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Abstract

We study to unify soliton systems, KdV/mKdV /sinh-Gordon, through SO(2,1) =~ GL(2, R) =~
Mobius group point of view, which might be a keystone to exactly solve some special non-linear
differential equations. If we construct the N-soliton solutions through the KdV type Backlund
transformation, we can transform different KdV/mKdV /sinh-Gordon equations and the Bicklund
transformations of the standard form into the same common Hirota form and the same common
Bécklund transformation except the equation which has the time-derivative term. The difference is
only the time-dependence and the main structure of the N-soliton solutions has the same common
form for KAV/mKdV /sinh-Gordon systems. Then the N-soliton solutions for the sinh-Gordon
equation is obtained just by the replacement from KdV/mKdV N-soliton solutions. We also give
general addition formulae coming from the KdV type Backlund transformation which plays not only
an important role to construct the trigonometric/hyperbolic N-soliton solutions but also an essential
role to construct the elliptic N-soliton solutions. In contrast to the KdV type Backlund transformation,
the well-known mKdV /sinh-Gordon type Backlund transformation gives the non-cyclic symmetric
N-soliton solutions. We give an explicit non-cyclic symmetric 3-soliton solution for KdV/mKdV/
sinh-Gordon equations.

1. Introduction

Studies of soliton systems have along history. The discovery of the soliton system by the inverse scattering
method [1-3] has given the breakthrough to exactly solve some special non-linear equations. There have been
many interesting developments to understand soliton systems such as the AKNS formulation [4, 5], the
Bicklund transformation [6—9], the Hirota equation [9—13], the Sato theory [14], the vertex construction of the
soliton solution [15, 16], and the Schwarzian type mKdV /KdV equation [17]. For the construction of N-soliton
solutions of various soliton equations, see the Wawzaz’s nice textbook[ 18]. Even now the soliton theory is quite
actively studied in applying to the various non-linear phenomena such as (341)-dimensional lump solution and
so on. For example, see Kaur and/or Wazwaz’s recent interesting papers [ 19-22].

In our recent papers, we have studied to unify soliton systems such as KdV/mKdV /sinh-Gordon equations
from SO(2,1) =~ GL(2, R) =~ Maobius group point of view [23, 24]. We expect that the various approaches above
[1-17] are connected through the Lie group. We have also formulated soliton systems in a unified manner
through the Einstein manifold of AdS, in the Riemann geometry, which has SO(2,1) Lie group structure [25].

We refer a soliton system as that for special types of non-linear differential equations, which have not only
exact solutions but also N-soliton solutions constructed systematically from N pieces of 1-soliton solutions via
algebraic addition formulae coming from the Backlund transformation. As a result, an expression of the N-
soliton solutions becomes a rational function of polynomial of many 1-soliton solutions. In the representation
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of the addition formula of SO(2,1) =~ GL(2, R) =~ Mobius group, algebraic functions such as trigonometric/
hyperbolic/elliptic functions’ come out. We consider SO(2,1) = GL(2, R) = Mébius group as the keystone for
the soliton system. In the group theoretical point of view, we can connect and unify various approaches for
soliton systems. As the Mobius group is the rational transformation, it is natural to use rational Hirota variables.
Furthermore, as the Biacklund transformation can be considered as the self-gauge transformation, it is natural to
use Backlund transformation as some addition formula of the Mobius group in our Lie group approach.

The Bécklund transformation goes back to Bianchi [28] for the sine-Gordon equation. It is one of the strong
tools to construct N-soliton solutions. For the old and recent development of the Backlund transformation, see
the Rogers-Shadowick’s and the Rogers-Schief’s nice textbooks [29, 30]. The recent hot topics of the Backlund
transformation is the application of Backlund transformation to the integrable defect [31-34].

In this paper, N-soliton solutions would be categorized in terms of two types of the Backlud transformation.
We show one is the well-known KdV type Backlud transformation that provides cyclic symmetric N-soliton
solutions, while another is the well-known mKdV /sinh-Gordon type Backlund transformation that gives non-
cyclic symmetric solutions. We also give a general addition formula of the KdV type Backlund transformation.
An explicit non-cyclic symmetric 3-soliton solution for KdV/mKdV/sinh-Gordon equation would be exposed.
We are interested in the mathematical structure of the integrable soliton system, which has N-soliton solutions,
we did not mention the physical applications in this paper.

