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Abstract

We present a novel, relativistic accretion model for accretion onto a Schwarzschild black hole. This consists of a
purely hydrodynamical mechanism in which, by breaking spherical symmetry, a radially accreting flow transitions
into an inflow-outflow configuration. The spherical symmetry is broken by considering that the accreted material is
more concentrated on an equatorial belt, leaving the polar regions relatively under-dense. What we have found is a
flux-limited accretion regime in which, for a sufficiently large accretion rate, the incoming material chokes at a
gravitational bottleneck and the excess flux is redirected by the density gradient as a bipolar outflow. The threshold
value at which the accreting material chokes is of the order of the mass-accretion rate found in the spherically
symmetric case studied by Bondi and Michel. We describe the choked accretion mechanism first in terms of a
general relativistic, analytic toy model based on the assumption of an ultrarelativistic stiff fluid. We then relax this
approximation and, by means of numerical simulations, show that this mechanism can operate also for general
polytropic fluids. Interestingly, the qualitative inflow-outflow morphology obtained appears as a generic result of
the proposed symmetry break, across analytic and numeric results covering both the Newtonian and relativistic
regimes. The qualitative change in the resulting steady-state flow configuration appears even for a very small
equatorial-to-polar-density contrast (∼0.1%) in the accretion profile. Finally, we discuss the applicability of this
model as a jet-launching mechanism in different astrophysical settings.

Unified Astronomy Thesaurus concepts: Black hole physics (159); Astrophysical black holes (98); Accretion (14);
Bondi accretion (174); Hydrodynamical simulations (767); Analytical mathematics (38); Relativistic fluid
dynamics (1389); General relativity (641); Jets (870)

1. Introduction

Astrophysical jets are found in vastly different scenarios:
from the parsec scales of the H-H objects associated with
young stellar systems (Hartigan 2009), to the megaparsec
scales of the radio lobes that accompany some radio galaxies
and other active galactic nuclei (AGNs; Beckmann &
Shrader 2012). They are also inferred in connection with
high-energy phenomena such as long gamma ray bursts
(GRBs) following the collapse of a massive star (Woosley &
Bloom 2006), jetted emission associated with microquasars in
some X-ray binaries (Mirabel & Rodríguez 1994), X-ray flares
after a stellar tidal disruption event (Burrows et al. 2011), and
short GRBs accompanying the kilonova explosion after the
merger of two neutron stars (Abbott et al. 2017).

In recent decades, substantial progress has been made in
understanding different aspects of astrophysical jets, particu-
larly in relation to their acceleration and collimation (see, e.g.,
Qian et al. 2018; Liska et al. 2019). However, open questions
remain concerning the process of launching the jet in the first
place, as well as the details connecting the accreted and ejected
flows (Romero et al. 2017).

Several mechanisms have been proposed to address these
issues. The most widely accepted ones are the mechanisms
introduced by Blandford & Payne (1982, hereafter BP) and
Blandford & Znajek (1977, hereafter BZ). The BP mechanism
consists of the extraction of energy and angular momentum
from an accretion disk via a magneto-centrifugal process. The
main ingredient is a global, poloidal magnetic field threading

an accretion disk that rotates with Keplerian velocity. This
mechanism is mostly used to explain the origin of jets in
AGNs(e.g., Hawley et al. 2015; Blandford et al. 2019) and in
young stellar objects (YSOs; e.g., Ouyed et al. 2003; Pudritz
et al. 2007; Fendt 2018). On the other hand, the BZ mechanism
shows an efficient way of extracting rotational energy from the
spin of a Kerr black hole, provided a sufficiently strong
magnetic field threads its event horizon. This mechanism has
been used to explain the jets associated with GRBs(Lloyd-
Ronning et al. 2019; Zhong et al. 2019) and radio jets in
AGNs(Komissarov et al. 2007). Both mechanisms have been
successfully tested under broad physical conditions using
general relativistic, magneto-hydrodynamic simulations (e.g.,
Semenov et al. 2004; McKinney 2006; Qian et al. 2018; Liska
et al. 2019).
On the other hand, a purely hydrodynamical mechanism has

been proposed by Hernandez et al. (2014) in which an
axisymmetric, polar-density gradient is responsible for deflect-
ing part of the material accreting from an equatorially over-
dense inflow and redirecting it along a bipolar outflow. The
main advantage of this jet-launching mechanism is that for it to
work, one does not need to invoke the presence of magnetic
fields that might lack the necessary strength or geometry in
some systems (Hawley et al. 2015), or processes taking place in
the vicinity of a rotating event horizon and that, thus, can only
account for jets associated with systems having a Kerr black
hole as central accretor.
In this work, we revisit the jet-launching model of

Hernandez et al. (2014) and study it in the general relativistic
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regime of an accreting, nonrotating black hole (Schwarzschild
spacetime). Based on the general solution derived by Petrich
et al. (1988) for a relativistic potential flow with a stiff equation
of state, we construct an analytic model corresponding to an
inflow-outflow configuration around a Schwarzschild black
hole. We propose that this analytic solution can be used as a toy
model for the inner engine of a jet-launching system.

The physical setting of this model is shown schematically in
Figure 1 and consists of the innermost region of an accretion
disk–jet system around a central black hole. Specifically, we
will confine our study to a finite, spherical region of radius 
with the black hole at its center. We will refer to the surface of
this domain as the injection sphere and consider it as the outer
boundary of this system. Moreover, for the analytic model
presented, in addition to considering a perfect fluid described
by a stiff equation of state, we will assume stationarity,
axisymmetry, and an irrotational flow, i.e., we consider that the
gas entering the injection sphere from the inner edge of an
accretion disk has lost all of its angular momentum through
some kind of viscous dissipation mechanism (e.g Shakura &
Sunyaev 1973; Balbus & Hawley 1991).

Even though for constructing the present model we did not
explicitly include fluid rotation, it is important to remark that we
have accounted for it indirectly by assuming that the flow
configuration has a well-defined symmetry axis, possibly as an
inherited property of a rotation axis at larger scales. Furthermore,
our assumption of a density anisotropy with the equatorial region
having a higher density than the poles is a natural consequence
of fluid rotation.

On the other hand, demanding a regular solution across the
black-hole event horizon implies that, for the present model
with an ultrarelativistic stiff fluid, the total mass-accretion rate
onto the central black hole is fixed at a specific value (Petrich
et al. 1988). This value corresponds closely to that found in the
spherically symmetric case discussed by Michel (1972) for a

Schwarzschild spacetime and by Bondi (1952) in the
nonrelativistic regime.
This important characteristic of the analytic model implies

that the mass flux onto the central black hole is limited by a
fixed value and that any additional mass flux crossing the
injection sphere has to be redirected and ejected from the
system. In the present case, we show that the assumed
anisotropic density field at the injection sphere translates into
the bipolar outflow shown in Figure 1. Given that the incoming
mass-accretion rate is choking at a fixed value, we refer to this
ejection mechanism as choked accretion.
With the aim of studying this accretion scenario under

more general conditions, we also present the results of
numerical simulations performed with the free GNU General
Public License hydrodynamics code aztekas3 (Olvera &
Mendoza 2008; Aguayo-Ortiz et al. 2018; and Tejeda &
Aguayo-Ortiz 2019). By means of this numerical exploration,
we are able to show that the choked accretion mechanism
can operate for more realistic equations of state.
The basic idea behind the choked accretion model relies on a

purely hydrodynamical mechanism and, thus, is not restricted
to a relativistic regime. We presented the nonrelativistic limit of
the choked accretion model in Aguayo-Ortiz et al. (2019). In
that work, we also introduced the Newtonian counterpart of the
ultrarelativistic stiff fluid studied by Petrich et al. (1988) that, as
discussed in Tejeda (2018), corresponds to the incompressible
flow approximation.
With the present model, we intend to draw attention to a

potentially relevant phenomenon in which an accretion flow
can become choked at a gravitational bottleneck, with the
excess material being launched from the central region by a
pure hydrodynamical mechanism. The present model is not
intended as a substitute for other well-established jet-launching

Figure 1. Schematic representation of the astrophysical setting under study: the inner region of an accretion disk–jet system around a central black hole. The analytic
solution presented in this work constitutes a toy model of the inner engine behind a jet-launching process in which, through the action of hydrodynamical forces only,
an accretion flow can be transformed into an inflow-outflow bipolar structure. Subsequent numerical simulations relaxing the assumptions included in the analytic
solution validate and extend the qualitative aspects of the solution found to more general cases. The blue arrows show, schematically, the streamlines of the
resulting flow.

3 The code can be downloaded from github.com/aztekas-code/aztekas-main.
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mechanisms, but rather as a further process based on simple
physics that can operate alongside them.

The rest of this article is organized as follows. In Section 2,
we present the analytic toy model of choked accretion. In
Section 3, we explore numerically the feasibility of this model
for fluids described by more realistic equations of state, where
the constraint of potential flow imposed on the analytical model
is dropped. There we find that the qualitative results of the
analytic model also apply. We discuss possible astrophysical
applications of the choked accretion model in Section 4.
Finally, in Section 5, we summarize our results. Throughout
this work, we adopt geometrized units for which G=c=1.
Greek indices denote spacetime components, and we adopt the
Einstein summation convention over repeated indices.

