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Our analysis of the change in black hole spin during near-horizon inspiral (section 2.3) was
incorrect due to a computational error. The affected equations are (23)–(25), which we repeat
here:
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It is more convenient to present the corrected results in terms of ε2 = 1 − (a/M)2 ≈ 2
(1 − a/M), where ε � 1. Using the same method described in the text and fixing the
computational error, we instead find
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The most important difference is that the change in spin is now linear in the mass ratio, as
opposed to quadratic. Note also that the new left-hand-side of (25) now correctly refers to the
absolute value of a/M, which is necessary since a/M decreases during near-horizon inspiral.
We thank Geoffrey Compère for pointing out these errors—see also reference [1].

The change in spin over the near-horizon inspiral is significantly larger than originally cal-
culated, meaning that there is a smaller range of mass-ratios over which the near-horizon
inspiral can occur (without spinning down the black hole such that the near-horizon region
no longer exists). We may estimate this range based on the observation (section 3.1) that near-
horizon inspiral is visible in the waveform for a � 0.9999M with a starting radius of X0 ≈ 0.3.
Demanding Δ|a/M|total < 0.0001 using X0 = 0.3, the new version of (25) gives the bound
μ/M < 0.025. Thus near-horizon inspiral remains consistent for both the LIGO and LISA
sources discussed in the appendix (with mass ratios of order 10−3 and smaller), and our main
conclusions about observability are unmodified.
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Abstract
We model the inspiral of a compact object into a more massive black hole
rotating very near the theoretical maximum. We find that once the body enters
the near-horizon regime the gravitational radiation is characterized by a con-
stant frequency, equal to (twice) the horizon frequency, with an exponentially
damped profile. This contrasts with the usual ‘chirping’ behavior and, if
detected, would constitute a ‘smoking gun’ for a near-extremal black hole in
nature.

Keywords: gravitational waves, black holes, extremal spin

(Some figures may appear in colour only in the online journal)

1. Introduction

General relativity imposes a hard upper limit on how fast a black hole can rotate. For a black
hole of mass M, the angular momentum J must satisfy

( )J GM c, 12

where G is Newton’s constant and c is the speed of light (both hereafter set to unity). Above
this value, the event horizon disappears and the spacetime contains a naked singularity. It is
impossible to spin up a black hole above this limit with any continuous process featuring
reasonable matter [1], and there is much evidence in favor of the ‘cosmic censorship
conjecture’ [2] that no generic initial data can produce a naked singularity.
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Black holes that saturate the bound (1) are known as extremal. More generally, extremal
black holes are defined as those with zero Hawking temperature. Extremal black holes play a
key role in many theoretical arguments investigating the nature of classical and quantum
gravity, such as cosmic censorship [3] and the quantum nature of black hole entropy [4]. They
have near-horizon regions that possess additional emergent symmetries [5] and may be
governed by a holographic duality [6] in the spirit of AdS/CFT [7]. At least in parameter
space, they are a hair’s breadth from being naked singularities, the existence of which would
(in principle) allow experimental study of quantum gravity from a distance. In light of their
basic role in theoretical work, it would be fascinating to discover an extremal black hole in
nature.

In this paper we demonstrate a potential means of discovery via a ‘smoking gun’: a signal
which, if observed, would conclusively establish the presence of a black hole spinning at or
extremely near the fundamental limit. We consider the gravitational radiation from the
inspiral of a body into a more massive black hole. In the non-extremal case, the wave
amplitude and frequency increase slowly in time until cutting off rapidly when the compact
object reaches the innermost stable circular orbit (ISCO) and plunges into the black hole. If
the black hole is rapidly spinning, however, there is a new, near-horizon phase of the inspiral
where the amplitude begins to decrease in time and the frequency saturates at the horizon
frequency—see figure 1. This can be understood from the fact that the ISCO of a rapidly
spinning black hole is close to the horizon and allows access to the near-horizon regime,
where the gravitational-wave emission is suppressed because the particle effectively corotates
with the black hole. The decay timescale is set by the masses involved, with the total length of
the signal set by the black hole spin (diverging in the extremal limit). The characteristic
amplitude decrease is visible in the waveform provided the spin is at least J M0.9999 2.