2. Hirota forms and their Backlund transformations

2.1.KdV equation
The KdV equation is given by

U — Uy + 6ul, = 0. (2.1)
Introducing the 7-function by u = z, = —2(log 7)., the KdV equation becomes
— 4 .
oftnp o o], o)
Ox 7?2

where D,, D, are Hirota derivatives defined by Df fx)-gx)=fx) (E — E})k g (x). Then the KdV equation
turns to be so-called Hirota form

(—D,D, + DY) - 7= G T (2.3)

with C; as an integration constant. The C, = 0 case corresponds to the elliptic soliton case.” Here we take the
special casei.e. C; = 0 to consider only the trigonometric/hyperbolic soliton solution, and we consider the
special KdV equation in the form

(—=D,Dy + DHT -7 =0. (2.4)

One soliton solution for this special Hirota type KdV equation is given by
T=14+¢e%, with X;=a;x+ a,—3t + c;.
The Hirota type Bicklund transformations in this case are given by

3 2
(—Dy + %Dx + D)7 T =0, (2.5a)

2
Df s %T'T —0. (2.5b)

In fact, using the following relation [9],
[(=DiDy + D)7 - 717" — 72[(=D:Dx + D)7’ - 7]

2 2
= —2Dx|:(—Dt + %Dx + D)7 - T) T+ 3Dyt - T) - (D)?T/ ST = %T/T)], (2.6)

we can show that if 7 is the solution of equation (2.4) and if we use equations (2.5a) and (2.5b) as the Bicklund
transformations, then 7/ satisfies

5 In the representation of the addition formula of the SO(3) group, the elliptic function comes out [26, 27].

6 . . . , . .
In the static case, we take the 7-function as the Weierstrass’s o-function, then D7 - 7 = G becomes g, = 6p? — C; /2, which means
that C; = g, in the standard notation.
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—D,D, + DHr' - 7/ =0, (2.7)
( &

which means that 7/ is a new solution.
We now show that the Hirota type Bicklund transformation equation (2.5b) relates to the following well-
known KdV type Bicklund transformation

’ a? 1 N2
zx+zx:—7+5(z—z). (2.8)

Writing down equation (2.5b) more explicitly,
2

DIt T =TT — 27T + ThT = %7’/7‘, 2.9
/!
and defining z = 2% andz = —ZT—’;,we can organize equation (2.8) as
T T
: - 2 2 2 / 2
z}c+zx+%—2(z—z)2— et 27—”+2T—§+%—2T—’;—3
T2 T T T T
2
= —T(TTxx— 27! Tx+7' T — —TT]
T'T
2
= =D - L 77| (2.10)
T'T 4
which leads the following equivalence
2 2
1
DX 1= %7’/7' = zltz, = —% + E(Z/ - 2)% (2.11)

In the previous paper [23], we make the connection between the KdV equation and the mKdV equation
through the Miura transformation u = +v, + v with the common Hirota type variables fand g, that is,
u = —2(log ), 7 = f £ gintheKdV equationand v = w, tanhw/2 = ¢/f in the mKdV equation. In
order to connect the KdV equation with the mKdV equation, we would like to take variables fand g as
T=f+g 7 =f" + ¢ Forthe N-soliton solution, fand g are an even and an odd part of a N-soliton solution
under changing an overall sign of each 1-soliton solution. We refer fand gas Hirota form variables. In order to
construct N-soliton solutions, only one of the Bicklund transformations equation (2.5b) is enough, which is
given by

2
a
Di(f'£g)-(f£0) = (' £H(F+ 0. (2.12)
We can simplify equation (2.4) by using fand g variables. By using the soliton number unchanging self
Bicklund transformation, i.e. f’ = f, ¢’ = —g,anda = 0inequation (2.12), we have
DXf-f—g-g =0. (2.13)

While by using p = f + gand q = f — g, we obtain an identity
(—=DyDy + DY)p - p)q* — p*(=D:Dx + Dp)q - q)
= Dx[2(=D; + D)p - q) - pq + 12D (f- f = g~ g) - (Dx(f - ©)]. 2.14)

Since we have (=D, D, + D)p - p = 0Oand (—D; Dy + D})q - ¢ = 0 from equation (2.4) with 7 = f + g ifwe
use equation (2.13), wehave (—=D; + D))p - ¢ = —2(—D; + D;:’)(f~ g) = 0.Inthis way, equation (2.4) is
simplified in the following forms

(—=D; + D))f-g=0, (2.15a)

Di(f-f—g-g =0. (2.15b)
We call equation (2.15b) as a structure equation, which determines the structure of N-soliton solutions. While

we refer equation (2.154) as a dynamical equation, which yields time dependence of N-soliton solutions. In next
subsection, we will see that these equations are the same as those in the special mKdV equation.

2.2.mKdV equation
The mKdV equation is given by

Vi — Ve + 6V, = 0. (2.16)
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Definingv = w,and tanh(w/2) = g/f, we get
(=D +D)f-g _ ,Di(f-f—g-g)

D.f g g (2.17)

We now consider the following special case
(=D, + D))f-g=0, (2.18a)
DIf-f—g-g =0. (2.18b)

Then we have the common structure equation (2.18b) in the mKdV equation as that of equation (2.15b) in the
KdV equation. Further we have the common dynamical equation (2.184) in the mKdV equation as that of
equation (2.15a) in the KdV equation.

