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1.  Introduction

Obtaining the pure vibration source signals of the mechanical 
system is of great significance for the identification of the 
vibration source state and the formulation of vibration sup-
pression measures. However, it is difficult to directly mea-
sure the source signals because each part of the mechanical 
system will interfere with each other, which makes the sig-
nals measured by the sensors the superposition of multiple 
vibration sources. In order to acquire source information from 
mixed signals and improve the accuracy of the identification, 
many signal processing methods have been applied, such as 
wavelet transform [1], empirical mode decomposition [2], 
and variational mode decomposition [3, 4]. However, these 
methods may fail when different sources contain similar or 

cross-frequencies. Blind source separation (BSS) provides 
a new way of source recovery, which can extract the source 
signals from the mixed observation signals without or merely 
with a small amount of prior knowledge. It has been widely 
used in vibration source identification and mechanical system 
analysis. Bouguerriou et al studied the application of the BSS 
method based on second-order statistics in bearing fault diag-
nosis, and effectively identified bearing defect features [5]. 
Zhang et al proposed the simplified independent component 
analysis algorithm with reference, and applied it to the source 
contribution quantitative calculation of mechanical systems 
[6]. These methods are all for the linear system. However, 
more and more studies focus on nonlinear models, among 
which the post-nonlinear (PNL) model has received consider-
able attention.

In the PNL model, the mixing process comprises an ini-
tial linear mixing stage followed by a set of component-wise 

Measurement Science and Technology

Sparsity enhancement post-nonlinear blind 
deconvolution method and its application to 
aluminum honeycomb panel cabin structure

Teng Gong, Zhousuo Zhang1 , Xin Luo, Yanfei Guo and Jianbin Cao

State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, 
People’s Republic of China

E-mail: zzs@xjtu.edu.cn

Received 3 September 2019, revised 8 November 2019
Accepted for publication 3 December 2019
Published 17 January 2020

Abstract
In this paper, we propose a method for post-nonlinear blind source separation. The method 
divides the separation process of post-nonlinear mixed signals into two independent stages: 
the nonlinear compensation stage and the linear blind source separation stage. The nonlinear 
compensation stage is achieved by taking sparsity enhancement as the optimization objective. 
The L1-norm is taken as the objective function and is combined with the fast iteration based 
on the gradient descent method to realize the fast nonlinear compensation of the mixed 
signals. In the stage of linear blind source separation, the blind deconvolution algorithm with 
reference signals is used to process the compensated signals to realize the separation of the 
source signals. The separation performance of the method is verified by simulation, and the 
superiority of the method is tested by comparison. The proposed method is also investigated 
by the excitation experiment of the aluminum honeycomb panel cabin structure, which 
simulates the satellite structure.

Keywords: post-nonlinear blind source separation, sparsity enhancement, fast nonlinear 
compensation, blind deconvolution, aluminum honeycomb panel cabin structure

(Some figures may appear in colour only in the online journal)

T Gong et al

Printed in the UK

045017

MSTCEP

© 2020 IOP Publishing Ltd

31

Meas. Sci. Technol.

MST

10.1088/1361-6501/ab5e43

Paper

4

Measurement Science and Technology

IOP

1 Author to whom any correspondence should be addressed.

2020

1361-6501

1361-6501/ 20 /045017+17$33.00

https://doi.org/10.1088/1361-6501/ab5e43Meas. Sci. Technol. 31 (2020) 045017 (17pp)

https://orcid.org/0000-0003-1299-8974
mailto:zzs@xjtu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6501/ab5e43&domain=pdf&date_stamp=2020-01-17
publisher-id
doi
https://doi.org/10.1088/1361-6501/ab5e43


T Gong et al

2

nonlinear functions [7]. Jutten et al proposed the PNL mixed 
model and proved that the solution of post-nonlinear BSS 
(PNLBSS) is unique without considering the indetermi-
nacies of scaling and permutation [8]. In the past few dec-
ades, PNLBSS has been applied in mechanical systems [9], 
intelligent sensor array design [10], biomedical signal pro-
cessing [11] and image processing [12]. The above methods 
jointly optimize the nonlinear compensation parameters and 
unmixing parameters under the guidance of the objective 
function, which can be called joint approaches, and are all 
for the instantaneous mixing model. However, for complex 
mechanical systems, the mixing process of the vibration sig-
nals is more in line with the convolution mixing model, while 
the joint approaches cannot be directly applied to the convolu-
tion mixing model. Alternatively, in the two-stage approach, 
an initial stage aims at estimating the nonlinear functions or 
their inverses. Once these functions are estimated, the second 
stage simply becomes a linear blind deconvolution (LBD) 
problem, in which many well-established algorithms can be 
directly used, resulting in strong applicability. Therefore, the 
research in this paper is based on the two-stage approach.

The nonlinear compensation stage is at the very core of 
PNLBSS. In practical applications, there are many cases in 
which the observed signal is derived from the signal of interest 
by nonlinear distortion, such as satellite communications 
[13] and chemical sensors [14]. Usually, the compensation 
of these nonlinear distortions is carried out by considering a 
supervised framework [15]. However, this paper focuses on 
blind signal processing, in which one only has access to the 
observed signals and a small amount of prior information. 
Therefore, blind nonlinear compensation must be considered. 
Zhang et  al chose the mutual information as the measure-
ment to develop a nonlinear compensation learning algorithm 
based on the assumption that the distribution of the linear mix-
ture of independent sources is Gaussian [16]. However, the 
Gaussianization-based methods provide better results as the 
number of sources increases, while this is not satisfactory for a 
small number of sources. Dogancay et al take minimizing the 
out-of-band energy at its output as the objective function based 
on the assumption that nonlinear distortion of band-limited 
signals results in spectral spreading [17]. But this method has 
the drawback that the precise bandwidth of the original signal 
is not always known. Duarte et al extend the above method 
and carry on the nonlinear compensation using L0-norm as the 
objective function based on the assumption that the desired 
signal admits a sparse representation in a transformed domain 
and that a nonlinear distortion tends to generate signals that 
are less sparse than the desired one [18]. Since L0-norm is 
a discontinuous function, smoothed L0-norm is proposed as 
a sparsity measure to overcome this problem [19]. However, 
other free parameters will be introduced, and there is still the 
problem that L0-norm is sensitive to noise. L1-norm is often 
used to measure signal sparsity because of its simple solution 
and high robustness to noise [20]. Therefore, this paper takes 
L1-norm as the objective function to enhance the sparsity of 
the compensated signal, realizing the nonlinear compensation.

