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Abstract
Let A be an n X n real expanding matrix and D be a finite subset of R” with
0 € D. The family of maps { f4(x) = A~ (x + d) }4ep is called a self-affine iter-
ated function system (self-affine IFS). The self-affine set K = K(A, D) is the
unique compact set determined by (A, D) satisfying the set-valued equation
K = epfa(K). The number s = n In(#D)/ In(g) with g = |det(A)|, is the so-
called pseudo similarity dimension of K. As shown by He and Lau, one can
associate with A and any number s > 0 a natural pseudo Hausdorff measure
denoted by H;,. In this paper, we show that, if s is chosen to be the pseudo
similarity dimension of K, then the condition # (K) > 0 holds if and only
if the IFS {fs}uep satisfies the open set condition (OSC). This extends the
well-known result for the self-similar case that the OSC is equivalent to K
having positive Hausdorff measure H* for a suitable s. Furthermore, we relate
the exact value of pseudo Hausdorff measure H;,(K) to a notion of upper
s-density with respect to the pseudo norm w(x) associated with A for the
measure [, = limMﬁocdeMdM_l€D5d0+Ad1+m+AM_1dM_l in the case that #D <
|det Al.
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1. Introduction

Definition 1.1. Let M,(IR) denote the set of n x n matrices with real entries. A matrix A €
M, (R) is called expanding if all its eigenvalues )\; satisfy | ;| > 1. A self-affine set in R" is a
compact set K C R” satisfying the set-valued equation AK = | J,.p(K + d), where A € M, (R)
is an expanding matrix and D C R” is a finite set of distinct real vectors, which is called a digit
set. K is called a self-similar set if A is a similarity matrix, i.e. A = pR, where p > 1 and R is
an orthogonal matrix. To simplify the notations, we let ¢ = |det(A)|.

For an expanding matrix A € M,(R) and a digit set D C R", it has been shown that the pair
(A, D) can uniquely determine a self-affine set K := K(A, D) (see [1]). Given the pair (A, D),
define

fux) =A"'x+d), deD.

The family of maps {fy}asep is called a self-affine iterated function system (self-affine IFS).
An important property of these maps is that they are contractive with respect to a suitable norm
on R” (see [2]). It is clear that the self-affine set K := K(A, D) determined by the pair (A, D)
satisfies K = | ;.p fa(K).

Definition 1.2. For the pair (A, D) as above, we say that the IFS { f;}4cp satisfies the open
set condition (OSC) if there exists a non-empty bounded open set V such that

U cv and fu(V)nfo(V)=0 ford+#d €D.
deD

The OSC is the most important separation condition in the theory of IFS and it is thus very
useful to find conditions equivalent to it. When the IFS is self-similar, it is well-known [3] that
the OSC is equivalent to the self-similar set generated by the IFS having positive Hausdorff
measure. For the self-affine case, He and Lau [4] showed that if the OSC is satisfied, then
the corresponding self-affine set has positive pseudo Hausdorff measure. This last measure is
defined by using a pseudo norm constructed from the matrix A instead of the classical Euclidean
norm. In this paper, we prove that the OSC is indeed equivalent to the self-affine set generated
by the IFS having positive pseudo Hausdorff measure by showing that the converse also holds.

In the following, we always assume, without loss of generality, that 0 € D. For an integer
M > 1, consider the sets

M—1
Dy=<Y Aldj:djeDy, and Dy = | Du.
=0 M>1

Then Dy C Dy4 forany M > 1 since 0 € D. Combining our results with those proved by He
and Lau (theorem 4.4 in [4]), we provide some conditions equivalent to the OSC for self-affine
IFSs.

Theorem 1.1. The following conditions are equivalent.

(a) The IFS { fy}acp satisfies the OSC;

(b) 0 < H:(K) < 0o, where s = n In(#D)/In(g) and H:,(K) denotes the s-dimensional
pseudo Hausdorff measure of K generated by the IFS { f;}aep (the detailed definition
of H:,(K) is given in section 2);

(¢) #Dy = (#DWM and Dy, is a uniformly discrete set, i.e. there exists 6 > 0 such that
lx = y|l > & for any distinct elements x,y of Dw.
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For the proof of theorem 1.1, we utilize the connection between pseudo norm and Euclidean
norm as well as the technique used by Schief [3], Bishop and Peres [5] for the self-similar case.
We also would like to mention that there have been several equivalent characterizations for the
OSC under special cases given by Lagarias and Wang (theorem 1.1 in [2]), by He and Lau
(theorem 4.4 in [4]) and by Fu and Gabardo (theorem 3.2 in [6]).

In fractal geometry, one of the classical questions is to study the Hausdorff dimension and
the corresponding Hausdorff measure of the self-affine set K(A, D) determined by the pair
(A, D).

In the case that K(A, D) has positive Lebesgue measure and #D = |det A| € Z, K is called
a self-affine tile and the corresponding set D is called a tile digit set, where #D denotes the
number of elements in D. The Lebesgue measure and many aspects of the theory of self-
affine tiles including the structure and tiling properties, the connection to wavelet theory, the
fractal structure of the boundaries and the classification of tile digit sets have been investigated
thoroughly (see e.g. [2, 7-14]).

The situation becomes more complicate when #D > g :=|det A| because the sets K + d,
d € D, might overlap. He ef al [15] considered the problem as to whether or not the Lebesgue
measure of K(A, D) is positive for this case. Qiu [16] provided an algorithm for calculating the
Hausdorff measure of a special class of Cantor sets K(A, D) C R with overlaps.

It is easy to see that the Lebesgue measure of K(A, D) is 0 if #D < ¢, a situation which has
motivated many researchers to study the Hausdorff dimension and Hausdorff measure of such
sets K(A, D). For self-similar sets satisfying certain separating conditions (e.g. open set condi-
tion [17], weak separation condition [18, 19], finite type condition [20]), there exist methods
to calculate their Hausdorff dimensions [15, 17, 20, 21] and the corresponding Hausdorff mea-
sures [6, 22, 23-28]. However, no many results are available in that direction for self-affine sets.
The difficulty stems from the non-uniform contraction in different directions, in contrast to the
self-similar case where the contraction is uniform in every direction. In [4], He and Lau defined
a pseudo norm w(x) associated with the matrix A and replaced the Euclidean norm by this
pseudo norm to define the Hausdorff dimension and the Hausdorff measure for subsets in R".
They called these the pseudo Hausdorff dimension dimj; and the pseudo Hausdorff measure
‘Hs,, respectively. This setup gives a convenient estimation to the classical Hausdorff dimension
of K(A, D) and, furthermore, it makes K(A, D) have a structure similar to that of a self-similar
set since the pseudo norm defined in terms of A absorbs the non-uniform contractivity from A.

