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Abstract

Given that gravitational waves are the future probes of the Universe, it is impor-

tant to test various physical effects of these on matter. This article explores

the �rst-order perturbation, caused by a planar gravitational wave, on massless

scalar and chiral fermions. We �nd a new propagating mode for the perturbed

�elds with a new dispersion relation by solving inhomogeneous differential

equations. We also discuss the massive scalar �eld, and �nd interesting effects

due to the gravitational wave. Our results have physical implications for early

Universe cosmology and also for ground-based observations, where the new

mode might be able to help in the gravitational waves’ detection on Earth.

Keywords: neutrinos, gravitational waves, scalar �elds and gravitational waves,

chiral fermions and gravitational waves

(Some �gures may appear in colour only in the online journal)

1. Introduction

With the �rst detection of gravitationalwaves at the LIGOdetector in 2015, and later announce-

ment in 2016, a new era of observational physics has started [1, 2]. The gravitational wave will

soon become a major probe of the Universe and its dynamics. In this article, we discuss the

question: how does a gravitational wave affect the behaviour of a scalar wave? This scalar wave

could be amatter wave in a condensedmatter system, or could represent the in�aton of the early

Universe [3]. Gravitational waves are important in the dynamics of the early Universe, though

they are expected to be non-linear and at a much higher amplitude than that detected on Earth

recently [1]. In our calculations, we test whether a linear gravitational wave can interact with a

scalar �eld to give non-trivial dynamics. The focus is in the way the matter waves (scalars and
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fermions) react to the gravitational wave. Whereas we have done a search for papers which

report a similar scalar �eld gravitational wave interaction [4], our calculations are unique. In

particular, we seem to have obtained a ‘non-trivial’ response of the massless scalar wave with

the gravitational wave, which we discuss and try to obtain new physical implications. In a sim-

ilar calculation in [4] additional restrictions are imposed on the scalar �eld to obtain a planar

wave, here we do not impose such restrictions. In our paper the scalar �eld responds to the

passing gravitational wave, and is perturbed to an oscillatory reaction evident in the plot of the

energy of the perturbation. If we take a gravitational wave in the z direction, then in the per-

turbation equations, the inhomogeneous terms are proportional to k20x − k20y and k0xk0y (where

k0x, k0y are the x− y components of the scalar �eld’s direction of propagation). Thus, at least

one of the transverse directions of the scalar wave vector has to be non-zero for the gravita-

tional wave in the+z direction to have any non-trivial effect on the scalar wave. The spherical

propagator used to obtain the scalar wave perturbation is also crucial for the results, if the scalar

waves are obtained using the planar wave propagator as we show in themassive scalar example,

the plane waves are perturbed as ordinarywaves. Our solutions, are obtained using Kirchhoff’s

theorem and Duhamel’s principle, and the separation of variables method is not used to solve

the Laplacian. The new result is that the perturbations have a new mode, obtained using the

spherical propagator for the solution to the inhomogeneouswave equation. The newmode can

be interpreted as massless waves of frequency ω with the dispersion ω2 = (k+ k0)
2, where k

is the wave vector of the gravitational wave, and k0 is the wave vector of the scalar/fermion

wave. We check for resonant modes, in the solutions for the scalar �eld as has been found in

‘driven systems’ and �nd none.

Similarly we investigate the effect of the gravitational wave on a chiral fermion (neutrino),

and obtain the �rst order effect on the particle. Similar to the scalar particle, our solutions

have different behaviour not seen previously in [5]. The neutrino has a non-trivial interaction

with the gravitational wave and is perturbed to an oscillatory �ux �ow. This result will have

physical implications, in particular, we can expect corrections to the effective number of neu-

trino species for the cosmic neutrino background. The effective number of neutrino species

is 3.15± 0.23 [6], close to the physically expected 3.0 ± corrections, the �uctuations have

been attributed to non-thermal interactions in the early Universe [7, 8]. In the section Field

perturbations for massless spin 1/2 particles, we estimate a correction due to the gravitational

wave interaction, and the perturbation effect’s contribution to the background cosmic neutrino

density. The perturbation of the density is very small to contribute to the effective degrees of

freedom, however the neutrino interaction with the cross polarization has a resonant mode.

On page 18, and using equation (96) we comment on how the resonant run away mode can

contribute to the background density of neutrinos.

These perturbations might also affect the neutrino �ux for the multi-messenger astronomy

observations from neutron star collisions. As of now neutrinos are yet to be detected from

the gravitational wave events. More importantly, the �uctuations in the neutrino �ux produced

due to the gravitational wave interaction can be used to detect gravitational waves on Earth.

Particularly for fermions perturbed by the cross polarization of the gravitational waves, there

is a resonant mode which grows with time (96). The physical implications of this have to be

investigated in a real experimental situation in consultation with existing neutrino experiments

[9]. This is work in progress and as of yet neutrinos have not been used to detect gravitational

waves on Earth.

1.1. Comparison with previous studies of matter-gravitational wave interaction

Wedid a deep search for previous work on matter and gravitational waves interactions, and

we analyze how our results compare to those. Our aims are very similar to the motivations of
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[4, 10] for scalars and [5] for the neutrinos. However, our results are different, as in [4] the

perturbed scalar waves have
(

∂2x − ∂2y
)

φ = 0 to produce planar scattered waves. We do not

impose any such additional restrictions, on the perturbation, and thus our results are different.

In [5, 11], the scattered equation for the neutrinos are solved using separation of variables, and

thus the particularmode found in this paper is notmanifest. In other papers brought to our atten-

tion by reviewers, [12–16] the focus is mainly on the interaction of gravitational waves with

electromagnetic waves; and our calculations have different results. Our calculations discuss

inhomogeneous scalar wave equations and Weyl equations and we solve to obtain a particular

solution which we call a ‘new mode’ for the �elds. This analysis has not been done previ-

ously for electromagnetic waves where Maxwell’s equations are solved in gravitational wave

background. In particular in [13] the scalar �elds were studied, but these are quantized and

are sources for the gravitational wave. In [14], the calculations are computed of semiclassical

interactions of matter with gravitational waves using �eld theoretic techniques, and the results

are not the same as obtained in our paper, in particular in the scattered quantumwave, we do not

�nd any mode with the same dispersion as in this paper. In the papers [15, 16], perturbations

of �at space time are studied using the vierbein and the spin-connection, but they do not have

a mode analysis, as in equations (81) and (82) does, in [16] as is presented in this paper. In [15,

16], the perturbations include torsion. Interactions of gravitational waves with matter has also

been studied in [17, 18]. The results obtained in equations (37), (81), (82) and (96) are new and

different as discussed in these papers. The solutions found in the above equations have a new

dispersion relationω2 = (k+ k0)
2, where k is thewave vector of the gravitationalwave, and k0

is the wave vector of the scalar/fermion wave, these have not been obtained in [4, 10, 12–17].

