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CrossMark
Abstract
Given that gravitational waves are the future probes of the Universe, it is impor-
tant to test various physical effects of these on matter. This article explores
the first-order perturbation, caused by a planar gravitational wave, on massless
scalar and chiral fermions. We find a new propagating mode for the perturbed
fields with a new dispersion relation by solving inhomogeneous differential
equations. We also discuss the massive scalar field, and find interesting effects
due to the gravitational wave. Our results have physical implications for early
Universe cosmology and also for ground-based observations, where the new
mode might be able to help in the gravitational waves’ detection on Earth.

Keywords: neutrinos, gravitational waves, scalar fields and gravitational waves,
chiral fermions and gravitational waves
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1. Introduction

With the first detection of gravitational waves at the LIGO detector in 2015, and later announce-
ment in 2016, a new era of observational physics has started [1, 2]. The gravitational wave will
soon become a major probe of the Universe and its dynamics. In this article, we discuss the
question: how does a gravitational wave affect the behaviour of a scalar wave? This scalar wave
could be a matter wave in a condensed matter system, or could represent the inflaton of the early
Universe [3]. Gravitational waves are important in the dynamics of the early Universe, though
they are expected to be non-linear and at a much higher amplitude than that detected on Earth
recently [1]. In our calculations, we test whether a linear gravitational wave can interact with a
scalar field to give non-trivial dynamics. The focus is in the way the matter waves (scalars and
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fermions) react to the gravitational wave. Whereas we have done a search for papers which
report a similar scalar field gravitational wave interaction [4], our calculations are unique. In
particular, we seem to have obtained a ‘non-trivial’ response of the massless scalar wave with
the gravitational wave, which we discuss and try to obtain new physical implications. In a sim-
ilar calculation in [4] additional restrictions are imposed on the scalar field to obtain a planar
wave, here we do not impose such restrictions. In our paper the scalar field responds to the
passing gravitational wave, and is perturbed to an oscillatory reaction evident in the plot of the
energy of the perturbation. If we take a gravitational wave in the z direction, then in the per-
turbation equations, the inhomogeneous terms are proportional to k3, — k(%y and koyko, (where
kox, koy are the x — y components of the scalar field’s direction of propagation). Thus, at least
one of the transverse directions of the scalar wave vector has to be non-zero for the gravita-
tional wave in the 4z direction to have any non-trivial effect on the scalar wave. The spherical
propagator used to obtain the scalar wave perturbation is also crucial for the results, if the scalar
waves are obtained using the planar wave propagator as we show in the massive scalar example,
the plane waves are perturbed as ordinary waves. Our solutions, are obtained using Kirchhoff’s
theorem and Duhamel’s principle, and the separation of variables method is not used to solve
the Laplacian. The new result is that the perturbations have a new mode, obtained using the
spherical propagator for the solution to the inhomogeneous wave equation. The new mode can
be interpreted as massless waves of frequency w with the dispersion w? = (k + ko)?, where k
is the wave vector of the gravitational wave, and K, is the wave vector of the scalar/fermion
wave. We check for resonant modes, in the solutions for the scalar field as has been found in
‘driven systems’ and find none.

Similarly we investigate the effect of the gravitational wave on a chiral fermion (neutrino),
and obtain the first order effect on the particle. Similar to the scalar particle, our solutions
have different behaviour not seen previously in [5]. The neutrino has a non-trivial interaction
with the gravitational wave and is perturbed to an oscillatory flux flow. This result will have
physical implications, in particular, we can expect corrections to the effective number of neu-
trino species for the cosmic neutrino background. The effective number of neutrino species
is 3.15 £ 0.23 [6], close to the physically expected 3.0 & corrections, the fluctuations have
been attributed to non-thermal interactions in the early Universe [7, 8]. In the section Field
perturbations for massless spin 1/2 particles, we estimate a correction due to the gravitational
wave interaction, and the perturbation effect’s contribution to the background cosmic neutrino
density. The perturbation of the density is very small to contribute to the effective degrees of
freedom, however the neutrino interaction with the cross polarization has a resonant mode.
On page 18, and using equation (96) we comment on how the resonant run away mode can
contribute to the background density of neutrinos.

These perturbations might also affect the neutrino flux for the multi-messenger astronomy
observations from neutron star collisions. As of now neutrinos are yet to be detected from
the gravitational wave events. More importantly, the fluctuations in the neutrino flux produced
due to the gravitational wave interaction can be used to detect gravitational waves on Earth.
Particularly for fermions perturbed by the cross polarization of the gravitational waves, there
is a resonant mode which grows with time (96). The physical implications of this have to be
investigated in a real experimental situation in consultation with existing neutrino experiments
[9]. This is work in progress and as of yet neutrinos have not been used to detect gravitational
waves on Earth.

1.1. Comparison with previous studies of matter-gravitational wave interaction

Wedid a deep search for previous work on matter and gravitational waves interactions, and
we analyze how our results compare to those. Our aims are very similar to the motivations of
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[4, 10] for scalars and [5] for the neutrinos. However, our results are different, as in [4] the
perturbed scalar waves have (6? — Byz) ¢ = 0 to produce planar scattered waves. We do not
impose any such additional restrictions, on the perturbation, and thus our results are different.
In [5, 11], the scattered equation for the neutrinos are solved using separation of variables, and
thus the particular mode found in this paper is not manifest. In other papers brought to our atten-
tion by reviewers, [12—16] the focus is mainly on the interaction of gravitational waves with
electromagnetic waves; and our calculations have different results. Our calculations discuss
inhomogeneous scalar wave equations and Weyl equations and we solve to obtain a particular
solution which we call a ‘new mode’ for the fields. This analysis has not been done previ-
ously for electromagnetic waves where Maxwell’s equations are solved in gravitational wave
background. In particular in [13] the scalar fields were studied, but these are quantized and
are sources for the gravitational wave. In [14], the calculations are computed of semiclassical
interactions of matter with gravitational waves using field theoretic techniques, and the results
are not the same as obtained in our paper, in particular in the scattered quantum wave, we do not
find any mode with the same dispersion as in this paper. In the papers [15, 16], perturbations
of flat space time are studied using the vierbein and the spin-connection, but they do not have
a mode analysis, as in equations (81) and (82) does, in [16] as is presented in this paper. In [15,
16], the perturbations include torsion. Interactions of gravitational waves with matter has also
been studied in [17, 18]. The results obtained in equations (37), (81), (82) and (96) are new and
different as discussed in these papers. The solutions found in the above equations have a new
dispersion relation w? = (k + Kk¢)?, where k is the wave vector of the gravitational wave, and kg
is the wave vector of the scalar/fermion wave, these have not been obtained in [4, 10, 12—-17].
In particular in [17], particles interact with gravitational waves, and there are similar ‘forced’
oscillation equations which are solved. However, in contrast, those perturbations solutions of
particle motion show resonance, whereas our scalar modes are non-resonant. Our paper also
discusses the fermion scattering from gravitational waves which are not found in [17].

