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Abstract

We point out that the symplectic structure, written in terms of the
Sen—Ashtekar—Immirzi—Barbero variables, of a spacetime admitting an iso-
lated horizon as the inner boundary, involves a positive constant parameter,
say o, if v # +i, where «y is the Barbero—Immirzi parameter. The parameter
o represents the rescaling freedom that characterizes the equivalence class of
null generators of the isolated horizon. We reiterate the fact that the laws of
mechanics associated with the isolated horizon does not depend on the choice
of ¢ and, in particular, while one uses the value of standard surface gravity as
input, that does not fix o to a particular value. This fact contradicts the claims
made in certain parts of the concerned literature that we duly refer to. We do
the calculations by taking Schwarzschild metric as an example so that the con-
tradiction with the referred literature, where similar approaches were adopted,
becomes apparent. The contribution to the symplectic structure that comes from
the isolated horizon, diverges for o> = (1 + +?)~!, implying that the rescaling
symmetry of the isolated horizon is violated for any real . Since the quantum
theory of SU(2) isolated horizon in the LQG framework exists only for real val-
ues of v, it is founded on this flawed classical setup. Nevertheless, if the flaw is
ignored, then two different viewpoints persist in the literature for entropy cal-
culation. We highlight the main features of those approaches and point out why
one is logically viable and the other is not.
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1. Introduction

The canonical quantization program of gravity, known as loop quantum gravity (LQG), is
based on real SU(2) gauge fields on a spatial slice, called Sen—Ashtekar—Immirzi—Barbero
(SAIB) variable? and its conjugate momentum [1, 2]. The SAIB connection involves a free
parameter called Barbero—Immirzi parameter () [3-5]. Although the introduction of such
variables has provided us with a viable quantum theory for real and positive values of -, nev-
ertheless, it is a very well known fact that the SAIB gauge field acts as a connection only
on a spatial slice; it cannot be interpreted as the pullback of a spacetime connection on a
slice unless v = =i [6]. In spite of this feature of the SAIB connection, the available the-
ory of LQG has been founded on the SAIB connection only for real and positive values of
v [1, 2], which has set the stage for black hole entropy calculation [7—16]. The novelty of
the framework lies in the fact that it gives a clear path from the classical to the quantum the-
ory, leading to the Hilbert space structure of the black hole horizon and hence, counting of
states. This enables one to calculate black hole entropy from the first principles using statistical
mechanics.

Some efforts have been made to address the issue of black hole entropy calculation for
v = =+i [22, 23]. However, those calculations are mainly focused on obtaining the Beken-
stein—Hawking area law [24, 25] from the already available results for real and positive values
of v, by using mathematical techniques such as analytic continuation [22, 23]. Unlike the real-vy
scenario, there is no derivation of black hole entropy from the first principles, whose beginning
is rooted to the classical theory. In other words, for v = =i there is not yet satisfactory answers
to the more fundamental questions that arise before one talks about entropy calculation, like
what are the quantum states on the black hole horizon, what is the associated Hilbert space,
how do we count the states, etc.

Now, a black hole horizon in equilibrium, is modeled as an isolated horizon (IH), which
is taken to be a null inner boundary of the spacetime satisfying certain boundary conditions
[26—29]. The theory of IH is based on either real SO(1,3) or complex SL(2, C) spacetime
connections [26—29]. Importantly, the laws of mechanics follow from the boundary conditions
that define the IH and, as well, without violating any of its intrinsic symmetries. This has
been elaborately explained with full generality, especially, in [29]. In [27], the action of a
spacetime with IH as an inner boundary was written, from which the symplectic structure (on
a slice) was deduced. It may be noted that until this point it was a calculation with spacetime
connection.

Right at this stage, real SU(2) SAIB variable, which behave as a connection only on a spatial
slice, was introduced. Digressing a bit we may note that, as far as our knowledge is concerned,
no proof of the laws of mechanics for the IH with such a variable, especially along the lines of
investigation explored in [29], exists in the literature till date. To be even more critical, we may
further note that there is no construction of the whole IH framework available, in the literature
till date, that is founded on such a variable. The obstacle for performing such analyses is the
basic fact that such a variable cannot be interpreted as the pullback of a spacetime connection
and therefore, right at the outset it is just a mere assumption that we are still doing a theory of
IH with such a variable. After all, an IH is just a local construction that generalizes the global
notion of event horizon of a black hole spacetime. Nonetheless, such obstacles have remained
ignored.

2See [1] for the historical reasons behind this nomenclature.

2



Class. Quantum Grav. 37 (2020) 095009 A Majhi

Now, the passage from SL(2, C) connection to the spatial real SAIB variable involve the
following steps: (i) pullback of the spacetime connection to a spatial slice is considered (ii)
an internal vector is kept fixed and only the rotations, which keep this internal vector invari-
ant, are allowed, therefore, reducing the internal gauge group to a complex SU(2) (iii) the
complex variables are made real by replacing the i by a real parameter y according to the pre-
scription suggested in [3]. Finally, one has a real SU(2) connection on a slice i.e. the SAIB
connection.