Can black holes of such high spin plausibly exist in nature? From electromagnetic
observations there is mounting evidence for a wide distribution in the spins of both stellar
mass [8] and supermassive black holes [9, 10], including measurements consistent, within
measurement error, with maximal spin =J M2. Theoretically, accretion by cold particles can
efficiently spin up a black hole to very near the limit [11]. However, the inclusion of other
effects (such as absorption of hot photons [12]) generally limits the spin to more modest
values. The ‘Thorne limit’ of J M0.998 2 has generally been adopted by the community as
a reasonable guess for an astrophysical upper limit. A method for beating the Thorne limit is
discussed in [13].

Our attitude, therefore, is that while near-extremal black holes are perhaps not expected
to exist in the Universe, it is nevertheless highly worthwhile to search for them. The signal we
predict is in-band for ground-based detectors [14, 15] at ‘intermediate’ mass ratios and for
space-based detectors [16] at ‘extreme’ mass ratios, with horizon distances similar to ordinary
black hole binaries at these mass ratios. For intermediate mass ratios, one may worry about
the validity of our approximation and, with current detectors, about potential confusion with
the ringdown of a non-extremal black hole. We are optimistic on both counts, but further
work is required. For the extreme mass ratios observable by the planned space-based detector
eLISA, however, detection would be unambiguous.

Going beyond the classical gravity measurement, the Kerr/CFT conjecture [6] holds that
near-horizon, near-extremal processes have a dual CFT description. Aspects of this corre-
spondence have already been tested for bodies orbiting in the near-horizon region [17–19].
For the inspiral calculation we perform here, the dual process corresponds to return to
equilibrium after a quantum quench [18]. If the conjecture is correct, observation of near-
horizon inspiral constitutes experimental study of strongly coupled quantum field theory.
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Other known methods of measuring black hole spin are unlikely to have the precision to
discriminate between the Thorne value of =J M0.998 2 and the higher values where the
unique features of the extremal case become important. Thus, to the many exciting possi-
bilities of the new astronomy of gravitational waves [20] we may add one more: the discovery
and study of extremal black holes in nature.

The paper is organized as follows. First we provide an analytical derivation of the basic
‘smoking gun’ for quasi-circular inspiral. We then, in section 3, use numerical methods to
explore near-horizon inspiral more generally, showing that the signal is stable to small
eccentricity and that its basic features survive the introduction of modest inclination. In
section 4 we consider detectability with current and planned detectors, and section 5 provides
some concluding thoughts.

2. The smoking gun

We consider a body of mass m  M (modeled as a point particle) on a prograde6 orbit of a
Kerr black hole of mass M and angular momentum J = aM. For clarity, we first consider a

Figure 1. Gravitational waveforms from equatorial, quasi-circular inspiral into ordinary
and near-extremal black holes. The black hole spins are =a M 0.97 and

= - -a M 1 10 9, respectively. We show the +h component for a system viewed
face-on. The waveform begins when the particle crosses =r M3.3 and ends when the
particle reaches the ISCO; we do not model the plunge or ringdown phase of the
inspiral in this work. The individual sinusoidal oscillations of the waveform are too
small to see on this scale (where we have assumed a small mass-ratio). We also show
(five times) the radiated power, PGW. The masses of the primary and secondary are
denoted by M and μ, respectively, the distance to the binary is D.

6 We do not consider retrograde orbits as they do not enter the near horizon regime during the inspiral phase.
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circular, equatorial orbit, where analytic results are possible. The particle’s energy and
angular frequency are given in terms of its Boyer–Lindquist (BL) coordinate radius r0 by [21]
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2.1. Near-horizon inspiral

For near-horizon, near-extremal physics it is convenient to introduce dimensionless quantities

( ) = - a M1 , 52 2
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- +

+
x

r r

r
, 6

where r is the BL coordinate radius and = + -+r M M a2 2 is the horizon radius.
Substituting into equation (4) and expanding, we see that to leading order in  the ISCO is
located at

( )=x 2 , 7ISCO
1 3 2 3

and hence is in the near-horizon region of a near-extremal black hole. We will consider a
body orbiting outside the ISCO but still in the near-horizon region7, i.e.