The paper is organized as follows: in the next section, we describe the Klein—Gordon
equation and its solution in the gravitational wave background. In the third section we describe
the chiral fermion and its solution in the gravitational wave background. In the fourth section,
we interpret the solution, and provide some practical uses of the solution, and we conclude.

2. The Klein—Gordon equation in the background of a gravitational wave

The Klein—Gordon equation in the background of a curved metric g, is

Oy (\/__gaﬂ¢) =0, (\/_—gg/wa#@ =0. (1)

In this article we solve this equation in the background, where g,,,, is due to a gravitational
wave. We take the example of a perturbation due to a gravitational wave of a flat geome-
try, which could be the situation on Earth, when the gravitational wave arrives from a distant
source.

2.1. Gravitational waves

The simplest kind of gravitational waves emerges in the frame of the linearized gravity
theory, obtained by approximating the metric tensor up to first order. In the linear theory
approximation, one can say that the metric is flat space-time with fluctuations 4,,, as

8uv = Nuv + hum (2)
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where ||, || < 1. Using this, it can be proved that the inverse of the metric can be written as
g =n""—n" 3)

(if we want to keep everything up to first order).
Introducing the ‘traceless’ metric

- 1
h/w = h/u/ - Enlwhz, (4)

Einstein’s tensor becomes

!

G‘SM _
2

(=07 + /%) " = O™, )

Using gauge freedom we can choose Lorentz gauge i_zi”,(, = 0, together with the so called
transverse-traceless gauge (TT-gauge), which imposes on /1,,,, the following conditions: 4}, = 0,
then h,,, = hy,, and 0"h,, = 0. The metric is divergence-less /1, u* = 0, for some 4-velocity
u. Imposing both gauges, Einstein’s equation can be written as

Ohy = —167T,, 6)

(in units of G = ¢ = 1 or Newton’s constant and speed of light set to 1). In the absence of
matter, i.e. T, = 0, the last equation is just the three-dimensional wave equation, which has
as solutions plane waves. Note, the gravitational waves are initially taken as in vacuum, and
their effect is studied on the scalar fields. We are not studying back reaction of the matter fields
on the gravitational waves, in that case T, 7 0 and this is not the focus of the paper.

il/u/ = A/weik&xa 5 (7

where A,,, is the tensor polarization amplitude. Also, since A, is symmetric it has only 10 —
4 — 4 = 2 independent components. We can set the coordinate axes so that the gravitational
wave is propagating in the z direction. With these conditions and the TT-gauge, the linearized
metric tensor can be expressed as

-1 0 0 0 -1 0 0 0
|0 14k A O, L | 0O 1-hy —h. 0

Ew=1 0 he 1-h. 0> & T 0 —h. 1+4+h. 0 ®)
0 0 0 1 0 0 0 1

(where hy = Aycos(w(z — 1)) and hy = A, cos(w(z — 1) + §), w the frequency of the wave and
A4, A, being the amplitudes of the two polarizations).

Let g be the determinant of g,,,,, we can see that due to the block diagonal form of the metric,
the determinant is

g=—(1—n —hl)~-1 )

which is approximately 1 up to first order.
For numerical estimates; e.g. binary white dwarf systems in our galaxy, a good approxima-
tion of the wave strain is [19]

5/3 2/3
hleZl( M ) / <1hour) / <1Kpsc)_ (10)
2MO P r

4
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For binary neutron stars spiralling together in our galaxy, a good approximation of the wave

strain is [19]
02 M 33 70.01s\*? /100 Mpsc an
- 2.8M,, P r

where P = 27 /(), {2 is the orbital frequency and r is the distance from the source. M is the total
mass and M, is the mass of the Sun. Similarly, quasi-normal ring down of stellar mass black
hole mergers are expected to give waves of amplitudes [2]

a2 (Y M 200 Mpsc
h~10 (0.25) (ZOM@)< r (12)

(v is the symmetric mass ratio [2]).

3. The interaction of the scalar wave and the gravitational wave

Let’s say that we have a field satisfying Klein—Gordon’s equation for a massless particle in a
metric produced by a gravitational wave. The equation for the scalar field in a curved space is
given by 9, (v/=80"¢) = 9, (v/—gg"*0,¢) = 0, and remembering that the determinant for
the metric of a gravitational wave is equal to —1, the equation is just

9, (8 9,0) = 0.

