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Abstract
A general method for the determination of the uncertainty of a physical
quantity measured during an experiment is presented. This procedure is
described step-by-step so it can be applied to any measurement and experi-
ment available for undergraduate and graduate students, from the simplest to
the most complex. The method is then applied to a classic measurement of
plasma physics: the plasma potential determination using an emissive probe.
This kind of experiment is routinely performed in plasma physics laboratories
and may be realized by graduate students. The emissive probe diagnostic relies
on a data analysis method called the inflection point. This method follows an
indirect procedure on which the step-by-step uncertainty calculation strategy
presented in the first part of the article is presented.

Keywords: uncertainty evaluation, plasma, metrology, emissive probes

(Some figures may appear in colour only in the online journal)

1. Introduction

In laboratory experiments, the measurement of physical quantities is necessary to characterize
and understand the studied phenomena, and to validate theoretical models and numerical
simulations. However, it is crucial to characterize properly the measurement in order to obtain
meaningful informations. Comparing a measured physical quantity and its theoretical value
leads to the following statement: in theoretical models, physical quantities are implicitly given
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by numerical values with an infinite precision (i.e. exempted from errors). However, this
statement is wrong for the measured physical quantities. Indeed, two consecutive measure-
ments of the same physical quantity under the same experimental conditions (i.e. keeping the
same repeatable conditions [1]4), give two different results because of measurement uncer-
tainty. This notion of uncertainty is essential in metrology. The mathematical nature of a
measurement result does not consist of one single value exempted from errors as in theoretical
models but rather of a random variable Y. One has to determine a ‘true value’ ȳ [1], which can
be interpreted as the value of Y with the highest probability of measurement, and an uncer-
tainty on the measurement u which takes into account the different sources of uncertain-
ties [2].

Let us consider that an infinite number of Y measurements under the same experimental
conditions can be performed. According to the central limit theorem (LCT) [3], the mea-
surement result can be described by a continuum random variable whose probability density
f y( ) is given by a normal law, centered around a theoretical average value μ and a theoretical
standard deviation σ (see figure 1). μ and σ are theoretical for two reasons. Firstly, it is not
possible to keep exactly the same experimental conditions for each measurement, which leads
to variations of every parameter including the measured quantity. Secondly, it is obviously
impossible to proceed to an infinite number of measurements. The first statement leads to
‘systematic errors’ [1] which systematically shift μ to μ1 and contribute to the uncertainty of
the measurement modifying σ to σ1 (see figure 1). The second statement leads to the ‘random
error’ [1] which originates from the sampling of Y. From n measurements of Y one cannot
deduce μ1 and σ1 but rather estimations of these two quantities (see figure 1). Consequently,
to have a meaningful experimental value of Y y, ¯ and u—which takes into account both the
random and systematic errors of the measurement—must be provided.

For each experimental measurement of a physical quantity, it is always possible to
rigorously determine its uncertainty based on the analysis of the measurement process. In the
metrology science literature, numerous metrological procedures are available for the mea-
surements of temperature, mass, resistanceK However, as soon as the measurement becomes

Figure 1. Blue line: Distribution function of the measurand Y for an infinite number of
measurements in the same conditions (i.e. without systematic errors) associated to the
statistical characteristics μ and σ. Red line: Distribution function of the measurand Y
for an infinite number of measurements with systematic errors associated to the
statistical characteristics μ1 and σ1. Pink crosses: Distribution function of the Y
measurand for n measurements associated to the statistical characteristics ȳ and u
calculating from the sampling.

4 In the following, [1] is used to reference words that are defined in the international vocabulary of metrology.
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more complex, finding a metrological method providing the uncertainty becomes tougher.
Often, the measurement uncertainty consists of the calculation of a mean and a standard
deviation at worst; a systematic error related to the measuring instrument is added at best.
Unfortunately, the presentation of scientific results from laboratory experiments (carried out
by students or even scientists) is presented too often with an uncertainty that is not correctly
calculated (the measurement uncertainty method is often not presented). However, a metro-
logical analysis is necessary to correctly determine the average value (which can be con-
sidered as the true value of the measurement result) and its associated uncertainty. In addition,
a rigorous metrological analysis of the measurement chain also allows the students/scientists
to have a better understanding of the results of the experiments. It is common to think that out
of academic cases (metrology of mass, temperature, length measurement for instance) per-
forming a rigorous metrological study is not possible. However it as actually achievable. The
purpose of the present article is to invite physics students (undergraduate and graduate
students) to think about the concept of experimental measurements in terms of random
variables and probabilities. A good understanding of measurement concepts is essential to
appreciate the importance of uncertainties and to learn how to correctly evaluate them.

