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Abstract
We study to unify soliton systems, KdV/mKdV/sinh-Gordon, through SO(2,1)≅GL(2, )≅
Möbius group point of view, whichmight be a keystone to exactly solve some special non-linear
differential equations. If we construct theN-soliton solutions through theKdV type Bäcklund
transformation, we can transformdifferent KdV/mKdV/sinh-Gordon equations and the Bäcklund
transformations of the standard form into the same commonHirota form and the same common
Bäcklund transformation except the equationwhich has the time-derivative term. The difference is
only the time-dependence and themain structure of theN-soliton solutions has the same common
form for KdV/mKdV/sinh-Gordon systems. Then theN-soliton solutions for the sinh-Gordon
equation is obtained just by the replacement fromKdV/mKdVN-soliton solutions.We also give
general addition formulae coming from theKdV type Bäcklund transformationwhich plays not only
an important role to construct the trigonometric/hyperbolicN-soliton solutions but also an essential
role to construct the ellipticN-soliton solutions. In contrast to theKdV type Bäcklund transformation,
thewell-knownmKdV/sinh-Gordon type Bäcklund transformation gives the non-cyclic symmetric
N-soliton solutions.We give an explicit non-cyclic symmetric 3-soliton solution for KdV/mKdV/
sinh-Gordon equations.

1. Introduction

Studies of soliton systems have a long history. The discovery of the soliton systemby the inverse scattering
method [1–3] has given the breakthrough to exactly solve some special non-linear equations. There have been
many interesting developments to understand soliton systems such as the AKNS formulation [4, 5], the
Bäcklund transformation [6–9], theHirota equation [9–13], the Sato theory [14], the vertex construction of the
soliton solution [15, 16], and the Schwarzian typemKdV/KdV equation [17]. For the construction ofN-soliton
solutions of various soliton equations, see theWawzaz’s nice textbook[18]. Even now the soliton theory is quite
actively studied in applying to the various non-linear phenomena such as (3+1)-dimensional lump solution and
so on. For example, seeKaur and/orWazwaz’s recent interesting papers [19–22].

In our recent papers, we have studied to unify soliton systems such asKdV/mKdV/sinh-Gordon equations
fromSO(2,1)≅GL(2, )≅Möbius group point of view [23, 24].We expect that the various approaches above
[1–17] are connected through the Lie group.We have also formulated soliton systems in a unifiedmanner
through the Einsteinmanifold of AdS2 in the Riemann geometry, which has SO(2,1) Lie group structure [25].

We refer a soliton system as that for special types of non-linear differential equations, which have not only
exact solutions but alsoN-soliton solutions constructed systematically fromN pieces of 1-soliton solutions via
algebraic addition formulae coming from the Bäcklund transformation. As a result, an expression of theN-
soliton solutions becomes a rational function of polynomial ofmany 1-soliton solutions. In the representation
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of the addition formula of SO(2,1)≅GL(2, )≅Möbius group, algebraic functions such as trigonometric/
hyperbolic/elliptic functions5 come out.We consider SO(2,1)≅GL(2, )≅Möbius group as the keystone for
the soliton system. In the group theoretical point of view, we can connect and unify various approaches for
soliton systems. As theMöbius group is the rational transformation, it is natural to use rationalHirota variables.
Furthermore, as the Bäcklund transformation can be considered as the self-gauge transformation, it is natural to
use Bäcklund transformation as some addition formula of theMöbius group in our Lie group approach.

The Bäcklund transformation goes back to Bianchi [28] for the sine-Gordon equation. It is one of the strong
tools to constructN-soliton solutions. For the old and recent development of the Bäcklund transformation, see
the Rogers-Shadowick’s and the Rogers-Schief’s nice textbooks [29, 30]. The recent hot topics of the Bäcklund
transformation is the application of Bäcklund transformation to the integrable defect [31–34].