2. Analytic Model

In this section, we present an analytic model of an inflow-
outflow configuration around a Schwarzschild black hole. The
model is based on the assumptions of a stationary, axisym-
metric, and irrotational flow. Moreover, we shall assume that
the accreted gas corresponds to an ultrarelativistic gas
described by a stiff equation of state of the form

r=P K , 12 ( )

where =K const., P is the pressure, and ρ is the rest-mass
density.4

With the possible exception of the dense interior of a neutron
star, the assumed stiff equation of state has a rather limited
applicability in astrophysics (Lattimer & Prakash 2007). We
have adopted this equation of state, however, as it allows us to
carry out a full analytic treatment of the problem. The general
relativistic solution obtained in this way, gives us a direct
insight into the physics behind the proposed mechanism as well
as the possibility to analyze in detail the dependence of the
solution on the different model parameters. It is important to
stress that this limiting assumption is relaxed in Section 3
where, by means of full-hydrodynamic simulations, we show
that very similar results are obtained as steady-state solutions
for a more general equation of state and, thus, that the model
here presented has a wider applicability in astrophysics.

For an ultrarelativistic gas, one has that its internal energy u
is much larger than its rest-mass energy, i.e., u?1. This
allows us to approximate the corresponding specific enthalpy as

r r= + + +h u P u P1  . From the first law of thermo-
dynamics together with the equation of state in Equation (1), it
follows that u=P/ρ and, hence,

r=h K2 . 2( )

From Equation (2) it follows that, in the case of a stiff fluid, the
sound speed a is constant everywhere and equal to the speed of
light, i.e.,5

r
º

¶
¶

=a
hln

ln
1. 3

s

⎛
⎝⎜

⎞
⎠⎟ ( )

This result implies that the corresponding flow will be subsonic
at every point and that shock fronts cannot develop.

2.1. Potential Flow

The evolution of a perfect fluid in general relativity is
dictated by local conservation equations, namely, the con-
servation of rest mass as expressed by the continuity equation

r =m
mU 0 4;( ) ( )

and local conservation of energy–momentum

r d= + =n
m

m
m

n n
m

mT h U U P 0, 5; ;( ) ( ) ( )

where t=m mU dx d is the fluid four-velocity, Tμν is the stress-
energy tensor of a perfect fluid, dn

m is the Kronecker delta, and
the semicolon stands for covariant differentiation. Since, for a
perfect fluid r=dh dP , together with the continuity equation,
Equation (5) can be rewritten as

+ =m
n m nU h U h 0. 6; ,( ) ( )

An irrotational flow is characterized by zero vorticity. In
general relativity, vorticity is defined in terms of the tensor
(Moncrief 1980)

w = -mn m
a

n
b

a b b aP P h U h U , 7; ;[( ) ( ) ] ( )

where d= +n
m m

n n
mP U U is the projection tensor onto the

hypersurface orthogonal to mU .
Expanding Equation (7) and using Equation (6) to simplify

the resulting expression, we arrive at

w = -mn m n n mh U h U . 8; ;( ) ( ) ( )

From Equation (8), we can see that a vanishing vorticity
implies that h Uμ can be written as the gradient of a scalar
velocity potential Φ, i.e.,

= Fm mh U . 9, ( )

Substituting Equation (9) into Equation (4) leads to

r F =m
mh 0. 10,

;( ) ( )

In general, we will have that ρ is related to h through an
equation of state while, from the normalization condition of mU ,
h is related to Φ as = -F Fm mh ,

, . It is clear then that, in
general, Equation (10) will be a nonlinear differential equation
in Φ (see, e.g., Beskin & Pidoprygora 1995). Nevertheless, by
taking an ultrarelativistic fluid with a stiff equation of state (see
Equation (2)), Equation (10) reduces to the simple wave
equation

F =m
m 0. 11;

, ( )

In the case of Schwarzschild spacetime with spherical
coordinates q ft r, , ,( ), Equation (11) has as general solution
(Petrich et al. 1988)

å x x q fF = - + +e t A P B Q Y , , 12
l m

lm l lm l lm
,

[ ( ) ( )] ( ) ( )

where Ylm are spherical harmonics, Plm, Qlm are Legendre
functions on ξ=r/M−1, and e is a constant related to the
boundary conditions as we will show later on. Petrich et al.
(1988) showed that requiring a regular solution across the black
horizon necessarily implies that all Blm vanish identically
except for B00, which is in turn fixed as =B Me400 .

4 In relativistic hydrodynamics, it is customary to use the baryon number
density n instead of the rest-mass density ρ. Introducing an average baryonic
rest mass m, n and ρ are simply related as r = mn.
5 Note that this definition of the sound speed is equivalent to the more
common expression = ¶ ¶a P e , where e=ρ(1+u) is the relativistic
energy density.
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On the other hand, the coefficients Alm can be freely
specified in order to match some given boundary conditions. In
the present case, the assumption of axisymmetry leads us to
consider only the m=0 modes, while demanding reflection
symmetry with respect to the equatorial plane, leaves us only
with even-l multipoles different from zero. The lowest-order
model featuring both inflow and outflow regions can then be
obtained from a velocity potential as in Equation (12) with all
Alm=0 except for A20, i.e.,

q

F =- + -

- - + -

e t M
M

r

A r Mr M

2 ln 1
2

3 6 2 3 cos 1 , 132 2 2

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( )( ) ( )

where p=A A e4 5 20 .
Note that a different choice of the coefficients Alm will result

in quite different flow configurations. For instance, Petrich
et al. (1988) and Tejeda (2018) adopt the dipole l=1 to study
the scenario of wind accretion.

With the velocity potential as given in Equation (13), we
have specified the dependence of the fluid properties on the
polar angle θ at the outer boundary, i.e., at the injection sphere
= r . Nonetheless, we are still free to specify the overall

magnitude (scale) of the fluid properties at this boundary. In
order to do this, we can specify values for the fluid velocity,
density, and pressure (or any other pair of thermodynamical
variables) at a reference point on the injection sphere. For this
work, we shall take as reference the point q p= =r , 2( ),
i.e., the equator of the injection sphere. Let us call r0 and P0 the
values of the density and pressure at this point as measured by a
co-moving observer. Clearly, from these reference values, we
can write r=K P0 0

2 and r=h P20 0 0. On the other hand, we
parameterize the fluid velocity at this point using V0, defined as
the magnitude of the three-velocity vector measured by a local
Eulerian observer (LEO).6 In terms of V0, the four-velocity of
the fluid at the equator of the injection sphere is given by

a a= G -mU V1 , , 0, 0 , 140 0 0 0( ) ( )

with a a= 0 ( ), where

a = -
M

r
1

2
15( )

is the lapse function associated with the 3+1 decomposition
of the four-metric and

G = - -V1 160 0
2 1 2( ) ( )

is the Lorentz factor between the fluid element and the LEO. As
V0 corresponds to the magnitude of a physical three-velocity
vector, it is naturally bounded as V0<1. Also note that in
Equation (14), we have explicitly considered that the radial
velocity is negative at the reference point as we are interested in
a scenario with equatorial inflow. The velocity potential in
Equation (13) should also be useful to describe a very different
scenario with polar inflow and equatorial outflow (akin to a

wall jet) by allowing for a positive radial velocity at the
reference point. We shall only focus on the former case for the
remainder of this work.
It is worth noticing at this point that the present analytic

model is scale-free with respect to the specific values of M, r0,
and P0. On the other hand, as we shall see below, the
parameters dictating the overall morphology of the resulting
accretion flow are V0 and  M .

2.2. Velocity Field

Substituting the velocity potential Φ given in Equation (13)
into Equation (9) leads to the velocity field

t
= -

-h

e

dt

d

M

r
1

2
, 17

1
⎜ ⎟⎛
⎝

⎞
⎠ ( )

t
q= - + - - -

h

e

dr

d

M

r

A

r
r M r M

4 6
2 3 cos 1 ,

18

2

2
2( )( )( )

( )

q
t

q q= - - +
h

e

d

d

A

r
r Mr M

6
3 6 2 sin cos . 19

2
2 2( ) ( )

By evaluating Equations (17) and (18) at the reference
point q p= =r , 2( ) and comparing the result with
Equation (14), we arrive at the following expressions for the
constants e and A in terms of the boundary conditions:

a= Ge h , 200 0 0 ( )

=
-

- -


  
A

V M

M M

4

6 2
. 210

2 2

( )( )
( )

Note that, since we have assumed inflow across the equatorial
region, the velocity field described by Equations (18) and (19) is
characterized by the existence of a pair of stagnation points
(points at which the spatial components of the velocity field
vanish) located along the polar axis (q p= 0, ) at mirror points
with respect to the origin. Calling  their radial distance to the
origin, from Equation (18), we obtain the following relationship
between V0, , and 

= +
- -
- -

  

  
V

M M M

M M

2
2

2

2
. 220

2

2

⎡
⎣⎢

⎤
⎦⎥

( )( )
( )( )

( )

Alternatively, Equation (22) can be inverted to express  as a
function of V0 and 

x x x x= + + - + - -


M
1

1

27

1

27
,

23

2
1 3

2
1 3⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

where

x =
- -

-
  



M M

M V M

2

4
. 24

0
2 2

( )( )
( )

( )

Note that we can also use  to rewrite the coefficient A as

=
- -  

A
M

M M3 2
. 25

2

( )( )
( )

Using Equation (25), together with Equation (17) to get rid
of the dependence on h, we can rewrite the spatial components

6 These are static observers carrying a local tetrad with respect to which they
can perform local measurements, thus describing physical properties of the
fluid. This family of observers can be introduced in a covariant (coordinate-
independent) way by noticing that their four-velocity corresponds to the time
isometry of Schwarzschild spacetime as encoded by the time-like Killing
vector d=m mt t .
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of the velocity with respect to the coordinate time t as

q

=- -

´ -
- -
- -

-
  

dr

dt

M

r

M

r

r r M r M

M M

2
1

2

2
2

2
3 cos 1 , 26

2

2

2

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

( )( )
( )( )

( ) ( )

q
q q= - -

- +
- -  

d

dt

M

r

M

r

r Mr M

M M

2
1

2 3 6 2

2
sin cos .