This issue occurs in all fields of physics. In the present article we will use plasma physics
as an example. One of the simplest plasma physics experiments (available for graduate
students) is that of plasma potential determination using an emissive probe. The measurement
procedure considered here is called the inflection point. When performing this experiments, it
is here again mandatory to present the results with the proper uncertainty. However, detailed
examples are missing in the literature. Thus, the purpose of this paper is to provide a
metrological procedure usable for any measurements independent of the complexity. In
particular, this work intends to give a clear and pedagogical procedure to determine the
uncertainty on the plasma potential measurement using an emissive probe [4]. Indeed, with
density and temperature, plasma potential is one of the most important plasma parameters. Its
measurement is necessary to understand a wide range of plasma phenomena. For this purpose,
emissive probes are used in numerous plasma devices [5–7], and the theoretical modelling of
these probes is well developed [7–11]. Emissive probes are said to be one of the best
diagnostic to measure the plasma potential [12], and several methods have been proposed for
the plasma potential measurement [4, 7, 13, 14]. However, the uncertainty of such mea-
surement has never been carefully analyzed. We propose in this work a rigorous uncertainty
evaluation of the plasma potential measurement using emissive probe in a unperturbed
plasma. This is an ideal example: most often the error of such a measurement is calculated
simply from several repeated measurements, the systematic errors being omitted. The
determination of the plasma potential consists of the measurement of a current and a voltage.
Therefore, an extended knowledge in plasma physics is not required and the measurement
chain and procedure can be analyzed as it is.

This paper is organized as follows. After the introduction, section 2 presents the statistics
underlying the measurement of a physical quantity; more precisely, the determination of the
uncertainty of a measurement from the random error and the systematic errors is presented
step-by-step. In section 3, the experimental apparatus and the measuring chain, used for the
measurement of the plasma potential fp by an emissive probe, are briefly described. In
section 4, the step-by-step procedure of the uncertainty determination described in section 2 is
applied to the measurement of the potential plasma with an emissive probe. A pedagogical
procedure is given to proceed to the uncertainty calculation. Experimental results are pre-
sented and discussed. Finally, in section 5, the main conclusions of this work are presented.
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2. Statistical description of a measurement result: the measurand is a random
variable

According to [2], a measurement [1] is an experimental process that aims to obtain one or
more values that can reasonably be attributed to a measurand Y, which is the quantity to be
measured. However, attempting to get a ‘true value’ is not possible since Y is by nature a
random variable: its value is undertermined. From a theoretical point of view, Y is a con-
tinuous quantity generally defined on . Consequently, the aim of a measurement is to
determine a ‘mean’ value of Y y, ¯, which is called the conventional true value of Y and the
uncertainty of the measurement u. u represents the dispersion around ȳ of the different
measured value of Y with a reasonable probability. (For example, if one wants to measure the
temperature of a classroom, the probability to measure −100 °C is close to 0 while the
probability to measure 25 °C is close to the maximum probability.) Thus, the result of a
measurement can be given as = Y y u¯ (it will be shown later that usually the result is rather
given as = Y y I¯ where I is the expanded measurement uncertainty [1]).

A measurement is always marred by errors. These errors have to be determined to
establish the uncertainty of the measurement. Two kinds of error exist: systematic errors and
random error.

2.1. Systematic errors

Systematic errors are defined as the component of the measurement errors that remains
constant or varies in a predicable way during repeated measurements. For a given mea-
surement, systematic errors are obtained from a detailed and rational analysis [15] of the

Figure 2. ‘5-M diagram’ or ‘Ishikawa diagram’ [15] provides a detailed and rational
analysis of the measurement process to determine systematic errors.
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measurement procedure. Usually, it is convenient to organize the different systematic errors in
a ‘5-M diagram’ (see figure 2). Once systematic errors are listed, a model for the measurement
process has to be derived, accounting for the systematic errors x1, x2, ... xm

5:

=Y f y x x x, , ,..., . 1m1 2( ¯ ) ( )

From the uncertainty propagation law comes the combined standard measurement uncertainty
due to systematic errors [16]:
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where xi¯ is a mean value of xi and usysi is the standard measurement uncertainty of the
systematic error labelled i which have to be determined. It may be noted that equation (2) is
derived assuming the independence of the variables xi. Equation (2) arises from a second-order
Taylor expansion and assumes that systematic errors are small. A derivation of the uncertainty
propagation law in the case in of correlated variables can be found in [16].

To compute usys from equation (2), the standard measurement uncertainties usysi have to
be determined. From the definition of a systematic error, it is impossible to extract the
uncertainty of a systematic error by statistical calculations: one cannot proceed to repeated
observations to evaluate a systematic error. As an example, the balance needle involves a
systematic error which is constant from one measurement to another. As a consequence, the
standard deviation of that shift is 0. Thus, to determine the standard uncertainty usysi of a
systematic error xi, one should analyze the origin of the error from available informations
(experience, knowledge, previous experimental data, manufacturer’s specifications, ...) on the
possible variability of xi. The method to determine standard uncertainty of systematic error is
called in the literature ‘type B evaluation’ [1, 2]. Some examples are as follows.

• The measuring instrument induces a systematic error on the measurement linked to its
metrological properties (i.e. instrumental bias, instrumental drift, instrumental precision).
The standard uncertainty is obtained from the instrument specifications. If the instrument
has been calibrated, the calibrated uncertainty of the instrument Ical extended by a
coverage factor k are available. Thus, the standard uncertainty due to the calibrated
measuring instrument is given by =u I kcal

sys
cal .