The signals after nonlinear compensation are approximate 
linear mixed signals. In practical applications, especially for 

complex mechanical systems, observed mixed signals are 
often the convolutional mixing of source signals. In order 
to extract the source signals, the blind deconvolution algo-
rithm is needed. After years of development, many mature 
and effective algorithms have been proposed. Thomas 
et  al transformed the convolution mixing process into a 
time-delay form and proposed the fast multi-channel blind 
deconvolution algorithm based on FastICA [21]. Belaid 
and Hattay et al proposed an improved blind deconvolution 
algorithm based on multi-scale decomposition and wavelet 
transform [22]. In recent years, blind deconvolution with 
reference (BDR) has received extensive attention because of 
the improvement of the accuracy of separation by exploiting 
the prior information. By constructing the contrast func-
tion with reference based on the fourth-order cumulant and 
introducing the optimal step-based optimization algorithm 
for the maximization of the contrast function, Castella and 
Moreau proposed a multiple-input single-output (MISO) 
deconvolution algorithm for single-source signal extraction 
[23]. In the linear blind deconvolution stage, we combine 
the MISO deconvolution algorithm with the so-called defla-
tion procedure [24] to extract the source signals iteratively 
one by one.

In this paper, we propose a novel method of PNL blind 
deconvolution, which is named the sparsity enhancement 
post-nonlinear blind deconvolution (SEPNBD). Based on 
the two-stage framework, the post-nonlinear blind deconvo-
lution is divided into two independent stages: the nonlinear 
compensation and the linear blind deconvolution. In the non-
linear compensation stage, in view of the fact that the signal 
in mechanical engineering is usually sparse in the frequency 
domain and the nonlinear distortion will weaken the sparsity, 
the sparsity enhancement objective function based on L1-
norm is constructed and the iterative algorithm is derived. In 
the linear blind deconvolution stage, the multi-channel blind 
deconvolution algorithm with reference is used to extract the 
source signals from the compensated signals. The effective-
ness and superiority of the method are verified by simulation 
analysis. Referring to the actual satellite cabin structure, the 
satellite scaled model is built with the aluminum honeycomb 
sandwich panel commonly used in the real satellite. On this 
basis, an experimental system is established to verify the 
effectiveness of applying the method for identifying satellite 
micro-vibration sources.

The remainder of the paper is organized as follows: sec-
tion  2 presents the theory of the proposed method; in sec-
tion 3, the performances of the proposed method are illustrated 
through simulations analysis, and then its effectiveness is fur-
ther verified by experimental studies in section 4. Conclusions 
are drawn in section 5.

2.  Implementation of sparsity enhancement  
post-nonlinear blind deconvolution

2.1.  Nonlinear blind deconvolution model

For the post-nonlinear instantaneous mixing model, the mixed 
signals can be expressed as follows:
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xj (t) = fj

(
n∑

i=1

aijsi (t)

)
i = 1, · · · , n j = 1, · · · , m

� (1)
where xj (t) denotes the mixed observation signal measured 
by the j th sensor; fj denotes j th nonlinear distortion function; 
aij denotes the linear mixing coefficient from the ith source to 
the j th observation; si (t) denotes the ith source signal; m is 
the number of mixed observation signals; n is the number of 
source signals.

This paper focuses on the blind source separation of post-
nonlinear convolution mixed signals. The mixed signals can 
be expressed as follows:

xj (t) = fj

(
n∑

i=1

L−1∑
l=0

hij (l) si (t − l)

)
� (2)

where hij (l) denotes the linear mixing filter coefficient from 
the ith source to the j th observation; L is the linear mixing 
filter length.

It can be expressed in matrix form:

x = F (H ∗ s)� (3)

where x = (x1, x2, · · ·, xm)
T  denotes the m-dimensional mixed 

signals measured by sensors;s = (s1, s2, · · ·, sn)
T  denotes the 

n-dimensional source signals; F denotes the m-dimensional 
nonlinear distortion functions; H denotes the linear mixing 
filter matrix; ∗ is the symbol of convolution operation.

The purpose of the post-nonlinear blind deconvolution 
is to obtain the set of nonlinear compensation functions 
G = [g1 (·) , g2 (·) , · · ·, gm (·)]T and the separation filter 
matrix W, so as to obtain the estimated source signals:

y = (y1, y2, · · ·, yn)
T
= W ∗ G (x)� (4)

where y  denotes the optimal estimation of source signals.
The separation signal and the source signal can be 

expressed as

yi (t) = λisj (t − di)� (5)

where λi and di represent the scaling indeterminacy and the 
time delay indeterminacy respectively; subscales of yi and sj  
are not necessarily equal to each other, which represents the 
permutation indeterminacy.

In this paper, the two-stage framework for PNL blind 
deconvolution is presented, in which nonlinear compensation 
and linear blind deconvolution are two independent stages.

