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Abstract
Understanding the quantum problem of a free charged particle undergoing
two-dimensional motion in a perpendicular uniform, constant magnetic field is
necessary to the comprehension of some very important phenomena in phy-
sics. In particular, a grasp of the nature of the Landau states in a symmetric
gauge is crucial to explain the underlying principles of quantum Hall effects.
In this work we provide a step-by-step solution of this quantum problem in a
pedagogical fashion that is easy to follow by an audience of undergraduate
students and prospective physics teachers. This approach should enable
undergraduate students to comprehend all the technical mathematical details
involved in the process. Such details are routinely missing from mainstream
quantum mechanics textbooks. In particular, this study allows a broad audi-
ence of students and teachers to gradually absorb knowledge not only on basic
principles of quantum mechanics, but also on various special mathematical
functions that are encountered in the process.

Keywords: two-dimensional electron system, Landau states, symmetric gauge,
quantum Hall effects

(Some figures may appear in colour only in the online journal)

1. Introduction

The classical problem of a free charged particle undergoing two-dimensional (2D) motion in a
uniform, constant perpendicular magnetic field is encountered virtually in any physics text-
book [1–3]. A magnetic field has a profound effect on the dynamics of charge carriers. The
result is the particle exhibiting uniform circular motion with a specific angular frequency
called the cyclotron frequency whose value depends on the charge, mass of particle and
magnitude of the magnetic field. When thinking of real materials such as conductors,
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classically, the Lorentz force acting on quasi-free electrons bends their trajectories. This
affects transport properties of metals and semiconductors [4–6]. One important phenomenon
observed under these conditions is the appearance of an electric field perpendicular to the
direction of the current flow known as the classical Hall effect [7].

From the point of view of quantum mechanics, a charged particle in uniform, constant
magnetic field exhibits quantised degenerate energy levels known as Landau levels (LLs) [8].
The effects of quantization lead to oscillations of thermodynamic quantities (de Haas-van
Alphen effect) [9] and transport coefficients (Shubnikov-de Haas effect) [10] upon variation
of the magnitude of the magnetic field. These phenomena that are well known in condensed
matter physics have been used as very effective tools to characterize the Fermi surface of
various materials [11]. The Landau quantization of energies has especially dramatic con-
sequences for systems of particles in a low dimensionality such as the quantum Hall regime
case of a 2D electron gas subject to a strong perpendicular magnetic field [12–20].

The quantum theory [21] of the 2D motion of a charged particle in a magnetic field is
covered in various textbooks [22–27]. The derivation of the quantum solution requires choice
of a gauge for the vector potential of the magnetic field. There are two commonly used gauges
known as the Landau gauge and the symmetric gauge. The Landau gauge is mathematically
very easy to handle and perhaps more familiar because of its simplicity [8]. On the other
hand, the symmetric gauge is essential for writing the wave functions of electrons in a way
that conserves the rotational invariance [28–30]. Furthermore, the symmetric gauge wave
function is localized and, thus, is particularly appropriate to handle external potentials or
electron–electron interactions.

However, the solution of the quantum problem with the symmetric gauge is much more
technically challenging. A step-by-step guide of the solution of the resulting differential
equations is rarely provided in typical quantum physics textbooks [22–27]. Studies indicate
that even prospective physics teachers have a lot of difficulty to analyze the behavior of
charged particles in electrical and magnetic fields [31]. For these reasons, the motivation of
this work is to provide an easy to follow and detailed mathematical solution of the quantum
problem of the 2D motion of a free charged particle in an external perpendicular magn-
etic field.

A detailed solution of the quantum problem of a charged spinless particle in a uniform,
constant magnetic field with the symmetric gauge has a number of features that allow one to
expose the audience to technical and mathematical approaches that are not obvious. The
subject is also rich in mathematics and involves a number of special functions. Calculations
lead to well known families of differential equations such as Laguerre’s differential equation
or the confluent hypergeometric differential equation that are seldomly explained in detail at
undergraduate level. It is expected that by being able to follow all the details of the calcu-
lations, undergraduate students and prospective physics teachers will develop better mathe-
matical skills and better understanding of the subject.

