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1.  Introduction

Ultrasonography is one of the most widely used modalities in the field of biomedical imaging due to its low 
cost, safety, portability, and real-time capabilities. However, conventional ultrasonography is plagued by a 
number of practical limitations. For example, a couple of drawbacks associated with conventional brightness 
mode (B-mode) imaging are its mainly qualitative nature and the presence of speckle artifacts, which limits 
the capability to observe contrast. Furthermore, due to inherent system and operator dependencies for clinical 
sonography, it is often difficult to compare B-mode images acquired with different systems, transducers, and 
setting configurations. For this reason, the diagnostic capabilities of B-mode ultrasound can be highly subjective.

In order to address the qualitative nature of ultrasonic imaging, a number of quantitative acoustic imaging 
modes have been proposed. These modes attempt to address the inherent system and operator dependency issues 
by directly estimating physically relevant acoustic properties such as attenuation, backscatter coefficient/reflec-
tivity, and sound speed, in a way that at least partially accounts for the limitations of the measurement apparatus 
(Norton and Linzer 1981, Mamou and Oelze 2013, Oelze and Mamou 2016). For the purposes of this work, the 
scope will be restricted to the quantitative imaging of sound speed, an acoustic parameter that has been shown to 
be effective at differentiating between benign and malignant tissue states in both the liver and breast, among oth-
ers (Bamber and Hill 1981, Bamber et al 1981, Sehgal et al 1986, Duric et al 2007, Johnson et al 2007).

From a comparative methodological standpoint, the most definitive methods for imaging sound speed are 
those of traditional ultrasonic computed tomography (USCT) (Greenleaf et al 1975, Glover and Sharp 1977, 
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Abstract
Pulse-echo reconstruction of sound speed has long been considered a difficult problem within the 
domain of quantitative biomedical ultrasound. However, recent results (Jaeger 2015 Ultrasound 
Med. Biol. 41 235–50; Jaeger and Frenz 2015 Ultrasonics 62 299–304; Jaeger et al 2015 Phys. Med. Biol. 
60 4497–515) have demonstrated that pulse-echo reconstructions of sound speed are achievable 
by exploiting correlations in post-beamformed data from steered, plane-wave excitations in 
the presence of diffuse scatterers. Despite these recent advances, a coherent theoretical imaging 
framework for describing the approach and results is lacking in the literature. In this work, the 
problem of sound speed reconstruction using steered, plane-wave excitations is reformulated as 
a truncated convolutional problem, and the theoretical implications of this reformulation are 
explored. Additionally, a matrix-free algorithm is proposed that leverages the computational 
and storage advantages of the fast Fourier transform (FFT) while simultaneously avoiding FFT 
wraparound artifacts. In particular, the storage constraints of the approach are reduced down 
from O(M2N2) to O(MN) over full matrix reconstruction, making this approach a better candidate 
for large reconstructions on clinical machines. This algorithm was then tested in the open source 
simulation package k-Wave to assess its robustness to modeling error and resolution reduction was 
demonstrated under full-wave propagation conditions relative to ideal straight-ray simulations. The 
method was also validated in a phantom experiment.
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Duric et al 2007, Wiskin et al 2007, Lavarello and Oelze 2008, 2009, Hormati et al 2010, Li et al 2010, Huthwaite 
and Simonetti 2011). The most salient feature of these methods is the acquisition of the forward propagating 
wave through a transmission configuration where the source and receiver are located on opposite sides of the 
sample. This can be accomplished using two mechanically translated single-element transducers (Greenleaf et al 
1975, Glover and Sharp 1977), two diametrically opposed linear arrays (Johnson et al 2007), or a single ring array 
(Carson et al 1981, Duric et al 2007, Hormati et al 2010, Li et al 2010, Huthwaite and Simonetti 2011). The main 
advantage of such configurations is the preservation of baseband information, because transmission measure-
ments sample the low frequencies of the Ewald sphere (Blahut 2004, Devaney 2012), which also have the strong-
est signal-to-noise ratio (SNR) under Born scattering. However, such configurations are unwieldy in practice, 
require additional custom hardware, and are practically limited in scope to easily externalized soft tissues such as 
the female breast.

For this reason, it is desirable to develop quantitative methods that can be deployed in a pulse-echo environ
ment, which is achievable using conventional linear arrays. The main drawback of the pulse-echo constraint is a 
reduction in data availability. In a pulse-echo setting, the information reduction manifests as a bandpass filter-
ing effect, due to a limited sampling of the Ewald sphere (Norton and Linzer 1981, Lu et al 1994, Lu 1997, Walker 
and Trahey 1998). It is for this reason that pulse-echo sound speed imaging in the general case is considered dif-
ficult because the baseband components are not preserved in the data. This limitation also impacts the quality 
of B-mode images, because interactions between sub-resolution scatterers ultimately manifest as speckle after 
baseband demodulation.

Despite these inherent difficulties, there have been several attempts at echo-mode sound speed imaging. One 
class of methods for pulse-echo sound speed imaging is based around the beam tracking methodology (Ophir 
1986, Kondo et al 1990, Céspedes et al 1992), which exploits registered backscattered data from two spatially 
separated transducers to reconstruct local sound speed. These methods rely on the presence of diffuse scatter-
ers throughout the medium to make inferences about local sound speed. In another approach, backscattered 
data are registered using parabolic fits of prebeamformed radio frequency (RF) echoes to generate sound speed 
reconstructions under both focused transmit and single-element excitations (Byram et al 2012, Jakovljevic et al 
2018). The applicability of these methods is likely to be limited by motion artifacts due to the number of excita-
tions required to generate a full dataset.

More recently, the beam-tracking methodology was generalized to post-beamformed steered plane-wave 
data acquired by linear array transducers (Jaeger and Frenz 2015, Jaeger et al 2015a, 2015b, Sanabria et al 2018). 
Plane-wave steering forms the basis for the current standard of high frame rate ultrasound, because it is able to 
rapidly sample Fourier space in a way that minimizes the total number of excitations while preserving spatial 
resolution (Lu et al 1994, Lu 1997, Montaldo et al 2009). It is precisely this property that makes plane-wave imag-
ing advantageous for Doppler ultrasound applications, and suggests potential robustness to motion artifacts 
compared to translated transmit aperture methods (Byram et al 2012, Jakovljevic et al 2018).

However, theoretical characterizations of pulse-echo sound speed reconstruction using steered plane waves 
in a broader imaging context are lacking. A first order model of the Fourier-space coverage was presented in 
Jaeger et al (2015a), and was used to derive an FFT-based reconstruction algorithm. Results from this paper have 
been difficult to reproduce completely. This is unfortunate, as the core idea of utilizing local phase estimates to 
extract information about sound speed by varying transmit direction is worthwhile. As an alternative, a spatial 
domain approach of the problem was developed in Sanabria et al (2018), which enabled the incorporation of 
spatial domain total variation regularization into the method, as well as the option to incorporate manually 
segmented prior information into the reconstruction. However, the approach is nonlinear and biased towards 
piecewise constant reconstructions. Furthermore, only two results were presented under full-wave propagation 
conditions, with the vast majority of the results being on straight ray simulated data which would exhibit a qual-
ity bias consistent with inverse crime. Of the two realistic simulations, the only validated full-wave result was a 
simulation developed in house, which could have been unintentionally biased in favor of their algorithm.