In this paper, we are interested in the computation of the pseudo Hausdorff measure of
self-affine sets in the case that #D < ¢. This is motivated by the results in [6], which gave
an exact expression for the Lebesgue measure of K(A, D) with #D = ¢ and the Hausdorff
measure of the self-similar set K(A, D) associated with its similarity dimension in the case that
#D < g. One of the main results of this paper is to relate the pseudo Hausdorff measure of
K(A, D), namely H: (K(A, D)) where s = n In(#D)/ In(g) is the pseudo similarity dimension
of K, to a notion of upper density with respect to (w.r.t.) w(x) for the measure p which is
defined by

n = lim Z 6d0+Ad1+“‘+AM71dM,1‘ (11)

M—o00

The measure 1 defined in (1.1) is indeed a counting measure on D,, which counts the
number of repetitions. It is different from the invariant measure o determined by the pair (A, D),
which is defined in (3.1).

Theorem 1.2. Let K := K(A, D) be a self-affine set and let s = n In(#D)/ In(q) be the
pseudo similarity dimension of K. Then H:,(K) = (€, ,(1))~", where 1 is defined by (1.1) and

w,s
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517;,5(#) is the upper s-density of |1 w.r.t. w(x) defined by

| )
Eosu)=lim ~sup o s
ot =00 diaJnu:UI;r>0 (diam,, U)*

where the supremum is over all convex sets U with diam,,U > r > 0 w.r.t. w(x) and diam,,U
is defined in section 2 by using w(x) instead of the classical Euclidean norm in the definition
of diamU.

We will divide the proof of theorem 1.2 into two cases, (a) and (b), with the case (a) cor-
responding to the situation where the IFS { f;},ep satisfies the OSC and the case (b) where it
does not.

It follows from theorem 1.1 that if the IFS { f;}4cp satisfies the OSC, then K := K(A, D) is
an s-set w.r.t. w(x). By analysing the upper convex s-density w.r.t. w(x) of points in K, we have
the following expression of H;,(K).

Lemma 1.3. Let K :=K(A, D) be the self-affine set associated with an IFS { f;}aep satis-
fying the OSC. Let s = n In(#D)/ In(q) and let o be the invariant measure supported on K

satisfying
/fda:#%Z/fofddo

deD

or any compactly supported continuous function f on R". Then, for any ry > 0,
p pp

_ o(U)
HLK) "= sup
) 0<dia.mur,)U <rg (dlamw (])Y

where the supremum is taken over all convex sets U with U (K # () and 0 < diam,,U < ry.

For case (a), theorem 1.2 will follow from lemma 1.3 after we prove that

U
51j5(u) - su L .
’ O<diam,, U<r, (diam,, U)*

For case (b), we show EJ,;(U) = oo by using the third equivalent condition in theorem 1.1.
The paper is organized as follows. In section 2, we collect some definitions and some known
results on pseudo norm, pseudo Hausdorff dimension and pseudo Hausdorff measures that we
will use. In section 3, we prove theorem 1.1. Some properties of upper convex s-density w.r.t.
w(x) of points in K(A, D) and the upper s-density of p w.r.t. w(x) are investigated respectively

in sections 4 and in 5. In section 6, lemma 1.3 and theorem 1.2 are proved.
2. Preliminaries

In this section, we recall the notions of pseudo norm and pseudo Hausdorff measure defined
in [4] and collect some known results about these that we will use later.

Let A € M,(R) be expanding with ¢ := |det A| € R. We can assume without loss of gen-
erality that A has the property that ||x|| < [|Ax|| and equality holds only for x = 0, where the
norm || - || is the Euclidean norm, since || - || in R” can be renormed with an equivalent norm
I - |I" so that ||x||" < ||Ax]||’ for all 0 # x € R" [2]. He and Lau [4] introduced a pseudo norm
w(x) associated with A as follows:

e For0 < ¢ < 1/2,choose a positive function ¢;(x) € C*(R") with supportin B; := B(0, §)
(the closed ball centred at 0 with radius §) such that ¢5(x) = ¢s(—x) and f Ps(x),dx = 1.
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e Let V =AB;\B; and h(x) = xy * ¢s(x). Define

ww = 3 g Th(A), xeR". @1

j==o0

Note that V is an annular region by our convention that ||x|| < ||Ax|| for x # 0. It is clear that
R"\{0} = |J;czA*V, where the union is disjoint.

Proposition 2.1 ([4]). The w(x) defined in (2.1) is a C* function on R" and satisfies

(a) wix) =w(—x), wx) =0« x=0;

(b) wAx) = ¢"""w(x), x € R";

(c) There exists an integer p > 0 such that for each x € R", the sum in (2.1) has at most p
non-zero terms and o < w(x) < pg?",x € V, where o = infycy h(x) > 0.

He and Lau [4] showed that the pseudo norm w(x) is comparable with the Euclidean norm
[|x]| through Aax and Amin, the maximal and minimal moduli of the eigenvalues of A. For more
details about the properties of w(x) and its relationship with the Euclidean norm, please refer
to [4, 29, 30].

Proposition 2.2 ([4]). Let A € M,(R) be an expanding matrix with |det A| = g and let
w(x) be a pseudo norm associated with A. Then for any 0 < € < Amin — 1, there exists C > 0
(depending on €) such that

C*l||xH1nq/(’11n(/\max+€)) <wk) < CHXHIHQ/(V'IH()\min*f))’ HxH >1,

C*l||xH1n‘I/(”1n(/\min*€)) < wk) < C||x|\1“ q/(n ln()\max‘i‘f))’ ||XH <.

Unlike Euclidean norm, the triangle inequality is not satisfied for pseudo norm any more.
However, we have the following inequality instead.

Lemma 2.3 ([4]). There exists B > 0 such that for any x,y € R",

w(x +y) < fmax{w(x), wy)}.

Furthermore, we can modify lemma 2.3 into the following lemma, which will be used in
section 5.

Lemma 2.4. Forany e > 0, there is a positive number \. > 1 such that for any x1,x, € R"
with w(xy) > Aw(xy), wx; + x2) < (1 + €)w(x,) holds.

Proof. LetV = AB;\B;.Denote § = max{||x||: x € V} and V| = ey B(x, 1). Obviously,
w € C(Vy) since w € C*(R"). So, for any € > 0, there exists a number § with 0 < § < 1 such
that w(z;) — w(z2) < ae whenever zj,2, € V| with ||z; — 22]| < 9, where o = inf,cyh(x) as
introduced in proposition 2.1. Choose A, > 1 large enough such that

nln(\ a/(pg?’™) N —In(6/6)
Ing “ In Amin

>
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where p, g are the same as in proposition 2.1. For any x1, x, € R” with w(x;) > Acw(x;), with-
out loss of generality, assume x; # 0 and write x; = A"y, and x, = A"y, with [;,], € Z and
y1,y2 € V. Itis easy to cheque that w(x;) = q"'/” w(y;) fori = 1,2, and hence

g= M > A wn) fw(z) = A/ (g™,
since o < w(y;) < pg”/" for i = 1,2 by proposition 2.1(c). This gives that

n In(A a/(pg?'™)
Ing

L—1 >

—1n(6/6)

In Amin

and thus [, — [} > > 0. Hence

A2y = [[A™H2 | < AL g < 6.

