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Abstract
We consider a quantum particle with energy E incident upon a one-dimen-
sional potential. We show that the probabilities of transmission and reflection
are the same for incidence upon a general potential from either side (from ‘the
left’ or ‘the right’). This equality holds true for any potential which goes to
constant values as  ¥x and is finite for all x. We present a remarkably
simple proof that the probabilities are equal. The simplicity of our proof is the
most important pedagogical result of our paper, and will be easily understood
by undergraduate students in second to fourth year. We discuss several cases,
including the step potential and the potential barrier.

Keywords: equal probabilities, potenial barrier, probability of transmission,
probability of reflection, simple proof, Schrödinger equation
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1. Introduction

We consider a simple problem in transmission and reflection of a quantum particle incident on
a one-dimensional potential. The solution to the problem is most unexpected, and the proof
we present is remarkably simple.

The potential V(x) has the following characteristics. It is constant, or goes asymptotically
to a constant value for x<0. More specifically, V(x)=V1 for x<0, or ( ) V x V1 as
 -¥x . Similarly, the potential is constant, or goes asymptotically to a constant value for

x>x1>0. Specifically, V(x)=V2 for x>x1>0, or ( ) V x V2 as  +¥x . V1 and V2

are constants. They may have the same or different values. The potential is finite for all x.
(Later we will show that delta-function potentials may also be included.)

We consider the particle to be incident upon the potential from either the ‘V1-side’ (‘the
left’) or the V2-side (the right). For the former, we denote the probability of reflection to be pR1
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and the probability of transmission to be pT1
. If the particle is incident upon the potential from

the V2 side, we denote the probabilities of reflection and transmission to be pR2
and pT2

.
At this point, we suggest that the reader ask how the probabilities will be related. (We

will state the answer in the next paragraph.) For example, how are pR1
and pT1

related to pR2

and pT2
for the step potential, shown in figure 1? How are they related for a potential barrier

with ¹V V1 2, as shown in figure 2?
The answer is that =p pR R1 2

and =p pT T1 2
. The probabilities of reflection and trans-

mission are the same, whether the particle is incident from the V1-side or the V2-side. This
result holds for any potential of the form described above. The probabilities are equal for a
step potential, a potential barrier with ¹V V1 2, a delta-function potential, a potential well, and
so on. All that is required is that the particle is incident upon the potential with the same
energy E for both sides.

We present a proof that the probabilities are equal. Our proof is remarkably simple,
which makes this problem highly appealing. We present the proof in the next section.

We point out work that has been done prior to ours. Garrido, Goldstein, Lukkarinen, and
Tumulka pointed out that the probabilities are the same for the step potential in [1]. They
remarked that the equality was surprising. That pT and pR are the same for both sides of a
monotonic potential was noted in the book by Landau and Lifshitz [2]. In the book by Cohen-
Tannoudji, B Diu, and F Laloe, it was shown that, for the case where =V V1 2, the prob-
abilities are equal [3].

There are several important points to be made about these references. First, in all three
cases, only a particular type of potential was considered, whereas in this paper we consider all
potentials. Second, there was no discussion at all as to what might be the underlying physics
for the equality of the probabilities. In this paper, we present what we consider to be at least a
beginning of a physical understanding of the equality of the probabilities. Third, our proof is
remarkably simple, whereas the proofs in [2 and 3] are nowhere near as simple. In [1], only
the step potential was considered.

Figure 1. The step potential. The arrow with label eikx indicates the particle is incident
from the left and has reflection and transmission probabilities pR1

and pT1
. The other

arrow with label e−iqx indicates incidence from the right with reflection and
transmission probabilities pR2

and pT2
. The energy of the particle in both cases is E

and E>0. We obtain by direct calculation and in a simple but general proof that
=p pR R1 2

and =p pT T1 2
.
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2. Proof of the equality of the probabilities

We present a very simple proof that the probabilities are the same for incidence from either
side of a finite potential with constant limits as  ¥x . Two simple properties of the
solutions of the time-independent Schrödinger equation (TISE) are all that is needed.