( ) < x x1, 1. 8ISCO 0

(More precisely, we let  l~ and l~x0
2 3 and count orders in λ.) Truncating at subleading
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( )m
= + +

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥E

x

x3
1

2

3
1 , 90

2

0
3

( )W = -j
⎡
⎣⎢

⎤
⎦⎥M

x1

2
1

3

4
. 100

Note that ( )M1 2 is the horizon frequency of an extremal Kerr black hole. In [22] it was
shown that to leading order such a particle radiates energy in gravitational waves at the rate

( ) ( )= +¥P C C x , 11GW H 0

7 We note that there is plenty of space in the near-horizon region for the particle, in the sense that a body of proper
size R subtends a coordinate region ( )d ~x R M x . Thus the point particle approximation is valid as long as the body
is small compared to the black hole.

Class. Quantum Grav. 33 (2016) 155002 S E Gralla et al

4



where >¥C 0 and <C 0H are dimensionless constants given approximately by8

( ) ( ) ( )m m= = -¥C M C M0.987 , 0.133 . 122
H

2

These constants give the rate at which energy is radiated to infinity and the horizon,
respectively, with the minus sign indicating that energy is being extracted from the black hole.
The energy loss rate translates into an orbital decay rate via = -E t Pd d GW. Differentiating
(9) with respect to x0 and combining with (11) gives a differential equation for the evolution
of the orbital radius
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In the above derivation we have retained only leading-order terms in x 10 .
We have used the instantaneous energy balance relation = -E t Pd d GW, which is only

valid if the inspiral is evolving adiabatically, i.e., if the orbital timescale Wj1 is much shorter
than the inspiral timescale ∣ ( )∣x x td d0 0 . From (13) and (3) we see that this happens provided
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-
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2
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Since m M is small by assumption (and can be at least as small as 10−9 astrophysically), the
inspiral is adiabatic until very close to the ISCO (where the right-hand side vanishes).

We solve equation (13) exactly below, but for illustration purposes it is useful to consider
the case where the particle has entered the near-horizon regime but is still far from the ISCO,
i.e.,  x x 1ISCO 0 . In this case the term ( ) =x x x2 2

0
3

ISCO 0
3 in (13) is negligible and the

equation is trivially solved by

( ) ( )= t-x t X e . 16t
0 0

where ( )=X x 00 0 is the position at the (somewhat arbitrary) point where we declare the
beginning of the near-horizon phase of inspiral. From equation (11) the radiated flux is
proportional to the particle’s radius and thus the power measured in the gravitational wave
detector will drop off exponentially

( )~ t-P e . 17t
detector

Furthermore, from (10) the orbital frequency will increase towards the extremal horizon
frequency ( )W = M1 2H as time increases. The characteristic frequency of the waveform is
then twice this frequency (owing to the spin-2 nature of gravitation)

( )p
p

~ ´ W =f
M

2 2
1

2
. 18detector H

Equations (17) and (18) are our basic smoking gun.

8 There are also subdominant oscillations that can be ignored in this analysis. To obtain the numbers in (12) required
keeping up to =ℓ 30 in the sum whose terms are given by equations (76) and (77) of [22].
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2.2. Time to plunge

To estimate the length of time spent in the pre-ISCO inspiral we return to equation (13),
whose exact solution is

( ) ( ) ( )= t-x t X g te , 19t
0 0

where we have chosen ( ) =x X00 0 and defined
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Here W(x) is the Lambert W (or product log) function, defined for  -x e1 so that
( ) =W 0 0 and ( )- = -W e1 1. The particle reaches the ISCO when the argument of the

Lambert function reaches its limit - e1 , which occurs at

( ) ( )t
= - -t k k

3
1 log . 22NHI

Here NHI is for ‘near-horizon inspiral’; tNHI is the length of BL time spent in adiabatic
inspiral after the particle arrives at X0, the (somewhat arbitrary) beginning of the near-horizon
region. This is also the length of the signal seen by the detector at infinity. It should therefore
be possible to measure the black hole spin ò from the length of the signal. Notice that tNHI

diverges logarithmically as   0. This is consistent with the precisely extremal9 case  = 0,
where there is no ISCO and the inspiral phase lasts for infinite observer time.