One soliton solution for this special Hirota type mKdV equation (2.184) and (2.18b) is given by

f=1, g=¢%5,  with X;=aix+a’t+c.
The Bécklund transformation for the structure equation (2.180) is given by [9]
DS =g (f 9 ==2( +8)(f - g (2.19a)
DS+ (f =9 = =2 = &)(f + g, (2.196)

by using the following relations. Taking equations (2.19a) and (2.19b) into account, we have a relation
[DI(f +8) - (f =N+ (f— 8 — (f + ) [ = gD} f+ 8 (f— 9]
=D|(Dr 4 ) - 04 2= ) (D
- (Dx(f’ -g)-(f+o+ %(f’ + N (f - g) (e (f - g)]
+ Dx[—g(f’ —f+e-(ff =h(f+ 9+ %(f’ +eN(f—g) - (f +e)(f - g)]
= Dx[(Dx(f’ +g) - (f-9+ g(f’ - g (f+ g) =)+ 9
- (Dx(f’ -g)-(f+o+ %(f’ + N (f - g) (f (- g)], (2.20)
where we have used D, F - F = F.F — FE, = 0. This relation means that if equations (2.18b), (2.19a), and
(2.19b) are satisfied, we have D2(f - f/ — ¢’ - ') = 0, that s, if the set ( f,g) is a solution, the set (f/, g’)

produces a new solution by using the Backlund transformation.
We can find equivalent forms for the Bicklund transformations (2.19a) and (2.190) [9]. First, we consider

the following relation
DI(f'+g)-(f+8 DIf'—g)-(f—2)
(f +8)(f+8) (f=+eh(f-9)
1

! N.(f— Goer (ol
_(flz_glz)(fz_gz)DxI:(DX(f +g) (f g)+2(f g)(f+g) (f g)(f+g)

+ (M +eHN(f-9)- (Dx(f/ —-¢)-(f+9+ %(f’ + 8N (f— g)]
=0, (2.21)
where we have used the Backlund transformations (2.19a) and (2.19b). Secondly, we obtain
Dif'+e)-(f+o DI —g) - (f-9 a _ [Df(f’ f'-g'-g)  DAff- g~g>]
f'+eH(f+9 f-eh(f-9 2 (f? =g (f*—¢»
+2 (Dx(f’ +g) - (f- g))(Dx(f’ —g) - (f+ g)) a2
(f =eH(f+ 9 (f"+eH(f-9 4

zz[Dx(f’+g’)-(fg))(Dx(f’g’)‘(f+g))_ “|=0
f —gh(f+ 9 f+ef-9 ’

S

(2.22)
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where we have used the structure equations DX(f' - f/ — ¢’ - ¢/) = 0and D3(f - f — g - g) = Oandalso the
Biacklund transformations (2.194) and (2.190). Combining equations (2.21) and (2.22), we arrive at

2
a
Dif £g)- (9 =T £H(F £ (2.23)
Then we have the common Hirota form Bicklund transformation equation (2.23) in the mKdV equation as that

of equation (2.12) in the KdV equation. This is the reason why we call this as the common KdV type Hirota form
Bicklund transformation.

Conversely, if equation (2.23) is satisfied, we have
Dx[(Dx(f’ +¢) - (f—9 + g(f’ —gN(f+ g) (f=gh(f+ 9

+(f +gH(f-9 - (Dx(f’ -¢)-(f+9+ %(f’ +¢N(f - g)] =0, (2.24)

(qu/ +g) (f— g)](Dx(f’ —¢) - (f+ g)) _2 (2.25)

(f' =egh(f+9 (f'+eHf—9 4
which give equation (2.194) and equation (2.190) by properly choosing the sign of a. Then we conclude the
equivalence
Dif'+g)-(fxrg) _ a _ Dif+g)-(frg _a
(f' T f£9) 2 (f'£8H(f+g) 4
The equation (2.23) is the Hirota type Bicklund transformation for the special mKdV structure
equation (2.18D).
Now we focus on yet another mKdV type Bicklund transformation [9]

(2.26)

wi + w, = asinh(w’ — w). 2.27)

From equations (2.19a) and (2.19b), we can obtain (2.27), while the opposite is not always true:
a .
D(f't¢gh) - (fF9 = fz(f’:Fg’)(f:t g) = w.+ w,=asinh(w — w). (2.28)

We can show the relation above in the following manner. Using

> >

2 2
tanhz = g sinhw = i coshw = f +g ,
2 P-4 f*—g?

and their counterparts for (w/, f’, g’), we have

2 - £ D(f-9 - (ft+g
- fz _ gz - f2 _ gz >
and those for (w/, f’, ¢’). Then we have a relation