In this paper,N-soliton solutions would be categorized in terms of two types of the Bäcklud transformation.
We showone is thewell-knownKdV type Bäcklud transformation that provides cyclic symmetricN-soliton
solutions, while another is thewell-knownmKdV/sinh-Gordon type Bäcklund transformation that gives non-
cyclic symmetric solutions.We also give a general addition formula of theKdV type Bäcklund transformation.
An explicit non-cyclic symmetric 3-soliton solution for KdV/mKdV/sinh-Gordon equationwould be exposed.
We are interested in themathematical structure of the integrable soliton system, which hasN-soliton solutions,
we did notmention the physical applications in this paper.

2.Hirota forms and their Bäcklund transformations

2.1. KdV equation
TheKdV equation is given by

( )- + =u u uu6 0. 2.1t xxx x

Introducing the τ-function by ( )t= = -u z 2 logx xx, the KdV equation becomes

⎡
⎣⎢

⎤
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( ) · ( )t t
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- +
=
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D D D
0, 2.2t x x
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whereDt,Dx areHirota derivatives defined by ( ) · ( ) ( )( ) ( )= ¶
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- ¶
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k

x x
k . Then theKdV equation

turns to be so-calledHirota form

( ) · ( )t t t- + =D D D C , 2.3t x x
4

1
2

withC1 as an integration constant. The ¹C 01 case corresponds to the elliptic soliton case.6Herewe take the
special case i.e. =C 01 to consider only the trigonometric/hyperbolic soliton solution, andwe consider the
special KdV equation in the form

( ) · ( )t t- + =D D D 0. 2.4t x x
4

One soliton solution for this special Hirota typeKdV equation is given by

t = + = + +X a x a t c1 e , with .X
i i i i

3i

TheHirota type Bäcklund transformations in this case are given by
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In fact, using the following relation [9],
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we can show that if τ is the solution of equation (2.4) and if we use equations (2.5a) and (2.5b) as the Bäcklund
transformations, then t¢ satisfies

5
In the representation of the addition formula of the SO(3) group, the elliptic function comes out [26, 27].

6
In the static case, we take the τ-function as theWeierstrass’sσ-function, then ·t t =D Cx

4
1 becomesÃ = Ã - C6 2xx

2
1 , whichmeans

thatC1=g2 in the standard notation.

2
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( ) · ( )t t- + ¢ ¢ =D D D 0, 2.7t x x
4

whichmeans that t¢ is a new solution.
Wenow show that theHirota type Bäcklund transformation equation (2.5b) relates to the followingwell-

knownKdV type Bäcklund transformation

( ) ( )+ ¢ = - + - ¢z z
a

z z
2

1

2
. 2.8x x

2
2

Writing down equation (2.5b)more explicitly,
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, 2.9x xx x x xx
2

2

and defining
t
t

= -z 2 x and
t
t

¢ = -
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z 2 x , we can organize equation (2.8) as
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which leads the following equivalence

· ⟺ ( ) ( )t t t t¢ = ¢ ¢ + = - + ¢ -D
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In the previous paper [23], wemake the connection between theKdV equation and themKdV equation
through theMiura transformation =  +u v vx

2 with the commonHirota type variables f and g, that is,
( )t t= - = u f g2 log ,xx in theKdV equation and = =v w w g f, tanh 2x in themKdV equation. In

order to connect the KdV equationwith themKdV equation, wewould like to take variables f and g as
t t=  ¢ = ¢  ¢f g f g, . For theN-soliton solution, f and g are an even and an odd part of aN-soliton solution
under changing an overall sign of each 1-soliton solution.We refer f and g asHirota form variables. In order to
constructN-soliton solutions, only one of the Bäcklund transformations equation (2.5b) is enough, which is
given by

( ) · ( ) ( )( ) ( )¢  ¢  = ¢  ¢ D f g f g
a

f g f g
4

. 2.12x
2

2

Wecan simplify equation (2.4) by using f and g variables. By using the soliton number unchanging self
Bäcklund transformation, i.e. ¢ = ¢ = -f f g g, , and a=0 in equation (2.12), we have

( · · ) ( )- =D f f g g 0. 2.13x
2

While by using = +p f g and = -q f g , we obtain an identity

( ) · ) ( ) · )
[ ( ) · ) · ( ( · · ) · ( ( · )] ( )