So we have
w(x + x2) = wA (A 2y + y2)) = g2 w@A Ry + ) < ¢ (W) + ace)
since y;,y, € V and ||A" "2y, || < 6, and thus
wx + 1) < (146 g7 wi) = (1 + e w(xy).

O

Next, we come to the definition of pseudo Hausdorff measure and pseudo Hausdorff
dimension. For a given set £ C R”, the diameter of E w.r.t. w(x) is defined by

diam,E = sup{w(x — y): x,y € E}.

A collection of sets {U;}2, in R" is called a 6-cover of E C R" w.r.t. w(x)if E C | J;2, U; and
diam,, U; < 6. Such a collection is called an open d-cover of E if U, is open for all i > 1. For
ECR"ands > 0,6 > 0, define

%5(E) = inf {Z (diam,, U,)*: {U;}2, 1isad — coverof Ew.rt. w(x)} )
i=1

Since H;, ;(E) is increasing when ¢ tends to 0, we can define the s-dimensional Hausdorff
measure of E w.rt. w(x) (the s-dimensional pseudo Hausdorff measure of E) by

H:(E) = lim H, 5(E) = sup H;, 5(E).
=0 50

It is direct to see that ), is a Borel measure on R”". By proposition 2.1(b), it is easy to obtain
that

Hi(AE) = q'"HS, (E). 2.2)

As usual, we define the Hausdorff dimension of E w.r.t. w(x) (the pseudo Hausdorff dimension
of E) to be the quantity

dimyy E = inf{s: H}(E) = 0} = sup{s: H},(E) = co}.

w
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This setup gives a convenient estimation of the classical Hausdorff dimension and makes a
self-affine set have a structure as a self-similar set since the pseudo norm defined in terms of
A absorbs the non-uniform contractivity from A.

Theorem 2.5 ([4]). Let A € M,(R) be an expanding matrix with |det A| = g € R and let
w(x) be a pseudo norm associated with A. Then for any subset E C R",

Ing
nln >\min

Ing

mdim}f,E < dimy E <

dimy, E,

where Amax, Amin denote the maximal and minimal moduli of the eigenvalues of A, and dimyE
is the classical Hausdorff dimension of E.

w

It follows immediately that dimjy; £ = dimy E when Apax = Amin. This includes the special
case that A is a similarity matrix.

3. Proof of theorem 1.1

In the following, let A € M,,(R) be expanding with |detA| = g and 0 € D C R” be a digit set.
Let K :=K(A, D) be a self-affine set associated with (A, D). We always assume that w(x) is a
pseudo norm associated with A.

He and Lau [4] proved the direction ‘OSC = 0 < H; (K) < oo’ for the self-affine case.

Theorem 3.1 ([4]). Suppose that the IFS {fi}acp satisfies the OSC. Then dimy; K =
s:=n In(#D)/In(q) and 0 < H3 (K) < oc.

In particular, if A is a similarity matrix with scaling factor p > 1, then s:= In(#D)/ In(p)
is the similarity dimension of the self-similar set K(A,D). For consistency, we call
s:=nIn(#D)/ In(g) the pseudo similarity dimension of the self-affine set K(A, D).

To prove the other direction ‘0 < H} (K) < oo = OSC’, lemmas 3.2 and 3.6 below are

needed. It is well-known ([1]) that the IFS { f;}sep determines a unique Borel probability
measure o supported on the set K(A, D) satisfying

1
fdo= 5" | fofudo, G.1)
/ g #Dd;/ “

for any compactly supported continuous function f on R". We say that o has no overlap if
o(fa(K)N fy(K)) = 0ford # d € D.Lemma 3.2 and its proof show that if the self-affine set
K has positive pseudo Hausdorff measure associated with the dimension s :=n In(#D)/ In(g),
then the invariant measure o has no overlap.

Lemma3.2. Suppose that0 < H: (K) < oo with s:=n In(#D)/ In(qg) and o is a self-affine
measure defined in (3.1). Then

o= (H,(K) "M, | K,
(i.e. o is the restriction of H! to K normalized so as to give o(K) = 1).

w

Proof. For any Borel subset E C R” and d € D, we have

He(f (E) = Ho(AE — d) = Hi,(AE) = ¢"/"H,(E) = (#D) H,, (E).
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Similarly, H5,(f4(E)) = %HJU(E). Then, we have

u

Mo (K) = s, (U fd(K>> <D ML (fuK)

deD deD

1
=#D. —H' (K) = S’
#D - HIK) =W,

This implies that H (f4(K) N f#(K) = 0 for d # d' € D since 0 < H: (K) < oo. Then for
any Borel set E,

(K).

1
H(ENK) =Y HL(EN fuK) =) #—DH;(f;%E) NK).

deD deD

This proves that 7! | K is invariant for the IFS { f;}4ep and thus the probablility measure
(HS,(K))~'HS, | K coincides with o as this last measure is unique. O

w

For E,F C R" and z € R", we let

D(E,F)=inf{d(x,y): x € E,y € F}
D(z,E)=D({z},E) and D(E,z) = D(E,{z}).

where d denotes the distance induced by the Euclidean norm. The Hausdorf{f distance between
compact sets E, F' C R" is denoted by Dy/(E, F) and defined by

Dy (E, F) = max {sup D(x, F),sup D(E, y)} .

x€E yeF

Denote Comp(R") the set of compact subsets in R”. Then Blaschke selection theorem [5]
implies that

Theorem 3.3 ([5]). (Comp(R™), Dy) is a compact metric space.
We use the pseudo norm to replace the Euclidean norm and let

D,(E,F) = inf{d,,(x,y):=w(x—y): x €E,y € F},
D,(z,E) = Dw({Z}: E) and D (E,z) = D,(E, {Z})

Define the Hausdorff distance w.r.t. w(x) between compact sets E and F in R” by

DH,W(Ea F) = max {Supr(Xa F), Sllpr(E, y)} .
xeE yeF

Denote U, (x,€):= {y € R": d,(x,y) < €} to be the open e-neighbourhood of x € R” w.r.t.
w(x) and U, (F,€) = [ J{Up(x,€): x € F}. Let fy, fa,..., fn be the IFS associated with
the expanding matrix A € M,(R) and the digit set D = {d),ds,...,dy} CR". Let X =
{1,2,...,N} and " = {(i1ip. . .iw): 1 <i; < N} for m > 1. Write * = | J,>0X" with
¥0:=0. Fori= (i1ir...iy) and j = (j1/» . .. ji) in ©*, we use the notation ij for the element
(iviz - . Twjija - - - Jrx) € X7, and say thati and j are incomparable if there exists no k such that
i = jk or j = ik. It follows from proposition 2.1(b) that for any i € X

w(fi®) — fi) = g Tw(x — y). (3.2)
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Letr = q’%. Fori € X", m > 1, the length of i is denoted by [i| = m. Define

m
n

fi=fiof, --of,, Ki=fiK) and r=rll=g".

