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1.  Introduction

Many students have seen photos of a small turtle 
with a deformed shell that grew wrapped in a 
plastic six-pack ring or a sea turtle found by sci-
entists with a plastic drinking straw up its nose 
[1, 2]. However, harmful plastic debris found on 
beaches and in the oceans are not limited to drink-
ing straws or bags. There are several synthetic 
organic polymers that can be used to make differ-
ent kinds of plastic materials and have resulted in 
billions of tons of waste that can reach the aquatic 
biome and are harmful to freshwater and marine 
communities as well as humans [3, 4]. Small 
pieces, known as microplastics, are very small 
(<5 mm) and can readily be ingested by marine 
organisms, causing dangerous threats to the food 
supply chain. Although plastic debris appears as 
particles of varying size, shape, color, and chemi-
cal composition, its origin or source cannot easy 
be identified by the naked eye. Sometimes, it is 
also difficult to identify whether debris is made of 
plastics materials. However, plastic debris sources 
can be revealed by applying basic concepts of 
the interaction of infrared radiation with matter 
[5]. If a sample is irradiated with infrared light, 

a part of the radiation can be absorbed and pro-
vide detailed information about the structure of 
chemical compounds, such as the arrangement of 
nuclei and chemical bonds within the molecule. 
Chemical features of a molecule allow identifica-
tion of the type of polymer that makes up a plastic 
material [3, 5].

Polymer identification of small-sized plas-
tic debris can be performed by using infrared 
spectrometers. Attenuated Total Reflectance-
Fourier Transform Infrared (ATR-FTIR) spectro
meters are usually found at universities in 
material characterization laboratories and can be 
used in teaching practices. On the other hand, if it 
is not possible to have an ATR-FTIR, mainly due 
to their cost-effectiveness and difficulty in han-
dling, simpler systems, such as one-dimensional 
optical transmittance sensors, can be used for 
didactic purposes. This equipment can also be 
used in high schools. The basic Physics concepts 
needed to understand infrared spectrometry, such 
as energy conservation, optics, oscillations and 
waves, and principles of quantum mechanics are 
usually presented to students in the second-year 
of undergraduate courses in physics, chemistry 
and environmental engineering. Similarly, jun-
ior students in high school and first-year students 
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at undergraduate courses should also be able to 
carry out the experiments with one-dimensional 
optical transmittance sensors because no complex 
mathematical equations are used. Therefore, once 
these basic concepts or prerequisites are acquired, 
students can apply concepts of the interaction 
of infrared radiation with matter to unravel the 
impacts of plastic materials discarded in coastal 
and marine environments.

In this paper we describe a multidisciplinary 
approach to teaching the interaction of infrared 
light and the vibrating process of molecules to 
characterize plastic pollutants. The practical 
classes involve both indoor and outdoor activities, 
divided into four steps: choice of case study site; 
plastic debris sampling; sample preparation and 
physical and chemical characterization of plastic 
debris (size, color, shape and polymer type); 
data interpretation and identification of the main 
plastic debris sources. The first three steps, which 
include outdoor activities, can also be performed 
by students of all ages, as well as by geography, 
environmental science and biology teachers who 
are fundamental in multidisciplinary studies. The 
data interpretation step that involves the polymer 
identification is performed at the laboratory, by 
using ATR-FTIR and/or optical transmittance 
sensor systems. Finally, the identification of 
the main plastic debris sources and the final 
conclusions are tasks that can be performed in a 
multidisciplinary way.

2.  Meso and microplastics
Since plastics are made from synthetic or semi-
synthetic organic polymers (table 1), there are 
myriad sources of plastic material, such as indus-
trial and agricultural waste, particulates from car 
tire wear, dust, landfill, wastewater, and deliber-
ate littering [3, 6, 7]. In addition to its own toxic 
effects on the environment and public health, 
synthetic polymers can be rapidly colonized by 
microorganisms and act as vectors for the dis-
persal of harmful or even human pathogenic 
species. Therefore, plastic material can release 
toxic additives or concentrate additional toxic 
chemicals in the environment, such as bacteria 
or microbial communities, persistent organic 
pollutants (POPs), carcinogens, endocrine dis-
rupting chemicals (EDCs), heavy metals [4, 6, 
7]. Consequently, plastic debris and their toxic 

additives are bioavailable for direct (inhalation/
ingestion/skin contact) or indirect (food chain) 
human exposure [4, 7].