Expanding all components in the equation and noting that g,,, has only six non-zero compo-
nents and that /,, is a function only of z and ¢, the equation is explicitly

0= _all¢ + axx¢ + ayy(l5 + azz¢ - [h+(axx¢ - ayy¢) + thayax¢] (13)
or in a more compact form
¢ — [h4 (O — Oyy) + 20, 0,0k ¢ = 0. (14)

Any two variable function can be expanded around two variables, in this case A} and A.
Due to the smallness of the strain of a gravitational wave (1072't0 1072?), we can make a
Taylor expansion up to first order in A and A, as continuous variables, thus this result would
be

¢~ o+ Ardr +AxPx, (15)

9 9
where ¢4 = mqﬁ and ¢ = Z5—0.
Substituting this expression into the Klein—Gordon with the metric of a gravitational wave,
and keeping terms up to first order gives

Ogo — [A4 cos(w(z — 0)(Dutpo — Dyyo) + 24, cos(w(z — 1) + 6)D.Oyo ]
+A,0¢y +A,O¢, = 0. (16)

Since A4 and A are arbitrary constants we get the following set of equations

Ugo = 0, (unperturbed wave equation) (17)
Oy = cos(w(z — H)( O — Oyy) o (18)
Oy =2 cos(w(z — 1) + 6)(0:0y) o (19)

5
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For sake of simplicity let’s suppose that
do(x,1) = R (Age!*ox«0) (20)

(Notation: we use boldface to represent three vectors)
The perturbations are next solved for using techniques of inhomogeneous PDE’s.

3.1 The wave equationin 3 + 1D

The wave equation in R? is just the D’ Alambertian of a function equated to zero, (¢ = 0.
Further, let’s suppose that we have Cauchy (initial) conditions,

O¢ =0 1)
P(x,0) = F(x) (22)

9

5 %0 =G 23)

wherex € R3, >0, F € C°’(R») and G € C*(RY).
The solution for the wave equation with Cauchy conditions is given by the theorem [20].

Theorem 1. Suppose that F € C*(R?) and G € C*(R?). Then the solution of the initial
value problem of the wave equation in three dimensions is given by

_ b / ol /
o0 = o /S R { e /S ra )do,} (24)

and the solution is in C* forx € R3 andt < 0.

The above formula is called Kirchhoff’s formula.

The solution for the inhomogeneous wave equation is given by Duhamel’s principle,
which says that if ¢(x,f) is the solution of the following initial value inhomogeneous wave
equation, [21]

O¢ = h(x,1); x€ R >0, (25)
0
#(x,0) = 0, a—‘f(x, 0)=0; xe R (26)
Let v(x, #; 7) be the solution of the associated ‘pulse problem’
Ov=0; xR >, 27)
0
v(x,7;7) =0, &v(x, T:7) = —h(X,7T) (28)

Then the solution for the inhomogeneous wave equation is given by

o(X, t):/ v(x, t:7)dT (29)
0

Combining Duhamel’s principle and Kirchhoff’s formula, the solution for the inhomoge-
neous wave equation in three dimensions can be written in compact form as

1 h(x',t —
A, 1) = I Md%g

T JB(x,0) r

(30)

6
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where r =||x — X' ||= /(x —¥)2 + (y — ¥')? + (z — Z)* and B(x, 1) is the ball in R? with centre
at x and radius .
The solution of ¢ and ¢, would be

cos(w(@ — 1)) (31)

d3 X/ ¢O(X/ ) t/)
B(x.1) r

1
¢+(X: N = E(k(%x - k(%v)/

65,0 = 1-Qhorkey) d%%f”%mww70+® (32)

B(x,1)

where ko = (ko koy, ko), r =||x' — x| and ¥ =1 —r.
Now, in order to find the perturbation explicitly, let’s solve the more general integral.

160.5) = [ aixethox e XEZO 1D (33)
B(x,1)

r

where r =||x' — x|| and ¥ =t — r. Since we are integrating over the ball centred at x we can
make a change of variable (reference system) and centre the ball at the origin, the translation
would be

X =x+r (34)
d*x’ = r* sin(6)d¢dodr.

With the last change of variable and writing the cosine term in its exponential form, then
the integral is converted into

(W —(1—r)+6) + e WG —(t=r)+0)

r* sin Od¢dadr
2r

] — / eilko- 1) —wo(—r)+d9) €
B(0.1)

(35)

This integral can be done using [22] and mathematica (explicit steps are shown in
appendix A). The result is:

i(w(z—1)+4
ei(kO‘(X)*wo(t)+50)7Tel( ot

[k + Kol

(= Ik -+ | -+ 0) (|1 + Ko | cos(||K + kollt) — i w + o) sin([[ K + ko 1) )
~ wwo(l — cos )

+ (w — —w) (36)

In the above equation f is the angle between the wave vectors of the scalar wave and the
gravitational wave in three dimensions, § = m Also, the added term (w — —w) is the
expression already shown in the above equation, with only the change that w is replaced

by —w.
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t=0. £=10.000 £=20.000

t=0. t=10.000 t=20.000

Figure 1. The perturbed scalar field (real part) at a sequence of time steps, which show
oscillation in time as a response to the gravitational wave plotted in 3D for two different
perspectives and x and z ranges. For the purpose of plot, the ko, = ko, = 2,k, = 3.

From the above one can see that apart from the usual super-position of two waves where the
frequencies add or subtract, there is a term of the form cos(||k + Ko||7). To analyze the results,
we write the waveform in the following way:

T (w + wop)

e(i(ko+k)x) [—ei(“”“‘))’ + [cos(||k + kol[) — im sin(||k + ko||t)”

+(w— —w) (37)

wwo(l — cos )

A plot of the above using MAPLE shows the behaviour of the solution in time. The first
part comprises of an ordinary part of frequencies w =+ wy, and the second part comprises of a
wave of frequency ||k + ko[, as in figure 1.