Importantly, the full SU(2) gauge group was further reduced to U(1) on the IH, although
the authors admitted that the gauge fixing was unnecessary (as it should be if the theory has to
have a physical interpretation at all) [27]. Therefore, the symplectic structure of a spacetime
admitting TH, with the full SU(2) gauge group was not manifest. In the mean time, based on
the available scenario, it was proposed in [9], that the full gauge group on the IH should be
SU(2) in the context of black hole entropy calculation from the quantum theory. However, the
derivation of the symplectic structure at the classical level with the full SU(2) group on the [H
remained pending. This was accomplished, about a decade after those earlier works, in [13].
Notably, it came with an interesting twist. In the symplectic structure for the SU(2) case [13],
the prefactor in front of the contribution from the IH, differed from that of the U(1) case [27].
While in the U(1) scenario it was only the area of the IH (say, Ajy) [27], in the SU(2) case it
was A /(1 —~2) [13].

Now, a careful reading of reference [13] reveals that the value of a certain parameter was
fixed in order to obtain the factor Ay /(1 — ~?), by arguing that the fixation is the only choice
if one wants to have the correct value of the surface gravity. Such an argument is, at the least,
ill-founded because, as we have pointed out earlier, no construction of the IH horizon frame-
work and proof of the laws of IH mechanics exist in the literature starting from the real SU(2)
SAIB variables and therefore, it is not even known how to make sense of the word ‘surface
gravity’. Our motive is to discuss the elementary details of the sort of calculations that led to
the conclusions drawn in reference [13] and pin point how the ‘surface gravity’ argument does
not hold.

In view of this, we investigate a specific example of a spacetime admitting an SU(2) TH
as an inner boundary and show that the prefactor in front of the contribution from the TH
actually contains a parameter ambiguity, say o. This ambiguity is exactly the one which is
present in the choice of null generators of the IH; the null-generator of an IH is unique up to
a positive constant [26]. We check explicitly that the zeroth law, the first law and the value
of surface gravity associated with the IH does not depend on the choice of the parameter’.
This parametric ambiguity is absent for v = i when the SAIB connection has a spacetime
interpretation. Also, the contribution to the symplectic structure that comes from the isolated
horizon, diverges for 0 = (1 + +?)~! implying that the full symmetry of an SU(2) IH is not
retained. Above that, any other choice of a particular value of the parameter, like the one made
in reference [13], provides a fixed relationship between the local Lorentz boosted frame and
the foliation of the IH which violates the symmetries of an IH even if we restrict to the condi-
tion 0% # (1 + )~ L. Taking all these facts into considerations, we conclude that the quantum
theory of SU(2) isolated horizon in LQG framework is founded on a flawed classical setup that
is devoid of a rigorous derivation of the laws of IH mechanics and consequently fails to moti-
vate the necessity of an understanding of quantum states and entropy calculation in the first
place.

3 This is just a verification, with a particular simple and concrete example, of what is already evident in the general
framework investigated in [29].
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Nonetheless, if the flaw is ignored, then two different viewpoints persist in the literature
concerned with the entropy calculation in the SU(2) framework. One can be found in refer-
ences [11, 30] and other can be found in reference [15]. We highlight the features of the two
viewpoints in the context of the present analysis and by taking into consideration the conse-
quences of an experimental determination of . We point out that, in such a case, while the
approach taken in references [11, 30] can only be falsified like any other theory having exper-
imentally fitted parameters, the approach taken in reference [15] leads to a relation between
Ay and o that is suggestive of the fact that for a given area there is a preferred Lorentz boosted
frame on the horizon! Hence, we conclude that the approach of references [11, 30] is logically
viable and that of reference [15] is not.

The structure of the paper can be debriefed as follows. In section 2 we consider a spe-
cific example of a spherically symmetric IH and explicitly point out the fact that the zeroth
and the first law of mechanics and the value of surface gravity associated with the IH are
independent of the parameter, o, that represents the rescaling freedom of the null generators
of the IH. In section 3 we investigate the necessary equations to write down the symplectic
structure and point out the relevant issues concerning the appearance of the parameter ¢ in
the symplectic structure of the IH written in terms of SAIB variables. We conclude that the
quantization program of SU(2) IH is based on a flawed classical setup. In section 4 we high-
light the features of the entropy calculation performed in references [11, 13, 15, 30] to point
out that references [13, 15] showcase self-contradictory research and we draw further appro-
priate conclusions regarding the approaches taken in references [11, 30] and reference [15].
Finally, in section 5 we end with some concluding remarks after providing a summary of this
work.

