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Abstract

Let 5 > 1 and x € [0, 1) be two real numbers. For any y € [0, 1), the maximal
run-length function r.(y,n) (with respect to x) is defined to be the maximal
length of the prefix of x’s 3-expansion which appears in the first n digits of y’s.
In this paper, we study the metric properties of the maximal run-length function
and apply them to the hitting time, which generalises many known results. In
the meantime, the fractal dimensions of the related exceptional sets are also
determined.

Keywords: beta-expansion, maximal run-length function, hitting time, Lebesgue
measure, Hausdorff dimension
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1. Introduction

In 1957, Rényi [1] introduced the S-transformation as a model for expanding real numbers
in non-integer bases. Given a real number 3 > 1, the S-transformation T'3: [0, 1] — [0, 1] is
defined by

T3(x) = Bx — | Bx] forallx € [0, 1],
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where | -] denotes the integral part of a real number. The transformation 7'z has an invariant
ergodic measure v [2], which is equivalent to the Lebesgue measure £ on [0, 1] with the
density function

1 1
cgi=1——=<0x) < —, xe€l0,1] (1.1)
B Cp

Since then, much attention has been paid to the S-dynamical system ([0, 1], 73, v3) and
[-expansions of real numbers, see [3—8], etc, and references therein.

Given ( > 1, for any x € [0, 1], the sequence (x, 5) = €1(x, B)ea(x, B) . .. with its digits
en(x, B) defined by €,(x, 8) = LﬁTg’li for all n > 1 is called the 3-expansion of x in base (3,
which satisfies

o E](.X, B) 52(-x7 B) .
=S T

We will write €,(x) = €,(x, 8) and e(x) = £1(x)e2(x) . .. if it causes no confusion.

In 1970, Erdos and Rényi provided a new law of large numbers in [9]. For independent
repetitions of a fair game, their result can be stated as follows: if the game is played n times, then
the maximal average gain of a player over |log,n| consecutive games tends to 1 almost surely.
Following this interesting result, there were many works devoted to the study of asymptotic
behaviour of the maximal length of consecutive 0’s in a sequence of nonnegative integers,
including the /3-expansion of a real number, see [10—16], etc, and references therein.

Fix# > landx € [0, 1), forany n € N, let r,(y, n) be the maximal length of the prefix of x’s
[-expansion appears in the first n digits of y’s, which is called the maximal run-length function
with respect to x, i.e.,

re(y,n) = max{k > 0:6,41(y) = e1(x), ..., €ipk(y) = ex(x) forsomeO < i< n— k}.

Note that £(0) = 00. .. for any 8 > 1. Hence, the function ry(y, n) means the maximal length
of consecutive 0’s in the first n terms of the S-expansion of y. For 5 = 2, Erdos and Rényi’s
result, see also [17], implies

li rO(y7 n) o
1m =
n—oo log, n

1, L-ae.y€][0,1).

Recently, Tong et al [15] generalised this to all 5 > 1, they proved that

li rO(y7n)7
m-—— =

1, L-ae.y€][0,1).
n—00 logﬁn

They also showed that for any 0 < o < +00,

dimy {y €10, 1): tim 202" _ a} —1,

n—oo loggn

where dimy denotes the Hausdorff dimension.
Fix 8 > 1landx € [0, 1), forany n € N, let

Lx):={ye[0,D):e1(0) = e1(x), ..., e.(y) = ()},

it is a closed-open subinterval of [0, 1) with length |1,,(x)| < 57", see [1]. Let
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#(x) = lim sup
n—0o0

—log|1,(x)|
—

In this paper, we study the asymptotic behavior of the function r.(y, n) for general x € [0, 1)
and obtain that

Theorem 1. Given 8 > 1, for any x € [0, 1), we have

X ” 1
imint 20— L ey eo,
noo loggn  #(x)

and

lim sup 0.1 =

1, L-aey€el0,1),
nsoo loggn

where % =0ift(x) = +o0.

The application of Shannon-McMillan—-Breiman theorem to the measure vg ([2],
theorem 2) leads to the conclusion that #(x) = 1 for L-a.e. x € [0, 1). Thus by theorem 1, we
have

Corollary 1. Given 8 > 1, for L-a.e. x € [0, 1), we have

lim r(y,n)
n=o0 logg n

1, L-aeye€]l0,]1).