In the nonlinear compensation stage, the nonlinear compen-
sation functions G are obtained to transform nonlinear mixed 
signals x into approximate linear mixed signals z = G (x). 
Nonlinear compensation includes four issues: the parametri-
zation of the nonlinear compensation function gj (·), objective 
function, the selection of transform domain and the optim
ization algorithm. In the linear blind deconvolution stage, the 
well-established linear blind deconvolution algorithm can be 
used to extract the source signals y = W ∗ z from the com-
pensated approximate linear mixed signals z. The linear blind 
deconvolution will be introduced in two parts: the extraction 

method of the single source signal and all source signals 
extraction combined with deflation procedure.

2.2.  Objective function of nonlinear compensation

The core of nonlinear compensation lies in the objective func-
tion. Since the nonlinear distortion usually results in many 
derivative frequencies, the objective of the proposed method is 
to minimize or eliminate the derivative frequency components. 
Based on the assumption that the signals of the mechanical 
system admit sparse representation in the frequency domain, 
it is obvious that the more derivative frequency components, 
the less sparse the signals will be in the frequency domain. 
That is to say, the reduction of the derivative frequency comp
onents is equivalent to the enhancement of sparsity. The pro-
posed method takes the L1-norm based objective function to 
enhance the sparsity of compensated signal z, realizing the 
nonlinear compensation.

The nonlinear compensation operation zj = gj(xj) of each 
mixed signal xj is carried out independently. For the simplicity 
of expression, x, z, g (·) is used to represent each source signal 
xj, each compensated signal zj and each compensation func-
tion gj (·) respectively.

The L1-norm of the signal z in its sparse domain is meas-
ured by

‖Z‖1 =
∑N

j=1 |Z ( j)|
s.t.zzT = 1

� (6)

where Z ( j) is the coefficient of the signal z in its sparse 
domain; ‖·‖1 denotes the L1-norm; N is the sampling number. 
The energy of z needs to be constrained by normalization of 
zzT = 1.

The mechanical signals are usually sparse in the frequency 
domain, so the frequency-related domain is selected as the 
transform domain. Discrete cosine transform (DCT) and dis-
crete Fourier transform (DFT) are two common frequency-
related transforms, both of which can be implemented in 
matrix form as follows:

Z = zΦ� (7)

where Φ is the matrix associated with a given linear transform.
DCT is a real transform, which may simplify further 

optimization, while the coefficients of the DFT are complex. 
Therefore, the DCT domain is always selected, as in [17]. But, 
the dimension of the matrix Φ is usually very high and the 
calculation of equation (7) is time-consuming. In this paper, 
the DFT domain is chosen as the transform domain. By intro-
ducing fast Fourier transform (FFT) into the calculation of the 
algorithm, the running time will be significantly shortened. 
Moreover, transforming signals into the frequency domain by 
DFT is more intuitive in a meaningful aspect than DCT.

For the discrete signal, the DFT can be described as

Z(k) =
N−1∑
n=0

z(n)e−i 2π
N nk, k = 0, 1, ...N − 1� (8)

where i denotes the imaginary unit. By setting ω = e−i 2π
N , equa-

tion (7) can be transformed into the following matrix form:

Meas. Sci. Technol. 31 (2020) 045017
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Z = zFT� (9)

where

Z = [Z(0), Z(1), · · · , Z(N − 1)]� (10)

z = [z(0), z(1), · · · , z(N − 1)]� (11)

F =




ω0 ω0 · · · ω0

ω0 ω1 · · · ω(N−1)

...
...

. . .
...

ω0 ω(N−1) · · · ω(N−1)(N−1)


 .� (12)

Let R = Re(FT) and I = Im(FT), then

FT = R + i · I.� (13)

Since Z is a complex sequence, its module needs to be calcu-
lated before obtaining its L1-norm. The modulus of Z can be 
calculated by

|Z| = |z(R + i · I)| =
»
(zR)2

+ (zI)2.� (14)

For the fitting of the nonlinear compensation functions g (·), 
multilayer perceptron (MLP) neural network, spline interpo-
lation and polynomial are commonly used models. However, 
the MLP neural network has the risk of over-fitting [25], 
and spline interpolation is inconvenient in parameterization. 
In this paper, the nonlinear compensation function g (·) is 
fitted by the odd polynomial, since it can provide a flexible 
enough approximation of the inverse of the distortion func-
tion. Further, it is convenient to express the formula, which 

will show advantages in the subsequent formula derivation. 
Then the compensated signals z can be expressed as

z = g (x) =
p∑

j=1

θjx2j−1
� (15)

where θ  =  [θ1, θ2,…, θp ] is the polynomial coefficients to be 
solved; p  is the polynomial order.

Equation (15) can be expressed in matrix form:

z = θx̃� (16)

where

x̃ =
[
x, x3, · · · x2p−1]T

.� (17)

Substituting equation (16) into (14) obtains

|Z| = |z(R + i · I)| =
»
(θx̃R)2

+ (θx̃I)2.� (18)

Let us now turn our attention to the constrained condition 
zzT = 1. It is easy to get

θx̃x̃TθT = 1.� (19)

Whitening operation is carried out by linear transformation 
x̂ = Vx̃  to satisfy x̂x̂T = I. One popular method for whitening 
is to use the eigenvalue decomposition (EVD) of the cova-
riance matrix E

{
x̃x̃T

}
= EDET , where E is the orthogonal 

matrix of eigenvectors of E
{

x̃x̃T
}

 and D  =  diag(d1, …,dn) is 
the diagonal matrix of its eigenvalues [26]. Whitening can be 
done by

x̂ = ED−1/2ET x̃.� (20)

Figure 1.  Flowchart of the SEPNBD method.
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Then equation  (19) can be transformed into θθT = 1. 
Therefore, the constrained condition zzT = 1 can be achieved 
by θθT = 1 under the condition that x̃ has been whitened to x̂.