The main contributions of this work are as follows. First, the problem of registration-based plane-wave 
sound speed imaging is reformulated in a convolutional framework, in order to aid future researchers interested 
in implementing such methods. Second, the Fourier-domain characterization is directly related to the Fourier 
projection-slice theorem and the traditional backscattered Fourier coverage as one might expect from a diffrac-
tion tomographic approach or traditional B-mode ultrasound. Third, a matrix-free algorithmic approach based 
off of the convolutional reformulation is proposed which avoids the FFT wraparound artifacts while simultane-
ously leveraging the computational and storage advantages for the FFT. The benefits of matrix-free reconstruc-
tions are well-known in the literature, and have been concisely summarized in Diamond and Boyd (2016). This 
algorithm reduces storage constraints from O((MN)2) to O(MN), which enables larger reconstructions to be 
performed on clinical machines. This method was tested in the open source simulation package k-Wave (Treeby 
et al 2012) to assess its robustness to modeling error and the resultant reconstructions exhibited significant reso-
lution degradation relative to straight-ray modeling conditions. Similar results were achieved experimentally in a 
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phantom study. Finally, the main advantages and limitations of the method are identified, and areas of potential 
future research are explored.

2.  Methods

2.1.  Convolutional formulation of the straight ray model
The principle of operation of the methodology is illustrated in figure 1(a). Consider the propagation of two 
steered plane waves in a heterogeneous medium. A first wave (red) is transmitted at one angle and the scattered 
field recorded at the transducer array and the second wave (blue) is transmitted at a different angle and received 
by the transducer array. The heterogeneous medium is assumed to be comprised of both diffusely distributed 
small scale weak Born scatterers (� λ) as well as large scale aberrating inclusions (� λ, Rytov-like scatterers 
(Devaney 2012, Chew 1995)), which serve to distort the phase of the forward propagating waves. The received 
echoes are beamformed using traditional delay and sum methodology (Montaldo et al 2009) and the local phase 
differences are compared using a cross-correlation approach similar to that used by Jaeger et al (2015a). In the 
case of the blue wavefront, the backscattered signal will be phase-shifted due to the inclusion, whereas the data 
from the red wavefront will not. Thus, by modulating the transmit steering angle of the aperture and comparing 
the local phase differences of the received echoes via cross-correlation, forward scatter information is gained 
about the time-of-flight differences between the different paths. We desire to form a model that appropriately 
characterizes lags estimated by cross-correlation of two post-beamformed frames with transmit steering angles 
α and β. The relative lag estimated at any given point in the region of interest will be the difference between total 
deviations in time of flight for each frame:

∆τ(�rs;α,β) = τT(�rs;α)− τT(�rs;β)� (1)

where �rs  is the location of the scatterer.
The total time of flight from a transmitting aperture to a scatterer and back can be further decomposed into 

propagation times corresponding to the transmit and receive paths. It should be noted that the influence of the 
receive path has been largely neglected in the published literature (Jaeger and Frenz 2015, Jaeger et al 2015a, 
2015b, Sanabria et al 2018). For simplicity of analysis, we will restrict our analysis to the case where the steering 
angle of the receive aperture is mirrored with respect to the transmit (i.e. φRx = −φTx), as this keeps the 2D spec-
trum approximately invariant for correlation processing (Walker and Trahey 1998) which is examined in further 
detail in section 2.4. Thus, the relative lag estimated from cross-correlation is a superposition of four terms:

∆τ(�rs;α,β) = [τ(�rs;α) + τ(�rs;−α)]︸ ︷︷ ︸
τT(�rs;α)

− [τ(�rs;β) + τ(�rs;−β)]︸ ︷︷ ︸
τT(�rs;β)

.
� (2)

(a)

x

z

xφ

zφ

φ

�rs

�r1

�r
�

|�rs −�r1|

x̂φ ·�rs

(b)

Figure 1.  (a) Principle of operation. By comparing post-beamformed data acquired by different steering angles, differences in the 
time of flight can be observed due to the propagation through a localized region of different sound speed. These phase differences 
can be estimated via cross-correlation and subsequently used to reconstruct the spatial distribution of sound speed. (b) Geometric 
diagram illustrating coordinate conventions used in the text.
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Each path can be written in the form of a line integral of the perturbation of inverse sound speed, or slowness

τ(�rs;φ) =

∫ �rs

�r1(φ)

d�σ(�r),� (3)

=

∫ |�rs−�r1|

0
d� σ(�r1 + �ẑφ)� (4)

where σ(�r) = 1/c(�r)− 1/cbf  is the spatially varying slowness perturbation, c(�r) is the spatially varying sound 
speed, cbf  is the a priori sound speed used for beamformation, d�  is the differential path length, φ is the steering 
angle of the aperture and �r1(φ) is the corresponding aperture centroid as appropriate. This integral can be 
reexpressed in a convolutional form

τ(�rs;φ) = σ(�rs)∗
�rs

mφ(�rs)� (5)

mφ(�rs) ≡ δ(x̂φ ·�rs)u(ẑφ ·�rs)� (6)

where x̂φ and ẑφ are the unit vectors in a rotated coordinate system (see figure 1(b)), u(z) is the unit step 
(Heaviside) function, and δ(x) is a one-dimensional Dirac delta function. This form is useful as it simplifies 
analytical interpretation and is suggestive of numerical optimizations. Analytically, mφ(�rs) can be written in 
terms of the φ = 0 case via an introduction of a rotation matrix:

mφ(�rs) = m0(Rφ�rs)� (7)

m0(�rs) = u(z)δ(x)� (8)

Rφ =

[
cosφ − sinφ

sinφ cosφ

]
.� (9)

This manipulation demonstrates that in accordance with the straight ray model, the one-way time of flight is 
given by the convolution of the slowness perturbation with a rotated, laterally infinitesimal unit step function, 
and provides a convenient method of generating the convolutional kernel for arbitrary angle φ. Thus the total 
lag map estimated by cross-correlation can be modeled as a convolution of the slowness perturbation and an 
impulse response h(�r;α,β):

∆τ(�rs;α,β) = σ(�rs)∗
rs

h(�rs;α,β)� (10)

h(�rs;α,β) = [m0(Rα�rs) + m0(R−α�rs)]− [m0(Rβ�rs) + m0(R−β�rs)] .� (11)

A discretization of this impulse response is rendered in figure 2. Note the impulse response is composed of 
four lines of differing polarity. When this impulse response is convolved with the slowness, characteristic phase 
shadow signal features manifest in the lag map data below any sound speed inclusions. The polarity of these phase 
shadow features is dictated by the choice of reference signal in the cross-correlation processing.

