmetric property Λa
jk = Λa

k j. Hence, each vertex a is
the residence for a quadratic (symmetric bilinear) form

Λa = Λa
jkdx j ⊗ dxk, (18)

where ‘⊗’ denotes the tensor direct product. The nonzero couplings Aab
j will be naturally

considered as j-components of a linear form

Aab = Aba = Aab
j dx j. (19)

Note that this notation resolves the first constraint, given by equation (14), automatically
because the symmetry of the 2-form in (18) means that Λjk = Λkj.

7
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The second constraint (equation (15)), now has a form

(Λa − Λb) ∧ Aab = 0, ∀{a, b} ∈ Γ1, (20)

where ‘∧’ denotes the skew symmetric tensor product (the wedge product). Equation (20)
is straightforward to verify by substituting (18) and (19) into the left hand side of (20) and
compare the antisymmetrized over j and k coefficients near (dxj ∧ dxk) ⊗ dxs with (15). Since
the vanishing of the wedge product of two vectors is equivalent to their linear dependence,
equation (20) is equivalent to

Λa − Λb = χab ⊗ Aab, (21)

for some linear nonzero formχab = −χba. Due to the propertyΛa
i j = Λa

ji, equation (21) implies
that χab

i Aab
j = χab

j Aab
i , or in other words: χab ∧ Aab = 0. This implies the linear dependence of

χab and Aab, which being substituted into equation (21) results in

γab(Λa − Λb) = Aab ⊗ Aab, (22)

for some γab = −γba �= 0. Using the introduced notation the third constraint (equation (16))
can be naturally represented as

∑
s∈P2(a,b)

(As2
j As1

k − As2
k As1

j ) = 0 ∀ a, b ∈ Γ0, (23)

where the summation goes over all length 2 paths on the graph, and we denoted by Pl(a, b)
the set of paths s = (s1, . . . , sl), with sj ∈ Γ1 for j = 1, . . . , l, that starts at a and ends at
b. Equations (22 and (23) are homogeneous of degree 2. They are equivalent to the inte-
grability conditions (14)–(16) but they are simpler for analysis for a given connectivity
graph.

Finally, we note that in multistate LZ theory it is assumed that the directly coupled diabatic
energy levels must cross. For levels a and b, this happens on the hypersurface that is defined
by conditions

(
Λa

i j − Λb
i j

)
x j = 0, a, b = 1, . . . , N, i = 1, . . . , M. (24)

Using (22), we find that this condition can be rewritten in terms of Aab
i Aab

j . Suppose now that
there is a diabatic state c such that Aab and Aac are linearly dependent. We find then that if
condition (24) is satisfied for levels a and b, it is also satisfied for a and c. In other words,
levels a, b, and c cross simultaneously.

The multistate LZ models with simultaneous multiple diabatic level crossings are widely
known and used in practice (see e.g., reference [10] that is fully devoted to them). However, all
of them are likely derivable as limits of models with only pairwise level intersections. There-
fore, in this article we will restrict our studies only to the Hamiltonians without triple or higher
order intersections, in one point, of directly coupled diabatic levels. In the graph language, this
means that Aα forms have the following property: for any pair of distinct edges α, β ∈ Γ1 that
share a vertex, that is α ∩ β �= ∅, the forms Aα and Aβ are linearly independent. We will call
a family that satisfies this property a good family. Let us now show that restricting our studies
to the good families leads to considerable additional simplifications.

8
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Figure 4. Directed graph representing a four-state model (17).

4.2. Refined integrability conditions for MTLZ models

Let us define a cyclic path

n =
∑
α∈Γ1

nαα (25)

on the graph Γ, as a combination of the edges α on Γ with the zero boundary; here nα = ±
account for possible orientations of the edges. Namely, let us define sab = sgn(γab) = ±1,
for α = {a, b}. We can then represent γab = sabγα, where γα = |γab|. For any cyclic path
n, we can now prescribe the coefficients nα = ±1 to all its edges: nα = sab if n passes the
edge from a to b. Hence, signs of γab define unique directions of edges along any loop of the
graph.

A vertex a will be called a source or a sink if sab = −1, or sab = 1, respectively, for all
{a, b} ∈ Γ1, i.e., if all arrows point, respectively, out or in. A vertex will be called intermediate
if it is not a sink and not a source for all edges. For example, the arrows on the edges in figure 4
mean that vertex 1 is a sink, vertex 3 is a source, and vertices 2 and 4 are intermediate, and the
signs are s12 = s14 = −s32 = −s34 = 1. We will call γα the LZ parameters for their similarity
with the analogous combination that enters the transition amplitude in the simple two-state LZ
formula [4].

It is now convenient to introduce the rescaled forms

Āα =
Aab√
|γab|

=
Aα

√
γα

. (26)

For any cycle n =
∑

α∈Γ1
nαα, the integrability conditions can then be written as

∑
α∈n

nαĀα ⊗ Āα = 0, (27)

9
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and ∀a, b ∈ Γ0:

{a,c},{b,c}∈Γ1∑
c∈Γ0

√
γ{a,c}γ{b,c}Ā{a,c} ∧ Ā{b,c} = 0. (28)

From equation (28) follows the following property:

(a) any pair α, β of edges that share a vertex belongs to at least one length-4 loop.
In appendix, we also prove two properties that strongly restrict the types of graphs that
can sustain integrable families. Namely,

(b) the graph Γ must not have length 3 simple loops;
(c) the vector space spanned by the four Ā forms on any length-4 loop has dimension 2.

Now we summarize the program for how to retrieve the integrable families for a given
connectivity graph. First, we should check whether conditions (a) and (b) are satisfied. If not,
then there is no integrable family for this graph. Otherwise, we take the following steps:

(a) We start with choosing the orientations on the graph, namely, fixing the sign sab on every
edge α = {a, b}.

(b) We further identify/classify the solutions of equation (27), viewed as a system of bilinear
equations on the forms Ā

α; the number of independent equations is given by the number
of independent 1-cycles on the graph. Generally, solution of equation (27) is not unique
but rather depends on free parameters, which we will call rapidities.

(c) Once Ā
α are identified, we find the solutions of equation (28), viewed as a system of

bilinear equations for
√
γα; we will show later that any particular equation has a very

simple and scalar form. Again, the solution may not determine all γα uniquely, so some
of γα then become free parameters of the model. At this stage, having equation (26),
we can reconstruct couplings of the Hamiltonians, which will depend on rapidities
and γα.

(d) Finally, the quadratic forms Λa associated with the vertices are obtained with
equation (22). Again, this equation may not fix all Λa. The parameters that describe this
freedom also become free parameters of the MTLZ Hamiltonians.

Note that within such a scheme, the forms Ā
α are obtained in some (abstract) basis set. The

dimension of the vector space spanned onto Āα is the actual dimension of the MTLZ family.
Multistate LZ models within this family are related up to an invertible linear transformation in
the space of free parameters.

5. Four-vertex graph

As the simplest example, let us explore a connectivity graph, generated by a length 4 simple
loop that consists of 4 distinct edges, say, α = {a, b}, β = {b, c}, μ = {c, d}, and ν = {d, a},
as shown in figure 5. We can call this graph a ‘square’. We will first assume that this graph can
be a part of a complex graph, then consider this graph as an entire graph. Our goal is to find
restrictions on the 1-forms and LZ parameters that are imposed by equations (27) and (28).

5.1. Non-bipartite graph orientation

We assume, initially, orientation to be arbitrary. By the property iii, Ā
α and Ā

β are linearly
independent and

10
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Figure 5. Graphs of a 4-loop (a square), with two types of orientations: (a)
non-bipartite; (b) bipartite.