(1) For a constant c, if ψ(x) is a solution of the TISE, then cψ(x) is also a solution.
(2) If ψ1(x) and ψ2(x) are solutions for the same energy E, then [ ( ) ( )]y y-x x1 2 is also a

solution for energy E.
The proof is remarkably simple and uses only these two features of the TISE. We begin

with the equation for the potential:

⎧
⎨⎪
⎩⎪

( ) ( ) ( )f=
<
< <
<

V x
V x

x x x
V x x

, 0,
, 0 ,

, ,
1

1

1

2 1

where f(x) is finite. We consider the two cases of the particle incident upon the potential from
either side. The proof does not require any explicit treatment for the range 0<x<x1, as is
easily confirmed. We need to look at only the ranges to the ‘left’ and to the ‘right’ of f(x). Let
ψ1(x) denote the particle incident from the left of the potential f(x), and ψ2(x) for the particle
incident from the right. For the former we use eikx in ψ1(x) and we use e−iqx in ψ2(x) for the
latter. For convenience, we write the expressions for ψ1(x) and ψ2(x) only for the ranges
x�0 and x�x1:

⎧⎨⎩( ) ( )y =
+ - 


x

R x

T x x

e e , 0,

e , ,
2

kx kx

qx1

i
1

i

1
i

1

Figure 2. The asymmetrical potential barrier. The arrow with label eikx indicates
incidence from the left and has reflection and transmission probabilities pR1

and pT1
.

The other arrow with label e−iqx indicates incidence from the right with probabilities
pR2

and pT2
. Calculation for both cases results in =p pR R1 2

and =p pT T1 2
. In the paper

we give a simple but general proof for these equalities. The particle’s energy is E and is
in the range V0<E<Vb.
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and

⎧⎨⎩( ) ( )y =
+

-

-




x
T x

R x x

e , 0,

e e , .
3

kx

qx qx2
2

i

i
2

i
1

Multiply ψ1(x) by R2 and ψ2(x) by T1 and note that R2ψ1(x) and T1ψ2(x) are solutions of the
TISE:

⎧⎨⎩( ) ( )y =
+ - 


R x

R R R x

T R x x

e e , 0,

e , ,
4

kx kx

qx2 1
2

i
1 2

i

1 2
i

1

and

⎧⎨⎩( ) ( )y =
+

-

-




T x
T T x

T T R x x

e , 0,

e e , .
5

kx

qx qx1 2
1 2

i

1
i

1 2
i

1

Both R2ψ1(x) and T1ψ2(x) have the term T1R2e
iqx for x>x1. We subtract (4) from (5) to get

⎧⎨⎩( ) ( ) ( ) ( )y y- =
- + - -

-




T x R x
R T T R R x

T x x

e e , 0,

e , .
6

kx kx

qx1 2 2 1
2

i
1 2 1 2

i

1
i

1

Also note that T1ψ2(x)−R2ψ1(x) is a solution of the TISE. There are three fluxes in (6).
Using the definition of flux j(x), namely

{ }( ) ( ) ( ) ( )y
y

º


j x
m

x
x

x
Im

d

d
, 7*

where Im{f} denotes the imaginary part of f, we have fluxes as follows:

( ) ∣ ∣ ∣ ∣ ( )= - - <
 

j x
k

m
R

k

m
T T R R x, 0, 82

2
1 2 1 2

2

and

( ) ∣ ∣ ( )= - >


j x
q

m
T x x, . 91

2
1

Conservation of probability current requires these fluxes to be the same, from which we
obtain the equation

∣ ∣ ( )+ = -p p T T R R , 10T R 1 2 1 2
2

1 2

where we used

∣ ∣ ∣ ∣ ( )= =p
q

k
T p R, . 11T R1

2
2

2
1 2

Using (2) and (3), and the same method used above, we obtain

⎧⎨⎩( ) ( )
( )

( )y y- =
- + --




T x R x
T x

R T T R R x x

e , 0,

e e , .
12

kx

qx qx2 1 1 2
2

i

1
i

1 2 1 2
i

1

Conservation of probability current gives

∣ ∣ ( )+ = -p p T T R R . 13R T 1 2 1 2
2

1 2

Combining (10) and (13), we obtain

( )+ = +p p p p . 14T R R T1 2 1 2
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Adding +p pR T1 2
to both sides of (14) gives

( )+ =p p 1, 15R T1 2

from which we have

( )= =p p p p, , 16R R T T1 2 1 2

where we used

( )+ = + =p p p p1, 1. 17R T R T1 1 2 2

Equation (16) means that the probability of reflection is the same for a particle incident
upon the potential from the left, pR1

, as from the right, pR2
. Equation (16) also means that the

probability of transmission for the particle incident from the left, pT1
, is equal to the prob-

ability of transmission if the particle is incident from the right, pT2
. The only condition is that

the particle energy E is the same for both sides.
Notice that we did not need to discuss f(x) in the derivation of the proof. This equality

therefore holds for any finite potential which has constant values on both sides or goes to
constant values on both sides for  ¥x . One can also have potentials with delta functions,
as they can be considered to be arbitrarily narrow, arbitrarily high rectangular barriers (or
wells).