- + - - +

= - + + -

D D D p p q p D D D q q

D D D p q pq D f f g g D f g2 12 . 2.14

t x x t x x

x t x x x

4 2 2 4

3 2

Sincewe have ( ) ·- + =D D D p p 0t x x
4 and ( ) ·- + =D D D q q 0t x x

4 from equation (2.4)with τ=f±g, if we
use equation (2.13), we have ( ) · ( )( · )- + = - - + =D D p q D D f g2 0t x t x

3 3 . In this way, equation (2.4) is
simplified in the following forms

( ) · ( )- + =D D f g a0, 2.15t x
3

( · · ) ( )- =D f f g g b0. 2.15x
2

Wecall equation (2.15b) as a structure equation, which determines the structure ofN-soliton solutions.While
we refer equation (2.15a) as a dynamical equation, which yields time dependence ofN-soliton solutions. In next
subsection, wewill see that these equations are the same as those in the specialmKdV equation.

2.2.mKdV equation
ThemKdV equation is given by

( )- + =v v v v6 0. 2.16t xxx x
2

3
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Defining v=wx and ( ) =w g ftanh 2 , we get

( ) ·
·

( · · ) ( )- +
=

-
-

D D f g

D f g

D f f g g
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3 . 2.17t x

x

x
3 2
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Wenow consider the following special case

( ) · ( )- + =D D f g a0, 2.18t x
3

( · · ) ( )- =D f f g g b0. 2.18x
2

Thenwe have the common structure equation (2.18b) in themKdV equation as that of equation (2.15b) in the
KdV equation. Further we have the commondynamical equation (2.18a) in themKdV equation as that of
equation (2.15a) in theKdV equation.

One soliton solution for this special Hirota typemKdV equation (2.18a) and (2.18b) is given by

= = = + +f g X a x a t c1, e , with .X
i i i i

3i

The Bäcklund transformation for the structure equation (2.18b) is given by [9]
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wherewe have used · = - =D F F F F FF 0x x x . This relationmeans that if equations (2.18b), (2.19a), and
(2.19b) are satisfied, we have ( · · )¢ ¢ - ¢ ¢ =D f f g g 0x

2 , that is, if the set ( f,g) is a solution, the set ( )¢ ¢f g,
produces a new solution by using the Bäcklund transformation.

We can find equivalent forms for the Bäcklund transformations (2.19a) and (2.19b) [9]. First, we consider
the following relation
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wherewe have used the Bäcklund transformations (2.19a) and (2.19b). Secondly, we obtain
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wherewe have used the structure equations ( · · )¢ ¢ - ¢ ¢ =D f f g g 0x
2 and ( · · )- =D f f g g 0x

2 and also the
Bäcklund transformations (2.19a) and (2.19b). Combining equations (2.21) and (2.22), we arrive at

( ) · ( ) ( )( ) ( )¢  ¢  = ¢  ¢ D f g f g
a

f g f g
4
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2

Thenwe have the commonHirota formBäcklund transformation equation (2.23) in themKdV equation as that
of equation (2.12) in theKdV equation. This is the reasonwhywe call this as the commonKdV typeHirota form
Bäcklund transformation.

Conversely, if equation (2.23) is satisfied, we have
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which give equation (2.19a) and equation (2.19b) by properly choosing the sign of a. Thenwe conclude the
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The equation (2.23) is theHirota type Bäcklund transformation for the specialmKdV structure
equation (2.18b).

Nowwe focus on yet anothermKdV type Bäcklund transformation [9]
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2 2 2 2

2 2 2 2
2 2

2 2 2 2 2 2

2 2

2 2

2 2 2 2

2 2 2 2

whichmeanswe have equation (2.27) from equations (2.19a) and (2.19b), but the opposite is not always shown.
In fact, equation (2.27) is the Bäcklund transformation of the originalmKdV equation (2.17) but not the
Bäcklund transformation of the specialmKdV equations equations (2.18a) and (2.18b).