2. Physical laws governing the black hole horizon

In this section, we shall consider a portion of the Schwarzschild spacetime as a simple
and concrete example of the more general quasi-local framework of non-expanding horizon
and isolated horizon [26]. We investigate the implications of the laws of mechanics on the
horizon.

2.1. Section of a Schwarzschild spacetime

Let us consider a section M of a spacetime described by the Schwarzschild metric (see e.g.

[31]):
ds® = gudx'dx” = Q(1, x)(—d? 4 dx?) + (1, x)d6* + (1, x)sin® d¢* (1)

with the bound (¢, x) > 2M, where

2

Qt,x) = ;1"(6t],‘/)1c) exp[—r(t,x)/2M] (2)
subject to

P —x*=—(r—2M)e"™M, (3)
which implies

dr = g e "PM(xdx — tdp). (€))
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M has an inner null boundary A at r = 2M, which is a spherically symmetric, uncharged
non-expanding horizon (NEH) with constant area Ax = 167M? of cross-section [26—29]. M
admits a time-like killing field y (e.g. see [32]). Let us choose a time-function ®(z, x, 6, ¢),
such that the time evolution vector field 7:= d/d® satisfies the condition T = X we denote

any quantity Q pulled back to A is denoted by Q M is bounded 1n1t1a11y and “finally’ by

the spatial hyper surfaces given by ® = ®; and <I> = O respectively.
The non-zero components of the metric are as follows:

gi=—Q Qu=0 gw=r" gs=rsin’0. 4)
The non-zero components of the inverse of the metric are as follows:
gtt _ _Q—l’ g.xx _ Q—l’ g% _ 7’72, g¢¢ _ 7'72 C502 0. (6)

The non-zero components of the Christoffel symbol I' ; := 5 ¢"” (9ugss + 08s0 — 0s8ap)-
are as follows:

Q Y Q v ri-sin® 0
Ft = 50’ Ft = 50’ Ft = AN Ft - > thﬁ = = >
1 20 xt 20 XX 20 06 Q0 [oY0) Q
= :&/, I :Q’ = :&/’ x%:_r_r’, . :_rr’sinze’
23 ZQ Xt ZQ XX ZQ Q o 79
. , ) | / |
I‘Het - f, Fﬂex — r_, F(?M = — cosfsind, F‘(Zs; _ f, Fd()ﬁx _ r_, F%e — cot 0,
r ’ r - : ,

(N

ii=0r = —%exp[fr/ZM], ¥ =00 = %CXP[*V/ZML
r r

2M

o 1eM* (1 1
B 2M

09 1eMP (11
a - _,_7) exp[—r/2M]i, Q= (

e . + —) exp[—r/2M]r.

®)

2.2. Standard definition of surface gravity

The Schwarzschild metric admits a time-like killing vector field and in the chosen coordinates

the contravariant and covariant components of the time translation killing vector field are given
by

1 1
X'u = m(x, t, O, 0) and Xﬂ = m(_x, t, O, 0) (9)

respectively. x satisfies the conditions lim,_, g, X" x” = —1 and lim,_p g, X" X" = 0. Due
to the presence of the killing field, using the standard definition [32], the surface gravity
associated with A can be calculated to be

(8 (VX (VXY 1

AR o T (10
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2.2.1. Pullback of the killing vector field on A.  Now, we shall find the pullback of the killing
vector field on A. On A, i.e. for r = 2M, we have > = (X)?> which gives us two cases x = ¢
and x = —. We shall work with x = ¢ which is the future directed NEH. Let the intrinsic
coordinates of A be (u, 0, ¢). Then we have the following relations between the A coordinates
and the spacetime coordinates:

t=x=fw), 0=20,¢=0¢. (a1

where f is a positive definite invertible function of u such that df/du is non-vanishing. For
simplicity we shall use 6, ¢ instead of 6, ¢ as the coordinates A. Therefore, the pullback of the
killing vector field on A is

0
X =X = 4M<<xa,+ta)> 24 P (12)

where f'(u) = df/du.

2.3. Surface gravity of A from quasi-local definition

To use the quasi-local definition of surface gravity associated with A one can take the following
steps [13]. We construct the tetrad:

e = 0'?(cosh adt + sinh avdx), e' = Q'/*(sinh avdr +cosh aedx), €2 =rdf, e = rsinf do
(13)

which are related to the metric via the relation mJeLe{, = g, Ny being the internal flat metric
diag(—1,1,1,1). « is an arbitrary function of spacetime coordinates, that characterizes the
arbitrariness of the local Lorentz boost. Further, one can construct the following set of null
tetrad

1 1 1 1
(= —@'—e", k=——("+eY), m= _—(*+ic®), m= (2 —ie 14
\/E( ) \/E( ) \/E( ) \/E( ) (14
which satisfy £ - kK = —1 = —m - m and other contractions vanish. Using equations (13) and

(14) one can obtain the covariant components of ¢ and k respectively:

1 1
0, = Eﬂl/z(exp—a)(—l, 1,0,0), k, = —ﬁﬁl/z(expa)(l, 1,0,0).