The solution does not show resonance, as if we set 8 = 0 (the angle in momentum space
between the gravitational wave and the scalar wave), which will make the amplitude singular,
the solution itself is zero. Despite this, the solution shows the promise that waves produced
by spin 0 particles [described by scalar fields as in equation (13)] can be used to detect the
passing of a gravitational wave on Earth due to the solution of equation (37). Note that the
unperturbed wave does not show any amplitude oscillation, and is simply propagating with
constant energy. The presence of the gravitational wave causes interesting oscillation patterns
as in figure 1 albeit these perturbations will be very weak. The physical reason for the oscillat-
ing amplitude is of course the ‘energetic interaction’ of the scalar wave with the gravitational
wave in response to the stretching and straining of the space-time through which it propagates.
Note that scalar waves do not exist but this result could be true for electromagnetic (EM)
waves, as each component of the EM wave satisfies a scalar wave equation though the details

8
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of EM—gravitational wave are work in progress. In the early Universe, the inflaton or scalar
perturbations could be a source of ‘scalar waves’. To estimate the amplitude of the perturbation
let’s say that the gravitational wave has only -+ polarization and that k propagates only in the
x direction, thus

Ap~ALdy ~hoy (38)
Aoké wo
- h2wwo ~ hAo (U) (39)

As a result, the order of the perturbation is proportional to & (%), where £ is the gravita-
tional wave strain. We already know that this strain is of the order of 10~2! to 10722, and for
wo = 160.23GHz, the peak CMB frequency as an example*; and w € (10~ ’Hzto 100Hz), the
amplitude of the perturbation would be in the range of 10~'* to 1073, Even if it is weak com-
pared to the scalar wave, which we take as order 1, it is certainly detectable, the frequency

of oscillation would be however of the order of |/wj + w? & wy. If we take the ‘oscillatory’

phase of the inflation, and use its mass to set a frequency scale, then that is related to the Planck
mass and wo ~ 107°M ;.

Note that this is one of the results of the paper, in the next two sections we discuss the
massive scalar and the chiral fermion interactions, and the latter is more important as the results
have implications for cosmic neutrino back ground and for neutrino experiments on Earth.

4. Klein—Gordon for a massive particle

Now, let’s consider the Klein—Gordon equation for a massive particle
1
Vg
along with the metric of linear gravity, so g,, = 1,, + h,, and g ~ —1. Expanding all the
terms in the equation and using the same calculations as for the massless particle we get

O (V—80"¢) + m*¢ = —0, (8" 0u0) + m*$ =0, (40)

0= 0¢—m’¢— [hi(Du — Oyy) + 21D, 0x] & 41)

As in the previous section we can take hy = Ajcos(w(z — 1)) and hy = Axcos(w(z — 1)
+ §) and taking the first order approximation (with respect to the gravitational wave strain),
we can take ¢ =~ ¢g + A1 + AP, where ¢ = %¢ and ¢, = %¢. Substituting this
approximation into the Klein—Gordon equation would give

Ogo — m*(¢o + Ay +Axdy) — [Ay cos(w(z — 0)(Dudo — Dyyho)

+ 24, cos(w(z — 1) + 6)DOyo] + Ay Oy + A, Ogp =0 (42)
Since Ay and A are arbitrary constants we get the following set of equations
Oego — m* ¢y = 0, (unperturbed Klein-Gordon equation) 43)
O — m*d = cos(@(z — D) — D)o = f(X) (44)
Oy —m* ¢y = 2 cos(w(z — 1) + 6)(0xdy) o (45)

4Here we have taken the peak frequency of the CMB as an example; one component of the EM field satisfies similar
inhomogeneous wave equation.
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The simplest solution for the unperturbed Klein—Gordon equation is just a plane wave with
amodified dispersion relation in Minkowski’s metric: k, k" = —w?+ || k|| > = —m?. Let’s take
for simplicity ¢g as a plane wave with one frequency, wy. Then the solution for the unperturbed
Klein—Gordon equation would be

g = Age'*ox0") (46)

In order to solve the inhomogeneous Klein—Gordon equation, we have to convert it into a
momentum space through a Fourier transform. Then, if we have the equation (¢ — m?>¢ = f
the solution is given using propagators. We first use the planar propagator to build the pertur-
bation, and then the spherical propagator to build the perturbation. We have presented both the
cases here as the results are different.

4.1. Planar propagator

1 ik, xH d4k
G(x) = L )

V(2m)? Jrs kyktt 4+ m?

and the solution for ¢ would be

6(x) = / FOOG X )dh 48)

The above equation can be obtained in Fourier space as (the details can be worked out by
implementing the Fourier transformation techniques as in [23])

. d*k o F(K)
=1 itk 49
o) = —lim /R4 @iS | Thke—m® 1 ic “9)

Where f is the Minkowski—Fourier transform of f which is given by

f) = /R4d4xe*“"*”">f<x> (50)

Now let’s calculate the integral for f(x) = cos(w(z— 1))(Ox — Oy)Po = Ao(kgy —

k(%x) cos(w(z — t))eiko#f“ as obtained in equation (44). Then we find the Fourier transform of
the function f(x) to f (k) as defined in (50)

J0) = Aok, = k5,) / d'xe™ ) cos(w(z — et (s1)
) -
e iw(z—1) —iw(z—1)
= Ao(kg, — kg, / 4d4xe71(kux‘ ) ko <e+2e) (52)
R
. . iw(z—1) —iw(z—1)
= Ao(kg, — k(%x)/4d4xe"(k""“”)e‘(k0"‘*WO’) <e+2e> (53)
R

= 20, — Bm* (5w — (o + )itk — kilhoy — k)3lko: + w0 — k)

+ 0(w — (wo — w)d(kox — k)d(koy — ky)d(ko, — w — ko)) (54)

Thus the solution for the inhomogeneous Klein—Gordon equation would be obtained by
substituting equation (54) in equation (49)

10
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A0 . ik Xt
=36, Kot [ et (55)
) (8w — (wo + w)3(kox — k)3(koy — ky)S ko, + w — k;) + 6w — (wo — w))Skor — ki)S(koy — k) (ko, — w — k)
—ky kit — m? + ie
i((ko +k)x—(wp~+w)r) ei((ko—k)-x—(wo—w)t)
R —R) € 56
T8 (Gt T 1t e e S 0
A ei((ko+K)-x—(wp+wr) i((kg—K)x—(wy—w))
BT - 57)
2 2w(wy — ko cos B)  2w(wy — ko cos )

kky
w|[kd|
grals have been implemented for the f (k) obtained in equation (54). The scalar field ¢(x) is

thus solved for as defined in equation (49) and is given explicitly by equation (57). Here the
solution to the massless Klein—Gordon equation clearly shows two resultant waves of the scalar
response, one with frequency wg + w, and another with frequency wy — w, as expected from
the interaction of two different waves. Note that in the way that the perturbed scalar wave is
calculated, only the z-sector of the wave gets a frequency modification due to the superposi-
tion of the scalar wave and the gravitational wave in the z-direction. There are no interferences
or amplitude oscillations as observed in the massless example. This is due to the fact that in
the Fourier transformed space, the waves superpose as two plane waves, with no added mode
components of the perturbed wave. If we use the more difficult calculation of obtaining the
emergent wave using the spherical Green’s function in position space, we again recover the
interference pattern as obtained in the massless example.