2.3. Consistency of near-horizon inspiral

The gravitational waves emitted by the particle during inspiral will change the mass and spin
of the black hole. The change in mass is given by =M t C xd d H 0 (which is negative—energy
is extracted), and the change in angular momentum is given by ( )= WjJ t M td d d d . (This
latter relationship holds for any quasi-circular inspiral.) The associated change in  is given by

( ) m
=

t M M
x

d

d

0.102
. 23

2

2 0

To find the total change over the inspiral, one should plug in the trajectory ( )x t0

(equation (19)) and integrate from t=0 to =t tNHI (equation (22)). We can do so analytically
if we keep to leading order in =x x kISCO 0

1 3, using = t-x X e t
0 0 and ( )t= -t k3 logNHI

instead of the exact expressions. This approximation lengthens the inspiral and makes more of
it take place at larger radii where  td d (equation (23)) is larger. Thus the calculation
produces an upper bound on the actual change in  , which we find to be

( ) ( ) 
m

D < -
M

X0.046 2 . 24total 0
1 3 2 3

For a bound independent of the initial (near-extremal) spin we may drop the term involving  ,
giving ( ) mD < M X0.046total 0. In terms of the spin parameter » -a M 1 22 this
becomes

9 The flux in the extremal case [17] is identical to the flux under the conditions considered here (8), making the
extremal signal identical to what we derive here. This agreement is highly non-trivial and not well-understood [22].

Class. Quantum Grav. 33 (2016) 155002 S E Gralla et al

6



( )m
D < -⎡

⎣⎢
⎤
⎦⎥

a

M
X

M
10 . 25

total

3
0
2

2

2

The change is quite small even at modest mass ratios.

3. Completing the picture

Thus far we have restricted to circular, equatorial inspiral in the near-horizon region, where
analytic expressions are available [22]. To explore near-extremal inspiral more generally we
turn to numerics. In [22] a new code was presented that is capable of working very near
extremality. We also make several improvements to the code of [23, 24] that extend its reach
toward extremality. The numerical values of the flux used in this section are computed using

Figure 2. Radiated energy flux from a particle on a prograde, circular, equatorial orbit
of a near-extreme Kerr black hole with = - -a M 1 10 9 ( = ´ -4 10 5). The radius
of the ISCO is marked at ´ -x 1.6 10ISCO

3.

Figure 3. Quasi-circular, equatorial, inspiral into a near-extreme Kerr black hole with
spin parameter = - -a M 1 10 9. The evolution begins at t=0 when the particle
crosses =r M3.3 and ends when the particle reaches the ISCO.
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these two codes. Once the flux is known we use the formulae in [25–28] to compute the
corresponding inspirals and their associated waveforms.

3.1. Full quasi-circular inspiral

We have numerically computed the flux for stable, circular, equatorial orbits about a near-
extreme black hole over the entire range of orbital radii—see figure 2 for an example10. The
flux peaks around x 0.50 and decays rapidly away from this value. As a check on our
numerical results we compare with analytic approximations near the horizon (equation (11))
and near infinity (using the leading post-Newtonian term ( )= + -P x32 5 1GW 0

5), finding the
expected agreement. In figure 2 we also show the contribution from just the ( ) ( )=l m, 2, 2
mode. In contrast to the situation at large radii where this mode dominates, in the near-horizon
regime it accounts for only ~10% of the total flux. Correspondingly, we require a large
number of ℓ-modes for the total flux to converge in this region (approximately 30 for three-
digit accuracy), compared to just a few at larger radii.

We use these fluxes to build a complete adiabatic inspiral, beginning a modest distance
away and proceeding through the near-horizon region to the ISCO. The orbital frequency is
seen to monotonically increase, and the orbital radius to monotonically decrease, eventually
approaching the horizon values exponentially in time, confirming the analytic prediction—see
figure 3(a). The associated waveform when the binary is viewed face on is depicted in
figure 1. Notice that the maximum power is offset from the maximum amplitude, another
unique feature that occurs because the frequency continues to rapidly increase even as the
amplitude decreases. When the binary is viewed edge on the waveform exhibits pronounced
relativistic beaming in the near-horizon region—see figure 3(b). This is to be expected as the
relevant limit ~ x 00

2 3 is ultra-relativistic, with the circular orbit approaching the null
generators of the extremal horizon [29]. Similar snapshot waveforms were computed by
Detweiler [30].

