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1.  Introduction

Over the past decade magnetic nanoparticles (MNPs) have attracted increasing attention for application in 
magnetic particle imaging (MPI), an emerging biomedical imaging technology that relies on the non-linear 
dynamic magnetization response of MNPs. In MPI, a static magnetic field gradient is superimposed with a 
uniform alternating magnetic field (AMF) to generate a small ‘field-free region’, where the nanoparticles are 
able to fully respond to the AMF and generate a signal. This signal is then used to reconstruct a quantitative image 
of the distribution of MNPs in a field of view. While the underlying hardware and physics are similar, there are 
two approaches of image reconstruction and tracer characterization in common use for MPI: harmonic-space 
MPI and x-space MPI. In harmonic-space MPI, the response signal due to the MNPs dynamic magnetization 
is characterized by the harmonic spectrum that is obtained by taking the Fourier transform. In this modality, 
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Abstract
The dynamic magnetization of immobilized spherical single-domain magnetic nanoparticles 
(MNPs) with uniaxial or cubic magnetocrystalline anisotropy was studied computationally by 
executing simulations based on the Landau–Lifshitz–Gilbert (LLG) equation. For situations when 
a static magnetic field was suddenly applied and then removed, the effects of particle diameter and 
anisotropy (considering both type of symmetry and characteristic energy) on the characteristic 
magnetic relaxation time were studied parametrically. The results, for both anisotropy symmetries, 
show that when a static magnetic field is suddenly turned on or off the MNPs undergo a successive 
two-step or combined one-step relaxation. Whether a MNP relaxes with one or two steps when the 
field is turned on is determined by the competition between the energy of the applied magnetic 
field, the magnetic anisotropy energy, and thermal energy. When the applied magnetic field is 
suddenly turned off, our results show good agreement with theoretical predictions for the cases of 
∆Eani/kBT � 1 and ∆Eani/kBT � 1, where ∆Eani represents the magnetic anisotropy energy barrier, 
kB is the Boltzmann constant and T  represents the absolute temperature. For the case of an applied 
alternating magnetic field (AMF) that is typical of magnetic particle imaging (MPI) applications, 
the effects of particle diameter and anisotropy symmetry were studied in terms of time-domain 
magnetization dynamics, dynamic hysteresis loops, harmonic spectra, and x-space point spread 
functions (PSFs). Results illustrate that the type of magnetocrystalline anisotropy (uniaxial versus 
cubic) has a significant effect on the MPI performance of the nanoparticles. These computational 
studies provide insight into the role of particle diameter and magnetic anisotropy on the 
performance of MNPs for applications in magnetorelaxometry and MPI.
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good MPI performance is typically indicated by a strong signal of the third harmonic and slow signal decay for 
increasing harmonics (Eberbeck et al 2011, Ludwig et al 2012, Weizenecker et al 2012). On the other hand, in 
x-space MPI the MNP signal is represented using a point spread function (PSF) describing the variation of signal 
intensity with distance from a point source in the imaging volume (Goodwill and Conolly 2010). Compared with 
harmonic-space MPI, x-space MPI offers the advantages of linearity and shift invariance, real-time imaging, and 
providing a simple means to estimate MPI tracer resolution from the PSF. Recent work has reported applications 
of different MPI techniques in tracking nanoparticle accumulation in cancer (Arami et al 2017, Yu et al 2017a), 
in evaluating brain injury or gut bleeds (Orendorff et al 2017, Yu et al 2017b), in quantifying pulmonary drug 
delivery (Tay et al 2018, Wegner et al 2018) and in monitoring transplanted stem cells (Nejadnik et al 2018) or 
islets (Wang et al 2018).

In order to enhance the performance of MPI technology, prior experimental work (Eberbeck et al 2011, Lud-
wig et al 2012, Arami et al 2013) has studied the effect of nanoparticle properties on the intensity and resolution 
of MPI signals. On par with experimental work, previous computational work has also studied the effects of nan-
oparticle properties on MPI performance, by carrying out simulations based on the Landau–Lifshitz–Gilbert 
(LLG) equation. For example, Weizenecker et al (2012) studied the dependence of MPI signal on particle size and 
AMF frequency for spherical and prolate ellipsoidal particles, and suggested that smaller anisotropy constants 
can increase the MPI performance of the particles. However, they assumed that MNPs have uniaxial anisotropy 
and their easy axes were fixed in the direction of the field. This is typically not the case for spherical MNPs that 
are used in MPI, such as magnetite nanoparticles, which have cubic magnetic anisotropy and randomly distrib-
uted orientations. By using the MNPs and AMFs that are typical in MPI and numerically solving the stochastic 
differential equation that incorporates the LLG equation, Shah et al (2015) studied the magnetic susceptibility 
and dynamic hysteresis loops of a collection of mobile and immobile spherical magnetite nanoparticles with 
cubic magnetic anisotropy. Good agreement was observed between computational and experimental results. 
However, the assumption was made that the orientations of the easy axes of the nanoparticles were partially 
aligned in the field instead of randomly distributed and the cubic anisotropy of the nanoparticles was finally 
replaced by an effective uniaxial anisotropy. As such, their algorithm did not actually describe the behavior of 
particles with cubic anisotropy. Moreover, Shah et al (2015) only studied magnetite nanoparticles of specific size 
and anisotropy constant that were representative of those in their experiments, the results of which cannot be 
generalized to other particles. By performing simulations of the LLG equation for interacting superparamagn
etic iron oxide nanoparticles, some prior work (Them 2017, Wu et al 2019) has also demonstrated the effect of 
magnetic dipole–dipole interactions on the harmonic spectrum of the nanoparticles. But this work is limited to 
uniaxial anisotropy symmetry and unique nanoparticle and AMF conditions. In summary, in prior work focus-
ing on simulation of MPI performance using the LLG equation has been limited to unique situations or a nar-
row range of simulation parameters (e.g. particle diameter and magnetic anisotropy constant). Furthermore, 
none have rigorously modeled cubic magnetic anisotropy nor considered the situation of randomly distributed 
easy axes of the cubic anisotropy. Additionally, all of the above work focused on calculating the performance 
of MNPs for harmonic-space MPI. Therefore, while the previous literature has contributed understanding the 
effect of internal dipole reorientation on MPI performance of nanoparticles, there remains a need for further 
work to systematically evaluate the effects of different types of magnetocrystalline anisotropy and a wide range 
of magnetocrystalline anisotropy constant and nanoparticle size on the non-linear dynamic magnetization and 
MPI performance, especially x-space MPI performance, of spherical particles.