27

2

2

2 2
⎜ ⎟⎛
⎝

⎞
⎠ ( )( )

( )

Furthermore, we can also express the velocity field in terms
of the physical, locally measured components of the three-
velocity defined by LEOs and given by

= -
-

V
M

r

dr

dt
1

2
, 28r

1 2
⎜ ⎟⎛
⎝

⎞
⎠ ( )

q
= -q

-
V

M

r

d

dt
1

2
, 29

1 2
⎜ ⎟⎛
⎝

⎞
⎠ ( )

as well as its corresponding (squared) magnitude

q

q

q

q q

= - + -

= -
- -
- -

-

+
- -
- -

-

+
- - +

- -

- -

  

  
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V
M

r

dr

dt

M

r
r

d

dt

M

r

r r M r M

M M

r r M r M

M M

r r M r Mr M

M M

1
2

1
2

4
4

4 2

2
3 cos 1

2

2
3 cos 1

2 3 6 2

2
sin cos .

30

2
2 2 1

2
2

4

4
2

2 2 2

2 2 2
2 2

2 2 2

2 2 2
2 2

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

( )( )
( )( )

( )

( ) ( )
( ) ( )

( )

( )( )
( ) ( )

( )

Note that for a sufficiently large radius r, the physical three-
velocity magnitude V as given in Equation (30) will grow like
V∝r, eventually becoming superluminal.7 To prevent this
from happening, we need to consider the preset model as a
local solution that is only properly defined within a finite
spatial domain. For simplicity, we will restrict this work to the
spherical domain r , where is the radius of the injection
sphere.

By examining Equation (30), we can see that, for a radius
>  , V reaches its maximum at the polar axis, which is

given by

=
- -
- -

-

= -




  

  



V
M M M

M M

V
M

, 0
4 2

2
1

2
12

, 31

2

2

0

2

2

( ) ( )( )
( )( )

( )

where we have used Equation (22) to arrive at the last equal
sign. From this last expression, we obtain the following upper
bound on V0 in order to guarantee V to be subluminal within

the domain8 < M r2

< +


V
M1

2
6 . 320

2

2
( )

Based on Equation (31) and taking into account the sign of
the radial velocity in Equation (26), we define the ejection
velocity at the poles of the shell = r as

º -


V V
M

2
12

. 33ej 0

2

2
( )

From this expression, we note that, in order to actually have
polar outflow at = r (i.e., >V 0ej ), we require

>


V
M

6 . 340

2

2
( )

Moreover, note that when < <


V0 6 M
0

2

2 , the stagnation point

lies outside the injection sphere ( > ) and the flow is
everywhere radially inwards although not spherically
symmetric.
Summarizing the previous results, only for values of V0

within the range

< < +
 

M
V

M
6

1

2
6 , 35

2

2 0

2

2
( )

we find flow configurations characterized by equatorial inflow and
bipolar outflows within the domain of interest < M r2 .
See Figure 2 for three examples of the streamlines resulting

from the velocity field in Equations (26) and (27) for
= M10 . In the left and right panels, V0=0.06, 0.56, which

correspond to the lower and upper bounds of the interval in
Equation (35). For the central panel, we have taken =V 0.10 as
a representative middle value for V0.
In the top panel of Figure 3, we show the magnitude of the

three-velocity V as function of the polar angle θ evaluated at the
injection sphere for the particular case = M10 and several
values of V0.

2.3. Density Field

We can now recover the density field by substituting
Equations (17)–(19) into the normalization condition of the
four-velocity Uμ Uμ=−1 and then using Equation (20); the
result is

r
r

a
a

=
G
G

=
- -
- -





r M V

r M V

2 1

2 1
, 36

0

0 0
2

0
2

( )( )
( )( )

( )

with qV r,2 ( ) as given in Equation (30).
Recalling that the local density measured by an LEO is given

by r= GD , from Equation (36), we obtain the interesting
result that the density field as described by LEOs is spherically
symmetric, i.e., D is only a function of r.
Note that the same criterion introduced in Equation (32) in

order to guarantee a subluminal three-velocity within
< M r2 also guarantees that the density field, as

expressed in Equation (36), is a well-defined, real quantity
within the same spatial domain.

7 In terms of the velocity potential Φ, this translates into the gradient F m,
transitioning from being time-like to space-like.

8 Note that at the event horizon =V M2 1( ) , although, this is only due to the
fact the Eulerian observers become ill-defined at this radius. The fluid velocity
as described by Uμ is completely regular across the horizon.
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From Equation (36), we obtain the following simple relation
for the ratio between the density at the pole and the equator of
the injection sphere:

r
r p

r
r

= =
-

-

=
- + -

-







  

 

V

V

V V M M

V

, 0

, 2

, 0 1

1

4 48 144
.

37

0

ej
2

0
2

4
0
2 4

0
2 2 4

4
0
2 4

( )
( )

( )

( )

In the following, we shall use the contrast δ between the
polar and equatorial densities at the injection sphere defined as

d
r

r
= -


1

, 0
. 38

0

( ) ( )

From Equations (37) and (38), we can see that an arbitrarily
small density contrast suffices not only to produce the inflow-
outflow configuration shown in the central and right panels of
Figure 2 but also to guarantee that Vej>V0. Furthermore,
notice that, as the density contrast approaches unity, the
ejection velocity approaches the speed of light. Indeed, for the
present case of an ultrarelativistic stiff fluid, as d  1, we can
obtain arbitrarily large Lorentz factors for the ejected flow.

Complementary to the top panel of Figure 3, where we see
that the magnitude of the velocity field at the injection sphere
increases as V0 increases, in the bottom panel of this figure, we
show the angular density profile r q( ) evaluated at the injection
sphere. From this figure, we see that, as V0 increases, the polar
to equatorial density contrast increases. Moreover, we can also
see that as the velocity at the poles becomes luminal for

= + V M1 2 60
2 2, the corresponding value of the density

field becomes zero.

2.4. Equation for the Streamlines

An equation for the streamlines can be found by combining
Equations (26) and (27) to obtain

q

q

q q
=

- -- -
- -

- +
- -

  

  

dr

d

2 3 cos 1

sin cos
, 39

r r M r M

M M

r Mr M

M M

2

2
2

3 6 2

2

2 2

( )
( )

( )( )
( )( )

( )( )

which, in turn, can be integrated as

q
q

Y = +
- -
- -  

r r M r M

M M
cos 1

2

2

sin

2
, 40

2⎡
⎣⎢

⎤
⎦⎥

( )( )
( )( )

( )

where Ψ is an integration constant. Equation (40) constitutes an
implicit equation for the streamlines, where, for every constant
value of Ψ, one has a different streamline. Note, in particular,

Figure 2. Streamlines of the accretion flow resulting from the velocity field in Equations (26) and (27). We have taken = M10 as radius of the injection sphere
while, from left to right, V0=0.06, 0.1, 0.56. Note that the first and third values of V0 correspond to the lower and upper limits in Equation (35), respectively. The
stagnation points in each case are shown as red crosses. The outer boundary of the model = r( ) as well as the event horizon of the central black hole =r M2( ) are
shown as circles drawn with thick, solid lines. The axes correspond to the usual cylindrical coordinates q=R r sin , q=z r cos .

Figure 3. Magnitude of the three-velocity V (Equation (30)) and density ρ
(Equation (36)) of the analytic model for an ultrarelativistic stiff fluid. Both
quantities are shown as functions of the polar angle θ evaluated at the injection
sphere for the particular case = M10 and six different values of the velocity
V0. In this case, from Equation (32), we have that V0 is limited as V0<0.56 in
order to guarantee that the whole solution is well defined within the spatial
domain r . Note that for V0=0.56, Vej=1 while the corresponding value
of ρ goes to zero.
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that Ψ=±1 corresponds to the streamlines reaching the
stagnation points located at q= =r , 0( ) for the plus sign
and q p= =r ,( ) for the minus sign. Streamlines with
Y < 1∣ ∣ end up accreting onto the central black hole, while
those with Y > 1∣ ∣ escape along the bipolar outflow.

