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Abstract

Recent numerical simulations of rotating stellar convection have suggested the possible existence of retrograde
(slow equator, fast poles) or so-called antisolar differential rotation states in slowly rotating stars possessing a large
Rossby number. We aim to understand whether such rotational states exist from the onset of convective instability
or are the outcome of complex nonlinear interactions in the turbulent convective envelope. To this end, we have
made a systematic linear analysis of the critical state of convection in a series of 15 numerical simulations
published in Brun et al. We have assessed their degree of supercriticality and most-unstable mode properties, and
computed the second-order mean zonal flow response. We find that none of the linear critical cases show a
retrograde state at the onset of convection even when their nonlinear counterparts do. We also find that the
presence of a stably stratified layer coupled to the convectively unstable upper layer leads to interesting gravity-
wave excitation and angular momentum transport. We conclude that retrograde states of differential rotation are
probably the outcome of complex mode—mode interactions in the turbulent convection layer and are, as a
consequence, likely to exist in real stars.

Unified Astronomy Thesaurus concepts: Stellar convective zones (301); Stellar interiors (1606); Astrophysical fluid
dynamics (101); Internal waves (819); Stellar rotation (1629)
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Assessment of Critical Convection and Associated Rotation States in Models of Sun-like

1. Introduction

Stars can play the role of a modern physics laboratory,
because processes as diverse as turbulence, thermal convection,
plasma eruption, magnetic flux emergence, magnetic reconnec-
tion, and rotation-induced large-scale mean flows can be
studied in detail via direct surface observations (or indirectly
via asteroseismology) allowing their complex dynamics to be
characterized with an ever improving accuracy. Of fundamental
interest is turbulent convection, because it is both at the source
of many of the most dynamical phenomena observed in stars
and it impacts directly their short- and long-term evolution.
Turbulent convection in stellar envelope helps transport the
heat generated deep inside their nuclear core. Depending on
their mass M, high- or low-mass stars (with respect to the
reference solar value M) have different internal structures, and
convection zones are not found at the same location. In massive
stars (My > 2M.,), convection is mostly confined in the deep
interior, in the so-called core convection region, with little
stratification. By contrast, solar-type stars and stars less
massive than the Sun have their convective zone located near
their surface. This convective envelope deepens as the star
becomes less and less massive, eventually occupying the whole
star below 0.3 M. This deepening of the convective envelope
is accompanied by increasingly stronger stratification. Hence,
the convective process in stars experiences a large range of
conditions, and it needs to be studied in detail to understand
how it is modified under these changing situations. Moreover,
stars are rotating objects. Turbulent convection motions are
thus influenced by the action of the Coriolis force and in the
most extreme rotating situation, the star and all its internal
layers (convective and radiative) are even deformed by the
centrifugal force, losing their spherical shape (Wang et al.
2016; Zorec et al. 2017). So, rotating convection zones not only
transport heat and energy but also angular momentum, yielding

large-scale mean flows such as differential rotation and
meridional circulation (Brun & Rempel 2009). A well-known,
nondimensional number, the Rossby number Ro,3 is being used
to characterize the influence of rotation on convective motions
(Landin et al. 2010; Brun et al. 2017; Amard et al. 2019). For
small Ro, rotational effects are large, and convective motions
feel the Coriolis force and adapt themselves accordingly by
being tilted with respect to the local vertical direction. By
contrast for large Ro, rotational effects are small, leading to
classical nonrotating slab convection behavior (purely up and
down motions). In the present study, we aim to characterize
stellar convection and its associated large-scale mean flows in
solar-like stars by means of 3D numerical simulations of
convection in a spherical shell for varying Rossby numbers.
More specifically, we wish to understand how the basic state of
convection and the associated mean flows at the onset of
convective instability are behaving compared to their nonlinear
counterpart, such as the ones published in Brun et al. (2017).
One key result of the numerical simulation of rotating
convection in a spherical shell has been to propose the possible
existence of a retrograde state of differential rotation with a
slow equator and fast poles for slowly rotating stars with a large
Rossby number (Matt et al. 2011; Guerrero et al. 2013; Gastine
et al. 2014; Karak et al. 2015; Brun et al. 2017; Viviani et al.
2019). This so-called antisolar rotation state, in reference to the
Sun’s prograde differential rotation that instead possesses a fast
equator and slow poles, is very interesting because it can
influence the evolution and dynamics of these stars via, for
instance, a modification of their dynamo and magnetism and

3 This number has many definitions in the literature. In this paper, we use the
fluid one, i.e., that comparing the Coriolis force to the advection term in the
Navier-Stokes equation (e.g., R, = @/2, with @ the rms vorticity and
the stellar rotation rate), as it is the most meaningful when studying 3D
nonlinear convective numerical simulations.
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Figure 1. Differential rotation profiles in a solar-like star: comparing antisolar
(left) to solar-like (right) cases. Contour plots in meridional cuts of angular
velocity with red tones indicating prograde flows (Brun et al. 2017).

the associated stellar wind dynamics and the rotational braking
it involves (Réville et al. 2015; Vidotto et al. 2016). Moreover,
we could also wonder how dynamo action and cycles could be
affected by the antisolar 2 effect (Strugarek et al. 2018; Viviani
et al. 2019; Karak et al. 2020).

