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Abstract

In this article we calculate the Hausdorff dimension of the set

F (Φ) =

{

x ∈ [0, 1):
an+1(x)an(x) > Φ(n) for infinitely many n ∈ N and

an+1(x) < Φ(n) for all sufficiently large n ∈ N

}

where Φ :N→ (1,∞) is any function with limn→∞Φ(n) = ∞. This in turn
contributes to the metrical theory of continued fractions as well as gives
insights about the set of Dirichlet non-improvable numbers.

Keywords: uniform Diophantine approximation, Hausdorff dimension,
Dirichlet’s theorem, metric theory of continued fractions

Mathematics Subject Classi�cation numbers: 11K50, 11J70, 11J83, 28A78,
28A80.

1. Introduction

Metric Diophantine approximation is concerned with the quantitative analysis of the density
of rationals in the reals. We commence with the famous uniform Diophantine approximation
result, Dirichlet’s theorem, which is a simple consequence of the pigeon-hole principle.

Theorem 1.1 (Dirichlet 1842). Given x ∈ R and t > 1, there exists integers p, q such that

|qx− p| 6
1

t
and 1 6 q < t. (1.1)
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The above result is uniform in the sense that it ensures non-trivial integer solution for all
t. It can be easily seen that the rate of approximation given in (1.1) improves the trivial rate
of 1/2. A natural question that arises here is, what happens if the right-hand side of (1.1) is
replaced with a faster decreasing function depending upon t? To this end, let ψ : [t0,∞)→R+

be any monotonically decreasing function, where t0 > 1 is �xed. Denote by D(ψ) the set all
those real numbers x for which the system

|qx− p| 6 ψ(t) and |q| < t

guarantees a nontrivial integer solution for all large enough t. A real number x ∈ D(ψ) (resp.
x ∈ D(ψ)c) will be referred to as anψ-Dirichlet improvable (resp.ψ-Dirichlet non-improvable)
number.

Davenport–Schmidt [1] proved that the set D(k/t) has a Lebesgue measure zero for any
k < 1 by showing that D(k/t) is a subset of the union of the set of rationals Q and the
set of badly approximable numbers. The set D(ψ) is connected with the continued fractions
as observed by Kleinbock–Wadleigh [2, lemma 2.2] proving that an irrational number is
ψ-Dirichlet improvable if and only if the product of consecutive partial quotients of the con-
tinued fraction expansion of that number do not grow fast. To state their result as well as our
main result, �rst we introduce some necessary de�nitions and notations.

Every irrational x ∈ [0, 1) can be uniquely expressed as a simple in�nite continued fraction
expansion of the form:

x = [a1(x), a2(x), . . . , ],

where an(x) ∈ N, n > 1 are known as the partial quotients of x. This expansion can be induced
by the Gauss map T : [0, 1)→ [0, 1) de�ned as

T(0) := 0, T(x) :=
1

x
(mod1), for x ∈ (0, 1), (1.2)

with a1(x) = ⌊ 1
x
⌋, where ⌊.⌋ represents the �oor function and an(x) = a1(Tn−1(x)) for n > 2.

Further, we denote qn = qn(x) to be the denominator of the nth convergent to x. That is

[a1(x), a2(x), . . . , an(x)] :=
pn(x)

qn(x)
.

The metrical theory of continued fractions which focuses on investigating the properties of
partial quotients for almost all x ∈ [0, 1) is one of the important areas of research in the study
of continued fractions and is closely connected with the Diophantine approximation. The main
connection is that the convergents of a real number x are good rational approximates for x. In
fact, for any τ > 0 the famous Jarník–Besicovitch set

{

x ∈ [0, 1) :

∣
∣
∣
∣
x−

p

q

∣
∣
∣
∣
<

1

qτ+2
for infinitelymany (p, q) ∈ Z× N

}

,

can be written in the following form,
{
x ∈ [0, 1) : an(x) > qτn(x) for infinitelymany n ∈ N

}
, (1.3)

by using Legendre’s theorem 2.2 and property (P3) of the proposition 2.1, stated below which
essentially rely on elementary properties of continued fractions. For further details about this
connection we refer to [3]. Thus a real number x is τ -approximable if the partial quotients
in its continued fraction expansion are growing fast. Therefore the growth rate of the partial
quotients reveals how well a real number can be approximated by rationals.
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A starting point in the metrical theory of continued fractions is the well-known
Borel–Bernstein theorem [4, 5] which gives an analogue of Borel–Cantelli ‘0–1’ law with
respect to Lebesgue measure for the set of real numbers with large partial quotients. A lot of
work has been done in the direction of improvingBorel–Bernstein’s theorem, for example, esti-
mation of Hausdorff dimension of sets when partial quotients an(x) obeys different conditions
has been studied in [3, 6, 7].