For the case of x-space MPI, the PSF and corresponding resolution of MNPs have been studied by Goodwill 
and Conolly, using the Langevin function (Goodwill and Conolly 2010). However, the Langevin model assumes 
that MNPs respond to applied magnetic fields through instantaneous dipole alignment with the field, which is 
not applicable for nanoparticles that have non-negligible magnetic relaxation time. By considering the relaxa-
tion of MNPs through a theoretical magnetization relaxation equation, Croft et al (2012) obtained good agree-
ment between their theoretical and experimental results. But the relaxation time is dependent on the equilibrium 
magnetization of the nanoparticles, which is predicted through the Langevin function and failed to account for 
particle magnetocrystalline anisotropy. Dhavalikar and Rinaldi (2014) studied both the magnetization harmon-
ics and PSFs for MNPs that relax by the Brownian mechanism, using rotational Brownian dynamics simulations 
and ferrohydrodynamic magnetization equations. In their work, the nanoparticles were assumed to be ‘ther-
mally-blocked’ (also known as ‘magnetically-blocked’) and respond to the changing magnetic field by physical 
rotation. More recently, Shasha et al (2019) reported LLG simulations of performance of suspended magnetite 
nanoparticles undergoing internal dipole rotation and physical particle rotation and reported values of calcu-
lated full-width-at-half-maximum (FWHM) according to an x-space formalism. However, most nanoparticle 
tracers of interest for MPI are not magnetically blocked or physically rotating, such as would often be the case 
for nanoparticles that accumulate inside cells. These nanoparticles respond to changes in the magnetic field by 
only internal magnetic dipole rotation, i.e. through the Néel relaxation mechanism. Moreover, in Shasha and 
coauthors’ work (Shasha et al 2019) the magnetite nanoparticles were modeled with uniaxial anisotropy and 
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the methodology to obtain the x-space MPI performance from the simulations was not described. A review of 
the recent literature suggests that no prior computational work has studied the effects of different magneto
crystalline anisotropy symmetries, nanoparticle diameter, and anisotropy energy barrier on x-space MPI perfor-
mance of MNPs undergoing the Néel relaxation.

The most commonly employed approaches to model the magnetization evolution of nanoparticles that 
respond by the Néel mechanism are based on the stochastic Landau–Lifshitz (LL) equation (Hinzke and Nowak 
2002, Berkov et al 2006, Usov and Liubimov 2012, Coffey and Kalmykov 2012) or the LLG equation (Shah et al 
2015, Usadel 2017) that consider large damping of the magnetization field. For examples, Berkov et al (2006) 
applied the LL equation and computational Langevin dynamics simulations to study magnetorelaxometry of 
MNP suspensions in a range of nanoparticle concentrations, for cases where a static magnetic field was suddenly 
attenuated or switched off. Leliaert et al (2015) developed a macrospin simulation tool based on the LL equa-
tion and studied the magnetorelaxometry of uniaxial-anisotropy MNPs with large numbers of particles and for 
long timescales. By coupling the LLG equation to rotational Brownian simulations, Ilg (2017) studied the effects 
of size of MNP cluster and value of uniaxial anisotropy constant on magnetorelaxometry of the cluster as a static 
magnetic field was suddenly switched off. Their results suggest that a fast initial decay due to the Néel relaxation 
mechanism is followed by long-time relaxation that is due to the Brownian mechanism. However, the above work 
did not account for the effects of nanoparticle size and different magnetic anisotropy symmetries on magnetore-
laxometry, nor provided insight into the dipole dynamics for nanoparticles that are physically fixed in a matrix. 
Thus, further work is needed to fully understand how nanoparticle properties influence non-linear magnetiza-
tion dynamics of MNPs.

In this contribution, we report a computational study of the effects of particle diameter and magnetic aniso
tropy (considering both type of symmetry and barrier energy magnitude) on the magnetization dynamics of 
immobilized spherical single-domain MNPs in static and AMFs, by employing the LLG equation accounting for 
the precession of internal magnetic dipoles. In the case of static magnetic fields, a comparison was made between 
the equilibrium magnetization response of the nanoparticles with uniaxial and cubic anisotropy and the predic-
tions of the Langevin function. Then, we investigated the effects of particle diameter, magnetic anisotropy sym-
metry and energy on the magnetic relaxation time of the nanoparticles as well as the dynamics of the magnetic 
dipole moments for cases where a static magnetic field is suddenly turned on and off. For the case of an applied 
AMF, the intrinsic MPI performance of magnetite nanoparticles that are typical of MPI applications was studied 
in terms of the evolution and harmonic spectrum of ensemble magnetization, hysteresis loops, and signal PSFs 
for various nanoparticle sizes. Since the focus of this work is on comparing the magnetization dynamics and 
MPI performance of MNPs with different sizes and magnetic anisotropies, the effects of magnetic dipole–dipole 
interactions, and nanoparticle size and anisotropy distributions (Eberbeck et al 2011) are left to future studies.

2.  Simulation methods

2.1.  The Landau–Lifshitz–Gilbert (LLG) equation
The magnetic dipole moment of single-domain MNPs, which have uniform magnetization throughout the 
nanoparticle volume Vp, is expressed by

m = msm̂ = MdVpm̂� (1)

where ms  represents the magnitude of the magnetic dipole moment, Md represents the domain magnetization 
of the particle material, and m̂ is a unit vector specifying the orientation of the magnetic dipole moment. 
The damped precession of the magnetic dipole moment due to effective fields can be described by the LLG 
equation (Aharoni 2000)

dm′

dt
= − γ0

1 + λ2

ï
m′ × B′

eff +
λ

ms
m′ × (m′ × B′

eff)

ò
,� (2)

where the prime denotes vectors in particle coordinates (as opposed to laboratory coordinates), t  represents time, 
γ0 is the gyromagnetic ratio, λ is the damping constant, and B′

eff  represents the effective field, which contains 
different energy contributions that are able to provoke changes in the orientation of the magnetic dipole. In our 
work, we consider the energy contributions of B′

ext, due to Zeeman energy (which is generated by the externally 
applied magnetic field), B′

ani, due to magnetocrystalline anisotropy energy, and B′
therm, due to thermal agitations. 

