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Abstract
We demonstrate a 87Rb–129Xe/131Xe atom spin gyroscope, where two stage lock-in-amplifiers
are applied to measure the shift of the NMR frequency. The NMR frequency shifts and their
Allan deviation are analyzed during on- and off-resonance operation. The filter effects of the
lock-in-amplifiers are investigated in terms of the Allan deviation. Based on the dual species
operation, we achieve an angular random walk of 1.11 deg h–1/2 for the rotation rate. The slightly
off-resonance operation reveals that the NMR insensitive white noise of the 131Xe signal limits
the angular random walk of our system.
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1. Introduction

Spin-polarized noble gas atoms are widely used in MRI [1–3],
magnetometers [4], rotation sensing [5–8], and even studies
of fundamental symmetries [9, 10]. They have paved the way
to precise measurements of a magnetic field and rotation,
based upon their long spin coherence time. Nowadays, atom
spin gyroscopes have attracted attention as potentially high
precision, low power, and compact gyroscopes [7, 11].
Recently, comagnetometer-based gyroscopes were reported
[6, 12]. The comagnetometer type requires the spin exchange
relaxation free condition, where a bias B-field is quite low,
below 10 nT and the temperature is over 150°C, to increase
the spin-exchange rate [13]. Such gyroscopes would allow the
lowest angular random walk, below 0.002 deg h–1/2 by self-
cancellation of the magnetic field transient as well as magn-
etic field gradient [6]. The required conditions, however, are
somewhat strict. More practically, Northrop Grumman have
developed a dual species atom spin gyroscope with a 10cc
physical package, whose angular random walk is 0.005
deg h–1/2 [14]. In contrast to the comagnetometer type, the
effect of the magnetic field noise on the NMR frequency shift
can be subtracted by measuring the NMR frequency shifts of
two isotopes simultaneously. We also have developed an
atom spin gyroscope based on the dual species approach.

Atom spin gyroscopes, referred to as NMR gyroscopes,
measure the shift in the NMR frequency of noble gas atoms by
converting nuclear spin precession to the corresponding voltage
through lock-in-amplifiers [15]. When the transverse AC
magnetic field is resonant on the NMR frequency, the nuclear
magnetic moment starts to precess at the NMR frequency,
proportional to the bias magnetic field in a non-rotating frame.
In a rotating frame, the obtained signal is very sensitive to the
rotation rate as well as the magnetic field. On the other hand, in
the off-resonance operation, it is insensitive to the magnetic
field so that the magnetic field noise-free angular random walk
limit of the system can be achieved. But the filter effects of
lock-in-amplifiers should be considered carefully.

In this paper, we analyze the measured NMR frequency
shifts obtained by two stage lock-in-amplifiers, theoretically
and experimentally. The Allan deviation of the rotation rate is
investigated by considering the filter effects of lock-in-
amplifiers, in the dual species mode to reduce the magnetic
field noise effect, and in the off-resonance mode to reveal the
magnetic field noise-free angular random walk limit.

2. Theory

In alkali-noble gas atomic spin gyroscopes, alkali atoms are
utilized to sense the nuclear magnetic field of the noble gas
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atoms, as well as to polarize the noble gas atom spins, assisted
by spin-exchange collisions [16]. To diminish the effect of
any unwanted noise and to selectively sense the transverse
magnetic field Bx or By, the bias Bz field is modulated at the
Rb Larmor frequency. This technique is called parametric
modulation [17, 18]. The magnetic moment of rubidium can
be expanded by the sum of harmonics whose frequencies are
integer multiples of the modulation angular frequency ωmod
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where Mx
Rb, My

Rb, and Mz
Rb are the Rb magnetic moments

along the x, y, and z directions, respectively. τ is the lifetime
of Rb spin, γRb is the gyromagnetic ratio of Rb atoms, and ξ is
the ratio of the bias magnetic field modulation amplitude to
the modulation frequency, given by ξ=ωamp/ωmod. wz

