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Abstract
Equivalent resistances between various points of a resistor network are related.
In this paper, we establish general relations for the corner of a planar grid and
for the corner of a three-dimensional network with three-fold symmetry. In
three dimensions, two demonstrations are given using Kennelly’s theorem or
alternatively using van Steenwijk’s method. When three-fold symmetry is not
satisfied, but when a plane of symmetry exists, then two relations can be
proven relating the four corner resistances. These exact relations are useful to
check detailed analytical or numerical solutions, and, when corner resistances
are only partially known, to derive the values of the desired missing resis-
tances. Examples of applications are also given in the case of regular polytopes
or repeating networks such as ladders and scaffolding.

Keywords: equivalent resistance, resistive networks, Kennelly’s theorem
van Steenwijk’s method

1. Introduction

Electrical networks have been attracting attention since the early development of electro-
magnetism [1]. The equivalence between star and triangle configurations, also known as
Kennelly’s theorem [2], allows the equivalent resistance to be easily calculated between any
pair of nodes in numerous complex networks. In the nineties, van Steenwijk’s method [3]
initiated a renewed interest, and the equivalent resistance between nodes, also referred to as
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the two-point resistance [4], was derived for three-dimensional regular networks such as
perfect solids [3, 5] and some Archimedean and even Catalan solids [6].

Further networks have been investigated during the past ten years. Relationships between
resistor arrangement and number theory were established; for example, irrational numbers can
be represented efficiently by resistor networks through continued fractions or the ancient
Babylonian construction [7, 8]. Similarly, using Kennelly’s theorem and resistance sum rules
[5], explicit expressions could be established for some resistances in fractal Apollonian
networks, originated from packing problems [9]. Simultaneously, the Laplacian matrix
approach [4] was revisited and a method of direct recursive summation was proposed and
illustrated with the case of networks on a sphere [10, 11] and two-dimensional grids [12, 13].
Independently, using lattice Green functions, general expressions were derived for the cubic
network, and explicit solutions given for some two-point resistances up to order 6 [14].
Recently, ladder networks were considered [15, 16] and the solutions for resistances gen-
eralised to study the impedance response versus frequency, relevant in particular for circuit
filters or antennas.

In the context of this wave of new results on electrical networks, it is interesting to revisit
fundamental theorems, emphasise their value to students, and consider in which manner they
complement the various mathematical methods to solve the Laplace problem in discretized
media. In this paper, we thus return to grids and cubic resistor networks to exhibit general
relations valid for the equivalent resistances at the corners. Proofs for these relations are
given, as well as examples of applications.

2. Corner theorem in resistive grids

We consider a planar grid of resistors, defined as parallel lines of equal numbers of nodes,
linked by resistors attached parallel to the sides (figure 1(a)). We consider a corner node 0,

Figure 1. (a) Square-based resistor grid. (b) Triangle of equivalent resistors at corner
node 0.
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attached to neighbouring node 1 on the same line, with a resistor of value a and to node k on
the second line with a resistor of value b. The other resistor values in the grid are not
specified; the grid does not need to be regular. Rij is the equivalent resistance between nodes i
and j.

In the corner, we have the following general relations (corner theorem for grids) between
the diagonal resistance R1k and the corner resistances R01 and R0k:

⎜ ⎟ ⎜ ⎟
⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

⎞
⎠

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )
= + + -

= - +

R
b

a

b

a
R b

R b
b

a

b

a
R

1 1

1

. 1
k

k

1 01

0 01

These relations result from the fact that the network, at the corner, is equivalent to a
triangle (figure 1(b)) of three resistors a, b and r, where r is the equivalent resistance of all
other resistors connected to nodes 1 and k (and not to 0). In this triangle, we have
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From the first expression of equation (2), we derive
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which, when introduced in the second and third expressions of equation (2), gives the
relations of equation (1).

In the particular case a=b, the corner theorem becomes
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and for a uniform grid, we have R01=R0k, a result which was not necessarily obvious for a
non-square grid.

These relations can be of great use to check calculations for particular grids. For example,
for a grid of resistors of value 1 making the edges of 10 squares arranged in two lines of five
squares, the detailed calculation gives

( )= = =R R R
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and
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, 5k k01 0 1

and we indeed have
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The proof of the corner theorem of equation (1) does not require any regular pattern in
the arrangement of resistors in the grid. Additional connections in the grid can also be added
between any pair of nodes, except the corner node 0 which must be connected only to the
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neighbouring nodes 1 and k, so that the equivalent diagram in figure 1(b) remains valid. The
relations are therefore not restricted to planar grids; they also remain valid for any branch
made of two resistances in series a and b connected to any pair of points of any resistive
structure.