2.2.  Fourier space coverage
Because the forward operator which maps slowness to lag maps is a convolution, its Fourier space (Walker and 
Trahey 1998) coverage can be easily computed. As noted above, the convolutional kernel mφ(�r) can be written as 
a rotation of the unrotated kernel m0(�r). Making use of the rotation property of the Fourier transform (Blahut 
2004, Gonzalez and Woods 2008)

S(�f) = F{s(�r)} =⇒ F{s(Rφ�r)} = S(Rφ
�f)� (12)

and noting that

M0(�f) = F{u(z)δ(x)} =
1

2

(
1

jπfz
+ δ( fz)

)
� (13)

we have

Mφ(�f) =
1

2

(
1

jπẑφ ·�f
+ δ(ẑφ ·�f)

)
.� (14)

It is also interesting to relate this approach to traditional transmission time of flight tomography (Greenleaf 
et al 1975, Glover and Sharp 1977). In the transmission tomography scenario, detectors are typically oriented 
opposite from the transmitters and the time of flight estimates to each detector are recorded. However, because 
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the data can only be collected at the receiver locations, less information is recorded than in the pulse-echo case 
and the form of the integral relation reduced down to a traditional Radon transform. Because the correlation-
based approach allows for data to be estimated throughout the sample, additional depth-dependent information 
can be inferred. This results in a generalization of the Fourier projection-slice theorem, which typically only 

accounts for the delta function term. The resulting 1/jπẑφ ·�f  decay is strictly the result of the depth dependent 
data encoded in the lag maps.

Generalizing the result in equation (14) to the four term result in equation (11), we have

∆τ(�f;α,β) = σ(�f)H(�f;α,β)� (15)

H(�f;α,β) =
1

2

[
1

jπẑα ·�f
+ δ(ẑα ·�f) + 1

jπẑ−α ·�f
+ δ(ẑ−α ·�f)

− 1

jπẑβ ·�f
− δ(ẑβ ·�f)− 1

jπẑ−β ·�f
− δ(ẑ−β ·�f)

]
.

�

(16)

This spatial frequency coverage is rendered in figure 3(a). For comparative purposes, the spatial Fourier cov-
erage for traditional pulse-echo beamformation (Walker and Trahey 1998) is rendered in figure 3(b) as given by

S(�f, z) =
χ( ft)

f 2
z

E

(
cfz

2

)[
AT

(
−2z

fz
fx

)
∗
fx

AR

(
−2z

fz
fx

)]
,� (17)

where χ( ft) is the frequency dependent reflectivity, E(f t) is the temporal Fourier transform of the excitation 
signal1, and AT(x) and AR(x) are the transmit and receive aperture functions respectively. Such a model 
can also be thought of as a proxy for a simple diffraction tomographic reconstruction of sound speed under 
a first Born scattering model (Norton and Linzer 1981, Simonetti and Huang 2008, Devaney 2012), because 
variations in sound speed manifest as reflectivity targets in pulse-echo mode. Of course, diffraction tomographic 
reconstructions of sound speed can be incorrectly interpreted, as density variations could produce identical 
signals, but the fact remains that information about sound speed exists at these higher frequency components.

To facilitate comparisons between the Fourier domain coverage of the lag maps and the traditional backscat-
tered RF, the Fourier coverage of a 5 MHz, 128-element linear array (L9-4/38, Ultrasonix, Peabody MA) was 
computed using equation (17) with full apertures on transmit and receive and rendered in figure 3(b). Note that 
in the case of traditional post-beamformed ultrasound, the acquired data are bandpass in nature, which results 
in the characteristic speckle that dominates most B-mode ultrasound images. In contrast, the data acquired from 
the lag maps are fundamentally baseband in nature, suggesting the possibility of speckle-free reconstructions, 
albeit with lower spatial resolution.

Figure 2.  The impulse response of the straight ray model evaluated for the angles 20◦ and 10◦. The model is composed of four terms 
which correspond to positive and negative lines in the data. Note that these lines are dependent on both the transmit and receive 
steering angles of both of the post beamformed frames, which are assumed to be symmetrically coupled (i.e. φRx = −φTx). The 
polarity of each path is determined by convention used in cross-correlation.

1 Convolved with the element electromechanical impulse response on both transmit and receive, which is assumed to be the 
same for each element.

Phys. Med. Biol. 65 (2020) 025003 (18pp)
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Moreover, the angles of the phase lag lines can be manipulated by adjusting the steering angles, allowing for 
more diverse Fourier data to be acquired with multiple acquisitions. With multiple lag maps, the quantitative 
inverse problem can be viewed as inverting the data from a partially correlated filter bank, which allows for more 
data to be exploited than the single filter case. The details of such a multi-lag map reconstruction algorithm are 
explored in the following section.

2.3.  Implications for reconstruction
The convolutional interpretation of the straight ray model yields a number of insights, which are particularly 
useful in development of a reconstruction algorithm. Because the forward operator that describes the lag 
maps is convolutional in nature, reconstruction is essentially a deconvolution problem. However, unlike many 
deconvolution problems studied in imaging, the convolutional kernel h(�r;α,β) has an infinite impulse response 
(IIR). This means that for any arbitrary σ(�r) of finite support, the lag map ∆τ(�r;α,β) spans all of R2. Given that 
in practice the field of view is limited, the recorded data is in effect a truncation of the lag map, such that

∆τ(�r;α,β) = w(�r)

[
h(�r;α,β)∗

�r
σ(�r)

]
� (18)

where w(�r) is a windowing function characterizing the support of the data. This windowing operation means 
that the forward operator is actually shift-variant, despite the convolutional form of the model.

For the purposes of this work, we will direct our attention to a Tikhonov-regularized least squares recon-
struction (Tikhonov et al 1977), which solves the problem:

�σe = argmin
�σ

|∆�τ − H�σ|2 + γ2|�σ|2,� (19)

where �σ  and �σe are the vectorized slowness decision variable and estimate respectively, ∆�τ  is the vectorized lag 
map data, H is the forward model, and γ  is the regularization hyperparameter used to compensate for operator 
ill-conditioning. In this context, the fact that the forward operator is a truncated convolution does lend itself 
to some useful consequences. In particular, it admits the possibility of matrix-free reconstruction algorithms, 
which are well known to have significant storage and computational benefits (Diamond and Boyd 2016). Because 
of the convolutional nature of the forward operator, the forward, adjoint, and normal operators can be replaced 
with equivalent matrix-free subroutines by exploiting algorithms such as FFT convolution (Oppenheim and 
Schafer 1999). In conjunction with a conjugate gradient based inverse solver, such matrix-free subroutines can 
enable matrix-free reconstruction. To this end, we propose to use the biconjugate-gradient stabilized (BiCGStab) 
algorithm (van der Vorst 1992, Barrett et al 1995, Lin and Chew 1996), because it is unconditionally stable and 
is natively supported in MATLAB using matrix-free subroutines. In avoiding explicit matrix construction 
during the reconstruction process, we reduce the storage requirements for an M × N  pixel reconstruction from 
O((MN)2) values to O(MN) complex values, which is a better target for local reconstruction on modern clinical 
machines.