Rb is
the Larmor frequency of Rb and ωamp is the amplitude of the
bias magnetic field modulation in angular frequency domain,
given by ωamp=γRb Bmod where Bmod is the amplitude of the
bias magnetic field modulation. Jn(ξ) represents the Bessel
function. The transverse Bx+iBy field can be represented by
the sum of the external Bx field, the noble gas induced B-field,
and the residual DC B-field:

w y+ = + +w f p- + - +B iB B t B e Bcos , 2x y xd xd
i t

xe 2 res
xd xe ( )( )

where ωxd is the angular frequency of the transverse AC Bx

field, Bxd is the amplitude of the transverse AC Bx field, and
+Bres is the residual transverse DC magnetic field, given as

= ++B B iBx yres res, res, where Bres,x and Bres,y are the residual
DC magnetic field along the x and the y directions, respec-
tively. Bxe is the nuclear magnetic field from the noble gas
atom, given as k m=B Kxe

2

3 0 0 0. κ0 is the enhancement factor
due to Fermi contact [19], μ0 is the vacuum permeability, and
K0 is the mean angular momentum of the noble gas atom
nuclear spin. In a steady state, the tip angle ψ is given by

y
g w

w g
=

+ D
+ D +

B T T

T B T T

1

1
, 3xd

xd

xe 2 2
2

2
2

xe
2

1 2

( )
( ) ( )

( )

where γxe is the gyromagnetic ratio of the noble gas atom.
The gyromagnetic ratios of the 129Xe atoms and of the 131Xe
atoms are given as γ129=−2π×11.86 Hz/μT and
γ131=2π×3.52 Hz/μT, respectively. Δω is the detuning
of the Bx field with respect to the Larmor frequency of the
noble gas atom, i.e. w w gD = - + WBxd xe 0∣ ∣ where Ω is the
rotation rate and B0 is the magnitude of the bias DC B-field.
The phase delay of the nuclear precession fxe is determined
by tanfxe=ΔωT2. T1 and T2 are the longitudinal and
transverse lifetime of the nuclear precession. Here, we assume
that the response of the noble gas atom follows adiabatically
the bias magnetic field change and the rotation rate change,

i.e. g B
B

d B

dt

1
xe 0

0

0 ∣ ∣
∣ ∣

∣ ∣  and g
W

W Bd

dt

1
xe 0∣ ∣

∣ ∣
∣ ∣  . Hence the

signal is linearly proportional to the magnetic field change
and the rotation rate change.

In order to measure the NMR frequency shift, two stage
lock-in-amplifiers can be used. The first lock-in-amplifier uses
the demodulation reference signal, w f+V tcosL1 mod mod( )
where V1L is the amplitude of the reference signal, ωmod is the
angular frequency of the parametric modulation, and fmod is
its phase delay. The first lock-in-amplifier, in conjunction
with a parametric modulation with fmod≈0, enables it to
only sense the By field on which precession of the noble gas
atoms is imprinted. With a help of Fourier and inverse Fourier
transforms, the lock-in-signal passing through the first lock-
in-amplifier, can be written as
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where H1L (ν) is the transfer function of the band pass filter in
the first lock-in-amplifier. The bandpass filter passes signals
with the NMR frequency of the selected Xe isotope. Strictly,
the integral over ¢t from-¥ to¥ describes non-casual cases
because < ¢t t contribution is included. We consider the
system in the steady state after a long time, i.e.  ¥t .
Equation (4) where the integral over ¢t extends to infinity is,
therefore, able to describe casual cases, approximately. The
second stage lock-in-amplifier converts the sinusoidal signal
originating from the precession of the noble gas atoms into a
measurable voltage. For this, the transverse AC magnetic field
to drive precession of the noble gas atoms is used as the
demodulation reference, w f+V tcosL xd xd2 ( ) where V2L is the
amplitude of the reference signal for the second stage lock-in-
amplifier, ωxd is the drive frequency, and fxd is the phase
delay. In the same manner as the first lock-in-amplifier, a
signal from the second lock-in-amplifier can be written as
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where H2L(ν) is the transfer function of the low pass filter in
the second lock-in-amplifier. The low pass filter extracts a DC
signal which contains the amplitude and phase information of
the NMR precession. Similar to equation (4), equation (5) can
describe approximately casual cases in the steady state. The
used symbols and their meaning are summarized in tables A1
and A2 in appendix.