On the right-hand side of equation (2), the first term accounts for the moment precession in the total effective 
field, whereas the second term accounts for the convergence of this precession trajectory to the direction of the 
effective field due to the magnetic energy dissipation.

External magnetic fields were applied in the  +z direction in laboratory coordinates, represented by 
Bext = Bdciz with strength Bdc for the static magnetic fields and Bext = Bac sin (2πft) iz  with amplitude Bac and 
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frequency f  for AMFs, respectively. The magnetic fields can be transformed into the coordinates of nanoparticle 
i through

B′
ext,i = Bext · Ai,� (3)

where the transformation matrix Ai is in the form of (Evans (1977))

Ai =



−ζ2 + η2 − ξ2 + χ2 2 (ζχ− ηξ) 2 (ζη + ξχ)

−2 (ηξ + ζχ) −ζ2 − η2 + ξ2 + χ2 2 (ηχ− ζξ)
2 (ζη − ξχ) −2 (ζξ + ηχ) ζ2 − η2 − ξ2 + χ2


 .� (4)

In equation (4), ζ, η, ξ and χ are the quaternion parameters satisfying the condition ζ2 + η2 + ξ2 + χ2 = 1.
For MNPs with uniaxial anisotropy, the corresponding effective field is in the form of (Robert and Handley  

(2000))

B′
ani,i = 2

KuVp

ms
(m̂′

i · û′
i) û′

i ,� (5)

where Ku  is the (positive) uniaxial magnetocrystalline anisotropy constant and û′
i is a unit vector that determines 

the orientation of uniaxial easy axis of nanoparticle i.
For MNPs that have cubic anisotropy, there are two typical easy axis constructions: six easy axes, with orienta-

tions along the center of the cubic surface, and eight easy axes, with orientations along the cubic vertices. Since 
our objective is to predict the MPI performance of magnetite nanoparticles, the eight-easy-axes construction is 
employed and only the first cubic magnetocrystalline anisotropy constant Kc (with negative values) is considered 
(Robert and Handley 2000). Thus the corresponding effective field is given by (Robert and Handley (2000))

B′
ani,i =−

2KcVp

ms

¶î(
m̂′

i · e′2,i

)2
+
(

m̂′
i · e′3,i

)2
ó (

m̂′
i · e′1,i

)
e′1,i +

î(
m̂′

i · e′1,i

)2
+
(

m̂′
i · e′3,i

)2
ó (

m̂′
i · e′2,i

)
e′2,i

+
î(

m̂′
i · e′1,i

)2
+
(

m̂′
i · e′2,i

)2
ó (

m̂′
i · e′3,i

)
e′3,i

©
,

�

(6)

where e′i  is a unit vector that determines three orthogonal directions of nanoparticle i. In equations (5) and (6), the 
magnitude of B′

ani indicates the ratio of the total magnetic anisotropy energy barrier ∆Eani to the total magnetic 
dipole moment ms, both of which are proportional to the particle volume. For the purpose of convenience, we 
use a unique notation K  instead of Ku  and Kc. The height of anisotropy energy barrier ∆Eani is then given by KVp 
for the uniaxial-anisotropy nanoparticles and |K|Vp/12 for the eight-easy-axes cubic-anisotropy nanoparticles 
(Eisenstein and Aharoni 1977a).

By applying the fluctuation–dissipation theorem, the field due to thermal fluctuation B′
therm,i can be charac-

terized by (Brown (1963), Reeves and Weaver (2014))
〈

B′
therm,i (t)

〉
= 0,� (7)

〈
B′

therm,i (t)B′
therm,i (t +∆t)

〉
=

2kBTλ

γ0ms
δ (∆t) I,� (8)

where kB is the Boltzmann constant, T  represents the absolute temperature, ∆t represents the discrete time 
interval, the Dirac delta function δ implies the white noise field and I is the identity matrix.

By introducing the dimensionless variables

υ =
kBT

µ0msMd
, t̃ = µ0Mdγ0t, f̃ =

f

µ0Mdγ0
,� (9)

and integrating from ̃t  to ̃t +∆t̃ , equation (2) becomes

∆m̂′ = − υ

(1 + λ2)

ñ
m̂′ ×

Ç
αe′Bext,i

+ 2K̃e′Bani,i
+

…
2λ

∆t̃
W′

i

å
+ λm̂′ ×

Ç
m̂′ ×

Ç
αe′Bext,i

+ 2K̃e′Bani,i
+

…
2λ

∆t̃
W′

i

ååô
∆t̃,

� (10)

where the Langevin parameter α = msBdc/kBT and e′Bext,i
= iz · Ai for the static magnetic fields, α = msBac/kBT  

and e′Bext,i
= sin

(
Ω̃t̃

)
iz · Ai for the AMFs, dimensionless angular frequency Ω̃ = 2πf̃ , dimensionless 

anisotropy constant K̃ = |K|Vp/ (kBT), W′
i is a random vector with zero mean and unit standard deviation, 

e′Bani,i
= (m̂′

i · û′
i) û′

i  for the uniaxial anisotropy symmetry, and

e′Bani,i
=
î(

m̂′
i · e′2,i

)2
+
(

m̂′
i · e′3,i

)2
ó (

m̂′
i · e′1,i

)
e′1,i

+
î(

m̂′
i · e′1,i

)2
+

(
m̂′

i · e′3,i

)2
ó (

m̂′
i · e′2,i

)
e′2,i

+
î(

m̂′
i · e′1,i

)2
+
(

m̂′
i · e′2,i

)2
ó (

m̂′
i · e′3,i

)
e′3,i,

� (11)
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for the cubic anisotropy symmetry.
The dimensionless z-direction average magnetization of the nanoparticles is given by

M̃z =
1

N

N∑
i=1

mz,i

ms
,� (12)

where mz,i  represents the z-direction magnitude of the ith magnetic dipole moment and N  is the total number of 
nanoparticles.