It is obvious that, for any m > 1, K = J;.s» Ki. Particularly, for i, j, k € ¥*, it follows from
(3.2) that we can get some elementary property on diam,,, D,, and D, related to the IFS maps
fx. For later use, we collect them as follows.

Proposition 3.4. Giveni,j,k € ¥*, we have the following identities.
diam,,(K;) = rlldiam,, K,

Do (fi(K), fi(K;)) = r*ID, (K;, K;),
Dy w(f(K), fx(Ky)) = ¥ Dy 0 (Ki, Kj).

According to lemma 3.2, it is direct to get the following result.

Corollary 3.5. Suppose that0 < H: (K) < oo with s:=n In(#D)/ In(q). Theni, j € ¥* are
incomparable if and only if H3 (K; N K;) = (.

Also if we admit only open sets in the covers of E, then H;, 4(E) (also H;,(E)) does not
change.

Lemma 3.6. ForE CR"ands > 0, ) > 0, define

" 5(E) inf {Z (diam,, U,)* : {U;}2, isanopend — cover of Ew.rt. w(x)} .

i=1
Then ﬁfv,(F(E) w J(E)

Proof. It is obvious that H; ;(E) < H;, J(E) For any € > 0, by the definition of #; 5(E),
there exists a d-cover {U;}°, of E w.r.t. w(x) such that

Mo, o(E) > Z (diam,, U;)* — e.

i=1

Denote U(U;, 1) = {y € R": ||y — x|| < 1 forsomex € U;} to be the open 1-neighbourhood
of U;. For the above € > 0, by using w(x) € C(U(Uj, 1)), there exists 6; > 0 such that |w(x) —
w(y)| < diam,,(U;)e whenever ||x — y|| < §; and x,y € U(U;, 1). Take &/ = min{d;, 1} and

Vi=U <U,, 2). Then U; C V; C U(U;,1) and V; is open. For any zj,z; € V;, by the

definition of V;, there exist x;,x, € U; such that ||x; — z;]| < 7’ Jj = 1,2. This and w(x) €

C(V;) imply that
w(z) — 22) < w(x; — xp) + diam,,(U;)e < diam,,(U;) + diam,,(U))e < (1 +¢€)d. (3.3)

It follows from (3.3) that diam(V;) < (1 + e)diam,,(U;) < (1 + €)d since 7,20 € V; are
arbitrary. Using the definition of H;, ;,

Hoyop(B) < Y (diam,, Vi)' < (1 + €)' (diam,, Up)*

(I + &) (Hy, 5(E) + o).

NN

Letting € — 0, one can get ’Hu S(B) < Hy, 5(E). O
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To prove the direction ‘0 < H; (K) < oo = OSC’, we use the idea due to [3, 5] for the
self-similar case and lemma 2.3 on the connection between Pseudo norm and Euclidean
norm.

Theorem 3.7. If 0 < H: (K(A, D)) < oo with s:= nIn(#D)/ In(q), then the IFS {fa}acp
satisfies the OSC.

Proof. Letr > 0. By the definition of £ (K) and lemma 3.6, there exists a sequence of open
sets {U; };>1 such that

U= JUioKk and ) (diam, Uy’ < (1 + YH},(K).
i=1 i=1

O

Claim 1. Denote § = D, (K, U®), where U® denotes the complement of U. Then for all
incomparable i, j with rj > trj, we have Dy ,,(Ki, Kj) > dr;.

Proof. Suppose that claim 1 does not hold. Then there exist a pair i, j with r; > tr; and
Dy (K, Kj) < dr;. Since clearly D, (K, (fi(U))°) = dri, we get

Kj C Uy(K;, 0rp) C fi(U).
This implies that
Ho(K)ri (14 2) < Hy (K) (rf + 1) = H,(K) + H,(K;)
= H,, (K UKj) < i (diam,, f;(U)))*

i=1

=37 (iam, Up* < Hy,(K) 73 (1 + 1),
i=1

which is a contradiction. (The second to the last inequality follows from the fact that K; U K C
fi(U) and the second equality is obtained from corollary 3.5). 0

ForO<b<1,wesetl,={i€X*": il < b < rm’l}. The elements of I, are obviously
incomparable and satisfy K = UierKi.

Fix 0 < e < min{diam, K, 3 diam, K, (3 diam,K)?, \min — 1}, where /3 satisfies the
inequality in lemma 2.3 and A, is the minimal moduli of the eigenvalues of A. For k € X7,
denote Gx = U, (K, rx). Note that for any k > 1, the pair (A,A"*D) can determine a self-
affine set A*K if K is determined by the pair (A, D) and the IFS { f;}4cp satisfies the OSC
if and only if { f, +,}aep satisfies the OSC. To simplify the notations, WLOG we can assume
that diam,,K is small enough such that diam,,Gx < 1 for any k € X* since we can always use
A*K and {f, «, }aep instead of K and { f;} 4ep if diam,,K is not small enough.

Claim 2. Denote I(k) = {i € lgiam,G,: Ki N Gk # 0}, and v = sup #/(k). Then y < co.
K

Proof. For the given € > 0, let C; and «;, i = 1,2, be the number as in proposition 2.2
satisfying the inequality that ||x — y|| < (Cid,(x, y))% for ||x — y|| > 1and ||x — y|| < 1 respec-
tively. Take C = C; and o = « if (C;5*(diam,,K)?)*! > (C,3*(diam,,K)*)*? and if not, we
take C = C, and a = an. Let B be the closed (C3*(diam,,K)?)*-neighbourhood of K, i.e.
B = {x € R": D(x,K) < (C3*(diam,,K)*)*}. Then for any k € *, it holds that

fi (K € B, Vi€ k). (3.4)
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In fact, noticing that K; N Gy # 0 if i € I(K), for any y € Kj, it follows from the definition of
d,, and lemma 2.3 that,

D, (y, Ky) < Bmax{d,(y,2), D(z, Kx)} <  max{diam, K, er},
where z is any point in K; N G. This gives that
D.(fi, '), K) < Bmax{r_ ' ridiam,K, }. (3.3)

On the other hand, if i € I(k), then i € l4jam,G, and thus we have r; < diam,Gx by the
definition of /giam, G, - Next, we will utilize lemma 2.3 to give an estimation on diam,,Gy. Let
21,22 € Gg. Then there exist xj, x, € Ky satisfying that d,,(z;, x;) < erg fori = 1,2. By lemma
2.3, we obtain

dy(z1,22) = w(z1 — X1 + X1 — X2 + X2 — 22)
< fmax{w(z; — x1), wx; — X2 + x2 — 22)}
< Bmax{w(z; — x1), Bmax{w(x; — x2), wlxa — 22)}}
< S max{erg, S max{rgdiam, K, er¢} }
< ﬂzrkdiamwl( .