3. Experimental setup

The experimental setup for measuring the NMR frequency
shifts is shown in figure 1(a). The Pyrex cubic cell is filled
with 87Rb vapor, 50 Torr of natural Xe, 250 Torr of N2, and 5
Torr of H2. Its dimension is 15× 15× 15 mm3. We chose the
partial pressures with reference to [10]. The order of 100 Torr
of the N2 gas suppresses radiative decay of Rb by quenching
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the excited state of Rb [1]. The H2 gas makes RbH coatings
on the inner surface of the cell to increase the transverse
relaxation time T2 of

131Xe [20]. The atomic cell is supported
by a non-magnetic cell mount made from Polyether ether
ketone (PEEK). The 2-layer AC heater, where currents
flowing in opposite directions in the same wire pattern on
both layers cancel the unwanted magnetic field generation, is
mounted on the cell mount [21]. The temperature of the
atomic cell reaches around 100 °C for frequent Rb–Xe spin-
exchange collisions. 4 layer cylindrical magnetic shields (MS-
1, Twinleaf) are used to reduce penetration of the unwanted
external B-field. The built-in x, y, z bias coil and the gradient
coil are installed on the inner surface of the innermost
magnetic shield. The free induction decays were measured to
verify characteristics of the atomic cell such as T2 and Bxe.
For the 129Xe atoms (or 131Xe), we obtained =T s202

129( ) (or
=T 92

131( ) s), and =B 100xe
129( ) nT (or =B 9xe

131( ) nT). The
upper limit of the T2 time is determined by the longitudinal
relaxation time T1. The inversion recovery method was used
to measure the T1 times [22]: =T 27 s1

129( ) for the 129Xe
atoms and =T 12 s1

131( ) for the 131Xe atoms, respectively.

In order to apply the parametric modulation, a bias
magnetic field is modulated at the Rb Larmor frequency,
given as w= +B B B tcosz 0 mod mod where B0 is the DC bias
magnetic field, 9.95 μT, ωmod=2π×69.63 kHz, and Bmod

is the AC bias magnetic field amplitude, 10 μT. For the spin-
exchange optical pumping, the 87Rb atoms are optically
pumped by a 120 mW DBL laser(PH795DBR120TS-L,
Photodigm) whose frequency is tuned to the Rb D1 line. The
circular polarization of the pump laser populates Rb atoms
into the selected Zeeman sublevel, ms=1/2 of the S2

1 2
state, so that the Rb atoms are spin-polarized. The pressure
broadening makes the hyperfine structure of Rb unresolved
[1]. For atom spin gyroscope operation, a continuous weak
Bx is applied, w w= +B t B t B tcos cosxd xd xd xd xd

129 129 131 131( ) ( ) ( ) ( ) ( )

where =B 0.5xd
129( ) nT, =B 10xd

131( ) nT, w p= ´2xd
129( )

118.15 Hz, and w p= ´2 35.022 5 Hzxd
131( ) . The two fre-

quency components drive the 129Xe and 131Xe Larmor pre-
cession, respectively.

Optical Faraday detection is utilized to detect the pre-
cession of the Xe atoms. In our setup, the probe
laser(PH795DBR120TS-L, Photodigm) propagates along the
x-direction so that the Faraday rotation angle depends on
Mx

Rb, the magnetic moment of the rubidium atoms along the
x-direction on which the Xe atom precession is imprinted.
The Faraday rotation is measured by a combination of a
halfwave plate, a polarization beam splitter, and a balanced
photo-detector. It is converted into a voltage signal by using
the two stage lock-in-amplifiers, which are implemented by
Labview FPGA (USB-7855R, NI). The sampling rate of the
FPGA are 200 kHz, referred to its own clock. Because the
Larmor frequencies of 129Xe, 131Xe, and 87Rb are smaller
than half the sampling rate of the FPGA, the FPGA lock-in-
amplifiers are able to process the time-continuous Larmor
precession signal in our system.