We illustrate an example of such retrograde and prograde
states of differential rotation in Figure 1. In this study, we wish
to understand whether retrograde states of rotation as shown in
the left panel of Figure 1 are robust and naturally present in the
convective flow at the onset of the instability or instead the
outcome of nonlinear processes. To this aim, we have
systematically computed the critical state at the onset of
convection instability for the 15 simulations of rotating stellar
convection published in Brun et al. (2017) and assessed the
second-order mean flows of each marginal states. Such
approaches have already been done in the context of
Boussinesq convection in the planetary convection setup (see,
for instance, Takehiro & Hayashi 1999; Dormy et al. 2004, and
references therein) and only recently extended to the anelastic
approaches which are essential to take into account when
considering solar-like stars with highly stratified outer
convective envelope (Jones et al. 2009; Sasaki et al. 2018).
They of course follow a long history of such studies first started
by Chandrasekhar in the 1960’s (Chandrasekhar 1961), soon
followed by Roberts, Busse and Gilman few years later
(Roberts 1968; Busse 1970; Gilman 1975, 1977). These studies
have shown some interesting trends with key control
parameters such as the Ekman Ej; or Taylor 7a numbers (a
measure of rotational effect with respect to viscous ones;
E; = 2/Ta), the number of density scale heights N, across
the convective domain, the aspect ratio (3, or the Prandtl
number (measuring the relative importance of viscous versus
thermal effects), to cite only a few. For instance, it is common
knowledge that convection is harder to trigger with increasing
rotational constraint. The critical Rayleigh number Ra,,
frequency w,, and azimuthal wavenumber m_. are found to
scale respectively with E %3, E;*/3 and E'/°. Higher
density scale height or slender convective layers also tend to
make Ra., w,., and m, larger (see Jones et al. 2009 for more
details and the sections below). The difference between
anelastic and Boussinesq linear stability analysis rests more,
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for instance, in the values of the critical parameters, often much
higher in the anelastic stratified case than in the scaling with Ej,
which is roughly similar. Moreover, the location of the most-
unstable mode in highly stratified layers tends to be closer to
the top of the domain and of much smaller spatial scale. Also
note that in Takehiro & Hayashi (1999), retrograde states have
already been found. The regime diagrams published in this
study have been shown to be quite complex in some area of the
parameter space involving (3, E;, and Pr, with retrograde mean
flows only found in some very specific cases when Pr is large.
Further, these retrograde states, assuming there is no Reynolds
stress, are the consequence of viscous diffusion playing a key
role as a response to the angular momentum transport by the
thermal contribution (part) of the meridional circulation due to
the v - VS term in the heat equation (see Equation (3) below).
In stars, however, atomic Prandtl numbers are very small, of
order 1077 or less and so these retrograde states are unlikely,
and the simulations published in Brun et al. (2017) all have
Pr =0.25. So, the retrograde state found in the nonlinear
solutions are supposedly not in the same parameter area as
those required to find the balance between thermal advection
and viscous diffusion, but we will of course verify that
hypothesis in this work.

Hence, the analysis presented in this paper is the continua-
tion of these previous convection stability studies (the most
recent ones considering anelastic approximation) but focus on
stars and add one more important ingredient: an inner stably
stratified radiative zone. As we will see, this has interesting
consequences because the bottom boundary condition of the
stability analysis differs significantly from an impenetrable wall
and internal gravity waves can even be excited in that layer.
Another key difference is the fact that stars have a well-defined
luminosity Ly = 47RZ0T4, with R, the star radius, o the
Stefan constant, and T.¢ the surface effective temperature
(equal to 5800 K for the Sun, for instance). Hence, our regime
diagram study will be made by fixing the luminosity of the
various model solar-type stars we are considering (see below
for more details). Often in geophysics studies luminosity
constraint is relaxed. Finally, along with the inclusion of an
inner stably stratified layer, we will also consider the role of
radiative flux in the stability analysis. For the same reason that
we just discussed, this has never been considered in previous
studies mostly concerned with planetary flows.

In the next section, we present the governing equations and
the 15 star models we have considered. Then in Section 3, the
principles we followed to perform the stability analysis are
discussed. In Section 4 we present our results on the critical
Rayleigh number Ra,, frequency w,, and azimuthal wavenum-
ber m.. We illustrate the various marginal state solutions. In
Section 5, we derive the equations used to compute the second-
order mean flow and present the resulting differential rotation
mean flows, including the possibility that gravity waves help
transport angular momentum in the stable layer in some high
Ekman number solutions. Finally, we conclude in Section 6.

2. Governing Equations

The system is described by the equations for anelastic fluid
(e.g., Jones et al. 2011) where the term for temperature diffusion
is added to the energy equation and a stable layer below the
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convective envelope is taken into account (e.g., Brun et al. 2011),
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where u is velocity, @ = V X u is vorticity, and p, p, S,and T
are density, pressure, entropy, and temperature, respectively. =
indicates that the variable is for the basic state of the anelastic
system. The physical constants appearing in the equations are
the specific heat at constant pressure C,, angular velocity of the
system (). The kinematic viscosity v, thermal diffusivity x,
thermal diffusivity for the horizontally homogeneous comp-
onent kg, and radiation thermal diffusivity k.4 are given as
functions of the radius r only. € is the body-heating term by
nuclear reactions and is expressed as € = ¢,7", where n is
adjusted to best reproduce the 1D stellar model profile. The
coefficient €, must satisfy f ds ‘f(‘) " erldr = L, where L is the
luminosity of the star.

The diffusion coefficient of the entropy gradient term on the
right-hand side of the energy Equation (3) is changed from & to
ko for the spherically homogeneous component of S:

kpT VS

kopT VS for spherically homogeneous component of S .
— —

kpT VS  others

“)
The boundary conditions for the velocity field we consider are
Uyr = Orp = Org = 0’ (5)

where u, is the radial component of velocity, and o;; is the
stress tensor. The thermal boundary condition is the fixed-
energy flux condition:

kradPCy V(T + T) + kpT VS + kopT VS = const. at
r=r, ro. 6)

In contrast, Brun et al. (2011, 2017) use the fixed radial gradient
of the entropy condition, which does not fix the energy flux at the
boundary exactly. However, this condition approximately gives
the fixed-energy flux condition owing to the values of k4, and
Ko, k. Near the outer boundary, they give the thermal diffusivities
satisfying r;.,q << Ko, k. Then, the radiative energy flux can be
ignored, and entropy diffusion only contributes to the energy flux.
Therefore, when the radial entropy gradient is fixed, the energy
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flux is approximately fixed at the outer boundary. On the other
hand, at the inner boundary, the fixed-energy flux condition is
necessarily satisfied. But when (statistically) steady state is
obtained, the energy flux at the inner boundary is fixed at a
certain value depending on the energy flux at the outer boundary.
Here, considering a comparison with Brun et al. (2015, 2017), we
use the fixed radial entropy gradient condition:
i(S_ + 8) = const. at r = r;, ro. 7
or

A thermodynamic relation is needed to close the system. We
consider here an ideal gas; however, we do not use the equation
of state p = pRT directly, but the linearized equation with
respect to the basic state of the anelastic approximation:

T S
p_p T _p _ ®

il

p p T v G

where « is the adiabatic index, Cp the specific heat capacity,
and R the gas constant. The relation between C,, and R is given
by R = C,(1 — 1/v).