Currently, plastic debris are considered the 
most abundant and persistent marine litter in 
populated coastal and marine ecosystems. Once in 
the environment, plastic materials tend to become 
brittle and break into small pieces. Fragmentation 
can be accelerated when the plastic material is 
exposed to UV radiation under direct sunlight and/
or physical abrasion in the sands and rocks of the 
beaches. However, due to their corrosion-resistant 
properties, most plastic debris resulting are hard-
to-degrade materials and persist in the coastal and 
marine environments for a few centuries. As a 
consequence, they become floating debris widely 
dispersed by the wind and wave actions and 
therefore can be found in large areas of the sea 
surface [3]. Scientific works reveal that plastics 
can also be found deep in the sea, in the Antarctic 
Peninsula, among other remote habitats [5].

According to [3], plastic debris are colored 
particles (transparent, crystalline, opaque, white, 
red, orange, blue, black, grey, brown, green, pink, 
tan, yellow) classified according to their size 
range: macroplastics (>25 mm), mesoplastics (5–
25 mm) and microplastic (<5 mm). Microplastics 
can be classified as primary or secondary depend-
ing on their actual source. Primary microplastics 
are originated directly from industrial activities 
can be found in household items, such as personal 
hygiene products (facial cleansers, toothpaste, 
exfoliating creams). In addition, virgin resin 
microbeads are widely used during plastics man-
ufacture, usually presenting a pellet shape (cyl-
inders, disks, spherules, flat, ovoid). Secondary 
microplastics are generated from the fragmenta-
tion of larger plastic debris due to the action of 
external agents (UV radiation, physical abrasion, 
etc). They usually have the shape of filaments, 
fragments, fibers, sheets, irregular films, broken 
edges, and granules. Recently, microplastics have 
been receiving attention due to their threat to 
environmental quality preservation. Besides the 
negative economic impacts on tourism, they can 
be ingested by numerous marine organisms, from 
plankton to crustaceans, fish, seabirds, turtles and 
marine mammals. Direct negative effects include 
stress, false satiety, obstruction of the intestinal 
tract, internal injury, inhibition of gastric enzyme 
secretion, reduced feeding stimuli, decreased 
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steroid hormone levels, delays in ovulation, failure 
to reproduce and starvation. Toxic effects include 
the development of reproductive abnormalities 
and cancer. To make matters worse, microplastics 
and plastic-associated contaminants can also be 
transported from prey to predator, reaching vari-
ous trophic levels, including humans [4, 7].

3.  Infrared spectroscopy
Infrared spectroscopy is widely used by physicists 
and chemists to gather information about the 
structure of a compound and as an analytical 
tool to assess the purity of a compound. The 
basic idea of this technique is that molecules of 
a substance are in continuous motion, i.e. they 
are not static but vibrating systems, which are in 
translation and rotation. Each atom in a molecule 
assumes a new position with time [3]. The total 
molecule energy (Emol) can be described in terms 
of vibrational processes Evib, electron excitation 
Eel, and rotational energy Erot:

Emol = Evib + Eel + Erot.� (1)

A molecule is therefore full of oscillators of dif-
ferent dimensions. Their atoms can be excited 
to a higher level using electromagnetic radiation 
of appropriate energy/frequency. Vibration in a 
molecule containing two atoms, for example, is 
equivalent to a simple oscillator. In a classical 
description, a molecular vibration should behave 
like a mechanical vibration of two masses con-
nected by a spring [3, 8]. Based on Hooke’s Law, 

the frequencies ν of an oscillator that consists of 
two atoms of masses m1 and m2 are derived from 
a force constant f  and the reduced mass µ:

ν =
1

2π

 
f
µ

µ =
m1m2

m1 + m2
.� (2)