For the Hausdorff dimension of the set of x € [0, 1) such that #(x) > 1, the reader is referred
to the paper of Fan and Wang [18].
Fix 8 > 1and x € [0, 1), for any y € [0, 1), the hitting time of the set I,,(x) is defined by

IL(y,n) = inf{k > 0: Thy € L,(x)}
=inf{k > 0:ep11(y) = €1(x), ..., €xn(Y) = €x(D)}.
As a corollary of theorem 1, we obtain that

Theorem 2. Given 8 > 1, for any x € [0, 1), we have

o log, IL(y,n)

lim i 1, L-aeyel0,1),
n—00 n
and
1 Hx >
lim sup M =tx), L-aeyec]0,1).
n—00 n

Given 5 > 1, forany x € [0, 1) and 0 < o < 400, define

Edo) = {y € 0. 1): lim 22" _ a} ,

n—00 logﬁ n

In this paper, we also study the Hausdorff dimension of E,(«) and obtain that
Theorem 3. Given 8 > 1, for any x € [0, 1), we have
(a) dimyE,(0) = 1;
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(b) when 0 < av < +00, if t(x) > 1, then E (o) = &, otherwise, dimpE (o) = 1;

0;

logs(—logs |1,
n—00 n
log,(—log, In X
gd( gdl ( )|) >

(¢) dimyE,(+00) =
0.

0, iflimsup
n—0o0
When x = 0, we have |I,(x)| = 87" for all n € N (see, e.g., lemma 2), and thus #(x) = 1.
Therefore, by theorem 3, for any 0 < o < 00,

dimyEo() = 1,

which generalises the result of Tong et al [15].

This paper is organised as follows: in the next section, we will give some basic facts about
[-expansions. Section 3 is devoted to the proof of theorem 1. Then, we will prove theorem 2
in section 4. Divided into three cases, the proof of theorem 3 will be given in sections 5-7.

2. Preliminaries

In this section, we will give some basic facts about S-expansions. For details, the reader is
referred to the papers of Rényi [1], Parry [2], Schmeling [5] and Fan and Wang [18].

From now to the end of this paper, § > 1 is a fixed real number.

LetQ=1{0,1,...,|3]}and Q" = U,>,Q". Foralln € Nandw € ", we denote the length
of the word w by |w|:=n. For two words u = uj - - - ty,, w = wy - - - w, € Q¥, write uw =
up - upwy - - w, € Q. Let |§] = 0 and fw = w for the empty-word (). For any n € N and
u,w € Q" we will write u = w if u; = w; for all 1 < i < n; otherwise, write u # w. Let o
be the shift operator such that for any w = wy - - - wy,| € Q* and 0 < k < |w| — 1, one has
O'k’w = Wi 1Wk+2 * -’LU‘“,|.

Let X = {0}. Forall n € N, let
¥ = {u € Q" :thereexistsanx € [0, 1)such thate;(x) = u; forall 1 <i < n}

and
* n
=Us
n>1

Lemma 1 ([1]). Forany 8 > 1,

. ) ﬁn-i—l
B < #25 < ﬁ,

where # denotes the cardinality of a finite set.
Foralln € Nand w € ¥, let
I(w) ={x € [0,D:e1(x) - - en(x) = w},

it is a closed-open subinterval of [0,1) with length [I(w)| <8 [1] and I,(x) =
I(1(x) - - - £,(x)). Note that
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[0.1)=[J Iw).

we E”i

Let I(0)) = Io(x) = [0, 1). Let I(w) = & for w € O\,
Definition 1. A word w € X} is called perfect if |I(w)| = gl
Forall n € N, let
A = {w € Yj:wisaperfectword} and A} = U A%
n>1
Lemma 2 ([2, 18]). Given 8 > 1 and u,w € Q*, we have the following results:
(a) Ifw € X, then w0 € ¥ and o'w € X for all 0 < i < |w| — 1.
(b) Ifw € A}, then w0 € Ay and o'w € A} forall 0 < i < |w| — 1.
(¢) Ifw,u € A*g then wu € Aj.

(d) Ifw € Ay andu € 3, then wu € 3.
(e) Ifwl € X, then w0 € Aj.

Lemma 3 ([19]). For any n € N, among the n + 1 words w", ..., w"tD ¢ Y% such that
1 (w“)) R | (w(”“)) are consecutive intervals, there exists at least one perfect word.

3. Proof of theorem 1

In this section, we will prove theorem 1. The following lemma will be used in the proof.