The last inequality is obtained by the restriction of e. This and r; < diam,,Gx give r; <
?ridiam,, K. Substituting this into (3.5), one can get D,,(f, ' (), K) < 3*(diam,,K)?. Then
by using proposition 2.2, we have

o (CiDy(fi 'O, KN™,  ifD(fi '), K) > 1,
DA ;) Ky < { (CDL(f 0L K™, D, 0. K) < 1
< (CB*(diam,, K)*)",

which proves (3.4).
Since for any i, j € X", rj = rj = r’". Then rj > rir holds. We may apply claim 1 for r = r
to get & > 0 such that

Dy (K, Kj) = 0r; = Orgrdiam,,G

for any distinct i, j € I(k), where G = U, (K, €). Hence, by proposition 3.4, we have
Dyg(fi (K, fi ' (Kp) > 6 rdiam,,G

and
Du(fi (K, fi ' (Kp) > (C' 6 r diam, G)”,

with some positive C', o foralli, j € I(k) by proposition 2.2. By theorem 3.3, #1(k) is bounded
by the maximal number of compact subsets of B which are (C'drdiam,, G)”‘/-separated in the
Hausdorff metric, which is obviously independent of k € »*. 0

Claim 3. Choose k such that v = #I(k). Then for any j € ¥*, I(jk) = {ji: i € I(k)}.
Proof. Notice that () # K; N Gy implies

0 # fi(Ki N Gy) = fi(K) N fi(G) = Kji N f(Uy(Kx, €71))
= Kji N Uy(Kjk, €rik) = Kji N Gik.

This shows that {ji: i € I(k)} C I(jk). On the other hand, we further note that #{ji: i ¢
I(k)} = #1(k) = ~. By the selection of k and the maximality of #/(k), claim 3 follows. O
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Claim4. D,(Kk, K;) > ers forany j # i and any i € X*.

Proof. Forany word jl with j # i, claim 3 implies that j1 ¢ I(iik). By the definition of /(iik),
for j1 € lgiam, G4 K N Giik = . Hence, Dy, (K i, K 1) > erji. Noticing that

K; C U{K_ﬂ 2 1€ Tgiam, Gy }»
then claim 4 follows. O

Claim 5. Fori € ¥*, denote G = U, (Ki, 3~ 'er;). Then U = UjGE*G}k gives the OSC.

Proof. Clearly, U is open and Kx C Gy C U. For each i,

Wy = #G = Gy cu.
jex* jexr*
Fori # j, fU) N f;(U) = 0. Indeed, if not, there exist i, j such that Gj N Gy # (). Lety €
Gy N ijk. Then there existy; € Kj and y, € K jji such that w(y — y;) < B Ler and w(y —
) < B ler Jik- Without loss of generality, we assume that rj; > 7. Then we have w(y; —
¥2) < erik. Hence, D,,(Ki, K ;) < erjk, which contradicts claim 4. O

This completes the proof of theorem 3.7. 0
There is another equivalent condition for the OSC provided by He and Lau in [4].

Theorem 3.8 ([4]). Let A € M,(R) be expanding and let D C R”" be a digit set. Then the
IFS { f4}aep satisfies the OSC if and only if #Dy = (#D)M and D, is a uniformly discrete
set.

Theorem 3.7 together with theorems 3.8 and 3.1 imply theorem 1.1.

4. The upper convex density w.r.t. w(x)

In this section, we introduce the notion of s-sets w.r.t. the pseudo norm w(x), and study the
upper convex density of an s-set w.r.t. w(x) at certain points. These are definitions analogous
to those corresponding to the Euclidean norm. (See, for example, section 2 in [17].)

A subset E C R” is called an s-set (0 < s < n) w.r.t. w(x) if E is H -measurable and 0 <

HS,(E) < oco. The upper convex s-density of an s-set E w.r.t. w(x) at x is defined as

S(ENU
Dy (Ex=1lm sp wEND
=0 0<diam,, U<rxeU (diam,, U)!

where the supremum is over all convex sets U with x € U and 0 < diam,,U < r, and the limit
exists obviously. We have the following result similar to theorems 2.2 and 2.3 in [17].

Theorem 4.1. I E is an s-set w.r.t. w(x) in R", then D}, (E,x) = 1 at H;,-almost all x € E
and Dy, (E,x) = 0 at H} -almost all x € E°.

We will prove theorem 4.1 by showing that D;, .(E, x) = 0 at H;,-almost all x € E° (lemma
4.4)and Dy, (E,x) = 1 at H;,-almost all x € E (lemma 4.5) respectively. We need an analogue
of Vitali covering theorem [17] and the following lemma. We should mention that the sets

encountered in the following can always be represented in terms of known H; -measurable
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sets using combinations of lim, lim, countable unions and intersections. So without explicit
mention in this section, we always assume that the sets involved are H{ -measurable.

Lemma 4.2. Let E C R" be H; -measurable with H (E) < +oc and let € > 0. Then there

w

exists p > 0, depending only on E and €, such that for any collection of Borel sets {U;}° | with
0 < diam,,U; < p, we have

He, <E nJ U,-) <) (diam, Uy)' +&.

Proof. By the definition that /{{ = %133 H! <, we may choose p > 0 such that

w,0°

M (E) < diam, (W) + £/2 (4.1)

for any p-cover {W;} of E w.r.t. w(x). Given Borel sets {U;} with 0 < diam,,(U;) < p, by the
definition of #,, we can find a p-cover {V;} of E\|J,U; w.r.t. w(x) satisfying

H,E\JUn +2/2> ) diam,, (V).

Then {U;} U {V;} is a p-cover of E w.r.t. w(x), and using (4.1), we have

H(E) < diam, (Up) + Y diam,, (Vi) + /2.

Hence,

H, (E nJ U,-) =M}, (E) — H,, (E\U U,»)
| < Z diam,,(U;) + zl: diam,,(V;) +¢/2 — Z diam,,(V;) +¢/2

= Z diam,,(U;) + ¢.
! O

A collection of sets V is called a Vitali class for E w.r.t. w(x) if for each x € E and § > 0,
there exists U € V with x € U and 0 < diam,,U < §.

Theorem 4.3 (Vitali covering theorem).

(a) Let E be an H,-measurable subset of R" and let V be a Vitali class of closed sets for E
w.r.t. w(x). Then we may select a (finite or countable) disjoint sequence U; from ) such
that either " (diam,, U;)* = oo or H:,(E\|J,U;) = 0.