3. Linear Stability Analysis

In order to perform linear stability analysis, the governing
equations are linearized with respect to the background state as
follows:

V- (pu") =0, )

/ li
M a0k x v(%) + 3 e+ .7-',,, (10)
ot D C

’ 8 / !
(Fi= 0 pv Ou; S géij‘auk* ,
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V - [kwapC, VT + kpT VS'],

where () expresses disturbance variables. S (r) + So(r) is the
entropy profile of the basic state, where S is the solution of the
following diffusive equation and the hydrostatic equation:

~ d | p 90
0=— dr[ )JFC,, (), (12)

ozidﬂbmw LT
r2dr

_dS ds
+ kopT— 4 kopT —2 |. (13)
dr dr

Here, (-)o means a horizontally homogeneous variable. We
ignore the nuclear heating term because its effect on the basic
entropy gradient profile is negligible.

We assume that each disturbance variable is in proportion to
exp(of). 0 = 0, + ig; is a complex number, whose real and
imaginary parts are the growth rate and frequency, respectively.
Because the basic state depends only on 7, spherical harmonic
expansion is applied to the disturbance equations. Further,
Chebyshev polynomials are used to express radial profiles.
Then, an eigenvalue problem of the coefficients with spherical
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Table 1
The Rayleigh and Ekman Numbers for the Nonlinear Calculations
L g ds*® /dr KHO) V*© o Ra EK
MO5S 1.3e10 1.1e5 l.1e—7 1.2e12 3ell 3.25e—17 2.7e¢6 5.5e-3
MO5R1 1.1e—7 Sell 1.25el1 2.6e—6 1.6e7 2.8e—4
MO5R3 2e—7 2.8ell 7el0 7.8e—6 9.2¢7 5.3e-5
MO5R5 3.1e—7 2ell 5e10 1.3e—5 2.8e8 2.3e—5
MO7S 1.3e10 6.5¢e4 3.5e—7 Sel2 1.25e12 7.8e—7 3e5 9.5e—3
MO7R1 3.5e—7 3el2 7.5el11 2.6e—6 8.3e5 1.7e-3
MO7R3 4.5e—7 1.6e12 4ell 7.8e—6 3.7e¢6 3e—4
MO7R5 4.5e—7 1.5e12 3.75¢el1 1.3e—5 4.2¢6 1.7e—4
M09S 1.6e10 Se4 4e—6 lel3 2.5e12 1.3e—6 1.5e6 7.5e—3
MO9R1 4e—6 8el2 2el2 2.6e—6 2.3e6 3e—3
MO9R3 3.2e—6 Sel2 1.25e12 7.8e—6 4.8e6 6.3e—4
MO9R5 3.2e—6 4el2 lel2 1.3e—5 7.5¢6 3e—4
MI11R1 2e10 2.8¢4 3e—5 3el3 7.5e12 2.6e—6 1.7¢6 7.2e—3
MIIR3 2.1e-5 1.6e13 4el2 7.8e—6 4.2¢6 1.3e—3
MI1IRS 2.1e—5 1.2e13 3el2 1.3e—5 7.5e6 5.8e—4
harmonics indices and Chebyshev polynomial order is (x.001 erg/K cm)
obtained.

To search for the critical states, we change the amplitude of
the thermal diffusivity and viscosity with respect to the
disturbance variables, Sy, and 7,, while their profiles are
maintained. Moreover, the angular velocity of the star is also
magnified to keep the value of the Ekman number. Specifically,

k= K, ko = K§fy Krad = K f» v =V,
Q = OF, (14)
where the asterisk means the values of the original models.
Then, neutral solutions with o, = 0 are searched. Note that we
do not change the diffusive coefficients for the background
state of the anelastic systems. The merit of this procedure is that
the profile of the basic entropy gradient is unchanged, meaning
that the thicknesses of the convection and radiation layers do
not vary. From diffusion coefficients of the obtained neutral
states, we calculate the neutral Rayleigh number as a function
of azimuthal wavenumber. The critical azimuthal wavenumber
and Rayleigh number are given by the minimum of the neutral
Rayleigh number. The standard definition of the Rayleigh
number is, for example (Matt et al. 2011),

(—22)aser

PRV

Ra,trad = ¢ 5)

Here, the values of each parameter are evaluated at the middle of
the convection layer. From Equation (8), —(1/5)(0p/0S), = CL
P
However, this Rayleigh number is not suitable to discuss critical
states as AS is not a control parameter in our setup. We use the

following Rayleigh number with the value of the dS/dr of the
diffusive solutions:

»(©

_ 8 |ds®) /dr|L* v
QL?

G

Ra (16)

Kk©)y©)

Here, © indicates the value at the middle of the convective
layer, and »’ means the peak value (see Figure 2). L is the
thickness of the convective layer.

dS/dr

24 28

| L ! | ! L | ! | L |
2 36 40 44 48 52 56
(x10% cm)

3

radius

Figure 2. Typical profile of the entropy gradient resulting from our critical state
analysis for the case M09 series. We note the deepening of the superadiabatic
peak as we increase the rotation rate (lower the Ekman number).