X

[Dx(f’ H8) (-9 + 27— ghf+ g)](f’ (e

—(f +eH(f~- g)[Dx(f’ -g)-(f+9+ %(f’ + ¢)(f - g)]
=[D(f +¢)-(f—NS—f+ —(f+ (' —gND(f— 9 - (f— I
+ g[ (f = gP(f+ 9> — (f' + (- )

:(f’z—g’z)(fz—gZ)[w;+wx+a(f'2+g’2 kR Y f2+g2”

fT_gfr gt fr_gifr_ g2
=(f"? - ¢H(f? — g)Iw. + w, + a(cosh(w’)sinh(w) — sinh(w’)cosh(w)]
=(f"? - ¢ (f? — g)HIw. + we — asinh(w’ — w)], (2.29)

which means we have equation (2.27) from equations (2.19a) and (2.190), but the opposite is not always shown.
In fact, equation (2.27) is the Backlund transformation of the original mKdV equation (2.17) but not the
Bicklund transformation of the special mKdV equations equations (2.18a) and (2.18b).

By the KdV type Hirota form Bicklund transformation equation (2.23), we have the cyclic symmetric N-
soliton solutions. On the other hand, by the mKdV type Béicklund transformation equation (2.27), we have the
non-cyclic symmetric N-soliton solutions. In section 4, we give an explicit non-cyclic symmetric 3-soliton
solution from mKdV type Backlund transformation equation (2.27).

5
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2.3. sinh-Gordon equation
The sinh-Gordon equation is given by

0, = sinh 6. (2.30)
Defining tanh(6/4) = g/f, we obtain
D/Dif-g 1= DiD(f-f+g-8)

% i (2.31)
We here consider the special case:
DD f-g= /g (2.32a)
DiD(f-f+g-g) =0. (2.32b)
Taking the following relation into account,
Di[D:Dx(f - f+g-8) - (f* + &) — 4D:Dx(f-g) — f&) - gl = DADI(f-f~ g (f* — gD,
(2.33)
we take
DDy f-g=fg (2.34a)
Dif-f-g =0, (2.34b)

as the special sinh-Gordon equation instead of equations (2.32a) and (2.32b). The above structure
equation (2.34b) in the sinh-Gordon equation is the same as that of equation (2.150) in the KdV equation and
equation (2.18b) in the mKdV equation. Then, applying the same method as that of the mKdV equation, we have
the common KdV type Hirota form Backlund transformation (2.194) and (2.19b), and equivalently (2.23) for
KdV/mKdV /sinh-Gordon equations.

One soliton solution for this special type sinh-Gordon equation is given by

f=1, g:e’zf, with Xi:aix+t/ai+ci.

From equations (2.19a) and (2.19b), we have another mKdV type Backlund transformation by replacing
w — 0/2 inthe mKdV type Bicklund transformation equation (2.27). This is because the relation
tanh(w/2) = g/f inthe mKdV equation corresponds to tanh(/4) = g/f in the sinh-Gordon equation. Then
from equations (2.19a) and (2.19b), we have

/ !
6—" + 3 = asinh(o— — 9), (2.35)
2 2 2 2

but the opposite is not always satisfied. In fact, equation (2.35) is the Backlund transformation for the original
sinh-Gordon equation (2.31) but not the Bicklund transformation of the special sinh-Gordon equation
equations (2.34a) and (2.34b).

2.4. Cyclic symmetric N-soliton solutions via Hirota form Béicklund transformations
Let us first summarize our findings in the previous subsections. By using the Hirota form variables fand g, we can
treat the special KdV/mKdV /sinh-Gordon equations in a unified manner:

KdVEq: u=1z,= —2(logMw, 7=f*%g (2.36a)
mKdV Eq.: v = w,, tanh% = ?, (2.37b)

. 0 g
sinh—Gordon Eq.: tanhz = ? (2.38¢)

The well-known KdV type Biacklund transformation is equivalent to the KdV type Hirota form Béacklund
transformation:
/ a’ @ -2 2( ¢t ’ a’ / /

Z 4z = - + — = Di(f'£g)-(fg = T(f +g) - (f£9. (2.39)
We have the common KdV type Hirota form Bicklund transformation equation (2.39) for the special KAV
equation (2.15a) and equation (2.15b), for the special mKdV equation equations (2.18a) and (2.18b), and for the
special sinh-Gordon equation equations (2.34a) and (2.34b) for the common structure equation
equations (2.15b), (2.18b) and (2.34b). Another mKdV type Biacklund transformation equation (2.27) is the
Biacklund transformation of the original mKdV equation (2.17) but not the Backlund transformation of the
special mKdV equation (2.184) and equation (2.18D).

6
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In our previous paper [23], we have demonstrated how to construct N-soliton solutions from N pieces of
1-soliton solutions by using KdV type Béacklund transformation equation (2.8). Here we demonstrate how to
construct the cyclic N-soliton solutions for N=2 case. We start from the addition formula of the Backlund
transformation,

2 2
a’—a
Zp = — 2, (2.40)
21— 2
where we choose
zo=0, z; = —a;tanh X; /2, with X; = a;x + a;*t + c;.