(15)
The contravariant components of ¢ and k are as follows:
"= \%Q—‘/z(exp—a)(l, 1,0,0), k"= —\%Q—l/z(exp a)(—1,1,0,0).
(16)
One can show that
N 00 = %Q’l/z(exp—a) (—a —a + % + 2%) . a7
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The under-braced quantity evaluated on (or pulled back to) A is identified as surface gravity
of the NEH i.e.

1 -1/2 . / 1 / s
G e |0 o5 (2 +)

wa= 50 . (18)

—

It may be noted that & # 50, (a) # o in general. Now, we have the following results:
P — —

M 2 2 . 16 16
o _SM L 26 2w o 165G o 16f@) o
— e « e — e i e? — e?
where e = exp [1]. Using the results of (19) in equation (18) we obtain
1/e\1/2 . /
wa=g() (ew-o) (@), @)
The pullback of the null tangent vector field ¢ can be calculated to be:
1 1/e\12XP— &
o gt X ot x e et V2] o N “—
L=000 =00 +00 = L0+ 00 = 78 (e"p 3) 205 = 2(M> Py O
21

where ¢' means the component ' evaluated on A, etc and we have to use (19) to reach the
—
final result.

2.4. Non-expanding horizon and the zeroth law

Zeroth law states that the surface gravity must be a constant on the associated horizon i.e. in
the present scenario we need to have kA to remain constant along A. This happens if the Lie

derivative of kA along ¢ vanishes [29] i.e. ¢#0, kA = 0. Considering equations (20) and (21),
« —

this yields

& +a =mgexpa (22)
s — —

where my is some negative definite quantity on A such that ¢#9,my = 0. It should be noted

e
that we have considered functional rescaling of ¢, allowing « to be a function on A according
“— —

to the definition of an NEH [29]. This means that the zeroth law is valid for A, an NEH, if the
rescaling function obeys equation (22).

2.5. Isolated horizon and the first law

An isolated horizon (IH) [26-29], by definition, only allows positive constant rescaling of ¢.

e

In the present analysis, we can see that this is tantamount to tying the foliation of A, character-

ized by f(u), to the local Lorentz boosts on it, characterized by «, in the following particular
—

fashion:

f(u) = ¢ exp -, with¢ >0 and 09, ¢ =0. (23)
—
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Considering equations (12) and (21), the condition (23) implies

( =cox, with cg=(Me)'/?/c. (24)
« —

Itis only an IH, not an NEH, that is associated with a local first law in order to have a Hamilto-
nian evolution in the covariant phase space [29]. Therefore, the surface gravity associated with
the IH is kA subject to the condition (23), which, using equation (18) and (22), gives kg = Ok
with 3= — mo(Me)'/?. Therefore, there is an ambiguity in the exact form of surface gravity
that remains in the local first law associated with the ITH [29]:

0Em = % 0Ar. (25)
™

where Epy is the local energy associated with the IH. In general one has the radiation
energy exterior to the IH given by Eagiation = Etr — Eapm [29]. In the present scenario we
have Elygiaion = 0 which provides Ey = Eapy = M. This fixes the value g =1 (as Ay =
167M?), which implies my = —(Me)~'/? (see [29] for a more detailed discussion). Impor-
tantly, ¢y remains arbitrary. This physically means that there is an equivalence class of £

related to x up to a positive constant, that leads to the value of the surface gravity of the
“—

IH to be kg = kK = 1/4M. An alternative physical meaning can be extracted by looking at

equation (23). It implies that the foliation of IH, characterized by f(1), and the local Lorentz

boosted frame on the IH, characterized by «, have a relationship only up to a positive constant
“—

ambiguity.

2.5.1. A redundant choice: co = 1. At this point, let us precisely point out a fact regarding
reference [13] because this work has been a crucial founding stone in further development of
the concerned literature [34].

It should be noted that for the zeroth law and the first law to hold on the IH, even to fix the
value of kg, we do not require to choose a particular value of ¢y. This is expected because ¢
is nothing but a representative of the rescaling freedom of the null generators of the IH and
the local Lorentz boost and the foliation of the IH are fixed only up to ¢y which is manifest
from equations (23) and (24). Thus, c( is no more than a gauge. Therefore, no physical result
should depend on the choice of ¢y. However, unfortunately and as opposed to this expectation,
as we shall show shortly that ¢y will appear in the symplectic structure of a spacetime admit-
ting IH as its inner boundary for real v. Although the symplectic structure by itself is not a
measurable quantity but we expect it to be gauge invariant as it explains the dynamics of the
theory.