Each lock-in-amplifier consists of a mixer and a bandpass
or low pass filter. The mixer is simply implemented by
multiplying the two digitized values of the reference and the
signal. The references for the lock-in-amplifiers are generated
by the function generators(DG1022, Rigol for Rb, 33250A,
Agilent for 129Xe, and AFG3101C, Tektronix for 131Xe) and
they are synchronized by a 10MHz clock signal from a low
noise reference oscillator. The references are also used to
modulate the bias B-field and the transverse Bx field. The
main part of the FPGA lock-in-amplifiers is the numerical RC
filter modeling. The FPGA calculates the recursion relation of
a simple analog RC filter: yout(tn)=(1–2π Δtfc) yout(tn−1)+
2π Δtfc yin(tn−1) for a RC low pass filter and yout(tn)=
(1–2π Δtfc) yout(tn−1)+(yin(tn)−yin(tn−1)) for a RC high
pass filter, where yin and yout are the input signal and the
output signal. fc is the cut-off frequency of the RC filter. Δt is
the consumed time of a 1 cycle of the FPGA lock-in-ampli-
fier, given by 5 μs in our experimental setup. n denotes the
sample number.

In the first stage lock-in-amplifier for the 129Xe signal,
the 3 low pass filters with a cut-off frequency of 125 Hz and
the 3 high pass filters with a cut-off frequency of 100 Hz are
applied to extract the sinusoidal precession signal of 129Xe:

Figure 1. (a) Schematic diagram of the experimental setup. DBR:
distributed Bragg reflector laser, PBS: polarization beam splitter,
HWP: half wave plate, QWP: quarter wave plate, PD: photodiode,
BPF: band pass filter for the precession signal of the selected Xe
isotope, LPF: low pass filter. H L1

129( ) and H L1
129( ) denote the band pass

filters in the first lock-in-amplifiers for 129Xe and for 131Xe,
respectively. H2L indicates the low pass filter in the second lock-in-
amplifier. The black arrows indicate the signal flow. The gray arrows
depict the reference signals. (b) Measured dispersion curves of
129Xe. (c) Measured dispersion curves of 131Xe.
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n = 125 HzL low1 ,
129( ) and n = 100 HzL high1 ,

129( ) . The transfer function

of the filters is given by nH L1
129 ( )( ) = n n+ i1 1 L low1 ,

129 3[ ( )]( )

n n n n+i i1L high L high1 ,
129

1 ,
129 3[( ) ( )]( ) ( ) . On the other hand, in the

first stage lock-in-amplifier for the 131Xe signal, the 8 low
pass filters with a cut-off frequency of 45 Hz and the
2 high-pass filters with a cut-off frequency of 25 Hz are
used to extract the sinusoidal precession signal of 131Xe:
n = 45 HzL low1 ,

131( ) and n = 25 HzL high1 ,
129( ) . The transfer function

of the filters is given by nH L1
131 ( )( ) = n n+ i1 1 L low1 ,

131 8[ ( )]( )

n n n n+i i1L high L1 ,
131

1
131 2

high
[( ) ( )]( ) ( ) . In the second stage lock-in-
amplifiers for 129Xe and 131Xe, the low pass filters which have
the same cut-off frequency are applied to extract a DC signal
which is a function of amplitude and phase of the sinusoidal
precession signal. Their frequency responses can be described
by the transfer function n n n= +H i1 1L L2 2

3( ) [ ( )] where
ν2L is the cut-off frequency of the low pass filter, 1 Hz in our
case. The final values after passing through the second stage
lock-in-amplifiers are recorded by a computer at a repetition rate
of 2 Hz. We note that the FPGA, the references, and the
computer operate asynchronously.