2. Quantum hamiltonian

Let us consider the quantum 2D motion of a free charged particle in a uniform, constant
perpendicular magnetic field. The particle has charge q and mass m. The magnetic field is
applied perpendicular to the plane of motion of the particle (the z-axis is taken perpendicular
to the plane) and may be written in the following vector form:
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=B B0, 0, . 1z( ) ( )


For the moment, we do not make any assumption whether charge, q is positive or negative.
Likewise, we do not assume anything with regard to the sign of Bz. This means that, for the
moment, Bz may be positive (B


oriented along the +z-axis direction) or negative (B


oriented

along the −z-axis direction). For a symmetric gauge, the vector potential for the magnitic field
is

= ´ = -A r B r
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where =r x y,( )
is a 2D position vector. The quantum Hamiltonian of the particle is

= -H
m

p q A r
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2
, 32ˆ [ ˆ ( )] ( )  

where =p p p,x y
ˆ ( ˆ ˆ )

is the usual 2D linear momentum operator. The x and y components of
the 2D linear momentum operator may be explicitly written as

= -
¶
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¶
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 p
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p
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i ; i , 4x yˆ ˆ ( )

where = -i 1 is the imaginary unit and ÿ is the reduced Planck’s constant. Note that the
operator px̂ depends on coordinate x while A rx ( ) depends on coordinate y. Similarly, one sees
that pŷ depends on coordinate y while A ry ( ) depends on coordinate x. It follows that px̂

commutes with A rx ( ) and pŷ commutes with A ry ( ) . As a result, one can write the
Hamiltonian as

= - +H
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is the z-component of the angular momentum operator. One uses equation (2) to calculate
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By relying on equation (6) and equation (8) and readjusting few terms in equation (5) one has

=
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The Hamiltonian for a positive charge >q 0 and positive = >B B 0z is the same as that
corresponding to a negative charge-q and negative = -B Bz where B denotes the magnitude
of the magnetic field.

It is known that mathematical expressions for various quantities derived for >q 0 and
>B 0z can be expressed in a complex notation using the standard definition for the complex

variable, = +z x yi . For this reason, given that an electron has a negative charge, -e
>e 0( ), it is convenient to take = - <B B 0z . Note that e denotes the magnitude of elec-

tron’s charge.

Eur. J. Phys. 41 (2020) 035404 O Ciftja

3



In a nutshell, for the quantum problem of an electron in a perpendicular magnetic field it
is convenient to consider

= - > = - >q e e B B B0 ; 0 , 10z( ) ( ) ( )
and write equation (9) as

=
+

- + +H
p p
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m e B
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2 2 2 2
, 11
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2 2 2
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⎝
⎞
⎠ˆ

ˆ ˆ
ˆ ( ) ( )

where >e 0 is the magnitude of electron’s charge and >B 0 is the magnitude of the
magnetic field. This arrangement is tacitly implied in the majority of quantum Hall studies
[32] where one typically writes the polynomial part of the wave function that depends on
coordinates (x, y) as a function of a complex variable of the form = +z x yi .

At this juncture, we introduce the cyclotron frequency:

w = >
e B

m
0, 12c ( )

and write the Hamiltonian in equation (11) as

w w
= -

¶
¶

+
¶
¶

- + +


H
m x y

L
m

x y
2 2 2 2

. 13c
z

c
2 2

2

2

2

2
2 2⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠ˆ ˆ ( ) ( )

The stationary Schrödinger’s equation to solve is

Y = YH E , 14ˆ ( )
where Ĥ is the Hamiltonian in equation (13) and Ψ is the unknown wave function to be
determined. The sought eigenfunctions belong to the space of functions commonly referred to
by mathematicians as ‘L2 Hilbert space’. This is the set of square integrable complex
functions defined on the whole 2D space where the inner product is taken as

òY Y¢ = Y Y¢ rd2*⟨ ∣ ⟩ where the asterisk sign (*) means complex conjugation.