In Figure 4, we show the resulting density, velocity, and
streamlines of the analytic model of choked accretion for the
particular values of = M10 , V0=0.16. For this choice of
boundary conditions, the stagnation points are located
at = M6 .

2.5. Mass-accretion, Injection, and Ejection Rates

The total mass-accretion rate onto the central black hole can
be calculated as the flux of mass density integrated over any
closed surface σ enclosing it, i.e.,

ò r= - -
s

m
mM U g dS , 41( )

where q- =g r sin2 and mdS is a differential area element
orthogonal to the surface σ. Taking any sphere of radius r as
the integration surface, together with the conditions of
axisymmetry and stationarity, we obtain

òp r q q

p a r

=-

= G

p
M U r d

M

2 sin

16 . 42

r

0

2

2
0 0 0 ( )



The result of Equation (42) holds even if higher multipoles are
considered in the velocity potential (see Equation (12)): by virtue
of the orthogonality of the spherical harmonics, the contribution
of any multipole (l,m) to the integral in Equation (42) identically
vanishes except for the spherically symmetric monopole l=0,
m=0. Note however that, in the spherically symmetric case, V0

is not a free parameter. In accordance with Equation (30), in this
case, = V M40

2 2. Therefore, in the spherically symmetric
case, the mass-accretion rate as given by Equation (42) can

be written as

p a r= -
-


M M

M
16 1 16 . 43M

2
0 0

4

4

1 2⎛
⎝⎜

⎞
⎠⎟ ( )

This value corresponds to the Michel (1972) solution as applied
to a stiff equation of state, as shown by Chaverra & Sarbach
(2015). See Appendix A for a brief overview of the Michel
(1972) model in the case of a general polytrope.
We can express the general result for the mass-accretion rate

as given in Equation (42) in units of MM as

h=M M , 44M ( ) 

where

h =
-

-
M

V

1 16

1
. 45

4 4

0
2

1 2⎛
⎝⎜

⎞
⎠⎟ ( )

Note that, in most cases of interest, η1. For instance,
taking = M10 , from the allowed range of velocities in
Equation (35), we obtain 1<η1.2, while for  M , we
have 1<η1.15.
On the other hand, we can also define the mass-injection rate

Min as the inward flux of mass across the injection sphere of
radius, i.e., by considering an integration analogous to the one
in Equation (42) but in which we consider only the fluid
elements with a negative radial velocity Ur. From Equation (18),
we obtain that q <U , 0r ( ) for q q p q< < -c c, where θc is
such that q =U , 0r

c( ) and is given by

q = +
- -
- -

=
-

  

  





M M

M M

V

V M

cos
1

3

2

3

2

2

3 4
. 46

c

0
2

0
2 2

( )( )
( )( )

( )
( )

We can thus calculate Min as

òp r q q= - = L
q

p
M U r d M4 sin , 47r

in

2
2

c

( ) 

Figure 4. Example of the analytic model of choked accretion for the values = M10 and V0=0.16. The figure shows isocontours of the fluid’s density as given by
Equation (36) (left panel) as well as the magnitude of the three-velocity as given by Equation (30) (right panel). Note that the stagnation points are located at = M6 .
Fluid streamlines are indicated by thick, solid lines with an arrow. The axes correspond to the usual cylindrical coordinates q=R r sin , z=r cos θ.
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with

L = -

+ +

-









V

M

M

V

V

M

M

V

1

6 3
1

4
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⎛
⎝⎜

⎞
⎠⎟ ( )

where, for the second step, we have used the Taylor series
expansion assuming M V2

0
2 .

From Equation (46), we have that when = V M60
2 2 (or,

equivalently = ) then θc=0 and, hence, =M Min  . On the
other hand, when < V M60

2 2, we have that Ur<0 for all θ
and again =M Min  . We can then write

=
L >






M

M V M

M V M

, if 6 ,

, if 6 .
49in

0
2 2

0
2 2

⎧⎨⎩ ( )



Similarly, we define the mass-ejection rate Mej as the
outward flux of mass across the sphere of radius = r .
Clearly,

=
L - >






M

V M

M V M

0, if 6 ,

1 , if 6 .
50ej

0
2 2

0
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( )



Note that for a fixed injection radius, it can be shown that
the upper bound for V0 found in Equation (32) implies the
following upper bound for the mass-injection rate:

p r<
- +

+ - +
  

  
M

M M

M M
8

2 12

3 4 4 12
. 51in 0

3 2 2 3

2 2 4 2 2 2

( ) ( )
( )[ ( ) ]

( )

The Equations (49) and (50) encapsulate the concept of
choked accretion described in the introduction: the central
black hole accretes at an essentially fixed rate M MM   .
Whenever the mass-injection rate surpasses this limit, the
excess flux is ejected from the system as a bipolar outflow at
the rate Mej . Note, in particular, that from Equation (50), we can
write

= - = -
L

M

M

M

M
1 1

1
. 52

ej

in in
( )







This simple functional dependence of the ratio of ejected-to-
injected-mass fluxes on the injection-mass rate is shown in
Figure 14 to compare the analytic model against the results of
hydrodynamic numerical simulations.

Finally, it is interesting to explore the behavior of the
analytic model as a function of the parameters  and

h= LM Min M  . Note that, as shown in Equation (48), h L is
essentially a linear re-parameterization of V0 for most of the
domain of interest. In Figure 5, we show the dependence on
these parameters of the location of the stagnation point  (see
Equation (23)), the maximum velocity attained by the ejected
material Vej (see Equation (33)), and the contrast δ between the
polar and equatorial densities at the injection sphere (see
Equation (38)).

From this figure, we see that as M Min M  increases, the
stagnation point sinks closer to the central accretor, while
at the same time, the velocity of the ejected material approaches
the speed of light and the density contrast increases. From
Equation (52) and Figure 14, it is also clear that as the injection
rate increases, more and more material is expelled from the
system as a bipolar outflow. Moreover, the restrictions on the
model parameters, as established in Equations (32) and (51),

are also apparent in Figure 5: as soon as these limits are
exceeded, the model ceases to be well-defined within the whole
domain < r .
The nonrelativistic limit of an ultrarelativistic, stiff fluid

corresponds to an incompressible fluid (Tejeda 2018). This
Newtonian counterpart of the present analytic model is
discussed in Aguayo-Ortiz et al. (2019). Indeed, it is simple
to verify that, in the limit in which V0=1 and M , all of
the equations derived in this section for the velocity field, the
streamlines, and the different mass fluxes reduce to the
expressions presented in Aguayo-Ortiz et al. (2019).
The analytic model that we have presented allows for a

transparent understanding of the physics involved in the

Figure 5. Dependence of different properties of the analytic model of choked
accretion on the parameters  M and M Min M  . From top to bottom, each
panel shows: the location of the stagnation point  , the maximum velocity
attained by the ejected material Vej (Equation (31)), and the density contrast
between the pole and the equator of the injection sphere δ (Equation (38)). The
dashed lines in the top panel indicate regions in the parameter space for which
the model is not well defined within the whole domain < r (see discussion
in the main text).
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choked accretion mechanism. However, generalizing this
model to accommodate a more realistic equation of state
becomes analytically intractable. We explore this general-
ization in the next section by means of numerical simulations.

3. Numerical Simulations

The main limitation of the analytic model for choked
accretion discussed in the previous section is that it is based on
the assumption of an ultrarelativistic gas with a stiff equation of
state, an assumption with a rather restricted applicability in
astrophysics. In this section, we want to explore whether the
phenomenon of choked accretion might also arise when
considering more general equations of state, thus relaxing the
associated assumption of a potential flow. This exploration will
be based on full-hydrodynamic, numerical simulations per-
formed with the open-source code aztekas.

The general relativistic hydrodynamic equations are solved
numerically with aztekas by recasting them in a conservative
form using the Valencia formulation (Banyuls et al. 1997). The
aztekas code uses a grid-based finite volume scheme, a High-
Resolution Shock Capturing method with an approximate
Riemann solver for the flux calculation, and a monotonically
centered second-order reconstructor at cell interfaces. The code
adopts a second-order total variation diminishing Runge–Kutta
method (Shu & Osher 1988) for the time integration. See
Tejeda & Aguayo-Ortiz (2019) for further details about the
discretization used in aztekas. Code validation through
comparisons to standard analytical solutions in the Newtonian
and relativistic regimes can be found in Aguayo-Ortiz et al.
(2018, 2019) and Tejeda & Aguayo-Ortiz (2019), while a
number of standard shock tube tests successfully reproduced by
the code are included in Appendix B.

The simulations presented in this section were performed for
a perfect fluid evolving in a fixed, background metric
corresponding to a Schwarzschild black hole of mass M. We
adopt horizon-penetrating, Kerr–Schild coordinates and,
imposing axisymmetry, we consider only 2D spatial domains
with spherical coordinates r and θ.