Conservation of probability current is the reason we did not need to consider the range
0<x<x1 where V(x)=f(x). This feature was implicitly used in the above proof.

The simplicity of the proof means that not only upper year undergraduate students can be
taught that the probabilities are equal, but second year students taking a Modern Physics
course can also understand the proof, and they could see explicitly that this is so for simple
potentials like the step potential.

3. Examples of equal probabilities

We consider examples showing that the probabilities are equal. We consider two analytical
cases: the step potential and the asymmetrical potential barrier. An exponential potential and a
delta-function potential are later presented as pedagogical examples for students. The prob-
ability of transmission for a particle incident upon each of these potentials can be easily
calculated by upper year undergraduates and the step potential can be understood by second
year students taking a Modern Physics course.

3.1. Step potential

The simplest case where the probabilities of reflection pR and transmission pT are the same for
incidence upon either side is the step potential, as shown in figure 1:

⎧⎨⎩( ) ( )=
<

- >
V x

x
V x

0, 0,
, 0,

18step
0

where V0 is a positive constant. The calculations for the step potential are simple and one
quickly finds that the probabilities of transmission and reflection are the same for the particle
incident upon the step from either the high-energy side or the low-energy side, that is:

=p pR R1 2
and =p pT T1 2

. Throughout this paper we use subscripts ‘1’ to denote incidence
from the ‘left’ and ‘2’ for incidence from the right. That these probabilities are the same for
the step potential was pointed out by Garrido, Goldstein, Lukkarinen, and Tumulka in 2011
[1]. The probabilities are
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( )
( )
( )

( )=
+

=
-
+

p
kq

k q
p

k q

k q

4
, , 19T R

step
2

step
2

2

where ( ) = k m E22 2 and ( ) = + q m E V22 2
0, where E is the energy of the particle.

On first encountering this equality of the probabilities, one is immediately drawn into the
strangeness of this problem. The step potential is not symmetrical, and one therefore expects
different probabilities for the two cases. How can such a result be understood? We return to
this question later.

3.2. Asymmetrical potential barrier

The case of a square barrier is rich enough to drive home the nature of this puzzle in a
problem which is not so simple but not difficult to calculate. The potential is

⎧
⎨⎪
⎩⎪

( ) ( )=
<
< <
<

V x
x

V x x
V x x

0, 0,
, 0 ,
, ,

20bbarrier 1

0 1

and we choose 0<V0<E<Vb for clarity. This potential barrier is shown in figure 2. The
particle incident from ‘the left’ is in the state ψ1(x), given by

⎧
⎨⎪
⎩⎪

( ) ( )y =
+
+k k

-

-

 


x
R x

A B x x

T x x

e e , 0,
e e , 0 ,

e , ,

21

kx kx

x x

qx
1

i
1

i

1 1 1

1
i

1

where k, q and κ are defined by

( )k
º º - º -

  k

m
E

q

m
E V

m
V E

2
,

2
,

2
. 22b

2 2 2 2

0

2 2

The particle incident from ‘the right’ is in the state ψ2(x), given by

⎧
⎨⎪
⎩⎪

( ) ( )y = +
+ <

k k

-

-

-


 x

T x
A B x x

R x x

e , 0,
e e , 0 ,

e e , .

23

kx

x x

qx qx
2

2
i

2 2 1
i

2
i

1

Calculations of the reflection coefficients R1 and R2, and the transmission coefficients T1
and T2, are straightforward to carry out. The probabilities of reflection, pR1

and pR2
, and

transmission/tunnelling, pT1
and pT2

are also easily found. The unexpected result is that

( )= =p p p p, . 24R R T T1 2 1 2

The probabilities of transmission/tunnelling, pT, and reflection, pR, are

( )= =p
N

D
p

N

D
, , 25T

T
R

Rbarrier barrier

where

( ) ( ) ( ) ( ) ( )k k k k k k= = + + + -N kq N k q x k q x kq4 , sinh cosh 2 , 26T R
2 4 2 2 2

1
2 2 2 2

1
2

( ) ( ) ( ) ( ) ( )k k k k k= + + + +D kq k q x k q x2 sinh cosh . 272 4 2 2 2
1

2 2 2 2
1

In the case where V0=0, q=k and the above results agree with the potential barrier
problem found in virtually all undergraduate quantum mechanics textbooks.