4. Data analysis

The NMR frequency shift can be described by using
equation (4). We approximate the first stage lock-in-amplifier
signal associated with Mx by neglecting fast oscillating terms:
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where x x x= +U J J J1 2 0( )( ( ) ( )), W=J1(ξ)(J2(ξ)−J0(ξ) ),
and q w w t= -z

Rb
mod( ) . Because q  0 and f  0mod are

satisfied, we can take the terms up to the first order θ and
fmod. Here δA(t) describes the white noise, so that its
ensemble averaging is 0, dá ñ =A t 0( ) . The useful relation,
d t d s d tá + ñ =A t A t A

2( ) ( ) ( ), helps calculate the power
spectral density of y tL x2 , ( ). The averaged signal after the
second stage lock-in-amplifier can be written as

p wá ñ =
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where the bracket á ñ... denotes the ensemble averaging and
f1L is the phase of the transfer function H1L(ν), i.e.

n n= f-H H eL L
i

1 1 L1( ) ∣ ( )∣ . For the dispersive mode where the
linear response on the frequency change Δω appears, we
carefully choose the demodulation phase fxd to fulfill
f f f+ = + ¢p

L xd1 2
and f¢ 1 . The measured signals as a

function of drive frequencies are shown in figures 1(b) and
(c). This dispersion curve is essential for measuring the NMR
frequency shift.

The NMR frequency shift can be estimated in the on-
resonance operation. In the on-resonance case that wD T1 2 ,
we obtain the equations: y y= » g

g+r
B T

B T T1
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xd
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and fxe≈

Δω T2. The signal after the second stage lock-in- amplifier can
be written as
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Here, we neglect the terms up to the first order. wL
xe( ) denotes the

Larmor frequency of the noble gas atoms. The frequency to
signal conversion slope derived from the dispersion curve con-
verts the measured voltage signal to the corresponding NMR
frequency, given as
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In our experiment, a change of η below 2% was observed during
a day under a ±1 °C room temperature fluctuation. We can
easily obtain the frequency shift after dividing the measured
á ñy L x2 , signal by the frequency to signal conversion slope:
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The second term in equation (11) shows the existence of the
frequency offset, due to the phase of the reference signal used in
lock-in-amplifiers. The long T2 time reduces such a frequency
offset.

In order to calculate the Allan deviation of the mea-
sured NMR frequency shift, we recorded the measured
NMR frequency shifts of two Xe isotopes at a repetition rate
of 2 Hz. The Allan variance of the second stage lock-in-
signal, y tL x2 , ( ), can be written by using its transfer function
[23, 24]
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where we assume that tá + ñy t y tL x L x2 , 2 ,( ) ( ) only depends on
the time difference, τ. The bracket á ñ... represents an ensemble
averaging. The Allan deviation of the 129Xe and 131Xe
signals mainly depends on the bias magnetic field noise in
the on-resonance condition. For convenience of calculation, we
decompose A(t) as =A t A0( ) + + w

+ +A A B t ed
i t

,0 , 0 xd[ ( )] +
d+ +w

- -
-A A B t e A td

i t
,0 , 0 xd[ ( )] ( ) where the autocorrelation of

the bias magnetic field, tá + ñB t B t0 0( ) ( ) , depends on the time
difference, τ. Under the assumption that the cut-off frequency of
H2L(ν) is much smaller than ωxd, i.e. f2L = ωxd/(2π), the power

spectral density of y tL x2 , ( ) is given as
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Figure 2. (a) Allan deviation of the 129Xe signal. (b) Allan deviation of the 131Xe signal. (c) Power spectral density in dB scale as a function of
frequency and the frequency to signal conversion slope of the 131Xe atoms. The frequency to signal conversion slope of the 129Xe atoms is fixed at
η129. (d) Power spectral density in dB scale as a function of frequency and the frequency to signal conversion slope of the 129Xe atoms. The
frequency to signal conversion slope of the 131Xe atoms is fixed at η131. (e) Power spectral density as a function of h h h¢ -131 131 131( ) at 30 mHz
indicated by the black arrow in (c). (f) Power spectral density as a function of h h h¢ -129 129 129( ) at 30 mHz indicated by the black arrow in (d).
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where SB(ν) is the power spectral density of the bias magnetic
field. We omit the delta function which does not contribute to the
Allan deviation. Figures 2(a) and (b) shows the measured Allan
deviation of the measured NMR frequency shift of the 129Xe and
131Xe. The white noise characteristic is not shown in the 129Xe
atom case(figure 2(a)) due to the magnetic field noise, while
only the weak symptom of the white noise arises in the 131Xe
atom case, since the 129Xe atoms are more sensitive to the
magnetic field than the 131Xe atoms [25].