Āν = xαĀα + xβĀβ , Āμ = yαĀα + yβ Āβ. (29)

We further make use of equation (27) to define the cyclic path

n = sabα+ sbcβ + scdμ+ sdaν, (30)

which is a cycle. Upon substitution of equations (29) and (30) into equation (27), and looking
at the coefficients in front of Ā

α ⊗ Ā
α, Ā

β ⊗ Ā
β , and Ā

α ⊗ Ā
β
+ Ā

β ⊗ Ā
α, we obtain a system

of three quadratic equations

sdax2
α + scdy2

α + sab = 0,

sdax2
β + scdy2

β + sbc = 0,

sdaxαxβ + scdyαyβ = 0. (31)

11
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We will now consider all possible orientations that allow for nontrivial solutions of
equation (31). Let sda = scd = 1. Then, for equation (31) to have nontrivial solutions we have
sab = sbc = −1, which means that a and c are a source and a sink, respectively, as we show in
figure 5(a). Namely, they are, respectively, the origin and the destination of arrows that are con-
nected to them. The other vertices, b and d, are intermediate. We will call the whole orientation
of edges in figure 5(a) non-bipartite. For this orientation, it is easy to see from equation (31)
that (Āν , Ā

μ) are related to (Āα, Ā
β) via an orthogonal O(2) transformation, i.e.,

Āν = cos ϕĀα + r sin ϕĀβ ,

Āμ = − sin ϕĀα + r cos ϕĀβ , (32)

with r = ±1, i.e., with the determinants of the corresponding 2 × 2 matrices equal±1. A useful
consequence of (32) is

Āν ∧ Āμ = rĀα ∧ Āβ , (33)

which is true for a general O(2), not necessarily SO(2), transformation.
In what follows, it will be useful to view equation (32) as a system of linear equations that

relate different pairs of components of Ā. Thus, expressing Aα and Aν , via Aμ and Aβ , we obtain

Āα = − 1
sin ϕ

Āμ + r
cos ϕ

sin ϕ
Āβ ,

Āν = −cos ϕ

sin ϕ
Āμ + r

1
sin ϕ

Āβ , (34)

and we further recast the result in the form of a pseudo-orthogonal transformation:

Āα = p̃
(
cosh ϑĀμ + r̃ sinh ϑĀβ

)
,

Āν = p̃
(
sinh ϑĀμ + r̃ cosh ϑĀβ

)
, (35)

with the following relations:

p̃ = −sgn(sin ϕ), r̃ = −r, |sin ϕ| · cosh ϑ = 1,

sgn(sinh ϑ) = sgn(cos ϕ). (36)

An analogue of equation (33) is now

Āα ∧ Āν = r̃Āμ ∧ Āβ. (37)

By now we have assumed that this four-vertex graph can be a part of a complex graph. Let us
now consider this four-vertex graph as an entire graph. In this case we can apply equation (28),
which leads to two equations written for two pairs of opposite vertices, i.e., {a, c} and
{b, d}:

√
γαγν Āα ∧ Āν = −

√
γβγμĀβ ∧ Āμ,

√
γνγμĀν ∧ Āμ = −

√
γαγβĀα ∧ Āβ , (38)

which can be reconciled with equations (33) and (37) if we set
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−r = r̃ = 1. (39)

Equations (33), (37) and (38) also imply

γμ = γα, γν = γβ , (40)

that is, the LZ parameters have to be the same for opposite links of the square graph.

5.2. Bipartite graph orientation

Another orientation that could produce a qualitatively different solution is shown in figure 5(b).
This time, both b and d are sinks of arrows, and both a and b are sources, and we refer to this
graph orientation as bipartite. Equation (29) define a pseudo-orthogonal transformation, whose
general form has been already presented in equation (35), so that the forms Āσ , associated with
the edges of our 4-loop are related by

Āν = p
(
cosh ϑĀα + r sinh ϑĀβ

)
,

Āμ = p
(
sinh ϑĀα + r cosh ϑĀβ

)
, (41)

and we also have as a consequence equation (33) to hold. In the same way how equation (35)
has been derived, we obtain

Āα = p̃
(
cosh ϑĀβ + r̃ sinh ϑĀμ

)
,

Āν = p̃
(
sinh ϑĀβ + r̃ cosh ϑĀμ

)
, (42)

with the following relations

p̃ = −r sgn(sinh ϑ), r̃ = −r,

|sinh ϑ| · |sinh ϑ̃| = 1, sgn(sinh ϑ̃) = p. (43)

Then we have for the bipartite orientation

Āν ∧ Āμ = ±Āα ∧ Āβ , Āα ∧ Āν = ∓Āβ ∧ Āμ, (44)

where signs ± and ∓ are correlated with each other. If this four-vertex graph is an entire
graph, we will have (38) as in the non-bipartite case. This means that equations (44) and
(38) are contradictory to each other, so there is no nontrivial solution for the bipartite
graph.

Therefore, for a 4-loop graph as an entire graph, the data (values of Āα and γα) on edges of
this graph satisfy integrability conditions only if its orientation is nonbipartite and conditions
(32) with r = −1 (or, equivalently, (35) with r̃ = 1) and (40) are satisfied.

5.3. Solvable 4-state models

Let us now construct an integrable model explicitly. According to the directions of arrows in
figure 4, we have γ12, γ43, γ14, γ23 > 0. According to (35), the relations between the Ā forms
are:

(
Ā34

Ā23

)
= p

(
cosh ϑ sinh ϑ
sinh ϑ cosh ϑ

)(
Ā12

Ā14

)
, (45)

13
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where p = ±1, and from (40) the relations for γij are:

γ12 = γ43, γ14 = γ23. (46)

In what follows, to shorten notation, we will denote:

s ≡ sinh ϑ, c ≡ cosh ϑ. (47)

Since the space of 1-forms is 2-dimensional, we can write

Ā12 = a1dx1 + a2dx2, Ā14 = b1dx1 + b2dx2, (48)

where a1,2 and b1,2 are arbitrary real numbers.
Using equation (26) and identifying coefficients of Aij near dx1 with couplings in H1 we

find

g12 =
√
γ12a1, g14 =

√
γ14b1, g23 = p

√
γ14(sa1 + cb1),

g34 = p
√
γ12(ca1 + sb1). (49)

Equation (49) defines four couplings in terms of five free parameters of the model: a1, b1, ϑ,
γ14 and γ12. So, we have freedom to set the couplings to arbitrary different values (with one
exception to which we will return).

However, slopes of the levels are generally not independent. Recalling equations (22) and
(23), and identifying Λs

11 with βs in (17), we find

β1 − β2 = a2
1, β1 − β4 = b2

1, β2 − β3 = (sa1 + cb1)2,

β4 − β3 = (ca1 + sb1)2. (50)

Equations in (50) are dependent on each other because they give identity if we sum all of them
with proper signs. This merely reflects the freedom to do a gauge transformation

H1 → H1 + (βt + e)1̂ (51)

that keeps the Hamiltonian integrable. Apart form this, there are no new free parameters that
resolve equation (50). Finally, using equations (22) and (23) and identifying Λs

12 with es in
(17), we find

e1 − e2 = a1a2, e1 − e4 = b1b2,

e2 − e3 = (sa1 + cb1)(sa2 + cb2),

e4 − e3 = (ca1 + sb1)(ca2 + sb2). (52)

Again, this set of equations determines es, s = 1, 2, 3, 4, up to a gauge freedom constant in (51).
Note, however, that this is the only place where the new free parameters, a2 and b2 appear.
Hence, unlike the slopes βs, the parameters es are not completely determined by the values of
model’s couplings.

Summarizing, we found simple equations (49), (50), and (52), that determine all parameters
of the Hamiltonian (17) up to the gauge freedom (51). Thus, the resulting model depends on
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seven independent real parameters: a1,2, b1,2, ϑ, γ12, and γ14. We can also add to this list the
sign index p in (49).

At this stage, the Hamiltonian H1 does not look particularly ‘physical’. However, this Hamil-
tonian does have a simple physical interpretation if two couplings are set the same, e.g., let

g12 = g34 = g1, (53)

where g1 is an arbitrary constant. There are two choices of free parameters at which this occurs.
The first choice is the case with

ϑ = 0. (54)

We find then that the Hamiltonian can be parametrized so that

H1(t) =

⎛
⎜⎜⎝
β1t + e1 g1 0 g2

g1 β2t + e2 g2 0
0 g2 β3t + e3 g1

g2 0 g1 β4t + e4

⎞
⎟⎟⎠ , (55)

where the only constraints on the parameters are

β1 − β2 = β3 − β4, β1 − β4 = β2 − β3,

and

e1 − e2 = e4 − e3, e1 − e4 = e2 − e3,

i.e., the couplings g1 and g2 are independent of the diagonal elements. This particular choice
is trivial. It coincides with the Hamiltonian

H1 = 1̂2 ⊗HLZ
1 +HLZ

2 ⊗ 1̂2, (56)

that describes two noninteracting spins experiencing independent two-state LZ transitions
that are described by independent 2 × 2 Hamiltonians HLZ

1,2. This trivial case was discussed
previously in [12].