The energy needed to excite most of the vibra-
tional modes in organic molecules falls in the 
infrared spectral frequency region. To describe 
the spectra of molecules in the IR region, the 
vibration frequencies ν are expressed by wave-
numbers ν(cm−1) or wavelengths λ (µm):

ν =
ν

c
=

1
λ

.� (3)

When a molecule is irradiated by infrared 
light (4000–250 cm−1 or 2.5–40.0 µm), it absorbs 
the radiation under some specific conditions. 
When the radiant energy matches the energy of 
a specific molecular vibration, absorption occurs. 
Following a quantum mechanical description, the 
energy levels of the oscillator can be characterized 
by the quantum number n one-dimensional:

Evib = h
Å

n +
1
2

ã
n = 0, 1, 2 . . .� (4)

being ν the frequency of the radiation that is 
absorbed by the molecule and Planck’s constant 
h  =  6. 62  ×  10−34 J · s. From equations (2)–(4), 
one can observe that the combination of atoms 
leads to distinguishable absorption spectra of 
different molecules. Each molecule that inter-
acts with infrared light can assume only discrete 

Table 1.  Types of plastic and their main applications. Modified from [3, 7].

Polymer Application

Low-density polyethylene (LDPE) Packaging, general purpose containers, shower curtains, 
floor tiles

High-density polyethylene (HDPE) Milk containers, detergent bottles, tubing
Polyethylene (PE) Supermarket bags, plastic bottles
Polyurethanes (PURs) Elastomers, coatings, fibers, paints and varnishes
Polystyrene (PS) Packaging foam, disposable cups, food containers, 

building materials
Polyvinyl chloride (PVC) Pipes, window frames, flooring, shower curtains
Polypropylene (PP) Packaging, bottle caps, ropes, carpets, laboratory 

equipment, drinking straws
Polyamides (PA) (nylons) Textiles, toothbrush bristles, fishing lines, automotive
Polyethylene terephthalate (PET) Soft drink bottles, food packaging, thermal insulation, 

blister packs
High impact polystyrene (HIPS) Electronics, cups in vending machines, refrigerator liners
Acrylonitrile butadiene styrene (ABS) Musical instruments, printers, computer monitors, 

drainage pipes, protective equipment
Polycarbonate (PC) CDs, DVDs, construction materials, electronics, lenses
Polyester (PES) Textiles
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energy levels and the number of these energy 
levels per molecule is not limited to one but con-
tains several discrete states [3]. The lowest energy 
state is defined as ground state, and higher energy 
states are defined as excited states.

However, the absorption and emission of real 
molecules are more complicated. Other effects 
must be considered, e.g. the oscillators of real 
molecules are anharmonic [3]. Then, Evib can be 
obtained from a quantum mechanical anharmonic 
oscillator:

Evib = hν
Å

n +
1
2

ã
− χhν

Å
n +

1
2

ã2
� (5)

where the first part of equation  (5) represents a 
harmonic term while the second part represents 
an anharmonic term of vibrational constant χ. 
The energy of the absorbed infrared light is equal 
to the energy difference (ΔE) between a certain 
energy level of vibration (excited) and another 
energy level of vibration (ground state) of the 
molecule:

∆E = hν = Eexcited − Eground state.� (6)

In general, vibrational modes in infrared 
spectroscopy can be divided into two different 
groups: stretching (the molecule stretches and 
contracts) and bending (change of the bonding 
angle). The main polymers used to manufacture 
plastic materials are mainly composed of carbon, 
hydrogen, oxygen, and nitrogen. Inside of these 
polymers there are typical vibrational groups of 
the carbon backbone like CH, CH2, CH3, CO, CN 
etc. For the stretching group, there is symmetric 
and asymmetric stretching. For bending, there 
is twisting, rocking, wagging and scissoring. 
Each of them performs characteristic vibrational 
modes with specific frequencies [3]. Figure  1 
illustrates twelve different vibrational modes of 
a  −(CH2)  −  group within polyethylene.