4. Results of Linear Stability Analyses

We now discuss the results of the linear stability analysis of the
15 solar-type star models considered in this study, directly
inspired by the nonlinear calculation published in Brun et al.
(2017). These models cover a wide range of Ekman numbers, and
all have a significant level of stratification. As in Brun et al.
(2017), we will follow a simple naming scheme for the models,
with first a number indicating the stellar mass in units of the solar
mass M., and then a series of letters and numbers indicating the
rotation rate of the model. So, for instance, case MO5SR3 is a
numerical simulation intended to model a half-solar-mass star
rotating at three times the solar rate. We have also used the letter S
when the models are slowly rotating, such that their fluid Rossby
number is greater than 1. Key parameters of the models are
summarized in Table 1.
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Table 2
The Critical Parameters Obtained by Linear Stability Analysis
m,. W, f as‘® /dr K £ Ra, Ra*/Ra,
MO5S 8 2.7e—4 1371 1.75¢-3 1.4el5 3.5¢e14 3.2e4 84
MO5R1 26 6e—4 753 3.2e-3 del4 lel4 7.2e5 22
MO5R3 47 8.6e—4 558 4.2e-3 1.4e14 3.5e13 7.7¢6 12
MOSRS 62 1.0e—3 482 S5e—3 lel4 2.5el3 1.8e7 16
MO7S 10 2.3e—4 495 2e—3 3el5 7.5¢e14 4.7e3 64
MO7R1 21 3.8e—4 372 2.7e—3 1.2e15 3eld ded 21
MO7R3 37 5.8e—4 284 3.5¢e-3 Sel4 1.25¢e14 3e5 12
MO7RS 48 6.8e—4 247 4e—3 3.2el4 8el3 8.3e5 5.1
MO9S 11 3e—4 366 8e—3 4el5 lel5 1.9e4 79
MO9R1 16 5.le—4 321 9e—3 2el5 Sel4 8.4ed 27
MO9R3 33 Te—4 230 1.2e—-2 lel5 2.5¢el4 4.5e5 11
MO9RS 43 8.7e—4 204 1.4e—2 8el4 2el4 8.2e5 9.1
MI1IR1 15 3e—4 184 1.3e—2 Sel5 1.25e15 2.6e4 65
MI11R3 29 5.8e—4 141 1.7e—2 2.4el5 6eld 1.5e5 28
MI11R5 40 6.5e—4 122 2e—2 1.6e15 4el4 4e5 19
190 | | | | | | diffusivity. We then assess the critical Rayleigh number Ra,
- 1 and compute the level of supercriticality of the nonlinear
" ] solution.
O i i We find that the critical modes vary between 8 and up to 62,
O 185 | i the largest range of variation being for the MO5 case series.
"5 This is the consequence of the largest range of Ekman numbers
E covered by this M0O5 case series, with the Ekman number
o varying by more than two decades. Likewise, we see that the
— critical Rayleigh number Ra,. varies a lot, going from as low as
8_ 180 4.7¢3 to as high as 1.8¢7, so a more than three order of
magnitude change. Again, this is the MO05 case series for which
e this critical parameter varies the most. This is in good
O quantitative agreement with Jones et al.’s (2009) results, which
= 175 show very steep variations of Ra,. in their study, leading to a
B very high value of Ra,. for the onset of convection in rapidly
- . rotating, highly stratified cases. In the three other series, the
- 1 maximum Ra, is not as high but does reach a value larger than
170 i T e 1(1"5. By C'(EltilaStf we see t{lat the' critzical freiqliancy wch Va}?e; by
(1)“ 12 13 14 15 16 17 18 2n2\x{,()\i\/31.t the lowest value being 2.3 x 107" and the highest

(M
Azimuthal wave number

Figure 3. Critical parameter f (magnifying factor of diffusion coefficients) as a
function of azimuthal wavenumber for the M11R1 case. This corresponds to
the neutral curve in a standard thermal convection problem. The maximum is
the critical point (m. = 15).

4.1. Critical Mode and Rayleigh Number

We have performed a systematic analysis of the super-
criticality level of the 15 models. By searching for the marginal
state of the convection with the method described in Section 3,
we were able to assess several key quantities, such as the most
critically unstable azimuthal wavenumber m,, its frequency w,,
and the corresponding critical Rayleigh number Ra,.

Figure 3 shows the neutral curve for the M11R1 case,
showing the magnifying factor of the diffusion parameter f as a
function of azimuthal wavenumber. The maximum of the curve
corresponds to the critical state, m. = 15.

We present in Table 2 the outcome of our analysis. For all
the cases, we list the critical wavenumber m,. and its frequency
w,, the factor f that will be used to assess the level of
supercriticality, the entropy gradient of the resulting marginal
state, and the critical kinematic viscosity and thermal

Having assessed Ra., we can now compute the degree of
supercriticality Ra*/Ra, of the nonlinear models published in
Brun et al. (2017). We see that usually the slowly rotating cases
are the most supercritical, with supercritical values between 64
and 84. This is to be expected given the fact that it is hard
numerically speaking to maintain the supercriticality level as
we increase the rotation rate (or decrease Ek), because at fixed
luminosity, this implies having the kinematic viscosity v and
the thermal diffusivity # scaling like ;2. As the models span
more than a decade in rotation rate, this would imply dropping
v and x by more than a factor of 100 in the MO5 series for
instance; this would require very high resolution and large time
allocation for such a large parameter study. Instead, the choice
was made in Brun et al. (2017) to scale v and & as Q;l/z as a
compromise between maintaining a reasonable level of super-
criticality while optimizing the computing resources. We see
that indeed the faster RS cases are still supercritical, with values
raging from 5.1 to 19.

In Figure 2, we represent the entropy gradient resulting from
the linear stability analysis for the M09 case series. We notice
the existence of a large negative depth near the surface of the
model, which reaches an amplitude (in absolute sense) similar
to that of the stably stratified layer. This is much larger that the
entropy gradient observed in the nonlinear cases published in
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Figure 4. Radial velocity perturbations at the onset of convection for decreasing Ekman numbers (from 7.5 x 107> to 3 x 10~*) for the M09 case series with
N;? = 4.2 and convective envelope aspect ratio 3 = 0.71. Two red dotted lines indicate the bottom of the convection layer and boundary between the evanescent

and wavy regions in the radiative layer.

Brun et al. (2017, see their Figure 4). The explanation for this
large difference is as follows: in the linear stability analysis, the
diffusive flux must carry the heat otherwise transported by the
convective motions. In our setup, it is the spherically
symmetric entropy flux that does so, the one proportional to
Ko a very steep function of the radius r that peaks at the very
surface. As a consequence, the nonlinear model has a large
Nusselt number, with the enthalpy flux carrying all the stellar
luminosity in the midlayers. When computing the linear
stability state, this nonlinear enthalpy flux resulting from the
correlation between temperature fluctuations and radial velocity
perturbations does not exist. Only the diffusion flux is left to do
the job of carrying the stellar luminosity outward, and this
yields a very large entropy gradient.

4.2. Velocity and Entropy Patterns at Convection Onset

We now turn to analyzing the most-unstable convection
modes that would be the first to be excited in all 15 cases. For
this purpose, we display several equatorial slices of either the
radial velocity or the entropy perturbation.