(a) (b)

Figure 3.  (a) Analytical lag map Fourier domain coverage for steering angles of 10 and 20 degrees. (b) Fourier domain coverage of 
standard post-beamformed RF signals acquired in pulse-echo ultrasound. Note that the Fourier coverage present in the lag maps is 
fundamentally baseband and complementary to traditional ultrasound, suggesting the possibility of speckle-free reconstruction. 
Both figures are decibel scaled and clipped to a 60 dB dynamic range. In the case of (a), the figure limited to a [−100,−40] dB range 

to better illustrate the rolloff associated the with 1/jπẑφ ·�f  terms.

Phys. Med. Biol. 65 (2020) 025003 (18pp)
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In order to reformulate this into a form more appropriate for BiCGStab, we note that the problem can be 

rewritten as �σe = R−1
H (γ)�d , where

RH(γ) ≡ H∗H + γ2I� (20)

�d ≡ H∗∆�τ .� (21)

This is equivalent to solving RH(γ)�σ = �d, and consequentially all that is needed is a subroutine to evaluate 
RH(γ)�σ, which will be run once per iteration of the BiCGStab algorithm.

For the case of multiple lag maps, we describe the total forward operator H as a ‘vertical concatenation’ of 
individual operators Hi as described in equation (7) of Jaeger et al (2015a):



∆�τ1

...
∆�τN


 =




H1

...
HN


�σ � H�σ.� (22)

With analogy to equations (20) and (21), the BiCGStab algorithm may be implemented by deriving matrix-free 
routines for RH(γ) and H∗. Fortunately, this can be accomplished via a straightforward generalization of the 
single lag map case, because

H∗{∆�τ} =
N∑

i=1

H∗
i {∆�τi},� (23)

RH(γ){�σ} =

N∑
i=1

H∗
i {Hi{�σ}}+ γ2�σ.� (24)

The matrix-free evaluation of γ2I�σ  is straightforward, and a matrix-free subroutine for the regularized normal 
operator RH(γ) can be written as:

Algorithm 1.  Matrix-free evaluation of RH(γ)�σ.

1: for all lag maps ∆�τ i do

2:    Evaluate ∆�τ i = Hi�σ by FFT convolution.

3:    Window to data size.

4:    Evaluate �σi = H∗∆�τ i by FFT convolution.

5:    Window to reconstruction region.

6: end for

7: Aggregate and add in the regularization term: �σ′ =

(∑
i
�σi

)
+ γ2�σ.

Using these expressions, each iteration of BiCGStab will require 2N truncated convolutions, which is expen-
sive given the fact that the impulse responses need to be at least the size of the reconstruction to minimize edge 
effects. There is therefore an incentive to reduce the total number of lag maps acquired while retaining as much 
quality as possible. Assuming the maximum steering angle is already specified due to field of view constraints 
(see figure 4), such a situation naturally lends itself to sparser acquisitions in terms of steering angles. However, 
sparsification of the angles may result in decorrelation of the post-beamformed data due to refractive errors, so 
the choice of an appropriate angular step remains a nuanced trade-off.

One could overlook the influence of steps 3 and 5 in the reconstruction, and directly invert in the Fourier 
domain under the presumption that it is approximately diagonal. Such an approach would only be optimal if 
the forward operator were a circular convolution, which is not true in practice. The distinctions between con-
volution and circular convolution are explicitly described in Diamond and Boyd (2016), as well as many text-
books. For this reason, any such reconstructions will be plagued by FFT wraparound artifacts associated with 
the circular convolution operation, whereas such effects will be avoided using our method. An illustration of this 
effect is shown in figure 5, where artifacts are present at the top of the reconstruction. To control for the effects 
of regularization in this example, the regularization parameter was held at a constant value of γ = 10−3 for both 
reconstructions.

At this time, it is appropriate to contrast this method with the FFT-based approach of Jaeger and Frenz 2015, 
Jaeger et al 2015a, 2015b. As written, the algorithm describes a linear relationship between the DFT’s of the lags 
and slowness which is implemented as a matrix multiplication. Based on the text of Jaeger et al (2015a), the main 
motivation for doing so is to exploit a Kronecker delta function in the operator associated with the lateral spatial 
frequencies, which was reported to strongly reduce the numerical complexity in terms of the inversion. Under 
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these conditions, the proposed operator would have a block diagonal structure in matrix form, and would require 
storage of O(M2N) complex values per lag map, assuming sparse matrix storage. However, the particulars of this 
method were difficult to follow due to a number of errors, both explicit (dropping terms) and implicit (conflat-
ing the discrete Fourier transform with the continuous Fourier transform, and delta functions with sinc and 
Dirichlet functions), and as such the method does not appear to work as written. As such, we have failed to com-
pletely reproduce the results of that study.

Despite these difficulties, it would appear that Sanabria et al has been successful in implementing Jaeger’s 
technique (Jaeger et al 2015a), and compared it to their spatial domain approach (Sanabria et al 2018). Our 
method would be most similar to the variant described in figure 4(b) in that paper, in which Tikhonov regulariza-
tion was used with a spatial domain operator under straight ray modeling conditions. Under equivalent window-
ing and lateral antialiasing conditions, the methods would be identical in effect, though obviously differ in imple-
mentation details. However, comparisons with this variant were not performed on experimental or full wave 
simulated data, as they were more interested in studying their anisotropically weighted total variation method 
under those conditions. As such, one could not reasonably expect the reported quality of those reconstructions 
to generalize under realistic conditions. Furthermore, no mention of the convolutional relationship was made 
within that paper, suggesting that the authors used full-matrix methods, and were unaware of the theoretical and 
storage benefits of the convolutional formalism. Consequently, they would have used the full O((MN)2) stor-
age in implementation. Given the fact that such methods tend to be solved iteratively, it is likely that this method 
would benefit from the usage of matrix-free convolution algorithms, at least from a storage perspective.

In this paper, the Tikhonov-regularized spatial domain reconstruction will be studied in greater detail under 
full-wave conditions in both simulation and phantom experiments, as will be shown in section 3.

Figure 4.  Due to the nature of the transmit beam steering, lag map data can only be collected within a trapezoidal window dictated 
by the maximum steering angles. For analytical simplicity, both the data and reconstruction region were limited to a rectangular 
region of interest in this work.

Figure 5.  A comparison of the FFT-based algorithm (center) with the convolutional approach (right), using 
φTx ∈ {−30 : 10 : 30}◦. The ground truth slowness (left) and axial cross-section (right) are rendered for reference. The large near 
field artifact in the FFT reconstruction is completely eliminated in the convolutional reconstruction, and the inclusion is filled in as a 
result of the shift-variant reconstruction approach.
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2.4.  Beamformation considerations
One particular difference from the prior published work in this domain is the fact that this approach takes into 
account the effect of the receive aperture in the beamformation process. Conventional wisdom in plane wave 
beamformation is to use a full receive aperture for the beamformation process, as this can achieve optimal spatial 
resolution after coherent compounding (Montaldo et al 2009). However, using a full receive aperture results in a 
point spread function which varies with position, which can be observed by rendering a B-mode image of an array 
of point targets. This shift variance makes it difficult to analyze the cross-correlation of the post-beamformed RF 
data spectrally, and consequentially difficult to analyze the effect of receive path on the lag map data.