To sum up, the objective function is set as

min
θ

J (θ) =
»

(θx̂R)2
+ (θx̂I)2

s.t. θθT = 1.
� (21)

The objective function is used to adjust the parameters θ so as 
to enhance the sparsity of the compensated signal z.

2.3.  Fast optimization of nonlinear compensation

By constructing an objective function based on signal sparsity 
in the frequency domain, the problem of nonlinear compen-
sation is transformed into an optimization problem of objec-
tive function minimization. The gradient descent method, as 
a classical optimization algorithm, is widely used in func-
tional extremum problems. In this paper, the gradient descent 
method is used to adjust the parameters θ. Because the nondif-
ferentiable of L1-norm at 0 point will affect the application of 
the gradient algorithm, the smoothed L1-norm is often used. 
In this paper, a smoothing parameter δ is introduced into the 
objective function as follows:

J (θ) =
»
(θx̂R)2

+ (θx̂I)2
+ δ.� (22)

x̂R and x̂I  can be fast calculated by FFT, which avoids a 
matrix operation with high dimension and improves the effi-
ciency of the algorithm.

The gradient of equation (22) to θ is

∇θJ (θ) = (θx̂R./H1) (x̂R)T
+ (θx̂I./H1) (x̂I)T� (23)

where

H1 =
»
(θx̂R)2

+ (θx̂I)2
+ δ.� (24)

The iteration process is as follows:

θ(k + 1) = θ(k)− α∇θJ (θ)� (25)

where θ(k) denotes the solution of the kth iteration; α is the 
step size. The normalization process needs to be done after 
each iteration to ensure the constrained condition θθT = 1, 
which can be achieved by

θ = θ/‖θ‖2.� (26)

Repeat iteration until convergence and the compensated signal 
can be obtained by

z = θx̂.� (27)

The convergence of iteration can be judged by comparing 
the difference between the value of objective function before 
iteration and after iteration. If the difference value is less than 
the given threshold value for convergence, the convergence is 
achieved.

Therefore, the algorithm steps of nonlinear compensation 
for one mixed signal are as follows:

	(1)	�Center the original mixed signal x.
	(2)	�Let x̃ =

[
x, x3, · · · x2p−1

]T
.

	(3)	�Whiten x̃ to x̂.
	(4)	�Calculate x̂R and x̂I  by FFT.
	(5)	�Initialize θ randomly and normalize it by θ = θ/‖θ‖ 2.
	(6)	�Iterate θ by equation (25).
	(7)	�Normalize θ by θ = θ/‖θ‖ 2.
	(8)	�If θ has not converged, go back to step (6).
	(9)	�Calculate the compensated signal z = θx̂.

Through the above process, nonlinear compensation for one 
mixed signal xj  can be fast realized, obtaining the approximate linear 
convolution mixed signal zj . Each mixed signal x1, x2, · · ·, xm is 
separately operated to get the signals z = [z1, z2, · · ·, zm]

T , and 
then the linear blind deconvolution algorithm can be used to 
extract the source signals from the signals z.

2.4.  Single-source signal extraction of LBD

Compensated signals z can be considered as linear convolu-
tive mixtures of source signals s, so it can be processed by 

Figure 2.  Waveform and spectrums of the source signals s. (a) Waveforms, (b) Fourier spectrums.
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a well-established linear blind deconvolution algorithm. The 
blind deconvolution algorithm with reference (BDR) [23] is 
selected in this paper.

The realization process of linear blind deconvolution is

yi (t) =
m∑

j=1

D−1∑
d=0

wij (d) zj (t − d)� (28)

where wij denotes the separation filter; D is the separation 
filter length.

It can also be written in the form of matrix:

y = W ∗ z.� (29)

The deconvolution model can be transformed into the ICA 
model:

y = W− z
−� (30)

where

W− = (w (0) , w (1) , · · · , w (D − 1))� (31)

z
−
(t) =

Ä
z(t)T , z(t − 1)T , · · · , z(t − D + 1)T

äT
.� (32)

Linear blind deconvolution can be achieved by a method sim-
ilar to instantaneous blind source separation.

Taking normalized kurtosis maximization and the optimal 
step gradient algorithm as the contrast function and optim
ization algorithm respectively, the single-source signal can be 
extracted by

Figure 3.  Waveform and spectrums of the signals u. (a) Waveforms, (b) Fourier spectrums.

Figure 4.  Waveform and spectrums of the mixed signals x. (a) Waveforms, (b) Fourier spectrums.

Meas. Sci. Technol. 31 (2020) 045017
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Figure 5.  Waveform and spectrums of the compensated signals z. (a) Waveforms, (b) Fourier spectrums.

Figure 6.  Waveform and spectrums of the reference signals. (a) Waveforms, (b) Fourier spectrums.

Figure 7.  Waveform and spectrums of the separated signals by SEPNBD. (a) Waveforms, (b) Fourier spectrums.

Meas. Sci. Technol. 31 (2020) 045017
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yi = w− z
−� (33)

where w−  is a row of W− .
The normalized kurtosis contrast function is

κr

(
w−
)
=

∣∣∣∣∣∣
Cr {yi}

E
¶
|yi|2
©

E
¶
|ri|2
©
∣∣∣∣∣∣

2

� (34)

where Cri {yi} � Cum {yi, y∗i , ri, r∗i } denotes the fourth-order 
cumulant; ri is the reference signal.

The iterative process is

w− (k + 1) = w− (k) + ηg� (35)

where w− (k) is the kth iteration value of w− ; η is the step size; g 

is the derivative of κr

(
w−
)
.