Lemma 4 ([3]). Given 8 > 1, there exists a constant 1 < p < [3 such that for any interval
E C [0,1) and Borel set F C [0, 1), we have

va(ENTZ"F) = vs(E)vs(F) + vg(F)O(p™"),
where the constant implied by O is an absolute constant.

Remark 1. Note that in lemma 4, choose a smaller 1 < p < § if necessary, we may assume
that when n € N is large enough,

vg(ENT,"F) < vs(F) (vs(E) + p ") .
Proposition 1. Given 8 > 1, for any x € [0, 1), we have

lim sup LI
noo loggn

1, L-aeyel0,1).

Proof. Fix x € [0, 1). We divide the proof into two parts.
Part I. For any e > O and n € N, let

Yu(€) = [(1 + e)loggn] and  A,(e) = {y € [0, 1): ri(y, ) = yu(e)},

where [-] denotes the smallest integer not less than a real number. For any 0 < i < n — 7,(¢),
let

Bui(e) ={y €0, 1):€i11(0) - -  Eitruioy) = €1(x) - - - £4,0(0) }.
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Then
n—"n(€)
Ane) C | Buio).
i=0
Since the measure vz is T g-invariant, by (1.1) we obtain that for all 0 < i < n — y,(e),

L(B.i(€)) < c5'vs(Bui(€) = ¢ vsLy,0®) < 57,0 @) < cz’n” '

Thus,

n—"n(€) n—"n(€)
L(Ax(e)) < c( U Bn,l-(e>> < > L (Buie)) < 2nLB,(0) < 2c57n .
i=0 i=0

For all k € N, define m; € N by my < 87+ < my + 1. Then,

:_ 1)7E
ke

< 2c_§2(1 —3*#5)#-3*1%.

LA (&) < 2¢°m < < 2¢;° (gli

Thus,

> LA (0) < +o0.

k=1

The Borel-Cantelli lemma implies that L-a.e. y € [0, 1) is contained in A, (¢) for at most
finitely many k. Note that for any n € N with my_; < n < my, since y,(€) = v, (€) = k, we
have A, (¢) C A, (¢). Therefore, L-a.e.y € [0, 1)is contained in A, (¢) for at most finitely many
n, which implies that

lim sup _rx(y, )

<1, L-aeyel0,1).
n—o0 /Yn(e)

By the definition of 7,(¢) and the arbitrariness of €, we then have

lim sup 0,
nsoo loggn

<1, L-aeyel0,1).

Part II. For any € € (0, 1), since

“log,I,
fim inf 082l _

n—00 n

1 (3.1
(see [18]), there exists a subsequence {ny };>1 of positive integers such that

Ly, (0] = B0+, (3.2)
For any k € N, let Ny = [ 8*(1729| For all 1 < j < Ni/n3, let

Q= {y €10, 101842, 0) £, 0) # 100+ -2, (1) forall 0 < i < j}.
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Note that O, = [0, 1)\Ink(x). Then by (1.1), the set Q) is a union of at most two disjoint intervals
with

v3(01) = 1 — v, (x)) < 1 — call, ()] (3.3)

Since
—n?
V10, D0 N) <} € Q) = Q1 (T3 Q1o
then when £ is large enough, by lemma 4, inductively, we have
va{y € [0, 1): r(y, Ni) < mi} < VB(QLNk/n,%j)
)
< Vﬁ(QLNk/nzjfl) : (VH(QI) +2p ")

2
2
< Vﬁ(QLNk/nzj—Z) : (VH(QI) +2p ")

o\ [Ni/ni]—1
<< g(Qy) - (VB(QI) + Zp*”k)

LA
< (wen+2071)

Thus, by (3.2), (3.3) and the definition of Ny, we obtain that

N
va{y € [0, 1) re(y, Ni) < mi} < (1 — cpll, ()| +2p k)

2 B 2
< eealiyl+20 " DN/mf) o Bl I Ne /| (1=2¢5 |1y 0] =1 p ™)
< e B/

for some constant ¢ > 0. Hence, by (1.1),

ST Ly €10. 1)1, No) < mic} < +oo.
k=1

The Borel-Cantelli lemma implies that

X B . X 7N 1
lim supr (1) > lim sup rx(y N >

> , L-ae. 0,1).
n—00 logﬁ n k—00 logﬁ Nk 1+ 2e vy e [ )