In Figure 4, we display for the M09 case series a contour plot
of the radial velocity at the onset of convection for four
different values of the Ekman number at fixed stratification
N;*. We indicate using a red dashed line the separation between
the stably (below) and unstably (above) stratified layers in the
simulated domain. We note the strikingly different patterns that
results from our analysis and that could have been anticipated
by looking at the change of m, in Table 2. As we decrease the
Ekman number, we see that the most-unstable mode becomes
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\ I “, :‘
Niies
Figure 5. Radial velocity perturbations at the onset of convection for an Ekman number around 3 x 10~* by varying N from 3.7 to 4.2 along with the convective
aspect ratio S from 0.59 to 0.71. The cases with MO5R1, MO7R3, and MO9R5 are shown from left to right. The two red dotted lines in the middle of the shell

indicate the bottom of the convection layer and the boundary between the evanescent and wavy region in the radiative layer. Note that there exists another evanescent
region in the innermost part of the MOSR1 model, which is shown with the red dotted line.

Figure 6. Companion figures to Figure 5 but showing the entropy perturbations at the onset of convection. Note the different tilt at the upper part of the domain. This
is likely the consequence of the diffusion process acting dominantly in the upper part of the domain. As the convective structure moves in the prograde direction, the
thermal diffusion of the entropy perturbation associated with the convective patterns moves radially outward with some time lag (proportional to the local frequency).

increasingly of smaller scale and that its radial extent also
shrinks in size, becoming mostly confined to the top-middle
part of the unstably stratified layer (see Figure 13 for the 1D
radial cut that confirms this trend). It tends to locate itself where
the entropy gradient is the most negative (see Figure 2). We
also note the systematic prograde tilting of the patterns, which
seems to be increasingly tilted as we go from the top-left to the
bottom-right panels. Also note the distinctive spiraling pattern
in the radiative (stably stratified) zone. This pattern is
associated with internal gravity waves. We defer to the next
section a discussion of their properties.

In Figure 5, in which we have selected three cases with
approximately the same Ekman number ~3 x 10~* we note a
significant change of pattern, with much smaller features in the
MO9RS case. The critical m, value varies from 26 (left panel) to
43 (right panel; i.e., a 65% variation) for an otherwise relatively
small change of N;* (14%). This is likely due to the concurrent
change by 20% of the convective aspect ratio 3. As both
increase simultaneously from left to right, this leads to the
observed increase of the critical m,. value, resulting in the much
smaller convective velocity patterns in MO9RS.

In the companion Figure 6, we display the entropy instead of
the radial velocity for the same three cases as in Figure 5. The
radial extent and location as well as the horizontal size of the
entropy patterns clearly resemble those of the convective
velocity discussed previously. As both the stratification and
aspect ratio 3 are increased, the convective (entropy) patterns
shrink in size. However, there is one distinctive difference—the
horizontal tilting of the patterns near the top of the domain.
While with the velocity patterns, the patterns are prograde
throughout the convectively unstable domain, the tilt of the
entropy features changes sign near the surface. This is likely
due to the fact that in that part of the domain diffusive
processes dominate the balance, leading to a longitudinal lag as
the convection mode propagates.

4.3. Scaling of Critical States

As discussed in the introduction, there is a long history of
studies trying to assess how the onset of convection is
influenced by various control parameters and physical config-
urations in geo- and astrophysical fluid dynamics. Moreover,
generic scaling laws have been identified in some parameter
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regime. We wish here to compare our results to these
previously published scaling laws. To this end, we plot in
Figure 7 as a function of the Ekman number in a log—log plot
the sensitivity to parameter change of m., w,., and Ra. and
compare this to the classical scaling (shown as a dotted line
with the appropriate slope in each panel). In all three plots, we
note a good overall agreement in the slopes (scaling law)
achieved. This confirms that our stability analysis and results
on the critical states are robust. To recover the appropriate
scaling for w,, we need to represent a dimensionless frequency
rather than the value directly quoted in Table 2. When dividing
w, by the inverse of a diffusion timescale, we see that all 15
models collapse onto each other and follow the —2/3 scaling
law, already identified in previous studies. For Ra. and m,,
because these quantities are by essence without dimensions, we
do not need to do the same. We see that they do follow very
well the classical scaling with Ekman number. Ra, is found to
scale close to E, */3 and m, to E; '/*. We note a small departure
from these Boussinesq scaling as can be expected with the high
degree of stratification of our models.

Also note that in Figure 7, m,. is the most sensitive quantity
with respect to the aspect ratio 5 because of little overlap of
the four lines contrary to the frequency w,.

5. Mean Flows

We now consider the mean flows established in each model
by their respective most-unstable critical mode. To this end, we
first present our set of second-order mean flow equations. Then,
we discuss the resulting mean (longitudinally averaged)
rotation profiles found in the computation domain using color
contour plots in the meridional (r, f) plane and the key physical
mechanisms establishing these profiles. As we find that for
some slowly rotating cases nonuniform rotation profiles are
also established outside the unstable layer, we also discuss in
some length the role of gravity waves in transporting angular
momentum in the deep stable interior of these cases.

5.1. Equation for Second-order Analysis

Here, the calculation of the zonal mean steady meridional
profile excited by critical convection is given. Zonal mean
variables are denoted by ((-)) and the second-order variables by

()®. Then, each variable is expanded as follows:
S=S8y+ 8 + 8%,

p=po+p +p®. (17)
Substituting them into Equations (1)—(3), taking up to the

second order of the disturbances, and performing a zonal
average yield

u=0+u"+u?,
T=T+T +T,

V- (pu®) =0, (18)
2 2
20k x (u®) — V(—<”(_)>) - —<32)>g(r)
p P (19)

Yoron_ o o T, 0
+(FD) <u><w>+V(2<|u|>),

— ﬁT(<u(2)> . V)(E + S+ V- ["‘@radpcpv<T(2)>
+ kpT V(SP)] = pT (W' - V)S') — (Qy). (20)

The left-hand sides consist of linear terms of second-order
variables while the right-hand sides express the nonlinear
effects of critical convection. Note that we can calculate the
mean zonal field generated by each nonlinear effect separately
as you can see below, as these equations are linear with respect
to the second-order variables.