To distinguish the magnetic field and the rotation rate, the
NMR frequency shifts of dual species are combined [5]. The
estimator of the rotation rate can be written as
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where the superscripts and the subscripts 129 and 131 indi-
cate 129Xe and 131Xe isotopes. h¢129 and h¢131 are the given
frequency to signal conversion slopes for 129Xe and for 131Xe,
respectively. In order to extract the rotation rate precisely the
used frequency to signal conversion slope for calculation, h¢129

(or h¢131), has to be same as the real frequency to signal
conversion slope, η129 (or η131). After some calculation, the

power spectral density of Ω(t) is written as
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where wL
129( ) and wL

131( ) are the Larmor frequencies of 129Xe and
of 131Xe, respectively. For the on-resonance operation, the drive
frequencies wxd

129( ) and wxd
131( ) are fixed at wL

129( ) and wL
131( ),

respectively. Equation (15) separates the rotation rate from the
measured NMR frequency shift. Figures 2(c) and (d) shows the
power spectral density in dB scale as a function of the frequency
to signal conversion slopes and frequencies. The power spectral
density SΩ(ν) can be calculated by fast Fourier transform of the
autocorrelation of Ω(t). Several peaks, originating from the long-
term magnetic noise, arise in the two-dimensional graph. For
example, around a frequency of 30 mHz, indicated by the black
arrows in figures 2(c) and (d), the power spectral density as a
function of h h h¢ -131 131 131( ) (or (h h h¢ -129 129 129) ) is shown
in figure 2(e) (or in figure 2(f)). From equation (16), we can
derive the fitting formula, h h h h= ¢ - ¢ +y p y0 129 129 131 131

2
0( )

where p0 and y0 are constants. The experimental results are well
fitted with the derived formula. The noise spectrum is maximally
reduced when h h¢ =129 129 and h h¢ =131 131. At this condition, the
term including SB(ν) becomes zero so that the Allan variance can
be written as
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Only the white noise terms survive. In the off-resonance opera-
tion, the Allan variance is governed by the white noise term
because +A d, and -A d, are zero. Particularly, in the slightly off-
resonance operation that w w»H HL xd L L1

129 129
1

129 129∣ ( )∣ ∣ ( )∣( ) ( ) ( ) ( ) and
w w»H HL xd L L1

131 131
1

131 131∣ ( )∣ ∣ ( )∣( ) ( ) ( ) ( ) , the Allan variance can be
also described by equation (17). Figure 3(a) shows the Allan
deviations of the measured rotation rate in the on- and the 1Hz
off-resonance case(slightly off-resonance). The Allan deviation
of the on-resonance case is well overlapped with that of the off-
resonance case, implying that the subtraction of the magnetic
field noise is well operated.

Figure 3. (a) Allan deviation of the rotation rates in the on-resonance
case (red circles), in the 1 Hz detuned case (yellow squares), and in
the 10 Hz detuned case (blue triangles). The lines depict the Allan
deviation of the white noise. (b) Allan deviation of the rotation rate
in the two cases: f2L=1 Hz (blue circles) and f2L=0.1 Hz (pink
squares). The corresponding calculated Allan deviations are depicted
by the lines. (c) Angular random walk as a function of the drive
frequencies of 131Xe, wxd

131( ). The red solid line indicates the
calculation considering the filter effects, H1L(ν).
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5. Discussions

The NMR frequency shift measurement is affected by the
filters in lock-in-amplifiers [14]. In our calculation, the effect
of the low pass filter in the second stage lock-in-amplifier,
described by nH L2∣ ( )∣, is included in equation (17). In
figure 3(b) we compare the two cases of the different cut-off
frequencies, f2L=1 Hz and f2L=0.1 Hz. The calculations
considering only the white noise term are well overlapped
with the experimental data. In particular, a peak arises at an
averaging time of 1/f2L because the low pass filter of the
second stage lock-in-amplifier reduces the noise of fre-
quencies above f2L.