The energy of a molecular vibrational state 
can be estimated by equation  (5). Taking a 
CH-stretching vibration of a common polymer as 
an example, the wavenumber for a transition from 
the ground state to the first excited state is [3]:

∆Evib(0 → 1)
h.c

= (
ν.3
2

− χν.9
4

)− (
ν

2
− χ · ν

4
)

= 4179 cm−1 − 1441 cm−1 = 2738 cm−1.
� (7)

According to equation (7), infrared radiation 
with a wavenumber of 2738 cm−1 (corresponding 

to a wavelength λ  =  3.65 µm, see equation  (3)) 
will be absorbed by the molecule to perform the 
transition of the described CH-stretching vibra-
tion. In addition to the ν0  →  v1 transition, it is pos-
sible to reach a state of a higher energy level, e.g. 
ν0  →  v2 etc, by absorption of the corresponding 
higher energy (e.g. 5882 cm−1 or 1.70 µm for the 
CH-stretching vibration). This phenomenon is 
called overtone vibration and it is the process of 
interest in the near-Infrared spectroscopy.

Considering that the frequency ν depends 
on the chemical properties of the vibrational 
group, chemical compounds can be differentiated 
according to their vibrational frequencies [3, 5]. 
The infrared spectrum can be divided into three 
regions of frequency or wavelength: the near (up 
to 2.5 µm), mid (from 2.5 to 25.0 µm), and far 
infrared (from 25 to 300 µm). Within the mid-
infrared (MIR) spectrum (figure 2), the funda-
mental stretching modes of CH that arise near 
the 3.45 µm are found. The symmetric and asym-
metric modes of polyethylene, for instance, lie at 
3.41 µm and 3.51 µm, respectively. The modes 
of CH groups neighboring C=C bonds are found 
at the higher wavelength of 3.23 µm. The wag-
ging bands lie between 8.48 µm and 7.41 µm. In 
chains containing CH2 the twisting bands appear 
in the same wavelength region. The rocking vibra-
tions cause a characteristic band for long chains at 
13.89 µm.

Infrared spectroscopy has an advantage over 
the other spectroscopy techniques because it 
hardly requires any sample preparation. Besides, 
microplastics of all kinds can be analyzed with 
high accuracy within short measurement times. 
The mid-infrared region (MIR) is of greatest 
practical use to the organic chemistry, includ-
ing therefore the plastic debris analysis [3, 4]. 
Although less used, spectra from plastic debris 
can also be generated with good quality and high 
intensity in the near-infrared (NIR) region, where 
the vibrational bands are mainly generated by 
the overtones of stretching vibrations of groups 
containing hydrogen and combinations of these 
stretching vibrations with wagging and/or rock-
ing vibrations [8]. The first overtone of the CH 
stretching mode appears near 1.70 µm and the 
second near 1.20 µm (figure 3). Comparable to 
the fundamental vibration, the overtones are also 
observed at shorter wavelengths if the CH func-
tional group is about groups such as C=C or in 
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an aromatic C–C bond. Combination bands lie 
between the fundamental vibrations and the vari-
ous overtones (e.g. 2.30 and 1.40 µm). The first 
overtone of NH is located near 1.50 µm and the 
second near 1.10 µm. An interesting tendency 
observed in NIR spectra is that all plastic mat
erials show absorption peaks around 1.70 µm, 
which is attributed to a stretching vibration of the 
C–H bond [8, 9].

4.  1D optical transmittance sensor
A disadvantage of applying the MIR/NIR 
spectrometers in physics education is that these 
systems are not always available in high schools 
because of their cost-effectiveness and handling. 
However, a substitutive system can be used to 
experimentally approach concepts on the interac-
tion of infrared radiation with matter: a low-cost 
optical transmittance sensor. Although low-cost 
alternative systems will not have the high sensi-
tivity that MIR/NIR spectrometers do, they can 
be successfully used for didactic purposes. These 
systems use laser diodes (LD) or infrared LEDs 
as sources of monochromatic infrared light (only 
one-wavelength radiation). According to [10], 
the plastics from household wastes (such as PE, 

PP, PVC, PS and PET) can be reliably identified 
by the first overtone of the C–H bands (near to  
1.7 µm), technical non-black plastics around  
1.0 µm, and black plastics only in the MIR region.