Throughout this paper, let Φ :N→ (1,∞) be an arbitrary function such that
limn→∞Φ(n) = ∞,

E1(Φ) := {x ∈ [0, 1) : an(x) > Φ(n) for infinitelymany n ∈ N} .

Theorem 1.2 ([5, Borel–Bernstein]). The Lebesgue measure of E1(Φ) is either zero or full
according as the series

∑∞
n=1 1/Φ(n) converges or diverges respectively.

The Borel–Bernstein’s theorem is a remarkably simple dichotomy result but it fails to dis-
tinguish between Lebesgue null sets, that is, it gives Lebesgue measure zero for sets E1(Φ)
for rapidly increasing functions Φ. To distinguish between Lebesgue null sets the notion of
Hausdorff measure and dimension are the appropriate tools and has gained much importance
in the metrical theory of continued fractions. Keeping this in view Wang–Wu [8] completely
determined the Hausdorff dimension of the set E1(Φ).

Theorem 1.3 ([8, Wang–Wu]). Let Φ :N→ R+ be an arbitrary positive function. Suppose

log B = lim inf
n→∞

log Φ(n)

n
and log b = lim inf

n→∞

log log Φ(n)

n
.

(a) When B = 1, dimH E1(Φ) = 1.

(b) When B = ∞, dimH E1(Φ) = 1/(1+ b).

(c) When 1 < B <∞, dimH E1(Φ) = sB := inf{s > 0 :P(T,−s(log B+ log |T ′|)) ≤ 0},

where T is the Gauss map related to the continued fraction expansion, T ′ denotes the

derivative of T and P represents the pressure function de�ned in section 3.

The following result illustrates the continuity of dimensional number sB and shows that its
limit exist.

Proposition 1.4 ([8, Wang–Wu]). The parameter sB is continuous with respect to B, and

lim
B→1

sB = 1, lim
B→∞

sB = 1/2.

The set E1(Φ) is connected with the Jarnìk-Besicovitch set (1.3) in the sense that in (1.3)
the approximating function depends on the nth convergent of x ‘qn(x)’ whereas in E1(Φ) the
approximating function Φ is a function of index ‘n’. Recall that E1(Φ) consist of real numbers
such that one partial quotient grows very fast but as we move towards the product of two
consecutive partial quotients, the corresponding set of real numbers is linked with the set of
Dirichlet non-improvable numbers (as observed by Kleinbock–Wadleigh [2]) in the following
sense.

There exists w > 1 such that for every x /∈ Q, wn 6 qn(x) for all n > 2. There also exits
W > w such that for almost every x, qn(x) 6 Wn for all large enough n (see [9, section 14]).

This leads to the following criteria for Dirichlet improvability.
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Lemma 1.5 ([2, Kleinbock–Wadleigh]). Let x ∈ [0, 1)\Q, and let ψ : [t0,∞)→ R+ be non-

increasing function with tψ(t) < 1 for all t > t0 and Φ(t) =
tψ(t)

1−tψ(t) . Then

(a) x ∈ D(ψ) if an+1(x)an(x) 6 Φ(wn)/4 for all suf�ciently large n.

(b) x ∈ D(ψ)c if an+1(x)an(x) > Φ(Wn) for in�nitely many n.

Thus this lemma characterises a real number x to be ψ-Dirichlet non-improvable in terms
of the growth of product of consecutive partial quotients. Further, Kleinbock–Wadleigh also
proved a zero-one law for the Lebesgue measure of D(ψ). With a change of notation, we
consider the set

E2(Φ) := {x ∈ [0, 1) : an(x)an+1(x) > Φ(n) for infinitelymany n ∈ N} ,

where Φ :N→ (1,∞) is any function with limn→∞Φ(n) = ∞.