5.2. Mean Flow Profiles

We display in Figure 8 the 15 longitudinal velocity profiles
obtained from our second-order mean flow analysis. The
models are sorted from the slowest to the fastest rotating cases
from left to right for each mass bin, with the lowest mass
models, the M0O5 case series, being displayed on the top row
and the heaviest, M11 case series, at the bottom row. The first
important result is that none of the models show retrograde
longitudinal profile around the equatorial surface; they all have
a prograde differential rotation. This is in sharp contrast with
the nonlinear calculations published in Brun et al. (2017), for
which M05S, M07S, M09S, and M11R1 all exhibit retrograde
angular velocities (see Figure 1 for an illustration of the
antisolar rotation state). This means that the antisolar differ-
ential rotation profile found in the nonlinear models is due to
the interactions of a broad range of modes of convection
excited in the fully developed convection zone of these
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Figure 8. Mean zonal flows excited by critical convection evaluated with the weak nonlinear theory.

nonlinear cases. As we have seen in Table 2, all these slow-
rotating models have a high level of supercriticality
(Ra/Ra.> 60), so their profile is the end result of complex
convection mode interactions that lead to angular momentum
transport that results in such an antisolar rotation state. Our
study indicates that at the onset of convection, the slow-rotating
models with large Rossby number do not have the same type of
angular momentum transport and that only one mode is simply
not enough to reach that antisolar state (in the parameter regime

covered by our study, recall that for high Prandtl number cases,
retrograde states were found by Takehiro & Hayashi 1999).
While all models at the onset of convection possess prograde
longitudinal velocity, we do notice that the slowly rotating
cases (those on the left-end side of the figure) do posses a
peculiar meridional profile. Indeed, retrograde bands exist at
midlatitude, and even more surprising, a prograde flow
establishes itself in the equatorial region in the stably stratified
interior. This is unexpected as our study focuses on the onset of
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Figure 10. Radial and colatitudinal angular momentum fluxes of weak nonlinear solutions for the MO9R3 case. The solid, broken, and dotted lines indicate angular
momentum fluxes due to Reynolds stress, the mean meridional circulation, and viscosity, respectively. Broken dotted lines indicate total angular momentum flux.

convection in the unstably stratified external part of the
domain, and the second-order mean flow analysis supposedly
was expected to assess the angular momentum transport there
as well. The fact that a non-solid-body rotation established
itself outside the unstable layer is very interesting as it must be
through a physical mechanism different from convection mode
interaction. The likely source of angular momentum transport
deep in this radiative layer must be the Reynolds stresses
associated with gravity waves as we do not include magnetic
effect in this study. Indeed, such waves can be guessed in the
equatorial slices discussed in Section 4, that possess in their
radiative interior the characteristic spiraling pattern of gravity
waves (see, for instance, Alvan et al. 2014, 2015, and
references therein). This is the first time that such a behavior
is observed in linear stability analysis of convective flow and is
the direct consequence of our choice of including in the
analysis a stably stratified layer to improve the realism of the
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bottom boundary conditions. We defer to the next subsection a
detailed discussion of the angular momentum transport realized
in the stably stratified layer of the slow-rotating models where
we provide some elements of internal gravity waves theory in
stars.

For now, we wish to discuss the angular momentum balance
achieved in the unstable convective upper layer. In Figures 9
and 10, we display the angular momentum balance of cases
MO9S and MO9R3. Following Brun & Toomre (2002), we
integrate in the latitude the radial component angular
momentum flux and in the radius the colatitudinal component
of the angular momentum flux. This allows us to assess the
sense and amplitude of the transport of angular momentum
within the computational domain. We further decomposed the
fluxes into their Reynolds stresses (solid line), mean meridional
circulation (dashed), and viscous (dotted) components. Turning
first to the radial balance (left panels), we note that for case
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Figure 12. Mean zonal flow excited by each nonlinear term of the critical convection for the MO9R3 case. (a) Total mean zonal flow. Mean zonal flow generated (b)
by the nonlinear term of the toroidal equation, (c) by that of the poloidal equation, and (d) by that of the entropy equation.

MO9S, the Reynolds stresses carry outward the angular
momentum in the upper half of the domain, helped by the
meridional circulation. In the lower part of the convection zone,
extending somewhat into the radiative stably stratified layer,
they reverse and transport the angular momentum downward.
The viscous fluxes have opposite signs throughout the domain.
The nonvanishing angular momentum term in the stable layer
explains why MO9S exhibits a differentially rotating stable
layer. For case MO9R3, the story is slightly different. The main
balance is still between the Reynolds stresses and the viscous
diffusion, but it is mostly concentrated in the upper part of the
unstable layer. The transport is much weaker deeper down in
the unstable layer, certainly because the most-unstable
convective mode does not spread to the entire unstably
stratified layer. Moreover, the meridional circulation contri-
butes to both sides. In MO9R3, there is also almost no angular
momentum transport in the stable layer. This is consistent with
case MO9R3 having an almost perfectly rigid rotation in its
stable layer. In both cases, the radial balance is well established
as their sum is close to zero as indicated by the dashed—dotted
line. For the latitudinal balance (right panels), both cases
exhibit the same behavior. Reynolds stresses are found to be
positive (negative) in the northern (southern) hemisphere,
opposed by both viscous and meridional circulation. This
means that Reynolds stresses transport angular momentum
toward the equator. Because the differential rotation is prograde
in all cases shown in Figure 8, it is expected that the viscous
flux goes toward the pole in each hemisphere as they tend to
erode any gradient of angular velocity. The meridional
circulation direction is the result of the imbalance between
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Reynolds and viscous stresses in latitude, through the so-called
gyroscopic pumping (Mclntyre 1998, 2007; Brun et al. 2011).
All other cases have similar behavior and are thus not shown
for the sake of conciseness of the paper. Please note that in
Brun et al. (2017), slow-rotating cases have latitudinal angular
momentum due to Reynolds stresses in the opposite direction
to what we found in this analysis. This is consistent with the
fact that in the nonlinear simulation, retrograde differential
rotation states are found. It seems that the v4v, Reynolds stress
plays a key role in establishing antisolar differential rotation.
To complement the angular momentum analysis, we display
in Figures 11 and 12 the contribution to the differential rotation
profiles achieved in M09S and MO9R3 of the mean zonal flow
generated by the nonlinear term of the toroidal equation, by that
of the poloidal equation, and by that of the entropy equation
(via meridional circulation driven by entropy latitudinal
contrast). We see that for the slowly rotating case M09S, the
nonlinear term of the toroidal equation is the source of the
differential rotation in the stable layer and at the surface near
the equator. The midlatitude retrograde (blue) features are due
to the thermal contribution. The fact that the Reynolds stresses
are the source of the feature seen in the stably stratified layer is
further proof of the involvement of gravity waves to do so.
By contrast, there is almost a one-to-one correspondence
between the case MO9R3 mean zonal flow and the Reynolds
stresses, with little contribution from the two other terms.
Hence, Reynolds stresses associated with the critical convec-
tion mode are the source of the mean flow observed in these
rapidly rotating (low Ekman) cases. Moreover, in these cases,
there is no significant angular momentum transfer in their
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radiative interior even though they also exhibit spiraling
patterns in the stably stratified layer when analyzing the
equatorial slices of Figures 4 or 5.