We can use the numerical computations to select an appropriate choice of X0, the
boundary of the near-horizon region. From figure 2, an appropriate choice is X0 = 0.1, where
the numerical expressions begin to diverge from the analytical expressions. Using
equations (22) and (21), this translates into a bound  < 0.003 or >a M0.999995 for seeing a
full timescale τ of exponentially decaying waveform. However, it is clear from figure 1 that
the distinctive amplitude decay starts well before the exponential portion sets in, so a more
appropriate choice might be X0 = 0.3, where the flux begins to decrease with decreasing
radius. If we still apply (22), this corresponds to the bound  < .016 or >a M0.9999 for
seeing a full timescale of amplitude decrease. This is consistent with our numerical experi-
ments, and we have quoted this value in the introduction.

The most likely astrophysical scenario for the formation of a near-horizon, quasi-circular
binary is that the orbiting body inspiraled from a much larger distance via gravitational-wave
emission. Some of these waves will be absorbed by the black hole and change its mass and
spin. If there is no other source of angular momentum spinning up the black hole, then this
places a bound on how extremal the black hole can be by the time the body reaches the near-
horizon region. Repeating the analysis of [31] for our quasi-circular inspiral, we find that an
initially extremal black hole will have a spin of m= -a M M1 0.043 by the time the
compact object enters the near-horizon regime. We require a M0.9999 in order for the
near-horizon waveform to be observed for one timescale, translating to a restriction

10 As long as we are outside the ISCO the precise value of near-extremal spin makes little difference to the flux at
fixed BL radius.
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m < ´ -M 2 10 3 on the mass ratio. This is no restriction for eLISA sources, but creates
some tension for LIGO inspirals. We emphasize, however, that our results for the near-
horizon portion are agnostic as to the formation scenario. We leave it to nature—and
observation—to determine whether near-horizon, near-extremal binaries exist at any given
mass ratio.

3.2. More general inspirals

Fully generic orbits can be characterized by three orbital parameters: the eccentricity e, semi-
latus rectum p, and inclination qinc. We use the definitions of [27]. While we leave the fully
generic case for future work, we take the opportunity to point out a number of interesting
features of eccentricity and inclination in the near-extreme case.

First, we consider spherical orbits [32], which have a constant coordinate radius x0 and
librate in θ about the equatorial plane up to some maximum value qinc. An inspiral which is
initially spherical will remain spherical throughout the entire evolution [25] and such inspirals
have been studied at non-extreme values of spin [26]. In the near-extremal case, there are
stable orbits in the near-horizon region provided q 25inc °. In such an inspiral, as the radius
of the orbit approaches the horizon, the polar libration frequency Wq (defined relative to BL
time t) approaches zero, while the orbital frequency Wj approaches the horizon frequency.
Figure 4 shows this behavior in a numerically computed inspiral along with the associated
gravitational waveform as an inset. In the near-horizon regime the waveform exhibits a
decaying envelope similar to the equatorial case with the addition of modulations relating the
polar libration of the inspiral. As the particle approaches the horizon the polar frequency tends
to zero and the associated modulations in the waveform lengthen. When the initial inclination
is small (not shown), the waveform closely matches the corresponding quasi-circular inspiral.

Eccentric inspirals present a numerical challenge because of the large number of radial
harmonics required for each ℓ m, mode in the near-horizon regime. For this reason we restrict
ourselves to exploring low eccentricity inspirals, leaving the more generic case for future

Figure 4. Evolution of the polar and azimuthal orbital frequencies of an inclined
(spherical) inspiral into a near-extremal Kerr black hole with - = -a M1 10 9. The
evolution begins at t=0 when =r M30 and q = 15inc °. The inset shows the near-
horizon portion of the associated face-on waveform with a decaying envelope
modulated by the polar librations of the inspiral.
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work. Our numerical results demonstrate the following. First, the quasi-circular inspiral is
stable to the introduction of small eccentricity for at least the first few timescales. In part-
icular, the radial motion of the eccentric inspiral closely tracks the orbital radius of a quasi-
circular inspiral—see figure 5. After a few timescales the eccentricity has typically evolved to
become of order the orbital radius (one naive measure of the breakdown of circularity), but
the waveform envelope still displays the characteristic amplitude decrease, and is especially
similar to the circular case near the end.