(b) If H3,(E) < 400, then for any given € > 0, we may also require that

Ho(E) < (diam, Uy + .

Proof.
(a) Fix p > 0. We may assume that diam,U < pforallU € V.LetU; € Vand Uy NE # ().
We choose U;, i > 2 inductively. Suppose that Uy, . . ., U, have been chosen, and let
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d, =sup{diam,U: U€V and UNU; =0, i=12,...,m}.

Note that {d,, },,>1 is decreasing. If d,, = 0, then E C |JI", U;. Indeed, if there existed a point
x € E\U/Z, U, then, letting

1. "
o 3 inf{w(x—y), ye€ ,L:JI U} >0,

we could find U € Vsuchthatx € Uand0 < diam,,U < d,, contradicting the fact that d,, = 0.
So (a) follows and the process terminates. Otherwise, let U,,+1 € V be a set satisfying U,,11 N
(U, U;) = 0 and diam,,(Up41) = 2dy.

Suppose that the process continues indefinitely and that > (diam,, U;)* < co. For each i, let
B; be a pseudo ball centred in U; with radius 2 3 diam,,(U;), where /3 is the constant in lemma
2.3. We claim that for every k > 1,

k o0
E\(Juic | B (4.2)
i=1

i=k+1

In fact, for x € E\Uf:1 U;, there exists U € V with x € U and U N (Ule Ui) = (). By the

assumption that > (diam,,U;)* < co, we obtain that lim; ,..diam,, U; = 0. Hence, we have
diam,, U > 2 diam,, Uy > dy_; for some ¢ > k+2. If UNU; = () for k < j < ¢ and thus for
1 < j< ¢ —1,it would follow that

diam,U > 2diam,U; > d;,_; > diam,, U,

a contradiction. Let thus i be the smallest integer j with k < j < ¢ suchthat U N U; # (). Since
UNU;=0forl < j<i—1,wehave

diam, U < d;_1 < 2diam,U,;.

By elementary geometry, we have U C B, and (4.2) follows.
Thus, if § > 0,

0 k o0 0
s (E\U U,»> <H, (E\U U,»> < ) (diam,B)' <2'8* ) (diam, Up)',
i=1 i=1 i=k+1 i=k+1

provided that k is large enough to ensure that diam,,B; < ¢ for i > k. Hence, for all § > 0,

fu,é <E\[OJ Uz) =0.

So s, (E\U:Z, U;) = 0 which proves (a).

(b) Suppose that p chosen at the beginning of the proof is the number corresponding to € and
E giveninlemma4.2. If ) " (diam,, U;)* = +o0, then (b) is obvious. Otherwise, by (a) and
lemma 4.2, we obtain
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M (E)=H,, <E\U U | +H, (5 n (U Ul->>
i=1 i=1

[o.¢] [o.¢]

U | < Z (diam,, U;)* + €.

1 i=1

=0+H, <Em

1

O

Lemma 4.4. IfE is an s-set w.r.t. w(x) in R", then D

w,c

(E,x) = 0 for H;,-almost all x € E°.

Proof. Fix a > 0, we show that the measurable set F = {x ¢ E: D} (E,x) > a} has zero
pseudo Hausdorff measure. By the regularity of 7!, for any given § > 0, there exists a closed
set E; C E such that H$ (E\E;) < 6. For p > 0, let

V = {Uclosed & convex: 0 < diam,,U < p, UNE, =0, H, (ENU)> a(diam,U)"}.

Then V is a Vitali class of closed sets for F w.r.t. w(x). It follows from theorem 4.3(a)
that we can find a disjoint sequence of sets {U;} in V with either Y (diam,, U;)’ = +oo or
H3, (F\U;U:) = 0. However, by the definition of V,

. s 1 s _ 1. ,
> (diam,, Up)* < azj:’}-{“,(E NU) = —H, (E n U U,)

l

1 5
< —HI(E\E)) < — < +o0.
a a

This implies that H$, (F\(J,U;) = 0, and thus we have

w

M) <M, <F\U U,»> e ( ral U,»>
S Hy (F\U Ui) + ) (diam, U)' < g +0.

This is true for any § > 0 and any p > 0. So .} (F) = 0. O

Lemma 4.5. IfE is an s-set w.r.t. w(x) in R", then D’

w,c

(E,x) =1 at H} -almost all x € E.

Proof. Firstly, we use the definition of pseudo Hausdorff measure w.r.t. w(x) to show that
Dy, (E,x) > lae.in E. Take « < 1 and p > 0. Let

F={x€e EH(ENU) < a(diam,U)’ forall convex U withx € U anddiam,, U < p}.
For any € > 0, we may find a p-cover of F by convex sets {U;} such that
> (diam, Up)* < Hi,(F) + .

Hence, assuming that each U; contains some points of F' and using the definition of F, we
obtain

H(F) <D HLFNU) <Y HLW(ENU) < @) (diam, Up)' < o (H),(F) + €).
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Since o < 1 and the outer inequality holds for all e > 0, we conclude that H; (F) = 0. We may
define such F for any p > 0. So D}, .(E,x) > « for a.e. x € E by the definition. This is true for

w,c
all @ < 1, so we conclude that Dj, (E,x) > 1 a.e.in E.

Secondly, we use a Vitali method to show that Dy, (E,x) < 1 ae. in E. Given a > 1, let

F:={x € E: D], (E,x) > a} be a measurable subset of £ and let
Fy={x € F: D, (E\F,x) =0}.

Then H$,(F\Fy) = 0 by lemma 4.4. By the definition of upper convex s-density, for x € Fy,
we have

D3, (F,x) > D5, (E,x) — D, (E\F,x) > a.

w,c

Thus,
V = {Uclosed & convex: H; (F N U) > «(diam,U)*} (4.3)

is a Vitali class for Fy. Then, by theorem 4.3(b), for any given £ > 0, we can find a disjoint
sequence {U;}; in V such that 3 (F) < ) _,(diam,,U;)’ 4 €. By (4.3), we obtain that

w

1 1
Mo\ (F) = Hi(Fo) < > (diam, Up)' +& < =Y HL,(FN Uy +e < —Hy(F) +e.
; « ; «

This inequality holds for any € > 0. Hence, we have H; (F) = 0 if o > 1 as required. U

Theorem 3.1 implies that if the IFS {f;}4ep satisfies the OSC, then the corresponding
self-affine set K :=K(A, D) is an s-set w.r.t. w(x), where s = dimy; K = n In(#D)/ In(g) is
the pseudo similarity dimension of K. Thus theorem 4.1 can be applied to K directly.

5. The upper s-density of p w.r.t. w(x)

In this section, let 1z be a Borel measure on R”, we use the pseudo norm w(x) instead of the
Euclidean norm to define the upper s-density of p w.r.t. w(x). It will be used to find a different
expression for the pseudo Hausdorff measure of K(A, D). This is motivated by the connection
between the upper s-density of 1 in (1.1) which was first introduced in [6] and the Hausdorff
measure of a self-similar set K(A, D).