Furthermore, by assuming symmetry with respect to the
equatorial plane located at θ=π/2 (north–south symmetry), we
restrict the numerical domain as q pÎ ´ r, , 0, 2acc( ) [ ] [ ],
whereacc is the radius of the inner boundary at which we adopt
a free outflow condition (i.e., free inflow onto the central black
hole) and  is the radius of the injection sphere at which we
impose a given profile for the physical parameters of the injected
fluid. At both polar boundaries θ=0, π/2, we adopt reflection
conditions.

As initial conditions, we populate the whole numerical
domain with the same values as those used at the outer
boundary. For the code, we adopt geometrized units and take
M=1 as unit of length and time.

3.1. Stiff Fluid

An analytic model can be useful as a benchmark solution for
testing the ability of a numerical code to recover certain
behavior under appropriate conditions. Here, we use the exact
analytic solution presented in the previous section as a
benchmark test for aztekas. Specifically, we will consider the
values of = M10 for the radius of the injection sphere and

V0=0.16 for the magnitude of the three-velocity at the equator
of the injection sphere.
For this test, we take as radial boundaries = Macc and
= M10 and use three different resolutions (grid points)

100×100, 200×200, and 300×300 for the radial and polar
ranges. We adopt the approximation of an ultrarelativistic gas
with a stiff equation of state as described in Section 2. At the
injection sphere, we impose the analytic value for the density as
given in Equation (36) and the velocity components corresp-
onding to the transformation from Schwarzschild coordinates
to Kerr–Schild coordinates.9

We let the simulations run until a steady-state condition is
reached. This is monitored by calculating the mass-accretion
rate M across acc. In Figure 6, we show the time evolution of
the numerically calculated M as compared to the analytically
expected value of p a r= GM M16M

2
0 0 0 for the three adopted

resolutions. As can be seen from this figure, the value of M
rapidly stabilizes to a constant value that agrees with MM to
within 0.001% for the largest resolution considered.
In Figure 7, we show the density and velocity fields of the

aztekas simulation at t=650M. The stagnation point in the
numerical simulation is located at = M6.0175 , which is
consistent with the analytically exact value of = M6 , taking
into account the radial grid size of Δr=0.045M.

Figure 6. Benchmark test of aztekas with the analytic model of choked
accretion described in Section 2. In this case, we took = M10 as radius of
the injection sphere and V0=0.16 at the equator. The figure shows the time
evolution of the relative error between the numerically calculated accretion rate
M and the exact value of p a r= GM M16M

2
0 0 0 for three resolutions (grid

points) 100×100, 200×200, and 300×300. Note that the sharp falls
observed in this figure correspond to changes in sign of the relative error being
plotted. Moreover, the apparent periodicity observed at the beginning of the
curve corresponds to an initial transient mode reflecting back and forth
throughout the numerical domain at the speed of sound (in this case, the sound
crossing time is ~t M10 ).

9 The transformation between Schwarzschild (t, r, θ, f) and Kerr–Schild
coordinates (T, r, θ, f) is given by

= +
-

dT dt
M

r M
dr

2

2
,

while the spatial components remain unchanged. The radial and polar
components of the four-velocity in Kerr–Schild coordinates are then given by
Equations (18) and (19), whereas the time component is now given by

t t
= - +

-h

e

dT

d

M

r

M

r

h

e

dr

d
1

2
1

2
.

1
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⎝

⎞
⎠

⎛
⎝

⎞
⎠
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We have also tried this benchmark test with different values
of  and V0, and we consistently found that the numerical
results recover the analytic solution in this limit case of a stiff
equation of state, thus validating our numerical setup.

3.2. Polytropic Fluids

In this section, we relax the stiff-fluid condition and consider
perfect fluids described by a polytropic equation of state of the
form

r= gP K , 53( )

with ρ the rest-mass density, γ the adiabatic index, and
=K const. From Equation (3), the sound speed corresponding

to this equation of state is given by

g
r

=a
h

P
, 542 ( )

where h is the relativistic specific enthalpy. For a perfect fluid
described by Equation (53), h is related to the other
thermodynamical variables through

g
g r

= +
-

h
P

1
1

, 55( )

or, by combining Equations (54) and (55), we can also write

g
=

- -
h

a

1

1 1
. 56

2 ( )
( )

The expected requirement for the appearance of choked
accretion is that there should exist a small contrast between the
density at the equator and that at the poles of the injection
sphere. Here, we impose this density contrast by adopting the
following density profile as a boundary condition at the
injection radius 

r q r d q= -1 cos , 570
2( ) ( ) ( )

where ρ0 is the value of the density at the equator of the
injection sphere, i.e,ρ0=ρ(π/2), and δ is the same density
contrast between the equator and the poles as defined in
Equation (38).

The specific functional form of the boundary condition in
Equation (57) was chosen as a convenient first-order

parameterization of a bipolar deviation from spherical sym-
metry. This profile is qualitatively similar to the one of the
analytic model presented above (see bottom panel of Figure 4).
We have explored with other similar boundary profiles and
obtained consistent results.
For the simulations reported in this work, we have taken

r = -100
10, although we have found that taking any other

value of r0 results in the same flow structure but with the
density re-scaled by this new factor. In other words, the value
of ρ0 can be set arbitrarily, thus defining a unit scale for
the density and related thermodynamical quantities, provided
the fluid considered remains a negligible perturbation on the
background metric. On the other hand, the resulting steady-
state solution depends strongly on the value of the sound speed
a0 imposed at the equator of the injection sphere. Note, in
particular, that, from Equation (56) and for a fixed adiabatic
index γ, a0 is limited as

g< < -a0 1 . 580 ( )
Once we have adopted a given γ, setup values for ρ0 and a0

at the equator of the injection sphere, and a density contrast δ,
we use the equation of state in Equation (53) to find the
corresponding pressure profile at the injection boundary as

q
g g

r q
r

=
- -

g

g-P
a

a

1

1 1
. 590

2

0
2

0
1

⎡
⎣⎢

⎤
⎦⎥( )

( )
( ) ( )

Since we do not know the structure of the accretion flow
beforehand (on which no a priori restrictions are imposed), we
cannot prescribe specific values for the velocity components at
the injection radius. For this reason, we adopt free-boundary
conditions for the radial and polar components of the velocity
field and let the simulation evolve starting off from an initial
state at rest (zero initial velocities), until an equilibrium state is
reached throughout the numerical domain. Note that this means
that we cannot use the same parameterization that we had
adopted for the analytic model of Section 2 (i.e.,  M , ρ0, P0,
and V0), but instead, now we shall replace V0 by the density
contrast δ.

3.2.1. Dependence on the Density Contrast δ

Based on the analytic results of Section 2, we expect ejection
rates and velocities to strongly correlate with the density

Figure 7. Benchmark test of aztekas with the analytic model of choked accretion described in Section 2. In this case, we took = M10 as radius of the injection
sphere and V0=0.16 at the equator. The left panel shows isocontour levels of the density field with the scale indicated by the color bar. The right panel shows
isocontour levels of the magnitude of the three-velocity. Fluid streamlines are indicated by thick, solid lines with an arrow. The simulation time is =t M650 . An
excellent agreement is found between this figure and its analytic counterpart in Figure 4.
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contrast at the injection surface. Here, we study the role of the
density contrast as parameterized by δ in Equation (57). In
Figure 8, we show the steady-state results for four numerical
simulations with γ=4/3, a0=0.5, = M10 , and density
contrasts d = 0, 0.1, 0.3, and 0.9. The results of these four
simulations, also including the δ=0.5 case, are reported in
Table 1. We can see that, as soon as the equatorial region
becomes over-dense with respect to the polar regions, i.e.,
δ>0, a strong qualitative change ensues with an inflow-
outflow configuration appearing across the numerical domain.
The resulting streamlines closely resemble the flow morph-
ology of the analytic model presented in the previous section.10

We can also see that as the density contrast increases, both
M and Min increase. Note however, that Min increases faster
than M , with the net result that the ratio between ejection and
injection also increases with increasing δ.

As a further positive test of our numerical scheme, when
d = 0, the simulation recovers the analytic solution of
spherically symmetric accretion discussed by Michel (1972).

The sixth column in Table 1 reports the ratio M MM  , i.e., the
numerically found mass-accretion rate in units of the mass-
accretion rate of Michel’s solution MM (an analytic expression
for MM is derived in Appendix A). Note that, as also occurs in
the analytic model discussed in the previous section, this ratio
does not remain strictly equal to one as δ increases; although,
the mass-accretion rate remains of the order of MM .
This first exploration confirms that the basic principle behind

the choked accretion model presented in Section 2 also works for
fluids described by more general equations of state, where the
resulting flow pattern is no longer assumed to be a potential flow.

Figure 8. Resulting steady-state-flow configuration for the numerical simulations for a polytropic fluid with γ=4/3 accreting onto a Schwarzschild black hole. The
value of the density contrast δ used in each case is indicated on the top-left corner of each panel and increases gradually from δ=0 in the first panel (isotropic case
where the Michel solution is recovered) to the highly anisotropic δ=0.9 case in the fourth panel.