We also investigated the effect of the filters in the first
stage lock-in-amplifier by changing the detuning of the
transverse AC drive field. Figure 3(a) shows a comparison
between the Allan deviations of the 1 Hz detuning and of the
10 Hz detuning. The angular random walk of the 10 Hz
detuning case is 2 times smaller than that of the 1 Hz detuning
due to the effect of the filters in the first stage lock-in-
amplifier. The angular random walk of the rotation rate is
mainly determined by that of the NMR frequency for the
small gyromagnetic ratio species [14]. Moreover, the ratio of
the frequency to signal conversion slopes is given as
h h¢ ¢ = 54.6129 131 in our experiment so that it is enough to

consider only the sA
131( ) term in equation (16), the white noise

of the 131Xe signal. As a result, the angular random walk of
the rotation rate is proportional to wH L xd1

131 131∣ ( )∣( ) ( ) . We obtain
the amplitude ratio of the transfer function, wH L L1

131 131∣ (( ) ( ) +
p ´ Hz2 1 )∣/ wH L L1

131 131∣ (( ) ( ) + p ´2 10 Hz)∣ = 1.99. It is

consistent with the angular random walk ratio of the two
detuning cases, given as 2. More generally, figure 3(c) shows
the angular random walk of the NMR frequency shift of 131Xe
as a function of the drive frequencies. The experimental data
is well fitted by wH L1

131∣ ( )∣( ) . The careful selection of the drive
frequency, or a post correction considering the transfer
function of the band pass filter, is therefore required to reveal
the magnetic field noise-free limit of the angular random walk
for the rotation rate. We used a 1 Hz detuning to verify the
angular random walk limit in our experiment. Although 1 Hz
detuning seems insufficient, the long transverse relaxation
time T2 of several tens of second makes the system insensitive
to the magnetic field noise because w

p
D 1T

2
2  .

In our experiment, the white noise mainly contributes to
the angular random walk for the rotation rate. To decrease the
angular random walk in this regime, a large frequency to
signal conversion slope is required. The frequency to signal
conversion slope is determined by various parameters such as
T2, Bxe, ψr, and U. Among them, we optimized ψr by chan-
ging Bxd. Figure 4(a) shows the frequency to signal conver-
sion slope as a function of Bxd. It increases with Bxd and
decreases after passing the maximum point due to the T1
decay. The measured frequency to signal conversion slope is
well fitted by ψr=x/(1+px2) where x=γxeBxd. Also, the
angular random walk is investigated as a function of Bxd in
figure 4(b). It is well overlapped with the inverse of ψr,
(1+px2)/x. Such a ψr optimization works well in a regime
where the noise remains constant against changing Bxd. The
inset of figure 4(b) shows that the noise is independent of Bxd.

Table 1 shows the noises and the corresponding angular
random walks after the ψr optimization in the slightly off-
resonance operation. It shows that the angular random walk of
our gyroscope is limited by the noise of the 131Xe signal. The
rotation extraction gives the composite angular random walk,
1.072 deg h–1/2 which is very close to the on-resonance
angular random walk, 1.113 deg h–1/2. Despite having a lower
noise than the 129Xe signal, the slow frequency-signal con-
version slope for 131Xe leads the noise of 64.45 μHz1/2. The

Figure 4. (a) Frequency to signal conversion slope as a function of Bxd. The solid line depicts the fitting of ψr=x/(1+px2). (b) Angular
random walk as a function of Bxd in the 1 Hz detuned case (yellow circles) and in the on-resonance case (red squares). The green solid line
results from the 1/ψr=(1+px2)/x fitting. The inset shows the noise as a function of Bxd. The noise remains constant.

Table 1. 1 Hz off-resonance signal noises and the corresponding
angular random walks.

Species Noise(mV Hz– 1 2) Slope(V Hz–1) ARW(deg h–1/2)

129Xe 1.3 782.5 0.036
131Xe 0.923 −14.32 1.39
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converted angular random walk is 1.39 deg h–1/2. The slow
slope of the 131Xe signal is caused by the short T2 time and
the small magnetic field from the 131Xe atoms, already
reported in [26]. To overcome the current angular random
walk, an atomic cell filled with high pressure 131Xe gas is
required to increase Bxe from the 131Xe atoms. Additionally,
identifying the origins of the white noise and decreasing their
contribution to σA will help to reach a low angular random
walk. Ultimately, an angular random walk is limited by
atomic projection noise and laser shot noise [27].