• If the instrument is not calibrated, the specifications notes give the accuracy class of the
instrument. This class provides indications on the metrological properties and on the level
of confidence of the instrument. More precisely, the class indicates the uncertainty
interval of the measure given by the instrument. The normal law is usually applied to the
interval to determine the standard systematic uncertainty on the measurement usysinst.
Indeed, the value given by an instrument is also a random variable which is the result of a
lot of independent factors allowing the use of the LCT.

• The resolution q of the instrument display adds a systematic error to the measurement.
Indeed, for a displayed value y of the measurand, all the values - +y q y q2, 2[ ]
could be measured with the same probability. As a consequence, the standard uncertainty
associated to the display resolution can be calculated using an uniform probability law
which represents equiprobable experiences.

5 Influence quantities [1] (for example, temperature in shim length measurement) and indirect quantities (for indirect
measurement such as electric resistance in a voltage measurement) involve systematic errors which are taken into
account in the measurement model (equation (1)). Moreover, if a systematic error is well known, it can be directly
corrected. In this case, the correction induces a systematic error and is an input quantity in the measurement model.
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More generally, if the physical phenomenon inducing the systematic error xi is in the
measuring interval - +- +y y y y,[ ], it should be carefully analyzed in order to find a
theoretical statistical distribution function f which is appropriate to determine the standard
systematic uncertainty usysi from the statistical formula:
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The nature of the phenomenon at the origin of the systematic error determines f. If various
independent factors are implied, the LCT can be applied and f follows a normal law. If all the
values of - +- +y y y y,[ ] have the same probability, f follows an uniform law. If the
measurand is periodic on the interval - +- +y y y y f, ,[ ] follows an arcsinus law.

2.2. Random error

Together with systematic errors exists the random error. The standard definition of the ran-
dom error can be found in [1]. From a theoretical point of view, an infinite number of the
measurand measurements in the same conditions allows the use of the LCT, which gives the
value of the theoretical mean value μ1 and of the standard deviation σ1 associated to
the normal law while taking into account the systematic errors (see figure 1(a)). There is then
no random error and the associated standard measurement uncertainty urand is equal to 0.
However, it is obviously impossible to proceed to an infinite number of measurements and by
nature μ1 and σ1 are unknown and undermined (as well as μ and σ on figure 1(a)). Only a
finite number n of measurements (figure 1(c)) can be performed, leading the random error.
The random error is the error obtained from n measurements made in identical conditions.
The n measurement value y y y, , ..., n1 2[ ] fluctuates around a mean value

å=
=

y y n, 4
i

n

i
1

¯ ( )

with a standard deviation å =
-

i
n y y

n1
i

2( ¯)
. As a consequence, to determine the statistical

standard deviation urand, which represents the contribution of the random error on the
uncertainty measurement u, μ1 and σ1 have to be estimated from the sampling of n
independent random variables y1, y2, ...yn. Following [3], it can be shown that a good

estimation of μ1 is ȳ and a good estimation of σ1 is s = å =
-
-i

n y y

n1
est

1 1
i

2( ¯) (ȳ is not the ‘true’
mean value of the sampling, but an estimation as any other yi). Usually, ȳ is taken as the
conventional true quantity value [1] of the measurand. By definition, the random contribution
to the uncertainty measurement urand is the standard deviation of the random variable ȳ and
according to [3], it can be shown that if n is large enough6 the LCT can be applied:

s=u n . 5rand
1
est ( )

6 To know the measurement number n required to applied the LCT, one should plot urand as a function of n. The
‘good’ value of n is its the minimal value for which an increase does not lead to a noticeably decrease of urand. The
random error varies like n1 2, usually n∼30.

Eur. J. Phys. 41 (2020) 035806 V Pigeon et al

6



2.3. Measurement uncertainty evaluation procedure

To summarize, the following steps are necessary to a proper evaluation of the uncertainty u
associated to the measurement result of a measurand y.

(i) Measurement modeling7

To determine the uncertainty associated to a measurement, its mathematical model has to
be derived:

= ¼y f z z z, , , , 6p1 2( ) ( )

where zj represents measured physical quantities (or physical constants known with their
uncertainty). For simplicity, the quantities zj are supposed independent of each other

8 (for
correlated quantities see [1, 3]). At this step, the propagation law can be applied to get the
expression of u:
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uzj
is the uncertainty of zj and should be determined. If zj is not measured and represents a

physical constant, its uncertainty uzj
is known (by manufacturer’s documents, equal to 0

for physical fundamental constant, ...). When zj is a measured quantity, uzj
can be

determined following the steps described below and has two components: one derived
from the random error treatment and one derived from the systematic errors treatment.

(ii) Random error treatment9

Proceed to n measurements of each measured quantity zj: ¼z z z, , ,j j jn1 2
{ }. The

conventional true value zj̄ and the random contribution to the measurement uncertainty
uz

rand
j

can be obtained for the measurand zj using equations (4)–(5):
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It may be noted that n should be large enough in order to satisfy the application
conditions of the LCT.