The value of step size η can affect the convergence perfor-
mance of the algorithm. Selecting the optimal step size ηopt 
that can maximize the contrast function in each iteration:

ηopt = argmax
η

∣∣∣∣κr

[
w− (k) + ηg

]∣∣∣∣ .� (36)

The optimal step size ηopt should be such that 

∂κr

[
w− (k) + ηg

]
/∂η = 0. It must be calculated in each 

iteration. Repeat iteration until convergence or the maximum 
number of iterations is reached. The specific implementation 

process can be referred to in [23]. Through the above pro-
cess, we can extract a single separation component yi, that is, 
a single-source signal.

2.5.  Deflation procedure of LBD

After obtaining one source signal, subtract its contribution 
from the remaining mixed observed signal. The above process 
is repeated until all source signals are extracted one by one. 
This successive extraction method reduces the difficulty of 
separation and improves the separation accuracy [27].

The subtraction of source signal contribution can be 
achieved by the Wiener filter. The parameters of the Wiener 
filter subtracting the ith source signal contribution from the j th 
remaining mixed signal can be solved by

hij = argmin
h

E
Ä
|zj − h ∗ yi|2

ä
� (37)

where hij = [hij (0) , hij (1) , · · · , hij (N − 1)] are the param
eters of the Wiener filter; N is the Wiener filter length.

It is deduced from equation (37) that

hij = Rzjyi R
−1
yi� (38)

where Rzjyi is a 1  ×  N vector whose lth element 
Rzjyi (l) = E [zj (t) yi (t − l + 1)]; Ryi  is a N  ×  N matrix in 
which Ryi (l, m) = E [yi (t − m) yi (t − l)].

Then the remaining mixed observed signal can be expressed 
as

żj = zj − hij ∗ yi.� (39)

Through the above steps, the signals ż = [ż1, ż2, · · ·, żm]
T  

can be obtained. Replace the original mixed signal z by 
the remaining mixed observed signal ż and then extract the 
second source signal through the single source extraction 
method introduced in section 2.4.

Repeat the process until all source signals 
y = [y1, y2, · · ·, ym]

T  are extracted.

Figure 8.  Waveform and spectrums of the separated signals by LBD. (a) Waveforms, (b) Fourier spectrums.

Table 1.  Comparison of SCCs of separated signals by different 
methods.

Methods

SCCs of separated signals

y 1(t) y 2(t) y 3(t) y 4(t) Average

Proposed method 0.9928 0.9934 0.9795 0.9655 0.9828
LBD  
algorithm in [23]

0.9781 0.9816 0.9385 0.8914 0.9474

Meas. Sci. Technol. 31 (2020) 045017
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2.6.  Algorithm flow

To sum up, the nonlinear compensation is realized based on 
the objective function of sparsity enhancement, and then the 
compensated signals are processed by the linear blind decon-
volution algorithm to extract all source signals, which is called 

Figure 9.  Comparisons of compensation performance. (a) The first nonlinear distortion function f 1(u); (b) the second nonlinear distortion 
function f 2(u); (c) the third nonlinear distortion function f 3(u); (d) the fourth nonlinear distortion function f 4(u).

The following typical signals are selected as simulation 
signals: s1 (t) is a low frequency sinusoidal wave; s2 (t) is a 
high frequency sinusoidal wave; s3 (t) is a periodic wave with 
amplitude modulation; s4 (t) is a multi-component signal. The 
generating functions of source signals are listed as follows:

the SEPNBD method. The flowchart of the SEPNBD method 
is illustrated in figure 1.

3.  Simulations analysis

3.1.  Effectiveness of the proposed method

In order to validate the effectiveness of the proposed method, 
evaluate its performance and verify its superiority by com-
parison, the following simulation is performed.

s (t) =




s1 (t)
s2 (t)
s3 (t)
s4 (t)


 =




sin (2π · 70t)
sin (2π · 130t)

cos (2π · 100t) [1 + sin (2π · 8t)]
0.8 sin (2π · 40t) + 0.5 sin (2π · 80t) + 0.4 × sin (2π · 120t)


 .

�

(40)

The phases of the signals are generated randomly. The 
sampling frequency is 2048 Hz and the sampling length is 
1 s. Figure 2 shows the waveforms and Fourier spectrums 
of source signals s. In order to intuitively show the char-
acteristics of the signals, the waveforms only show the 
parts of 0–0.5 s, and the spectrums only show the parts of  
0–400 Hz.

Hybrid filter H is a random-generated FIR filter with an 
order of 20. Convolutive mixtures u = (u1, u2, u3, u4)

T  are 
obtained by u = H ∗ s as shown in figure 3.
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In order to verify the applicability of the proposed method 
to different nonlinear forms, four different nonlinear dist
ortion functions are selected as follows:

F (u) =




f1 (u)
f2 (u)
f3 (u)
f4 (u)


 =




tanh (u)
u + u3

u + tanh (u)
u3 + tanh (u)


 .� (41)

The final mixed signals x = (x1, x2, x3, x4)
T  are obtained by 

applying the nonlinear functions to u1, u2, u3, u4 in turn and 
adding 30 dB white noise as shown in Figure 4. As can be seen 
from figure 4(a), the waveforms have changed significantly. 
The spectrums in figure  4(b) also show that the nonlinear 
function can lead to a lot of derivative frequencies, such as  
10 Hz, 160 Hz, 240 Hz, 300 Hz.

Firstly, the nonlinear compensation is carried out to the 
post-nonlinear convolutive mixtures x to get the compensa-
tion functions G and compensated signals z. Set the odd poly-
nomial order p   =  4; smoothing parameter δ = 10−6; iterative 
step size α  =  0.3; the threshold value for convergence is 10−6. 
The waveforms and spectrums of the compensated signals z 
are shown in figure 5. Comparing figure 4 and 5, it is obvious 
that the derivative frequency components in figure 4 have been 
mostly eliminated.