In particular in [17], particles interact with gravitational waves, and there are similar ‘forced’

oscillation equations which are solved. However, in contrast, those perturbations solutions of

particle motion show resonance, whereas our scalar modes are non-resonant. Our paper also

discusses the fermion scattering from gravitational waves which are not found in [17].

The paper is organized as follows: in the next section, we describe the Klein–Gordon

equation and its solution in the gravitational wave background. In the third section we describe

the chiral fermion and its solution in the gravitational wave background. In the fourth section,

we interpret the solution, and provide some practical uses of the solution, and we conclude.

2. The Klein–Gordon equation in the background of a gravitational wave

The Klein–Gordon equation in the background of a curved metric gµν is

∂µ
(√−g ∂µφ

)

= ∂ν
(√−g gµν∂µφ

)

= 0. (1)

In this article we solve this equation in the background, where gµν is due to a gravitational

wave. We take the example of a perturbation due to a gravitational wave of a �at geome-

try, which could be the situation on Earth, when the gravitational wave arrives from a distant

source.

2.1. Gravitational waves

The simplest kind of gravitational waves emerges in the frame of the linearized gravity

theory, obtained by approximating the metric tensor up to �rst order. In the linear theory

approximation, one can say that the metric is �at space-time with �uctuations hµν as

gµν = ηµν + hµν , (2)
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where ‖hµν‖≪ 1. Using this, it can be proved that the inverse of the metric can be written as

gµν = nµν − hµν (3)

(if we want to keep everything up to �rst order).

Introducing the ‘traceless’ metric

h̄µν = hµν −
1

2
ηµνh

α
α, (4)

Einstein’s tensor becomes

Gβµ
= −1

2

(

−∂2t +▽2
)

h̄βµ = �h̄βµ. (5)

Using gauge freedom we can choose Lorentz gauge h̄λσ ,σ = 0, together with the so called

transverse-traceless gauge (TT-gauge),which imposes on h̄µν the following conditions: h̄
µ
µ = 0,

then h̄µν = hµν and ∂
µhµν = 0. The metric is divergence-less hµνu

µ = 0, for some 4-velocity

u. Imposing both gauges, Einstein’s equation can be written as

�h̄µν = −16πTµν (6)

(in units of G = c = 1 or Newton’s constant and speed of light set to 1). In the absence of

matter, i.e. Tµν = 0, the last equation is just the three-dimensional wave equation, which has

as solutions plane waves. Note, the gravitational waves are initially taken as in vacuum, and

their effect is studied on the scalar �elds. We are not studying back reaction of the matter �elds

on the gravitational waves, in that case Tµν 6= 0 and this is not the focus of the paper.

h̄µν = Aµνe
ikαx

α
, (7)

where Aµν is the tensor polarization amplitude. Also, since hµν is symmetric it has only 10−
4− 4 = 2 independent components. We can set the coordinate axes so that the gravitational

wave is propagating in the z direction. With these conditions and the TT-gauge, the linearized

metric tensor can be expressed as

gµν =









−1 0 0 0

0 1+ h+ h× 0

0 h× 1− h+ 0

0 0 0 1









; gµν =









−1 0 0 0

0 1− h+ −h× 0

0 −h× 1+ h+ 0

0 0 0 1









(8)

(where h+ = A+cos(ω(z− t)) and h× = A×cos(ω(z− t)+ δ),ω the frequency of the wave and

A+,A× being the amplitudes of the two polarizations).

Let g be the determinant of gµν , we can see that due to the block diagonal form of the metric,

the determinant is

g = −(1− h2+ − h2×) ≈ −1 (9)

which is approximately 1 up to �rst order.

For numerical estimates; e.g. binary white dwarf systems in our galaxy, a good approxima-

tion of the wave strain is [19]

h ≈ 10−21

(

M

2M⊙

)5/3(
1 hour

P

)2/3(
1Kpsc

r

)

. (10)
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For binary neutron stars spiralling together in our galaxy, a good approximation of the wave

strain is [19]

h ≈ 10−22

(

M

2.8M⊙

)5/3(
0.01 s

P

)2/3(
100Mpsc

r

)

(11)

whereP = 2π/Ω,Ω is the orbital frequency and r is the distance from the source.M is the total

mass and M⊙ is the mass of the Sun. Similarly, quasi-normal ring down of stellar mass black

hole mergers are expected to give waves of amplitudes [2]

h ≈ 10−21
( ν

0.25

)

(

M

20M⊙

)(

200Mpsc

r

)

(12)

(ν is the symmetric mass ratio [2]).

3. The interaction of the scalar wave and the gravitational wave

Let’s say that we have a �eld satisfying Klein–Gordon’s equation for a massless particle in a

metric produced by a gravitational wave. The equation for the scalar �eld in a curved space is

given by ∂µ
(√−g∂µφ

)

= ∂ν
(√−ggµν∂µφ

)

= 0, and remembering that the determinant for

the metric of a gravitational wave is equal to −1, the equation is just

∂ν
(

gµν∂µφ
)

= 0.

Expanding all components in the equation and noting that gµν has only six non-zero compo-

nents and that hµν is a function only of z and t, the equation is explicitly

0 = −∂ttφ+ ∂xxφ+ ∂yyφ+ ∂zzφ−
[

h+(∂xxφ− ∂yyφ)+ 2h×∂y∂xφ
]

(13)

or in a more compact form

�φ−
[

h+(∂xx − ∂yy)+ 2h×∂y∂x
]

φ = 0. (14)

Any two variable function can be expanded around two variables, in this case A+ and A×.
Due to the smallness of the strain of a gravitational wave (10−21 to 10−22), we can make a

Taylor expansion up to �rst order in A+ and A× as continuous variables, thus this result would

be

φ ≈ φ0 + A+φ+ + A×φ×, (15)

where φ+ = ∂
∂A+

φ and φ× = ∂
∂A×

φ.

Substituting this expression into the Klein–Gordon with the metric of a gravitational wave,

and keeping terms up to �rst order gives

�φ0 −
[

A+ cos(ω(z− t))(∂xxφ0 − ∂yyφ0)+ 2A× cos(ω(z− t)+ δ)∂x∂yφ0
]

+ A+ �φ+ + A× �φ× = 0. (16)

Since A+ and A× are arbitrary constants we get the following set of equations

�φ0 = 0, (unperturbedwave equation) (17)

�φ+ = cos(ω(z− t))(∂xx − ∂yy)φ0 (18)

�φ× = 2 cos(ω(z− t)+ δ)(∂x∂y)φ0 (19)

5
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For sake of simplicity let’s suppose that

φ0(x, t) = R
(

A0e
i(k0·x−ω0t)

)

(20)

(Notation: we use boldface to represent three vectors)

The perturbations are next solved for using techniques of inhomogeneous PDE’s.

3.1. The wave equation in 3 + 1D

The wave equation in R
3 is just the D’Alambertian of a function equated to zero, �φ = 0.