By theKdV typeHirota formBäcklund transformation equation (2.23), we have the cyclic symmetricN-
soliton solutions. On the other hand, by themKdV type Bäcklund transformation equation (2.27), we have the
non-cyclic symmetricN-soliton solutions. In section 4, we give an explicit non-cyclic symmetric 3-soliton
solution frommKdV type Bäcklund transformation equation (2.27).
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2.3. sinh-Gordon equation
The sinh-Gordon equation is given by

( )q q= sinh . 2.30xt

Defining ( )q = g ftanh 4 , we obtain

· ( · · ) ( )- =
+

+
D D f g

fg

D D f f g g

f g
1 . 2.31t x t x

2 2

Wehere consider the special case:

· ( )=D D f g fg a, 2.32t x

( · · ) ( )+ =D D f f g g b0. 2.32t x

Taking the following relation into account,

[ ( · · ) · ( ) ( ( · ) ) · ] [( ( · · ) · ( )]
( )

+ + - - = - -D D D f f g g f g D D f g fg fg D D f f g g f g4 ,

2.33
x t x t x t x

2 2 2 2 2

we take

· ( )=D D f g fg a, 2.34t x

( · · ) ( )- =D f f g g b0, 2.34x
2

as the special sinh-Gordon equation instead of equations (2.32a) and (2.32b). The above structure
equation (2.34b) in the sinh-Gordon equation is the same as that of equation (2.15b) in theKdV equation and
equation (2.18b) in themKdV equation. Then, applying the samemethod as that of themKdV equation, we have
the commonKdV typeHirota formBäcklund transformation (2.19a) and (2.19b), and equivalently (2.23) for
KdV/mKdV/sinh-Gordon equations.

One soliton solution for this special type sinh-Gordon equation is given by

ˆˆ= = = + +f g X a x t a c1, e , with .X
i i i ii

From equations (2.19a) and (2.19b), we have anothermKdV type Bäcklund transformation by replacing
qw 2 in themKdV type Bäcklund transformation equation (2.27). This is because the relation

( ) =w g ftanh 2 in themKdV equation corresponds to ( )q = g ftanh 4 in the sinh-Gordon equation. Then
from equations (2.19a) and (2.19b), we have

⎛
⎝⎜

⎞
⎠⎟ ( )q q q q¢

+ =
¢
-a

2 2
sinh

2 2
, 2.35x x

but the opposite is not always satisfied. In fact, equation (2.35) is the Bäcklund transformation for the original
sinh-Gordon equation (2.31) but not the Bäcklund transformation of the special sinh-Gordon equation
equations (2.34a) and (2.34b).

2.4. Cyclic symmetricN-soliton solutions viaHirota formBäcklund transformations
Let usfirst summarize ourfindings in the previous subsections. By using theHirota form variables f and g, we can
treat the special KdV/mKdV/sinh-Gordon equations in a unifiedmanner:

( ) ( )t t= = - = u z f g aKdV Eq.: 2 log , , 2.36x xx

( )= =v w
w g

f
bmKdV Eq.: , tanh

2
, 2.37x

( )q
- =

g

f
csinh Gordon Eq.: tanh

4
. 2.38

Thewell-knownKdV type Bäcklund transformation is equivalent to theKdV typeHirota formBäcklund
transformation:

( ) ⟺ ( ) · ( ) ( ) · ( ) ( )¢ + = - +
¢ -

¢  ¢  = ¢  ¢ z z
a z z

D f g f g
a

f g f g
2 2 4

. 2.39x x x

2 2
2

2

Wehave the commonKdV typeHirota formBäcklund transformation equation (2.39) for the special KdV
equation (2.15a) and equation (2.15b), for the specialmKdV equation equations (2.18a) and (2.18b), and for the
special sinh-Gordon equation equations (2.34a) and (2.34b) for the common structure equation
equations (2.15b), (2.18b) and (2.34b). AnothermKdV type Bäcklund transformation equation (2.27) is the
Bäcklund transformation of the originalmKdV equation (2.17) but not the Bäcklund transformation of the
specialmKdV equation (2.18a) and equation (2.18b).
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In our previous paper [23], we have demonstrated how to constructN-soliton solutions fromN pieces of
1-soliton solutions by usingKdV type Bäcklund transformation equation (2.8). Herewe demonstrate how to
construct the cyclicN-soliton solutions forN=2 case.We start from the addition formula of the Bäcklund
transformation,