As noted in Lu et al (1994), one way to achieve an approximately position-independent point spread func-
tion (PSF) is to use a dynamic receive focused aperture that preserves a constant F-number criterion, where 
the F-number is defined as the ratio of reconstruction depth to aperture width. Under this condition, the most 
natural implementation would be to use a receive aperture centered around the desired point of reconstruction, 
a method which we call broadside receive beamformation (i.e. φRx = 0◦). The PSF for this method is rendered 
on the left of figure 6. Observe that the PSF and the corresponding spectra rotate as a function of transmit steer-
ing angle. In the case of the coherent plane wave compounding scenario, this phenomenon is advantageous, as it 
allows for a higher resolution reconstruction due to the additional lateral frequency components acquired from 
the transmit steering process. However, for the purposes of extracting lag map data, this results in a decorrelation 
of the signals, as the spectral overlap is minimal. One should note that such error can also manifest with a full 
receive aperture as well, though the effect will depend on position. In the case of Jaeger et al (2015a), the trans-
ducer was also mechanically translated, which may have also exacerbated this effect.

In order to keep the spectra of the acquisitions approximately invariant to transmit angle, it is advantageous 
to use a receive aperture centered at an angle of φRx = −φTx, a condition we call a mirrored receive aperture. As 
shown on the right side of figure 6, using a mirrored receive aperture prevents the PSF and spectrum from rotat-
ing, allowing for an improved spectral overlap. This results in better correlation performance and consequently 
better lag map estimates, an important property which has been previously utilized in aberrating delay estima-
tion (Rachlin 1990).

Since initial submission of this manuscript, the authors have become aware of an interesting preprint article 
from the Jaeger group which expands on this idea by utilizing a non-zero common mid-angle (Stähli et al 2019), 
which corresponds to the case when φTx �= −φRx. This article supersedes many of the considerations made here, 
though still has yet to go through proper peer review. The generalization of this mirrored aperture approach to 
non-zero common mid-angles is particularly exciting due to a result that is predicted by the theory developed in 
section 2.2. With reference to equation (16) and figure 3, one can observe that the Fourier space coverage has a 
significant dip along the line f x  =  0. If the receive aperture is mirrored about a non-zero common mid-angle, this 
dip could be steered off the f x  =  0 line, thus giving access to more Fourier domain diversity than was available in 
the methods developed here, suggesting higher quality reconstructions. However, this claim regarding the Fou-
rier domain coverage has yet to be studied in detail by our lab or reviewed by the research community at large, and 
at this point remains conjecture.

Figure 6.  Point spread functions and 2D spectra of the post-beamformed RF under broadside receive apertures (left) and mirrored 
receive apertures (right). The top row corresponds to a transmit angle of −10◦ and the bottom row corresponds to a transmit angle 
of 10◦. Observe that if we use a broadside aperture, the PSF and spectra rotate as a function of the transmit angle, whereas using a 
mirrored aperture keeps the spectra invariant.
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2.5.  Simulation study
In order to assess the viability of the algorithm in a well-controlled environment, several simulations were 
conducted using the simulation package k-wave, with the relevant simulation parameters given in table 1. This 
package was chosen for its capability of modeling space-varying sound speed and density, and for its open source 
implementation. In each case, a 256-element 5 MHz linear array transducer was used to interrogate a medium 
with spatially varying sound speed and density distributions at a number of transmit steering angles. For each 
transmit event, the backscattered RF data were beamformed using a steered receive aperture diametrically 
opposed to the direction of propagation of the transmitted wave (i.e. φRx = −φTx) using spline interpolation 
and a reference sound speed value of c0  =  1540 m/s. A temporal offset corresponding to the center of energy 
of the excitation was also used to keep the point spread function approximately invariant to transmit angle, as 

calculated by

τc =

∑Nt−1
i=0 tie2(ti)∑Nt−1
i=0 e2(ti)

,� (25)

where e(t) is the excitation signal. The beamformation delay profiles used were the same as in Montaldo et al 
(2009), using spline interpolation to evaluate the signal at fractional sample lag values. The receive aperture grew 
dynamically to maintain a constant F-number criterion (f /3), in an attempt to preserve shift invariance of the 
point spread function as predicted by equation (17). This process is summarized explicitly below:

b(�r;φTx) =
∑

i

p(t(�r, xi;φTx) + τc, xi)A

(
f #

z
(xi − x − |�r| sinφRx)

)
� (26)

where p (t,xi) is the backscattered RF signal at time instant t and element location xi, �r = [x; z] is the reconstruction 
location, A(xi) is the receive aperture, f # is the f-number, and

t(�r, xi;φTx) =
1

cbf

(
z cosφTx + x sinφTx +

√
z2 + (x − xi)2

)
.� (27)

The post-beamformed RF signals were converted into complex analytic signals a(�r;φTx) in the z direction 
using the FFT-based hilbert() function in MATLAB. Local time lag estimates of adjacent steering angle pairs 
were generated by the following formula

∆τ(�r;α,β) =
1

2πf0
atan2 (Im {Ra(�r)}, Re {Ra(�r)})� (28)

Ra(�r) = g(�r)∗
�r
[a(�r;α)a∗(�r;β)]� (29)

where g(�r) is a tracking kernel. The authors used the outer product of squared Hamming windows for g(�r) based 
on empirical observations of efficacy, but such a choice should not be considered an optimal one. The resulting 
lag maps were then cropped down to a rectangular region within the field of view of the overlapping transmit 
beams to avoid artifacts within regions of poor SNR. Additionally, the data were downsampled using a spline 
downsampling filter in order to reduce both computational complexity and high frequency model-error noise, a 
choice which is justifiable given the low-pass nature of the forward model operator.

Note that because the analytic signal is evaluated in the z direction, the inherent meaning of ∆τ(�r;α,β) 
should not be interpreted as a true time-of-flight estimate, but rather an estimate of shift purely in the z-direc-
tion. For this reason, the model was modified to include a cos(φ) scale factor for each term in the kernel, yielding 
the following form

h(�r;α,β) = cos(α)[mα(�r) + m−α(�r)]

− cos(β)[mβ(�r) + m−β(�r)].
�

(30)

2.5.1.  Effect of inclusion size
To analyze the effect of inclusion size on reconstruction, the radius of a circular inclusion was varied between 1.5, 
3 and 4.5 mm respectively. The center of this inclusion was located at a depth of 10 mm centered in front of the 
transducer. This location was chosen because the method works better for near-field sound speed variations due 
to the greater availability of data, as predicted by the theory. The 1500 m/s inclusion was embedded in a 1540 m/s 
background medium, resulting in a corresponding slowness perturbation of 17.3 µs m−1. The corresponding 
density map ρ(�r) was generated by scaling the sound speed map by 1.5 and then adding 1% normally distributed 
random scattering n(�r) ∼ N (0, 1) such that ρ(�r) = c(�r)/1.5 + (c0/1.5)(0.01n(�r)). The n(�r) term was 
incorporated to introduce weak diffuse scattering uniformly throughout the field of view for the purposes of 
tracking. The attenuation and nonlinearity features of the k-wave package were disabled for analytical simplicity. 
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No additive noise was added to the backscattered pressure data, in order to isolate the model-dependent effects 
from the statistical ones, as such statistical effects can be addressed by appropriate choice of regularization 
parameter.