Further, let’s suppose that we have Cauchy (initial) conditions,

�φ = 0 (21)

φ(x, 0) = F(x) (22)

∂φ

∂t
(x, 0) = G(x) (23)

where x ∈ R
3, t > 0, F ∈ C3(R3) and G ∈ C2(R3).

The solution for the wave equation with Cauchy conditions is given by the theorem [20].

Theorem 1. Suppose that F ∈ C3(R3) and G ∈ C2(R3). Then the solution of the initial

value problem of the wave equation in three dimensions is given by

φ(x, t) =
1

4πt

∫

S(x,t)

G(x′)dσt +
∂

∂t

[

1

4πt

∫

S(x,t)

F(x′)dσt

]

(24)

and the solution is in C2 for x ∈ R
3 and t 6 0.

The above formula is called Kirchhoff’s formula.

The solution for the inhomogeneous wave equation is given by Duhamel’s principle,

which says that if φ(x, t) is the solution of the following initial value inhomogeneous wave

equation, [21]

�φ = h(x, t); x ∈ R
3, t > 0, (25)

φ(x, 0) = 0,
∂φ

∂t
(x, 0) = 0; x ∈ R

3. (26)

Let v(x, t; τ ) be the solution of the associated ‘pulse problem’

�v = 0; x ∈ R
3, t > τ , (27)

v(x, τ ; τ ) = 0,
∂

∂t
v(x, τ : τ ) = −h(x, τ ) (28)

Then the solution for the inhomogeneous wave equation is given by

φ(x, t) =

∫ t

0

v(x, t : τ )dτ (29)

Combining Duhamel’s principle and Kirchhoff’s formula, the solution for the inhomoge-

neous wave equation in three dimensions can be written in compact form as

φ(x, t) = − 1

4π

∫

B̄(x,t)

h(x′, t − r)

r
d3x′ (30)

6
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where r =‖x− x
′‖=

√

(x− x′)2 + (y− y′)2 + (z− z′)2 and B̄(x, t) is the ball inR3 with centre

at x and radius t.

The solution of φ+ and φ× would be

φ+(x, t) =
1

4π
(k20x − k20y)

∫

B̄(x,t)

d3x′
φ0(x

′, t′)

r
cos(ω(z′ − t′)) (31)

φ×(x, t) =
1

4π
(2k0xk0y)

∫

B̄(x,t)

d3x′
φ0(x

′, t′)

r
cos(ω(z′ − t′)+ δ) (32)

where k0 = (k0x, k0y, k0z), r =‖x′ − x‖ and t′ = t − r.

Now, in order to �nd the perturbation explicitly, let’s solve the more general integral.

I(δ0, δ) =

∫

B̄(x,t)

d3x′ei(k0·x
′−ω0(t′)+δ0) cos(ω(z

′ − t′)+ δ)

r
(33)

where r =‖x′ − x‖ and t′ = t − r. Since we are integrating over the ball centred at x we can

make a change of variable (reference system) and centre the ball at the origin, the translation

would be

x
′
= x+ r (34)

d3x′ = r2 sin(θ)dφdθdr.

With the last change of variable and writing the cosine term in its exponential form, then

the integral is converted into

I =

∫

B̄(0,t)

ei(k0·(x+r)−ω0(t−r)+δ0) e
i(ω(z′−(t−r))+δ) + e−i(ω(z′−(t−r))+δ)

2r
r2 sin θdφdθdr

(35)

This integral can be done using [22] and mathematica (explicit steps are shown in

appendix A). The result is:

ei(k0·(x)−ω0(t)+δ0)
πei(ω(z−t)+δ)

‖k+ k0‖

×

(

− ‖k+ k0‖ +eit(ω+ω0)
(

‖k+ k0‖ cos(‖k+ k0‖t)− i (ω + ω0) sin(‖k+ k0‖t)
)

)

ωω0(1− cos β)

+ (ω→−ω) (36)

In the above equation β is the angle between the wave vectors of the scalar wave and the

gravitational wave in three dimensions, β =
k·k0

‖k‖‖k0‖ . Also, the added term (ω→−ω) is the
expression already shown in the above equation, with only the change that ω is replaced

by −ω.

7
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Figure 1. The perturbed scalar �eld (real part) at a sequence of time steps, which show
oscillation in time as a response to the gravitational wave plotted in 3D for two different
perspectives and x and z ranges. For the purpose of plot, the k0x = k0z = 2, kz = 3.

From the above one can see that apart from the usual super-position of two waves where the

frequencies add or subtract, there is a term of the form cos(‖k+ k0‖t). To analyze the results,
we write the waveform in the following way:

π

ωω0(1− cos β)
e(i(k0+k)·x)

[

−e−i(ω+ω0)t +

[

cos(‖k+ k0‖t)− i
(ω + ω0)

‖k+ k‖ sin(‖k+ k0‖t)
]]

+ (ω→−ω) (37)

A plot of the above using MAPLE shows the behaviour of the solution in time. The �rst

part comprises of an ordinary part of frequencies ω ± ω0, and the second part comprises of a

wave of frequency ‖k+ k0‖, as in �gure 1.

The solution does not show resonance, as if we set β = 0 (the angle in momentum space

between the gravitational wave and the scalar wave), which will make the amplitude singular,

the solution itself is zero. Despite this, the solution shows the promise that waves produced

by spin 0 particles [described by scalar �elds as in equation (13)] can be used to detect the

passing of a gravitational wave on Earth due to the solution of equation (37). Note that the

unperturbed wave does not show any amplitude oscillation, and is simply propagating with

constant energy. The presence of the gravitational wave causes interesting oscillation patterns

as in �gure 1 albeit these perturbations will be very weak. The physical reason for the oscillat-

ing amplitude is of course the ‘energetic interaction’ of the scalar wave with the gravitational

wave in response to the stretching and straining of the space-time through which it propagates.

Note that scalar waves do not exist but this result could be true for electromagnetic (EM)

waves, as each component of the EM wave satis�es a scalar wave equation though the details

8
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of EM–gravitational wave are work in progress. In the early Universe, the in�aton or scalar

perturbations could be a source of ‘scalar waves’. To estimate the amplitude of the perturbation

let’s say that the gravitational wave has only + polarization and that k0 propagates only in the

x direction, thus

∆φ ≈ A+φ+ ∼ hφ+ (38)

∼ h
A0k

2
0

2ωω0

∼ hA0

(ω0

ω

)

(39)

As a result, the order of the perturbation is proportional to h
(

ω0
ω

)

, where h is the gravita-

tional wave strain. We already know that this strain is of the order of 10−21 to 10−22, and for

ω0 = 160.23GHz, the peak CMB frequency as an example4; and ω ∈ (10−7Hz to 100Hz), the

amplitude of the perturbation would be in the range of 10−13 to 10−3. Even if it is weak com-

pared to the scalar wave, which we take as order 1, it is certainly detectable, the frequency

of oscillation would be however of the order of

√

ω2
0 + ω2 ≈ ω0. If we take the ‘oscillatory’

phase of the in�ation, and use its mass to set a frequency scale, then that is related to the Planck

mass and ω0 ∼ 10−6Mpl.