Now, let us consider one particular choice, namely, cp = 1. From equation (24) it follows

thatcy = 1 = ¢ = . Further, considering the relation ¢y = (Me)'/? /¢ given in equation (24),
= —
from equation (23) the choice ¢y =1 leads to an independent equation in the present

analysis:
(26)

Like ¢y = 1, choosing any other particular non-zero value of ¢ is equivalent to choosing a fixed
relationship between the local Lorentz boost and the foliation of the IH similar to equation (26).
Therefore, such a choice is redundant and no conclusions can be drawn from such choice
regarding the laws of mechanics and surface gravity of the IH. In a nutshell, such a choice
cannot be a ‘physical requirement’.
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Nevertheless, we have identified the choice ¢y = 1 separately due to its importance in the
context of reference [13] where one finds discussion regarding the symplectic structure of [H
with real SU(2) SAIB variables. In reference [13], the choice ¢y = 1 was made by claiming it
to be a ‘physical requirement’ to obtain the correct value of surface gravity. Clearly, this is in
sharp contrast to what we have explained. The issue will become even clearer shortly as we
shall proceed through the investigations of the relevant equations that lead to the symplectic
structure.

3. Field equations in the canonical framework

In this section we shall investigate the relevant equations in the canonical framework. The
phase space variables are the SAIB connection and its conjugate momentum and the quantum
theory is available only for real values of the Barbero—Immirzi parameter (v) [1, 2].

3.1. The Sen-Ashtekar—Immirzi-Barbero connection

In the canonical framework an internal time-like vector n' := eLn“ is chosen and kept fixed
(see e.g. [2]), n* is the unit time-like (n*n, = —1) normal to the spatial slices. This choice only
leaves the internal local rotational freedom which keep the chosen n/ invariant [2]. Considering
a fixed n/, the Sen—Ashtekar—Immirzi—Barbero (SAIB) connection is defined as

. . 1 .. .

A, = ng’ - Ee”kw/{k (27)
where i = 1,2, 3 and 7 is called the Barbero—Immirzi parameter. wff ,with,J =0,1,2,3, are
the components of the spin connection which can be written in terms of the tetrad components
and the Christoffel symbols as follows

wik = —g"ek (9], —T7,el). (28)

The variable, defined in equation (27), behaves as a connection while its pullback to a spatial
slice is studied. However, it can be interpreted as a spacetime connection only for v = +i [6]
and in that case it is the complex Sen—Ashtekar connection.

3.2. The equation on a 2-sphere

Now, what are of importance in the present context are the curvature of the SAIB connection
defined as
i _ ' ijk AJ Ak
F,, =20,,A,, + €7A[, A (29)

and the following variable defined as

i, = 2€he] et (30)
The study of the symplectic structure of a spacetime, admitting an IH as its inner boundary,
boils down to the task of finding the relation between these two variables correctly (see [13,
27] for details). It should be noted that the pullbacks of F and X to any arbitrary 2-sphere
embedded in a four dimensional spacetime, to be denoted by F' and X respectively, are related
as [13]

F, = (‘112 - oy — 24> PO (31)
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for v = +i. Equation (31) is obtained by taking the pullback of a spacetime identity to an
arbitrary 2-sphere (see [27]) and then applying the partial gauge fixing (fixed n’) on the internal
space (see [13]). To mention, R is the Ricci scalar associated with the spacetime and ¥, =
C,,mgé”m”m‘*ng, o = ﬁRW(f“’n” + m*m"), are two Newman—Penrose scalars [27], where
C,vap 18 the Weyl tensor and R, is the Ricci tensor associated with the spacetime. In the present
case,wehave ®;; = 0=Rand ¥, = —2M/r3 (e.g.see [33]). Therefore, equation (31) reduces
to the following form
) 2M .
Fj, =-"5%i, (32)
0

for v = +i and ry is the radius of the 2-sphere. Notably, this equation is not slicing
dependent.

Now, we aim to investigate the relation between F and ¥ both for real and imaginary values
of . To do that we calculate the components of F' and X separately. From equation (28), the
non-zero components of the spin connection can be calculated to be

Q . Q . .
wh=_— -4, wM=——-d, wP= QO '2(j-cosh o — ¥ sinh ),

20 x 20
in6
w? = Q7 12(i-sinh a — ¥ cosh a), wQ?S = ;%(i" cosh o — 7 sinh «),
inf
wh = ;%(f sinh a — ' cosh @), w? = —cosf (33)

and the corresponding anti-symmetric ones with respect to the internal indices. Then using the
definition given in equation (27), one can find the non-zero components of the SAIB connection

to be
(9% 0
AIZ Il AIZ he Alz
’ 7(29 0‘)’ : 7(29 0‘)’ o = cosb,

inf
AZ = ﬁ (i’ cosh a — 7 sinh a) , Aé = 3%(1" sinh oo — 7 cosh «),
1 in 6
A = i (¥ cosh a — i-sinh o), A3 = %(i’cosh a — ¥ sinh o).