We can understand that latter property by looking at the
radial extent of the most-unstable convection mode. In
Figure 13, we display for the four M09 cases a radial cut of
the radial velocity in the equatorial plane at a given longitude
(chosen such as to sample a local maximum for each case;
please look again at Figure 4 for a contour plot of the radial
velocity of the M09 case series). We see that the radial profile
of the velocity changes significantly from one case to another.
The model with the highest Ekman number (M09S) possesses a
very broad profile, somewhat extending into the stable layer
(delineated by the vertical red dashed line), its maximum
peaking in the middle of the unstable layer. The MO9R1 case
also possesses a broad profile even if it is slightly narrower than
case M09S. Both these cases exhibit wiggles in the stable layer,
consistent with the presence of gravity waves that transport
rather efficiently due to their relatively high-amplitude angular
momentum in that layer (see below). By contrast, the other two
models, MO9R3 and MO9RS5, have narrow radial velocity
profiles, with even a small negative value near the surface. The
reason for the negative depth is that the patterns in the
equatorial plane for these latter two cases are much more tilted
and horizontally less extended, so a radial cut goes through
more than one convective structure. At the base of the unstable
layer, these models are also more damped with a tiny velocity
amplitude. As a consequence, not much transport by gravity
waves can be expected there as we will see in the next
subsection.

5.3. Gravity Waves and Angular Momentum Transport in the
Stable Layer

In this section, we wish to discuss how the slow-rotating
cases, namely MO0SS, M07S, M09S, M0O9R1, and M11RI,
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establish their peculiar longitudinal velocity profile of non-
solid-body rotation in the stably stratified deep layer. Recall
that all these cases still possess a prograde differential rotation
near the equator. The surprise comes from the fact that the
second-order mean flow analysis reveals that these cases also
develop a differential rotation profile elsewhere, other than in
the outer unstable layer. The reason, as we have already
mentioned, cannot be convection as it is confined in the upper
part of the computational domain. It must be gravity waves
excited by the critical convection mode of each slowly rotating
case. Gravity waves are known to oscillate when their
frequency is lower than the Brunt—Viisild frequency (Pedlosky
1987). This is the case for most models in most of their
radiative interior except for a small evanescent region near the
base of the convection due to the sharp increase of N in that
area. Indeed, when looking at the equatorial slices, all cases do
display a spiraling pattern in their radiative interior. Note that
the pitch angle of the spiral is determined by the ratio of w./N
and so changes in each model considered, as can be easily seen
in Figures 4 and 5. One key question is: why do some
cases develop non-solid-body rotation while others do not? In
order to answer this question and understand the mechanism
with which this critical frequency gravity-wave transport
angular momentum, we need to look into gravity-wave angular
momentum transport in stars (see, for more details, Ringot
1998; Talon et al. 2002; Rogers et al. 2013; Alvan et al. 2014,
and references therein). What we wish to clarify is twofold:

(a) Why some cases have high-amplitude gravity waves in
their radiative interior that lead to angular momentum
transport and others do not, and

(b) Why, among the slowly rotating cases, the amplitude of
the differential rotation in the stable layer differs, with for
instance cases M05S and MO7S displaying much less
longitudinal velocity contrast compared to MO9S,
MO9R1, and M11R1.

Let us start with the first question (a). It is clear from looking
at Figure 8 that as we decrease the Ekman number from left to
right, the transition occurs in the longitudinal and radial
velocity profiles achieved in the simulation. Hence, there is
clear influence of rotation on the existence or not of angular
momentum transport in the radiative interior. We believe the
reason is due to a change of convection structure with a
decrease of the Ekman number. As shown in Figure 13, the
convection patterns are significantly affected by the increase of
the rotation rate and much less power reaches the base of the
convection zone and thus the wave amplitudes are further
reduced. This effect yields a much weaker gravity-wave signal
in the stable layer for the R3 and RS series of models. As a
consequence, little or no angular momentum is being
transported in the stably stratified zone of these models.

As a side comment, please also note that the respective
critical frequencies w,. of MO5R3 and MO5RS are close to the
maximum of N for these cases, so we expect an evanescent
zone both near the top of the stably stratified domain and at the
bottom. This is indeed what we observe in Figure 14 showing
the Brunt—Viisild frequency and w, for all four MO5 cases.

As for the second question (point (b) above), we wish to
understand why the slowly rotating cases M05S and MO07S
differ from their M09 and M11 equivalent. For this question,
the previous argument on the radial extent of the critical
convection mode does not hold here as all models have broad
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low-wavenumber convection patterns. The reason seems quite
subtle and is likely linked to the way gravity waves are damped as
they propagate in the radiative interior. As discussed in detail in
Rogers et al. (2013) and Alvan et al. (2014), the wave amplitude is
influenced by two phenomena: density stratification and thermal
damping. Roughly speaking, A o (Ag/\/p)exp(—7), with A,
the amplitude of the wave at the base of the convection zone and 7
the thermal radiative damping. As discussed in Rogers et al.
(2013), the dependence of the wave amplitude on the background
density as p~!/2 is linked to the conservation of the pseudo-
momentum (pv, ), with () representing a temporal and
longitudinal average. Concerning the thermal radiative damping,
this is explained in Zahn et al. (1997) and illustrated for a solar-
like star in Alvan et al. (2015). The concept of thermal damping
can be easily demonstrated through the following derivation.