Note that this is one of the results of the paper, in the next two sections we discuss the

massive scalar and the chiral fermion interactions, and the latter is more important as the results

have implications for cosmic neutrino back ground and for neutrino experiments on Earth.

4. Klein–Gordon for a massive particle

Now, let’s consider the Klein–Gordon equation for a massive particle

− 1√−g∂µ
(√−g∂µφ

)

+ m2φ = −∂ν
(

gµν∂µφ
)

+ m2φ = 0, (40)

along with the metric of linear gravity, so gµν = ηµν + hµν and g ≈ −1. Expanding all the

terms in the equation and using the same calculations as for the massless particle we get

0 = �φ− m2φ−
[

h+(∂xx − ∂yy)+ 2hx∂y∂x
]

φ (41)

As in the previous section we can take h+ = A+cos(ω(z− t)) and h× = A×cos(ω(z− t)

+ δ) and taking the �rst order approximation (with respect to the gravitational wave strain),

we can take φ ≈ φ0 + A+φ+ + A×φ×, where φ+ = ∂
∂A+

φ and φ× = ∂
∂A×

φ. Substituting this

approximation into the Klein–Gordon equation would give

�φ0 − m2(φ0 + A+φ+ + A×φ×)−
[

A+ cos(ω(z− t))(∂xxφ0 − ∂yyφ0)

+ 2A× cos(ω(z− t)+ δ)∂x∂yφ0
]

+ A+ �φ+ + A× �φ× = 0 (42)

Since A+ and A× are arbitrary constants we get the following set of equations

�φ0 − m2φ0 = 0, (unperturbedKlein-Gordonequation) (43)

�φ+ − m2φ+ = cos(ω(z− t))(∂xx − ∂yy)φ0 = f (x) (44)

�φ× − m2φ× = 2 cos(ω(z− t)+ δ)(∂x∂y)φ0 (45)

4Here we have taken the peak frequency of the CMB as an example; one component of the EM �eld satis�es similar

inhomogeneous wave equation.

9
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The simplest solution for the unperturbed Klein–Gordon equation is just a plane wave with

a modi�ed dispersion relation inMinkowski’s metric: kµk
µ = −ω2+ ‖k‖ 2 = −m2. Let’s take

for simplicity φ0 as a plane wave with one frequency,ω0. Then the solution for the unperturbed

Klein–Gordon equation would be

φ0 = A0e
i(k0·x−ω0t) (46)

In order to solve the inhomogeneous Klein–Gordon equation, we have to convert it into a

momentum space through a Fourier transform. Then, if we have the equation �φ− m2φ = f

the solution is given using propagators. We �rst use the planar propagator to build the pertur-

bation, and then the spherical propagator to build the perturbation.We have presented both the

cases here as the results are different.

4.1. Planar propagator

G(x) =
1

√

(2π)2

∫

R4

eikµx
µ
d4k

kµkµ + m2
(47)

and the solution for φ would be

φ(x) =

∫

f (x′)G(x, x′)d4x′ (48)

The above equation can be obtained in Fourier space as (the details can be worked out by

implementing the Fourier transformation techniques as in [23])

φ(x) = −lim
ǫ→0

∫

R4

d4k

(2π)4
ei(kµx

µ) f̃ (k)

−kµkµ − m2 + iǫ
(49)

Where f̃ is the Minkowski–Fourier transform of f which is given by

f̃ (k) =

∫

R4

d4xe−i(kµx
µ) f (x) (50)

Now let’s calculate the integral for f (x) = cos(ω(z− t))(∂xx − ∂yy)φ0 = A0(k
2
0y −

k20x) cos(ω(z− t))eik0µx
µ
as obtained in equation (44). Then we �nd the Fourier transform of

the function f (x) to f̃ (k) as de�ned in (50)

f̃ (k) = A0(k
2
0y − k20x)

∫

R4

d4xe−i(kµx
µ) cos(ω(z− t))eik0µx

µ
(51)

= A0(k
2
0y − k20x)

∫

R4

d4xe−i(kµx
µ)eik0µx

µ

(

eiω(z−t) + e−iω(z−t)

2

)

(52)

= A0(k
2
0y − k20x)

∫

R4

d4xe−i(k·x−ωt)ei(k0·x−ω0t)
(

eiω(z−t) + e−iω(z−t)

2

)

(53)

=
A0

2
(k20y − k20x)(2π)

4
(

δ(ω − (ω0 + ω))δ(k0x − kx)δ(k0y − ky)δ(k0z + ω − kz)

+ δ(ω − (ω0 − ω))δ(k0x − kx)δ(k0y − ky)δ(k0z − ω − kz)
)

(54)

Thus the solution for the inhomogeneous Klein–Gordon equation would be obtained by

substituting equation (54) in equation (49)

10
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= −A0

2
(k20y − k20x)lim

ǫ→0

∫

R4
d4kei(kµx

µ)· (55)

·
(

δ(ω − (ω0 + ω))δ(k0x − kx)δ(k0y − ky)δ(k0z + ω − kz)+ δ(ω − (ω0 − ω))δ(k0x − kx)δ(k0y − ky)δ(k0z − ω − kz)
)

−kµkµ − m2 + iǫ

=
A0

2
(k20x − k20y)

(

ei((k0+k)·x−(ω0+ω)t)

(ω0 + ω)2− ‖k0 + k‖2 − m2
+

ei((k0−k)·x−(ω0−ω)t)

(ω0 − ωg)2− ‖k0 − k‖2 − m2

)

(56)

=
A0

2
(k20x − k20y)

(

ei((k0+k)·x−(ω0+ω)t)

2ω(ω0 − k0 cos β)
− ei((k0−k)·x−(ω0−ω)t)

2ω(ω0 − k0 cos β)

)

(57)

where cos β =
k·k0
ω‖k0‖ and k0 =‖k0‖. Note that in the above equations, the delta function inte-

grals have been implemented for the f̃ (k) obtained in equation (54). The scalar �eld φ(x) is
thus solved for as de�ned in equation (49) and is given explicitly by equation (57). Here the

solution to themassless Klein–Gordon equation clearly shows two resultant waves of the scalar

response, one with frequency ω0 + ω, and another with frequency ω0 − ω, as expected from

the interaction of two different waves. Note that in the way that the perturbed scalar wave is

calculated, only the z-sector of the wave gets a frequency modi�cation due to the superposi-

tion of the scalar wave and the gravitational wave in the z-direction. There are no interferences

or amplitude oscillations as observed in the massless example. This is due to the fact that in

the Fourier transformed space, the waves superpose as two plane waves, with no added mode

components of the perturbed wave. If we use the more dif�cult calculation of obtaining the

emergent wave using the spherical Green’s function in position space, we again recover the

interference pattern as obtained in the massless example.