3. Detailed solution

The Hamiltonian is suitably written in 2D polar coordinates:

j j= =x r y rcos ; sin , 15( ) ( ) ( )

where = + r x y 02 2 denotes the radial distance and j p<0 2 is the polar angle. In
2D polar coordinates, one has

j
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The z-component of the angular momentum operator in 2D polar coordinates can be written
as

j
= -

¶
¶

L i . 17z
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With help from equation (17), one can write the quantity in equation (16) as
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As a result, the Hamiltonian in 2D polar coordinates reads

w
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The operator Lz
ˆ acts on only on the angular variable j and commutes with the Hamiltonian.

This means that the unknown wave function, jY r,( ) has to be an eigenfuction of Lz
ˆ as well:

j jY = Y =   ¼L r m r m, , ; 0, 1, 2, 20z l l
ˆ ( ) ( ) ( )

The eigenfunctions of Lz
ˆ are given by jFml ( ) where

j
p

F =
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2
. 21m

mi

l

l

( ) ( )

Such eigenfunctions are properly orthonormalized:

ò j j j dF F =¢ ¢
p

d , 22m m m m
0

2

l l l l
* ( ) ( ) ( )

where dij is the Kronecker delta. The first term in equation (19) known as the radial kinetic
energy operator and the last term in equation (19) are functions only of r. On the other hand,
the operator Lz

ˆ (as well as Lz
2ˆ ) is a function only of the polar angle j. For this reason, one

may seek a solution to the Schrödinger’s equation, Y = YH Eˆ by separation of variables in
the product form:

j jY = Fr R r, , 23ml
( ) ( ) ( ) ( )

where R(r) represents an unknown radial wave function. By substituting the expression from
equation (23) into equation (19) one obtains the following differential equation for the radial
wave function:

w
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The expression in equation (24) can be written in more succint form as
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The expression above can also be written as
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The parameter, l0 is known as electron’s magnetic length. At this point, let us define a new
independent dimensionless variable, ξ given by
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x = r

l2
0. 29

2

0
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( )

The next step is to express various terms appearing in equation (27) in terms of this new
variable:

x x
x

x
x= = + =

r r l r l l
r l

1 d
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After some straightforward operations, one obtains

x
x x x

x
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l . 32
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Let us now consider the behavior of equation (31) in the two limits of x  ¥ and x  0.
Based on the quantum constraints of dealing with only square integrable wave functions

over an infinite 2D space (in this case), one expects that both xR( ) and its first derivative
should go smoothly to zero in the x  ¥ limit. In such a limit, the first term in equation (31)
dominates over the second term. By similar reasoning, one concludes that the term propor-
tional to x 4 dominates among the remaining last three terms in equation (31) in the x  ¥

limit. Therefore, we should approximately have, x x- =
x

x R 0d

d 4

2

2

⎡⎣ ⎤⎦ ( ) as x  ¥. The two

mathematical solutions of this second-order differential equation are of the form xexp 2( ).
Since a meaningful quantum wave function should not go to infinity as  ¥r x  ¥( ), the
only acceptable asymptotic quantum solution is x-exp 2( ).