(34)

Then one can calculate F by using the definition in equation (29). The non-zero components
are given by:

oM —ro/2M
Fl. = —sin0 |72 — (1 4oy SR 2MY e+ xp sinh @)?
' 1o 1o
(35)
—ro/4M
F?, = %ﬁ!] [— sinf (t cosh @ + xo sinh a) (G )
‘ g
+ 7 (fo sinh a + xo cosh a) (9t ) | (36)

10
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_expl—ro/4M]

12
To

+ (1o cosh a + xo sinh @) Oy )] (37)

E39¢ = h sinf (fy sinh o + xp cosh a) (Oyar)

1o and x( are coordinates of the particular 2-sphere under consideration in the # — x plane and
hence, they are related as

2 —x2 = —(rg — 2M)e""/*M, (38)
On the other hand, one can calculate that the only non-vanishing component of ¥ is
Shy =275 sinf (39)

We may note that since ¥ 7, and X3, vanish identically, it can be concluded that the boost
parameter « in the f — x plane needs to be spherically symmetric (i.e. dpa = 0 = 9v) so that
equation (32) holds for v = =+i. Having said this, for v # +i, we have the following equation
at hand:

: 1 |2M —r9/2M .
Fly= =5 [P 12y R0 ot a4 sinh 02| 27,
I’O ro 140)

(40)

which has the property that the proportionality factor between F and ¥ depends on the slic-
ing of the spacetime and on the internal gauge choice. This is a fundamental inconsistency,
reflecting the fact that the SAIB connection variable does not have a spacetime interpreta-
tion for v # +i [6]. Hence, one may wonder why we should be interested in the relation
between F and X at the first place. The reason is that this relation plays the fundamental role
in writing down the symplectic structure of a spacetime admitting an IH as its inner boundary
[13,27].

If one wants to avoid the above inconsistency, one is forced to introduce a parameter of
unusual nature, say o, which characterizes a relation between the internal boost parameter and
the slicing of the spacetime such that

: 2M .
El/w =3 [1 - (1 + ’72)0’2] Zl,u,l/ (41)
"o

with

—ry/2M
o2 = exp[—ro/2M]

5 (to cosh a + xg sinh o). (42)

o can be any non-zero real number satisfying the condition o2 # (1 +~2)~!. Doing
this, one actually restricts the local Lorentz group to a subgroup whose boosts are tai-
lored in a particular fashion that is dependent on the slicing of the spacetime. So, the
‘local’ boosts have to know about the ‘global’ slicing. Therefore, o marks different
sectors of the boost parameter within which the equations on the 2-sphere are slicing
independent.

In general, one can choose o to be dependent on spacetime coordinates and introduce a new
gauge field. However, we keep that possibility out of the present discussion and restrict o to
be just an arbitrary constant parameter (independent of ).
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3.3. On the isolated horizon

Let us see what the scenario is, if we concentrate on the IH only. We shall replace now the
‘underline’ with ‘left double arrow’ to indicate that the 2-sphere is a cross-section of the IH
i.e. rp = 2M and xy = ty = f(up). Then, equation (40) reduces to the following form:

P27 2y,27 i
Flu == 1=+ 2 (43)
where we have used the fact that Ajy = 167M? is the area of cross-section of the ITH and we
have
~ Suo)
g = W exXp g (44)
on the IH. One can see that equation (44) is just the pullback of equation (23) on a slice of the
IH at uo, with & = o(2Me)'/? and therefore, from equation (24) we have ¢y = 1/0+/2 implying

- L 5 X - It is now clear that the parameter o that appears in equation (43) is actually the
=

representative of the equivalence class of null generators of the IH and we have seen that the
laws of mechanics of the IH and the value of surface gravity does not depend on the choice of
0. Using equation (43), one can show that the symplectic structure of the spacetime with IH as
an inner boundary is given by

£:
pal

Amn
27[1 — (1 +~%)0?] /s,

SS

327y, 02) = /25[12i/\(52]A,~— (5[1Ai/\52]./4,' s
M

(45)

where M is a spatial slice ‘sometime’ between ®; and ®, Sy is the intersection 2-sphere
of M with the IH and A':= A’. One can see reference [13] for the details of the deriva-
“—

tion, but with the specific choice o =1/ V2. Considering the fact that ¢g = 1/ ov?2, the
choice o = 1/4/2 implies ¢y = 1. As we have already discussed in subsection 2.5.1, the
choice ¢y = 1 or equivalently ¢ = 1/+/2 is redundant and certainly not any physical require-
ment. Therefore, equation (45), retains a dependence on the parameter o that represents
the rescaling freedom of the null generators of the IH. We hope that now it is com-
pletely clear why we discussed separately the choice ¢y = 1 and emphatically called it
redundant.
Two remarks need to be made about the result in equation (45).

e o does not appear at all in the symplectic structure for v = =i, which is an implication of
the fact that the SAIB variable has an interpretation of a spacetime gauge field only for
vy = *i.

e Considering only real values of +, the symplectic structure diverges for o = (1 + ~?)~L.
This implies that one member of the equivalence class of null generators of the IH becomes
‘special’, which implies a violation of the rescaling symmetry of the null generators of the
IH.