A one-dimensional optical sensor system was 
mounted according to figure 4. In this system, an 
infrared beam Io from the LD/LED that passes 
through a plastic sample is detected by a photo-
diode. According to the Beer–Lambert–Bouguer 
law, an infrared radiation of intensity I that pen-
etrates a material of thickness Δx is diminished 
by ΔI due to the vibrations with absorptivity α of 
component concentration c* following the simple 
relationships:

∆I = −αc∗I∆x� (8)

T =
I
I0

= e−αc∗d.� (9)

The transmittance T describes the response of the 
material with a thickness d related to the initial 
radiation intensity Io. Therefore, T depends on 
parameters such as the thickness, density, color 
and polymer type of the analyzed sample, as well 
as on the infrared beam wavelength. When I is 
compared to the incident light intensity Io (without 
sample), the ratio can be defined as transmittance 

Symmetric stretching

Wagging

Type 1

Type 1 Type 1 Type 1
Type 2 Type 2

Type 2

Type 1 Type 1
Type 2Type 2 Type 2

Rocking
Twisting

Antisymmetric stretching

Scissoring

Figure 1.  Schematic overview of 12 different vibrational modes of a  −(CH2)  −  group within polyethylene without 
C–C vibrations. Carbon atoms are illustrated as red and hydrogen atoms as black circles, while the vibrational 
vectors are given by arrows. Each of the six vibrational modes can be subdivided into two types according to in-
phase or counter-phase vibrations. Modified from [3].
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percentage T (%), which means that T is mul-
tiplied by 100. Forming the logarithm of T, the 
absorbance αc * d is obtained, which is linear in 
concentration and sample thickness:

αc∗d = ln I − ln Io.� (10)

5.  Indoor and outdoor activities
The practical activities were performed and tested 
for the first time during the classes of Modern 
Physics Laboratory II (first semester 2019) of the 
Federal Fluminense University. In this course, 12 

physics undergraduate students and three physics 
teachers from public high schools were enrolled. 
The four students who obtained the best final eval-
uations were invited to develop didactic materials 
for this activity and to be coauthors of this work. 
These indoor and outdoor activities were subse-
quently successfully applied to 15 physics under-
graduate students enrolled in the same course. In 
both cases, the outdoor activities (fieldwork) were 
carried out in the Jurujuba harbor (22° 55′ 52″ S, 
43° 06′ 59″ W), a touristic area of the Niterói 
municipality (Rio de Janeiro State, Brazil) and 
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Figure 2.  The most important vibrational groups for microplastics analysis. Red bars describe positions of 
stretching vibrations, while blue bars describe bending vibrations. Modified from [3].
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Figure 3.  Transmission in PE foil in the MIR/NIR spectral region, showing overtones and combination bands in 
the NIR spectrum. Modified from [9].
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near the University. Jurujuba was chosen because 
it is located at the entrance of the Guanabara Bay 
and shows a concave shape that facilitates the 
debris accumulation during undertow periods, 
besides being a fishing boat mooring. Therefore, 
it is an ideal location to study marine debris depo-
sitions on the beach. Figure 5 shows a bar chart of 
the typical plastic objects found by the students 
on the beach, which can be considered as the 
main plastic debris sources.

A 150  m horizontal transect, located on 
the high tide line, was established for the plas-
tic material sampling. This line shows marine 
litter accumulation zones from the sea waves. 
About 20 sampling sites that did not show signs 
of being disturbed by recent human action were 
chosen. Plant fragments, gravel and shells were 
previously removed. Small plastic debris was 
randomly collected on the sand surface by using 
a metallic spatula. At the laboratory, the sam-
ples were dried in an oven at 60 °C for 24 h. This 
temperature allows debris to dry without material 
damages such as deformation, melting or burning. 
Subsequently, the samples were sieved with 5 mm 
and 1 mm mesh. The materials retained in the 
1 mm mesh were transferred to a 500 ml beaker in 
order to separate the microplastics (size  <  5mm) 
from other compounds such as sand and organic 
materials. The most common separation method 
is the density flotation by using a hypersaline 
solution. Besides being an efficient separation 
method, unlike other chemicals saline solutions do 
not pose health risks to the students. Therefore, a 
hypersaline solution with a density of 1.2 g cm−3,  
previously filtered, was added to the beaker 