Table 1
Dependence on the Density Contrast δ

δ M Min Mej
M

M

ej

in




M

MM


  Vej

0.0 9.08 9.08 0.0 0.0 1.0 L L
0.1 9.55 11.16 1.61 0.14 1.05 6.63 0.25
0.3 10.35 14.10 3.75 0.27 1.14 5.91 0.43
0.5 11.14 16.24 5.10 0.31 1.23 5.64 0.46
0.9 12.81 19.77 6.96 0.35 1.41 5.46 0.47

Note. The simulation parameters are fixed as = M10 , γ=4/3, and
a0=0.5. All of the accretion rates are expressed in units of r=M M0

2
0

 , and
the stagnation point in units of M. The velocity Vej is defined as the magnitude
of the three-velocity at the poles of the injection sphere. According to
Equation (A15), the Michel mass-accretion rate in this case is given
by =M M9.08M 0  .

10 We note that since the posting of the initial version of this paper, a couple of
relevant independent results have appeared: Waters et al. (2020) present a
numerical scheme using the ATHENA++ code simulating accretion onto a
black hole, modeled using a pseudo-Newtonian potential, which yields very
similar results to what we obtain, for the same angular accretion density profile
that we present. Zahra Zeraatgari et al. (2020) explore a similar scenario
through an approximate semi-analytic approach, including the additional
physical ingredients of rotation, viscosity, and radiation pressure, to again
obtain flow patterns highly resembling our results, provided an equatorial-to-
polar-accretion-density profile is present.
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3.2.2. Dependence on the Adiabatic Index γ

Here, we examine the behavior of the steady-state, numerical
solution as a function of the adiabatic index γ. We keep as fixed
parameters = M10 , δ=0.3, and a0=0.5 while consider-
ing four different values of g = 4 3, 3 2, 5 3, and 2. In
Table 2, we summarize the results of these simulations, while
in Figure 9, we plot the ratios M MM  , M Min M  , and M Mej M 
as functions of γ. The resulting density field and fluid
streamlines for these four simulations are qualitatively similar
to those shown in the bottom left panel of Figure 8.

From these results, we see a weak dependence on the
adiabatic index γ. As we consider increasing values of γ, the
values of M , Min ,  , and Vej slightly decrease while both Mej
and the ratio M Mej in  increase.

3.2.3. Dependence on the Sound Speed a0

Now, we turn our attention to the role played by the sound
speed as defined at the equator of the injection sphere, a0. We
will also consider a larger injection radius than in the previous
sections in order to probe a different regime with smaller
density contrasts and larger mass-injection rates. Specifically,
we take = M100 , γ=5/3, four density contrasts:
δ=0.1%, 0.5%, 1.0%, and 5.0%, and four different values
for the sound speed: a0=0.2, 0.4, 0.6, and 0.8. Note that, from
Equation (58) for γ=5/3, the maximum possible value for
this parameter is a0=0.816.

In Tables 3–6, we present a summary of the results obtained
in this case. In Figure 10, we show the dependence of the ratio
M Min M  on a0 for the four values of the density contrast δ.
Figure 11 shows the dependence of the location of the
stagnation point  on a0, while Figure 12 shows the
dependence of the maximum velocity of the ejected material
Vej on a0.

It is interesting to notice from Figure 11 that, at least for the
parameter space explored for this figure,  follows a
dependence on a0 similar to the one followed by the critical
radius rc as defined in Appendix A for the accretion flow in the
spherically symmetric case.

In Figure 13, we show the resulting steady-state-flow
configurations for the four values of a0 in Tables 3–6 and
d = 0.5%. The corresponding configurations for the other

values of δ are qualitatively similar to the ones presented in
this figure.
From these results, we see that the final steady-state

configuration depends strongly on the value of the sound speed
a0. In general, we see that as a0 increases, the stagnation point
 sinks deeper into the accretion flow, as more material is
expelled from the system along the bipolar outflow at
increasingly larger speeds Vej. Moreover, we also see that as
the influx asymmetry increases, even for a small 5% density
contrast, the ejection velocities become larger, reaching values
of Vej>0.25 for the sound speed values probed.

Table 2
Dependence on the Adiabatic Index γ

γ M Min Mej
M

M

ej

in




M

MM


  Vej

4/3 10.35 14.10 3.75 0.27 1.14 5.91 0.43
3/2 9.75 13.61 3.86 0.28 1.12 5.82 0.42
5/3 9.15 13.12 3.96 0.30 1.10 5.73 0.41
2 8.01 12.16 4.15 0.34 1.07 5.55 0.40

Note. The simulation parameters are = M10 , =a 0.50 , and d = 0.3. From
top to bottom, the values of M MM 0  are 9.08, 8.70, 8.28, and 7.47.

Table 3
Dependence on the Density Contrast δ for a0=0.2

d %( ) M Min Mej
M

M

ej

in




M

MM


  Vej

0.1 63.12 70.50 7.37 0.10 0.98 66.28 0.014
0.5 63.93 89.90 25.97 0.29 0.99 56.78 0.025
1.0 64.13 97.61 33.49 0.34 1.00 51.08 0.031
5.0 64.78 159.93 95.15 0.59 1.01 39.68 0.071

Note. The sound speed a0 is given at the equator of the injection sphere. The
simulation parameters are = M100 and γ=5/3. In this
case, =M M64.39M 0  .

Table 4
Dependence on the Density Contrast δ for a0=0.4

d %( ) M Min Mej
M

M

ej

in




M

MM


  Vej

0.1 17.49 43.25 25.76 0.60 1.10 42.53 0.019
0.5 17.14 79.47 62.33 0.78 1.08 33.03 0.043
1.0 16.49 106.08 89.60 0.84 1.04 29.23 0.061
5.0 17.74 222.67 204.93 0.92 1.11 22.58 0.136

Note. The sound speed a0 is given at the equator of the injection sphere. The
simulation parameters are = M100 and γ=5/3. In this
case, =M M15.93M 0  .

Table 5
Dependence on the Density Contrast δ for a0=0.6

d %( ) M Min Mej
M

M

ej

in




M

MM


  Vej

0.1 10.82 52.63 41.81 0.79 1.32 33.03 0.029
0.5 11.35 108.20 96.85 0.90 1.39 25.43 0.064
1.0 10.37 147.74 137.37 0.93 1.27 22.58 0.091
5.0 10.76 318.85 308.09 0.97 1.32 17.83 0.202

Note. The sound speed a0 is given at the equator of the injection sphere. The
simulation parameters are = M100 and γ=5/3. In this
case, =M M8.17M 0  .

Figure 9. Dependence of the different mass flux rates (in units of the
corresponding Michel value MM ) on the polytropic index γ.
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4. Discussion

4.1. Comparison between the Numerical Simulations and the
Analytic Model

Even though the physics of the analytic model of Section 2
differs from the one included in the simulations of Section 3, it
is illustrative to compare the results of these two sections. For
this comparison, we will consider only the case of the γ=5/3
polytrope and injection radius = M100 presented in
Tables 3–6, as this large injection radius allowed us to explore
a broader range of mass-injection rates.

In Figure 14, we show the ratio of ejected over injected-mass
rates M Mej in  as a function of the mass-injection rate. From this
figure, we find a very good agreement between the numerical
data and the analytic model. This agreement is remarkable if we
take into account that the latter is based on the assumption of an
ultrarelativistic stiff fluid, γ=2, while the former involves a
more realistic γ=5/3 polytrope. We have also found this same
agreement for different polytropic indices in the nonrelativistic
regime, as can be seen in Figure7 of Aguayo-Ortiz et al. (2019).

In Figure 15, we show the location of the stagnation point 
as a function of the injection-mass rate M Min M  . Note that as
Min increases,  descends toward the central accretor, just as
occurred for the analytic model (see Figure 5). We find, again,
a good agreement between the numerical data and the analytic
model.
In Figure 16, we show the maximum velocity attained by the

ejected material Vej as a function of the injection-mass rate
M Min M  . We compare the numerical results against the
analytic value for Vej given in Equation (31). In contrast to
what happens for the two parameters discussed above, here, we
find a large difference among the numerical results for each
value of the sound speed a0, as well as between these results
and the analytic model. Note, however, that for each value of
a0, the numerically obtained values of Vej follow a linear
dependence on M Min M  with a slope inversely proportional to
a0. Also, as a0 increases, the numerical data approaches the
analytic model, for which a=1 everywhere in the fluid.

4.2. Applicability in Astrophysics

We discuss now the viability of the choked accretion
phenomenon presented here for operating as the inner engine
behind a given jet-launching astrophysical system. Given that
the characteristic length scale of this mechanism is given by  ,
we can expect the physical size of the inner accretion disk (that
we have associated with ) to be larger than  . In general, for
an accretion disk around a black hole, we will have

= - M1 10 (the actual value will be a function of both
the disk model and the black-hole spin). On the other hand,

Table 6
Dependence on the Density Contrast δ for a0=0.8

d %( ) M Min Mej
M

M

ej

in




M

MM


  Vej

0.1 7.77 64.80 57.04 0.88 1.41 28.28 0.038
0.5 9.20 139.98 130.78 0.93 1.67 21.63 0.085
1.0 9.20 194.61 185.40 0.95 1.67 19.73 0.120
5.0 8.14 422.31 414.17 0.98 1.48 14.98 0.268

Note. The sound speed a0 is given at the equator of the injection sphere. The
simulation parameters are = M100 and γ=5/3. In this case, =M M5.50M 0  .