Then, the BDR algorithm in [23] is used to process the com-
pensated signals z to extract the source signals. The construc-
tion of reference signals is the first step of the BDR algorithm. 
The reference signals should contain the characteristics of the 
source signals to be extracted. Harmonic wavelet analysis [28] 
is used to extract the reference signals from the compensated 
signals because of its simplicity and high efficiency. As shown 
in figure  6, the reference signals contain the corresponding 
source information, which can meet the requirements of the 
BDR algorithm. The algorithm parameters are set as follows: 
separation filter length D  =  20; the maximum number of iter-
ations is 2000; the threshold value for convergence is 10−5. 
The waveforms and spectrums of the separated signals are 
shown in figure 7.

Comparing figure 2 and 7, it can be found that the wave-
forms and spectrums of the separated signals are similar to 
that of the source signals. The proposed SEPNBD method 
successfully achieves the separation of vibration source sig-
nals from the post-nonlinear convolutive mixtures.

3.2.  Performance of the proposed method

The performance of the method is evaluated from three 
aspects: the performance of nonlinear compensation, the 
running time of nonlinear compensation, and the separation 
performance.

The performance of nonlinear compensation is measured 
by the signal-to-distortion ratio (SDR) in dB, which is defined 
as

SDR = 10 log

Ç
ūūT

(ū − z̄) (ū − z̄)T

å
.� (42)

z̄ = z/‖z‖2 is the normalized z and ū = u/‖u‖2 is the nor
malized u. The normalization is necessary because of the 
scaling indeterminacy in nonlinear compensation. This index 
measures the similarity between compensation signal z and 

Figure 10.  Photographs of the cabin structure experiment system. 
(a) Cabin structure; (b) locations of the accelerometers; (c) 
experimental control system.
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convolutive mixed signal u. The larger the index value, the 
higher the degree of similarity, indicating a better perfor-
mance of nonlinear compensation. The SDRs of the four 
compensated signals are 23.74 dB, 14.49 dB, 28.54 dB and  
12.40 dB, respectively.

The running time of the nonlinear compensation process is 
0.0279 s, which is the average value of 20 runs. The CPU of 
the computer is an i3-4150 dual-core processor at 3.50 GHz 
and the RAM is 8 GB of 1600 MHz DDR3. It is a direct con-
clusion that the proposed method has the remarkable advan-
tage of high efficiency.

The separation performance is measured by the spectral 
correlation coefficient (SCC):

SCC =

N∑
k=1

|Y(k)| |S(k)|
 

N∑
k=1

|Y(k)|2
N∑

k=1
|S(k)|2

� (43)
where Y(k) and S(k) are the DFT of the signal y  and s, respec-
tively; and N is the sampling points.

This index measures the similarity between the separated 
signal y  and the source signal s. The SCC ranges from 0 to 
1. And the closer it is to 1, the better the separation perfor-
mance is. The SCCs between the separated signals and the 
corresponding source signals are 0.9928, 0.9934, 0.9795 and 
0.9655.

3.3.  Superiority of the proposed method

To demonstrate the superiority of the proposed method, it is 
compared with the LBD algorithm in [23] and the blind com-
pensation method in [18].

Figure 11.  Waveform and spectrums of the source signals s. (a) Waveforms, (b) Fourier spectrums.

Figure 12.  Waveform and spectrums of the mixed signals u. (a) Waveforms, (b) Fourier spectrums.

Table 2.  Optimum parameters and resulting RMS errors through 
various experimental data.

Group number α β RMS errors

1 1.9638 0.9945 0.012
2 1.6623 0.0552 0.041
3 2.1587 1.1517 0.010
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Figure 13.  The nonlinear distortion functions. (a) Nonlinear function f 1 for u1; (b) nonlinear function f 2 for u2; (c) nonlinear function f 3 for 
u3; (d) nonlinear function f 4 for u4.

Figure 14.  Waveform and spectrums of the post-nonlinear mixed signals. (a) Waveforms, (b) Fourier spectrums.
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The LBD algorithm is used to process the post-nonlinear 
convolutive mixtures x in Figure  4 directly. The algorithm 
parameters are set as follows: separation filter length D  =  20; 
the maximum number of iterations is 2000; the threshold value 
for convergence is 10−5. The separated signals are obtained as 
shown in figure 8.

As can be seen in figure 8, there are some cross-frequen-
cies such as 120 Hz and some derivative frequencies such as  
160 Hz, 240 Hz, 300 Hz in the Fourier spectrums. Actually, the 
LBD algorithm in [23] is an effective algorithm for separating 
linear mixed signals by a separation filter matrix. However, 
post-nonlinear mixtures are not the linear combination of 
sources, and thus cannot be well separated merely by a separa-
tion filter matrix. Table 1 shows SCCs of separated signals by 
the proposed method and LBD algorithm. The average SCCs 
of the proposed method and LBD algorithm are 0.9828 and 
0.9474 respectively. By comparing the separation results of 
the two algorithms, it can be found that the SEPNBD method 
can achieve the extraction of source signals more accurately 
than the LBD algorithm.

Nonlinear compensation is the core of the proposed 
method. To show the superiority of the proposed method in the 
nonlinear compensation stage, it is compared with the spar-
sity-based blind compensation method in [18]. The fmincon 
function in the MATLAB software is used to implement the 
method. The running time of the method is 4.0342 s, which is 
the average value of 20 runs. Compared with 0.0279 s of the 
proposed method, it shows that the proposed method has far 
superior efficiency.