In order to find a KdV two-soliton solution, we simply take the space derivative by using u;, = z, .. While, if we
want to find a 2-soliton solution for the mKdV /sinh-Gordon equation, we must know f;, and g, from z;,. We
canfind f;; and gy, from 2z, = —27, /7, + const. with 73, = f;, £ g, [23], butitbecomes complicated for
the general N-soliton solutions. However, it is easier to find the 7,-function directly from the Hirota equation
(—=D,D, + D7, - 7, = 0inthe standard way[13, 18], which gives

T2 =fy £ & (2.41)
with
_ 2
fo=1+ M efieXe, (2.42a)
(n + a)
g, = el + ¥ (2.42b)

where fand gare even and odd parts of the 7, function under e*i — —e*i. For a 2-soliton solution of mKdV
equation, we have tanh(wy,/2) = g, /f;, [18]. For a soliton solution of sinh-Gordon equation, usmg the
dynamical equation (2.34a), we replace X; — X;with X; = a;x + t/a; + ¢;,because f = 1, g = eXiisa
1-soliton solution of D, D, f - g§= Jg- Then the 2-soliton solution of sinh-Gordon equation is given by
tanh 6,,/4 = §/f [18], where f12 =1+ (a — @) /(al + a)efiek, 8, = el 4 ek,

In general, we have the cyclic symmetric N-soliton solutions [18] by using the common KdV type Bicklund
transformation.

3. Addition formulae for the common KdV type Biicklund transformation

In our approach, we construct cyclic symmetric N-soliton solutions by an algebraic addition formula coming
from the well-known KdV type Bicklund transformation, which is equivalent to the common KdV type
Bicklund transformation. This addition formula is applicable also to construct the elliptic N-soliton solutions
and there will be no other way to construct N-soliton solutions for the elliptic case [24]. In order to construct N-
soliton solutions for trigonometric/hyperbolic/elliptic soliton solutions, we give the result of the general
addition formula here.

Let us first review to find a 2-soliton solution by the common KdV type Bicklund transformation. Assuming
the commutativity, z;, = z,;, we have

ﬂlz (z — 20)2

Zix + Zox = _7 + T; (3.1a)
2 _ 2

ton t zop =~y B2 (3.1b)
2 2
a 2 Zi — 2

Zio + 2x = —— + 2 — @)y (3.1¢)
2 2
> 2, — )2

Ziox + 220 = —71 + % (3.1d)

Making equations (3.1a)—(3.1b)—(3.1c)+equation (3.1d), derivative terms are canceled out and we have

2 2
a*—a
2y =20+ ——2, (3.2)
21— 2
We can check that equation (3.2) satisfies equations (3.1a)—(3.1d), which means that it is commutative in this
level. Recursively, we have
Apn— 12 - anz

202 n—2m—1n = A2..n—2 . (3.3)
212-sn—2,n—1 7 Z12---,n—2,n

Welist various N-soliton solutions obtained through the addition formulae:

7



10P Publishing

J. Phys. Commun. 4(2020) 015014 M Hayashi et al

* (241)-soliton solution
2 2
a- — a G
m=zg+ ———— =zg+ —2,
z— 2 F
with
F,=2— 2,

2 2
G12 == al - 612.

* 3-soliton solution

2 2
@’ —as® G

Zi3 =21 + )
212 — 413 Fis
with
1 3 )
Fis = (a® — a')z + (0 — @)z + (5" —ad)m = — > e*@a? — aP)z,
k=1
13 .
Gz = —(@? — aMazn + (@ — aD)nz + (a3 — a)zz) = —— Y. ¥ — aP)ziz;.
Yijk=1
* (4+1)-soliton solution
2 2
a” — ay Gia34
Zpy =20+ ——mm =20+ —,
2125 — 2124 Fia34
with
4 .
Fips = Py > eMa? — aP)(a? — aP)ziz),
(C2)
1 & .
Giazg = - > eMa2at(a? — aP)z.
Cijkl=1
+ 5-soliton solution
_ as —as’> G
Z12345 = 2123 + = )
21234 — 21235 Fiy345
with
1 5 .
Fiasas = = Yoo eMma? — aP)(a? — aP)@? — an®)(an’ — ad)ziz),
312! i,j,k,,m=1
1 5 .
Gisas = —  »_  eMm@? — a?)[(a® — aP)(a? — ap®)(aw® — a)]zczizm
3120k m=1

where €% is a Levi-Civita symbol with €12 = 1.