2.2.  Simulation parameters and conditions
Simulations were carried out for N = 3375 uniform immobilized spherical MNPs (Md = 4.46 × 105 A m−1) 
at a temperature of 298.15 K . Since the nanoparticles are motionless and magnetic dipole–dipole interactions 
are not considered, the nanoparticle number is only significant for calculating the average magnetization 
of the nanoparticles. Runs were executed starting from random particle configurations using a minimum 
time interval of ∆t̃ = 0.1 for the case of static magnetic fields. For the dynamics simulations in AMFs using 
such a small time step would result in prohibitively long simulation time. As such, we compared simulation 
predictions for various time steps and determined that a time step of ∆t̃ = 1 introduced negligible deviations 
in predicted response. Thus, the minimum time interval of ∆t̃ = 1 was used for the case of AMFs. For the case 
of static magnetic fields, we varied the nanoparticle diameter and magnetic anisotropy constant in the range of 
5 nm � Dp � 40 nm and 3 kJ m−3 � |K| � 30 kJ m−3, respectively. The intensity of the static magnetic field 
was varied in the range of 10 mT � Bdc � 200 mT. For the case of AMFs, the particle diameter was varied in the 
range of 5 nm � Dp � 50 nm, whereas the anisotropy constant was fixed at |K| = 13.5 kJ m−3 for magnetite 
nanoparticles (Birks 1950). The AMF amplitude and frequency were 20 mT and 25 kHz, typical of MPI systems 
in the literature (Gleich and Weizenecker 2005). The value of damping parameter used in the literature is in 
the range of 0.1 to 1, with larger values corresponding to faster dipole reversal. In the absence of experimental 
guidance for the appropriate value of the damping parameter we conducted simulations for the values of 0.1 and 
1, and compared the results to theoretical predictions of magnetic relaxation. Based on these comparisons, the 
damping parameter λ = 1 was used for all simulations presented in the main text. We note that this value has 
been used in several other studies (Brown 1959, Aharoni 1973, Eisenstein and Aharoni 1977a, Shah et al 2015).

2.3.  Phenomenological model to analyze results of magnetorelaxometry simulations
In magnetorelaxometry, a collection of immobilized MNPs is subjected to sudden changes of magnitude of 
an applied static magnetic field, and their dynamic magnetization response is monitored. This situation was 
modeled using the LLG algorithm described previously by putting the nanoparticles in a zero magnetic field, then 
applying a static magnetic field of prescribed intensity for a certain time, and finally removing the magnetic field 
and monitoring relaxation of the nanoparticles towards equilibrium. To interpret the results of these simulations, 
here we derive simple phenomenological models for the average magnetization of a collection of magnetic dipoles 
under the assumption that their behavior is characterized by a constant (in time) relaxation time. This simple 
model should be valid, for example, when the relaxation time of the collection of particles is only a function of the 
applied magnetic field and the magnetic field is held constant while the average magnetization evolves. We note 
that the phenomenological models derived here are merely used to justify the way that simulation data (using the 
full LLG algorithm) are plotted and analyzed below. The evolution of the dimensionless average magnetization 
can be described by the phenomenological magnetization relaxation equation of Shliomis (1971)

dM̃z

dt̃
=

1

τ̃

(
M̃z − M̃z,eq

)
,� (13)

where the dimensionless time τ̃ = µ0Mdγ0τ , τ  represents the characteristic magnetic relaxation time, and M̃z,eq 
represents the dimensionless z-direction average magnetization at equilibrium with the instantaneous magnetic 
field.

Equation (13) can be solved for the two cases that were modeled to study magnetorelaxometry. For the case 
where the collection of MNPs is in equilibrium at zero field and then suddenly subjected to a static magnetic field 
in the  +z direction, the solution to the magnetization relaxation equation, in dimensionless form, is

ln

Å
1 − M̃z

M̃z,eq

ã
= − t̃

τ̃
.� (14)

For the case where the nanoparticles are in equilibrium with an applied magnetic field and the field is suddenly 
turned off, the solution to the magnetization relaxation equation is given by

ln

Å
M̃z

M̃z,eq

ã
= − t̃

τ̃
.� (15)
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It should be noted that equations  (13)–(15) describe an exponential decay of magnetization, in which 
particles respond to field changes with a constant (in time) relaxation time. In our simulations for the case of 
magnetorelaxometry the applied magnetic field is either suddenly turned on or suddenly turned off. Hence, when 
the magnetic field is on the particles are subjected to a constant magnetic field. A simple assumption would be that 
under such condition particle magnetization evolves with a constant relaxation time and a phenomenological 
model such as the ones in equations (13)–(15) should capture the dominant behavior and allow for calculation 
of a relaxation time.

On the other hand, some prior work has also been done to predict the relaxation time of single-domain 
magnetic particles for various magnetic anisotropy energy and symmetries, by solving the Fokker–Planck differ
ential equation. For example, Aharoni (1973) calculated the field-off relaxation time for MNPs with uniaxial and 
cubic anisotropy that are under the condition of ∆Eani/kBT � 1

τA1973 =
MdVp

γ0kBT
.� (16)

For the condition of ∆Eani/kBT � 1, the field-off relaxation time has also been studied by Brown (1963)

τB1963 =
Md

2Kγ0(KV/πkBT)1/2
exp

Å
KVp

kBT

ã
.� (17)

for particles with uniaxial anisotropy symmetry, and by Eisenstein and Aharoni (1977b)

τEA1977 ∼
3πMd√
2γ0 |K|

exp

Å |K|Vp

12kBT

ã
.� (18)

for particles with cubic anisotropy symmetry. It is noted that τA1973, τB1963 and τEA1977 represent the relaxation 
times predicted by the models of Aharoni (1973), Brown (1963) and Eisenstein and Aharoni (1977b), respectively, 
distinguished using the initial of the authors and the year of the publication in the subscript. In our work, we 
compare simulation results of field-off relaxation time with the predictions of equations (16)–(18), as a means to 
validate our algorithm.