Nonlinear mixed signals generated by the four nonlinear 
distortion functions in equation  (41) are compensated with 
the proposed method and the method in [18] respectively, and 
the noise of different signal-to-noise ratios (SNRs) is applied 
to compare the compensation performance for different non-
linear distortion functions and the anti-noise performance 
of different methods. The average SDR of 20 runs is used 
to evaluate the performance. At each running, the phases of 
the source signals and the coefficients of the hybrid filter H 
are regenerated randomly. The results are shown in figure 9. 
The horizontal axis represents the SNR of the applied noise, 
and the vertical axis represents the SDR of the compensated 
signal. Figures  9(a)–(d) correspond to the compensation 
results of the mixed signals generated by f1 (u), f2 (u), f3 (u), 
f4 (u) in equation (41), respectively.

As can be seen from figure 9, the compensation results of 
the proposed method have a higher SDR index. The L1-norm 
based objective function has a better performance than the 
L0-norm based objective function. In addition, the smoothed 
L0-norm introduces the parameter σ, and improper param
eter selection also affects the results. By comparing different 
values of σ, it is found that the results are better when σ is 
near 0.1. Therefore, the results in figure 9 are all the results 
under σ  =  0.1. However, the optimal value of σ is different 
for different signals, so the problem of value σ is also a short-
coming of the method in [18]. These results illustrate that the 
proposed method has excellent compensation performance.

Through the above comparison, the proposed method 
is superior in terms of the performance of nonlinear 

Figure 15.  Waveform and spectrums of the compensated signals. (a) Waveforms, (b) Fourier spectrums.

Table 3.  Comparison of nonlinear compensation by different methods.

Methods

SDRs of compensated signals (dB)

Running timez1(t) z2(t) z3(t) z4(t) Average

Proposed method 37.19 31.94 31.28 32.07 33.12 0.1760 s
Method in [18] 33.56 29.92 26.21 26.15 28.96 70.97 s
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compensation, the running time of nonlinear compensation 
and the separation performance.

4.  Experimental verification

This paper further tests the effectiveness and superiority of 
the method by the excitation experiment of the aluminum 
honeycomb panel cabin structure that simulates the satellite 
structure.

4.1.  Experimental setup

The micro-vibration of the observation camera is an impor-
tant factor affecting the accuracy of observation satellites. 
Although the magnitude of satellite micro-vibration is small, 
its impact is very significant, such as reducing the resolution of 
earth observation and reducing the pointing precision of space 
telescopes. The effective identification of the main vibration 
sources of the satellite has important guiding significance for 
the vibration reduction measures. As a complex mechanical 
system, satellite vibration signals are convolutive mixtures of 
source signals. In addition, when the ground station receives 
signals from the on-orbit satellite, signals will have serious 
nonlinear distortion because of the nonlinear characteristic of 
the satellite channel itself [29]. Therefore, the received sat-
ellite micro-vibration signals are post-nonlinear convolutive 
mixtures.

Referring to the satellite’s cabin structure and the char-
acteristics of the main vibration sources, an experimental 
system of aluminum honeycomb panel cabin structure with 

four vibration sources is built. The photographs of the experi-
ment system are displayed in figure 10. The scaled model of 
the satellite cabin structure is designed and manufactured by 
using the same aluminum honeycomb sandwich panel mat
erial and the connection way as the actual satellite according 
to the actual satellite size. The whole cabin structure model is 
divided into two cabins by the middle layer of the aluminum 
honeycomb panel, and the top is a camera simulator. The 
cabin structure is supported by four air springs to simulate 
a floating environment and eliminate the influence of ground 
vibration, as shown in figure 10(a). The vibration sources con-
sist of two vibration exciters and two vibration motors. The 
output signals of the exciters are controlled by a Tektronix 
AFG3022C signal generator and the power amplifiers, and 
the motors are controlled by speed controllers. Vibration sig-
nals are measured by PCB356B18 accelerometers installed on 
the structure surface and recorded by an HBM GEN2i data 
acquisition system. Figure  10(b) shows the locations of the 
accelerometers. The experimental control system is shown in 
figure 10(c).

4.2.  Experimental verification of the proposed method

Using the signal collected by the accelerometer when each 
vibration source operates independently as the source signal, 
the four source signals of the experiment can be obtained as 
shown in figure 11, where the first two signals are from exciters 
and the second two from motors. The sampling frequency is 
5000 Hz and the sampling length is 2 s. In order to intuitively 
show the characteristics of the signals, the waveforms only 
show the parts of 0–1 s, and the spectrums only show the parts 

Figure 16.  Waveform and spectrums of the separated signals by SEPNBD. (a) Waveforms, (b) Fourier spectrums.

Table 4.  Comparison of SCCs of separated signals by different methods.

Methods

SCCs of separated signals

y 1(t) y 2(t) y 3(t) y 4(t) Average

Proposed method 0.9540 0.9896 0.9937 0.9919 0.9823
LBD algorithm in [23] 0.6937 0.8982 0.9614 0.9229 0.8691
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of 0–200 Hz. Mixed signals u collected when four vibration 
sources operate simultaneously are shown in figure 12. As can 
be seen, the frequency components of the mixed signals come 
from each source signal.

The widely used Saleh model [30] is adopted to simulate 
the amplitude nonlinearity caused by satellite channels. The 
amplitude model is expressed as follows:

f (u) = αu/
(
1 + βu2)

�
(44)

where α and β are the model parameters, whose values are 
shown in table 2. The three groups of parameters are given 
through various experimental data [30].

These three groups of parameters are taken as the param
eters of the nonlinear distortion functions of the first three 
mixed signals respectively, while the third group of parameters 
is still selected for the fourth mixed signal. Then the curves of 
the nonlinear distortion functions are shown in figure 13.