A nontrivial case is found if we set ϑ �= 0, i.e. c �= 1. Then substituting (53) into (49) we
find

g14 = −g23 = g1, (57)

i.e., this is a special case at which the couplings g14 and g23 cannot be made arbitrary. However,
specifically at this case, equation (50) does not have unique resolution. Up to a shift of time
t → t + t0, the Hamiltonian (17) can then be parametrized as follows:

H1(t) =

⎛
⎜⎜⎝
β1t + e1 g1 0 g2

g1 β2t − e1 −g2 0
0 −g2 −β1t + e1 g1

g2 0 g1 −β2t − e1

⎞
⎟⎟⎠ , (58)

where all parameters are independent. Comparing this Hamiltonian with the Hamiltonian (9)
for N = 2, we find that up to renaming of variables they are the same. Thus, as expected, the
N = 2 case of the γ-magnet model is a special case of the square graph family.
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Figure 6. Directed graph of the cube model, where every 4-loop has a non-bipartite
orientation.

One can easily construct a commuting Hamiltonian for (58) by identifying couplings with
coefficients of As at dx2 and so on. Since we already proved that the square-family is 2-
dimensional, we also proved that the Hamiltonian (9) for N = 2 does not have other nontrivial
operators but (10).

6. Cube

Let us now extend the analysis of a simple square graph to an 8-state MTLZ model whose
graph is a cube, as shown in figure 6. A specific case of this model was considered in [11].
Here we will consider its most general form.

6.1. MTLZ family on cube

The cube graph is shown in figure 6. It has the property that for any two vertices that can be
connected by a length-2 path (namely, any two vertices that sit on diagonal position of one face
of the cube), there are only two such paths in the entire graph. Thus, the graph is decomposable
into 4-loops. According to the analysis in the previous section for a square model, all these 4-
loops should have non-bipartite orientations. Therefore, up to a permutation of vertices, we get
only one type of orientations, as shown in figure 6. Vertex 0 is a sink, vertex 7 is a source, and
all other vertices are intermediate.

For γab, considering loop 0132, an argument similar to that for the square model gives:

|γ01| = |γ23|, |γ02| = |γ13|. (59)

Writing out similar relations for all other 4-loops, we see that the twelve LZ parameters γab’s
are related so that any four edges parallel to each other have the same |γab|. There are only
three values of |γab| that become the independent parameters. Including the signs determined
by sab’s, which are illustrated by the arrows in figure 6, we get
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γ01 = γ23 = γ45 = γ67, (60)

γ02 = γ13 = γ46 = γ57, (61)

γ04 = γ15 = γ26 = γ37, (62)

and that all these twelve γabs are positive.
For Āab, we use the previous result that for any 4-loop its four Āab forms are connected

via orthogonal or pseudo-orthogonal transformations. Let us take the three forms on edges
connected to vertex 0, namely, the forms Ā01, Ā02 and Ā04, to be known. For simplicity, later
we will write the loop indices as a single number, by making the substitutions

0132 → 1, 0154 → 2, 0264 → 3,

1375 → 4, 2376 → 5, 4576 → 6.

For the three loops that include vertex 0, namely the loops 0132, 0154, and 0264, the pseudo-
orthogonal transformations give:

(
Ā23

Ā13

)
= U(ϑ1)

(
Ā01

Ā02

)
,

(
Ā45

Ā15

)
= U(ϑ2)

(
Ā01

Ā04

)
,

(
Ā46

Ā26

)
= U(ϑ3)

(
Ā02

Ā04

)
, (63)

with

U(ϑi) = pi

(
cosh ϑi sinh ϑi

sinh ϑi cosh ϑi

)
≡

(
ci si

si ci

)
, (64)

where pi = ±1 are sign factors, and

ci = pi cosh ϑi, si = pi sinh ϑi, c2
i − s2

i = 1. (65)

U(ϑi) is a pseudo-orthogonal matrix, with ϑi’s being rapidities which can take values from
−∞ to ∞. The other three loops which include vertex 7 then give:

(
Ā57

Ā37

)
= U(ϑ4)

(
Ā13

Ā15

)
,

(
Ā67

Ā37

)
= U(ϑ5)

(
Ā23

Ā26

)
,

(
Ā67

Ā57

)
= U(ϑ6)

(
Ā45

Ā46

)
. (66)

Equation (66) overdetermine the forms Ā37, Ā57 and Ā67 because there are two equations for
each of them. For example, substituting (63) into (66) we find two expressions for Ā

37 in terms
of the forms that we consider linearly independent:
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Ā37 = c4(c2Ā04 + s2Ā01) + s4(c1Ā02 + s1Ā01), (67)

Ā37 = c5(c3Ā04 + s3Ā02) + s5(c1Ā01 + s1Ā02). (68)

If we assume that the three forms Ā
01, Ā

02 and Ā
04 are linearly independent, then the

coefficients near these forms in equations (67) and (68) should be the same, which gives three
conditions on ϑs:

c2c4 = c3c5, (69)

c1s5 = s2c4 + s1s4, (70)

c1s4 = s3c5 + s1s5. (71)

This is a system of three equations with five variables (si and ci are viewed as the same variable),
but one equation turns out to follow from the other two. Therefore, there are three rapidities
that we can consider as independent parameters of the model and derive other rapidities from
them.

Let us simplify the information that is contained in equations (69)–(71). From equation (69),
we have c5 = c2c4/c3. From equation (70), we have s5 = (s2c4 + s1s4)/c1. Plugging these two
expressions into equation (71), we get:

c1s4 =
c2c4

c3
s3 +

s2c4 + s1s4

c1
s1, (72)

which is equivalent to

s4

c4
=

c1c2s3 + s1s2c3

c3
, (73)

where we used c2
1 − s2

1 = 1.
Let us now introduce the hyperbolic tangents:

τi =
si

ci
= tanh ϑi. (74)

In terms of τ i, the functions si and ci are expressed as:

si =
piτi√
1 − τ 2

i

, ci =
pi√

1 − τ 2
i

. (75)

Plugging these into equation (73), we get an expression of τ 4 in terms of τ 1, τ 2 and τ 3:

τ4 =
p1 p2(τ3 + τ1τ2)√
(1 − τ 2

1 )(1 − τ 2
2 )
. (76)

Now we note that our graph in figure 6 possesses a 3-fold rotation symmetry about the
line connecting vertices 1 and 7. Therefore, the expressions for Ā

67 and Ā
78 can be directly

18



J. Phys. A: Math. Theor. 53 (2020) 185203 V Y Chernyal et al

obtained from those for Ā
37 (equations (67) and (68)) by exchanges of indices according to

this symmetry.Thus, we find the expressions for τ 5 and τ 6 in terms of τ 1, τ 2 and τ 3:

τ5 =
p1 p3(τ2 + τ1τ3)√
(1 − τ 2

1 )(1 − τ 2
3 )

, (77)

τ6 =
p2 p3(τ1 + τ2τ3)√
(1 − τ 2

2 )(1 − τ 2
3 )
. (78)

The sign factors pi are also not all independent, and they satisfy:

p2 p4 = p3 p5, p1 p4 = p3 p6. (79)

Note that in the analysis above we assumed linear independence of Ā
01, Ā

02 and Ā
04, and

the space of the Ā forms is 3-dimensional. We did also consider the case when not all of
Ā

01, Ā
02 and Ā

04 are linearly independent. Then the dimension of the space of the Ā forms
has to be 2 due to the good family assumption. In this case, all the rapidities can be taken
as independent parameters, and we tried to solve for all the Ā forms, but we found that the
equations always lead to a contradiction. This indicates that there are no intrinsic 2-dimensional
families on the cube graph. Namely, any 2-dimensional family on the cube can be obtained
trivially from a 3-dimensional family that we just described by restricting to a 2-dimensional
subspace.