Nonetheless, a viable quantum theory is available only for real and positive values of
v. Therefore, it is founded on a flawed classical setup. Thus, in order to proceed with
any sort of calculation, one has to bear with this unavoidable symmetry violation and

12
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consider omitting, by hand, the boosted frame on the IH given by o = (1 +~%)"!. Oth-
erwise, one has to discard the theory at the classical level itself, for real SU(2) SAIB
variable.

3.3.1. The celebrated equation. 1In this short subsection, let us offer some comments on a
particular equation that has played crucial role in the development of the related contemporary
literature. We think, at this point, it is highly important to mention that equation (43), with the
particular choice o = 1//2, results in the following equation:

. m .

Fl==(1-7) (46)
equation (46) has appeared frequently in the literature till date [34] and has played pivotal
role on several occasions for further build up of new results (which is the reason for calling
the equation as ‘celebrated’). Needless to say, any result or any conclusion that is based on
equation (46), is gauge dependent in the sense that equation (46) results from a particular
gauge choice. The reason for isolating equation (46) is to emphasize the basic flaw regarding
gauge fixing that has percolated through a non-negligible part of the literature which blindly
rely on equation (46).

4. Remarks on entropy calculation

As it is now clear from the above discussion that the rescaling symmetry of an IH, real SU(2)
SAIB variable (i.e. real value of ) and hence, the quantization program, do not tally with each
other. Nevertheless, we shed some light on the role played by the parameter o in the existing lit-
erature concerning entropy calculation of SU(2) IH, with an assumption that -y has been experi-
mentally determined to be 7, (say). In the discussion we exclude the condition o = (1 4 +?)~!
and discuss the logical viability of the calculations which exist in literature from a field theoretic
viewpoint.

Let us point out that equation (43) can be cast as the equation of motion for a Chern—Simons
theory coupled to a source and this equation holds the key for the entropy calculation [11, 13,
14, 30]. In fact, in the quantum theory, the microstates of the IH belong to the Hilbert space
of a quantum Chern—Simons theory coupled to point-like sources carrying quantum num-
bers that can take values like 1/2, 1, ...,k/2 where k is called the level of the Chern—Simons
theory [7, 8, 11, 13, 14]. The number of microstates corresponding to the Hilbert space of
a Chern—Simons theory with level k, is some function ©(k) [21]. Having said this, let us
clarify why, among the two existing view points—one adopted in references [11, 30] and
the other in reference [15]—the former is logically viable but the later is not. In the pro-
cess, we also point out why references [13] and [15] present self-contradictory research
investigations®*.

4.1. The Kaul-Majumdar (KM) scenario

In [11, 30] it has been rigorously argued that the o-dependence should be used to define
the source term and not the Chern—Simons level because it affects the entropy which is a
physical quantity. Therefore, one can view equation (45) as an ‘equivalence class of sym-
plectic structures’ corresponding to the equivalence class of null generators that lead to the
same physics associated with the IH viz. mechanical laws, value of surface gravity and the

4 We call it ‘self-contradictory’ because two authors are common in references [13] and [15].
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resultant entropy. Notably, the source term vanishes for o> = (1 4+~2)~! [11, 30], which we
have removed ‘by hand’ from consideration at the beginning. This approach has the following
highlighted features:

e The Chern—-Simons level k::AIH/47w€f) where ¢, is the Planck length. Therefore,

e The Boltzmann entropy formula is used as the starting point i.e. S =InO(k) =
In @(AIH/EIZ),’Y).

e One needs to choose a particular value of v, say 7o, to get the area law i.e. S = A/ 4612).

e o does not affect the entropy calculation and remains arbitrary implying that all
the members of the equivalence class of null generators lead to the same physical
result.

e The theory is falsifiable if we find 7y, # .

Thus, the KM scenario seems to be logically viable from a field theoretic perspective where
the coupling constant remains unambiguous and it is verifiable by experiment as one expects
any theory to be.