( )=
-
-

z
a a

z z
, 2.4012

1
2

2
2

1 2

wherewe choose

= = - = + +z z a X X a x a t c0, tanh 2, with .i i i i i i i0
3

In order tofind aKdV two-soliton solution, we simply take the space derivative by using =u z x12 12, .While, if we
want tofind a 2-soliton solution for themKdV/sinh-Gordon equation, wemust know f12 and g12 from z12.We
canfind f12 and g12 from t t= - +z 2 const.x12 12, 12 with t = f g12 12 12 [23], but it becomes complicated for
the generalN-soliton solutions. However, it is easier tofind the τ12-function directly from theHirota equation
( ) ·t t- + =D D D 0t x x

4
12 12 in the standardway [13, 18], which gives

( )t = f g 2.4112 12 12

with

( )
( )

( )= +
-
+

f
a a

a a
a1 e e , 2.42X X

12
1 2

2

1 2
2

1 2

( )= +g be e , 2.42X X
12

1 2

where f and g are even and odd parts of the τ12 function under  -e eX Xi i. For a 2-soliton solution ofmKdV
equation, we have ( ) =w g ftanh 212 12 12 [18]. For a soliton solution of sinh-Gordon equation, using the
dynamical equation (2.34a), we replace ˆX Xi i with ˆ = + +X a x t a ci i i i, because

ˆ= =f g1, eXi is a
1-soliton solution of · =D D f g fgt x . Then the 2-soliton solution of sinh-Gordon equation is given by

ˆ ˆq = g ftanh 412 [18], where ˆ ( ) ( ) ˆ ˆ= + - +f a a a a1 e eX X
12 1 2

2
1 2

2 1 2, ˆ ˆ ˆ= +g e eX X
12

1 2.
In general, we have the cyclic symmetricN-soliton solutions [18] by using the commonKdV type Bäcklund

transformation.

3. Addition formulae for the commonKdV type Bäcklund transformation

In our approach, we construct cyclic symmetricN-soliton solutions by an algebraic addition formula coming
from thewell-knownKdV type Bäcklund transformation, which is equivalent to the commonKdV type
Bäcklund transformation. This addition formula is applicable also to construct the ellipticN-soliton solutions
and therewill be no other way to constructN-soliton solutions for the elliptic case [24]. In order to constructN-
soliton solutions for trigonometric/hyperbolic/elliptic soliton solutions, we give the result of the general
addition formula here.

Let usfirst review tofind a 2-soliton solution by the commonKdV type Bäcklund transformation. Assuming
the commutativity, z12=z21, we have

( ) ( )+ = - +
-

z z
a z z

a
2 2

, 3.1x x1, 0,
1
2

1 0
2

( ) ( )+ = - +
-

z z
a z z

b
2 2

, 3.1x x2, 0,
2

2
2 0

2

( ) ( )+ = - +
-

z z
a z z

c
2 2

, 3.1x x12, 1,
2

2
12 1

2

( ) ( )+ = - +
-

z z
a z z

d
2 2

. 3.1x x12, 2,
1
2

12 2
2

Making equations (3.1a)–(3.1b)–(3.1c)+equation (3.1d), derivative terms are canceled out andwe have

( )= +
-
-

z z
a a

z z
. 3.212 0

1
2

2
2

1 2

Wecan check that equation (3.2) satisfies equations (3.1a)–(3.1d), whichmeans that it is commutative in this
level. Recursively, we have

( ) 
 

= +
-
-

- - -
-

- - -
z z

a a

z z
. 3.3n n n n

n n

n n n n
12 , 2, 1, 12 , 2

1
2 2

12 , 2, 1 12 , 2,

We list variousN-soliton solutions obtained through the addition formulae:
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• (2+1)-soliton solution

( )= +
-
-

= +z z
a a

z z
z

G

F
, 3.412 0

1
2

2
2

1 2
0

12

12

with

( )= -F z z a, 3.512 1 2

( )= -G a a b. 3.512 1
2

2
2

• 3-soliton solution

( )= +
-
-

=z z
a a

z z

G

F
, 3.6123 1

2
2

3
2

12 13

123

123

with

( ) ( ) ( )
!