To illustrate how the corner relations can be introduced in a teaching sequence, we take
the example of a homogeneous ladder network (figure 2) with equal longitudinal resistance a
and equal transverse resistance b. In ladder networks, it is easy to derive the base resistance Rn

(between nodes 0 and n in figure 2(a)) through recursive relations [15, 16]. Indeed, the
resistance Rn is related to Rn-1 by (see the equivalent diagram shown in figure 2(b)):

( )= +
+ -R b a R

1 1 1

2
. 7

n n 1

With R1=b, the base resistance can be iteratively obtained at all orders. Let us consider the
case a=1 and b=2, then we get R2=4/3, R3=5/4, R4=26/21, R5=68/55,
R6=89/72, R7=466/377 (figure 2(c)), etc ... R22=433 494 437/535 828 592, and so on.
From the corner theorem equation (1), we immediately get R01=(Rn+2)/4, for example
R01=233/288 for n=7 (figure 2(c)). From equation (7), we also get = -¥R 5 1, which
implies ( )/= +R 1 5 201 for n=∞. This calculation sequence with application of the
corner theorem can also be applied in the case of the triangular ladder network [16], but on
one side only.

Figure 2. (a) Homogeneous ladder network of order n. (b) Diagram of equivalent
resistances from the resistance at order n−1 to the resistance at order n. (c) Explicit
solution for the n=7 ladder with a=1 and b=2.
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3. Corner theorem in three-dimensional cube networks with three-fold
symmetry

Consider now a network (figure 3(a)) with equal resistors of value 1 arranged in a parallel
manner along the edges of a cube [14], and consider the equivalent resistances around one
corner node 0, with neighbouring nodes 1, k and p. In this case, all three equivalent resis-
tances to corner node 0 are equal and the equivalent diagonal resistance R1k is related to this
value R01 by

( )= -R R3 1. 8k1 01

A first proof of this relation, which looks strikingly similar to equation (4) for grids, can
be given using Kennelly’s theorem. Indeed, the network at the corner is equivalent to the
tetrahedron network in figure 3(b), where r is the equivalent resistance between nodes 1, k and
p, ignoring the resistors to node 0. The three equivalent resistances R01, R0k and R0p must be
equal by symmetry, and a single value r appears.

To find R01 as a function of r, let us consider that a unity current is injected between
nodes 0 and 1 (figure 3(b)), and write α the unknown current flowing from 0 to k, and by

Figure 3. (a) Cubic resistor network with three-fold symmetry. All branches have
resistance 1. (b) Tetrahedron of equivalent resistors at and around corner node 0.
Current distribution is shown for injection of a unity current between nodes 0 and 1. (c)
Equivalent diagram after applying Kennelly’s theorem (star to triangle equivalence).
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symmetry from 0 to p. By symmetry, nodes k and p are at the same potential and current α is
transmitted without loss to edges k1 and p1. Kirchhoff’s second law, applied to loop 01k, then
imposes

( )a a a- = + r1 2 , 9

which gives α and then we find

( )a= - =
+
+

R
r

r
1 2

1

3
. 1001

Kennelly’s theorem now states that the star configuration of the three resistors of value 1
connected to node 0 is equivalent to a triangle configuration of three equal resistors c con-
necting the nodes 1, k and p. The triangle base conductance 1/c is given by the product of the
leg conductances divided by the sum of the three leg conductances [2]. In our particular case,
c=3. This resistor now appears in parallel with r (figure 3(c)). The corner network is then
equivalent to a triangle of equal resistors R, and we have
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which gives, eliminating R:
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which, combined with equation (10) gives the corner theorem of equation (8).
It is interesting to give another derivation of equation (8) using van Steenwijk’s method

[3, 6]. In this method, to find the equivalent resistances between any pair of nodes, it is not
necessary to solve all current configurations for all the different pairs of nodes selected for
current injection, but to solve the current distribution for only a reduced number of mother
configurations, one for each node type. In such fundamental configurations, a unity current is
injected at the considered node and an equal current of 1/E value is recuperated by current
conservation at each of the E external nodes of the network. Then, to find the current
distribution for injection at any pair of nodes, it is sufficient to add the corresponding mother
configuration at the injection node and to subtract the mother configuration at the extraction
node. When adding these two configurations, then the sum of currents is zero at all the nodes,
except at the injection node, where the in-going current sum is 1+1/E, and the extraction
node, where the out-going current sum is 1+1/E. The equivalent resistance is then the sum
of obtained potential differences divided by total current 1+1/E.