4.2. The Perez—Pranzetti (PP) scenario

In [15], the Chern—Simons level is defined in a o-dependent way. In that case, demand-
ing the entropy to be given by the area law, one finds a relation between o, v and Apy.
Therefore, for a given area black hole, the entropy is given by the area law if o and v
has a particular relationship. This seems to be elegant because one obtains the area law for
any +y that is fixed up to a relation with o, an arbitrary positive definite parameter. How-
ever, the problem arises if we use v = 7, in the results of [15]. Then, what one is left
with is a relation between o and Ayy. This implies that, for a given Ay, there is a pre-
ferred null generator, among the equivalence class of null generators of the IH, that leads
to the physical results. It also implies a fixed relationship between the local Lorentz boost
and the foliation of the IH. This explicitly breaks the intrinsic symmetries of the IH even
after considering o # (1 + v%)~!. We highlight the main features of this approach of entropy
calculation:

e The Chern—Simons level k:= Ay /87y(1 — 4%)F2, where 4% := (1 + ~v*)o>. Therefore,
Am/ Ef) > 1 does not imply k£ > 1 and k is now an independent input just because of the
arbitrary parameter o.

e The Boltzmann entropy formula is used as the starting point, as usual, leading to
S=InO(k) =In @(AIHM%, v,0).

e To get the area law, the following relation has to be satisfied i.e. In ©(Ag /ég,q/, o)
=Am/ 4(5. Therefore, for any given Ay, we only have a relation between ¢ and . We
need not choose +.

e If we put v = 7., then, for a given Ajy we have a fixed o, implying the violation of the
symmetry of the IH even after considering o> # (1 + ).

It may be noted that in [15] no particular choice of the parameter o has been made,
although it was already shown in [13] (albeit incorrectly, as we have pointed out) that o
needs to be chosen. Therefore, there is a serious inconsistency that exists in part of the litera-
ture concerning the entropy calculation of SU(2) IH created due to self-contradictory research
investigations made in references [13] and [15]. One cannot take reference [15] as an amend-
ment to reference [13] because the problems of using surface gravity as an input was not
even addressed in reference [15]. Moreover, the scenario presented in reference [15] is, at
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the least, logically impracticable as it worsens the problem by being suggestive of the fact
that there should be a preferred Lorentz boosted frame on the horizon for a given area, as o
becomes related to Ayy, if the value of + is experimentally determined, even after considering
o2 £ +~3)"

5. Conclusion

Let us summarize the facts investigated in this work. We have verified that the sym-
plectic structure of a spacetime admitting an SU(2) IH as an inner boundary, particu-
larly the contribution from the IH that is referred to as SS in equation (45), written in
terms of the Sen—Ashtekar—Immirzi—Barbero (SAIB) variables, is dependent on a posi-
tive definite parameter (o) that represents the equivalence class of null generators of the
IH. The mechanical laws and the value of surface gravity associated with an IH do not
depend on any particular value of o. Therefore, there is no physical motivation behind
a choice of o, as opposed to the claim made in reference [13] that lay the founda-
tions of the theory of SU(2) IH. The importance of these finding becomes profoundly
manifest while one finds the impact of reference [13] in the associated literature till
date [34].

The o-dependence of the SS disappears when the Barbero—Immirzi parameter, -, is equal
to %i. The SS diverges for 0> = (1 +~?)~!, thus implying that the full symmetry of the ITH
does not lead to a well defined SS. These results are direct manifestations of the fact that
the Sen—Ashtekar—Immirzi—Barbero connection, which is defined on a spatial slice, can be
interpreted as the pullback of a spacetime connection only for v = =i [6]. However, a viable
quantum theory of SU(2) IH exists only for real values of . Therefore, such a theory is founded
on a flawed classical setup.

To put it simply, even before going into the quantization, the classical setup is devoid of
explanations of the laws of mechanics and the construction of the IH framework, along with
its symmetries, for the real SU(2) SAIB variable (real ~y). Thus, the question arises that if we
cannot make sense of black hole thermodynamics with these variables then what does it even
mean to talk about ‘surface gravity’, ‘entropy’, etc. Such a setup is, at the least, devoid of the
motivation for quantization and entropy calculation in the first place.

We note further that, if such a flaw is ignored nonetheless, then one can proceed with the
calculations to find the microstates and entropy from a purely field theoretic perspective, but
only by imposing a restriction o> # (1 +v*>)~! ‘by hand’. In such case, two different view-
points exist in the literature, namely, in references [11, 30] (KM scenario) and in reference [15]
(PP scenario). We point out that, if v were experimentally determined to have a fixed numerical
value, then the two scenarios lead to two different conclusions. In the KM scenario, the theory
is falsifiable if the chosen value of v does not match the experimental value. In the PP scenario,
an experimentally fitted value of v implicitly suggests that for a given area there is a preferred
Lorentz boosted frame of the horizon even for o # (1 4 «?)~'. Therefore, the KM scenario
is logically viable but the PP scenario does not seem to be so.

Thus, considering the basic nature of the issues that we have investigated in this work,
on logical grounds it seems to us that, as far as real SU(2) SAIB variable is concerned, the
basic construction of the IH horizon framework leading to the laws of mechanics (hence, the
definition of surface gravity) needs to be sorted out before one even thinks about quantization
and entropy of the IH with such a variable. Only the performance of such a task can provide
a clear justification of using such a variable, consequently establishing an unobjectionable
motivation for quantization of the classical theory in the LQG framework.
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