where cos § = and ky =||ko ||. Note that in the above equations, the delta function inte-

4.2. Spherical propagator

The position space of Green’s function in spherical coordinates is

1 mJ r—1)? —|x —x/?
Gttt — £y = L My ) |X XP) (58)
47 \/(l‘ t/)z X/|2
The above propagator is taken from Wikipedia [24] and verified explicitly. Using this again
gives interference patterns which could be used to detect gravitational waves on Earth. The
perturbation would be obtained as

1 L / o it B !
i W= K0 [ 5 (90 ) e G g - )0 (59)

One the 7’ integral is obtained, its form acquires an expression very similar to the massless case
and one obtains (details given in appendix B).

oot eilktko)x
~ TAYKE [k k ko + k||7) cos(v/@? — m
b4 ~ mAo(kp, 0V)||ko+k|| o(on — o 003 ) ko + K[| cos(||ko + k||7) cos(v/ @? — m?1)
/@2 — m? sin(|[ko + K||1) sin(v/@? — m26) — |k + k||} (60)

This is very close to the massless perturbation solution with @ = w + wy given in equation (37),
as opposed to that for the massive scalar obtained in equation (57). The solution obtained in
equation (60) has the same mode structure as for the massless scalar obtained in equation (37).
If we plot it, it shall show the same oscillatory behaviour as in figure 1. Note that this
difference in behaviour of equation (60) with equation (57) is in the wavefronts of the per-
turbations. In (57) we build a planar wave, and the results is that we have waves which
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propagate with frequencies which are sum or difference of the initial waves. This phenom-
ena we have seen before. In (60) there is a change as we try to build a spherical wavefront
using the spherical propagator. The result is a wave which does not have the 1/r fall off usu-
ally expected. However, we are left with a perturbation which we can interpret as a wave with
a new dispersion relation w = ||k + ko|| £ (vV&? — m?> — @). One can see that as m — 0 the
dispersion goes over to the massless case. However, one also sees presence of frequencies of
w = ||k + Ko|| & (V&? — m? + &), which is not there in the massless mode. This is plausible,
as we are trying to interpret ‘frequencies’ as in planar propagation by taking the exponentials
of the sinusoidal functions. If we take m — 0 in the explicit solution of (60) in the sinusoidal
functions, then it gives us the massless solution (37). We have verified the calculations, and the
physical reason that we have this result is the inhomogeneous differential equation. The actual
plot of the field shows that the amplitude oscillates in time and space as in figure 1. Eventually,
the energetic flow is perfectly plausible as the scalar field interacts with the gravitational field
and exchanges energy with the passing wave.

5. Field perturbations for massless spin 1/2 particles

In this section we investigate the effect of the gravitational wave on a massless fermion. This is
motivated from the fact that most particles are fermions, and in particular neutrinos are almost
massless fermions. We investigate the effect of a gravitational wave on a ‘neutrino’, assumed
massless in the first approximation.

Lets consider again a gravitational wave in the TT gauge, but with only one of its two
polarizations, + or x. The Dirac equation is written as

i'eD,p —myp = 0. (o1)

Where ~¢ are a matrix representation of the Clifford algebra and these matrices satisfy the
equation {~“, 7}’} = 217"” , el (a, b are indices in the tangent space) is the so called tetrad and
satisfies the equation

guv = €)1} (62)

and D,, is the covariant derivative taking into account the spin of the particles it is defined as:

i
D, =0, — ngbaa,,, (63)
where wﬁb is the spin connection symbol and o, = é [Va, V5] 1s the commutator of the Dirac
matrices. One way to define the spin connection symbols is through the Christoffel symbols
and the derivative of the metric as follows
w®=el (I e+ 0,e") =T " — e"Ope) (64)

I o o

Now let’s consider the cases of 4+ and x polarization separately. Further, let’s take the Weyl
(chiral) representation of the gamma matrices, these matrices will be

0 __ O —12 k O O'k 5 12 0
V= (IZ 0 ’ Y= 70_/( 0 5 v = 0 712 5 (65)

Where o are the standard Pauli matrices. The details of the Weyl equation can be found in
[23] and for curved space-time [25].

In addition, to simplify the equations we are going to consider massless particles. Plugging
every component into Dirac’s equation in curved space for massless particles, iye//D, ¥ = 0,

12
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and keeping everything up to first order with respect of the gravitational wave strain (4), we
obtained the following systems of equations.

For + polarization, let’s say iy = R(a e““ ") = A, cos(w(z — t)) which is same as that
in page 5 after equation (8) , then the tetrad can be taken as:

~1 0 0 0
g |0 V1+hy 0 0 66)
' 0 0 1—hy O

0 0 0 1

The spin connections can be calculated using the tetrads of equation (66) and their definition
given in equation (64), and they are found as

O — 1 Orhy W3 — 1 O:hy (67)
* 2\ \/1+hy 2\ 1 +hy
1 Orh 1 0:h
02 1+ 23 4
- __ = | == 68
“y 2(,/1@) “y 2(,/1h+> ©8)
The Weyl equations are then written and separated as:
h h
Oy = 0* Ot — o' SF Oy (69)
h h
0" Oypr = 0 - Obw — 0° Oy (70)

where o/ = (1, —o) and ¢ = (1, ), and ¢, Yk are the two component chiral spinors such
that ¢ = (¢, ¥g). As evident from the above equations, the fermion wave must have at least a
non-zero propagation in the x or y direction to produce a perturbation as observed in the scalar
case too.