4.2. Spherical propagator

The position space of Green’s function in spherical coordinates is

Gm(r, r
′, t − t′) =

1

4π

mJ1(m
√

(t− t′)2 − |x− x′|2)
√

(t − t′)2 − |x− x′|2
(58)

The above propagator is taken fromWikipedia [24] and veri�ed explicitly. Using this again

gives interference patterns which could be used to detect gravitational waves on Earth. The

perturbation would be obtained as

φ+ ∼ (k20x − k20y)A0

∫

1

2

(

eiω(z
′−t′)

+ e−iω(z′−t′)
)

e−iω0t
′+ik0·x′Gm(r, r

′, t− t′) d4x′ (59)

One the t′ integral is obtained, its form acquires an expression very similar to the massless case

and one obtains (details given in appendix B).

φ+ ∼ πA0(k
2
0x − k20y)

e−iω̃t

‖k0 + k‖
ei(k+k0)·x

2ω(ω0 − k0 cos β)

[

‖k0 + k‖ cos(‖k0 + k‖t) cos(
√

ω̃2 − m2t)

+

√

ω̃2 − m2 sin(‖k0 + k‖t) sin(
√

ω̃2 − m2t)− ‖k0 + k‖
]

(60)

This is very close to themassless perturbation solutionwith ω̃ = ω + ω0 given in equation (37),

as opposed to that for the massive scalar obtained in equation (57). The solution obtained in

equation (60) has the same mode structure as for the massless scalar obtained in equation (37).

If we plot it, it shall show the same oscillatory behaviour as in �gure 1. Note that this

difference in behaviour of equation (60) with equation (57) is in the wavefronts of the per-

turbations. In (57) we build a planar wave, and the results is that we have waves which

11
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propagate with frequencies which are sum or difference of the initial waves. This phenom-

ena we have seen before. In (60) there is a change as we try to build a spherical wavefront

using the spherical propagator. The result is a wave which does not have the 1/r fall off usu-

ally expected. However, we are left with a perturbation which we can interpret as a wave with

a new dispersion relation ω = ‖k+ k0‖ ± (
√
ω̃2 − m2 − ω̃). One can see that as m→ 0 the

dispersion goes over to the massless case. However, one also sees presence of frequencies of

ω = ‖k+ k0‖ ± (
√
ω̃2 − m2 + ω̃), which is not there in the massless mode. This is plausible,

as we are trying to interpret ‘frequencies’ as in planar propagation by taking the exponentials

of the sinusoidal functions. If we take m→ 0 in the explicit solution of (60) in the sinusoidal

functions, then it gives us the massless solution (37). We have veri�ed the calculations, and the

physical reason that we have this result is the inhomogeneous differential equation. The actual

plot of the �eld shows that the amplitude oscillates in time and space as in �gure 1. Eventually,

the energetic �ow is perfectly plausible as the scalar �eld interacts with the gravitational �eld

and exchanges energy with the passing wave.

5. Field perturbations for massless spin 1/2 particles

In this section we investigate the effect of the gravitational wave on a massless fermion. This is

motivated from the fact that most particles are fermions, and in particular neutrinos are almost

massless fermions. We investigate the effect of a gravitational wave on a ‘neutrino’, assumed

massless in the �rst approximation.

Lets consider again a gravitational wave in the TT gauge, but with only one of its two

polarizations,+ or ×. The Dirac equation is written as

iγaeµaDµψ − mψ = 0. (61)

Where γa are a matrix representation of the Clifford algebra and these matrices satisfy the

equation {γa, γb} = 2ηab, eµa (a, b are indices in the tangent space) is the so called tetrad and

satis�es the equation

gµν = eiµe
j
νηi j, (62)

and Dµ is the covariant derivative taking into account the spin of the particles it is de�ned as:

Dµ = ∂µ −
i

4
ωabµ σab, (63)

where ωabµ is the spin connection symbol and σab =
i
2
[γa, γb] is the commutator of the Dirac

matrices. One way to de�ne the spin connection symbols is through the Christoffel symbols

and the derivative of the metric as follows

ω ab
µ = e aν

(

Γ
ν
σµe

σb
+ ∂µe

νb
)

= e aν Γ
ν
σµe

σb − eνa∂µe
b
ν (64)

Now let’s consider the cases of+ and× polarization separately. Further, let’s take theWeyl

(chiral) representation of the gamma matrices, these matrices will be

γ0 =

(

0 −I2
−I2 0

)

, γk =

(

0 σk

−σk 0

)

, γ5 =

(

I2 0

0 −I2

)

, (65)

Where σk are the standard Pauli matrices. The details of the Weyl equation can be found in

[23] and for curved space-time [25].

In addition, to simplify the equations we are going to consider massless particles. Plugging

every component into Dirac’s equation in curved space for massless particles, iγaeµaDµΨ = 0,

12



Class. Quantum Grav. 37 (2020) 105001 S Morales and A Dasgupta

and keeping everything up to �rst order with respect of the gravitational wave strain (h), we

obtained the following systems of equations.

For + polarization, let’s say h+ = R(a+e
iω(z−t)) = A+ cos(ω(z− t)) which is same as that

in page 5 after equation (8) , then the tetrad can be taken as:

eaµ ≡









−1 0 0 0

0
√

1+ h+ 0 0

0 0
√

1− h+ 0

0 0 0 1









(66)

The spin connections can be calculated using the tetrads of equation (66) and their de�nition

given in equation (64), and they are found as

ω01
x = −1

2

(

∂th+
√

1+ h+

)

ω13
x =

1

2

(

∂zh+
√

1+ h+

)

(67)

ω02
y = −1

2

(

∂th+
√

1− h+

)

ω23
y =

1

2

(

∂zh+
√

1− h+

)

(68)

The Weyl equations are then written and separated as:

σ̄µ∂µψL = σ2 h+

2
∂yψL − σ1 h+

2
∂xψL (69)

σµ∂µψR = σ1 h+

2
∂xψR − σ2 h+

2
∂yψR (70)

where σ̄µ = (1,−σ) and σµ = (1,σ), and ψL,ψR are the two component chiral spinors such

that ψ ≡ (ψL,ψR). As evident from the above equations, the fermion wave must have at least a

non-zero propagation in the x or y direction to produce a perturbation as observed in the scalar

case too.