containing the samples and it was stirred manu-
ally with a glass rod for 3 min. Then, it was left 
at rest for 10 min. A similar procedure was per-
formed for debris ranging from 5 to 25 mm (meso-
plastics). Subsequently, the supernatant materials 
in the respective beakers were collected and fil-
tered to extract the microplastics (figure 6(a)) and 
mesoplastics (figure 6(b)). At the end of this pro-
cedure, 719 mesoplastics and 434 microplastics 
were identified, separated and dried again in an 
oven at 60 °C for 24 h. Their color and shape were 
initially identified in a stereoscope and arranged 
in bar charts (figures 7 and 8, respectively). Both 
secondary (fragments and filaments) and primary 
(cylinder, spherule and flat pellets) plastic debris 
of several colors were observed.

The chemical characterization of the debris 
was initially performed applying ATR-FTIR 
spectroscopy, using an ATR detector in a Tensor 
II Fourier Transform Spectrometer (Bruker Optik 
GmbH). Tensor II is an equipment that operates 
in the mid-infrared (MIR) range and has high 
sensitivity in discriminating various types of mat
erials [11]. Therefore, it can confirm whether the 
visually identified sample was really a plastic 
material, whether it contains other aggregate mat
erials, and the chemical composition of the plas-
tic debris (polymer class). The characterization of 
the plastic debris was performed from absorbance 
x wavelength spectra by comparing the absorp-
tion bands (AB) of the samples with those in the 
published literature [12]. The three main poly-
mer types observed were (figure 9): Polyethylene 
(PE—AB: 3.431, 3.515, 6.840, 13.70, 13.95 µm), 
Polypropylene (PP—AB: 3.390, 3.431, 3.524, 
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Figure 4.  (A) Illustration of the optical transmittance sensor and (B) wavelength region used for transmittance 
measurements in plastic debris. Modified from [10].
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6.873, 7.262, 8.576, 10.03, 10.29, 11.91, 12.38 
µm), and Polystyrene (PS—AB: 3.307, 3.512, 
6.246, 6.702, 6.892, 9.737, 14.41, 18.62 µm).

According to table  1 and [3, 4, 12], PE is 
typically used to make supermarket bags, plas-
tic bottles and fishing net, generating secondary 
microplastics (filaments/fibers, irregular, bro-
ken edges, and granules). PE is also used in the 
manufacture of microbeads or pellets (cylinders, 
disks, spherules, flat, ovoid). PP is typically used 

to make packaging, bottle caps, ropes, carpets, 
laboratory equipment, drinking straws, folders, 
food packaging, hinged caps and car bumper, 
generating similar secondary microplastics. PS is 
typically used to make packaging foam, dispos-
able cups, food containers and building materials. 
Figure 10 shows that 98% of the micro and meso-
plastic debris analyzed by the ATR-FTIR system 
were produced from PE and PP materials. This 
finding is consistent with Niteroi’s social and 
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Figure 6.  Plastic debris sampling with sizes (A)  <5 mm (microplastics) and (B) 5–25 mm (mesoplastics).
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industrial habits (figure 5): the sampled plastic 
debris comes mainly from household waste.

In order to test the effectiveness of a low-
cost optical transmittance sensor that can be 
used in the classroom activities, we built a one-
dimensional optical transmittance sensor system 
(figure 11(a)), following the technical informa-
tion from the [8–10]. Its estimated cost is around 
US$ 3000, while a MIRS system costs around 
US$ 50 000. Our system is based on the use of 
indium gallium arsenide (InGaAs) detectors, 
which operate within the near infrared range, 
emitting an infrared light with wavelength next 
to the first overtone of the C–H band (1.7 µm). As 
an infrared detector, it was used an InGaAs PIN 