2.4.  Tracer response for MPI
For MPI applications, the performance of MNPs can be assessed using the so-called tracer response (TR), given 
by Garraud et al (2018)

TR = σFeḞ
(
Happ

)
=

Ṁ (t)

CFeḢapp (t)
,� (19)

where σFe represents the mass magnetization in A · m2/kgFe, F  is a dimensionless function that describes the 
magnetic behavior of the nanoparticles as a function of Happ, Happ is the time-dependent applied magnetic 
field, M  represents the magnetization of the nanoparticles, and CFe represents the iron concentration in 
mgFe ml−1. In equation (19), TR is normalized by the nanoparticle concentration (iron basis) and the rate of 
change of the magnetic field (which corresponds to the “field-free region” velocity compensation used in x-space 
MPI reconstruction), and expressed as a function of the applied field instead of time (which accounts for “field-
free region” position compensation) (Garraud et al 2018).

In our work, Happ = Bac sin (2πft) /µ0 (µ0 is the vacuum permeability) for the applied z-directed AMF with-
out a static bias magnetic field and M = npmsM̃z  accounting for the magnetization of the nanoparticles along 
the field direction. np represents the number density of MNPs. The signal intensity is then determined from

Signal Intensity =
CFeTR

npms
=

˙̃M z (t)

Ḣapp (t)
,� (20)

from which the FWHM, deviation between envelope peaks, and peak signal intensity can be obtained. As in the 
x-space MPI system, the projected intrinsic resolution ∆x  of a MPI system can be calculated when the constant 
gradient of static bias field G is known (Garraud et al 2018)

∆x =
FWHM

G
.� (21)

Since in our simulations the minimum time step is too small relative to a cycle of the AMF and thermal agita-
tions are non-negligible, direct numerical differentiation of the magnetization signal results in significant noise. 
In order to reduce this effect, we applied a moving average of the magnetization signal over a range of p data 
points. This moving average was only applied when calculating the PSF for a given simulation. Because applying 
a moving average over too large a time window will remove fast magnetization dynamics generated by the AMF, 
we sought to determine suitable values of p systematically. To do this, we reasoned that predictions of dynamic 
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magnetization using the Langevin function would yield the fastest dynamics and determined, for each nanopar-
ticle diameter (since the Langevin function is a function of particle diameter), the largest value of p that would 
result in no more than 5% deviation in the calculated values of the TR peak magnitude and FWHM with and 
without moving average. Figure S6 in the supporting material shows the explicit comparisons of results of the 
Langevin function, including the p value and percent deviation of signal intensity and FWHM, before and after 
introducing the moving average. One can observe that the moving average hardly influence on the characteriza-
tions of the results.

3.  Results

3.1.  Equilibrium response of magnetization
Figure 1 shows the dimensionless equilibrium average magnetization of a collection of MNPs in a static magnetic 
field as a function of intensity of the field for anisotropy constant value of |K|  =  13.5 kJ m−3, and uniaxial and cubic 
anisotropy symmetries. In figure 1, M̃z,eq refers to the numerical equilibrium magnetization, corresponding to the 
condition where the slope of the dimensionless z-direction magnetization M̃z of the nanoparticles as a function 
of dimensionless time t̃  is less than 10−6. Accompanied with the scaled anisotropy energy shown in table 1, we 
observe that in figure 1 the equilibrium magnetization for both anisotropy symmetries have good agreement 
with the prediction of the Langevin model for ∆Eani/kBT < 1. However, for ∆Eani/kBT > 1 increasing the value 
of ∆Eani leads to a divergence of the equilibrium magnetization from the prediction. These results have been 
shown by prior work (Bean and Livingston 1959), and here give a validation to our algorithms. In addition, 
figure 1 shows that for the same value of |K|, the nanoparticles with uniaxial anisotropy symmetry have a larger 
divergence of equilibrium magnetization from the Langevin model than those with cubic anisotropy symmetry. 
This is because the anisotropy energy barrier of the latter nanoparticles is one-twelfth of the anisotropy energy 
barrier of the former, which results in better alignment of the magnetic dipoles in the field direction and then 
larger equilibrium average magnetization of the cubic-anisotropy nanoparticles.

3.2.  Simulations of magnetorelaxometry
Figure 2 shows representative dimensionless average magnetizations of collections of MNPs as a function of 
dimensionless time, for nanoparticle diameter Dp  =  15 nm, anisotropy constant value of |K|  =  13.5 kJ m−3 
(Eani/kBT   =  5.80 for uniaxial symmetry and Eani/kBT   =  0.48 for cubic symmetry) and magnetic field intensity 
Bdc  =  20 mT (α  =  3.83 for both uniaxial and cubic symmetries). The corresponding magnetic relaxation curves 
were also plotted in terms of equations (14) and (15) for the field-on and off cases, respectively. In the magnetic 
relaxation curves, the slope is equal to −1/τ̃ . As seen in figure 2, for both types of anisotropy symmetries the 
average magnetization is zero before a magnetic field is applied. When the external field is suddenly turned on, 
the magnetization changes to achieve a new equilibrium with the field, through a successive two-step process 
(characterized by relaxation time τ1 and τ2) for the uniaxial-anisotropy nanoparticles and a combined one-
step process (characterized by relaxation time τ12) for the cubic-anisotropy nanoparticles. Similarly, when the 
field is suddenly turned off, the decrease in the magnetization can also occur through two different processes: a 
successive two-step relaxation (characterized by relaxation time τ3 and τ4) and a combined one-step relaxation 
(characterized by relaxation time τ34) for the uniaxial- and cubic-anisotropy nanoparticles, respectively. 
Moreover, we observed that in the successive two-step relaxation processes, the first step relaxation was always 
faster than the second step relaxation, i.e. τ1 < τ2 and τ3 < τ4 . Combined with more representative magnetization 
curves and magnetic relaxation curves shown in figure  S1 (stacks.iop.org/PMB/65/025014/mmedia) in the 
supporting materials, the results suggest that the successive two-step and combined one-step relaxations happen 
for both MNPs with uniaxial and cubic anisotropy symmetries. More explicitly, we only observed the successive 
two-step relation when ∆Eani > kBT and ∆Eani/kBT > α for the field-on case and ∆Eani > kBT for the field-off 
case. Otherwise, the combined one-step relaxation takes place. It should be noted that the two-step relaxation 
processes observed here is different from that observed by Ilg (2017). In their work the second step was due to 
Brownian relaxation, whereas in our work the nanoparticles are unable to rotate or translate so that the Brownian 
relaxation mechanism is abrogated.