Figure 10. Dependence of the ratio M Min M  on the sound speed a0 as given at
the equator of the injection sphere. Clearly, this ratio is a monotonically
increasing function of a0 with a steeper growth with increasing δ.

Figure 11. Dependence of the location of the stagnation point  on a0. Here,
we see that  is inversely proportional to both a0 and δ. Note that  shows a
dependence on a0 that resembles the one followed by the critical radius rc on
this same parameter.

Figure 12. Dependence of the maximum velocity of the ejected material Vej on
a0. Here, we see that Vej grows more or less linearly with a0.
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from all of the simulations presented in this work, as well as
those in Aguayo-Ortiz et al. (2019) for the nonrelativistic case,
we see that a robust lower limit for  is given by the
corresponding Bondi radius = ¥r M aB

2 . Moreover, provided
that > rB, we have ¥a a0  , and then we can write

> M a . 600
2 ( )

At this point, it is useful to recall that, assuming an ideal gas,
we can relate the sound speed a and the fluid temperature T by

g
g g

=
-

- -
T

T

a

a

1

1
, 61

i

2

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

where Ti=mi/kB is the temperature corresponding to the rest-
mass energy of the average gas particle of mass mi. For a gas
composed of ionized hydrogen, we have = ´T 1.08 10 KH

13 ,
while for an electron–positron plasma = ´T 5.93 10 Ke

9 .
Then, from Equations (60) and (61), we have

g g
> +

-


M

T

T

1 1

1
. 62i ( )

A regular plasma dominated by radiation pressure and
consisting of protons and electrons can be modeled, in a first
approximation, as a γ=4/3 polytrope with an average particle
mass m mi H and, thus, Ti;TH. As discussed in Aguayo-Ortiz
et al. (2019), taking =T 10 K7 as the temperature at the inner
edge of the disk in an X-ray binary (Kaaret et al. 2017), from
Equation (62), we have > M105 . In the case of an AGN,
instead of taking the gas in the inner disk (at a temperature of

around T=105 K), we can consider the ionized plasma in the hot
corona above the disk with a temperature of up to =T 10 K9

(Czerny et al. 2003). Nevertheless, even for this large temperature,
from Equation (62), we obtain > M103 . Even in the case of the
accretion disk associated with a long GRB, where the gas
temperature can reach up to 10 K11 (Woosley 1993), from

Figure 13. Resulting steady-state configurations for a polytropic fluid with γ=5/3 and δ=0.5%. The value of the sound speed a0 used in each case is indicated on
the top-left corner of each panel.

Figure 14. Ratio of ejected- to injected-mass rates M Mej in  as a function of the
injection-mass rate in units of the Michel value MM . The injection radius is

= M100 . The different symbols correspond to the numerical results reported
in Tables 3–6 for γ=5/3 and sound speeds as labeled. The solid line
corresponds to the analytic model of an ultrarelativistic γ=2 stiff fluid
presented in Section 2 (see Equation (52)).
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Equation (62), we have > M80 , which is still a factor of 10
larger than the expected size of the inner engine.

The above analysis implies that, for the choked accretion
mechanism to work for a regular plasma, the temperature of the
infalling gas is required to be substantially higher than that of
the inferred values at the inner edge of the disk (or disk
corona). These higher temperatures could result from highly
localized heating processes such as magnetic reconnection,
shock heating, or viscous friction at the point of transition
between the disk and the radial-infall domains.

On the other hand, the extreme conditions at the innermost
parts of these systems give rise to a different kind of plasma
composed of relativistic electron–positron pairs (Wardle et al.
1998; Beloborodov 1999; Siegert et al. 2016). Considering that
at least a fraction of this plasma has a thermal component, the
pair production mechanism implies temperatures in excess of
10 K11 . If we consider this gas as the accreted material, then for
this temperature and substituting Ti=Te in Equation (62), we

get > M . We obtain then that, under these circumstances, the
choked accretion mechanism might become relevant for the
ejection of this pair plasma.
Contrary to the analytic model presented in Section 2, we do

not have direct control on the mass-injection rate crossing the
outer boundary of our numerical simulations, as it is indirectly
determined by the values of , a0, and δ. Nevertheless, it is
clear that in an astrophysical scenario, this mass rate will be
imposed by external, possibly time-varying conditions. For
example, in the context of low-mass X-ray binaries, stellar
oscillations or orbital variations can modulate the total mass
transfer across the Roche lobe from the regular star to the
compact companion (Tauris & van den Heuvel 2006). More
dramatic time-varying conditions will be found for jets
launched during a common-envelope phase as studied by
López-Cámara et al. (2019), or for long GRBs as studied by,
e.g., López-Cámara et al. (2010) and Taylor et al. (2011).
The strong dependence that we have found between the ratio

of ejected-to-injected material and the incoming mass-accretion
rate, leads us to suggest that the choked accretion mechanism
could offer a compelling, simple connection between the
external mass flux feeding an accretion disk and the jet activity.
Whenever the mass-injection rate surpasses the threshold value
MM , the excess flux is prone to being ejected from the system
as a bipolar outflow. This could be of relevance for studying
the time variability of the jet emission.
Once a tight connection appears between accretion rates and

geometry on the one hand, and ejection rates and velocities on the
other, we have the potential to correlate the time variability in the
mass flux across the accretion disk to the resulting ejection rates
and velocities. This, in turn, naturally leads to the appearance of
internal shocks in the ensuing jets, such as those typically
assumed to be associated with the GRB phenomenology.
As already implied by the above discussion, a proper

exploration of the role played by choked accretion in launching
relativistic jets, demands accounting for additional physics,
such as the effect of rotation, magnetic fields, and radiative
transport. Indeed, these factors are considered as crucial for the
acceleration and collimation of the resulting jets (Semenov
et al. 2004; McKinney 2006). Moreover, as discussed in
Aguayo-Ortiz et al. (2019), some of these ingredients might
actually improve the applicability of choked accretion by
increasing both the effective temperature and the polar-density
contrast, thus, bringing  closer to the central accretor. It
should also be interesting to study the possible interplay of
choked accretion with the well-established Blandford & Znajek
(1977) mechanism. We intend to address these points in
future work.

5. Summary

We have presented the choked accretion phenomenon as a
purely hydrodynamical outflow-generating mechanism. Choked
accretion operates under two basic premises: a sufficiently large
mass flux accreting onto a central object, and an anisotropic
density field in which an equatorial belt has a higher density than
the polar regions. These two ingredients are plausibly met in
several jet-launching astrophysical scenarios involving accretion
disks around massive objects. We suggest that choked accretion
constitutes a relevant ingredient for studying some of these
systems.
Moreover, we have shown that breaking spherical symmetry

by imposing a polar-density gradient in the accretion flow onto

Figure 16. Maximum velocity attained by the ejected material Vej as a function
of the injection-mass rate. The injection radius is = M100 . The different
symbols correspond to the numerical results reported in Tables 3–6 for γ=5/3
and sound speeds as labeled. The solid line corresponds to the analytic model of
an ultrarelativistic γ=2 stiff fluid presented in Section 2.

Figure 15. Location of the stagnation point  as a function of the injection-
mass rate. The injection radius is = M100 . The different symbols
correspond to the numerical results reported in Tables 3–6 for γ=5/3 and
sound speeds as labeled. The solid line corresponds to the analytic model of an
ultrarelativistic γ=2 stiff fluid presented in Section 2.
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a central object qualitatively changes the resulting steady-state
configurations from the purely radial accretion models
(Bondi 1952; Michel 1972) to the infall-outflow morphology
that characterizes the choked accretion model. Thus, choked
accretion provides a natural transition between spherical
accretion and systems characterized by bipolar outflows.

We have studied this phenomenon by introducing first a
general relativistic analytic model of choked accretion onto a
Schwarzschild black hole. This model is based on the
approximations of steady-state, axisymmetry, and irrotational
flow and assumes an ultrarelativistic stiff fluid. We then relaxed
this last assumption, together with the associated potential flow
condition, and studied more general fluids by means of full-
hydrodynamic simulations performed with the numerical code
aztekas.

Both for an ultrarelativistic stiff fluid as for a regular
polytrope, the limiting value for the total mass-accretion rate
corresponds quite closely to the one found in the spherically
symmetric case (Michel 1972). We have thus found that, within
the assumptions underlying this work, hydrodynamical accre-
tion flows onto massive objects choke at this threshold value
and any extra infalling material is deflected into a bipolar
outflow.

The analytic solution presented here allowed us to study in
detail the basic physical principle behind the choked accretion
phenomenon. Moreover, we have also demonstrated the
usefulness of this exact analytic solution as a benchmark test
for validating numerical hydrodynamic codes in general. The
nonrelativistic limit of this analytic solution is presented in
Aguayo-Ortiz et al. (2019).