Now, we take a perturbation ψ = ψ0 + A+ψ̃, and ψ0 must satisfy the Weyl equation in

a �at space and A+ is the amplitude of the + polarization of the gravitational wave. These

solutions are given by the right and left handed spinors (positive and negative helicity), ψL and
ψR respectively. If we denote k

µ
0 = {ω0, k0} and xµ = {t, x}, then the plane wave solutions for

the Weyl equation in �at space are given by

ψ0L(t, x) =
1

√

2ω0(2π)3
eik

µ
0
xµu(+)(k0) (71)

ψ0R(t, x) =
1

√

2ω0(2π)3
eik

µ
0
xµu(−)(k0), (72)

where the spinors u(+)(k0) and u
(−)(k0) are determined by the eigenvalue equations

σ̂ · k0u
(+)(k0) = −ω0u

(+)(k0) (73)

σ̂ · k0u(−)(k0) = ω0u
(−)(k0) (74)

For the next example, let’s consider a particle moving in the x direction. In this way

k
µ
0 = {ω0,ω0, 0, 0}, u(+)(k0) =

1√
2

(

1

− 1

)

and u(−)(k0) =
1√
2

(

1

1

)

, therefore

13



Class. Quantum Grav. 37 (2020) 105001 S Morales and A Dasgupta

ψ0 =
1

√

4ω0(2π)3









1

− 1

1

1









eiω0(x−t) (75)

Then, the perturbed equations are written in their separated form from equations (69) and

(70). We have added an appendix to show the explicit separation steps.

�ψ̃L1 = ω2
0e

iω0(x−t) cos ω(z− t) (76)

�ψ̃L2 = eiω0(x−t)
(

ω2
0 cos(ω(z− t)) − iωω0 sin ω(z− t)

)

(77)

�ψ̃R1 = eiω0(x−t)
(

ω2
0 cos(ω(z− t)) + iωω0 sin(ω(z− t))

)

(78)

�ψ̃R2 = ω2
0e

iω0(x−t) cos ω(z− t) (79)

We write the sines and cosines in exponentials and get forms like:

�ψ̃L2 =
ω0

2
eiω0(x−t)

(

(ω0 − ω)eiω(z−t) + (ω0 + ω)e−iω(z−t)) (80)

Therefore, the integral solutions of the above equations are obtained in the sameway as a scalar

wave perturbation. E.g.

ψ̃L1+ω =
πω0

ω
eiω0(x−t)eiω(z−t)



ei(ω+ω0)t cos

(

√

ω2
0 + ω2t

)

+ ei(ω+ω0)t
i(ω + ω0)
√

ω2 + ω2
0

sin

(

√

ω2 + ω2
0 t

)

− 1



 (81)

ψ̃L2+ω =
ω0 − ω

ω0

ψL1+ω (82)

The complete ψ̃L1(2) = ψ̃L1(2)+ω + ψ̃L1(2)−ω.
As we do not observe fermion �eld, we build a fermion bilinear which represents a current:

ψ†γ0γµψ, of which the 0th component represents a ‘probability’ density ψ†ψ. This when cal-
culated for let us say the left handed spinor gives a function which oscillates in time. This can

be calculated as

ψ†ψ = (ψ†
0 + A+ψ̃

†)(ψ0 + A+ψ̃) = ψ†
0ψ0 + A+ψ̃

†ψ0 + A+ψ
†
0ψ̃ (83)

We compute the change in the fermion density due to the perturbation as

δρ = A+

√

1

2πω0



 cos ω0t cos ωz cos

(

√

ω2
0 + ω2t

)

+
ω

√

ω2 + ω2
0

cos ω0t sin ωz cos

(

√

ω2 + ω2
0t

)

+
ω0

√

ω2 + ω2
0

sin ω0t cos ωz sin

(

√

ω2 + ω2
0 t

)

− cos ω(z− t)



 (84)

The unperturbed fermion has a constant probability density, but the perturbed fermion wave

has an oscillatory phase. The pro�le of the bilinear appears in �gure 2. The amplitude of the

oscillations are proportional to A+ and thus would be of the order of 10−21, compared to the

initial fermion �ux.

14



Class. Quantum Grav. 37 (2020) 105001 S Morales and A Dasgupta

Figure 2. The correction to the fermion density �uctuates in time and space. For the
purposes of the plot ω = 3 and ω0 = 4. The plots are snapshots at nine different time
instants and are not to scale as in a real situation.

If we take the cross polarization, then, the tetrad can be taken if we take the cross polar-

ization, then, the tetrad can be found by a matrix such that if we multiply this matrix by its

transpose, we get the metric for cross polarized gravitational waves. Note that this choice of

tetrads is not unique as there is internal degrees of freedom of the Lorentz rotation acting on

the tangent space index [25]. The �nal Dirac equation is however invariant so any choice is

equally valid [25].

eµa =

























1 0 0 0

0

√

1− h×
2

√

1− h×
2

0

0

√

1+ h×
2

√

1+ h×
2

0

0 0 0 1

























(85)
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The spin connections are found using the tetrads of the cross polarization given in

equation (85) as de�ned in equation (64)

ω12
t = −1

2
∂th× (86)

ω01
x = − 1

2
√
2
∂th× ω02

x = − 1

2
√
2
∂th× ω13

x =
1

2
√
2
∂zh× ω23

x =
1

2
√
2
∂zh×

(87)

ω01
y =

1

2
√
2
∂th× ω02

y − 1

2
√
2
∂th× ω13

y =
1

2
√
2
∂zh× ω23

y = − 1

2
√
2
∂zh×

(88)

ω12
z = − 1

2
√
2
∂zh× (89)

The Dirac equation has two 2-component spinors written as (ψL,ψR). The equations for

these individual spinors are known as Weyl equations. We write the Weyl equations with a

rede�nition of the coordinates u = 1√
2
(y− x) and v = 1√

2
(x+ y);

σ̄µ∂µψL = −h×
2
σ1∂vψL −

h×
2
σ2∂uψL − i

1

8
∂th×σ

3ψL −
3

8
i∂zh×ψL (90)

σµ∂µψR =
h×
2
σ1∂vψR +

h×
2
σ2∂uψR − i

1

8
∂th×σ

3ψR +
3

8
i∂zhψR (91)

As previously, we can assume perturbative solutions and solve the decoupled inhomoge-

neous equations of the D’Alembertians. Though, in this particular case, there are resonance

modes as when the frequency and the direction of the fermions and the gravitational waves

coincide, there is still a non-zero inhomogeneous term. These are because of the terms inde-

pendent of the derivatives of the fermion wave functions on the rhs of equations (90) and (91).