To explain the above relaxation behaviors, we focused on the successive two-step process first. When the 
suddenly applied magnetic field is weak and cannot provide enough energy to overcome the anisotropy energy 
barrier, the magnetic dipoles which initially align in the easy axes antiparallel to the field direction cannot imme-
diately flip to align with the field. Instead, they instantaneously re-align to some preferable direction nearby 
the easy axes (corresponding to relaxation step τ1), and then due to thermal agitations undergo slow flips until 
an equilibrium state is reached (corresponding to relaxation step τ2). It is noted that the preferable direction is 
always located between the directions of the applied field and easy axis that the individual magnetic dipole is 
initially aligned with. The precise orientation is determined by competition between magnetic field energy and 
anisotropy barrier energy. When the field is suddenly turned off, since the anisotropy energy is greater than the 
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thermal energy, magnetic dipoles rapidly snap back to their vicinal easy axes first (corresponding to relaxation 
step τ3) and then undergo slow flips until a new equilibrium is achieved (corresponding to relaxation step τ4). 
For the combined one-step relaxation, since the anisotropy energy barrier is low, the dipoles that are antiparallel 
to the field direction can be easily flipped by the suddenly applied field and only experience a one-step relaxation 

Figure 1.  Equilibrium average magnetization of a collection of magnetic nanoparticles in an applied static magnetic field as a 
function of intensity of the field, for a representative anisotropy constant value of |K| = 13.5 kJ m−3 and various nanoparticle 
diameters.

Table 1.  Scaled anisotropy energy Eani/kBT  for a representative anisotropy constant value of |K| = 13.5 kJ m−3 and various nanoparticle 
diameters.

Dp, [nm] 5 10 15 40

Uniaxial anisotropy 0.21 1.72 5.80 109.95

Cubic anisotropy 0.02 0.14 0.48 9.16

Figure 2.  Magnetization curve and corresponding magnetic relaxation curves for collections of immobilized magnetic 
nanoparticles with (a) uniaxial and (b) cubic anisotropy symmetries, nanoparticle diameter Dp  =  15 nm, anisotropy constant 
|K|  =  13.5 kJ m−3 (∆Eani/kBT   =  5.80 for uniaxial symmetry and ∆Eani/kBT   =  0.48 for cubic symmetry), and magnetic field 
intensity Bdc  =  20 mT (α  =  3.83 for both uniaxial and cubic symmetries).

Phys. Med. Biol. 65 (2020) 025014 (16pp)
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τ12. Similarly, when the field is suddenly turned off, the dominant thermal agitations easily randomize the magn
etic dipoles into easy axes with a one-step relaxation time τ34.

Further insight into the successive two-step relaxation process can be obtained from figure 3, which shows 
magnetization curves and orientation distributions of magnetic dipoles at representative time points, for magn
etic field intensity Bdc  =  30 mT (α  =  13.62) and a collection of uniaxial-anisotropy MNPs with diameter 
Dp  =  20 nm and anisotropy constant |K|  =  13.5 kJ m−3 (Eani/kBT   =  13.74). It should be noted that in the figure, 
the +z′  direction of the particle coordinates represents the easy axis which points to the particle hemisphere in 
the +z direction of the laboratory coordinates. The representative time points are also noted in the magnetiza-
tion curves by red solid circles. In the figure, one can observe that starting from a random configuration and sub-
jected to a zero magnetic field, the magnetic dipoles align in vicinal easy axes (+z′  or −z′  direction), which acts 
as a random re-distribution in the laboratory coordinates. When a static magnetic field is suddenly applied in the 
+z direction, the dipoles slant from the easy axes and align in more preferable directions, through relaxation step 
τ1, and then slowly flip to align around the field, through relaxation step τ2. When the field is suddenly turned 
off, the magnetic dipoles snap back to the vicinal easy axes, through relaxation step τ3, and then undergo thermal 
randomization through relaxation step τ4. Here relaxation step τ4 is not obvious because the MNPs are thermally 
blocked under the simulation conditions. Figure S2 in the supporting material shows the representative orienta-
tion distributions of magnetic dipoles for nanoparticles with cubic anisotropy symmetry and under the same 
condition as in figure 3. Both observations in figures 3 and S2 verify the explanations that we made before for the 
different relaxation processes of a collection of immobilized MNPs.

We calculated the field-off relaxation times (τ34 or τ3 and τ4) and plotted them as a function of intensity of 
the magnetic field for a range of values of magnetic anisotropy constant and types of anisotropy symmetry. The 
results are shown in figure S3 in the supporting materials. In the figure, some data points are missing because the 
magnetization of MNPs did not reach equilibrium with the applied field or the nanoparticles are effectively ther-
mally blocked (i.e. with an extremely long relaxation). It is observed that τ34 and τ4 are independent of the field 
intensity, whereas increasing the field intensity leads τ3 to decrease first and then plateau. This can be explained 
because of the small angle between the dipole’s preferable direction and the direction of the nearest easy axis 
under small field intensities. However, for large field intensities (Bdc � 100 mT) the anisotropy energy barrier is 
negligible, which leads to better alignment of the dipoles. Additionally, the field intensity does not affect τ34 and 
τ4 because of the dominant thermal agitations and irrelevance of initial divergent angle of the magnetic dipole, 
respectively.

Figure 4 shows the magnetic relaxation time τ34, or τ3 and τ4 as a function of dimensionless anisotropy 
constant K̃  for a range of values of the magnetic anisotropy constant and for the two types of anisotropy 

Figure 3.  (a) magnetization curve and (b) corresponding representative orientation distributions of magnetic dipoles of a 
collection of magnetic nanoparticles with uniaxial anisotropy symmetry, for nanoparticle diameter Dp  =  20 nm and magnetic 
anisotropy constant |K|  =  13.5 kJ m−3 (Eani/kBT   =  13.74) and magnetic field intensity Bdc  =  30 mT (α  =  13.62). Each yellow/red 
dot in (b) represents one magnetic dipole moment.