Therefore, by the arbitrariness of €, we obtain that

lim sup M >1, L-ae.yec]l0,1).
nooo l0ggn
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Proposition 2. Given 5 > 1, for any x € [0, 1), we have

X k) 1
fimine 20 = L ey e0.),
1—00 logﬂ n 1(x)

Proof. Fix x € [0, 1). Recall that

—log,|l,
#(x) = lim sup M
n—00 n
If #(x) = +o0, take a subsequence {my }x>; of positive integers such that

—logg| L, ()] -
my -

k. (3.4)

For all k € N, let My = [B*"*] and

Cr = {y € [0,1): r(y, My) > log%]iMk} _
Then
e FogiMk W
Ci C ZL:JO {ye[0,1):5:’4—1()})"-Ei+"10_giﬂ"(y):51(x)...E[lo_&zﬂw(x)}_

Thus, by (1.1) and (3.4),

I/d(Ck) < 2Mk1/3 (I’ngSMk—‘ (x)) < 2C;1Mk|lmk(x)| < 4C51ﬁ—kmk-

k

Hence, by (1.1),

> L(CY) < +oo.

k=1
The Borel-Cantelli lemma implies that

X ” . . X 7M
liminf "0 < limine POMO _ o pae v e o,
noo loggn koo logg My

If #(x) < 400, we divide the proof into two parts.
Part I. For any € € (0, 1/2), take a subsequence {n1} }x>; of positive integers such that

—log;|1,,
IO (1 ey
k

For all k € N, let M}, = [31-291"7 and
G ={y €10, ):r(y, M) = (1 = 2¢) '1(x)" " logs My }.

As in the case that #(x) = 400, we can prove that
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X ” . . X 7M/ 1
tim inf 207 < i i 2OM0 ,
n=oo  loggn koo logs M, (1 —2e)t(x)

L-ae.y € [0,1).

By the arbitrariness of €, we obtain that

. (y,n) 1
\ f < o -a.e. , D).
P logyn S i Ty OD

Part II. For any ¢ >0 and n € N, let §, = {(lﬁi)?(x)J‘ Then when 7 is large enough, we
have
—logg|I
)
Thus,

14-¢
[l5,()] > B >

Forall 1 < j < n/d2, let

Qj=1{yel0, e (g0 #e1(x)- - g5, forall0 <i< j}.
As in the proof of proposition 1, we can obtain that

ve{y €10, 1):rlym) < 3} < e/

for some constant ¢ > 0. Hence, by (1.1),

D LAy €10, 1) r(y.n) < 6,}) < +o0.

n=1

The Borel-Cantelli lemma implies that

lim inf %" > !

> ., L-ae.yel0,1)
e loggn ~ (14 200) aeye0D

By the arbitrariness of €, we obtain that

o nen)
\ f > —, L-ae. 0, 1).
P ogyn 7 g FrerelOD

Proof of theorem 1. It is a corollary of propositions 1 and 2. O

4. Proof of theorem 2

In this section, with theorem 1 in hand, we turn to the proof of theorem 2.

2648



Nonlinearity 33 (2020) 2640 F Liand J Wu

Proposition 3. Given 5 > 1, for any x € [0, 1), we have

.. doggIL(y,n)
hm mf _— =
n

n—o0

1, L-aeye]l0,]1).

Proof. Fix x € [0, 1). Choose an arbitrary y € [0, 1) such that

We will show that

log, I1.(y,
Jim inf 1082 1102 _

n—00 n

1.

Then the proposition follows from theorem 1.

For any € € (0, 1), there exists a subsequence {n;};>1 of positive integers such that
ry(y,ng) > (1 — e)loggny for all k € N. Then by the definitions of r.(y,n) and II.(y, n), we
should have

IL(y, [(1 — &)logs ni]) < .

Thus,
log; TL.(y, [(1 — e)log ni]) - log ni . 1
[(1 — e)log, ni] S [ —ologgm] T 1—¢
Hence,
1 6 Hx )
lim inf 2810 1
n—00 n 1—¢

Therefore, by the arbitrariness of €, we have

lim inf

n—o0

log, I1.(y,
ogg U(y, n) <1
n

On the other hand, for any € > 0, there exists an N € N such that (v, n) < (1 + €)loggn for
all n > N. For any k > (1 4 ¢)loggN, since Lﬁ#] > N, we have r, (y, Lﬁﬁj) < k. Then
by the definitions of r,(y, n) and 11,(y, n), we obtain that

k.
oy, k) > [BTF | — k.
Thus,

log, TL,(y. k
lim inf 288100 1
k—o0 k 1+€

Therefore, by the arbitrariness of ¢, we have

log, I1.(y,
lim inf 288100

n—00 n
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Proposition 4. Given 8 > 1, for any x € [0, 1), we have

. log, IL(y, n)
lim sup ————
n—00 n

=tx), L-aeye]l0,1).