Definition 5.1. Let iz be a Borel measure in R”". The upper s-density of p w.r.t. w(x) is
defined by

| v
Eusu)=lim ~sup o=
ot H =00 diaJnu:UI;r>0 (diam,, U)*

where the supremum is over all compact convex sets U C R” with diam,,U > r > 0.

Let 1 be a Borel measure and let o be a Borel probability measure. The convolution p * o
is defined to be the measure so that

/ Sd(1 % 0)(2) = / / 6(x + Ydu(x)do (),
Rn R J R

holds for any compactly supported continuous function ¢ on R”.

Lemma 5.1. Let i and o be two Borel measures on R" with o being a probability measure.
Then Ef (o) = & ().
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Proof. By the definition of £ (1) and the convolution of 1 x o, we get

w,s

. wxo(U)
Ef(u*o)= lim su S
s =90 djam,, Up>r>0 (diam,, U)*

n n d d
im sup dee Jee XA
%0 diam,, U>r>0 ( 1am,, U)

Jzn (U — y)do(y)

= lim su - )

=0 diam,, UI;r>O (diam,, U)*

U —

< lim sup  sup u (since o is a Borel probability measure)

90 djam,, U>r>0 yeR" (dlamw [])Y

U

— lim  sup __ MO

=20 iamy, Uz r>0 (diam,, U)*
=& (W), (5.1

where the supremum is over all convex sets U C R” with diam,,U > r > 0. Thus, EJ S x
o) < E5,(u) by (5.1).

For the reverse inequality, fix areal number R > 0.Lete > Oandr > A, B%R where ). is the
same as in lemma 2.4 and [ is defined in lemma 2.3. For any set U C R" with diam, U > r,
choose a set U = UyeBw(O,R)(U + ). Obviously U C U— y for any y € B,,(0, R), the closed

ball centred at O with radius R w.r.t. w(x). Moreover, we claim that diam,,U < (1 4 €) diam,,U.
In fact, for any two points x,x, € U, we write x; = z; + y; with z; € U and y; € B,,(0, R) for
i=1,2. Then w(y; — y2) < BR. If w(z; — 22) > ABR, then we have w(z; — z22) > Acw(y; —
¥2), and this gives

wxp —x2) = w((z1 —22) + 1 —y2) <+ )w(z —22)
by lemma 2.4. Otherwise if w(z; — z2) < A\OR, then we have
w(x; — %) < fmax{w(z; — z22), w(y —y2)} < Bmax{ASR, BR} = AR < r.

Thus we have w(x; — )Ez) < (1 + e)diam,, U in both cases, which yields the claim since x;, x,
are arbitrary points in U. Then we have

Jpuo HUTO) _ fy, 0 U =3)do()  (diam, O

(diam, Uy (diam,, U)s (diam,, U)’
U — y)d

< Jnon U200 o,
(diam,, U)*

Hence, we have

lim  sup J; B, 0.8 MU)Ao(y)
" %diam,, U>r>0 (diam,, U)*
Sy, 00 MU' =)o)

< i . (1 s
rggdiamusv?/’l;r>0 (diam,, U") 1+
U — y)d
< lim  sup Jpa 1 »do ) (1 +e)

; )8
"0 diamy, U’ >r>0 (diam,, U")*

= EJ’S(/L x0)- (14 ¢’
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By letting € — 0 and R — oo, we obtain that &1 (1) < £ (1t * 0). O

w,s

Lemma 5.2. Let o be the Borel probability measure supported on K(A, D) which satisfies
(3.1). For M > 1, define s = > 0, then for any Borel measurable set W C R", we have

x€Dy

ATMW) = e (g 0) (W)

Proof. For any Borel measurable set W C R”, we deduce from the identity (3.1) that

amwm:/xﬂwmwm
Rr’l
:fﬁ%W' E: AQMWWM4%+A44%~-A+r%mmm»
dy,d

1,d2,....dy €D

~ @y > Xw(x+AY " dy + - 4 dy)do(x)

2,...,dMED R?

= @Dyt RWXW(x)d(U * ) ()

6. Pseudo Hausdorff measure of self-affine sets

This section is devoted to proving theorem 1.2 by considering the IFS { f,}cp satisfies and
does not satisfy the OSC separately. The following technical lemma is needed. We borrow the
technique of its proof from [33] for the self-similar case.

Lemma 6.1. Let the IFS { fy}aep satisfy the OSC. Then H: (K N U) < (diam,, U)* for any
subset U in R".

Proof. We will prove the statement by a contradiction. Assume that there exists a sub-
set U C R" such that H; (K N U) > (diam,,U)*. Then we can find some 0 < x < 1 such

that (1 — k)H:,(K N U) > (diam,,U)*. Fix § > 0 and choose a positive integer m such that
diam,, f{(U) < ¢ for all words i € ¥, where ¥ is defined in section 3. Note that

U fiknuyckn | AW, 6.1)
iex” iex™
since fi(K) C Ujeszj(K) = K for each i € ¥™. By the assumption that the IFS {f,}sep

satisfies the OSC, then by using theorem 3.1 and lemma 3.2, we have H; (fi(KNU))N
fi(KNU)) =0 for distinct i, j € ™. Therefore, by (6.1), we obtain

7ﬁmﬂUﬁWD>%<Uﬁmﬁw>
iex™ iex™
= > MUK N V) = H, (KN D). 62)

iexm

Defining n = % K H,(K N Uiesm fi(D)), it follows from (6.2) that

w

1 1 (diam,U)*
n}imeu(KﬂU)>imw>O.

11—k
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For 7 >0, we can choose a sequence of sets {U;}; with (JU; D K\ J fi(U) and
i iex™
diam,,(U;) < 6 such that

> (diam, Up)* < H, 5K\ | A(U) +1n

iex”

<H, <K\ U ﬁ(U)) +1. (6.3)

iex™”

The family {fi(U)}iesm U {U;}; is clearly a d-cover of K w.r.t. w(x). Using the fact that
>~ i =1 and (6.3), we obtain that

iex™

Hous(K) < Y (diam, i(U)’ + ) (diam,, Up*

iexm i
< (diam, U)* + M, (K\ U fi(U)> +n
iex™
<U-mHKNU)+H, | K\ fi(U)> +1
iexm

Taking the inequality (6.2) into account, this yields

Hus(K) < (1= K)H,, (m U fi(U)> +H,, (K\ U fi(U)> +1

iexm jiexm
<HWK) —kH;, [ KN U ﬁ(U)) 4+
iex”
= H;,(K) — 7{
SHLK) = 5 K HL(K N V).