If we assume ψL(R) = ψ0
L(R) + A×ψ̃L(R) as previously [A× is the same amplitude as introduced

in page 5 after equation (8)], then the perturbation equations precisely yield equations which

are of the form (see appendix for details)

�ψ̃L1 =
ωω0

2
sin(ω(z− t))ψ0

L1 (92)

�ψ̃L2 = −iω2 cos(ω(z− t))ψ0
L2 (93)

�ψ̃R1 = +iω2 cos(ω(z− t))ψ0
R1 (94)

�ψ̃R2 = −ωω0

2
sin(ω(z− t))ψ0

R2 (95)

We use the same solution for the unperturbed fermion as in (75) with x, y→ u, v, this is
due to the different tangent frame, and solve the perturbations. These will have corrections

of the order of ω/ω0 of the + polarized gravitational waves. If we calculate the equations

for the example where the directions and frequency of the two interacting waves coincide

(without taking the limit ω→ ω0 in the above), the inhomogeneous terms are proportional

to �ψ̃L1(L2) = −iω2/2(exp(2iω(z− t))± 1) and give rise to perturbations which grow not
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only linearly but quadratically, which can be interpreted as resonant modes. The explicit

perturbation solutions are obtained by computing integrals (appendix added)

ψ̃L1(L2) ∼ π

(

i
e2iω(z+t) − e2iω(z−t)

4
+ ωte2iω(z−t) ∓ i2ω2t2

)

(96)

As obvious, the fermion density built from the �elds will have a runaway behaviour with

time as expected in resonance cases. The physical implication of this can be realized on Earth

looking for perturbations in a neutrino �ux coming from the space, where neutrino waves are

detected from a multi-messenger type event. However, the perturbation approximation might

break down as the modes grow in amplitude, but de�nitely this behaviour is non-trivial. If we

observe the bilinear it will be proportional to A×ωt, so forωt ∼ 1019 to 1020 the correctionswill

be fractions and thus can account for the neutrino background density. This is as 0 6 A×ωt ≈
10−1 6 ±1 a fraction and the density could account for the CNB offset of ±0.23 as shown in
[6]. However, a careful analysis of early Universe cosmology is required for this.

6. Conclusion

In this section we brie�y summarize the results, and discuss possible implications for real

physical systems (this could be a gravitational wave detector, the effect on the cosmic neutrino

background, the detection of neutrino �ux in a neutrino experiment from a multi messenger

event etc). In this paper we studied the interaction of a gravitational wave with a scalar and a

neutrinowave. In the scalar section, a new scalar perturbationmode is found, propagating in the

direction which is the vector sum of the initial scalar and gravitational wave directions. The

amplitude of the oscillatory scalar wave perturbation can range from 10−3 to 10−1 in ampli-

tude depending on the frequency of the gravitational waves. What this would imply for early

Universe cosmology is a work in progress. Next we examine if our results have implications

for the cosmic neutrino background density. We have found for a neutrino too, a mode which

propagates in a direction which is in the vector sum of the direction of propagation of the ini-

tial gravitational and neutrino wave directions. The total solution is a combination of this new

mode and the usual modes which comprise of waves with sum and difference of the initial

gravitational and neutrino waves. The plot of the total perturbed neutrino density shows an

oscillatory nature as shown in �gure 2. To study the effect of this ‘scattering’ of the neutrino

by the gravitational wave, we have to take our calculations of the perturbation into a quantum

scheme, quantizing the perturbed �eld and thus the interaction. By this we simply mean that

the neutrino classical �elds obtained will have to be written in second quantization form. This

would involve introducing creation and annihilation operators. Naively though, we can calcu-

late the change in neutrino density as δρ (84) with the estimates for neutrino density in the

CMB. We estimate that the �ux of the neutrino will differ by a perturbation up to oscillatory

factors. The corrections are proportional to 10−21 and thus their contribution to the effective

degrees of freedom are very tiny, not in the range of the fractional corrections obtained in other

papers [7, 8]. In those papers non-thermal corrections to the CNB were shown to contribute to

the neutrino degrees of freedom to the order of ±0.23. From the cross polarization though, if

the gravitational waves have high frequency in the early Universe, fractional corrections might

appear. At the time of neutrino decoupling the gravitational wave frequencies are quite small

[26], however, there can be some earlier in�ationary epoch where the gravitational wave fre-

quencies were bigger. The relic of such an interaction would propagate with a perturbation

and contribute to the non-thermal �uctuations of the background neutrino effective degrees of
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freedom at a later time [7] as shown in the discussions of the previous section. This is work in

progress [9].

With the closed-form solutions found in this paper we could compute (numerically) sec-

ond order solutions and so on. It would be interesting to compare our analysis with the

one made in [11] and look for effects such as particle production and therefore energy lost.

This could explain why gravitational waves have a very small amplitude when observed on

Earth and could be used to know the source’s distance of gravitational waves, since the strain

decays as 1/r.
A more plausible use of our new results could be in the detection of gravitational waves

on Earth in neutrino experiments. As we showed previously, a neutrino �ux can be perturbed

by the gravitational wave into oscillatory (note not in �avour) energy density, this is on the

range of sensitivity of detectors built on Earth and thus we believe that this perturbation can

be measured and compared with our calculations. As shown in (�gure 2), a neutrino �ux gets

perturbed by the gravitational wave into a scattered wave with oscillatory energy density, of

the order of sensitivity of detectors built on Earth. This means that the waves are of the order

10−21 in amplitude and this has been detected in LIGO. In particular the resonant mode of the

fermion perturbation for cross polarization of the gravitational wave has to be investigated fur-

ther. A reference was brought to our attention about conformally coupled scalar �eld solutions

in gravitational wave background, and implemented in cosmology [27], our solutions will have

implications for cosmology as well. As neutrinos are candidate dark matter, the energy oscil-

lations of the neutrino �ux could contribute to the dark matter discussion. We hope to report

on this after quantizing the neutrino �ux.
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Appendix A. Integral for the massless fields

I =

∫

B̄(0,t)

ei(k0·(x+r)−ω0(t−r)+δ0) e
i(ω(z′−(t−r))+δ) + e−i(ω(z′−(t−r))+δ)

2r
r2 sin θdφdθdr

(97)

Since x
′ = x+ r and the z-component of r in spherical coordinates is r cos θ, then z′ =

z+ r cos θ. Therefore, after taking out the independent terms in the integral, equation (34) is

written as

I =
ei(k0·x−ω0t+δ0)

2

∫

B̄(0,t)

ei(k0·r+ω0r)
(

ei(ω(r cos θ+r)+ω(z−t)+δ)

+ e−i(ω(r cos θ+r)+ω(z−t)+δ)) r sin θdφdθdr (98)

We can always align the wave vector k0 to be in the same direction as the z-axis. Then, k0 ·
r = rk0cosθ and therefore it is φ-independent. Now we can integrate the φ-dependent term
independently, then the θ term and �nally the r-term as
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I =
ei(k0·x−ω0t+δ0)

2

∫ t

0

∫ π

0

(

ei(ω(z−t)+δ)ei(ω+ω0)reiωr cos θ
+ e−i(ω(z−t)+δ)ei(ω0−ω)re−iωr cos θ

)

×
(∫ 2π

0

eik0·rdφ

)

r sin θdθdr (99)

Since the only part dependant of φ is k0 · r = k0xr sin θ cosφ+ k0yr sin θ sinφ+ k0zr cos θ,
the integral can be easily calculated again as a Bessel function of the �rst kind. Breaking again

the integral into the + and − terms of the exponential form of the cos(ω(z− t)+ δ), the �rst
integral would be

I1 = 2πei(ω(z−t)+δ)
∫ t

0

∫ π

0

ei(ω+ω0)rei(ω+k0z)r cos θJ0

(√

k20x + k20yr sin θ
)

r sin θdr (100)