Proof. Fix x € [0, 1). Choose an arbitrary y € [0, 1) such that

liminf Q2 L
100 logﬂ n 1(x)

‘We will show that

lim sup
n—o0

logs IL(y,n) 1),
n

Then the proposition follows from theorem 1.
For any ¢ > 0, there exists a subsequence {rny }x>1 of positive integers such that r(y, ny) <

(L + 5) logﬁ ny forall k € N. Then by the definitions of r,(y, n) and IL,(y, n), we should have

1(x)
IIx Y, t(_) + € Ogg ng =z Nk — _l( ) € ) 108z M | -

Thus,

log; I1.(y,n 1
lim sup g 1Ly 1) Z .
n—00 n ) + e

Therefore, by the arbitrariness of ¢, we have

log, Il (y,n
lim sup M > t(x).
n—00 n
On the other hand, assuming that #(x) < +oo0, for any ¢ € (0, %), there exists an N € N
such that r.(y, n) > mlogﬁ nforalln > N.Forany k > mlogﬁ N, since [ K0+ > N,
we have r,(y, [ 3X/®+9)]) > k. Then by the definitions of ,(y, n) and IL,(y, n), we obtain that

IL(y, k) < SO
Thus,

lim sup ———F—

< Hx) + €.
k—00 k

Therefore, by the arbitrariness of , we have

lim sup
n—o0

I
log; IL(y, n) < 1),
n
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Proof of theorem 2. It is a corollary of propositions 3 and 4. O

5. Proof of theorem 3 for o« = 0

Recall that for any x € [0, 1) and 0 < o < 00,

Ex(a) = {y (S [0, 1) lim M = a} .

n—00 logﬂ n
In this section, we shall prove the following proposition.
Proposition 5. Given 8 > 1, for any x € [0, 1), we have dimyE,(0) = 1.

Proof. Fix x € [0, 1). Take Ny € N large enough such that 3V > 2(N + 1)? for all N > N,.
For any N > Ny, let

Py(x) = {w € Af:w # g1 (x) - -eipn(x)  forall0 <i <N —1}.
Then by lemmas 1 and 3,

#Oy(x) = #AY —N=>pY/(N+1)—1—N > /2N +2). (5.1)
For all k € N, let

Dyi(x) = {y € [0, D:g—pn41(0) - - -ein(y) € Py(x)  forall 1 <i <k}
and

Dy(x) = ] D).

k=1

Then Dy(x) = {y € [0, 1) :e_1n+1(¥) - - - env(y) € Py(x)foralli € N}. Thus, it is clear that
for any y € Dy(x), we have r(y,n) < 2N — 1 for all n € N. Hence,

lim 021 _
n—00 logﬁ n

Therefore, Dy(x) C E,(0).
Next, we will prove that

logs(2N + 2)
N
Since dimyE,(0) > dimyDy(x) for all N > N, we then obtain that dimgyE,(0) > 1. More pre-

cisely, we will distribute a Borel probability measure j;y on Dy(x), and show that for any
y S DN(.X),

dimyDy(x) > 1 forall N > Nj. 5.2)

logs(2N + 2
lim inf (08 Ho(BG: 1) S 1o 0gs(2N +2)
=0 log r N

bl

where B(y, r) denotes the ball with centre point y and a radius of r. Then (5.2) follows by
proposition 10.1 in [20].
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We first distribute a Borel probability measure ;1o on Dy(x). Let po([0, 1)) = 1. For any
w € XF, let

U #ON(n),  ifw € Py(x);
Holl(w)) = { 0, ifw € SN\ Oy (x).
Forany k > 2 and w", ..., w® € E%’, let
k
o™ - - - w®))y = poI(w™® - - w* D)) - ped(w*)) = -+ = Huo(l(w(i))).

i=1

Then, we have

MO(I(’U}(I) R w(k*l))) — Z MO(I(w(l) . w(k*l)w(k))).