We recall that the dispersion relation of internal gravity
waves is

2
2 N2k
K2

K=k + k7, @1
where w is the frequency of the wave, N is the Brunt—Viisila
frequency, and K, kg, and k, are total, horizontal, and radial
wavenumbers. As we have already seen above, the group
velocity in the radial direction is

Oow NkH

=k T kAT

wk,
K2’

(22)

Considering the following equation for wave propagation and
viscous dissipation,

Cg,a—gZS =vV2p ~ —vK?9, (23)
or
and expressing the solution as follows:
2
$reT T = f idr (24)
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with 7 a decaying factor, which is calculated as
vK? . vK*
Cyr wk

Here, when N/w > 1, k, can be approximated as
N? 12 N
r:(_2_1) kHN_kH.
w
Then,

i~ [

e

. f vK= 2
Equation (25) shows that the thermal damping depends on the
horizontal wavenumber to the third power and on the ratio of
the Brunt—Viiséld frequency to the third power with the wave
frequency w to the fourth power. Note that in our study of the
critical state, w will only take the value w = w,, listed in
Table 2.

In order to illustrate how the gravity waves are being
damped in our slowly rotating cases we plot in Figures 15 for,
respectively, M05S, M07S, M09S, M09R1, and M11R1 the
thermal damping on the left panel and its product with the
inverse of the square root of the background density. We note
that for the first two cases, the damping is much stronger than
for the other cases. We believe this explains why in cases
MO5S and MO7S the gravity waves do not transport angular
momentum as efficiently and as deep in the radiative layer as
the other three cases.

By contrast, in Figure 16 we show the thermal damping (left
panel) and its product with the inverse of the square root of the
background density (right panel) for the M09 case series, and
we clearly see that this cannot explain the difference in the
radiative interior when the only parameter changed is rotation
(or Ekman number). This confirms our finding for point (a)
discussed above that what makes the difference for a given
mass bin in the resulting mean flow deep in the stable layer is
the extent of the convective pattern.

(25)

6. Discussion and Conclusion

In this work, we have studied if retrograde differential
rotation states (slow equator, fast poles) can be found at the
onset of convection instability. This is fundamental because
such antisolar states have been found in many recent 3D
nonlinear numerical simulations of rotating stellar convection,
and we wish to know if such states could exist in real stars. We
found that none of the linear critical states (see Figure 8)
possess such a retrograde state. This means that only complex
nonlinear mode interactions can generate such rotational states
in the domain parameters we studied, and so given the high
degree of turbulence in stars, this is likely going to happen also
in stars. We mean that if diffusive retrograde rotation solutions
at the onset of convective instability existed we could have
argued that the nonlinear solutions were not supercritical
enough and that the retrograde state was just a feature of mildly
turbulent models. Finding the opposite is reassuring and gives
an interesting observational perspective to look for such
antisolar retrograde states in our cosmic neighborhood.

In order to perform this study and reach the above conclusion,
we have performed a systematic analysis of the critical state of 15
stellar rotating convection simulations published recently in Brun
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et al. (2017). We have computed through a linear perturbation
analysis the most-unstable critical mode for each model in the
anelastic approximation, characterized its critical wavenumber and
frequency, and computed its degree of supercriticality by
computing the associated critical Rayleigh number Ra. (see
Table 2). We have illustrated in equatorial slices how the critical
modes evolve as a function of key parameters such as the Ekman
number, number density scale height N¢%, and aspect ratio 5.

14

We see that rotation strongly influences the mode structure,
making it more confined both in longitude and radius. We find
that the critical Rayleigh number can reach a very high value in
excess of 10° for rapidly rotating highly stratified models. We
have also recovered scaling law results published in the literature
(Jones et al. 2009), such that, for instance, Ra, scales as Ej~ 473,
Then, we computed the second-order mean flow response
associated with the critical state. By analyzing this figure and
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by noticing the absence of a retrograde rotation state, we reached
the conclusion that antisolar retrograde states need complex
nonlinear mode interaction to develop. We find that in all 15 cases
studied, angular momentum is mostly transported by Reynolds
stresses opposed by viscous transport. For the slowly rotating
case, some contribution of the meridional circulation associated
with temperature/entropy latitudinal contrast are also found. One
key difference between the linear critical mode analysis
simulations and the nonlinear turbulent solutions published in
Brun et al. (2017) is the latitudinal transport of angular momentum
by the (vpv) term. For the slowly rotating cases (MO05S, MO7S,
M09S, M11R1), in the nonlinear simulation they are poleward
whereas for the linear analysis they are equatorward. This likely
explains the reason why in the linear analysis the antisolar state is
not found.

A specificity of our study is that it also includes a stably
stratified layer below the surface unstable layer. This original
setup has two important consequences. First, it improves the
bottom boundary conditions by replacing an impenetrable wall
with a more realistic coupling to a radiative interior. Second, to
our own surprise, gravity waves can be excited in the whole
radiative domain by the critical convection mode. This leads to
interesting angular momentum redistribution, in particular for
the slowly rotating (high Ekman number) cases. We find that
the radial extent of the critical convection mode (see Figure 13)
and azimuthal critical wavenumber both play a key role in
determining if the Reynolds stress associated with the internal
gravity waves will be large enough to make the stable layer
depart from solid-body rotation. We also find that thermal
damping and density stratification also explain why some
slowly rotating (high Ekman number) cases display a stronger
differential rotation in their stably stratified layer than other
slowly rotating cases.

This study encourages us to compute even more turbulent
simulations of rotating stellar convection at various Ekman and
Rossby numbers in order to further delimit the regime where
antisolar retrograde rotation states in stars could be found. In
particular, this study focuses on Prandtl number (Pr) equal to
1/4, and other studies have put forward the key role that Pr
could have in the establishment of such prograde or retrograde
states. Considering even lower values of Pr relevant for
convection of solar-like stars would be interesting. Further,
solar-like stars are magnetic, and it will be interesting to assess
the role of Maxwell stresses in the resulting differential rotation
profiles achieved as a function of Ro and E; (see, for instance,
Karak et al. 2015; Guerrero et al. 2016; Varela et al. 2016;
Viviani et al. 2019) as well as the role of retrograde omega
effect in stellar dynamo field generation (see Strugarek et al.
2018; Karak et al. 2020 for preliminary studies).
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