Equation (24) means that the probabilities of reflection and transmission/tunnelling are
equal for the quantum particle incident upon the potential barrier from either side, provided
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only that the particle energy E is the same for both. It is fair to say that this is most surprising
and unexpected. One immediately wants to know how this result can be understood. Note that
the potential (20) is not symmetrical for ¹V 00 . (One expects =p pR R1 2

and =p pT T1 2
for

symmetrical potentials.)
Note also that the potential barrier as treated above can be analytically continued to give

results for two additional cases: a potential barrier with E>Vb and a potential well where
E>Vwell(x) for all x.

4. Pedagogical points for instructors and students

The proof we have presented in this paper uses the following two properties of the time-
independent Schrödinger equation (TISE): (1) if ψ(x) is a solution of the TISE, then cψ(x) is
also a solution, where c is a constant; (2) if ψ1(x) and ψ2(x) are solutions for the same energy
E, then [ψ1(x)−ψ2(x)] is also a solution for energy E. These two properties lead to the highly
unexpected result in this paper, namely the equality of probabilities of reflection and trans-
mission: =p pR R1 2

and =p pT T1 2
.

The equality of the probabilities, and the simplicity of the general proof of this equality,
combine to make the content of this paper of great pedagogical value.

To be complete, we list the other items the student needs to know in order to understand
at least some of the material covered in this paper, and perhaps even more. The student needs
to know and understand: (3) the TISE, (4) the time-dependent Schrödinger equation (TDSE),
(5) that energy eigenstates of the TISE have energies with zero uncertainty, (6) the probability
current, fluxes and (7) how to calculate pR and pT from the fluxes.

With this knowledge, the material in this paper can be used to teach second year
undergraduate students, upper year undergraduate students, and even graduate students.
Second year students taking a course in Modern Physics will not only be able to understand
the proof, but will be able to calculate the probabilities for a step potential, at the very least.
The students would then understand the meaning of equal probabilities and have an example
to convince themselves of this equality. Upper year undergraduates could be taught the same
material and further could extend their experience to more complicated potentials, such as the
potential barrier used in this paper, the delta function example, and possibly also the expo-
nential potential (see below) and numerical examples. They could also look at the barrier
problem with E>Vb and the potential well. Graduate students could learn and understand all
the above and in particular could be assigned the task of calculating pT and pR for the
monotonic exponential potential described below, with incidence from the high or low-energy
side. Graduate students could also be assigned the task of proving the probabilities are equal,
perhaps with some guidance.

We have carried out other calculations. We give two examples.
(1) Instructors may wish to assign their undergraduate students the problem of calculating

the probabilities for a delta-function potential with different constant values on the two sides
of the delta potential:

⎧⎨⎩( ) ( ) ( )
l d

=
<

+ 
V x

x
V x x
0, 0,

, 0
. 28delta

0

Calculating the probabilities is easily done. We again have =p pR R1 2
and =p pT T1 2

. The
probabilities are
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( ) ( )
( )

l
=

+ + 
p

kq

k q m

4

2
, 29T

delta
2 2 2

and

( ) ( )
( ) ( )

( )l
l

=
- +
+ +




p
k q m

k q m

2

2
. 30R

delta
2 2 2

2 2 2

Notice that the probabilities are the same for λ<0 as for λ>0. Again, for V0=0, q=k
and the probabilities agree with those given in textbooks.

(2) A problem which could be assigned at the graduate level would be to use the
monotonic ‘exponential’ potential

( ) ( )= -
+ -

V x
V

e1
. 31

x aexp
0

Solving for the probabilities requires the use of hypergeometric functions (as shown in [4]).
Whether the particle is incident from the high-energy side or the low-energy side, pR and

pT are

( [ ] )
( [ ] )

( )p k
p k

=
-
+

p
k a

k a

sinh

sinh
, 32R

exp
2

2

and

[ ( [ ] ) ( [ ] )]
( [ ] ) ( ) ( )

( [ ] )
( [ ] )

( )p k p k
p k p pk

p k
p k

=
+ - -
+

= -
-
+

p
k a k a

k a ka a

k a

k a

sinh sinh

sinh sinh 2 sinh 2
1

sinh

sinh
, 33T

exp
2 2 2

2

2

2

where

( )k= º +
 

k
mE

k
mV2

,
2

. 342
2

2 2 0
2

Calculation of these probabilities is significantly more difficult; see, for example, the
calculations presented in [4].