Summarizing, we found that the cube connectivity graph describes a 3-dimensional MTLZ
family, which is parametrized by nine parameters of three independent 1-forms: Ā01, Ā02, and
Ā

04 plus three independent LZ parameters: γ01, γ02 and γ04 plus three independent rapidity
parameters, or rather their hyperbolic tangents: τ 1, τ 2 and τ 3, whose values should keep other
such variables, τ 4, τ 5 and τ 6 within the range (−1, 1). There is one trivial choice of the rapidi-
ties: τ i = 0 for all i. We verified that this case corresponds to a trivial model that is composed
of three independent 2 × 2 LZ Hamiltonians:

Hτ=0 = HLZ
1 ⊗ 1̂2 ⊗ 1̂2 + 1̂2 ⊗HLZ

2 ⊗ 1̂2 + 1̂2 ⊗ 1̂2 ⊗HLZ
3 . (80)

The transition probability matrix [7] is then a direct product of three 2 × 2 LZ probability
matrices:

Pτ=0 = PLZ
1 ⊗ PLZ

2 ⊗ PLZ
3 ,

PLZ
i =

(
pi qi

qi pi

)
, (i = 1, 2, 3),

(81)

where p1 = e−2πγ01
, p2 = e−2πγ02

, p3 = e−2πγ04
, q1 = 1 − p1, q2 = 1 − p2, and q3 = 1 − p3.

(Note that here pi are probabilities instead of sign factors, although we use the same notation
for both.)

Are there nontrivial cases in addition to (80)? The answer is yes—at least one such case,
the γ-magnet, has been found [11]. The connectivity graph for the γ-magnet [11] with N spins
is the N-dimensional hypercube, and it is a cube at N = 3. Given the large set of parameters
described above, it is natural to ask whether there are more solutions on the cube graph. In the
next subsection, we show that the family of solutions on cube is actually very rich.
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6.2. Classification of solutions on cube

Let us now outline the strategy to classify different Hamiltonians that correspond to different
transition probability matrices within the same cube family. In what follows, we assume that
the reader is familiar with section 8 from reference [7].

According to [1], for an MTLZ model (3), if we choose a linear time path via the substitution

Pt : xi(t) = vit + εi, for i = 1, . . . , M (82)

with arbitrary parameters vi and εi, then (3) reduce to a multistate LZ model (1) with the
Hamiltonian

H(t) = viHi(x1(t), . . . , xM(t)). (83)

This property provides a way to generate multistate LZ Hamiltonians. According to [1, 7], a
scattering problem for the MTLZ model can be solved by a WKB-like approach. For evolution
along the path (82) from t = −∞ to t = ∞, the path can be deformed to a path P∞ along which
|x| is always large. The path P∞ goes through a series of adiabatic regions, within which the
adiabatic energy levels are well separated. These adiabatic regions are separated by hyperplanes
which correspond to pairwise degeneracies of the diabatic energy levels of the Hamiltonians
Hi. The positions of these hyperplanes are determined by the conditions Āab

j x j = 0. We can
label a hyperplane by the indices ab.

WhenP∞ goes across the hyperplane ab, the scattering matrix experiences a jump described
by a ‘connecting matrix’. It is a unit matrix except for the 2 × 2 block for the levels a and b,
which coincides with a scattering matrix for a 2 × 2 LZ model where γab enters as a parameter
(see equation (87) in [7]). The direction when P∞ crosses the hyperplane ab also influences
the connecting matrix—if we denote the connecting matrix when P∞ goes from a Āab

j x j > 0
region to a Āab

j x j < 0 region as Sab, then the connecting matrix will become (Sab)† when P∞
takes the opposite direction. The scattering matrix of the whole evolution is then a product of a
series of adiabatic evolution matrices and LZ matrices ordered along the path P∞. It has been
shown [1, 7] that the adiabatic evolution matrices produce phase factors that always cancel
out in the expressions of transition probabilities for the whole evolution, and the connecting
matrices completely determine the transition probabilities. Here we will apply this approach
to the cube graph.

Generally, each of the three independent 1-forms Ā01, Ā02, and Ā04 will have three arbi-
trary components in dx1, dx2 and dx3. We will define new coordinates dx1, dx2 and dx3 such
that

Ā01 = dx1, Ā02 = dx2, Ā04 = dx3. (84)

This corresponds to performing a linear transformation on the coordinate system. Now the three
1-forms carry no free parameters but parameters vi and εi from (82) are used instead. After this
transformation, all the Ā

ab forms are completely determined by the rapidities τ 1, τ 2, τ 3 (or,
more precisely, the rapidities and the sign factors pi), so the positions of hyperplanes depend
only on the rapidities and not on other parameters in the list. The parameters vi (i = 1, 2, 3), on
the other hand, determine which adiabatic regions the evolution starts from and end with. The
parameters εi (i = 1, 2, 3) give shifts to the energy constants on the diagonal entries of H(t),
and they do not affect transition probabilities. Finally, the LZ parameters γ01, γ02 and γ04 enter
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only as parameters of the connecting matrices and determine values of transition probabilities,
but they do not influence the structure of the transition probability matrix.

Let us now sketch how one can perform the classification of different behavior within the
family of solvable models. We first make a choice of τ 1, τ 2, and τ 3, and calculate all the Ā

ab

forms using equations (63), (66), and (75)–(78). We then find the position of any hyperplane ab
by solving Āab

j x j = 0. For a 3-dimensional MTLZ family like the cube model, the hyperplanes
are 2D planes passing the origin of the 3D space spanned by x1, x2, and x3. If we draw a sphere
S2 in this 3D space, these planes will intersect the sphere along great circles. We will label a
great circle also by ab. Each great circle ab separates the sphere into two hemispheres, one
with Āab

j x j > 0, and the other with Āab
j x j < 0.

Since there are twelve different nonzero Ā
ab forms, there are twelve such great circles. Alto-

gether, they decompose the sphere S2 into a number of cells, and each cell corresponds to an
adiabatic region. Let us now choose the radius of S2 to be large. Recall that we are considering
evolution along the path Pt (equation (82)) which is deformed to P∞. The evolution path Pt

intersect the sphere S2 (with a large radius) at two points which lie in two cells. We will call
them the initial and final cells for a given evolution path. (Note that, on the sphere S2, these two
cells are always at positions opposite to each other.) Once we make a choice of vi (i = 1, 2, 3),
the initial and final cells are fixed. We then deform Pt to P∞ while keeping its two intersect-
ing points with the sphere S2 fixed. P∞ can be chosen to run on S2, where it becomes a path
threading a number of cells. Adiabatic evolution takes place within a cell, but not when it goes
from one cell to another.

Consider now a segment of P∞ that connects two neighboring cells separated by the great
circle ab. When going along this segment, Āab

j x j changes sign, and evolution along this segment
contributes to the scattering matrix a connecting matrix Sab or (Sab)† with the parameter γab, as
described in reference [7]. We can then choose a path that connects the initial and final cells,
and write all the connecting matrices between the neighboring cells along this path, and then
obtain the transition probability matrix for the whole evolution. The way to choose this path
is not unique but the final scattering matrix does not depend on this choice [1]. We also note
that if vi is changed but the initial cell remains the same, then the final scattering matrix also
remains the same, since evolution within a cell is adiabatic. Thus, the choice of parameters vi

is reduced to a choice of the initial cell.
Figure 7 is an example of a cell decomposition plot for some choice of τ 1, τ 2 and τ 3 on

the cube geometry. To show the decomposition in a planar figure, we perform a stereographic
projection which transforms a sphere S2 to a plane. A great circle on the sphere then trans-
forms either to a circle or a straight line on the plane. There are totally ninety eight cells, and
each of them can be chosen as the initial cell of an evolution. Once we computed transition
probabilities of all these evolutions, we find all possible solutions at a given choice of τ 1, τ 2

and τ 3.
For computing transition probabilities, it is convenient to draw a graph dual to the cell

decomposition plot. In such a dual graph, each cell is represented by a vertex, and each pair
of two neighboring cells are connected by an edge, which is dual to the segment of the great
circle that separates the two cells. If that great circle is labelled by ab, we will associate to
the edge the connecting matrix Sab (which is a function of γab). We also define an orientation
on each edge—on an edge crossing the big circle ab, we put an arrow which points from the
Āab

j x j > 0 side to the Āab
j x j < 0 side. On the dual graph, a path of an evolution becomes a path of

connected edges. Each edge contributes to the overall scattering matrix a factor Sab (or (Sab)†)
if the path goes in (or opposite to) the direction of the arrow. We can then directly read out
the series of connecting matrices for that evolution. Besides, the dual graph reveals symmetric
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Figure 7. An example of the cell decomposition plot, which is stereographic-projected
on a plane. The parameters are: τ 1 = 0.5, τ 2 = 0.3, τ 3 = 0.4, and all sign factors pi = 1.
The label for a circle or a straight line in the legend is the same as the label ab for a
great circle being the solution to Āab

j x j = 0, (e.g. 01 corresponds to the great circle with
Ā01

j x j = 0).

structures of the cells, which allow us to calculate the transition probabilities for only a portion
of the choices of initial cells and obtain the transition probabilities for the remaining choices
by symmetry.