Now, we take a perturbation 1) = g —|—A+1E, and v must satisfy the Weyl equation in
a flat space and A, is the amplitude of the + polarization of the gravitational wave. These
solutions are given by the right and left handed spinors (positive and negative helicity), 1/, and
g respectively. If we denote k) = {wo, Ko} and x* = {z,x}, then the plane wave solutions for
the Weyl equation in flat space are given by

01 (ko) (71)

1
Yor(t,X) = m

1

Yor(t,X) = m

where the spinors u‘™ (ko) and u(~) (ko) are determined by the eigenvalue equations

&%) (Kp), (72)

Q>

kou' (ko) = —wou P (ko) (73)
kot (ko) = wou' (ko) (74)

Q>

For the next example, let’s consider a particle moving in the x direction. In this way
Ky = {wo, wo,0,0}, u™ (ko) = \% ( B i) and u(ky) = \% < }), therefore

13
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1
I 1| e
= glwot=1 75
W= Jam@n | 7
1

Then, the perturbed equations are written in their separated form from equations (69) and
(70). We have added an appendix to show the explicit separation steps.

Oy = w3e 0 cos w(z — 1) (76)
O = <0 (w2 cos(w(z — 1) — iwwy sin w(z — 1)) (77)
g = €0 (w§ cos(w(z — 1) + iwwy sin(w(z — 1)) (78)
Woge = wZe 0 cos w(z — 1) (79)

We write the sines and cosines in exponentials and get forms like:
~ wo . .
U = 7031&)0()670 ((wo — w)e ™ + (wp + w)e ) (80)

Therefore, the integral solutions of the above equations are obtained in the same way as a scalar
wave perturbation. E.g.

~ W - (e
z/JLl-i-w _ elwo(x t)ew.)(\, 1)

el@ o) cog <\/ w + w2t> + e““*wﬂ”\l;‘ﬂ sin <, [w? + Wi t> —1| (@D

w2+wé

Wy — W

Virgw = Vrltw (82)

The complete Y1) = Yrio)+w + YL12)—w-

As we do not observe fermion field, we build a fermion bilinear which represents a current:
hT49#4), of which the Oth component represents a ‘probability’ density t»¢). This when cal-
culated for let us say the left handed spinor gives a function which oscillates in time. This can
be calculated as

P = () + AL (Wo + A ) = Yo + AT + ALyl (83)

We compute the change in the fermion density due to the perturbation as

1
Sp=A1,/ cOS Wyt COS wz cos w+wit) + Y cos wot sin wz cos | y/w? + wit
27wy w2 + w2
\/ 0
+L sin wot cos wz sin (\ fw? + w%t) —cos w(z—1) (84)
\Jw? +wd

The unperturbed fermion has a constant probability density, but the perturbed fermion wave
has an oscillatory phase. The profile of the bilinear appears in figure 2. The amplitude of the
oscillations are proportional to A and thus would be of the order of 102!, compared to the
initial fermion flux.
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Figure 2. The correction to the fermion density fluctuates in time and space. For the
purposes of the plot w = 3 and wy = 4. The plots are snapshots at nine different time

instants and are not to scale as in a real situation.

If we take the cross polarization, then, the tetrad can be taken if we take the cross polar-
ization, then, the tetrad can be found by a matrix such that if we multiply this matrix by its
transpose, we get the metric for cross polarized gravitational waves. Note that this choice of
tetrads is not unique as there is internal degrees of freedom of the Lorentz rotation acting on
the tangent space index [25]. The final Dirac equation is however invariant so any choice is
equally valid [25].

1 —hy

1 —hy
0
V5

J

2

€la =

1 4 hy

1+ hy
0
=

J

2
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The spin connections are found using the tetrads of the cross polarization given in
equation (85) as defined in equation (64)

1
w? = —50hx (86)
wm:fLah woz:fLah wlS:Lah wZSZLah
X 2\/5 trex X 2\/5 thex X 2\/§ FARDN X 2\/§ FARDN
(87)
WO = —1 Ohy W — —1 Ohy, wh= —1 Ah, w?B = ——1 0,hy
y 2\/5 y 2\/5 y 2\/§ z y 2\/§ z
(88)
12 1
W, = ——=0hy (89)

The Dirac equation has two 2-component spinors written as (¢z, ¥g). The equations for
these individual spinors are known as Weyl equations. We write the Weyl equations with a
redefinition of the coordinates u = % (y—x)and v = % x+y);

h h 1
oy = =0 Db — S0P Oy — igOiho i — %iazhm (90)
h>< 1 h>< 2 1 3 3 .
O'uaﬂ’le = 70’ avl/JR + 70’ &,wR — lgalth wR + glazh’lb[g (91)

As previously, we can assume perturbative solutions and solve the decoupled inhomoge-
neous equations of the D’ Alembertians. Though, in this particular case, there are resonance
modes as when the frequency and the direction of the fermions and the gravitational waves
coincide, there is still a non-zero inhomogeneous term. These are because of the terms inde-
pendent of the derivatives of the fermion wave functions on the rhs of equations (90) and (91).
If we assume ) = wg(R) + AﬂEL(R) as previously [A is the same amplitude as introduced
in page 5 after equation (8)], then the perturbation equations precisely yield equations which
are of the form (see appendix for details)

D1 = 2 sin(w(z — D)) 92)
Drs = —iw? cos(w(z — )Y 93)
g1 = +iw? cos(w(z — DY, (94)
Othr = === sin(w(z — D)y (95)

We use the same solution for the unperturbed fermion as in (75) with x,y — u, v, this is
due to the different tangent frame, and solve the perturbations. These will have corrections
of the order of w/wy of the + polarized gravitational waves. If we calculate the equations
for the example where the directions and frequency of the two interacting waves coincide
(without taking the limit w — wy in the above), the inhomogeneous terms are proportional
to D'l/;Ll(LZ) = —iw? /2(expRiw(z — 1)) £ 1) and give rise to perturbations which grow not
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only linearly but quadratically, which can be interpreted as resonant modes. The explicit
perturbation solutions are obtained by computing integrals (appendix added)

eZiw(z+ 1 __ eZiw(zft)