Phys. Med. Biol. 65 (2020) 025014 (16pp)
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symmetry. It should be noted that in the figure, τ3 is the average value for cases of Bdc � 100 mT. The relaxation 
times were scaled by τB1963 and τEA1977 for uniaxial- and cubic-anisotropy nanoparticles, respectively. For both 
types of anisotropy symmetry, one can observe good agreement between the combined one-step relaxation time 
τ34 and the prediction of τA1973 for small values of K̃  (as seen in figures 4(b) and (d)). Increasing the value of K̃  
leads to a transition of particle relaxation from the combined one-step process to the successive two-step process, 
where the scaled τ3 increases logarithmically and the scaled τ4 increases linearly. However, the scaled τ3 is always 
smaller than the scaled τ4. For the two types of anisotropy symmetry, figures 4(a) and (c) show that simulation 
results of τ3 are in good agreement with the predictions of τB1963 and τEA1977 for the uniaxial- and cubic-aniso
tropy nanoparticles, respectively. These results serve to validate our algorithms from the perspective of predict-
ing dynamic magnetization response. Here we note that we also carried out simulations using a damping param
eter λ = 0.1 and compared the simulation results to the theoretical predictions of τB1963 and τEA1977, as shown in 
figure S5 in the supporting material. As observed in the figure, the relaxation times obtained from simulations 
using λ = 0.1 have much poorer agreement with the theoretical predictions. This may be expected since equa-
tions (16)–(18) were derived based on the precondition that λ = 1. We thus believe our use of λ = 1 is justified. It 
also should be noted that the successive two-step relaxation processes were not observed by Leliaert et al (2015), 
because they modeled the thermal agitations using the so-called ‘stochastic switching’, in which the dipole flips 
as the simulation reaches a pre-specified switching time. As a result, the magnetization curves do not show any 
thermal fluctuations and the minimum time step is 0.001 s, which is too large to catch the fast first step relaxation.

Figure 5 shows the representative magnetic relaxation time τ12 or τ1 and τ2 as a function of magnetic field 
intensity for nanoparticle diameter Dp  =  15 nm, and a range of values of magnetic anisotropy constant for 
the two types of symmetry. As seen in the figure, increasing the field intensity leads to a decrease in the relaxa-
tion time. Meanwhile, the relaxation of the uniaxial-anisotropy nanoparticles transitions from the successive  
two-step process to the combined one-step process. The transition field intensity increases with the value of the 

Figure 4.  Scaled characteristic magnetic relaxation times τ34, or τ3 and τ4 as a function of dimensionless anisotropy constant for 
various values of the magnetocrystalline anisotropy constant, and for (a) uniaxial- and (c) cubic-anisotropy nanoparticles. (b) and 
(d) provide zoom-in views for small dimensionless magnetic anisotropy constants in (a) and (c), respectively.

Phys. Med. Biol. 65 (2020) 025014 (16pp)
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anisotropy constant. This phenomenon is justified because the successive two-step relaxation only happens for 
the case where the anisotropy energy is dominant over the energy of the magnetic field, and larger transition field 
intensity is required as the height of the anisotropy energy barrier increases. Our results suggest that the nanopar-
ticles with uniaxial anisotropy symmetry undergo a successive two-step relaxation when αkBT/∆Eani < 1.34. 
However, for nanoparticles with cubic anisotropy symmetry the energy of the magnetic field is always dominant 
over the anisotropy energy under the conditions studied here, so that only the combined one-step relaxation is 
observed. In addition, our results suggest that τ12 is not a function of the value of the anisotropy constant. This is 
explained because for the case of combined one-step relaxation the anisotropy energy barrier is too low as com-
pared to other energies (thermal and magnetic). More field-on relaxation times for various particle diameters are 
shown in figure S4 in the supporting materials, where one can observe that the transition field intensity is also 
independent of the particle diameter for the case of uniaxial anisotropy symmetry.

3.3.  Magnetization signal in an AMF
Figure 6 shows the magnetization curves and corresponding dynamic hysteresis loops of a collection of 
immobilized magnetite nanoparticles in an AMF typical of MPI, for various particle diameters and anisotropy 
symmetries. In figures 6(a) and (c), one can observe that increasing the particle diameter results in a change in 
the shape of the magnetization curve for both uniaxial- and cubic-anisotropy nanoparticles. Simultaneously, 
a significant response lag with respect to the applied field is observed only for the nanoparticles with uniaxial 
anisotropy symmetry. The magnetization curve of 40 nm uniaxial-anisotropy nanoparticles has a triangular 
shape because the anisotropy energy barrier is so high that the magnetic dipoles cannot be flipped by the applied 
field or thermal agitation. Furthermore, figures 6(b) and (d) show that increasing the particle diameter leads 
first to a increase and then to a decrease in the area of the dynamic hysteresis loop for the uniaxial-anisotropy 
nanoparticles, whereas under the conditions studied this is seen to increase monotonically for the cubic-
anisotropy nanoparticles. These behaviors are explained because for the same |K| value the uniaxial-anisotropy 

Figure 5.  Characteristic magnetic relaxation times τ12 or τ1 and τ2 as a function of intensity of the applied static magnetic field for 
nanoparticle diameter Dp  =  15 nm, various values of anisotropy constant, and (a) uniaxial- and (b) cubic-anisotropy magnetic 
nanoparticles.

Phys. Med. Biol. 65 (2020) 025014 (16pp)
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nanoparticles have a higher anisotropy energy barrier so that they experience a longer magnetic relaxation than 
the cubic-anisotropy nanoparticles.

By taking the fast Fourier transform of the magnetization signals in figures 6 and 7 shows the corresponding 
harmonic spectra of magnetization for the first 51 harmonics. In the figure, the signals are normalized by the 
intensity of the first harmonic. It is seen that increasing particle diameter leads the decay rate of signals from the 
third harmonic to decrease first and then increase for the uniaxial-anisotropy nanoparticles and decrease mono-
tonically for the cubic-anisotropy nanoparticles, under the conditions studied here. According to the analysis 
method that is typical of harmonic-space MPI, good MPI performance can be determined by the slow decay 
of harmonic signal from the third harmonic until the plateau of signal amplitude. The plateau above a certain 
harmonic number is caused by thermal fluctuations which make estimating higher harmonics unreliable. There-
fore, our result suggests that for Dp � 25 nm the magnetite nanoparticles that are modeled with cubic anisotropy 
symmetry have better MPI performance than those modeled with uniaxial anisotropy symmetry. Within the 
range of particle diameter considered here, the optimal performance for harmonic-space MPI is achieved at 
Dp = 20 nm and Dp = 40 nm for the uniaxial- and cubic-anisotropy nanoparticles, respectively.