Nonlinear distortions are applied to the collected mixed 
observed signals to simulate the nonlinear distortions of 

satellite signal reception. The final mixed signals are shown in 
figure 14. As can be seen from figure 14, besides the frequency 
components of the source signals, there are many derivative 
frequency components caused by nonlinear distortion, such as 
12 Hz, 23.5 Hz, 94.5 Hz and so on.

The proposed method is used to process the mixed signals. 
The algorithm parameters are set as follows: the odd poly-
nomial order p   =  4; smoothing parameter δ = 10−6; itera-
tive step size α  =  0.3; the threshold value for convergence 
of nonlinear compensation is 10−8; separation filter length 
D  =  30; the maximum number of iterations is 2000; the 
threshold value for convergence of LBD is 10−6. The wave-
forms and spectrums of the compensated signals z are shown 
in figure 15. Comparing figure 14 and 15, it is obvious that 
the derivative frequency components in figure 14 have been 
mostly eliminated. The SDRs of the four compensated signals 
and the running time of nonlinear compensation are listed in 
table 3. The waveforms and spectrums of the separated signals 
by SEPNBD are shown in figure 16. By comparing figure 11 

Figure 17.  Waveform and spectrums of the compensated signals by the method in [18]. (a) Waveforms, (b) Fourier spectrums.

Figure 18.  Waveform and spectrums of the separated signals by LBD. (a) Waveforms, (b) Fourier spectrums.
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and 16, it can be found that the separated signals obtained 
by the SEPNBD method are consistent with the source sig-
nals. The SCCs between the separated signals and the corre
sponding source signals are listed in table 4. It can be seen that 
the SEPNBD method successfully achieves the separation of 
vibration source signals.

4.3.  Comparison with other methods

For comparison, the method in [18] is also used to carry out the 
nonlinear compensation. The compensated signals are shown 
in figure 17. The derivative frequency components in figure 14 
have also been mostly eliminated. The method also achieves 
satisfactory results. Actually, this method is also an effective 
algorithm in this application. Table 3 shows the SDRs of com-
pensated signals by different methods. As revealed in table 3, 
all SDRs of compensated signals obtained by the proposed 
method are larger. The average SDRs of the proposed method 
and the method in [18] are 33.12 dB and 28.96 dB respec-
tively. Compared with the two methods, the average SDR 
improvement of the proposed method is 4.16 dB. Moreover, 
the running time of the proposed method is 0.1760 s, which 
is much less than 70.97 s of the method in [18]. The com-
parisons above indicate that the proposed method is superior 
to the method in [18] in terms of both the performance and 
efficiency in the nonlinear compensation stage.

For comparison, the LBD algorithm is used to process 
the mixed signals in figure  14 directly. The parameters are 
set as follows: separation filter length D  =  30; the maximum 
number of iterations is 2000; the threshold value for conv
ergence is 10−6. The separated signals by the LBD algorithm 
are obtained as shown in figure 18. As can be seen in figure 18, 
there are some cross-frequencies such as 26.5 Hz, 41.5 Hz,  
70 Hz and some derivative frequencies such as 12 Hz, 23.5 Hz, 
94.5 Hz in the Fourier spectrums. The results show that each 
separated signal of the LBD algorithm still contains comp
onents from other sources, and there is much noise of derived 
frequencies, so the separation of source signals has not been 
achieved successfully. Table 4 shows the SCCs between the 
separated signals and the corresponding source signals by 
different methods. As revealed in table 4, all SCCs obtained 
by the proposed method are larger. The average SCCs of the 
proposed method and the LBD algorithm are 0.9823 and 
0.8691 respectively. Compared with the two methods, the 
average SCC improvement of the proposed method is 0.1132, 
indicating that the proposed method is superior to the LBD 
algorithm.

The experimental results show that the proposed 
SEPNBD method can effectively extract the vibration source 
signals from the post-nonlinear convolutive mixed signals, 
indicating that the proposed method has the potential to 
be applied to the identification of satellite micro-vibration 
sources. Through the comparisons, the superiority of the 
proposed method in the performance of nonlinear compen-
sation, the efficiency of nonlinear compensation and the 
separation performance is further verified.

5.  Conclusions

In this paper, we propose a new method for post-nonlinear 
blind deconvolution. The proposed SEPNBD method divides 
the nonlinear blind deconvolution into two independent steps, 
i.e. the nonlinear compensation and the linear blind deconvo-
lution. The sparsity enhancement objective function based on 
L1-norm is introduced to the nonlinear compensation stage, 
which is more robust than the L0-norm based objective func-
tion and enhances the performance of nonlinear compensation. 
The fast optimization based on the gradient descent method is 
presented, which significantly improves the efficiency of the 
nonlinear compensation stage. The linear blind deconvolution 
stage is compatible with the well-established blind deconvo-
lution algorithms, making the SEPNBD method have strong 
adaptability and high accuracy.

To validate the effectiveness and the superiority of the 
proposed method, some simulation studies and experimental 
studies on an aluminum honeycomb panel cabin structure 
are provided. The simulation results show that the proposed 
SEPNBD method can successfully achieve the separation of 
vibration source signals from the post-nonlinear convolu-
tive mixtures. Through comparisons with other methods, the 
proposed method is superior in terms of the performance of 
nonlinear compensation, the running time of nonlinear com-
pensation and the separation performance. The experimental 
results further verified the effectiveness. Compared with the 
nonlinear compensation method in [18], the average SDR 
of the compensated signals is increased by 4.16 dB. The 
running time of the proposed method in nonlinear compen-
sation is only 0.1760 s, which remarkably improves the run-
ning efficiency. Compared with the LBD algorithm in [23], 
the average SCC improvement of the proposed method is 
0.1132. These results further illustrate the superiority of the 
proposed method. Therefore, the proposed SEPNBD method 
is an effective and promising tool in extracting the vibration 
source signals from the post-nonlinear convolutive mixed 
signals.
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