Second, the orbital eccentricity decreases for nearly the entire inspiral. This is in contrast
to the non-extremal case, where the eccentricity decreases for most of the evolution before
increasing as the separatrix (the analog of the ISCO) is approached [33]. In our near-extreme
inspiral we observe only a tiny uptick very near the separatrix. This behavior is in line with
the predictions and observations of [28].

Third, we note an unusual feature of highly eccentric inspirals in the near-extremal case:
inverted zoom-whirl behavior. In any inspiral, orbits near the separatrix display a zoom-whirl
character [28], with each orbital period containing a number of ‘whirls’ near an unstable
circular orbit and a ‘zoom’ out to large radii. Normally the whirl phase of the waveform is
louder, but in the near-extremal case the whirling occurs in the near-horizon region and the
amplitude is accordingly suppressed. The zoom takes the particle out of the near-horizon
region. Thus the zoom and whirl phases are ‘inverted’, with the zoom phase being of greater
amplitude.

4. Detectability

We now address detectability with ground- and space-based detectors. For the extreme mass-
ratio binaries detectable by eLISA, our leading order in the mass ratio calculation provides an
excellent approximation to the waveform. For the intermediate mass-ratios observable from
the ground, the reliability of the approximation is less clear. However, there is reason for

Figure 5. Evolution of a low eccentricity, equatorial inspiral in the near-horizon regime
of a Kerr black hole with = - -a M 1 10 9 (blue curve). Initially the orbital
eccentricity and semi-latus rectum are e0 = 0.01 and =p M1.20 , respectively. The
eccentric inspiral closely tracks a circular, equatorial inspiral (red curve) that starts with
an initial radius of =r p0 0. The inset shows the waveform associated with the eccentric
inspiral which has the characteristic exponentially decaying envelope modulated by the
radial librations of the inspiral.
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optimism in light of recent work showing that that leading-order black hole perturbation
theory does surprisingly well even at comparable mass ratios [34]. In what follows we assume
the validity of the approximation.

The beginning of an inspiral into a near-extremal black hole, before the body has reached
the near-horizon region, is almost identical to the corresponding inspiral into a more modestly
spinning black hole (figure 1). We can therefore use standard detectability estimates for this
portion; see, for example, [35] for discussion relevant to intermediate mass ratio inspiral
measured by LIGO, and [36] for recent discussion relevant to eLISA measurements. This
analysis suggests that Advanced LIGO could detect these sources out to a few hundred
megaparsecs, and eLISA could measure events to a redshift ~z 0.7.

Focusing on near-horizon inspiral, we have performed a basic analysis of the signal-to-
noise assuming that only this portion is seen (appendix A). We find that the horizon distances
are only modestly changed, which is very promising for both detectors. However, for LIGO,
there is the potential to confuse the signal with quasi-normal ringing (QNR) of a more
modestly spinning black hole. QNR is also an exponential decay with frequency set by the
horizon frequency (like NHI), but with the time constant set by the mass and spin of the black
hole (see, e.g., [37] for a review) instead of the two masses of the binary, equation (14). For
LIGO sources, the NHI timescale is comparable to QNR timescales of non-extremal black
holes—see the appendix for details. As such, there is potential to confuse NHI with the
ringdown of a more prosaic black hole.

We expect that this concern can be mitigated by taking into account the inspiral prior to
the NHI. The ISCO of a nearly extremal black hole is likely to be at much higher frequency
than the ISCO of the black hole one infers from the QNR interpretation; see the appendix for
an example. The incommensurate properties of the pre-NHI inspiral and the NHI interpreted
as QNR should signal that one has not correctly interpreted the system’s last gravitational
waves. Although further work is necessary to quantify how well LIGO can distinguish a
nearly extremal black hole from that is merely rapidly rotating, we are optimistic that this can
be done.

At the lower frequencies of a space-based detector like eLISA, there is no confusing NHI
with inspiral into a non-extremal black hole. First, the QNR timescale agrees with the NHI
timescale only when the ringing black hole is itself near-extremal11, so both interpretations
point to a rapidly spinning black hole. Second, the QNR timescale is not the whole story near
extremality: recent results suggest that the ringdown will feature a period of t1 decay [38,
39] or even turbulent behavior [40]. Finally, the NHI decay spends many orbits in the eLISA
band—indeed it is possible that a source could be in NHI for the entire eLISA lifetime—
offering much more promise to distinguish the signals using higher harmonics (e.g., seeing
the relativistic beaming of figure 3(b)). For other source parameters, we could also see the
earlier inspiral and the characteristic transition to near-horizon inspiral.