3.1. General formula
We first define the following quantity

n n
A(ih iZ)"')in) = Z (aipz - aiqz)a H(ib i2)"')in) = H aipz)
pg=1 p=1
pP<q

where we set A(i},1,) = 1. The general formula is expected to be given in the following form:

* ((2n)+1)-solution

(3.4)

(3.5a)
(3.5b)

(3.6)

(3.7a)

(3.7b)

(3.8)

(3.9a)

(3.9b)

(3.10)

(3.11a)

(3.11b)

(3.12)
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with
1 I SONOF I I ROV .. . .. .
F12-~~2n = sz 127 ey ]”A(Ila 12;"')ln)A(]13 ]2)"'3]”)Zilziz t Zi (3.1361)
(=" i N e L
Groon = ——————Y e LAy, by i) LG, Dy sin) 225 0 2 (3.13b)
nl(n — 1)! "
* (2n+1)-solution
Giy...
Zpany) =~ (3.14)
Fioong1
with
Fi.onp1 = ———— X Z6’”2""”]1]2"']"]Hl/\(n, iy TN oot sl T DZi %0 0 Zi (3.15a)
nl(n + 1)!
12---2n+1 = m ZE n/n+ 1, 125 5ln ]])]2: ’]n’]n+] Z]lzjz Z-’ﬂ+1' .

We have checked these formulae up to z;,345¢, by Mathematica.

4. Non-cyclic symmetric 3-soliton solutions of the mKdV equation

Here we consider that another mKdV type Backlund transformation equation (2.27) of the original mKdV
equation gives non-cyclic symmetric soliton solutions. We demonstrate on that by constructing a 3-soliton
solution.

Another mKdV type Bicklund transformation of the mKdV equation is given by [7, 8]

w! + w, = asinh(w’ — w), (4.1)
w + w, = —2a’w, — 2awy, cosh(w’ — w) + (a® — 2aw,?)sinh(w’ — w). (4.2)

This Backlund transformation can be considered as a self gauge transformation of the GL(2, R) in the AKNS
formalism [23, 35].
Assuming the commutativity wy, = w,, we have

Wi x + Wox = agsinh(w; — wy), (4.3a)
Wax + Wox = ap sinh(wy — wy), (4.3b)
Wizx + Wix = a; sinh(w, — wy), (4.3c)
Wigx + Wox = agsinh(wiy — wy). (4.3d)

Manipulating equations (4.3a)—(4.3b)—(4.3¢)+equation (4.3d), derivative terms are canceled out, so that we have
an algebraic relation

tanh(le — WO) S S tanh(w1 — " ) (4.4)
2 a — ay 2

This equation satisfies equations (4.3a)—(4.3d), so that w1, can be new solution. Notice that from the time-
dependent 1-soliton solutions wy, wy, and w,, we obtain the time-dependent new solution w;,, so that
equation (4.2) is not necessary to construct the new solution. By using the above Backlund transformation, we
can construct a new soliton solution w;, from 1-soliton solutions w;,w,, and w,.

Taking that wy = 0 isa trivial solution into account, we have 2-soliton solutions w;,, and w3 by using
1-soliton solutions wy, w,, and w; through tanh w; /2 = eXiwith X; = a;x + a’t + ¢;,

tanh (2] = L ganp (2122 ) L WROA/2) /D) (45)
an 2 ap 1l — tanh(w1/2)tanh(w2/2)

tanh(&) _ —Ltanh(wl - W3) _ 1 tanh(w;/2) — tanh(ws/2) , 4.6)
2 a3 2 a3 1 — tanh(w;/2)tanh(ws /2)

with a;; = (a; — aj)/(a; + aj) = —aji.
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Next, let us construct a 3-soliton solution. Assuming the commutativity w,3 = w3, we have

Wiz — W a +a Wiy — W
tanh(L) == > tanh( 12 L ) 4.7)
2 dy, — das 2
We express the above with ; = tanh(w, /2), t, = tanh(w, /2),and t; = tanh(ws /2), and
w123 & 4 4
123 .
tanh(—) =2 with fi,, = apt), g, = ciq;(®). (4.8)
2 123 i=0 i=0
In the expression above, we denote
Co = apadi3dys, €= —dp+ d13 — A3, G = —apdizdys — A3 + a3,
3= —apdizdys + aip + a3, G4 = —dx3, G5 =d1p,  Ce = —di3, G = dipdizdyz — dip + ais,

2 3 3 2
po == 1> P1 == tl 5 P2 = hity, P3 = fit3 P4 = I3, P5 == t] t, P6 == t] t3, P7 == t] 13,

Qo =ttt q =tht, ¢ ="tt q=th q=1t =t g=ht ¢ =1,
which satisfy p,q, = t’tyt; (i = 0, 1,---,7). We can observe that tanh(w,3 /2) is not cyclic symmetricin t,, t,,
and t3. This is the non-cyclic symmetric 3-soliton solution of the mKdV equation derived from another mKdV
type Backlund transformation.