"Z)LI(LZ) ~ T (i y) + wre?we D ¢ i2w2t2) (96)

As obvious, the fermion density built from the fields will have a runaway behaviour with
time as expected in resonance cases. The physical implication of this can be realized on Earth
looking for perturbations in a neutrino flux coming from the space, where neutrino waves are
detected from a multi-messenger type event. However, the perturbation approximation might
break down as the modes grow in amplitude, but definitely this behaviour is non-trivial. If we
observe the bilinear it will be proportional to A  wt, so for wt ~ 10" to 10 the corrections will
be fractions and thus can account for the neutrino background density. This is as 0 < A, wt ~
107! < +1 a fraction and the density could account for the CNB offset of £0.23 as shown in
[6]. However, a careful analysis of early Universe cosmology is required for this.

6. Conclusion

In this section we briefly summarize the results, and discuss possible implications for real
physical systems (this could be a gravitational wave detector, the effect on the cosmic neutrino
background, the detection of neutrino flux in a neutrino experiment from a multi messenger
event etc). In this paper we studied the interaction of a gravitational wave with a scalar and a
neutrino wave. In the scalar section, a new scalar perturbation mode is found, propagating in the
direction which is the vector sum of the initial scalar and gravitational wave directions. The
amplitude of the oscillatory scalar wave perturbation can range from 107 to 10! in ampli-
tude depending on the frequency of the gravitational waves. What this would imply for early
Universe cosmology is a work in progress. Next we examine if our results have implications
for the cosmic neutrino background density. We have found for a neutrino too, a mode which
propagates in a direction which is in the vector sum of the direction of propagation of the ini-
tial gravitational and neutrino wave directions. The total solution is a combination of this new
mode and the usual modes which comprise of waves with sum and difference of the initial
gravitational and neutrino waves. The plot of the total perturbed neutrino density shows an
oscillatory nature as shown in figure 2. To study the effect of this ‘scattering’ of the neutrino
by the gravitational wave, we have to take our calculations of the perturbation into a quantum
scheme, quantizing the perturbed field and thus the interaction. By this we simply mean that
the neutrino classical fields obtained will have to be written in second quantization form. This
would involve introducing creation and annihilation operators. Naively though, we can calcu-
late the change in neutrino density as 8p (84) with the estimates for neutrino density in the
CMB. We estimate that the flux of the neutrino will differ by a perturbation up to oscillatory
factors. The corrections are proportional to 10~2! and thus their contribution to the effective
degrees of freedom are very tiny, not in the range of the fractional corrections obtained in other
papers [7, 8]. In those papers non-thermal corrections to the CNB were shown to contribute to
the neutrino degrees of freedom to the order of £0.23. From the cross polarization though, if
the gravitational waves have high frequency in the early Universe, fractional corrections might
appear. At the time of neutrino decoupling the gravitational wave frequencies are quite small
[26], however, there can be some earlier inflationary epoch where the gravitational wave fre-
quencies were bigger. The relic of such an interaction would propagate with a perturbation
and contribute to the non-thermal fluctuations of the background neutrino effective degrees of
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freedom at a later time [7] as shown in the discussions of the previous section. This is work in
progress [9].

With the closed-form solutions found in this paper we could compute (numerically) sec-
ond order solutions and so on. It would be interesting to compare our analysis with the
one made in [11] and look for effects such as particle production and therefore energy lost.
This could explain why gravitational waves have a very small amplitude when observed on
Earth and could be used to know the source’s distance of gravitational waves, since the strain
decays as 1/r.

A more plausible use of our new results could be in the detection of gravitational waves
on Earth in neutrino experiments. As we showed previously, a neutrino flux can be perturbed
by the gravitational wave into oscillatory (note not in flavour) energy density, this is on the
range of sensitivity of detectors built on Earth and thus we believe that this perturbation can
be measured and compared with our calculations. As shown in (figure 2), a neutrino flux gets
perturbed by the gravitational wave into a scattered wave with oscillatory energy density, of
the order of sensitivity of detectors built on Earth. This means that the waves are of the order
10~2! in amplitude and this has been detected in LIGO. In particular the resonant mode of the
fermion perturbation for cross polarization of the gravitational wave has to be investigated fur-
ther. A reference was brought to our attention about conformally coupled scalar field solutions
in gravitational wave background, and implemented in cosmology [27], our solutions will have
implications for cosmology as well. As neutrinos are candidate dark matter, the energy oscil-
lations of the neutrino flux could contribute to the dark matter discussion. We hope to report
on this after quantizing the neutrino flux.
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Appendix A. Integral for the massless fields

i(w(@ —(1-r)+0) + e*i(w(lf(l*r))Jrf?)

r* sin Od¢dadr
2r

I / itk (xbr) (e ) ©
B(0,1)

o7

Since X' = x + r and the z-component of r in spherical coordinates is rcos 6, then 7/ =
z+ rcos 6. Therefore, after taking out the independent terms in the integral, equation (34) is
written as

eikox—wot+dp) ‘ ‘
I = / el(ko-r-i—wor) (el(w(r cos O+r)+w(z—1+9)
2 B

+ e (Wl cos BHNFETDD) 1 sin GdpdOdr (98)

We can always align the wave vector kg to be in the same direction as the z-axis. Then, ko -
r = rkocosf and therefore it is ¢-independent. Now we can integrate the ¢-dependent term
independently, then the # term and finally the r-term as
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ei(k0<xfwol+50) t ™ . . . . . :
I = / / (el(w(zft)—l—é)el(w-i—wo)relwr cos 6 + e*l(W(Z*l)-‘r(S)el(wo*w)re*lwr cos 9)
2 0 JO
2T
X ( / e‘kU‘rdgb) r sin 6d6dr (99)
0