(iii) Systematic errors treatment
For each measured quantity zj, the measurement process has to be analyzed in details (5
M method) to determine the sources of systematic errors x1, x2, K, xm. Each systematic
error xi has to be investigated in order to compute its standard uncertainty usysi (using the
‘type B evaluation’).

7 As an example, the measurement of a electric current intensity  passing through a resistor  from the voltage
measurement  across the resistor. The mathematic model is given by the well know Ohm’s law, =  .  is
indirectly measured by the measurement of  and knowing. Applying the propagation law, the uncertainty of the
indirect measurement of  is = * + *  u u u2 2 2 2 . Here, the value of  could be a mean value obtained from
n measurements.  is known and its uncertainty u should be find in the constructor’s document provided with the
resistor. It remains to be determined u from a random error treatment (n measurements of —step 2, uz

rand
j

) and a
systematic errors treatment of the  measure process (step 3).
8 One can note that if the measurand is directly measured the model is very simple, y=y, and u can be determined
thanks to a random error treatment (step 2) and a systematic errors treatment (step 3).
9 In the example of the Ohm’s law, the only quantity directly measured is  . To determine the contribution of the
random error to u , one has to proceed to n measurements of    , , ,..., n1 2{ }. From equations (4)–(5), one can
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(iv) Determination of uzj
from the propagation law

At this step, for each measured quantity zj and using the propagation law, the uncertainty
uzj

can be computed:

å= +
=

u u u . 9z z
i

m

i
rand2

1

sys2
j j

( )

In equation (9) we have supposed that systematic errors are independent of each other
leading to an additive model for the measurand = + + + +z z x x x...j j m1 2¯ . Then, using
equation (7), u can be calculated.

(v) Determination of the expended measurement uncertainty I
Enlarge the measurement uncertainty u by a coverage factor k, i.e. I=k×u with k>1.
k depends on the number of measurements n. Usually, if n is large enough,the LCT can
be applied, Y follows a normal law and k=2 (if the LTC cannot be applied see [16] to
compute k). Thus, the result measurement can be presented as follows =  *Y y u2¯ .
This expression indicates that the measurand Y follows a normal distribution with
parameters ȳ for the mean value and u for the standard deviation. The measured value of
Y has 95% of chance to be in the interval - * + *y u y u2 , 2[ ¯ ¯ ].

3. Plasma potential measurement of a gas discharge using an emissive probe

The metrological procedure exposited in the last section can be applied to any physical
quantity measured by any method to correctly determine the measurement uncertainty. As an
example, we present in the following the metrological analysis of the plasma potential
measurement in a gas discharge using an emissive probe. The determination of the potential
implies the measurement of the probe voltage and corresponding current. Usually, for such
experiments, the uncertainty is determined only by calculating the standard deviation of a
limited number of measures, i.e. taking into account only the random error and neglecting the
systematic errors which are thought not easy or impossible to evaluate. However, using the
different steps presented in the previous section, one can determine the systematic errors and
their associated uncertainty.

The plasma state is one of the four fundamental states of matter and was first described
by Langmuir [17] in the 1920s. It is an ionized gas composed of ions, electrons and atoms
(the neutral gas) free to move in all directions of space, and the interactions between the
charged particles are governed by the Coulomb interaction. Thus a plasma is a medium with a
collective behavior and is neutral at macroscopic scales. The number of plasma applications is
large: controlled thermonuclear fusion, astrophysics (the Universe is composed of 99% of
plasma), plasma chemistry (formation of ozone from O2, dissociation of CO2, catalysis of
chemical reactions), industry (surface processing, sterilization of medical items, analytical
chemistry, plasma screen, lighting, ion sources, etc).

A plasma can be formed by biasing two electrodes—a cathode (K) and an anode (A)—
embedded in a low-pressure gas (argon or neon for instance). The cathode is negatively
biased compared to the anode such as f f- < 0K A , as shown in figure 3. Over a threshold
voltage the gas is ionized and a current is driven between the electrodes. This is a basic
plasma discharge. In plasma physics laboratories, many experiments rely on such discharges
and plasma properties have to be measured. Here, we focus on the electric potential (with
respect to the ground) at the center of a discharge (figure 3): the plasma potential fp,
measured using an emissive probe.
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3.1. Emissive probe measurement principle—inflection point method

An emissive probe (figure 4), consisting of a tungsten hairpin-shaped wire (in order to resist
to high temperature), is immersed in the plasma discharge (figure 3). A current is driven
through it in order to heat the wire up to electron emission (the thermionic emission, around
Tw∼1500 °C–2000 °C). One can determine the plasma potential fp at the plasma center
from the current–voltage I–V characteristic of the probe. It is obtained by biasing the probe
with respect to the ground. At voltages below fp the probe emits electrons; at voltage over fp
the probe collects electrons. In figure 5, a typical I–V characteristic is shown: the current
measured on the probe is plotted as a function of the probe bias from A to D. The current
measured on the probe is a combination of a collected current and an emitted current. As a
consequence, the characteristic can be decomposed into three regions (AB, BC, CD) which
correspond the three different configurations of the electrostatic sheath surrounding the probe
(figure 5).