= 2πei(ω(z−t)+δ)
∫ t

0

ei(ω+ω0)r
(∫ +1

−1

ei(ω+k0z)r cos θJ0

(√

k20x + k20yr sin θ
)

d(cos θ)

)

rdr

(101)

= 2πei(ω(z−t)+δ)
∫ t

0

ei(ω+ω0)r
(∫ +1

−1

2 cos((ω + k0z)rx)J0

(√

k20x + k20yr
√

1− x2
)

dx

)

rdr

(102)

and since k20x + k20y + (k0z + ω)2 = k20x + k20y + k20z + ω2
+ 2k0zω = ω2

0 + ω2
+ 2k0zω (103)

= ω2
0 + ω2

+ 2k · k0 =‖k+ k0‖ , thenwe have (104)

= 2πei(ω(z−t)+δ)
∫ t

0

ei(ω+ω0)r
(

2
sin[‖k+ k0‖r]
‖k+ k0‖r

)

rdr (105)

=
4πei(ω(z−t)+δ)

‖k+ k0‖

∫ t

0

eir(ω+ω0) sin(r‖k+ k0‖)dr (106)

=
4πei(ω(z−t)+δ)

‖k+ k0‖

(

− ‖k+ k0‖ +eit(ω+ω0)
(

‖k+ k0‖ cos(‖k+ k0‖t)− i (ω + ω0) sin(‖k+ k0‖t)
))

(

− ‖k+ k0‖ +ω + ω0

) (

‖k+ k0‖ +ω + ω0

)

(107)

=
4πei(ω(z−t)+δ)

‖k+ k0‖

(

− ‖k+ k0‖ +eit(ω+ω0)
(

‖k+ k0‖ cos(‖k+ k0‖ t) − i (ω + ω0) sin(‖k+ k0‖ t)
))

2ωω0(1− cos β)

(108)

Appendix B. Integral for the massive scalar

Isolating the t′ dependent terms in the integral (59) for the massive perturbation we get

I(x) =

∫ (t−r)

−∞
e−i(ω+ω0)t

′mJ1

(

m
√

(t − t′)2 − |x− x′|2
)

√

(t− t′)2 − |x− x′|2
dt′ + (ω→−ω), (109)
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where I(x) is the time independent part of equation (59). Writing |x− x
′| = r and t − t′ = τ ,

and observing that t − t′ > r, the integral is

I(x) = e−i(ω+ω0)t

∫ ∞

r

exp(−i(ω + ω0)τ )
mJ1(m

√
τ 2 − r2)√

τ 2 − r2
dτ + (ω→−ω)

(110)

In the above, we keep only the cos(ω̃t) as the inclusion of the imaginary part of the exponential,

the sin function gives a spurious pole at 2m2 in the �nal answer.

= − exp(−iω̃t)
2

r
sin
( r

2

(

ω̃ −
√

ω̃2 − m2

))

sin
( r

2

(

ω̃ +
√

ω̃2 − m2

))

(111)

we introduce Λ to encode the above

=
2

r
exp(−iω̃t)Λ(r, ω̃) (112)

where ω̃ = ω + ω0. The remaining exponential integrals follow the same steps as in

equations (81)–(87). If we label the expression in equation (111) as Λ then in the end the

perturbation is proportional to

2π(k2x − k2y )e
−iω̃tei(k+k0)·x

∫ t

0

Λ(r, ω̃)
sin ‖k+ k0‖r
‖k+ k0‖

dr (113)

given as

4π(k20x − k20y)
e−iω̃ t

‖k0 + k‖
ei(k+k0)·x

2ω(ω0 − k0 cos β)

[

‖k0 + k‖ cos(‖k0 + k‖t) cos(
√

ω̃2 − m2t)

+
√

ω̃2 − m2 sin(‖k0 + k‖ t) sin(
√

ω̃2 − m2t)− ‖k0 + k‖
]

(114)

Similarly the correction for the transverse polarization gravitational waves can be calculated.

Appendix C. Details of some derivations

How to separate theWeyl equations: for this we show the calculations for the cross polarization,

as that is more complicated. The + polarization has a similar derivation. The typical Weyl

equation is of the form e.g. equation (90), and equation (91)

σ̄µ∂µψL = f (σ, h×, t, x, y, z)ψL (115)

σµ∂µψR = g(σ, h×, t, x, y, z)ψR (116)

where f (σ, h×, t, x, y, z)ψL represents the rhs of equation (90) and g(σ, h×, t, x, y, z)ψR the rhs

of equation (91). We use the following steps:
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(

∂t − ~σ · ~∂
)

ψL = f (σ, h×, t, x, y, z)ψL
(

∂t + ~σ · ~∂
)(

∂t − ~σ · ~∂
)

ψL =
(

∂t + ~σ · ~∂
)

f (σ, h, t, x, y, z)ψL

(

∂2t − ~∂2
)

ψL = − i

2
ω2A× cos(ω(z− t))

(

1− σ3
)

ψL +
ωω0

8
A× sin(ω(z− t))

×
(

σ3 − 3
)

(−1+ σ1)ψL − i
ωω0

2
A× sin(ω(z− t))σ2ψL

− A×
2
ω2
0 cos(ω(z− t))(σ2 − iσ3)

+ σ1ωω0

2
A× sin(ω(z− t))ψL (117)

In the above we have used {σi, σ j} = 0 and (σi)2 = 1 in showing that
(

∂t + ~σ · ~∂
)

(

∂t − ~σ · ~∂
)

ψL = (∂2t − ~∂2)ψL where the derivative operator becomes the diagonal Lapla-

cian. The rhs of the above is obtained by straightforward computation. We then assume that

the wave function has a perturbation ψ = ψ0 + A×ψ̃. Using the solution for ψ0 as stated

in equation (75), we simplify equation (117) and we get the equations (92) and (93) to

order A×.
Exactly in the same way, if we start from equations (90) and (91) and let the ψ0 be a wave

in the z-direction, such that ψ0 ∝ exp(iω0(z− t)), we get

(

∂2t − ~∂2
)

ψL =
−i

4

[

ω2A× cos(ω(z− t))(σ3
+ 1)ψL + iωω0A× sin(ω(z− t))(σ3 − 1)ψL

]

(118)

If we simplify the matrices and use the solution for ψ0 as being a wave in the same

direction as the gravitational wave and with the same frequency then the rhs of (118) will

have (upto factors) terms proportional to sin(ω(z− t))exp(iω(z− t)) ≈ exp(2iω(z− t))− 1

and cos(ω(z− t))exp(iω(z− t)) ≈ exp(2iω(z− t))+ 1 and the integral of this yields the per-

turbations as equation (96). The integral is formulated exactly as in the previous calculations

as in equation (97)

I =

∫

B̄(0,t)

e2iω(z+r cos θ−(t−r)) ± 1

r
r2 sin θdrdθdφ (119)

A step by step integration yields equation (96).
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