Figure 8 shows representative PSFs for collections of magnetite nanoparticles in an AMF that is typical for 
MPI, for nanoparticle diameter Dp  =  20 nm and the two types of magnetocrystalline anisotropy symmetry. The 
resolution ∆x  is calculated for field gradient G = 5 T m−1. As observed in the figure, the signal intensities for 
uniaxial- and cubic-anisotropy nanoparticles are similar and agree with the prediction of the Langevin model. 
However, the nanoparticles with uniaxial anisotropy symmetry have smaller FWHM (i.e. finer intrinsic resolu-
tion) and larger peak-to-center deviation as compared with the nanoparticles with cubic anisotropy symmetry. 
Figure 9 shows the corresponding signal intensity, FWHM, and peak deviation for the PSFs calculated for a range 
of nanoparticle diameters and for the two types of magnetocrystalline anisotropy symmetry. It should be noted 
that for uniaxial-anisotropy nanoparticles with diameter Dp � 25 nm, the PSF calculation algorithm broke down 
because the peak shift is beyond the range of applied magnetic field amplitude. As observed in figure 9, for Dp � 
20 nm the uniaxial-anisotropy nanoparticles have the same signal intensity, smaller FWHM/expected resolution, 
and much greater peak deviation as compared to the cubic-anisotropy nanoparticles. For the cubic anisotropy 
symmetry that magnetite nanoparticles should have, we compared the simulation results with the prediction of 

Figure 6.  Magnetization curves for collections of magnetite nanoparticles in an alternating magnetic field with amplitude Bac  = 
20 mT and frequency f   =  25 kHz, for various nanoparticle diameters and for (a) uniaxial and (c) cubic anisotropy symmetries. The 
corresponding dynamic hysteresis loops are in (b) and (d). 
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the Langevin model and observed good agreement for Dp � 30 nm. For these nanoparticles, increasing the diam-
eter leads to an increase and then slight decrease in signal intensity and a decrease and then slight increase in the 
FWHM/expected resolution. Both the strongest signal intensity and the smallest FWHM/expected resolution 
are obtained at Dp  =  35 nm. Moreover, the peak deviation of the cubic-anisotropy nanoparticles hardly changes 
with diameter for Dp � 30 nm and slightly increases for Dp � 35 nm. According to the analysis method that is 
typical of x-space MPI, our results suggest that the optimal performance would be expected for the nanoparticles 
with Dp  =  35 nm.

Figure 7.  Harmonic spectrum of magnetization signal of a collection of magnetite nanoparticles for alternating magnetic field 
amplitude Bac  =  20 mT and frequency f   =  25 kHz, various nanoparticle diameters, and cases of (a) uniaxial and (b) cubic 
anisotropy symmetries.

Figure 8.  Positive and negative scan tracer response of a collection of magnetite nanoparticles as a function of intensity of applied 
alternating magnetic field for the field amplitude Bac  =  20 mT, frequency f   =  25 kHz, nanoparticle diameter Dp  =  20 nm, and cases 
of uniaxial and cubic anisotropy symmetries. In the figure, the corresponding full-width-at-half-maximum (FWHM) and intrinsic 
resolution of the nanoparticles (∆x) are noted.
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4.  Conclusion

We reported a computational study of the effects of particle diameter and magnetocrystalline anisotropy 
(considering both type of symmetry and barrier energy magnitude) on the magnetization dynamics and 
MPI performance of a collection of immobilized spherical single-domain MNPs that relax in Néel relaxation 
mechanism, by carrying out simulations based on the LLG equation. Our LLG simulation algorithm was validated 
in two ways. First, we demonstrated that for nanoparticles in equilibrium with an applied static magnetic field 
the average magnetization agreed with the predictions of the Langevin model for ∆Eani/kBT < 1. Second, 
we demonstrated that for magnetic dipoles undergoing thermal randomization in the absence of an applied 
magnetic field the decay in magnetization follows an exponential model with characteristic time in agreement 
with the predictions of prior works for a wide range of nanoparticle diameters and values of magnetic anisotropy 
constant, and for uniaxial and cubic anisotropy symmetries.

Our results suggest that for both types of anisotropy symmetry and both cases where a static magnetic field 
is suddenly turned on and off, MNPs may undergo a successive two-step (periods τ1 and τ2 for field turned on, 
periods τ3 and τ4 for field turned off) or combined one-step (period τ12 for field turned on and τ34 for field turned 
off) relaxation. Whether a nanoparticle relaxes with one or two periods when the field is turned on is determined 
by the competition between the energy of the applied magnetic field, the magnetic anisotropy energy, and ther-
mal energy. For the case of an applied AMF that is typical of MPI applications, our work is the first study that 
compares the effects of uniaxial and cubic magnetocrystalline anisotropies on the x-space MPI performance and 
resolution of MNPs. The results suggest that different anisotropy symmetries lead to different MPI performance, 
and this must be taken into consideration when choosing an anisotropy model to describe MNP performance in 

Figure 9.  (a) Intensity, (b) full-width-at-half-maximum (FWHM) and (c) peak deviation of magnetization signal of a collection 
of magnetite nanoparticles as a function of nanoparticle diameter for the field amplitude Bac  =  20 mT, frequency f   =  25 kHz, and 
cases of uniaxial and cubic anisotropy symmetries.
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MPI. Within the parameters studied, we observed that the optimal x-space MPI performance (signal and reso-
lution) of the cubic-anisotropy magnetite nanoparticles was at Dp = 35 nm. In summary, this study provides 
insight into the roles of nanoparticle diameter and magnetic anisotropy energy and type of symmetry on the 
nonlinear dynamic magnetization response and performance of MNPs for applications in MPI.
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