We worked out cell decompositions and the corresponding dual graphs for several different
choices of τ 1, τ 2 and τ 3, with all sign factors pi positive. We considered three cases whose
structures of cell decompositions were different: (1) When all τ i (i = 1, . . . , 6) are positive
(the cell decomposition in figure 7 belongs to this case). (2) When τ 1 < 0, τ 2, τ 3 > 0 and
τ 4, τ 5, τ 6 > 0 (namely, when one τ i is negative) .(3) When τ 1 < 0, τ 2, τ 3 > 0, τ 4 < 0 and
τ 5, τ 6 > 0 (namely, when two τ i’s are negative).

A simultaneous change of signs of two of τ 1, τ 2 and τ 3 leads to sign changes of two of τ 4,
τ 5 and τ 6 and leaves their amplitudes unchanged, as can be seen from equations (76)–(78).
This fact results in the cell decomposition plot to be just a reflection of the plot before the
simultaneous sign change. For example, for the choice τ 1 = −0.5, τ 2 = −0.3 and τ 3 = 0.4,
which is the choice in figure 7 with the signs of τ 1 and τ 2 flipped, the cell decomposition plot
becomes a reflection of figure 7 about the vertical axis. We checked that all transition proba-
bility matrices remain unchanged as compared to those before the flips of signs of τ 1 and τ 2.
Since all choices of τ 1, τ 2 and τ 3 can be connected to either one of τ 1, τ 2 and τ 3 being nega-
tive or all of them being positive by such a simultaneous flip, the three cases described above
should eliminate all possibilities of values of τ i. We also checked a case when one sign factor
from pi (i = 1, 2, 3) becomes negative. The cell decomposition plot turns out to be identical to
the one before the sign flip, and we also checked that all transition probability matrices remain
unchanged. We note that only the topology of the cell decomposition influences the transition
probability matrices. This is why a cell decomposition plot can be viewed as a dual graph.

For the considered choices of τ 1, τ 2 and τ 3, we calculated all transition probability matrices.
We found that, up to permutation of levels and exchange of indices in p1, p2, p3 and q1, q2, q3,
there were totally seven types of the transition probability matrices, which we summarized in
table 1 We distinguish the transition probability matrices by the number of zeros in their lower
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Table 1. The seven types of transition probability matrices characterized by their num-
bers of zeros and distributions of zeros. The numbers of zeros in each column are
arranged in descending order.

Half of the number The number of
Type of zeros zeros in columns

1 0 00 000 000
2 6 33 111 111
3 8 22 222 222
4 11 44 332 222
5 12 44 333 322
6 12 33 333 333
7 16 44 444 444

triangular part (the number of zeros in the whole matrix is twice this number, since the matrix
is always symmetric and all diagonal entries are nonzero). Possible numbers of zeros are: 0, 6,
8, 11, 12, 16. The type 1 (no zeros) contains, in particular, the trivial direct product case, whose
transition probability matrix looks like equation (81). Besides, we checked that type 3 (eight
zeros) contains a direct product of the transition probability matrices of a 2 × 2 LZ model
and an N = 2γ-magnet. Among the other five types, the type 7 (sixteen zeros) corresponds
to the N = 3γ-magnet [11]. Types 5 and 6 both have twelve zeros but their distributions of
zeros are different, so these types are not equivalent to each other.An example of the transition
probability matrices for type 2 (six zeros) is:

P6 zeros =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 p2 p3 p2 p3q1 p3q2 0 p2q3 0 q2q3 0

p2 p3q1 p1 p2 p3 0 p3q2 0 p2q3 0 q2q3

p3q2 0 p1 p2 p3 p2 p3q1 p1q2q3 q1q2q3 p1 p2q3 p2q1q3

0 p3q2 p2 p3q1 p1 p2 p3 q1q2q3 p1q2q3 p2q1q3 p1 p2q3

p2q3 0 p1q2q3 q1q2q3 p1 p2 p3 p2 p3q1 p1 p3q2 p3q1q2

0 p2q3 q1q2q3 p1q2q3 p2 p3q1 p1 p2 p3 p3q1q2 p1 p3q2

q2q3 0 p1 p2q3 p2q1q3 p1 p3q2 p3q1q2 p1 p2 p3 p2 p3q1

0 q2q3 p2q1q3 p1 p2q3 p3q1q2 p1 p3q2 p2 p3q1 p1 p2 p3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(85)

and an example for type 3 (eight zeros) is

P8 zeros =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 p2 p3 p2 p3q1 p1 p3q2 p3q1q2 p2q3 0 q2q3 0

p2 p3q1 p1 p2 p3 p3q1q2 p1 p3q2 0 p2q3 0 q2q3

p1 p3q2 p3q1q2 p1 p2 p3 p2 p3q1 q2q3 0 p2q3 0

p3q1q2 p1 p3q2 p2 p3q1 p1 p2 p3 0 q2q3 0 p2q3

p2q3 0 q2q3 0 p1 p2 p3 p2 p3q1 p1 p3q2 p3q1q2

0 p2q3 0 q2q3 p2 p3q1 p1 p2 p3 p3q1q2 p1 p3q2

q2q3 0 p2q3 0 p1 p3q2 p3q1q2 p1 p2 p3 p2 p3q1

0 q2q3 0 p2q3 p3q1q2 p1 p3q2 p2 p3q1 p1 p2 p3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(86)
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Figure 8. Directed graph of the 4d hypercube model, where every 4-loop has a non-
bipartite orientation.

These matrices show some common features which are also observed in all the seven types.
Namely, all entries are monomials of p1, p2, p3, q1, q2 and q3 with degrees no larger than 3. All
diagonal elements are identically p1p2p3, which means that the probability to stay in any level
is always p1p2p3. The transition probabilities between two levels that are directly coupled are
always nonzero. For example, consider the transition probabilities from level 0, given by the
entries in the first column of a matrix. Recall that the corresponding vertex 0 is connected to
vertices 1, 2 and 4 (see figure 6), which means that there are nonzero couplings between level
0 and levels 1, 2 and 4 in the Hamiltonian. We observe that the transition possibilities to these
three levels are never zero in all seven types, whereas transition possibilities to the other four
levels can be zero (they are indeed all zero in the 16-zero (γ-magnet) case).

Here we make a remark related to reference [11]. There, the γ-magnet was presented as an
illustration of a phenomenon called dynamic spin localization (DSL)—for a system of spins
1/2. After a linear sweep of the magnetic field, the final state always ends up close to the initial
state in the sense that at most one spin flips. This is visualized in the transition probability
matrix by the zero entries for the probabilities corresponding to flips of more than one spins.
We can thus interpret the number of zeros in a transition probability matrix as a measure of the
strength of DSL. Our classification of solutions on cube shows a series of transition probability
matrices with numbers of zeros increasing from 0 to that of the γ-magnet. Thus, the cube model
provides a series of Hamiltonians with increasing degrees of DSL, from no DSL (direct product
case) to strongest DSL (the γ-magnet).

6.3. 4-Dimensional hypercube

We further consider a 16-state model whose graph is a 4-dimensional (4d) hypercube, as shown
in figure 8. We will show that a 4-dimensional MTLZ family exists on this graph.

Note that inside any (3-dimensional) cube graph inside this 4d hypercube graph, for any
two vertices that can be connected by a length-2 path, there are only two such paths in the
entire graph. Thus, the analysis for the cube model can be applied as if the cube is an entire
graph. We immediately know that all squares (4-loops) in this graph must be non-bipartite, and
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on any cube graph inside this 4d hypercube graph there is a 3-dimensional family. A possible
directed graph is shown in figure 8. We label the vertices by binary numbers with four digits,
from 0000 to 1111. The arrows flow from vertex 1111 to vertex 0000.