2.5.2.  Effect of inclusion contrast
To analyze the effects of inclusion contrast, the foreground sound speed was varied between 1500, 1540, and  
1580 m/s for a 3 mm inclusion centered at a depth of 10 mm. Note that due to the nonlinear relationship 
between slowness and sound speed, the magnitude of the slowness perturbation (σ ≈ −16.4 µs/m)  
for the 1580  m/s foreground (∆c = 40 m/s) was lower than the 1500  m/s foreground sample 
(∆c = −40 m/s, σ ≈ 17.3 µs m−1). The 1540 m/s (i.e. no contrast) simulation was included as a control for 
comparison purposes. All other settings were the same as in the previous simulation set.

2.6.  Experimental validation
In order to validate this method empirically, a sound speed phantom was synthesized using an agar background 
and gelatin foreground material. The background material was synthesized by mixing 22.5 g noble agar (Sigma-
Aldritch, St. Louis, MO) in 568 mL of degassed water, and adding 0.3 g of graphite powder (John Deere, Moline, 
IL) to induce scattering. The material was heated to approximately 80 °C in a microwave oven and allowed to cool 
to approximately 45 °C before pouring into a custom mold. The foreground material was similarly synthesized 
by combining 80 g gelatin (J.T. Baker, Phillipsburg, NJ) and 0.2 g graphite powder in 400 mL of degassed water, 
and heating to approximately 80 °C. The foreground material was poured into a 9.3 mm diameter cylindrical 
inclusion centered approximately 9.7 mm from the surface.

The sound speeds of the agar and gelatin materials were estimated to be 1491.2 m/s and 1542.0 m/s respec-
tively via a pulse-echo insertion technique on homogeneous reference phantoms. To estimate these values, an 
unfocused 10 MHz, 0.375 inch diameter single element transducer (Valpey Fisher IP1001HR, Hopkinton, MA) 
was driven by a pulser-receiver (Panametrics 5800, Waltham, MA) and backscattered data were recorded by an 
A/D card. The phantom was suspended above a Plexiglas planar reflector in a water environment, and the reflec-
tion times associated with the front surface (tf ), back surface (tb), and reflector (tr) were estimated. After displac-
ing the phantom out of the field of view, the reflection time to the planar reflector was estimated again (t0). The 
sound speed in water cw was derived from the temperature (Bilaniuk and Wong 1993), and the phantom sound 
speed cp  was calculated using the formula

cp = cw

(
t0 − tr

tb − tf
+ 1

)
.

� (31)
The experimental parameters are given in table 2. The data were acquired using a 128-element array (Ultra-

sonix L9-4/38, Richmond BC, Canada) driven by a Verasonics Vantage 128, (Kirkland, WA). The prebeamformed 
RF were processed using the same beamformation algorithm used in section 2.5, using c0  =  1491.2 m/s to com-
pute the steering and beamformation delays. The receive f-number was increased to 5.715 (corresponding to 5◦ 
of angular coverage) to partially expand the field of view. The first 10 mm of lag map data was zeroed out due to 

reverberation clutter in the near field, and subsequently downsampled prior to reconstruction.

3.  Results

3.1.  Simulation study
Selected reconstructions for the inclusion size simulations are shown in figure 7(a). As predicted by the straight-
ray model, the inclusion becomes increasingly apparent with increasing radius. In the low regularization regime, 
the inclusion is well-localized in the reconstruction. However, artifacts dominate the image at depths far away 
from the transducer surface. In the high regularization regime, the artifacts are suppressed, but the inclusion is 
blurred out and shifted upward, an effect which is even more apparent in figure 8. This phenomenon is expected 
due to the causal IIR nature of the forward model operator.

Laterally, the reconstruction is well resolved at all regularization levels as shown in figure 8, which is pre-
dicted from the Fourier description of the forward operator. Given the impulse response characterization of the 
forward operator, we do not expect to see any significant lateral degradation within the field of view, with the 
exception of boundary effects, which should begin at a distance of |x| = zmax tanφmax ≈ 7 mm away from the 
boundary according to the model. In principle, such boundary effects could be avoided by using a larger trans-
ducer, reducing the maximum angle or reducing the maximum depth. However, we chose to include them for 
visualization purposes.

In order to quantify performance, the root sum squared error (RSSE) of the slowness reconstructions are 

compiled in table 3. These values were computed using the formula
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RSSE = |�σ(γ)− �σT |,� (32)

where �σ(γ) is the vectorized slowness reconstruction at regularization parameter γ  and �σT  is the ground truth 
slowness distribution. In general, these values increase with increasing radius, though as one can see in figure 7(a) 
the post-inclusion artifacts generally increase in amplitude as well. It should be noted that in choosing to evaluate 
the RSSE on slowness perturbation rather than sound speed, as has been done previously (Jaeger et al 2015a, 
Sanabria et al 2018), the effect of the nonlinear intensity transformation c = 1/(σ + 1/cbf) is decoupled from 
the metric. Though this limits the interpretability of the metric, this choice makes the metric more sensitive to 
reconstruction errors, as 1/cbf ≈ 649 µs m−1 is more than an order of magnitude higher than any deviations 
in the rendered reconstructions and would consequently dominate the reported values of the RSSE. We have 
also chosen to use RSSE over the more popular root mean squared error here, as the root sum squared (RSS) 
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Figure 7.  Slowness reconstructions for different size (a) and contrast (b) conditions at regularization levels of γ ∈ {10−4, 10−3}. 
In each case, the circular aberrating inclusion was located at a depth of 10 mm and the reconstruction region was limited laterally 

to ±10 mm. In (a), the foreground slowness was set to a level of 17.32 µs/m (∆c = −40 m/s, c0  =  1540 m/s), and the inclusion 

radii were 1.5, 3 and 4.5 mm respectively. In (b) the foreground slowness was given by σfg ∈ {17.3, 0,−16.4}µs/s for each row 
respectively.

Table 1.  k-wave simulation and reconstruction parameters.