( ) ( )å= - + - + - = -
=

F a a z a a z a a z a a z a
1

2
, 3.7

i j k

ijk
i j k123 1

2
2

2
3 2

2
3

2
1 3

2
1
2

2
, , 1

3
2 2

( ) ( ) ( ) )
!

( ) ( )å= - - + - + - = - -
=

G a a z z a a z z a a z z a a z z b
1

2
. 3.7

i j k

ijk
i j i j123 1

2
2

2
1 2 2

2
3

2
2 3 3

2
1
2

3 1
, , 1

3
2 2

• (4+1)-soliton solution

( )= +
-
-

= +z z
a a

z z
z

G

F
, 3.81234 12

3
2

4
2

123 124
0

1234

1234

with

( !)
( )( ) ( )å= - -

=

F a a a a z z a
1

2
, 3.9

i j k l

ijkl
i j k l i j1234 2

, , , 1

4
2 2 2 2

!
( ) ( )å= - -

=

G a a a a z b
1

2
. 3.9

i j k l

ijkl
i j i j k1234

, , , 1

4
2 2 2 2

• 5-soliton solution

( )= +
-
-

=z z
a a

z z

G

F
, 3.1012345 123

4
2

5
2

1234 1235

12345

12345

with

! !
( )[( )( )( )] ( )å= - - - -

=

F a a a a a a a a z z a
1

3 2
, 3.11

i j k l m

ijklm
i j k l l m m k i j12345

, , , , 1

5
2 2 2 2 2 2 2 2

! !
( )[( )( )( )] ( )å= - - - -

=

G a a a a a a a a z z z b
1

3 2
, 3.11

i j k l m

ijklm
i j k l l m m k k l m12345

, , , , 1

5
2 2 2 2 2 2 2 2

where  i i in1 2 is a Levi-Civita symbol with  = 1n12 .

3.1. General formula
Wefirst define the following quantity

( ) ( ) ( ) å L = - P =
=
<

=

i i i a a i i i a, , , , , , , ,n
p q
p q

n

i i n
p

n

i1 2
, 1

2 2
1 2

1

2
p q p

wherewe setΛ(i1, i2)=1. The general formula is expected to be given in the following form:

• ((2n)+1)-solution

( )



= +z z

G

F
, 3.12n

n

n
12 2 0

12 2

12 2
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with

( !)
( ) ( ) ( )  

 å= L LF
n

i i i j j j z z z a
1

, , , , , , , 3.13n
i i i j j j

n n i i i12 2 2 1 2 1 2
n n

n
1 2 1 2

1 2

( )
!( )!

( ) ( ) ( )  
 å= -

-
-

L P
-

G
n n

i i i i i i z z z b
1

1
, , , , , , . 3.13n

n
i i i j j j

n n j j j12 2 1 2 1 2
n n

n
1 2 1 2

1 2 1

• (2n+1)-solution

( )



=+

+

+
z

G

F
, 3.14n

n

n
12 2 1

12 2 1

12 2 1

with

!( )!
( ) ( ) ( )  

 å=
+

´ L L+ ++F
n n

i i i j j j j z z z a
1

1
, , , , , , , , 3.15n

i i i j j j j
n n n i i i12 2 1 1 2 1 2 1

n n n
n

1 2 1 2 1
1 2

( )
!( )!

( ) ( ) ( )  
 å=

-
+

´ L L+ ++
+

G
n n

i i i j j j j z z z b
1

1
, , , , , , , . 3.15n

n
i i i j j j j

n n n j j j12 2 1 1 2 1 2 1
n n n

n
1 2 1 2 1

1 2 1

Wehave checked these formulae up to z1234567 byMathematica.

4.Non-cyclic symmetric 3-soliton solutions of themKdV equation

Herewe consider that anothermKdV type Bäcklund transformation equation (2.27) of the originalmKdV
equation gives non-cyclic symmetric soliton solutions.We demonstrate on that by constructing a 3-soliton
solution.