The crudest approximation in the x  0 limit is to argue that x xR( ) dominates over
xR( ) and, similarly, assume that x xRd d( ) dominates over the remaining two terms pro-

portional to ξ. Therefore, one approximately has, x- =
x x

R 0md

d 4
l
2⎡

⎣⎢
⎤
⎦⎥ ( ) as x  0. The solution

of this equation is a power function, x x=R s( ) . Another way to frame the discussion is to
argue that terms in equation (31) that contain derivatives should eliminate the x1 divergence
in the x  0 limit. A power function is the simplest choice to achieve such an objective.
Based on these hints, one looks for a solution to equation (31) in the form x x=R s( ) as
x  0. Since we are dealing with a power function, we have to be very careful with regard to
which terms we should retain after substituting x x=R s( ) into equation (31). One obtains
= s m

2
l∣ ∣ by retaining only terms of the lowest order of magnitude and, thus, excluding

terms that come from x l x- + R4( ) ( ). From the requirement that the wave function remains
bounded for r=0 x = 0( ), we keep only x x=R m 2l( ) ∣ ∣ as a valid quantum solution in the
x  0 limit.

From the above discussions, it is clear that it is most convenient to look for a solution to
equation (31) that applies throughout the entire range of ξ in the form:

x x x x= -R wexp 2 , 33m 2l( ) ( ) ( ) ( )∣ ∣

where xw ( ) is a new function to be determined. After substituting equation (33) into
equation (31), we arrive at the following equation for xw ( ):
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We note that equation (34) has the form of a confluent hypergeometric differential equation
[33]:
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where M a c x, ,( ) is one solution known as a confluent hypergeometric function of the first
kind or a Kummer’s function. One may see Ch. 13 of [34] for a thorough description of the
mathematical properties of confluent hypergeometric functions. Such a function may be
written as

å= = + +
+
+

+¼
=

¥

M a c x
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n
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where ¹ - - ¼c 0, 1, 2, and = + + - =a a a a n a1 1 ; 1n 0( ) ( ) ( ) ( ) is the Pochhammer
symbol. Some important properties that apply to such a function are given in appendix A. The
confluent hypergeometric function of the first kind represents one solution of the confluent
hypergeometric differential equation that is bounded at the origin. By comparing equation (34)
to equation (35) once concludes that

x l x= = - +
+

= +w M a
m

c m
1

2
, 1 , . 37l

l( ) ( ∣ ∣ ∣ ∣ ) ( )

It is known that x x ¥ ~ x -M a c, , e a c( ) if ¹ - - ¼a 0, 1, 2, . This would lead to
x x x ¥ ~ l- -R exp 2 1 2( ) ( ) for l= - + ¹ - - ¼+a 0, 1, 2,m 1

2
l∣ ∣ values. This means

that x  ¥R( ) is unbounded if ¹ - - ¼a 0, 1, 2, . However, quantum mechanics imposes
the requirement that xR( ) should be bounded as x  ¥. Therefore, a solution with
¹ - - ¼a 0, 1, 2, is not acceptable. Based on equation (33), the solution xw ( ) must not

increase more rapidly than a finite power of ξ in order to have a bounded radial wave function
in the x  ¥ limit. This means that a solution with = - - ¼a 0, 1, 2, should be chosen.
This choice makes xw ( ) a polynomial and this is an acceptable solution from the quantum
perspective. From the form of the confluent hypergeometric function of the first kind [see
equation (36) or equation (A4)] one draws the conclusion that xw ( ) becomes a polynomial
function when

l= - +
+

= - ¼=- = ¼a
m

n n
1

2
0, 1, ; 0, 1, , 38l

r r
∣ ∣ ( )

where = ¼n 0, 1,r represents a radial quantum number. Thus, we conclude that the
parameter λ (which is related to the energy) must be

l = +
+

= =  ¼n
m

n m
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2
; 0, 1 ,... ; 0, 1, 39r

l
r l

∣ ∣ ( )

Since l w= ¢ E c( ) [see equation (32)] one has

w¢ = + +E n
m1

2 2
, 40c r

l⎜ ⎟⎛
⎝

⎞
⎠

∣ ∣ ( )

where = ¼n 0, 1,r and =  ¼m 0, 1,l . The last step is to use equation (26) and express the
energy as
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The unnormalized radial function is given by

x x x x= - - +R M n mexp 2 , 1 , . 42n m
m
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2
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l( ) ( ) ( ∣ ∣ ) ( )∣ ∣