The region AB is characterized by fV p , where the probe collects ions and emits
electrons if its temperature is high enough. The resulting current on the probe is given by the
addition of the probe emitted current Ie0 and the ion saturation current Ii

sat. Usually the ion
saturation current is negligible (I Ie i0

sat ) and Ie0 is given by the Richardson–Dushman

equation, which is = f
I AT S expe w

e

T0
2 w

w
( ) [12], where A is the Ridchardson’s constant, fw is

the work function of the wire, S is the wire surface area and Tw the probe temperature.
From fV p (the region CD), the space-charge region surrounding the probe becomes

electronic: all the ions are repelled and the all the electrons are attracted. The probe is in the
electron collecting regime and there is no electron emission: this corresponds to the electron
saturation current.

Figure 3. Example of a plasma discharge experimental apparatus. An emissive probe is
placed in the plasma center. The current I on the probe is measured to determine the
plasma I–V trace.
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The third region (BC) is the transition region between the electron emitting and electron
collecting regime. In this region, the probe voltage lies near the plasma potential that one
wants to measure. The probe current follows a exponential growth law characterized by the
probe temperature Tw as the emitted electrons are assumed to be described by a Maxwellian
distribution function at temperature Tw

10. The inflection point of this exponential region,
which is the maximum of I Vd d , is the plasma potential [12]. However, because of the

Figure 4. Picture of the emissive probe. The red arrow indicates the hairpin-shaped
tungsten wire, which size is typically 1–2 mm. The green arrow shows the ceramic
tubes that hold and shield the connection wire.

Figure 5. Typical emissive probe I–V characteristics, with its first derivative. The
inflexion point is simply given by the maximum of the first derivative. The emission
current is the mean electronic current at low biases (far enough from the IV-knee).

10 For a classical Langmuir probe, the probe current follows an exponential growth law characterized by the plasma
electrons temperature.

Eur. J. Phys. 41 (2020) 035806 V Pigeon et al

10



electron emission a negative space-charge forms near the probe and shifts the inflection point
from the plasma potential toward lower values. It has been shown that in the limit of low
electron emission, the shift grows linearly with the emission current [8]. This linear growth
can be experimentally measured to extrapolate the value of the inflection point at zero
emission, which is the plasma potential (see figure 6). Thus this plasma potential measure-
ment method is called the ‘inflection point in the limit of zero emission method’.

It is within this framework that we propose a metrological procedure to determine the
uncertainty of the plasma potential measurement. More precisely and in order to avoid any
misunderstanding, in this work our goal is to provide a correct metrological procedure to
determine the uncertainty measurement of a potential measured using the inflection point
method. The correctness of the models underlying this method are not discussed here.

3.2. Plasma discharge and experimental apparatus

The experiments are performed in a device equivalent to the one described in [18]. The
discharge is produced in Argon gas at a 10−4 mbar, resulting in a plasma with a density of
1016 m−3. Here the anode (A) is the grounded vacuum vessel, and the cathode (K) consists of
tungsten wires heated to thermionic emission. The emitted electrons, accelerated by the
potential bias, ionize the gas and produce the plasma.

The emissive probe (figure 4) consists of a ∼3 mm long, 0.125 mm diameter hairpin-
shaped tungsten wire [19]. The probe is designed to minimize the perturbations induced by its
presence in the plasma, and an adjustable current is flowing in the wire in order to induce
thermionic emission as low as possible. That current ohmically heats the probe and is created
by a battery powered DC current supply, allowing steady electron emission, which is a
mandatory feature for the measurements. The I–V characteristics of the probes are obtained
thanks to a probe driver (ESPAS driver, designed and built at the University of Toulouse).
The driver provides a −200 to +100 V bias range using a 15-bit processor, giving a 0.0092 V
resolution. The maximum current resolution is 1.5×10−4 mA. The emissive probe heating
and measuring circuit is shown in figure 7: it consists of a battery powered DC current supply.
Temperature variations may occur in time since the probe is gradually sputtered when
negatively biased, leading to an increase of the resistance and consequently its temperature at
constant heating current. However these variations occur on a large time scale (typically tens
of minutes to hours) compared to the time needed to perform one characteristic (a few

Figure 6. Theoretical relationship between the emission current and the inflection point
(plain line). At very low emission the emission current varies nonlinearly with the
inflection point. At high emission it saturates (which is the regime used for another
measurement technique: the saturation method [12]). The dashed line corresponds to
the linear fit used to extrapolate the plasma potential.
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seconds). Smaller temperature variations may also happen, but they are highly unpredictable
and random and therefore are part of the random error measurement. The measuring circuit is
made of the two resistances R (100 kΩ) and the probe driver. The load RL fixes the current
caliber and is tunable. The other driver components are not represented.