Theorem 1.6 ([2, Kleinbock–Wadleigh]). The Lebesgue measure of E2(Φ) is either zero or
full according as the series

∑∞
n=1

log Φ(n)
Φ(n) converges or diverges respectively.

Note that the E1(Φ) is properly contained in E2(Φ). Since the inclusion is proper, this raises
a natural question of the size of the set E2(Φ)\E1(Φ). In other words, a natural question is to
estimate the size of the set

F (Φ) := E2(Φ)\E1(Φ) =

{

x ∈ [0, 1) :
an+1(x)an(x) > Φ(n) for in�nitelymany n ∈ N and

an+1(x) < Φ(n) for all suf�ciently largen ∈ N

}

,

in terms of Hausdorff dimension. Note that the set F (Φ) arises by excluding the set of well
approximable points (cf Jarník-Besicovitch set (1.3)) from the set E2(Φ) of Dirichlet non-
improvable points expressed in terms of their continued fraction entries. The main result of
the paper is the Hausdorff dimension of the set F (Φ).

Theorem 1.7. Let Φ :N→ (1,∞) be any function with lim
n→∞

Φ(n) = ∞. Suppose

log B = lim inf
n→∞

log Φ(n)

n
and log b = lim inf

n→∞

log log Φ(n)

n
.

Then

dimH F (Φ) =







tB := inf{s > 0 :P
(
T,−s2 log B− s log

(
|T ′|
)
6 0} if 1 < B <∞;

1

1+ b
ifB = ∞,

where P represents the pressure function de�ned in section 3.

Note that if we take B = 1 then from the de�nition of F (Φ) we have an+1(x) < 1
which is a contradiction to the assumption that an+1(x) > 1. Therefore, B is strictly greater
than 1.

When Φ is a function of the nth convergents (qn(x)) then the Hausdorff dimension of the
set F (Φ) has been established by the authors in [10], and the Hausdorff measure theoretic
results for the set E2(Φ) have been established by Hussain–Kleinbock–Wadleigh–Wang in
[11]. The Hausdorff dimension of level sets within this setup are investigated very recently by
Huang–Wu [12].
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2. Preliminaries

In this section we aim to gather some fundamental properties of continued fractions, pressure
function and a few auxiliary results that will be helpful for obtaining the Hausdorff dimension
of F (Φ).

2.1. Continued fractions and Diophantine approximation

For any vector (a1, . . . , an) ∈ Nn with any n ∈ N, we call

In(a1, a2, . . . , an) =







[
pn

qn
,
pn + pn−1

qn + qn−1

)

if n is even;
(
pn + pn−1

qn + qn−1
,
pn

qn

]

if n is odd,
(2.1)

a ‘basic cylinder’ of order n, where pn, qn are generated by the following recursive relation

p−1 = 1, p0 = 0, pn+1 = an+1pn + pn−1,
q−1 = 0, q0 = 1, qn+1 = an+1qn + qn−1.

(2.2)

In fact the basic cylinder of order n represents the set of those real numbers in [0, 1) that
have continued fraction expansion starting from a1, . . . , an, that is

In = In(a1, . . . , an) := {x ∈ [0, 1) : a1(x) = a1, . . . , an(x) = an} . (2.3)

From [9] it is well known that the length of In is

1

2q2n
6 |In(a1, . . . , an)| =

1

qn(qn + qn−1)
6

1

q2n
, (2.4)

since pn−1qn − pnqn−1 = (−1)n, for all n > 1.
For any n > 1 and irrational x ∈ [0, 1), let pn(x) = pn and qn(x) = qn be given by (2.2),

de�ne pn(x)
qn(x)

‘the nth convergent of x’ by

pn(x)

qn(x)
:= [a1(x), . . . , an(x)] (n > 1),

From (2.2) note that for any n > 1, qn is determined by a1, . . . , an. Therefore, we can write
qn = qn(a1, . . . , an). Just to avoid confusion we can use an and qn in place of an(x) and qn(x),
respectively.

Proposition 2.1 ([9, Khintchine]). Let k > 1, n > 1 and a1, . . . , an be positive integers. Then
we have

(P1) qn > 2(n−1)/2 and for any 1 6 k 6 n,

ak + 1

2
6

qn(a1, . . . , an)

qn(a1, . . . , ak−1, ak+1 . . . , an)
6 ak + 1.