Letting § — 0, we get
1
Hi,(K) < Hi,(K) = SeHL(K O ),

which is a contradiction since 0 < H;,(K) < oo and %Ii’HfU(K nu)>0. O

v

Lemma 3.2 shows that if the IFS { f;}4ep satisfies the OSC, then the probability measure
o in (3.1) is a multiple of the restriction of the s-dimensional pseudo Hausdorff measure
to the set K, with s = dimj; K = n In(#D)/ In(g), i..

o= (H},(K)"'H;, [ K. (6.4)

Combining the formula (6.4), lemma 6.1, theorems 3.1 and 4.1, we obtain the following
lemma.

Lemma 6.2. Let K:=K(A, D) be a self-affine set and let the IFS { f;}aep satisfy the OSC.
Then for any ro > 0,

_ o(U)
HLUK) "= sup
0<dia.mur,)U < (dlamw (])Y

2610



Nonlinearity 33 (2020) 2592 XFuetal

where s is the pseudo similarity dimension of K, o is defined by (3.1) and the supremum is over
all convex sets U with U (K # () and 0 < diam,,U < ry.

Proof. By applying theorem 3.1, K is an s-set w.r.t. w(x). From theorem 4.1, we can pick a
pointx € K such that D}, .(K,x) = 1. Then there exists a positive sequence {r, }, with r,, < ry,

w,c

r, — 0 as n — oo such that

SKNU 1 SEKNU 1
sup M——<l< sup L _

. ~ . .
O<diam,, U<, xeU (dlamw (])Y n O<diam,, U<, xeU (dlamw (])Y n

For each n, there exists a convex set U, containing x with 0 < diam,, U, < r, such that

“ HUKNU) _HL(KNU) 1
0cdiom. U wey (diam, U) > (diam, U, ' n’

Thus

HUKNU) 1 HUKOU) | 2

(diam,U,)* n (diam,U,* n’

which yields that Miml/% — 1 as n — oo. Moreover, by lemma 6.1, for each convex set U
. H,(KNU HI,(KNU) .

with K N U # (), we have G d;;fnw U)z < 1. Hence supy_giam,,u<rg ¢ diafnw U)z = 1. By applying the

formula (6.4) to the above equality, the lemma follows. 0

We have the following representation for the pseudo Hausdorff measure of self-affine sets.

Theorem 6.3. Ler K :=(A, D) be a self-affine set and let s: = n In(#D)/ In(q) be the pseudo
similarity dimension of K. Then H; (K) = (EJ,S(M))A, where 1 is defined by (1.1).

Proof. Let us assume first that 7 (K) > 0 and thus that the OSC holds by theorem 1.1. By

lemma 6.2, it is sufficient to prove that

o(U)
5':;5(#) = sup —_—
’ O<diamy U<r, (diam,, U)*

for some rg > 0, where the supremum is over all convex sets U with UNK # ) and 0 <
diam,, U < ry.

Fix ro > 0. It follows from lemma 6.2 that sup,_gizm, v<r, (déﬁ% is finite. Then, for any
given € > 0, there exists a convex set Uy with diam,, Uy < r9 and Uy N K # () such that

o) a(U)

e > e — (6.5)
(dlamw (]0)‘Y 0<diam,, U<rg (dlamw [])Y

.....

have
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oWo)  _ o uy(ANUyp) ~ lim o (AN Uy)
(diam,, Up)* (diamw(AN Uy)) N—oo (diamw(AN Uy))

U
< Iim sup %()S
T giam,, U>r>0 (diamy,U)

=EF (o) =Er (). (6.6)
It follows from (6.5) and (6.6) that
sup _o¥) <ELW +e.

0<diam, U<r, (diam,, U)*
By letting ¢ — 0, we get
a(U)
ooy, Giam, Uy < Ers
Conversely, for any given convex set U, using lemma 5.2, we have,
o * (U) .o py(U) . aA™"U)
(diam, Uy _ o (diam, U);;)Nllll (diam,(A-NU))

= sup TR
O<diam, V<r, (diam,, V)

Using lemma 5.1 again, we have thus that

V)
EX (=& (uxo)<  su o)
’ ’ 0<diamur,)vgro (diam,, V)*

Thus we have proved the desired result in the case that #,(K) > 0.
On the other hand, if H,(K) = 0, then the IFS { f; } sep does not satisfy the OSC by theorem

1.1. Thus, by theorem 1.1, either the (#DWM expansions in Dy, are not distinct for some M or
Dy, is not uniformly discrete. For z € R”, we will use

k.
Ii(z) = {y Oy ER i —zi| < 7 1= 1,2,---,n}
to denote the cube centred at z = (z, . . ., z,) € R” with side length k.
Assume first that there exists some M such that the (D)™ expansions in D, are not distinct.
Then there exists a € Dy which can be represented in two different ways in terms of the digits
in D, ie.

a=» Adj=) Ald, d;d;eD,

with d; # d; for at least one 0 < j < M — 1. Then a + AMa has at least four distinct expan-
sions in D,y,. More generally, for k > 1, le;é AMig has at least 2% distinct expansions in Dyy.

Then, if a; = Zf;g)AMfa, then p({a}) > 2*. Then, for any r > 0, we have
.,u(lr(ak)) S 2k .
(dlamwlr(ak))s (dlamwlr(o))s

J71¢%))
U>r>0 (diam,, U)*

00, k— 00,

This implies that supy;,,., = oo for any r > 0, and in particular, Ej’s(ﬂ) = 00.
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Next, assume that #Dy; = (#D)M holds foreach M > 1, but Do, is nota uniformly discrete
set. Then there exists M; > 1 and x;,y; € Dy, C Dy with x; # y; such that ||x; —y]] < %
Write Fi = {x;,y1} and w; = x;. Then F; C Dy, C Dy and ||z) —w || < % forany z; € F1.
Let §1 = 0. Inductively, for k > 2, assume that M;,S; and x;,y; € DM_,., F; C DS/.JFM/. have
been defined for 1 < j<k—1.LetS; = 21]‘: M;. Choose My and xi, yr € Dy, C Do with
X # v and |jxx — yi|| < m. Write

Fy={zn +A% + -+ A%z € {x,yi}, 1<i<k},
Wy = X1 —|—AS2X2 + - —i—ASkxk.
Then Fy C Ds, 4y, C Do, wk € Ds,ypy,- Thus for any k > 1, z € Fy, we have
|z — wil| = [|(z1 — x1) + A% (22 — x2) + - - - + A% (ze — x|
1
< 5 4142 +--- A

Sk~
<3 41" 2
< 1.

22[| A}

This shows that p(I>(wy)) > 2. Hence, for any r > 2, we have I,(wy;) C I,(wy) and

plw) 2
(diamwlr(wk))s - (dlamulr(o))s

o0, k— oo.

So &1 (1) = oo as before.

w,s

Therefore, we always have #; (K) = (E;[S(;L))’l. ]
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