Whex
Note that the set /(w - - - w®) is empty if w® - - - w® ¢ 3. Hence, by lemma 2,

R N U I (R )Y

whesy

Therefore, one can check that the nonnegative set function y is a pre-measure on the collection
of sets {I(w™ - - - w®):k € N,w®, ..., wh ¢ Eg’}, and so it can be uniquely extended to a
Borel probability measure on [0, 1).

Now we estimate

Jim inf 108 H0BG> 1)
=0 log r

for any y € Dy(x). Fix y € Dy(x). For any 0 < r < 37V, there exists a unique k € N such that
B*EDN < < B~V Note that for any w'V, . .., w® € ¥, we have po(I(w® - - - w®)) > 0
if and only if w” € ®y(x) C A forall 1 < i < k. Then by lemma 2, if po(I(w™® - - - w®)) >
0, we must have w" - - - w® € A%, and thus [I(w® - - - w®)| = 7. Hence, the ball B(y, r)
intersects with at most three such intervals, and by (5.1),

k
3 L3N+t

HoBO) S g < o

Therefore,

kN —log; 3 — klogz(2N + 2 1 2N +2
lim inf 108 FoBG: 1) > lim inf 0g;s 0gs2N +2) 1 0g3(2N + )_
=0 log r k—00 (k+ 1)N N

6. Proof of theorem 3 for a« = +o
Given 5 > 1, forany x € [0, 1) and & € [1, +00), let

Iy(x) = min{k > h:e1(x) - - - g1 ()1 € T}
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It is easy to check that /,(x) is non-decreasing as / increases and by lemma 2, [;,(x) < +oo for
any h € [1, +00).

Lemma 5. Given 3 > 1, forany x € [0,1)and n € N, we have
B Ly 1 ()] < i ()] < O
Therefore,

lim —logg|l,1(0)|
n—00 ln(x) N

Proof. By the definition of /;(x) and lemma 2, we know that
1 Ewa10 € ALY and I, (x) = I(51(x) - - £y ()00,

Thus, B~ < |l,00-1 (0] < L1 ()] < RO O

We will write /;, = [(x) if it causes no confusion. By lemma 5, in order to prove theorem
3(c), it is enough to prove the following proposition. 0

Proposition 6. Given 3 > 1, for any x € [0, 1), we have

1 L,

1, if lim logy In(x) = 0;
dimy E,(+00) = " Jog, 1)

0, iflimsup —2"-"> > 0.

n—oc0 n
Proof. Assume that
1 L,

i 08l ©.1)
n—00 n

Let §o = {0} and gy = 1. Forall k € N, let
Sk = {ue1(x) - - -Elk,l(x)Ov(l) coplen Dy e oW ke Ag‘}

and a; = Zle liliy1. Then by lemma 2, §; C A?f for all k € N. Let
Fp = U I(w) and F = ﬂFk
wWET k=1

Fixy € F.Foranyn > a,, thereexists ak € Nsuchthatay < n < ay4+;.Sincey € F C Fy,
then g/(y) - - - €4,(y) € Sk, and thus r,(y,n) > [y — 1. Hence, by (6.1)

o) o L1 . h—1
lim > lim > lim > = 400,
nooo loggn  kooo logg agty koo loggl(k + D]
where the last inequality follows from the fact that the sequence {l,},> is non-decreasing.
Therefore, F C E (400).

We then distribute a Borel probability measure jio, on F. Let o (I(0) = p100([0, 1)) = 1
and p5(2) = 0. For any k € N and w € §, let
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Hoo(I())

where u € §x_; is the prefix of w. Note that by lemmas 1 and 3, we have

oo (I(w)) =

/Blk+1

B-1

Bl
L+1

1< #A% < (6.2)

Forany n € Nand 7 € X}, define

pooI(T) = procI(w)),

where the sum is taken over all w € §; with a;_; < n < a; such that I(w) C I(7). Then, one
can check that the nonnegative set function p, is a pre-measure on the collection of sets
{I(T):7 € 3} U {@}, and so it can be uniquely extended to a Borel probability measure on
[0, 1). ‘

Fixy € F.Foranyr € (0, 37), thereexistsak € Nandan0 < i < ;4 such that f~%+1 <
ﬂfakf(i-i-l)lqu <r< ﬂfakfil,ﬁH < ﬂ*ak. Then

k+1

Joo (B, 1) <Y pocTw)) = > T (#Ag)l—lfﬂ
j=1

< 3(#Af§+l)liin (#Ag) 171/+1’