The non-cyclic symmetric 3-soliton solution for the sinh-Gordon equation can be obtained by replacing
tanh(wy,3 /2) — tanh(fy53/4)and t; = tanhw;/2 = eX — f; = tanh 6:/4 = eXi. We can connect the mKdV
equation with the sinh-Gordon equation in another way. If we put w = ¢, in equation (4.2), we have
w. = asinh(w’ — ¢)and w/ = a®sinh(w’ — q), which gives the sinh-Gordon equation ©,, = a*sinh(©)
through the relation © = 2(w’ — ), and the a-dependence can be eliminated by the redefinition of x — x/a,
andt — t/a’.

5. Summary and discussions

We consider the reason why special non-linear differential equations, such as KdV/mKdV/sinh-Gordon
equations, have the systematic N-soliton solution is because such soliton equations have SO(2,1) >~ GL(2, R) =~
Mobius group structure. The systematic N-soliton solutions are given as the result of the addition formula of
these Lie groups. As the representation of the addition formula of the Lie groups, the algebraic function such as
trigonometric/hyperbolic/elliptic functions appear.

We have studied to unify the soliton system through the common addition formula coming from the
common KdV type Hirota form Bicklund transformation D2 (f’ & g') - (f £ g) = a*(f' £ ¢V (f+ 9)/4,
which is equivalent to the well-known KdV type Bicklund transformation z, + z, = —a?/2 + (z' — 2)*/2
where z = —2[log(f £ 9)l, 2/ = —2[log(f" £ g)].. If we construct the N-soliton solutions through the KdV
type Bécklund transformation, we can transform different KdV/mKdV /sinh-Gordon equations and Bicklund
transformations of the standard form into the same common Hirota form and Bicklund transformation,
equations (2.12), (2.15b), (2.23), (2.18b) and (2.34b) except the equation which has the time-derivative term. In
KdV/mKdV equation, the equation which has the time-derivative term becomes the same equations (2.154) and
(2.18a) but it is different from sinh-Gordon’s one equation (2.34a). The difference is only the time-dependence
and the main structure of the N-soliton solutions has the same common form for KdV/mKdV /sinh-Gordon
systems. Then the N-soliton solutions for the sinh-Gordon equation is obtained just by the replacement
aix + at — a;x + t/a;from KdV/mKdV N-soliton solutions.

We have also given the general addition formula of this common KdV type Hirota form Backlund
transformation. This addition formula is applicable also to construct the elliptic N-soliton solutions and there
will be no other way to construct N-soliton solutions for the elliptic case [24]. Then it is useful to construct N-
soliton solutions for trigonometric/hyperbolic/elliptic soliton solutions.

While by using another mKdV /sinh-Gordon type Backlund transformation w,, + wy, = a sinh(w’ — w),
we have the non-cyclic symmetric solution. For the non-cyclic symmetric N-soliton solutions for the KdV
equation, we can construct that from the mKdV non-cyclic symmetric N-soliton solutions through the Miura
transformation u = =+ v, + v2. We have given the explicit non-cyclic symmetric 3-soliton solutixon for KdV/
mKdV/sinh-Gordon equations. In the case of the mKdV type Bicklund, we add the comment to connect the
mKdV equation with the sinh-Gordon equation at the end of section 4.

We clarify what kind of Hirota type KdV/mKdV /sinh-Gordon equations correspond to the KdV type or the
mKdV type Bicklund transformations. Equations (2.18a) and (2.18b) are equations for the KdV type Backlund
transformation and equation (2.17) is the equation for the mKdV type Bicklund transformation.

We expect that the higher rank Lie groups and higher genus algebraic functions appear in the higher
dimensional and the higher symmetric soliton system.