5. Gargantua

The title of our article makes reference to Christopher Nolan’s science-fiction epic Inter-
stellar, which features a black hole named Gargantua. Thorne [43] estimated that Gargantua
must have a mass of approximately M108 and a spin of at least ( ) - -J M1 10 14 2 in order
to enable key pieces of the film’s narrative. This puts Gargantua well within the near-extremal
regime studied here. The associated frequency of a near-horizon inspiral is 10−4 Hz (see

11 The longest QNR timescale is proportional to M near extremality [38–42], requiring  m~ M to match the
NHI timescale (14).
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equation (A10)), which is in-band for eLISA. If the companion were a 60 solar-mass black
hole like one recently observed [20], the decay timescale would be 12 yr (see equation (A17)).
The associated signal would therefore be visible for the entire eLISA lifetime. If Gargantua is
out there, eLISA just might find it.
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Appendix A. Detectability of near-horizon inspiral

In this appendix, we estimate the distance to which a gravitational-wave detector can measure
a near-horizon inspiral. We begin with a standard result for the signal-to-noise ratio (SNR) of
a measured gravitational-wave h(t):

∣ ˜( )∣
(∣ ∣)

( )ò=
-¥

¥
⎜ ⎟⎛
⎝

⎞
⎠

S

N

h f

S f
f2 d . A1

h

2 2

The quantity Sh( f ) is the 1-sided spectral density of detector noise, and ˜( )h f is the Fourier
transform of the waveform h(t). Our goal is not to be comprehensive, but rather to provide
reliable estimates of detectability, accurate to a factor ∼2. As such, we will neglect issues
related to the detector antenna pattern, and the location and orientation of the binary on the
sky (all of which affect our results by factors of order unity). We will also focus on the
simplest case of circular, equatorial inspiral. Generalizing to more complicated orbits and
realistic sky position and orientation is a substantial task that we defer to later analysis.

For circular and equatorial inspiral, the face-on and edge-on cases bound the possibilities,
so we will examine them separately. For face-on, the signal is almost entirely in the

∣ ∣= =l m 2 mode at frequency p= ´ Wf 2 2gw H , with functional form

( ) ( ) ( )
m

= Wt-h t
D

te sin 2 . A2t
FO FO H

Here, D is the distance to the system, andFO is the amplitude for the face-on case. Since the
signal is monochromatic, the spectral density of noise can be taken out of the integral.
Invoking Parseval’s theorem, we can then rewrite the SNR formula (A1) as
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2
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T2
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where T is the time over which the signal is measured. Using the waveform (A2) and the fact
that tW  1H , equation (A3) yields
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The leading correction to equation (A4) is [( ) ]tW -O H
1 .

For edge-on, a large number of modes make a significant contribution to the signal the
detector measures. The signal is dominated by modes with ∣ ∣=l m , which allows us to write
the signal as a sum of exponentially decaying sinusoids:
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Using this form as well as tW  1H , the SNR we find in this case is
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Systems will generally lie somewhere between these two extremes, which bound the possible
range.

To see what range this produces, consider measurements at threshold SNR rth, and use
equation (14) to rewrite τ in terms of M and μ. For the face-on case, we find

( )
( )

( )
r

m
p

=
-

W

t-
D

M

S

0.225 1 e
. A7

T

h
FO
max FO

th

2

H

For edge-on, we have
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To parameterize the wave’s amplitude, we compute the gravitational waveform as the small
body enters the near-horizon regime ( x 0.30 , see figure 2), and read off
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We have computed the edge-on amplitudes up to AEO
10 , but those beyondEO

5 only change the
distances we infer by ~5%. Note that these amplitudes continue to decrease as m increases.