photodiode that covers a wide spectral response 
range from 0.9 µm to 1.7 µm, photosensitive 
area of 3 mm in diameter, and photosensitivity 
around 1.1 A W−1 at 25 °C. A laser diode that 
emits infrared light at a peak wavelength of 1.55 
µm (which allows it to operate between 1.5 and 
1.6 µm, see figure 4(b)), radiant flux of 1.9 mW 
at 25 °C, was used as a light source. An LED 
that emits infrared light at a peak wavelength of 
1.55 µm could also be used but, unfortunately, it 
was not available at the laboratory. To measure 
the plastic debris, samples with sizes  >  5 mm 
(mesoplastics) were selected. Microplastic sam-
ples (<5 mm) did not show satisfactory results 
because of the geometrical configuration of our 
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system. Indeed, often the sample was smaller 
than the light beam diameter.

Since the transmittance T (equation (9)) 
depends on parameters such as thickness, density, 
color and polymer type of the analyzed sample, 
a few simple measurements may be proposed. 
However, it is important to remember that to 
study the effect of a given parameter, it is funda-
mental to keep the others fixed, since this device 
consists of a simple optical system. In order to 
assess the response of the transmittance to varia-
tions in sample thickness, 2.5 cm  ×  2.5 cm pieces 
from transparent PET bottles of different thick-
nesses d were selected. The result confirmed the 
expected behavior by equation  (9), where the 
transmittance T decreases exponentially with 

increasing thickness d. Tests about the transmit-
tance response to sample color were performed 
by using transparent, blue and green polypro-
pylene (PP) debris of 1.5 mm thickness. Mean 
transmittance values of 95%  ±  5% (transparent), 
90%  ±  5% (blue) and 65%  ±  5% (green) were 
obtained. The results are comparable with those 
observed in [10]. In order to evaluate the trans-
mittance variation with polymer type, we have 
used 1.5 mm thick transparent plastic debris and 
mean values of 95%  ±  5% (PP), 85  ±  7 (PE), 
and 66%  ±  7% (PS) were obtained. Given that 
the transmittance variation as a function of poly-
mer type was obtained from samples in which the 
polymer was known, the obtained results could 
be used as reference values for future analysis. 
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Therefore, it was possible to experimentally char-
acterize the set of mesoplastic samples from the  
Jurujuba beach by using our optical sensor. A bar 
chart for the distribution of the main mesoplastic 
polymers found in Jurujuba beach was obtained 

by using the low-cost sensor (figure 11(b)). The 
results (94% of the mesoplastic debris were pro-
duced from PE and PP materials) are like those 
obtained from the ATR-FTIR system (figure 10). 
These findings indicate that a one-dimensional 
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optical transmittance sensor can be used as an 
auxiliary tool to teach concepts of the interac-
tion of infrared radiation with matter, as well as 
to correlate them with relevant themes in the area 
of environmental science.

At the end of the Modern Physics Laboratory 
II classes, the 30 students who participated in 
these indoor and outdoor activities during 2019 
noticed that, in addition to learning interesting 
topics of Modern Physics, they became aware 
of the importance to avoid the use of various 
plastic objects, which can be easily replaced 
by materials that do not harm the environ
ment. They also understood the importance to 
expand the Brazilian plastic recycling services 
in order to mitigate the microplastic pollution 
in our coastal and marine environments. These 
results could be confirmed by finding a sig-
nificant increase in the quality of the activity 
reports presented by the students. Since these 
reports are used as a continuous assessment of 
the students, they provided an increase of the 
final grades.

6.  Conclusions
Through a theoretical and experimental activ-
ity about infrared radiation and its interaction 
with matter, undergraduate students had contact 
with an important theme: microplastic pollution 
effects in coastal and marine systems. By the end 
of the activity, the students understood important 
concerns about the degradation of coastal and 
marine environments, being able to visualize the 
science beyond the basic physics concepts tra-
ditionally taught within classrooms. A complete 
understanding of nature poses the challenge of 
crossing boundaries of two or more disciplines 
to understand complex problems in our society. 
In terms of teaching materials development, the 
three physics teachers from public schools who 
participated in this course are building low-cost 
optical transmittance sensor kits to be used in 
high school.
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