Confluent hypergeometric functions of the first kind with both parameters integral are related
to Laguerre polynomials and associated Laguerre polynomials. Properties of Laguerre
polynomials are described in appendix B. Some details about associate Laguerre polynomials
are provided in appendix C. By using the Rodrigues representation one can write the
associated Laguerre polynomials as

= = ¼ = ¼
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+ -L x
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n x
x n k

e d
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while the Laguerre polynomial cunterpart, Ln(x) corresponds to the special case of k=0. As
shown in appendix A, a confluent hypergeometric function of the first kind with both
parameters integer and an associated Laguerre polynomial differ from each other only by a
multiplicative factor and one has the following exact relationship:

- + =
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L x, 1, . 44n
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The notation used for the associate Laguerre polynomials is consistent with that found in [35].
Hence, we can express the unnormalized radial wave function in equation (42) as
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where, for now, the normalization constant has not been included.

4. Final results

Let us now summarize the final results for the energy eigenvalues and eigenfunctions. As
already stated in equation (41), the allowed energy eigenvalues read
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The normalized eigenfunctions are written as
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where = ¼n 0, 1, 2,r and =   ¼m 0, 1, 2,l . The normalized radial function can be written
as
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is the normalization constant. The normalization condition for the radial wave function is
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One can check the correct normalization from the formula:
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The normalized angular function is the eigenstate of Lz
ˆ given as
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The normalization condition for angular wave function is
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The lowest Landau level (LLL) has an energy:

w
=


E
2
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which is obtained for the following quantum numbers:

= = ¼n m0 ; 0, 1, 2, . 55r l ( )
Note the high degeneracy of the quantum states (through ml). A plot of the radial function
R rm0 l

( ) for several values of ml is shown in figure 1. For simplicity, we assume that =l 10 .
Note that all these states correspond to the same energy. A comparison of the energy spectrum
of this problem with other quantum systems such as the hydrogen atom may be useful to the
reader. The most striking observation is that the energy spectrum in equation (46) consists of
equally spaced (oscillator-like) energy levels meaning that it is dissimilar to the energy
spectrum of its hydrogen atom counterpart.

One can write the single-particle states in the LLL as

j
p

Y = -
j

r N
r

l

r

l
, exp

4

e

2
, 56m m

m m

0 0
0

2

0
2

i

l l

l l⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )

where =N m
l m

0
1

2l ml l0
2 !

is a normalization factor for the radial wave function and

= ¼m 0, 1,l . At this juncture one notices that the LLL single-particle states in equation (56)
can be conveniently written using complex notation as

p
Y = -z

l m

z

l

z

l

1

2 2
exp

4
, 57m

m
l

m

0

0
2 0

2

0
2l

l

l⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

!

∣ ∣ ( )

where = ¼m 0, 1,l and = + = jz x y ri ei represents a complex variable.

5. Conclusions

Even undergraduate students who are successful at all subjects of classical physics may have
difficulties when dealing with quantum mechanics. The more unconventional nature of
quantum mechanics makes student’s understanding of the subject a little bit harder. Various
mathematical topics such as differential equations, complex analysis, special functions, etc are
not easy to deal with by undergraduate students. While the hydrogen atom problem is
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discussed in great detail at any undergraduate quantum mechanics course another very
important problem where key mathematical details are rarely explained in detail is that of
Landau states in a symmetric gauge. Certainly, the problem of Landau states in a symmetric
gauge may fit better the level of a graduate student. However, it is fair to say that the
minimum mathematical background required for solving this problem is equal to or, perhaps,
just only a bit more challenging than the level of knowledge required from undergraduate
students to solve the hydrogen atom problem.