Parameter Value

k-wave simulation grid stepsize (∆z; ∆x; ∆t; CFL) (50 µm; 76.2 µm; 6.4935 ns; 0.2)

k-wave grid (Nz; Ny; Nt) (824; 512; 9, 889) samples

Perfectly matched layer (Nz; Nx) (74; 68) samples

Transducer pitch 152.4 µm

Excitation center frequency (f 0) 5 MHz

Excitation 10-cycle Gaussian tone burst

Steering angles (φmin : ∆φ : φmax) (−10◦ : 0.5◦ : 10◦)

Transmit apodization Tukey cosine, 0.1 rolloff factor

Receive apodization Kaiser, β = 2, f/3

Tracking kernel dimensions (Lz; Lx) (5.025;2.5908) mm

Resampled phase lag grid step (∆z; ∆x) (609.6; 609.6) µm

Phase lag map dimensions (Nz; Nx) (68; 30) samples

Stop criterion 10−10 relative residual or 3000 iterations
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value of the ground truth would remain invariant under truncation and zero-padding transformations. The 
RSS value of the ground truth is an important quantity, as it represents the simple baseline of σ̂ = 0. Such a 
result can be interpreted as being equivalent to simply returning a sound speed value of cbf  after remapping. This 
baseline is important in the case of Tikhonov regularization, as it represents the high regularization limit of the 
reconstruction.

Because RSSE is not sensitive to changes in image shape, a cosine similarity metric was also evaluated, which 
is given by

cos(�σ(γ),�σT) =
�σ(γ)∗�σT

|σ(γ)||�σT |
.� (33)

This metric can be thought of as the zero lag value of a normalized cross-correlation of the images, and thus is 
used as a metric because it evaluates the degree of registration of the image independent of its amplitude (Pinton 
et al 2006). Note that the cosine similarity is undefined for the zero contrast target, so those values were omitted 
in table 3.

To illustrate the intermediary steps in the process, examples from the 4.5 mm inclusion datasets are shown in 
figure 9. For analytical simplicity, we have restricted our analysis to the 5◦ and 5.5◦ transmit steering angles. By 

Table 3.  Error performance metrics for the size sweep (top) and contrast sweep (bottom) experiments.

RSSE (µs m−1) Cosine Sim.

Radius (mm) γ = 10−4 γ = 10−3 γ = 10−4 γ = 10−3

1.5 183.2 73.5 0.1415 0.2573

3 299.9 141.5 0.2205 0.3662

4.5 357.9 196.5 0.4125 0.4984

    RSSE (µs m−1) Cosine Sim.

∆c  (m/s) γ = 10−4 γ = 10−3 γ = 10−4 γ = 10−3

−40 299.9 141.5 0.2823 0.5413

0 71.02 9.019 N/A N/A

40 252.9 120.9 0.2205 0.3662

Table 2.  Experimental acquisition and reconstruction parameters.

Parameter Value

Transducer pitch 304.8 µm

Excitation center frequency (f 0) 4 MHz

Excitation 2-cycle tone burst

Transmit apodization Tukey cosine, 0.1 rolloff factor

Receive apodization Kaiser, β = 2, f /5.715

Correlation window dimensions (Lz; Lx) (3.97;3.96) mm

Resampled phase lag grid step (∆z; ∆x) (609.6; 609.6) µm

Phase lag map dimensions (Nz; Nx) (80; 44) samples

Stop criterion 10−10 relative residual or 10 000 iterations

Figure 8.  The axial (left) and lateral (right) cross-sections of the 4.5 mm radius reconstructions at various regularization 
parameters. The axial cross section was taken along the center line of the inclusion, the lateral cross section was taken at a depth of 
approximately 10 mm. As regularization increases, the reconstruction tends to smooth and damp at the reconstruction edges.
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comparing the B-mode frames, we observe no obvious differences in the post-beamformed datasets. However, 
subtle phase differences on the nanosecond scale can be observed in the lag map data, and the inclusion is clearly 
visible in the reconstruction. For comparative purposes, the reconstruction is compared to an idealized (inverse 
crime) reconstruction.

3.2.  Experimental results
Selected reconstructions from the phantom experiment are rendered in figure 11, along with a synthesized ground 
truth image that was derived from the known a priori sound speed values. The inclusion location was determined 
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Figure 9.  Sample images of the B-mode data (a) and (d) idealized and estimated lag maps (b), (e), and reconstructions (γ = 10−4) 
(c) and (f) for the 4.5 mm inclusion dataset. Even though there is no discernible difference between B-mode frames for the 5◦ and 
5.5◦ acquisitions, subtle phase shifts are detectable on the nanosecond scale. Despite an obvious model breakdown in the lag data, 
the inclusion is clearly localized in the reconstruction. Note that the artifacts under the inclusion are not present in the idealized 
reconstruction, suggesting that they are the result of higher order physics such as diffraction or refraction.

Figure 10.  Example B-mode images (left, center) and associated lag map (right) from the phantom experiment. Note that the sound 
speed inclusion is not visible in the B-mode image, though reflections of the top and bottom of the inclusion can be identified. Due 
to the presence of reverberation error at a depth of approximately 5 mm, the lag maps are zeroed out above 10 mm.
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by the top reflection in the B-mode data. Example B-mode and lag map images are shown in figure 10. Much like 
the simulated reconstructions shown in section 3.1, the reconstructions are generally shifted slightly upward due 
to the depth-dependent damping effect of the regularization, which is more clearly observed in the cross-sections 
in figure 12. Generally, the magnitudes of the artifacts are somewhat larger in the experimental data than the 
simulated data when γ  is held constant, and as a result the γ = 10−4 reconstruction was omitted from figure 11.

In order to quantify the performance, the reconstruction error in slowness is plotted as a function of the regu-
larization parameter in figure 12(c). For the purposes of this plot, the ground truth values �σT  were given by the 
synthesized distribution rendered in figure 11. As a reference point for quantitative comparison, the norm of �σT  
is also plotted in red.

4.  Discussion

By comparing the ideal reconstruction with the realistic reconstruction in figure 9, we may note two significant 
differences. First, the ideal reconstruction clearly has superior lateral resolution to the realistic reconstruction. It 
is likely that the idealized reconstruction is exploiting higher lateral frequency information that is not available in 
practice. This interpretation is justified by noting the reduction in spatial resolution between the estimated and 
modeled lag maps. It is possible some of these lateral frequency components can be recovered by incorporating 
beamwidth and tracking kernel size into the model. Unfortunately, because aberration causes the beam properties 
to degrade in practice, the utility of a beam correction will be limited in applicability, as the true beam will depend 
on the magnitude of the slowness perturbation.

Secondly, the artifacts in the realistic reconstruction are not present in the idealized reconstruction, which 
suggests that these artifacts are due to modeling error, most likely due to refraction and diffraction. Though 
k-wave can introduce numerical artifacts in the simulation process (i.e. pixelation in the 0–10 mm range of 
figure 9(d)) the continued presence of these artifacts in the experimental reconstructions in figure 11 suggests 

Figure 11.  The synthesized ground truth slowness distribution (left) and selected reconstructions at various regularization 
parameters for the experimental phantom data.