We will assume that on this graph the dimension of the space of the Ā forms is 4. We take
the Ā forms on the four edges including vertex 0000 to be: Ā0000,1000

= dx1, Ā0000,0100
= dx2,

Ā
0000,0010

= dx3, Ā
0000,0001

= dx4. We also assume that all the six squares that contain the vertex
0000 have independent rapidities. We call these rapidities ϑ12, ϑ13, ϑ14, ϑ23, ϑ24, ϑ34, where ϑij

corresponds to a square that includes two edges with dxi and dxj. Correspondingly we denote
the six hyperbolic tangents as τ ij ≡ tanhϑij. We also denote the six sign factors for these six
squares as pij.

Let us now determine the hyperbolic tangent on the square connecting vertices 0011 and
1111. We denote this hyperbolic tangent as τ 0011,1111. There are two cubes that include this
square: the cube connecting vertices 0010 and 1111, and the cube connecting vertices 0001
and 1111. Both cubes can be used to determine τ 0011,1111, and results from both cubes need to
be consistent with each other. Let us consider the cube connecting vertices 0010 and 1111. For
simplicity, we take the p-factor on every square to be 1. According to equation (76), τ 0011,1111

can be expressed as:

τ0011,1111 =
τ0010,1110 + τ0010,0111τ0010,1011√
(1 − τ 2

0010,0111)(1 − τ 2
0010,1011)

, (87)

and the hyperbolic tangents that appeared in the expression for τ 0011,1111 can be expressed in
terms of τ ij:

τ0011,1110 =
τ12 + τ13τ23√

(1 − τ 2
13)(1 − τ 2

23)
, (88)

τ0010,0111 =
τ24 + τ23τ34√

(1 − τ 2
23)(1 − τ 2

34)
, (89)

τ0010,1011 =
τ14 + τ13τ34√

(1 − τ 2
13)(1 − τ 2

34)
. (90)

τ 0010,1110 then reads in terms of τ ij:

τ0011,1111 = [τ12 + τ13τ23 + τ14τ24 + τ34(τ14τ23 + τ13τ24 − τ12τ34)] /(q134q234),

(91)

where we defined

qi jk =
√

1 − τ 2
i j − τ 2

ik − τ 2
jk − 2τi jτikτ jk. (92)

The expression for τ 0011,1111 is symmetric in indices 1 and 2, and symmetric in indices 3
and 4. This means that if we use instead the cube connecting vertices 0001 and 1111 to cal-
culate τ 0011,1111, the result will be the same, and so the two ways to calculate τ 0011,1111 are
automatically consistent.
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Figure 9. The graph of the ‘fan’ model: m states interact only with two other
states. (a) Directed graph of the type-I orientation. (b) Directed graph of the type-II
orientation.

Similarly, we can determine all other hyperbolic tangents for squares including vertex 1111.
Thus, all hyperbolic tangents on the 4d hypercubeare determined by the six hyperbolic tangents
on squares including vertex 0000. So all Ā forms are determined by the four independent forms
dx1, dx2, dx3, dx4. Therefore, there exists a 4-dimensional MTLZ family with six independent
rapidities on the 4d hypercube graph. A classification of this family should follow the same
procedure as in the previous subsection for the cube model, but this classification is expected
to be much more complicated, and we will not develop it here.

It is clear now that there must be a rich set of solvable models on the hypercube graphs
with dimensions D > 4. Given the worked out cases with D = 2, D = 3 and D = 4, we can
speculate that for D > 4 the highest dimension of the MTLZ family is also D, i.e., it contains
D independent Hamiltonians, and the number of independent rapidities is D(D − 1)/2. This
family contains the trivial model of D independent spins, which is obtained if we set all rapidi-
ties to zero. We leave this conjecture without proof, as well as leave the question open about
the existence of other families for hypercubes with D � 4.

7. Fan

In addition to cube, we explored connectivity graphs with other topology for possibilities to
satisfy the integrability conditions. We found that we can satisfy the integrability conditions
for the ‘fan’ model that we show in figure 9. This model contains m + 2 vertices, with m
vertices {a1, . . . , am} all connecting to two other vertices b1 and b2 but not connecting among
themselves. Later we will refer to these two types of vertices as a-vertices and b-vertices,
respectively. We found that this model corresponds to a 2-dimensional family that has been
already studied by us in [7].
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Let us identify all allowed orientations on the fan graph. We introduce a convenient notation
αj = {b1, aj} and βj = {b2, aj} for j = 1, . . . , m. Suppose that one of the a-vertices, say a1, is
intermediate. By considering 4-loops (α1, β1, βk,αk) we see that all ak are intermediate and if
b1 is a source/sink in one of the loop-generated graphs it is a source/sink in all others. This
implies that b1 and b2 is a source and a sink, respectively, or vice versa; in other words there
is a unique orientation of this kind up to a permutation of b1 and b2. Suppose now that a1

is not intermediate, so, say it is a source. By the same argument as the one just above we
see that any other aj is either a source or a sink. This implies that up to a permutation of a-
vertices there are m possible orientations of this kind, labeled by 1 � l � m, with a1, . . . , al

and al+1, . . . , am being sinks and sources, respectively. The described orientations are referred
to as type-I and type-II orientations, respectively, and they are shown in figures 9(a) and (b),
respectively.

We are now in a position to identify all solutions of equation (27) for the graphs of the type
of Γ̂ab, by applying the classification of solutions for 4-loop generated graphs. To that end we
note all 4-loops of the considered graphs are parameterized by pairs of distinct a-vertices, i.e.,
by ordered pairs (j, k) with 1 � j < k � m that represent the loops (αj, βj, βk,αk). Denoting
Ā j = (Āα j , Āβ j), we apply the properties of the local solutions to obtain

Ā j = U jkĀk, U jl = U jkUkl, ∀m � j > k > l � 1, (93)

with Ujk being 2 × 2 matrices which are orthogonal or pseudoorthogonal, and the second set
of equalities are the consistency conditions. We can eliminate all consistency conditions by
parameterizing a solution by a set (Um,m−1, . . . , U21) of matrices with the others explicitly
expressed by

U jk = U j, j−1 . . .Uk+1,k, for j − k > 1. (94)

Since all Ujk matrices belong to the orthogonal or pseudoorthogonal group, implementation of
equation (94) is an easy task.

In the rest of this section we will view the fan graph as an entire graph, and find an
explicit solution of equation (28). We start with demonstrating that type-I orientation shown
in figure 9(a) does not support non-trivial solutions. Indeed, for a pair of a-vertices, say
aj and ak, the r.h.s. of equation (28) has two terms, and, combined with equation (33), we
derive

√
γα jγαk Āα j ∧ Āαk +

√
γβ jγβk Āβ j ∧ Āβk = (

√
γα jγαk + r jk

√
γβ jγβk ) Āα j ∧ Āαk = 0, (95)

and to have a nontrivial solution we should set all sign factors rjk = −1. This leads to Āα j ∧
Āαk = −Āβ j ∧ Āβk for any j and k. For type-I orientation all 4-loops are non-bipartite, so (due
to equations (36) and (37)) we have Āα j ∧ Āβ j = −Āαk ∧ Āβk for all distinct pairs. This leads to
contradictions for m � 3 (when there are at least three aj vertices), since Āα1 ∧ Āβ1 = −Āα2 ∧
Āβ2 and Āα1 ∧ Āβ1 = −Āα3 ∧ Āβ3 togeither would imply Āα2 ∧ Āβ2 = Āα3 ∧ Āβ3 . So there are
no non-trivial solutions.