A.1. Detectability by eLISA

Let us now consider plausible figures for a near-extreme inspiral observed by eLISA. Our
signal appears at harmonics of
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The eLISA sensitivity is expected to be approximately flat in its band of peak sensitivity, from
about  ´ - -f3 10 Hz 10 Hz3 1 . The strain spectral density at these frequencies is

( ) ´ - -S f 4 10 Hzh
40 1 (figure 12 of [16], noting that the vertical axis is the square root of

Sh). Most observable harmonics of fH will lie in this nearly flat band for ~ M M107 .
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Although detailed analysis will be needed to determine an appropriate threshold SNR, for
a monochromatic signal lasting ~105 cycles, it is likely to be of order 15. Let us consider a
small body of m = M10 spiraling into a black hole of = M M107 . For this case,
t m= M0.451 0.72 years. Using the amplitudes (A9), we find
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These figures suggest that the range of eLISA for nearly extremal inspiral are comparable to
the range that has been found for ‘ordinary’ extreme mass-ratio inspirals [16].

A.2. Detectability by LIGO

By equation (A10), we have =f 50 HzH if = M M320 . At this mass, the m=2 harmonic
radiates very close to the peak sensitivity of Advanced LIGO, where the spectral density of
noise in its final configuration is expected to reach ´ - -S 4 10 Hzh

46 1. Repeating12 our
analysis using LIGO noise levels, we find
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(Note that we use a lower threshold SNR here, since the number of cycles in band is smaller
—the signal is not spread out over as many cycles as in the eLISA case. Note also that the
scaling with M is quite rough, and only approximately accurate over the range

  M M M200 500 . Outside of this range, the signal moves to frequencies at which
the noise deviates significantly from our fiducial value.) The values (A14) and (A15) suggest
that it might be possible to see near-extremal black hole physics with LIGO, given nearly
extremal black holes of a few hundred solar masses.

A.3. Distinguishing NHI from QNR

The NHI waveform will unfortunately look very similar to QNR: both are exponentially
decaying sinusoids. As such, one should ask what the consequences are of confusing NHI for
QNR. For the case of detection by eLISA, we find that this confusion is essentially harmless:
even if we mistake NHI for QNR, we will conclude that we have observed processes
involving a nearly extremally rotating black hole. For LIGO, this confusion is not harmless,
and would lead us to conclude that we have observed inspiral into a non-extremal black hole.

12 Note that equations (A4) and (A6) strictly speaking do not apply in the LIGO case, since tWH is not large.
However, we find empirically that the error one makes using these formulas is percent level or smaller.
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To understand the consequences of these two varieties of confusion, let us examine the
exponential decay time for NHI:

( )

t m

m

=

=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟



M

M

M

M

0.451

0.023 sec
320

10
, A16

2

2

( )
m

=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

M

M

M
0.71 yr

10

10
. A17

7

2

In equation (A16), we use the fiducial parameters we selected for our LIGO distance
estimation; in equation (A17), we use our fiducial eLISA parameters.

For our LIGO parameters, this signal decays very quickly. The system only radiates
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cycles in the m=2 mode before its amplitude has fallen by a factor of e1 . Such a signal
would be indistinguishable from, and likely be confused with, the QNR of a much more
slowly spinning black hole. Using the fits given in [44], we find that our fiducial LIGO NHI
would be indistinguishable from ringdown for a black hole with mass = M M240 , spin

=a M 0.95. We note, however, that the inspiral preceding the NHI waveform is likely to
have properties inconsistent with such a relatively slowly spinning black hole. For example,
for a M320 black hole, the ISCO corresponds to an m=2 mode of f=55 Hz for

=a M 0.95, significantly smaller than the f=100 Hz value found in the near-extremal limit.
Although further analysis is necessary, it seems likely that the incommensurate characteristics
of the QNR interpretation of the NHI waves with the pre-NHI inspiral may allow us to probe
near-extremal black holes with LIGO.

The NHI signal is quite long-lived in the eLISA band. For our fiducial parameters, the
signal radiates
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7

cycles in the m=2 mode before its amplitude falls by e1 . Even if one attempted to interpret
this signal as QNR, its very slow falloff would lead one to conclude that the large black hole’s
spin is nearly extremal. For example, if one uses the fits given in [44], one finds that our
fiducial eLISA NHI signal looks like ringdown for a black hole with spin - -a M 1 10 10.
In other words, whether we interpret this signal as near horizon inspiral or as QNR, we
conclude that the black hole is nearly extremal.
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