AnothermKdV type Bäcklund transformation of themKdV equation is given by [7, 8]

( ) ( )¢ + = ¢ -w w a w wsinh , 4.1x x

( ) ( ) ( ) ( )¢ + = - - ¢ - + - ¢ -w w a w aw w w a aw w w2 2 cosh 2 sinh . 4.2t t x xx x
2 3 2

This Bäcklund transformation can be considered as a self gauge transformation of theGL(2, ) in the AKNS
formalism [23, 35].

Assuming the commutativityw12=w21, we have

( ) ( )+ = -w w a w w asinh , 4.3x x1, 0, 1 1 0

( ) ( )+ = -w w a w w bsinh , 4.3x x2, 0, 2 2 0

( ) ( )+ = -w w a w w csinh , 4.3x x12, 1, 2 12 1

( ) ( )+ = -w w a w w dsinh . 4.3x x12, 2, 1 12 2

Manipulating equations (4.3a)–(4.3b)–(4.3c)+equation (4.3d), derivative terms are canceled out, so that we have
an algebraic relation

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )-

= -
+
-

-w w a a

a a

w w
tanh

2
tanh

2
. 4.412 0 1 2

1 2

1 2

This equation satisfies equations (4.3a)–(4.3d), so thatw12 can be new solution.Notice that from the time-
dependent 1-soliton solutionsw0,w1, andw2, we obtain the time-dependent new solutionw12, so that
equation (4.2) is not necessary to construct the new solution. By using the above Bäcklund transformation, we
can construct a new soliton solutionw12 from1-soliton solutionsw1,w2, andw0.

Taking that =w 00 is a trivial solution into account, we have 2-soliton solutionsw12, andw13 by using
1-soliton solutionsw1,w2, andw3 through =wtanh 2 ei

Xi with = + +X a x a t ci i i i
3 ,

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )
( ) ( )

( )= -
-

= -
-

-
w

a

w w

a

w w

w w
tanh

2

1
tanh

2

1 tanh 2 tanh 2

1 tanh 2 tanh 2
, 4.512

12

1 2

12

1 2

1 2

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )
( ) ( )

( )= -
-

= -
-

-
w

a

w w

a

w w

w w
tanh

2

1
tanh

2

1 tanh 2 tanh 2

1 tanh 2 tanh 2
, 4.613

13

1 3

13

1 3

1 3

with ( ) ( )= - + = -a a a a a aij i j i j ji.
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Next, let us construct a 3-soliton solution. Assuming the commutativityw123=w132, we have

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )-

= -
+
-

-w w a a

a a

w w
tanh

2
tanh

2
. 4.7123 1 2 3

2 3

12 13

Weexpress the abovewith ( )=t wtanh 21 1 , ( )=t wtanh 22 2 , and ( )=t wtanh 23 3 , and

⎜ ⎟⎛
⎝

⎞
⎠ ( ) ( ) ( )å å= = =

= =

w g

f
f c p t g c q ttanh

2
, with , . 4.8

i
i i

i
i i

123 123

123
123

0

7

123
0

7

In the expression above, we denote

= = - + - = - - +c a a a c a a a c a a a a a, , ,0 12 13 23 1 12 13 23 2 12 13 23 13 23

= - + + = - = = - = - +c a a a a a c a c a c a c a a a a a, , , , ,3 12 13 23 12 23 4 23 5 12 6 13 7 12 13 23 12 13

= = = = = = = =p p t p t t p t t p t t p t t p t t p t t t1, , , , , , , ,0 1 1
2

2 1 2 3 1 3 4 2 3 5 1
3

2 6 1
3

3 7 1
2

2 3

= = = = = = = =q t t t q t t t q t t q t t q t q t q t q, , , , , , , 1,0 1
3

2 3 1 1 2 3 2 1
2

3 3 1
2

2 4 1
3

5 3 6 2 7

which satisfy ( )= =p q t t t i 0, 1, ,7i i 1
3

2 3 .We can observe that ( )wtanh 2123 is not cyclic symmetric in t1, t2,
and t3. This is the non-cyclic symmetric 3-soliton solution of themKdV equation derived from anothermKdV
type Bäcklund transformation.