We now apply the same kind of analysis to the type-II orientation case shown in figure 9(b).
Without loss of generality, we set all vertices aj with 1 � j � l and l + 1 � j � m to be sinks
and sources, respectively, as shown in figure 9(b). Since all graphs produced by 4-loops
that include ak and aj with 1 � k < j � l (sink region) or l + 1 � k < j � m (source region),
respectively have bipartite orientation, the matrices Ujk in this range are of the type given by
equation (41), so that equation (95), where, due to the chosen notation (compare equation (41)
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with equation (42)), rjk should be replaced by r̃ jk, implies r̃ jk = −1. According to equation (43),
we then have rjk = 1 in the aforementioned range, so that

Āα j ∧ Āβ j = Āαk ∧ Āβk , for 1 � k < j � l,

Āα j ∧ Āβ j = Āαk ∧ Āβk , for l + 1 � k � j � m. (96)

A similar consideration for the 4-loop that includes al and al+1, which has a non-bipartite
orientation yields Āαl ∧ Āβl = Āαl+1 ∧ Āβl+1 , and equation (96) can be extended by

Āα j ∧ Āβ j = −Āαk ∧ Āβk , for 1 � k � l < j � m, (97)

so that equation (28) takes a form

Āα1 ∧ Āβ1

⎛
⎝ l∑

j=1

√
γα jγβ j −

m∑
j=l+1

√
γα jγβ j

⎞
⎠ = 0. (98)

More careful analysis of equation (95), i.e., analyzing it for any pair of a-vertices out of
three, say aj, ak, and aq shows that the equality holds for any 4-loop, if and only if

√
γα j =√

γβ j , for all 1 � j � m. This combined with equation (98) finally yields

l∑
j=1

γα j −
m∑

j=l+1

γα j = 0, γβ j = γα j, for 1 � j � m. (99)

The overall sign factors pj+1,j, for j = 1, . . . , m − 1 can be chosen in an arbitrary way.
Note that, according to the way equations (41) and (42) are represented in terms of ordering

of the edges, we have

Ul+1,l = pl+1,lU(ϑl+1,l)σ = pl+1,lσU(ϑl+1,l),

U j+1, j = pj+1, jU(ϑ j+1, j), for 1 � j � m − 1, and j �= l, (100)

where σ = σx is the 2 × 2 permutation matrix, and U(ϑ) has a form of equation (41) with
p = r = 1. Also note that for equation (99) to be satisfied we should have l �= 1, m.

Summarizing, for a fan graph, a solution of the system of equations that repre-
sents the integrability conditions for a linear multistate LZ family is completely param-
eterized by the following data: (i) An integer number l with 1 < l < m, (ii) a set
(pj+1, j = ±1| j = 1, . . . , m − 1) of sign factors, (iii) a set (ϑ j+1, j ∈ R | j = 1, . . . , m − 1) of
rapidities, and (iv) a set (γ j > 0| j = 1, . . . , m) of strictly positive LZ parameters that satisfy
the constraint

l∑
j=1

γ j −
m∑

j=l+1

γ j = 0, (101)

so that, denoting Ā j = (Āα j , Āβ j), we have
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Figure 10. The ‘double-fan’ graph.

Ā j = pj,1U(ϑ j,1)Ā1, for 1 � j � l,

Ā j = pj,1σU(ϑ j,1)Ā1, for l + 1 � j � m;

pjk =

j−1∏
q=k

pq+1,q, ϑ jk =

j−1∑
q=k

ϑq+1,q, for 1 � k < j � m;

γα j = γβ j = γ j, for 1 � j � m;

sa jb1 = sa jb2 = 1, for 1 � j � l,

sa jb1 = sa jb2 = −1, l + 1 � j � m. (102)

8. Graphs that do not sustain integrable families

Finally, we would like to mention also the types of graphs for which we checked that the
integrability conditions cannot be satisfied. The first such a graph is shown in figure 10. We
called it a ‘double-fan’, since it can be viewed as two fans intertwining with each other.
Note that this graph can be obtained if we replace two edges of a cube by two diagonal
links.

The analysis for this graph goes as follows. First, we assume that the 4-loop 1234 is
non-bipartite, say vertex 1 is a source, 3 is a sink, and 2, 4 are intermediate. Then the fan
with b-vertices 1 and 3 is of type-I. Consider the length-2 paths condition (equation (28))
between vertices 2 and 6, we see that Ā

12 ∧ Ā
16

= −Ā
23 ∧ Ā

36, and since loop 1236 is non-
bipartite, we have Ā12 ∧ Ā23

= −Ā16 ∧ Ā36. Similarly, condition (28) between vertices 2 and 8
gives Ā

12 ∧ Ā
23

= −Ā
18 ∧ Ā

38, and condition (28) between vertices 6 and 8 gives Ā
16 ∧ Ā

36
=

−Ā18 ∧ Ā38. But these three equations are contradictory, so the loop 1234 cannot be non-
bipartite. Let us then assume that this loop is bipartite, for which we can choose the sources to
be 1 and 3 without loss of generality. Now consider the loops 1236 and 1436. Condition (28)
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Figure 11. The ‘double-pentagon’ graph.

on vertices 2 and 6 gives Ā
12 ∧ Ā

16
= −Ā

23 ∧ Ā
36, and condition (28) on vertices 4 and 6

gives Ā
14 ∧ Ā

16
= −Ā

34 ∧ Ā
36. Vertex 6 can be a source or a sink, but in either case we will

have Ā
12 ∧ Ā

23
= Ā

14 ∧ Ā
34. If we consider the loops 2145 and 2345, the same argument gives

Ā
12 ∧ Ā

14
= Ā

23 ∧ Ā
34. However, since loop 1234 is bipartite, Ā

12 ∧ Ā
23

= rĀ
14 ∧ Ā

34 will give
Ā12 ∧ Ā14

= −rĀ23 ∧ Ā34, so we still get a contradiction. Therefore, the ‘double-fan’ graph
does not support a solution.

In principle, our analysis does not exclude the possibility that MTLZ families can be con-
structed on graphs that contain longer than 4-edge loops. An example of such a candidate is
shown in figure 11, which we call the ‘double-pentagon’ graph. However, our analysis shows
that it does not sustain a solution. Indeed, in figure 11, let us consider the fan graph made by
vertices 1, 2, 3, 6, 7 and 8. We will call it ‘fan (2, 7)’, since its b-vertices are 2 and 7. This fan
can be viewed as being composed of three 4-loops: the 4-loop 1237 belongs solely to this fan,
and the 4-loop 1267 and the 4-loop 2378 are shared by the neighboring two fans. According to
arguments of the previous section, this fan is of either type-I or type-II. Let us first consider the
case when the fan is of type-I, so all the 4-loops of this fan are non-bipartite. We will try to get
relations of the Ā forms in loop 2378. To do so we first note that vertices 1 and 3 are connected
by only two length-2 paths, so Ā12 ∧ Ā23

= −Ā17 ∧ Ā37. Since loop 1237 is non-bipartite, we
have Ā

12 ∧ Ā
17

= −Ā
23 ∧ Ā

37. In loop 1287, similarly we get Ā
12 ∧ Ā

17
= −Ā

28 ∧ Ā
78. These

two equations together lead to Ā23 ∧ Ā37
= Ā28 ∧ Ā78. Since loop 2378 is non-bipartite, we

further get Ā
23 ∧ Ā

28
= Ā

37 ∧ Ā
78. If fan (2, 7) is of type-II, we can follow the same steps to

obtain relations for Ā forms in loop 2378. There are three cases:
Case 1. When fan (2, 7) is of type-I:

Ā23 ∧ Ā37 = Ā28 ∧ Ā78, Ā23 ∧ Ā28 = Ā37 ∧ Ā78. (103)

Case 2. When fan (2, 7) is of type-II and loop 2378 is non-bipartite:

Ā23 ∧ Ā37 = −Ā28 ∧ Ā78, Ā23 ∧ Ā28 = −Ā37 ∧ Ā78. (104)
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Figure 12. The ‘square with ears’ graph.

Case 3. When fan (2, 7) is of type-II and loop 2378 is bipartite:

Ā23 ∧ Ā37 = Ā28 ∧ Ā78, Ā23 ∧ Ā28 = −Ā37 ∧ Ā78. (105)

We can perform exactly the same argument for all other fans inside the double-pentagon graph,
especially for the fan made by vertices 2, 3, 4, 7, 8, 9 (denote it as ‘fan (3, 8)’):
Case 1. When fan (3, 8) is of type-I:

Ā23 ∧ Ā37 = Ā28 ∧ Ā78, Ā23 ∧ Ā28 = Ā37 ∧ Ā78. (106)

Case 2. When fan (3, 8) is of type-II and loop 2378 is non-bipartite:

Ā23 ∧ Ā37 = −Ā28 ∧ Ā78, Ā23 ∧ Ā28 = −Ā37 ∧ Ā78. (107)

Case 3. When fan (3, 8) is of type-II and loop 2378 is bipartite:

Ā23 ∧ Ā37 = −Ā28 ∧ Ā78, Ā23 ∧ Ā28 = Ā37 ∧ Ā78. (108)

We see that the two sets of relations for Ā forms are consistent only when both fans (2, 7) and
(3, 8) are of type-I, or when both fans (2, 7) and (3, 8) are of type-II and loop 2378 is non-
bipartite. However, neither of these two situations is possible. If fan (2, 7) is of type-I, then
vertex 2 is either a source or a sink, so fan (3, 8) must be of type-II. Conversely, if fan (2, 7) is
of type-II and loop 2378 is non-bipartite, then vertex 2 is intermediate in loop 2378, so fan (3,
8) must be of type-I. So no solutions are possible on the double-pentagon graph. Note that for
any other graph which has the same structure as figure 11 but with the two pentagons replaced
by two polygons with any larger number of edges (e.g. a ‘double-hexagon’ graph), the same
argument can be applied to show that it also does not support solutions.