10



10P Publishing

J. Phys. Commun. 4(2020) 015014 M Hayashi et al

ORCIDiDs

Masahito Hayashi @ https: /orcid.org/0000-0002-0438-692X

References

[1] Gardner CS, Greene ] M, Kruskal M D and Miura RM 1967 Phys. Rev. Lett. 19 1095
[2] Lax P D 1968 Commun. Pure and Appl. Math. 21 467
[3] ZakharovV Eand Shabat A B 1972 Sov. Phys. JETP 34 62
[4] Ablowitz M ], Kaup DJ, Newell A Cand Segur H 1973 Phys. Rev. Lett. 31 125
[5] SasakiR 1979 Nucl. Phys. B 154 343
[6] Wahlquist H D and Estabrook F B 1973 Phys. Rev. Lett. 31 1386
[7] WadatiM 1974 J. Phys. Soc. Jpn. 36 1498
[8] Konno K and Wadati M 1975 Prog. Theor. Phys. 53 1652
[9] Hirota R 1974 Prog. Theor. Phys. 52 1498
[10] HirotaR 1971 Phys. Rev. Lett. 27 1192
[11] HirotaR 1972 ]J. Phys. Soc. Jpn. 33 1456
[12] HirotaR 1972 ]. Phys. Soc. Jpn. 33 1459
[13] Hirota R 2004 Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[14] SatoM 1981 RIMS Kokyuroku (Kyoto University) 439 30
[15] Lepowsky J and Wilson R L 1978 Comm. Math. Phys. 62 43
[16] Date E, Kashiwara M and Miwa T 1981 Proc. Japan Acad. 57A 387
[17] Weiss ] 1983 J. Math. Phys. 24 1405
[18] Wazwaz A-M 2009 Partial Differential equations and Solitary Waves Theory (Berlin Heidelberg: Springer)
[19] Kaur L and Wazwaz A-M 2019 Romamian Reports in Physics 71 102
[20] Kaur Land Wazwaz A-M 2018 Phys. Scr. 93 075203
[21] Kaur L and Wazwaz A-M 2018 Nonlinear Dyn. 94 2469
[22] Kaur L and Gupta RK 2013 Math. Methods Appl. Sci. 36 584
[23] Hayashi M, Shigemoto K and Tsukioka T 2019 Mod. Phys. Lett. A 34 1950136
[24] Hayashi M, Shigemoto K and Tsukioka T 2019 J. Phys. Commun. 3 045004
[25] Hayashi M, Shigemoto K and Tsukioka T 2019 J. Phys. Commun. 3 085015
[26] Shigemoto K 2011 The elliptic function in statistical integrable models Tezukayama Academic Review 17 15
[27] Shigemoto K 2013 The elliptic function in statistical integrable models II Tezukayama Academic Review 19 1
[28] Bianchi L 1899 Vorlesungen iiber Differenzialgeometrie (Leipzig: Teubner) p 418
[29] Rogers Cand Shadwick W F 1982 Bdicklund Transformation and their Applications (New York: Academic Press, Inc)
[30] Rogers Cand Schief W K 2002 Béicklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory
(Cambridge: Cambridge University Press)
[31] Bowcock P, Corrigan E and Zambon C 2004 Int. ]. Mod. Phys. A 19 82-91 (Supplement Issue 2)
[32] Corrigan E and Zambon C 2009 J. Phys. A 42 475203
[33] Gomes] F, Retore A Land Zimerman A H2016 J. Phys. A 49 504003
[34] Spano N1, Retore AL, Gomes ] F, Aguirre A R and Zimerman A H 2017 The sinh-Gordon defect matrix generalized for n defects
Physical and Mathematical Aspects of Symmetries. Proc. of the XXXI International Colloquium in Group Theoretical Methods in Physics
(New York: Springer) pp 73—8 [arXiv:1610.01856 [nlin.SI]]
[35] Crampin M 1978 Phys. Lett. A66 170

11


https://orcid.org/0000-0002-0438-692X
https://orcid.org/0000-0002-0438-692X
https://orcid.org/0000-0002-0438-692X
https://orcid.org/0000-0002-0438-692X
https://doi.org/10.1103/PhysRevLett.19.1095
https://doi.org/10.1002/cpa.3160210503
https://doi.org/10.1103/PhysRevLett.31.125
https://doi.org/10.1016/0550-3213(79)90517-0
https://doi.org/10.1103/PhysRevLett.31.1386
https://doi.org/10.1143/JPSJ.36.1498
https://doi.org/10.1143/PTP.53.1652
https://doi.org/10.1143/PTP.52.1498
https://doi.org/10.1103/PhysRevLett.27.1192
https://doi.org/10.1143/JPSJ.33.1456
https://doi.org/10.1143/JPSJ.33.1459
https://doi.org/10.1007/BF01940329
https://doi.org/10.3792/pjaa.57.387
https://doi.org/10.1063/1.525875
https://doi.org/10.1088/1402-4896/aac8b8
https://doi.org/10.1007/s11071-018-4503-8
https://doi.org/10.1002/mma.2617
https://doi.org/10.1142/S0217732319501360
https://doi.org/10.1088/2399-6528/ab12f8
https://doi.org/10.1088/2399-6528/ab3d99
https://doi.org/10.1142/S0217751X04020324
https://doi.org/10.1142/S0217751X04020324
https://doi.org/10.1142/S0217751X04020324
https://doi.org/10.1088/1751-8113/42/47/475203
https://doi.org/10.1088/1751-8113/49/50/504003
http://arxiv.org/abs/1610.01856
https://doi.org/10.1016/0375-9601(78)90646-1

	1. Introduction
	2. Hirota forms and their Bäcklund transformations
	2.1. KdV equation
	2.2. mKdV equation
	2.3. sinh-Gordon equation
	2.4. Cyclic symmetric N-soliton solutions via Hirota form Bäcklund transformations

	3. Addition formulae for the common KdV type Bäcklund transformation
	3.1. General formula

	4. Non-cyclic symmetric 3-soliton solutions of the mKdV equation
	5. Summary and discussions
	References