J=1
where the sum is taken over all w € §;41 such that I(w) N B(y, r) # &. Thus, by (6.2), we have

log fiss(B(y, 1))

lim inf
=0 log r

. ) l;
—logy 3+ (i — Dlogy #ALT + 35 (111 — Dlog, #A]

> h/{n inf inf

—00  0<i<lyr ay + (l + 1)lk+1
o = Dl A G = DY
= liminf inf -
koo 0<i<liyn ay + (4 Dy

o . a1+ (e +1— Dy
= lim inf inf - =
koo 0<i<lqn Ag—1 + Ik + 1 4+ Dy

where the first two equalities follow from the fact that by the Stolz—Cesaro theorem, one has

k k
(L1 — Dlogg(l;+ 1 L
lim 2_171 (j+1 — Dlogg(l; + 1) —0 and lim 2171 J

k=00 ay k=oo  ay

=0.

Hence, by proposition 10.1 in [20], we obtain that dimgyE,(+00) > dimgF > 1.
Logp bn > 0. Then there exists an ¢ € (0,1) and

On the other hand, assume that lim sup ——
n—00

a subsequence {ny}i>1 of positive integers such that [, > [5“] + 1, and thus |I, (x)| <
1,1 (0)] < 8717 forall k > 1 by lemma 5. For all N € N, let
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Hy = () {y €10, D:r(3.m) = Ao}

n=N

where A\, = [2/¢ - loggn|, we will show that dimyHy = 0. Note that

E (+00) = {y € [0, 1): lim r0. 1) = +oo} C U Hy,
N=1

n—o0 10 gsn

then dimyE (400) = 0.
Fix N € N. For all n > N, we have

Hy C{y €[0,1):rn(y,n) = A\, }
n—>A,

c JOelonieno) a0 =209 -e),0}
i=0

n—X\,

C U U I(ue (x) - - -e),(x)).

i=0 uGEf3
Forany0 <i<n—\,andu € E’ , by (1.1), we obtain that

[H(ue1(0) - - - 3, < ¢ wp(uer(x) - - - €3, (x))
< ey (T 1) - - - 3, (0) = ¢ (e (x) - - - €3, (X))
<’ [IEe1) - - - ex, ()]
Then for any s > 0, by lemma 1, the s-dimensional Hausdorff measure

[B7% /2]~

H(Hy) <liminf Y D [Iuer@) - e, (@)

i=0 uEES

B2 oy
BH—I e
< lim inf Z 5 1c§25 “I8 s < oo
i=0

k—00

Thus, dimyHy < s for all s > 0. Therefore, dimyHy = 0. ]

7. Proof of theorem 3 for 0 < &« < +oco

In this section, we will prove the following proposition.

Proposition 7. Given 5 > 1, foranyx € [0,1)and0 < o < +00, if t(x) > 1, then E () =
@, otherwise, dimyE, (o) = 1.

Proof. Assume that #(x) > 1. Then there exists a subsequence {ny },>1 of positive integers
such that for all k € N, |, (x)] < B~ @+Dm/2 Thus, the word 1(x) - - - £,,(x)0" is not perfect
forall 0 < i < [(#(x) + )ng/2] — k. Hence by lemma 2,

L, (¥) = I(£1(x) - - - £, (x)OLOFDm/2)=mey (7.1)
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i.e., the word /(x) - - - &, (Y)w € Egl(x)ﬂ)"k/ 21'if and only if w = OLCW+Dm/2l=m Therefore,
by lemma 2 again, if the word £;(x) - - - €, (x) appears in the 3-expansion of some y € [0, 1),
then it must be followed by | (#(x) + 1)n /2] — n consecutive 0’s.

Assume that E () # @. Take € € (0, o) small enough such that (« — €)(t(x) + 1) > 2a.
For any y € E,(«), there exists a K € N such that for all n > K, we have

879 > K and rdy,n) > (o — e)log, n.
Then r.(y, [3%/©~91) > n; for any k > K. Thus by the argument after (7.1),
re(, [B™%/ 7T + [(1(x) + Dng/2)) > (1) + Dng/2].