This potential is monotonic decreasing in the +x-direction. The result that pT and pR are
the same for either side indicates that the probabilities are the same for any monotonic
potential for incidence from either the high-energy side (monotonic decreasing) or the low-
energy side (monotonic increasing).

That pT and pR are the same for both sides of a monotonic potential was noted in the book
by Landau and Lifshitz [2].

Other questions could be considered by instructors. Some examples that spring to mind
are as follows. Will the equalities hold in two dimensions? Could the results also be true in
three dimensions? Instructors no doubt could find other interesting extensions.

We believe the material in this paper would be suitable for quantum mechanics text-
books. It could be part of the material covered in the book. Problems could be shown in the
text or as assigned questions for students to solve or both. The intellectual significance and
simplicity of the proof of equal probabilities strongly suggests it be part of the standard
material taught in undergraduate quantum mechanics.

5. Discussion

How can we understand that the probabilities of reflection and transmission are the same
whether the particle is incident from one side of the potential or the other?
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Quantum mechanics questions such as this one can be difficult to answer. In order to
illustrate this difficulty, consider first a similar question. We see from (19) that p 0T and

p 1R as  ¥V0 for the step potential. How can we understand these limits? Suppose the
particle is incident from the high-energy side. Then one might say that having an ‘infinite’
drop in the potential energy of a particle is not possible on physical grounds, and therefore we
must have p 0T . This suggested answer is invalid. The reason is that we have, from (32)
and (33),  p-p eR

kaexp 4 and  - p-p 1 eT
kaexp 4 as  ¥V0 for the exponential potential

(31). The exponential potential does not give zero probability of transmission for ‘infinite’ V0

and nonzero ka. Therefore, the idea that pT must go to zero for the step potential, because an
infinite change in potential energy is not physically reasonable, is incorrect. The reason is that
we have p 0T as  ¥V0 for the step potential, whereas we have = - >p-p 1 e 0T

ka4

for the exponential potential for nonzero ka for ‘infinite’ V0. In both cases the potential drop
V0 is ‘infinite’ but we do not have that the probability of transmission is zero in both cases.
Therefore, the physical explanation cannot be only that the potential drop is ‘infinite’. (We
return to this below.)

Not having a physical explanation for p 0T for the step potential might be unsettling
given that avoiding an ‘infinite’ change in potential energy seems to be a physically rea-
sonable explanation. Nevertheless, the case of the exponential potential cannot be ignored.

In order to ensure complete understanding, we consider two limiting cases for the two
potentials (‘step’ and ‘exponential’).

(1) Consider the a 0,  ¥V0 limits for the two potentials. We obtain p 0T and
p 1R as  ¥V0 for a 0 for both potentials. This is as expected, because the two

potentials are the same in the a 0 limit.
(2) However, we may also consider the case where we have nonzero and fixed a, and

change the step potential to have a linear drop in the range 0<x<a. (The potential for the
linear drop can be taken to be: V(x)=0 for x�0, V(x)=−(x/a)V0 for 0�x�a, and
V(x)=−V0 for x�a.) It turns out that we still have p 0T as  ¥V0 when there is a
linear drop over a finite range a, while we have pT to be nonzero for the exponential potential
for the finite range a:  - p-p 1 eT

kaexp 4 as  ¥V0 , which is not zero for nonzero ka. (The
difference in these limiting values turns out to be due to a continuous slope for the expo-
nential potential but a discontinuity in slope for the step potential, as reported in [4].)
Therefore, we still have that one potential has p 0T while the other has pT going to a
nonzero value as  ¥V0 , when both potentials drop over the same distance a, and we
therefore cannot say that p 0T is physically due to having an ‘infinite’ change in the
potential.

Consider instead the particle to be incident from the lower energy side of the step
potential: pT and pR have the same limits as above for  ¥V0 . For the step potential, it
‘makes sense’ that p 0T and p 1R : the particle encounters a potential increase V0, and
thus cannot ‘climb the infinite potential’ and be transmitted. Again the exponential potential
case invalidates this idea because we can have both pR and pT not close to zero or to one. The
same result is obtained if we use the ‘linear’ potential instead of the step potential.