We also considered several other graphs. For the ‘square with ears’ graph in figure 12, the
‘Mobius ladder’ graph in figure 13, and the ‘cube +1’ graph in figure 14 which is constructed
by connecting one diagonal on the cube graph, we analyzed all possible orientations and found
that trying to satisfy all integrability conditions always lead to contradictions. We also checked
certain orientations of the ‘cube +2’ graph in figure 15 and the ‘cube +3’ graph in figure 16
constructed by connecting two or three diagonals on the cube graph, and did not find solutions
but we did not pursue the rigorous no-go proof in these two cases.
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Figure 13. The ‘Mobius ladder’ graph.

Figure 14. The ‘cube +1’ graph.
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Figure 15. The ‘cube +2’ graph.

The numerous ‘no-go’ examples suggest that the hypercube, the fan family, as well as
their various deformed direct products [7], are the only independent MTLZ families that are
possible. We leave such conjectures for future studies.

9. Discussion

The MTLZ model (2), when it is supplemented with integrability conditions (14)–(16),
defines a set of high order linear ordinary differential equations, whose solutions can be
well described analytically and classified. The model (2) has one irregular singular point
at t = ∞ as the parabolic cylinder equation, and hence shares similar analytical properties
with it. Therefore, it is convenient to think about the model (2) as defining a new special
function that generalizes the 2nd order parabolic cylinder function. There are several other
properties of the MTLZ model that characterize it as defining a physically useful special
function:

(a) It describes quantum mechanical evolution that represents a broad physically interest-
ing type of processes. Importantly, the MTLZ model defines not a single model but
rather a large class of solvable equations. For most of the allowed values of parame-
ters, physical meaning of the Hamiltonian, e.g., the interpretation in terms of interacting
spins, is yet to be found. However, the analytical description of the time-dependent evo-
lution can be developed in advance, as it happened with many commonly used special
functions.

(b) As for many standard special functions, it is possible to connect asymptotic behavior of our
solutions at t →±∞. At least several other properties, such as the presence of a specific
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Figure 16. The ‘cube +3’ graph.

number of exact eigenvalue crossing points, are possible to prove analytically. It is
also likely that a solution for arbitrary time can be found in terms of contour inte-
grals, as it was shown for multistate LZ models that are related to the Gaudin magnet
family [2].

(c) The Hamiltonian (2) is sufficiently simple, so that one can use it as a compact definition
of the set of free parameters.

(d) The simplicity of an analytical solution usually matters for applications in physics. The
transition probabilities in the models from the MTLZ families are expressed in terms of
elementary functions of the model’s parameters [7]. In this sense, behavior of our sys-
tems are often much easier to understand than, e.g., physics of stationary models that are
solvable by the Bethe ansatz.

By no means the MTLZ family exhausts the class of solvable multistate LZ models. A sim-
ple counterexample is the Demkov–Osherov model that belongs to a family whose all other
independent Hamiltonians depend nonlinearly on time-like variables [2]. The present article
shows rather that by restricting the multi-time dependence of the Hamiltonians to relatively
simple functions of all time variables, it is possible to fully classify and achieve a very detailed
understanding of the scattering matrix for any given number of interacting states. The pro-
gram that we described can be, in principle, fully automated using mathematical software for
symbolic calculations.

Interestingly, even after achieving a complete classification up to some finite N of interact-
ing states, it remains hard to identify the cases with presently useful physical interpretation.
Thus, even for a square graph, the physically interesting γ-magnet Hamiltonian appeared at

34



J. Phys. A: Math. Theor. 53 (2020) 185203 V Y Chernyal et al

a nontrivial value of the rapidity variable. We did not explore how to separate such particu-
larly interesting models from the rest of the family. Historically, most of the commonly known
special functions were studied for the possibility to understand the equations that had these
functions as solutions. Only later found this many applications in physics. Therefore, we sug-
gest that the new families of integrable models must be studied for their own sake, as they
define new special functions that will be needed for the future research on strongly interacting
quantum systems.
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Appendix. Properties of good MTLZ families of integrable Hamiltonians

Let n be a loop of the connectivity graph. From the property equation (27), we prove two
properties of the good MTLZ families.

Property ii. For a good family the associated graph Γ does not have loops of length 3.

Proof. Suppose that there exists a length 3 loop (α, β,μ), with α = {a, b}, β = {b, c}, and
μ = {c, a}. If the set of forms Ā

α, Ā
β , and Ā

μ is linearly independent, then so is the set Ā
α ⊗ Ā

α,
Ā
β ⊗ Ā

β , and Ā
μ ⊗ Ā

μ, which contradicts the statement

sabĀab ⊗ Āab + sbcĀbc ⊗ Ābc + scaĀca ⊗ Āca = 0, (A1)

obtained by applying equation (27) to the cycle with only three edges. If only two of them, say
Aab and Aac are linearly independent, then so is the set, represented by Ā

ab ⊗ Ā
ab, Ā

ac ⊗ Ā
ac,

and Āab ⊗ Āac
+ Āac ⊗ Āab. Let Ābc

= λbĀab
+ λcĀac, for some numbers λb and λc. Then

equation (A1) leads to

(
sab + sbcλ

2
b

)
Āab ⊗ Āab +

(
sca + sbcλ

2
c

)
Āac⊗=Aac + sbcλbλc

(
Āab ⊗ Āac + Āac ⊗ Āab

)
= 0.

(A2)

Obviously, at least one coefficient in the linear combination in equation (A2) is nonzero,
which contradicts the linear independence of the three quadratic forms in equation (A2). So we
are left with the only option that any pair of forms among Ā

α, Ā
β , and Ā

μ is linearly dependent,
which contradicts the good family assumption. Therefore we conclude that a length 3 loop
does not exist. �

Property iii. Let (α, ν, β,μ) be a loop of the good family graph Γ of length 4. Then the
vector space spanned by the set {Ā

α, Ā
β , Ā

μ, Ā
ν} has dimension 2.

Proof. We denote α = {a, b}, ν = {b, v}, β = {v, u}, and μ = {u, a}. Applying
equation (27) to our cycle, we obtain an analogue of equation (A1)
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sabĀab ⊗ Āab + sbvĀbv ⊗ Ābv + svuĀuv ⊗ Āuv + suaĀau ⊗ Āau = 0, (A3)

we see that all four forms may not be linearly independent. Suppose now that exactly three,
say Āab, Āau, and Ābv are linearly independent. Then we have Āuv

= λaĀau
+ λbĀbv

+ λαĀab,
and equation (27) then reads:(

sab + svuλ
2
α

)
Āab ⊗ Āab +

(
sua + svuλ

2
a

)
Āua ⊗ Āua +

(
sbv + svuλ

2
b

)
Āvb ⊗ Āvb

+ svuλαλa(Āab ⊗ Āau + Āau ⊗ Āab) + svuλαλb(Āab ⊗ Ābv + Ābv ⊗ Āab)

+ svuλaλb(Āau ⊗ Ābv + Ābv ⊗ Āau) = 0. (A4)

Since at least one of the coefficients in the linear combination of 6 quadratic forms in the
rhs of equation (A4), which are linearly independent by assumption, is nonzero, we obtain a
contradiction. Therefore we are left with two options: the vector space spanned on four linear
forms {Āα, Āβ , Āμ, Āν} has dimension 1 or 2. Dimension 1 contradicts the assumption of a
good family, so that the dimension of the aforementioned space is 2, which completes the
proof.

Property ii restricts the geometry of the connectivity graph of integrable models to have no
loops with only three edges. Property iii is important because according to the integrability
condition (28) every node should belong to some 4-loop of the graph. �
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