6. Conclusion

We analyzed the NMR frequency shift measurements realized
by two stage lock-in-amplifiers. The Allan deviations of the
NMR frequency shifts and of the rotation rate were

investigated during on- and off-resonance operation, theore-
tically and experimentally. The filter effects of the lock-in-
amplifier were revealed in our analysis. The angular random
walk of our experimental setup, 1.11 deg h–1/2, was mainly
limited by the white noise of the 131Xe signal which was
verified by the slightly off-resonance operation.
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Appendix

Table A1. Summary of symbols related to 87Rb.

Symbols Description Typical value Notes

γRb Gyromagnetic ratio 2π×6998 Hz/μT
of 87Rb

τ Lifetime Order of 10 ms
of 87Rb spins

B0 DC bias B-field 9.95 μT
Bmod Amplitude of 10 μT

the AC bias B-field
Mz

Rb Magnetic moment of —
87Rb

wz
Rb Larmor frequency of 2π×69.63 kHz w g= Bz

Rb
Rb 0

87Rb
ωamp Amplitude of the bias 2π×70 kHz ωamp=γRbBmod

B-field modulation
wmod Angular frequency of 2π×69.63 kHz w w= zmod

Rb,
the bias B-field modulation By sensing mode

fmod Phase of the bias B-field modulation ≈0 rad By sensing mode
x Ratio of the amplitude of the bias B-field modulation to the modulation frequency ≈1 x = wamp/ wmod

Table A2. Summary of symbols related to Xe. The indices 129 and 131 indicate the Xe isotopes, 129Xe and 131Xe.

Symbols Description Symbols for Xe isotopes Notes
and typical value

γxe Gyromagnetic ratio γ129=2π×11.86 Hz/μT
of Xe γ131=2π×3.52 Hz/μT

wL
xe( ) Larmor frequency w p= ´2 118.15 HzL

129( ) w g= BL
xe

xe 0
( )

of Xe w p= ´2 35.0225 HzL
131( )

ωxd Angular frequency w p= ´2 118.15 Hzxd
129( ) w w=xd L

xe( )

of the transverse AC Bx field w p= ´2 35.0225 Hzxd
131( ) resonance condition

Bxd Amplitude =B 0.5xd
129( ) nT

of the transverse AC Bx field =B 10xd
129( ) nT

fxd Phase delay f » 280xd
129( ) f1L+fxd=π/2

of the transverse AC Bx field fxd
131( )≈320° dispersion mode

fxe Phase delay fxe
129( ) f w= D Ttan xe 2( )

of the Xe induced magnetic field fxe
131( )

η Frequency to signal η129
conversion slope η131
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Table A2. (Continued.)

Symbols Description Symbols for Xe isotopes Notes
and typical value

h¢ Given frequency to signal h h¢ »129 129 Precise rotation

P conversion slope h h¢ »131 131 extraction condition

σA Power spectral density sA
129( )

of white noise sA
131( )

Bxe Nuclear magnetic field =B 100xe
129( ) nT

from Xe =B 9xe
131( ) nT

T1 Longitudinal spin =T 27 s1
129( ) ∼100 °C

relaxation time =T 12 s1
131( )

T2 Transverse spin =T 20 s2
129( ) ∼100 °C

relaxation time =T 9 s2
131( )

ψr Tip angle yr
129( ) y = g

g+r
B T

B T T1
xd

xd

xe 2

xe
2

1 2( )

of the Xe nuclear magnetic moment yr
131( )

H1L(ν) Transfer function nH L1
129 ( )( )

of the first lock-in-amplifier nH L1
131 ( )( )

H2L(ν) Transfer function nH L2
129 ( )( ) n n=H HL L2

129
2

131( ) ( )( ) ( )

of the first lock-in-amplifier nH L2
131 ( )( ) =H2L(ν)
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