The point of discussing the proposed physical explanation for the step potential drop is
the following. Given that the proposed explanation doesn’t work, it is clear that obtaining
physical explanations for quantum mechanical problems is not always a straightforward task.
Therefore, we should not expect to easily obtain a physical explanation for the main result of
equal probabilities in this paper. Even so, we can make a proposal as a first step.

For the TISE, there is at least a way to begin to understand the equal probabilities. We
start by recognizing that, in all cases of all potentials, there is one very important feature that
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is the same for all cases, namely that the eigenstate is ‘everywhere’ (i.e. the eigenstate is
nonzero at all values of x) at the same time. This physical feature could be part of the reason
for the probabilities being the same for incidence from either side. Both sides of the potential
are captured in the solution of the TISE, which could be why it does not matter which side the
particle is incident from: the particle’s state is subject to the full potential in both cases.

This idea is supported by results we found when we studied, using the TDSE, wave
packets incident upon the potential from either side. Wave packets which were too narrow to
encounter all of the potential at the same time did not have equal probabilities. However,
wave packets which were wide enough to encounter all of the potential at some point in time
did indeed have equal probabilities. Such wave packets had the physical feature of being
spread out over a long distance in position space, and therefore did, like the time-independent
eigenstates, encounter all of the potential at some point in their transmission and reflection
from the potential.

A spatially extended wave packet with small uncertainty in its energy has the same
probabilities pT and pR as for an energy eigenstate (which has zero uncertainty in its energy)
provided ⟨ ⟩ =E E , i.e. the expectation value of the wave packet’s energy ⟨ ⟩E is equal to the
energy eigenvalue E of the eigenstate. Therefore, the wave packet has equal probabilities for
incidence from either side of the potential, because the probabilities are the same as those for
the energy eigenstate.

We have attempted to exploit symmetry in order to obtain a more complete physical
understanding. For example, the equations for incidence from the two sides of the potential
may be written in matrix form where the matrix is identical for the two cases except at the two
endpoints of the potential. The similarity in the matrix was obtained by starting with the same
point of the potential in both cases. The matrix formulation can be obtained by representing
the potential as an arbitrarily large number of constant pieces with jumps in between. We
obtained expressions for pR1

and pR2
, for example, that were very similar. However, the

differences in the endpoints in this approach did not provide any additional physical
understanding. Similarly, investigating time reversal did not clarify further the physical
reason(s) for the equality of the probabilities. Nevertheless, we do have the ideas discussed
above to provide some physical understanding.

There are interesting implications of our result of equal probabilities. We give one
example. Any potential which is a ‘reflectionless potential’ (and therefore has resonant
transmission) is a reflectionless potential for a quantum particle incident from the other side of
the potential. The equality of probabilities has important implications for the resonant tun-
nelling of one-dimensional molecules incident upon a step potential [5, 6].

6. Summary and conclusion

The most important feature in this paper is the extremely simple proof showing that the
probabilities for reflection, pR, and transmission, pT, for a quantum particle with energy E are
the same for incidence from the left upon a one-dimensional potential as for incidence from
the right. Using a subscript ‘1’ for incidence from the left, and ‘2’ from the right, we have
proven in this paper that =p pR R1 2

and =p pT T1 2
. The equality of the probabilities holds for

all potentials that are finite everywhere (the delta function is an exception) and have constant
values or go to constant values as  ¥x . The proof uses the following two properties of
the time-independent Schrödinger equation (TISE):

(1) For a constant c, if ψ(x) is a solution of the TISE, then cψ(x) is also a solution.
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(2) If ψ1(x) and ψ2(x) are solutions for the same energy E, then [ψ1(x)−ψ2(x)] is also a
solution for energy E.

It is stunning that such simple properties lead to an elegant proof of a highly unexpected
result, namely the equality of probabilities of reflection and transmission: =p pR R1 2

and =p pT T1 2
.

The equality of the probabilities is, in itself, remarkable. The simplicity of a general proof
of such a result is stunning. The combination of these two results makes the content of this
paper of great pedagogical value, as discussed in the pedagogical section above.

We have given a reasonable, possible explanation as to why the probabilities are equal
for opposite sides of the potential for the time-independent Schrödinger equation, namely that
the energy eigenstate is everywhere at the same time, and thus takes into account the entire
potential at once, leading to the probabilities being equal.
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