4. Metrological analysis of the plasma potential measurement by an emissive
probe

4.1. Description of the measuring chain

The determination of the plasma potential is made as follows11. After the discharge is
switched on, the probe is heated to thermionic emission with the DC current supply. The
typical bias ramp used to record the characteristics is - +70, 20[ ] V. The determination of the
emission current requires sufficiently low biases in order to be far enough from the char-
acteristic’s inflection point (figure 5), while the determination of the plasma potential requires
enough data around its expected value (a few volts in our device) to perform Savitzky–Golay
filtering (a piecewise polynomial fit of the experimental data) [20] that allows the calculation
of the first derivative of the characteristic. The emission current should be in the order of a
few electron saturation current (part CD in figure 5), in order to stay in the low emission
regime. Then, numerous characteristics are recorded, while varying the probe heating current.
In order to avoid strong probe temperature variations during the measurements, they are made
only after the stabilization of the heating current for the different setpoints.

For one given wire temperature Tw, one can measure the emission current Ie and the
potential at the infection point Vi as follows. At each bias step the current is averaged over 20
samples, and the whole bias ramp is performed five times. This provides a better signal-to-
noise ratio for the I–V characteristics. A calibration trace, which is an unloaded characteristic
(i.e. the probe is unplugged), has to be subtracted from the experimental trace to take the
electronic noise of the probe driver into account. First the characteristic is interpolated using
piecewise cubic interpolation method (the number of points is conserved), and is then
smoothed using a Stavitzky–Golay filter (a second-order polynomial filter using a 21 points
window). These parameters can of course be adapted depending on the signal-to-noise ratio
of the characteristics. Since only the first derivative of the characteristic is computed, a

Figure 7. Heating and measuring probe circuit scheme. The probe is schemed by the
circular arc. The dashed box represents the equivalent circuit of the probe driver.

11 The data processing is performed using MATLAB routines. Some of the routines used modules available in
specific toolboxes. It is however to perform this treatment with freewares and more common routines.
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second-order polynomial is appropriate. The interpolation is necessary since the Savitzky–
Golay filter shall be applied on an uniform grid [20]. Indeed, the experimental bias step
provided by the probe driver fluctuates (it is a continuous random variable as well). The
emission current Ie is extracted from the mean of the current in the strongly negatively bias
portion of the I–V characteristics, which is here taken as the first 10% of the characteristic12.
Finally it only remains to measure the potential at the inflection point Vi. The first derivative
of the characteristics is computed using the differentiation matrix of the filter. Eventually, the
maximum of the first derivative, i.e. the inflection point Vi, is recovered using a second-order
polynomial fit on the three points around the local maximum, which do not add any extra
uncertainty (there is only one second-order polynomial connecting three distinct points).

The =I f Ve i( ) curve is plotted, and the linear region is identified by a clustering of the Ie
value. Clustering algorithms are made to find groups in data [21]. The algorithm used here is
k-medoids based13. This method allows one to group and discard data of the nonlinear region,
which are generally closer to each other than the points in the linear region (figure 8). A linear
fit is performed using a Monte-Carlo algorithm14 computing numerous linear least square
regression on the data, in order to minimize the errors on the fit coefficients while taking into
account the errors on Vi and Ie. Finally the inflection point at zero emission, i.e. the plasma
potential, and its absolute error (with 95% confidence interval), are calculated from the linear
fit = +I aV be i . fp is the potential at which Ie=0, i.e. f = -p

b

a
.

4.2. Metrological procedure to determine the plasma potential uncertainty ufp

Using the description of the measurement chain of the emissive probe diagnostic, the
uncertainty of the plasma potential can be obtained by applying step-by-step the metrological
procedure described in section 2.3.

Figure 8. Data treatment for the linear fit. The nonlinear part of the Ie versus Vi is
discarded using a clustering algorithm (left figure). The least square regression is
performed through a Monte-Carlo algorithm to find the best fit and minimize the
uncertainty (right figure). The uncertainty of the fitting is represented by the dashed
curves. The fit is extrapolated to Ie=0 to find the plasma potential fp.

12 Far enough means that -V V eTi ebias  . This ensures that the probe is in the emission saturation regime.
13 It means that the algorithm attempts to group the data into k different groups in which the distance between each
point is minimal.
14 A Monte-Carlo algorithm relies on random sampling to perform a given task. Here the experimental points are
randomly chosen in their probable range (given by their uncertainty) and the linear fit is performed, then this process
is repeated. This allows the determination of the best fit and the standard deviation of its parameters.
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(i) Measurement modeling
The plasma potential fp is determined indirectly by measuring Ie (the emitted current)
and Vi (potential at the inflection point). For n values of the probe temperature, n values
of Ie and Vi are measured. fp is deduced from the linear regression curve = +I aV be i .
Moreover, a systematic shift is present in the model. Indeed, following [12], the
inflection point method to determine fp with an emissive probe underestimates the
plasma potential by a ~ k T0.1 B e [7] (kB is the Boltzmann constant and Te is the electron
temperature). As a consequence, the measurement modeling leads to the following
equation:

f = - + =
b

a
c f a b c, , , 10p ( ) ( )

where the correction =c k T0.1 B e.
Applying the uncertainty propagation law, one can deduced the plasma potential
uncertainty fu

p
:

= +
-

+fu
b

a
u

a
u u

1
, 11a b c2

2
2

2
2 2

p
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )

ua, ub and uc being respectively the uncertainty of a, b and c.
uc originates from the systematic shift of the measurement method discussed above and
its value can be obtained by analyzing the origin of this error. This systematic error
comes from the uncertainty of the measurement of the electron temperature Te∼2 eV.
One can suppose that Te is a random variable following a normal law and, as a
consequence, =uc

k T0.1

3
B e .

ua and ub come from the linear regression of the experimental curve = +I aV be i . More
precisely, from the n measurements of Ie ( ¼I I I, , ,e e en1 1 ) and Vi ( ¼V V V, , ,i i in1 2 ), one can
deduced a and b by a last squares method. Naturally, ua and ub are calculated from the
uncertainties of the measured quantities, i.e. from uIe and uVi

. Supposing that (i) u uI Ve i
and (ii) uVi

is constant for the N measurements, one can deduce15

s
=a

I Vcov
, 12e i

I
2
e

( ) ( )

s
=u

u

N
, 13a

V

I

2

2
i

e
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1 . 15b
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I
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¯
( )

Hypotheses (i) and (ii) should be checked by calculating uVi
and uIe. If hypothesis (i) is

not satisfied and u uV Ii e , the measurement of fp has to be done using the linear
regression curve = ¢ + ¢V a I bi e and following the same method.

15 = å = å= =I I n V V n,e j
n

e i j
n

i1 1j j
¯ ¯ are respectively the experimental means of Ie and Vi. s =Ie

så - - = å - -= =I I n n V V n n1 , 1j
n

e e V j
n

i i1
2

1
2

j i j( ¯ ) ( ) ( ¯ ) ( ) are respectively the standard deviations of Ie and

Vi obtained from the n measurements. = å - -=I V I I V Vcov ,e i n j
n

e e i i
1

1 j j( ) ( ¯ )( ¯ ) is the covariance of Ie and Vi.
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(ii) Random error treatment
At this step, one has to calculate the random error on Ie and Vi for one probe temperature
(i.e. for one given point of the regression curve). Five series of 20 characteristics with
constant heating current were recorded in order to perform a χ2 test (with 5% significance
level) on Vi and Ie, which verifies that the sampling distribution may be considered as
normal16 [3]. Only 20 characteristics were measured for each set in order to minimize the
influence of the slow temperature variation of the probe. Each set of 20 measurements
validated the test. The mean sample standard deviations derived from these sets are

=u 0.0124 mAI
rand
e

for Ie and =u 0.0311 VV
rand
i

for Vi.
(iii) Systematic errors treatment for the measurement of Ie

At this step, one has to calculate the systematic errors and their uncertainty on Ie for one
temperature wire (i.e. for one given point of the regression curve) by analysis the
measuring chain.
• Resolution and calibration of the drivers uI

res
e
: The ESPAS constructor informations

give = ´- -u 1.5 10 mAI
Eres 4

e
and m=-u A0.1I

Sres
e

.
• Subtraction of the calibration curve uI

cal
e
: The calibration curve of the ESPAS driver

is subtracted from the experimental characteristic. The uncertainty of that systematic
error is obtained by the mean standard deviation of the difference between the
calibration trace and its fit.

• Savitzky–Golay filtering uI
gol
e
: The uncertainty caused by the Savitzky–Golay filtering

is calculated from the standard deviation of the difference between the characteristics
before and after the filtering.

• Average of the first 10% of the characteristics uI
av
e
: Finally, the emission current Ie is

extracted from the mean of the current in the first 10% of the characteristics. The
uncertainty due to this last average is simply the associated standard deviation.

(iv) Systematic errors treatment for the measurement of Vi

From the chain measuring analysis, one can determine the systematic errors and their
uncertainty on Vi for current emission Ie.
• Resolution and calibration of the drivers uV

res
i
: The constructors informations give

respectively =-u 0.0092 VV
Eres

i
and =-u 25 mVV

Sres
i

.
• Subtraction of the calibration curve (for the ESPAS driver only) uV

cal
i
: The calibration

curve of the ESPAS driver is subtracted from the experimental trace. One can note
that the calibration curve is fitted with a polynomial of order four. As a consequence,

=u V Vd , dV
cal 4
i

being the bias step.
• Savitzky–Golay filtering uV

gol
i
: The uncertainty caused by the Savitzky–Golay filtering

is Vd 2 since the polynomial used is of order two. Then, to obtained a measure of Vi,
the first derivative of the characteristics is computed from the polynomial given by
the Savitzky–Golay filtering. The derivative is exact and this operation does not lead
to an uncertainty.