Understanding the physics of Landau states in a symmetric gauge and the quantum
behavior of charged particles in a magnetic field is necessary to the comprehension of many
phenomena in physics and engineering. For all these reasons, in this work we considered the
quantum problem of a free charged particle undergoing 2D motion in presence of a uniform,
constant magnetic field applied perpendicular to the plane of motion. The problem is solved in
a very detailed way for the case of the symmetric gauge since this is the most technically
demanding one. The motivation of the study was to provide a step-by-step solution method
that is easy to follow by undergraduate students and prospective physics teachers. We believe
that this is a valuable effort given that many of details of the solution to this problem are either
omitted from typical quantum mechanics textbooks, or the problem is solved by using the
simpler Landau’s gauge.

Understanding the nature of the quantum solution of the problem in a symmetric gauge
leads to a better grasp of the physics of 2D systems of electrons in the quantum Hall regime.
Therefore, it is of paramount importance that undergraduate students have a clear realization
of the solution process. This would help them to see how various special functions arise

Figure 1. Normalized radial function, R rm0 l ( ) as a function of radial distance r for
values of ml=0 (solid line), ml=1 (dashed line), ml=2 (dotted line) and ml=3
(dashed–dotted line). For convenience, it is assumed that =l 10 .
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during the derivation process and how the treatment leads to a complex notation description
that is a standard feature for the LLL states. We believe that this study has pedagogical values
since it allows an audience of undergraduate students and physics teachers to navigate with
relative ease various challenging mathematical roadblocks that are encountered while solving
this quantum problem.
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Appendix A. Confluent hypergeometric function

The confluent hypergeometric differential equation is written as

+ - - =x
x

c x
x

a y x
d

d

d

d
0. A1

2

2

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

One solution of the confluent hypergeometric differential equation is

= + +
+
+

+¼ ¹ - - ¼M a c x
a

c

x a a

c c

x
c, , 1

1

1

1 2
; 0, 1, 2, . A2

2
( )

!
( )
( ) !

( )

The function M a c x, ,( ) is called a confluent hypergeometric function of the first kind or a
Kummer function. There are a number of other notations used in the literature with the
function denoted as F a c x, ,1 1( ), F a c x, ,( ), M a b x, ,( ), F a b x, ,1 1( ), etc. Note that

= = ¹ - - ¼M a c x c, , 0 1 ; 0, 1, 2, . A3( ) ( )
One can write M a c x, ,( ) in a more compact form as

å= ¹ - - ¼
=

¥

M a c x
a

c

x

n
c, , ; 0, 1, 2, , A4

n

n

n

n

0

( ) ( )
( ) !

( )

where = + + - =a a a a n a1 1 ; 1n 0( ) ( ) ( ) ( ) is the Pochhammer symbol. The confluent
hypergeometric function M a c x, ,( ) converges for all finite x. Many frequently occurring
functions are special cases of confluent hypergeometric functions. For example,

= M a a xe , ,x ( ). The function M a c x, ,( ) becomes a polynomial if = - - ¼a 0, 1, 2, By
comparing equation (A1) to Laguerre’s differential equation:

+ - + = = ¼x
x

x
x

n L x n
d

d
1

d

d
0 ; 0, 1, , A5n

2

2

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

one can conlude that

= - = = = ¼M a n c x L x n, 1, ; 0, 1, , A6n( ) ( ) ( )

where Ln(x) is a Laguerre polynomial. One can also compare equation (A1) to the associated
Laguerre’s differential equation:

+ + - + = = ¼x
x

k x
x

n L x n k
d

d
1

d

d
0 ; , 0, 1, , A7n

k
2

2

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

where L xn
k ( ) is an associated Laguerre polynomial. This comparison leads to

= - = + µM a n c k x L x, 1, n
k( ) ( ) (apart a constant). Note that = =M a c x, , 0 1( ) while
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= = +L x 0n
k n k

n k
( ) ( )!

! !
. With a suitable normalization, one has

= - = + =
+

= ¼M a n c k x
n k

n k
L x n k, 1, ; , 0, 1, . A8n

k( ) ! !
( )!

( ) ( )

This transformation formula is very useful for a variety of problems encountered in quantum
mechanics and mathematical physics.