Considering together: (i) the perturbative Newtonian solu-
tions for isothermal fluids of Hernandez et al. (2014); (ii) the
exact Newtonian solution for incompressible fluids and the
numerical Newtonian experiments for polytropic equations of
state in Aguayo-Ortiz et al. (2019); and (iii) the present exact
analytic relativistic model for a stiff fluid and the numerical
experiments presented for polytropic fluids; we can conclude
that the inflow-outflow steady-state configurations presented
here are an extremely general and robust consequence of
breaking spherical symmetry with a polar-density gradient in
an accretion flow onto a central object. Similarly, we see that
the choked accretion character of these configurations extends
across the Newtonian and relativistic regimes.
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comments and suggestions. This work was supported by
DGAPA-UNAM (IN112616 and IN112019) and CONACyT
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A.O. and E.T. acknowledge economic support from CON-
ACyT (788898, 673583). X.H. acknowledges support from
DGAPA-UNAM PAPIIT IN104517 and CONACyT.

Appendix A
Relativistic, Spherically Symmetric Accretion Flow

In this Appendix Section, we give a brief overview of
Michel’s (1972) analytic model of a spherically symmetric
accretion flow onto a Schwarzschild black hole. In particular,
we derive an analytic expression for the resulting mass-
accretion rate in a form that is useful for the present work (see
Beskin & Pidoprygora 1995, for an alternative derivation).

Here, we will consider only the case of a perfect fluid
described by a polytropic equation of state as in Equation (53).
See Chaverra & Sarbach (2015) for a recent extension of
Michel’s (1972) model to a general class of static, spherically
symmetric background metrics, as well as for more general
equations of state.
Under the assumptions of stationary state and spherical

symmetry, the equations governing the accretion flow are the
continuity equation and the radial component of the relativistic
Euler equation (Equations (4) and 5, respectively), i.e.,

r =
d

dr
r U 0, A1r2( ) ( )

=
d

dr
r T 0, A2t

r2( ) ( )

where t= =v U dr dr and r=T h U Ut
r

t
r. Direct integra-

tion of these two equations gives

p r p l= = =r v M4 4 const ., A32
M ( )

r m= =h U v r const. A4t
2 ( )

We can simplify Equation (A4) by dividing it by Equation (A3)
and taking its square; the result is

m
l

- + = = ¥h
M

r
v h1

2
. A52 2

2
2⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ ( )

Following Michel (1972), we can combine Equations (A1)
and (A2) into the following differential equation

- - +

=- + - +

a

v

M
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v v

dv
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M

r
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⎜ ⎟
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From Equation (A6), we obtain that the condition of having a
critical point, i.e., a radius r=rc at which both sides of this
equation vanish simultaneously, translates into

=v
M

r

1

2
, A7c

c

2 ( )

and

=
-

a
v

v1 3
. A8c

c

c

2
2

2
( )

Substituting Equations (A7) and (A8) into Equation (A5)
results in

- + - =¥n h h n h3 3 0, A9c c
3 2 [( ) ] ( )

where g= -n 1 1( ). This polynomial has three real roots for
hc, but only one satisfies hc>1 and, thus, has physical
meaning. This root is given by

p
=

+
Y +¥h h

n

n
2

3

3
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6
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3
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3
. A11

3 2
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We can now find an expression for the accretion rate in terms
of M, the equation of state of the fluid, and its asymptotic
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conditions (expressed in terms of r¥ and ¥h ). Let us start by
substituting Equation (A7) into the continuity Equation (A3),
which results in

l r r= = -r v M v
1

4
. A12c c c c c

2 2 3 ( )

Now, using Equations (53) and (55), we can rewrite the
equation of state as

r r=
-
-¥

¥

h

h

1

1
, A13c

c
n⎛

⎝⎜
⎞
⎠⎟ ( )

on the other hand, by combining Equations (56), (A8), and
(A10) we obtain

=
-

+ -
=

-¥v
h

n h

h h

n h

1

3 3

1
. A14c

c

c

c

c

2
2

3( )
( ) ( )

Then, substituting Equations (A13) and (A14) into
Equation (A12), we obtain

p l p r= =
-
-¥

-

¥
¥M

n h

h

h

h
M4

1

1
. A15c c

n

nM

3 9

6

2 3

2

1 2
2

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )

Note that MM as expressed in Equation (A15) is given in
terms of thermodynamical quantities measured asymptotically
far away from the central object (r¥ and either ¥a or ¥h ). In
order to compare the results presented in Section 2 with
Michel’s solution, one needs first to find the asymptotic values
r¥ and ¥a resulting in a solution such that r r= 0∣
and =a a0∣ .

Appendix B
Validation of the Numerical Code

In this Appendix Section, we present a series of standard
tests in order to validate the results using aztekas. This section
is complementary to the test already presented in Section 3.1 as
well as the Appendix presented in Tejeda & Aguayo-Ortiz
(2019), where the code is tested using the relativistic spherical
accretion problem(Michel 1972).

B.1. One-dimensional Shock Tube Tests

The one-dimensional shock tube test(Sod 1978) is a
standard problem to solve for code validation, as it is easy to
implement, and the exact solution can be computed. It consists
of a perfect fluid at two different initial states with parameters
r P v, ,L L L( ) and r P v, ,R R R( ) (where subscripts L and R refer to
the left and right sides, respectively) separated by an interface
at =x x0. At t=0, the interface is removed, and the two states
are left to interact with each other. The evolution of this
configuration depends only on the initial values and on the
equation of state. Here, we present a set of four one-
dimensional shock tube tests, along with a two-dimensional
version of the problem. For the former case, we compare the
results with the analytic solution.

We reproduce four of the shock tube tests presented by Lora-
Clavijo et al. (2015). The tests were performed in a Cartesian
1D domain Îx 0, 1[ ] with a resolution N=800 and a Courant
number of 0.5. The initial conditions of each test are presented
in Table B1. Test 1 and Test 2 correspond to a mild and strong
relativistic blast-wave explosion, respectively. The initial
conditions for Test 3 produce a highly relativistic symmetric
head-on stream collision, with a Lorentz factor Γ=1000.

Finally, Test 4 follows the evolution of a shock traveling at
v=0.9, as seen from the rest frame of the shock front.
In Figure B1, we show the evolution of all four tests at

t=0.35 and the comparison between the numerical simula-
tions performed with aztekas and the analytic solution. The
latter was computed using a code written by Martí & Müller
(1999). In the first two tests, a contact discontinuity and a
rarefaction wave are formed. In Test 1, where the Lorentz
factor is Γ≈1, the analytic solution is well resolved. In Test 2,
where the Lorentz factor is Γ≈6, we obtain an overall
satisfactory result, although a higher resolution should lead to a
better defined contact discontinuity. Test 3 shows the evolution
of a strong head-on collision between two shock waves. A
stationary high-density, high-pressure shell is formed, and we
see, again, a good match with the analytic solution. Finally, in
Test 4, we can see the formation of a stationary contact
discontinuity. In this case, small oscillations are developed
right behind the shock. These oscillations are damped with
higher resolution. All of the results presented here agree with
previous works that use similar schemes (e.g., Lucas-Serrano
et al. 2004; De Colle et al. 2012; Lora-Clavijo et al. 2015).

B.2. Two-dimensional Riemann Problem

For this test, we follow closely the initial setup proposed by
Del Zanna & Bucciantini (2002) for the two-dimensional
Riemann problem, which is the relativistic extension of the
case presented by Lax & Liu (1998). The problem consists of a
square domain subdivided into four regions with different
initial states

r =

> >
>

>



 

P v v

x y
x y
x y
x y

, , ,

0.1, 0.01, 0, 0 if 0.5, 0.
0.1, 1, 0.99, 0 if 0.5, 0.

0.5, 1, 0, 0 if 0.5, 0.
0.1, 1, 0, 0.99 if 0.5, 0.

B1

x y

⎧
⎨
⎪⎪

⎩
⎪⎪

( )

( )
( )

( )
( )

( )

The test was performed in a 2D Cartesian domain
Î ´x y, 0, 1 0, 1( ) [ ] [ ] with a 400×400 resolution and a

Courant number of 0.25. In Figure B2, we show the evolution
of the rest-mass density at a time t=0.4. The morphology of
the solution shows a stationary high-density contact disconti-
nuity along the diagonal of the domain and a jet-like structure
propagating into the initially over-dense region. These results
are qualitatively similar to the ones obtained by Del Zanna &
Bucciantini (2002), De Colle et al. (2012), and Lora-Clavijo
et al. (2015).

Table B1
Initial Conditions for the Left (L) and Right (R) States of the Set of One-

dimensional Shock Tube Tests

Test 1 Test 2 Test 3 Test 4

ρL 10 1 1 1
PL 13.33 1000 0.001 1
vL 0 0 0.999999995 0.9

ρR 1 1 1 1
PR 10−8 0.001 0.001 10
vR 0 0 −0.999999995 0

γ 5/3 5/3 4/3 4/3
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