Hence,

lim sup Y, Wnk/(aﬁ)] + [(1x) + Dy /2]) S (a—e)(tx)+ 1)
tooo logy ([Bm/@=97 + [(#(x) + Dy /2]) ~ 3 ;

which contradicts with the fact that y € E(«).
On the other hand, assume that #(x) = 1. Then by (3.1),

—log,| 1,
lim Ogﬁ| ()] —1

n—00 n
and thus by lemma 5,

lim ™ 1. (7.2)

n—oo 1

Take ko € N large enough such that for all k € N, we have

(@) atko +k) > 1;
(b) BTF = 2(ko 4 k + DUygry 1422 + ko + k)
(¢) BT — BUHT > e + (ko + R,
Letby =0and dy = 1. Forall k € N, let di = 4 442>

n = BRH — by — dy
¢ ko + k

and by = by + d; + mi (ko + k). It is clear that dy > ko + k,
ﬂ(koJrk)2 — (ko + k) < by < ﬂ(koJrk)2

and n > (ko + k). Thus,

log b

080k 7.
e (ko + k)2 (73)

Let &) = {0}. For all k € N, let

i) = {w € A w # e (1) - ergpgax)  forall0 < i < i+ ko +k — 2}
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Then by lemmas 1 and 3,

v AT a ke —k+ 1 pott dy — ko — k ot
>HNST —di—ko— k1> —d— ko — k> o
#UE) 2 #0; i B 2k +k + 1)
(7.4)
Let & = {ue1(x)- - e 1(x0)00V - -0y € By, vV, v € Uy(x)}. Then by

lemma 2, we have &, C Af;k. Let

Gy = U I(w) and G:ﬁGk,

weBy k=1

we will show that G C E(a) and dimyG > 1.
Fix y € G. For any n € N, there exists a k € N such that b;_; < n < b;. Then by the
definition of &;, we have dy_; — 1 < r(y,n) < di + 2(ko + k) — 3. Thus, by (7.2) and (7.3),

diy—1 <1 ro(y, n) . dt2(ko +k)—3
< lim < lim =
koo loggby ~ noco loggn koo logg(br—y + 1)

Hence, G C E ().
We then distribute a Borel probability measure j1, on G. Let 11, (I(0)) = p1([0,1)) = 1 and
1o (D) = 0.Forany k € Nand w € &, let

Ho(I())

() = Hd@)_
Hal(w) = iy oy

where u € &;_ is the prefix of w. Foranyn € Nand 7 € Eg, define

pa(T) = pa(w)),

where the sum is taken over all w € &, with b,_; < n < b; such that I(w) C I(7). Then,
one can check that the nonnegative set function p,, is a pre-measure on the collection of sets
{I(r): 7 € X3} U{@}, and so it can be uniquely extended to a Borel probability measure on
[0, 1).

Fix y € G. For any r € (0, 37%1), there exists a k € N such that S72+1 < r < B~ If r >
B~ 0—d+1 then

k

k
1a(By. ) <> pal@) = > T (#¥) ™ < 3] (#%,0) .
j=1

J=1

where the sum is taken over all w € &; such that I(w) N B(y, r) # &. Thus

log ta(BO.r))  —1ogs 3+ 3, nslog, #W,(0)
log r - by + diy

If ﬁ*bk*korl*(iJrl)(koJrkJrl) <r< B*brdk+1*i(ko+k+l) for some 0 < i < gy, then
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k+1

pa(BG, M) <D palw) = T (#¥0) ™"
j=1

k

3(# V) ] (#w)

J=1

where the sum is taken over all w € &, such that I(w) N B(y, r) # &. Thus,

log pta(B(y, 1)) _ —logy3 + (i — Dlog, # W1 () + S njlogy #,(x)
log r - b +diyr + i+ Do +k+ 1) '

Since by (7.2), (7.4), lemma 1 and the Stolz—Cesaro theorem, we have

 —logy3+ 30 njlog, #U (x)
lim =

k=00 by + dyt1
and
o —logy34 (i — Dlogy #W (x) + Y njlog, #W(x)
lim inf inf - :
k=00 0i<miq b+ diyr + G+ Do+ k+ 1)
S niko + ) + [mitko + k) + (i — D(ko + k + 1]
> liminf inf - =1,
k=00 O<i<my (br—1 + di + diy1) + (i + D(ko + k+ 1)
then,
lim inf [2& HaBO )
=0 log r
Therefore, by proposition 10.1 in [20], we obtain that dimyG > 1.
O
Proof of theorem 3. It is an easy corollary of propositions 5-7. O
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