The non-cyclic symmetric 3-soliton solution for the sinh-Gordon equation can be obtained by replacing
( ) ( )qwtanh 2 tanh 4123 123 and ˆ ˆq= =  = =t w ttanh 2 e tanh 4 ei i

X
i i

X. i i.We can connect themKdV
equationwith the sinh-Gordon equation in another way. If we putw=c1 in equation (4.2), we have

( )¢ = ¢ -w a w csinhx 1 and ( )¢ = ¢ -w a w csinht
3

1 , which gives the sinh-Gordon equation ( )Q = Qa sinhxt
4

through the relation ( )Q = ¢ -w c2 1 , and the a-dependence can be eliminated by the redefinition of x x a,
and t t a3.

5. Summary anddiscussions

Weconsider the reasonwhy special non-linear differential equations, such as KdV/mKdV/sinh-Gordon
equations, have the systematicN-soliton solution is because such soliton equations have SO(2,1)≅GL(2, )≅
Möbius group structure. The systematicN-soliton solutions are given as the result of the addition formula of
these Lie groups. As the representation of the addition formula of the Lie groups, the algebraic function such as
trigonometric/hyperbolic/elliptic functions appear.

We have studied to unify the soliton system through the common addition formula coming from the
commonKdV typeHirota formBäcklund transformation ( ) · ( ) ( )( )¢  ¢  = ¢  ¢ D f g f g a f g f g 4x

2 2 ,
which is equivalent to thewell-knownKdV type Bäcklund transformation ( )¢ + = - + ¢ -z z a z z2 2x x

2 2

where [ ( )] [ ( )]= -  ¢ = - ¢  ¢z f g z f g2 log , 2 logx x. If we construct theN-soliton solutions through theKdV
type Bäcklund transformation, we can transformdifferent KdV/mKdV/sinh-Gordon equations andBäcklund
transformations of the standard form into the same commonHirota form andBäcklund transformation,
equations (2.12), (2.15b), (2.23), (2.18b) and (2.34b) except the equationwhich has the time-derivative term. In
KdV/mKdVequation, the equationwhich has the time-derivative termbecomes the same equations (2.15a) and
(2.18a) but it is different from sinh-Gordon’s one equation (2.34a). The difference is only the time-dependence
and themain structure of theN-soliton solutions has the same common form forKdV/mKdV/sinh-Gordon
systems. Then theN-soliton solutions for the sinh-Gordon equation is obtained just by the replacement

+  +a x a t a x t ai i i i
3 fromKdV/mKdVN-soliton solutions.

We have also given the general addition formula of this commonKdV typeHirota formBäcklund
transformation. This addition formula is applicable also to construct the ellipticN-soliton solutions and there
will be no other way to constructN-soliton solutions for the elliptic case [24]. Then it is useful to constructN-
soliton solutions for trigonometric/hyperbolic/elliptic soliton solutions.

While by using anothermKdV/sinh-Gordon type Bäcklund transformation ( )¢ + = ¢ -w w a w wsinhx x ,
we have the non-cyclic symmetric solution. For the non-cyclic symmetricN-soliton solutions for theKdV
equation, we can construct that from themKdVnon-cyclic symmetricN-soliton solutions through theMiura
transformation =  +u v vx

2.We have given the explicit non-cyclic symmetric 3-soliton solutixon for KdV/
mKdV/sinh-Gordon equations. In the case of themKdV type Bäcklund, we add the comment to connect the
mKdV equationwith the sinh-Gordon equation at the end of section 4.

We clarify what kind ofHirota typeKdV/mKdV/sinh-Gordon equations correspond to theKdV type or the
mKdV type Bäcklund transformations. Equations (2.18a) and (2.18b) are equations for theKdV type Bäcklund
transformation and equation (2.17) is the equation for themKdV type Bäcklund transformation.

We expect that the higher rank Lie groups and higher genus algebraic functions appear in the higher
dimensional and the higher symmetric soliton system.
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