Let us apply this method to the corner nodes (figure 4). In the configuration of currents
MC0 with injection at the corner node 0 (figure 4(a)), by symmetry, the current in each branch
from node 0 is 1/3. Let us now turn to the configuration of currents MC1 with injection at
node 1 (figure 4(b)), and call α the current from node 1 to node 0. By current conservation at
node 0 (first Kirchhoff’s law), and by symmetry, the currents from 0 to k and from 0 to p are
equal to α/2−1/(2Ε).

The equivalent resistance R01 is given by the total potential, given by the sum of con-
figuration MC0 plus the configuration MC1 with a negative sign, divided by the total current
intensity 1+1/E, namely
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Similarly, the equivalent resistance R1k is given by the total potential from 1 to k, given
by the sum of configuration MC1 at node 1 plus the configuration MC1 with a negative sign
but injected at node k, divided by the total current intensity 1+1/E, namely
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and equation (8) is again obtained.
For example, in the 2-cube made of eight elementary cubes (27 nodes), with each cube

edge having a unit resistor, we have

( )= = = = - = - =R R R R R
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and equation (8) is satisfied. Similarly, in the 3-cube made of 27 elementary cubes (64 nodes),
with each cube edge having a unit resistor, we have

( )= = = = - = - =R R R R R
1733

3264
and 3 1 3

1733
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1

645

1088
. 16k p k01 0 0 1 01

Beyond the homogeneous resistor cube considered above, the corner theorem is valid at
every node with a three-fold symmetry and connected to three nodes with a unit resistor.

Figure 4. Application of van Steenwijk’s method at a corner of a three-dimensional
network. (a) Configuration MC0 for single injection at node 0 and retrieval of 1/E
current at the E external nodes; (b) configuration MC1 for single injection at node 1 and
retrieval of 1/E current at the E external nodes.
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Indeed, this is the only hypothesis that we are using in both the above derivations. For
example, we can consider the case of the three-fold nodes of the homogenous network based
on the rhombic dodecahedron, where we have [6]

( )= = = = = -R R R R
13

24
and

5

8
3

13

24
1. 17k p k01 0 0 1

For the three-fold nodes of the homogenous network based on the triacontahedron, we
have [6]

( )= = = = = -R R R R
31

60
and

11

20
3

31

60
1. 18k p k01 0 0 1

In the case of the homogenous network based on the regular dodecahedron [6], all nodes
have three-fold symmetry and also satisfy the corner theorem of equation (8):

( )= = = = = -R R R R
19

30
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9
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3

19

30
1. 19k p k01 0 0 1

Figure 5. (a) Cubic resistor network with planar symmetry. (b) Tetrahedron of
equivalent resistors at and around corner node 0. (c) Equivalent diagram after applying
Kennelly’s theorem (star to triangle equivalence). (d) Simplified equivalent diagram.
(e) Current distribution in the equivalent tetrahedron for injection of a unity current
between nodes 0 and 1. (f) Current distribution in the equivalent tetrahedron for
injection of a unity current between nodes 0 and k.
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4. Corner theorem in three-dimensional cube networks with planar symmetry

When three-fold symmetry is not present at the considered corner node, relations between the
various resistances are in general more complicated. However, when a plane of symmetry is
present, some relations can be derived.

Consider that the network is symmetrical with respect to plane Π containing nodes 0 and
1 and bisecting the segment kp (figure 5(a)). The network around node 0 is then equivalent to
the tetrahedron 01kp with two base resistances a and b (figure 5(b)). Applying Kennelly’s
theorem, the base is equivalent to the triangle shown in figure 5(c) with c=3, like pre-
viously, and the base is equivalent to the triangle in figure 5(d), with equivalent resistances A
and B given by

( )= + = +
A c a B c b

1 1 1
and

1 1 1
, 20

and the base resistances R1k and Rkp are
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+

= +
R B A B R A B

1 1 1
and

1 1 1

2
, 21

k kp1

which can be inverted to give A and B as a function of R1k and Rkp:
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The resistances R01 and R0k=R0p to node 0 can now be expressed as a function of a and
b, then, using equation (20) as a function of A and B, and finally, using equation (22), as a
function of R1k and Rkp. First, to find R01, a unity current is injected between nodes 0 and 1
(figure 5(e)). Calling α the unknown current, all currents in the tetrahedron can be found. The
value of α is given by loop 01k, which gives

( )a a a+ = -b 1 2 , 23

thus α=1/(3+b) and
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To find R0k, a unity current is injected between nodes 0 and k (figure 5(f)). Here, as the
planar symmetry does not apply to the currents, three unknowns α, β and γ are necessary.
They are constrained by the loops, which give

⎧
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or, after straightforward manipulations:
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giving
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The corner theorem, in the presence of a planar symmetry, thus takes, using
equations (24) and (27), the following form:

⎧⎨⎩ ( )
= + -
= - -

R R R
R R R

2 1
4 1

. 28k k

kp k

1 0 01

0 01

When R0k=R01, we again find equation (8). From equation (28), we see that it is
sufficient to calculate two of the four corner resistances. As an example of application of this
generalised corner theorem, let us consider the case of the 2×2×P scaffolding network, a
homogeneous cubic network with P layers of 2×2 square grids. This network is shown in
figure 6 for P=5. The equivalent resistances between the edge nodes (Rkp and R0p=R0k)
can be calculated using van Steenwijk’s method with injection at node 0 (table 1). Then, as
the network is symmetrical with respect to the diagonal plane of the scaffolding containing
the considered corner node 0, the other corner resistances (R01 and R1p=R1k) can be
obtained directly from equation (28) without further calculations. The values are given in
table 1. These exact results can be checked with numerical calculations.

The corner theorems, provided the topological and symmetry conditions are satisfied, can
be applied to numerous different situations. Let us for example consider a planar 2×4
homogenous square grid (figure 7), with all resistances equal to 1. The conditions of
equation (28) are valid for nodes 2, 5, 9 and 12. Thus, taking node 5 as the corner node,
knowing the outer equivalent resistances /=-R 21357 303050 5 and /=-R 68 55,0 10 then the
inner resistances R5-6 and R0-6 can be immediately derived using equation (28). In this case,
R0-5, R0-10, R5-6, and R0-6 correspond to R0k, Rkp, R01, R1k of equation (28), respectively. We

Figure 6. Two-point equivalent resistances at and around one corner node for the
uniform 2×2×5 resistor box network.
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write R01=4R0k−Rkp−1 then R1k=R0k+2(4R0k−Rkp−1)−1= 9R0k−2Rkp−3
and we obtain
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. 29
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0 6 0 5 0 10 6 10

Similarly, taking node 2 as the corner node, from the outer resistances
/=-R 20393 303051 2 and /=-R 108 95,1 3 the inner resistances R2-7 and R1-7 are obtained:

⎧
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⎩
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= - - = - - =
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. 30
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5. Summary and conclusions

In this paper, we have presented general relations for equivalent resistances at the corners of
resistor grids and, in three-dimensional resistor networks, at corners with equal resistors and
three-fold symmetry. At the corners of homogeneous planar square arrangements, the
equivalent resistance between base nodes at the corner is four times the equivalent resistance
from a base node to the corner node minus 2. More generally, for any branch made of two
resistances a and b in series connected to any structure at node 1 on a side and at node k on b
side, the equivalent resistances R1k and R0k, where node 0 is between a and b, are related to the
resistance R01 by ( )[( ) ]/ /= + + -b a b a bR R1 1k1 01 and [ ]/ /= - +b b a b aR R1 .k0 01

In three-dimensional resistor networks, at a corner node with three-fold symmetry and
unit resistors from this corner node to its triangular base, the equivalent resistance between
base nodes is three times the equivalent resistance from the corner node to any base node
minus 1. When three-fold symmetry is not present, a generalised form of the corner theorem
is exhibited when a planar symmetry exists.

These fundamental relations can be applied to numerous situations, and can be useful to
check expressions and novel analytical calculations currently developed to solve complex

Table 1. Corner resistances for the homogeneous 2×2×P box network with P� 6.

P

Calculated from van Steenwijk’s
method with injection at node 0 From corner theorem

R k0 Rkp R01 R k1

3 241

420

11

15
59

105

293

420

4 1637

2856

41

56

1601

2856

611

952

5 569699

994004

153

209

139281

248501

689943

994004

6 103267

180180
571

780

100987

180180

41687

60060
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two- and three-dimensional networks in an exact manner [9–16]. Elementary methods offer a
complementary and powerful approach, and are still useful to obtain general expressions with
little calculation. While the students should be introduced to heuristic developments such as
sum rules [5], the recursive transform method [11, 13] or lattice Green functions [14], it is
important that they remain able to derive results using fundamental theorems and symmetry
properties. The corner theorems provide an opportunity to review elementary methods such as
Kennelly’s theorem and van Steenwijk’s method, and experience the satisfaction of obtaining
non-trivial relations with only simple calculations. While neural networks and other appli-
cations [17] were already considered decades ago, network theory is currently a rapidly
developing research domain in physics, with applications in geophysics [18] and rock physics
[19]; its importance is also emerging in biology, for example in the context of plant com-
munication [20]. Networks are an important feature of nature and their fundamental properties
are a subject of wonder to share with students and colleagues.
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Figure 7. Example of application of the corner theorem of equation (28) to the
homogenous 2×4 grid, taking nodes 2 and 5 as corner nodes. Knowing the outer
resistances, the inner resistances can be obtained (see text).
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