• Third-order interpolation uV
inter
i

: Finally, the inflection point Vi is recovered using an
interpolation of order 3. As a consequence =u VdV

inter 3
i

.
(v) Determination ofuIe from the propagation law

From the treatment of the random error and of the systematic errors on Ie and using the
uncertainty propagation law (equation (9)), one can deduce that the uncertainty
measurement on Ie

16 A χ2 test may be applied on any sample distribution in order to determine if it corresponds to a given theoretical
distribution. More precisely, it tests the null hypothesis on the sample distribution. More details are given in [3].
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= + + + +u u u u u u . 16I I I I I I
avrand2 res2 cal2 gol2 2

e e e e e e

1
2( ) ( )

(vi) Determination ofuVi
from the propagation law

From the treatment of the random error and of the systematic errors on Vi and using the
propagation law (equation (9)), one can deduce that the uncertainty measurement onVi

= + + + +u u u u u u . 17V V V V V V
rand2 res2 cal2 gol2 inter2

i i i i i i

1
2( ) ( )

(vii) Determination of the expended measurement uncertainty on the potential plasma
 fu

p

Finally, after checking that hypotheses (i) and (ii) have been checked, i.e. u uI Ve i and
Vi is constant for the n measurements, one can calculate the expended measurement
uncertainty on the plasma potential fu

p
from equation (11). We suppose that the

application conditions of the limit central theorem are filled and we enlarge the
uncertainty with the coefficient k=2.

The summary of the method applied to the plasma potential determination is shown in
table 1.

4.3. Experimental results

Three plasma potential measurements were performed for several discharge parameters
(table 2) following the procedure previously presented. For every measurements, between 30
and 50 characteristics were recorded, depending on the I V,e i( ) distributions, which has to be
large enough for a good identification of the linear region used for the determination of the
plasma potential (figures 6 and 8). The errors uIe and uVi

are calculated for each characteristic,

Table 1. Summary of the uncertainty determination method applied to the plasma
potential measurement.

Procedure Potential determination

Measurement
modeling
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= +
=
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c T
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e i

e
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-
u .z i

n z z

n n
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1 1j

ji j
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uV

rand
i

and uI
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e
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sys u u

u u
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,
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V I
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i e
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Expended uncertainty = *I k u =k 2

95% confidence interval

Eur. J. Phys. 41 (2020) 035806 V Pigeon et al

16



as explained in section 3.2. The results are presented in table 3. The several contributions to
the errors on Vi and Ie are shown in figure 9.

The main contribution to the uncertainty on Vi and Ie is the random error, which was
estimated by performing several measurements in the same experimental conditions. This
suggests that the repeatability of the experiment is rather a strong hypothesis, and that some
physical quantities, including the plasma potential itself, may encounter non negligible var-
iations from one measurement to another. One can note that although the random error is the

Figure 9. Proportions of systematic and random errors on the overall errors on Vi and Ie,
for the measure number 1.

Table 2. Plasma discharge parameters used for the plasma potential measurements.

Measure Pressure Discharge Discharge
(mbar) voltage (V) current (A)

1 10−4 120 0.5
2 10−4 120 0.25
3 5×10−5 120 0.5

Table 3. Results of the plasma potential measurements. The absolute errors are given
with a 95% confidence interval.

Measure fp Absolute Relative
(V) uncert. (V) uncert.(%)

1 4.32 0.09 2.0
2 1.58 0.05 3.2
3 0.42 0.02 3.4
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main contribution to the uncertainty, the systematic errors remain of the same order of
magnitude. This shows that the standard deviation method is not sufficient to determine the
measurement uncertainty.

The evolution of the plasma potential along the three measurements is beyond the scope
of this paper.

5. Conclusion

The full method for uncertainty determination was explained and given step-by-step. This
method can be applied to any measurements, from simple ones to the most complex. It is
important to understand that, in physics, a measured quantity never consists of a simple
numerical value with an arbitrary precision. The probabilistic nature of the physical quantities
leads only to the evaluation of the quantity and its uncertainty. This evaluation follows the
step-by-step procedure. One can underline that the uncertainty evaluation method presented in
this paper can be used to help students in physics (undergraduate and graduate) to reflect on
what a measurement in physics is.

This procedure was applied to the measurement of the plasma potential in a quiescent
plasma discharge using an emissive probe. This kind of experiment may be performed by
plasma physics graduate students, since emissive probes constitute one of the basic plasma
physics measurement tools. Here, the plasma potential is determined using the inflection point
in the limit of zero emission method. This indirect measurement is a good example of a
complex measurement, on which the step-by-step procedure mentioned before is rarely
applied. It has been shown that it can indeed be done. The careful evaluation of the systematic
errors and the random errors allows the rigorous calculation of the uncertainty. Moreover, this
calculation also allows students to use the previous knowledge in data processing using
numerical tools.

Numerous extensions of this work are possible. In particular, some of those may be
performed and discussed by the students when they are performing the experiments, like:
limiting situations where the measurements could not be performed; the influence of the
variations of other parameters that would not have been taken into account in the present
study; the replacement of one piece of equipment by another (especially the probe driver or
the probe itself). It would be also interesting to apply the uncertainty determination to
Langmuir probe measurements (ubiquitous in plasma physics experiments) and compare and
discuss the possible differences with the emissive probe measurements. Finally, one can also
discuss the limits of the models and assumptions that are used within these measurements: the
assumed Maxwellian nature of the electron distribution function is at the core of the theories
of emissive probe characteristics analysis.
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