Since the only part dependant of ¢ is Kq - r = ko,7 sin 6 cos ¢ + ko7 sin 0 sin ¢ + ko,r cos 6,
the integral can be easily calculated again as a Bessel function of the first kind. Breaking again
the integral into the + and — terms of the exponential form of the cos(w(z — ) + §), the first
integral would be

t us
I = 2mel@E+o) / / eilwtworrgitwthor cos 0 g, (1 [ kG + kg,r sin 9) r sin 6dr (100)
0 Jo
_ zwel(w(zfz)Jr(i)/ el(erwo)r (/ e‘(WJFka)r cos 910 ( /k(%x + kgvr sin 9) d(COS 9)) rdr
0 -1 :

(101)
. t . +1
= 27Te1(“(z”)+6)/0 glwtwor (/1 2 cos((w + ko )rx)Jo (‘ [ kg, + kg v/ 1 — xz) dx) rdr
(102)

and since kg, + kg, + (ko; + w)* = kg, + kg, + kg, + w” + 2ko:w = wh + w® + 2ko:w  (103)

= w} +w? + 2k - ko =||k + ko || , then we have (104)
— Drel@@D+0) / l elw+wo)r <2sm[”k+k°”r]) rdr (105)
0 [k+kofr
Qrrel@iz—D+0) /l )
_ irlw4wp) o
=——— | e sin(r ||k + ko ||)dr (106
Ik +koll Jo H b :

| Ame@E0) (— |k 4 Ko || 4 ([l + kol| cos([|k + ko) — i (w + wo) sin(||k + ko )

Ik + kol (— Ik + Ko +w +wp) (|[k+Koll +w + wp)
(107)
_ Amel@E D) (— ||k 4 Ko | +e"“ 0 (||k 4 Ko || cos(|[k + Kol| 1) — i (w + wo) sin(|[k + ko[ 1))
Ik + ko 2wwy(1 — cos )
(108)
Appendix B. Integral for the massive scalar
Isolating the #' dependent terms in the integral (59) for the massive perturbation we get
t-rn mJ (m\/(t —1)? —|x— X’|2)
I(x) = / g iwtwolt df 4 (w — —w), (109)
o Vt—1)2 =[x —x]?
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where I(x) is the time independent part of equation (59). Writing |[x — x| = rand ¢t — ¢ = 7,
and observing that # — ' > r, the integral is

. OC 2 42
Jx0) = o e / exp(—i(w + wo)ﬂ% VT Dir 4 - —w)
r T —r
(110)

In the above, we keep only the cos(wt?) as the inclusion of the imaginary part of the exponential,
the sin function gives a spurious pole at 2m? in the final answer.

— — exp(—id) % sin (% (w /- m2)) sin (f (a; + @2 = mZ))

2
(111)

we introduce A to encode the above
2 e N
= —exp(—iwt)A(r,©) (112)
’

where W = w + wp. The remaining exponential integrals follow the same steps as in
equations (81)—(87). If we label the expression in equation (111) as A then in the end the
perturbation is proportional to

or i ! sin ||k + Ko||r
2m(k; — ke Welttkorx / A(r, @) —————dr (113)
g 0 [k + Kol|
given as
—it i(k+kg)-x

Ank2, —12) - ¢ [ k K||1) cos(v/@? — m?t
(Ko, 0“")||ko+k|| Yoo — ko <08 B) Iko + K|| cos(|[ko + k||7) cos(v/@? — m?7)
+ V@ — w2 sin(|[ko + k| 1) sin(v/&2 — mt) — ||ko + k||} (114)

Similarly the correction for the transverse polarization gravitational waves can be calculated.

Appendix C. Details of some derivations

How to separate the Weyl equations: for this we show the calculations for the cross polarization,
as that is more complicated. The + polarization has a similar derivation. The typical Weyl
equation is of the form e.g. equation (90), and equation (91)
" 0uhL = f(o,hye, t,x,y, D)1 (115)
o O0uhr = (0, hy, 1,X, 5, 2)YR (116)
where f(o, hy,t,x,y,2)1, represents the rhs of equation (90) and g(o, hy, t, x,y, 2)Yg the rhs
of equation (91). We use the following steps:
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(0~ 7-3) vu = flouhetxy
(a, s 5) (at — G 5) by = (at +a- 5) Fo, 1,5y, 2001
(02-3) = —%wZAX cosw(z— 1) (1 — o) v+ %AX sin(w(z — 1)
x (0% =3) (=1 + o'y — i%AX sin(w(z — Ny
- %wé cos(w(z — )(o” — ic?)
+ 0! SRAL sin((z — D) (117)

In the above we have used {o',0/} =0 and (0')> =1 in showing that (6,4—6’-5)

(& —&-0 P = (0? — 52)7/& where the derivative operator becomes the diagonal Lapla-

cian. The rhs of the above is obtained by straightforward computation. We then assume that
the wave function has a perturbation ¥ = +AX1/~). Using the solution for 1, as stated
in equation (75), we simplify equation (117) and we get the equations (92) and (93) to
orderA.

Exactly in the same way, if we start from equations (90) and (91) and let the )y be a wave
in the z-direction, such that ¥y o< exp(iwo(z — 1)), we get

(af _ 52) b = _Ii (WA cos(w(z — D)0 + Dy, + iwwpd . sin(w(z — H)(0® — ]
(118)

If we simplify the matrices and use the solution for ¢y as being a wave in the same
direction as the gravitational wave and with the same frequency then the rhs of (118) will
have (upto factors) terms proportional to sin(w(z — f))exp(iw(z — 1)) ~ exp(iw(z — 1)) — 1
and cos(w(z — 1))exp(iw(z — 1)) ~ exp(2iw(z — 1)) + 1 and the integral of this yields the per-
turbations as equation (96). The integral is formulated exactly as in the previous calculations
as in equation (97)

r

2iw(z+r cos O—(t—r)) +1
I= / € 2 sin 0drd0de (119)
BO.1)
A step by step integration yields equation (96).
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