Appendix B. Laguerre polynomials

The Laguerre polynomials are a solution of Laguerre’s differential equation:

+ - + = = ¼x
x

x
x

n y x n
d

d
1

d

d
0 ; 0, 1, . B1

2

2

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

They are orthogonal on the interval < ¥ x0 with respect to the weight function, -e x

satisfying the following relation:

ò d=¢ ¢

¥
-x L x L xd e , B2x

n n n n
0

( ) ( ) ( )

where dij is the Kronecker delta. Their Rodrigues formula is

= = ¼-L x
n x

x n
e d

d
e ; 0, 1, . B3n

x n

n
n x( )

!
( ) ( )

Some specific Laguerre polynomials are listed below:

=L x 1, B40( ) ( )

= - +L x x 1, B51( ) ( )

= - +L x x x
1

2
4 2 , B62

2( )
!

( ) ( )

= - + - +L x x x x
1

3
9 18 6 . B73

3 2( )
!

( ) ( )

Note the special value:

= = = ¼L x n0 1 ; 0, 1, . B8n( ) ( )

From equation (B2) one has

ò = = ¼
¥

-x L x nd e 1 ; 0, 1, . B9x
n

0

2[ ( )] ( )

Additional details about Laguerre polynomials may be found in p 828–832 of [35] and other
widely available literature [36].

Appendix C. Associated Laguerre polynomials

The associated (or generalized) Laguerre polynomials, aL xn ( ) are a particular solution of the
second-order linear differential equation:
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a

a

+ + - + =

= ¼ > -

ax
x

x
x

n L x

n

d

d
1

d

d
0

0, 1, ; 1. C1

n

2

2

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )
Note the requirement of arbitrary real a > -1. If parameter α is chosen to be integer, this
means that a = = ¼k 0, 1, 2, . For such a case, the associated Laguerre’s differential
equation becomes

+ + - + =

= ¼ = ¼

x
x

k x
x

n L x

n k

d

d
1

d

d
0;

0, 1, ; 0, 1, . C2

n
k

2

2

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )
From now on we solely focus on the properties of L xn

k ( ) with n, k nonnegative integers since
this case is very often encountered while solving quantum mechanical problems. Note that:

= = ¼=L x L x n; 0, 1, , C3n
k

n
0( ) ( ) ( )

where Ln(x) is a Laguerre polynomial. The associated Laguerre polynomials, L xn
k ( ) are

orthogonal on the interval < ¥ x0 with respect to the weight function, - xe x k and satisfy
the following relation:
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¥
-x x L x L x

n k

n
d e . C4x k

n
k

n
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0
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The Rodrigues representation for the associated Laguerre polynomials is

= = ¼ = ¼
-

+ -L x
x

n x
x n k

e d

d
e ; 0, 1, ; 0, 1, . C5n

k
x k n

n
n k x( )

!
( ) ( )

Some specific associated Laguerre polynomials are listed below:

=L x 1, C6k
0 ( ) ( )

= - + +L x x k 1. C7k
1 ( ) ( )

The associated Laguerre polynomials have the following special value at x=0:

= =
+

= ¼ = ¼L x
n k

n k
n k0 ; 0, 1, ; 0, 1, . C8n

k ( ) ( )!
! !

( )

From equation (C4) one has

ò =
+

= ¼ = ¼
¥

-x x L x
n k

n
n kd e ; 0, 1, ; 0, 1, . C9x k

n
k

0

2[ ( )] ( )!
!
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A useful integral formula given in p 834 of [35] is

ò =
+

+ +
¥

- +x x L x
n k

n
n kd e 2 1 , C10x k

n
k

0

1 2[ ( )] ( )!
!

( ) ( )

where = ¼n 0, 1, and = ¼k 0, 1, . We also remark that another important application of the
associate Laguerre polynomials is in the solution of the Schrödinger’s wave equation for the
hydrogen atom.
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