(a) (b) (c)

Figure 12.  The axial (a) and lateral (b) cross-sections of the reconstructions at various regularization parameters. The axial cross-
section was taken along the center line of the inclusion and the lateral cross-section was taken at a depth of approximately 9.75 mm. 
(c) RSS error in slowness reconstruction as a function of regularization parameter. To assist in interpretation, the norm of the 
‘ground truth’ slowness is shown in red.
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that this is not the dominant source of error. Additionally, the reduction of the artifacts in the zero contrast recon-
struction suggests that these artifacts are directly caused by the presence of the inclusion, which would be the case 
for refractive and diffractive errors. For the purposes of classifying these errors, we include misregistration of the 
positioning coordinates due to incorrect beamformation sound speed as refractive errors as well. Other potential 
sources of error include frequency dependence of scattering and noise in the phase lag estimates, but these effects 
would be present in the zero-contrast reconstructions as well, so either of these sources of error seems unlikely to 
explain these artifacts.

These artifacts are amplified by the fact that the deeper components of the reconstruction are more sensi-
tive to perturbations than the upper components in the case of low regularization. This is due to the interplay 
between the truncation operation and causality constraint of the model forward operator. Specifically, because 
of the truncation of the lag maps to the data window, there are less data available which correspond to deeper 
targets than shallower targets. Consequentially, low regularization reconstruction operations tend to amplify 
these deeper targets, whereas the reconstruction can aggregate across a larger region of the lag map for shallower 
targets. This sensitivity explains why the γ = 10−4 reconstructions have better cosine similarity values and sub-
jective performance for the larger inclusions in figure 7(a) despite having worse quantitative error performance 
in table 3. It is likely that reducing the size of the reconstruction would result in better quantitative error perfor-
mance by enforcing more data redundancy, though that is beyond the scope of this work.

Generally the artifacts in the real data reconstructions are slightly worse than in the simulations, to the point 
where the γ = 10−4 reconstruction was incomprehensible. While there were several differences between the 
experimental and simulated data, perhaps the most significant one is the increased pitch of the array used in 
experiments. This is significant because the array used in experiments has the possibility of higher contribution 
from grating lobes. Though reducing excitation frequency to 4 MHz helps mitigate the grating lobe contribution, 
there could still be some partial grating lobe corruption in the RF above the center frequency. For example, the 
wavelength at 5 MHz is around 298.2 µm, which is below the array pitch of 304.8 µm, and thus even at broadside 
we expect some grating lobe corruption, however minor. Given that the received RF had spectral energy content 
at 5 MHz of around 6 dB below maximum, it is not out of the realm of possibility that high frequency grating 
lobes play a role in the lag map estimation process.

Another notable difference between the simulation and experimental data was the uniformity of the speckle. 
In the case of the simulation, the speckle was generated by an additive white Gaussian term to the density, whereas 
the experiment had no control for such things. A more sophisticated speckle tracking algorithm could possibly 
compensate for local variations in fast-time frequency (Loupas et al 1995), but that is beyond the scope of this 
paper.

As mentioned in section 2.3, the model is a truncated convolution, not a simple convolution. The introduc-
tion of the shift-variant truncation operation makes the reconstruction operator shift-variant as well. Because of 
this shift-variance, it is important to realize the limitations of a Fourier domain analysis. For example, the Fourier 
domain interpretation suggests that while the low frequency components are preserved in the lag maps, the DC 
bin2 has low signal strength, due to the deconstructive interference of the individual mφ(�r) terms in the impulse 
response. Yet, the idealized reconstruction in figure 9(e) has a nonzero DC value.

This seemingly paradoxical result is explained by the shift-variance of the reconstruction operator. Much like 
how multiplying by a sinusoid in the time domain results in a frequency domain shifting (such as in some imple-
mentations of envelope detection), the introduction of a shift-variant reconstruction operator allows for recon-
struction of out of band frequency components. Whether or not such components should be trusted is a matter 
of interpretation. A conservative interpretation of this phenomenon would reject the notion of DC slowness 
reconstruction based on the Fourier coverage alone. Here, the authors favor this interpretation, because the DC 
value of each individual lag map varied noticeably, indicating high noise in these estimates. In conjunction with 
the low DC gain of the individual operators, such an interpretation is justified. However, regardless of whether 
or not DC reconstruction can be trusted in principle, the low signal in the DC bin can explain the observed vari-
ability in layered phantom reconstructions such as those presented in Jakovljevic et al (2018).

More pragmatically, one must ultimately consider the convolutional model as an idealization. The data pre-
sented here could only be acquired in the presence of uniformly distributed scatterers. In practice, one would 
expect variations in echogenicity to be present in real world datasets, which limits the applicability of such an 
approach. This limitation is also shared in elastographic and Doppler imaging, though the inherent locality of 
the latter allows for some estimation robustness in the form of the power Doppler signal. Recently, this limitation 
was addressed through the introduction of space-varying regularization (Sanabria et al 2018), which may be ulti-
mately required for any practical implementation. However, more research is required into alternative methods 
for dealing with this limitation.

2 Direct current, from the electrical engineering nomenclature, referring to the global component of the data.
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Furthermore, the overall linearity of the process should ultimately be called into question. Phase estimation 
via correlation methods is a nonlinear process, as evidenced by the arctangent in equation (28). In an attempt to 
make these estimates quasi-linear, the slowness was deliberately designed to produce small lags relative to 1/f 0. 
In some situations, one would not have this luxury, and phase wrapping and other distortions could produce 
significant errors. Phase estimation methods that are robust to phase wrapping could be employed, but analytical 
interpretation of these methods is much more involved than what is presented here.

Finally, the modeling used in this work neglected the effects of frequency-dependent dispersion and nonlin-
earities. Though the effects of nonlinearities can be controlled in practice by keeping the incident pressure low, 
dispersion could result in both downshifting of the center frequency as well as introduce frequency dependence 
of sound speed, which was assumed to be invariant in this work. These effects should be considered when trying 
to reproduce these results outside of a numerical environment.

5.  Conclusion

In this work, the model for registration-based local sound speed reconstruction was reformulated as a truncated 
convolutional operator, and some related theoretical consequences were explored. In particular, the model’s 
Fourier space coverage was demonstrated to be largely orthogonal to the Fourier coverage of post-beamformed 
RF data utilized in traditional B-mode imaging. This is a significant finding because it suggests that the low 
spatial frequency components could be reconstructed with pulse-echo data, which is not recognized by pulse-
echo reconstruction methods such as diffraction tomography. Furthermore, an iterative reconstruction 
algorithm was proposed based on this reformulation that allows for a dramatic reduction in memory storage 
requirements without introducing Fourier wraparound artifacts. More importantly, the imaging problem was 
directly related to the deconvolution problem, opening up the space of reconstruction algorithms to a large body 
of well-studied algorithmic approaches that can leverage the computational, storage, and theoretical properties 
of the convolution operation. The relationship to the Fourier projection-slice theorem of computed tomography 
was also explored. The performance of the reconstruction approach was tested in the open source simulation 
package k-wave and was characterized, and refractive and diffractive interpretations of the emerging artifacts 
were proposed. Additionally, a corresponding phantom experiment was performed and similar qualitative 
reconstruction performance was achieved.
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