(P2)

qn+k(a1, . . . , an, an+1 . . . , an+k) > qn(a1, . . . , an)qk(an+1, . . . , an+k), (2.5)

qn+k(a1, . . . , an, an+1 . . . , an+k) 6 2qn(a1, . . . , an)qk(an+1, . . . , an+k). (2.6)
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(P3)

1

3an+1q2n
<

∣
∣
∣
∣
x−

pn

qn

∣
∣
∣
∣
=

1

qn(qn+1 + Tn+1xqn)
<

1

an+1q2n
,

and for any n > 1 the derivative of Tn is given by

(Tn)′(x) =
(−1)n

(xqn−1 − pn−1)2
. (2.7)

The next theorem known as Legendre’s theorem, connects 1-dimensional Diophantine
approximation with continued fractions.

Theorem 2.2 (Legendre). Let p
q
be a rational number. Then

∣
∣
∣
∣
x−

p

q

∣
∣
∣
∣
<

1

2q2
=⇒

p

q
=

pn(x)

qn(x)
, for some n > 1.

According to Legendre’s theorem if an irrational x is well approximated by a rational p
q
, then

this rational must be a convergent of x. Thus in order to �nd good rational approximates to an
irrational number we only need to focus on its convergents. Note that, from (P3) of proposition
2.1, a real number x is well approximated by its convergent pn

qn
if its (n+ 1)th partial quotient

(an+1) is suf�ciently large.
The next result is due to Łuczak [7].

Lemma 2.3 ([7, Łuczak]). For any a, b > 1, the sets

{
x ∈ [0, 1) : an(x) > ab

n

, for infinitelymany n ∈ N
}

and

{
x ∈ [0, 1) : an(x) > ab

n

, for all sufficiently large n ∈ N
}

are of the same Hausdorff dimension 1
1+b .

3. Pressure function and Hausdorff dimension

We collect some basic details about the so-called ‘pressure function’ and its connection with
in�nite systems generated by continued fractions.

Walters [13] explains the concept of topological pressure and the pressure function in gen-
eral. For our purposes, we seek to utilise key concepts that are specialised to the continued
fraction setting. Guiding the reader through the references, the end game is to produce a func-
tion, from which we can produce a lower bound for the Hausdorff dimension of our set of
interest.

Let T :X→ X be a continuous transformation of a compact metric space (X, d). Let
C (X,R) denote the Banach algebra of real-valued continuous functions of X equipped with
the supremum norm. The topological pressure of T will be a mapP(T) :C (X,R)→ R ∪ {∞}.

In the case of many linear maps, which includes self similar sets, the dimension can be
found implicitly in terms of an expression involving only the rates of contraction. A theorem
of Moran [14] can then be used to calculate the Hausdorff dimension of self-similar sets (see
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theorem 2.2.1 of [15]). In the non-linear case, however, the corresponding generalisation of
Moran, involves the so called pressure function.

Definition 3.1. Given any continuous function f :X→ R we de�ne its pressure P ( f ) (with
respect to T) as

P ( f ) := lim sup
n→∞

1

n
log









∑

Tnx = x

x ∈ X

e f (x)+ f (Tx)+···+ f (Tn−1x)









︸ ︷︷ ︸

Sum over periodic points

As is seen in [15], the limit actually exists and so the ‘limsup’ can actually be replaced by a
‘lim’. In practice, we shall mainly be interested in a family of functions ft (x) = −t log |T ′ (x)|,
x ∈ X and 0 6 t 6 d, so that the above function reduces to

[0, d]→ R, t 7→ P ( ft) = lim sup
n→∞

1

n
log









∑

Tnx = x

x ∈ X

1

|(Tn)′ (x)|t









.

The following standard result is essentially due to Bowen and Ruelle. Bowen showed
the result in the context of quasi-circles and Bowen–Ruelle developed the method for the
case of hyperbolic Julia sets. The proof of the following theorem can be found in [15,
theorem 2.3.2].

Theorem 3.2 (Bowen–Ruelle). Let T :X → X be a C1+α conformal expanding map, for

some α > 0. There is a unique solution 0 6 s 6 d to

P
(
−s log |T ′|

)
= 0,

which occurs precisely at s = dimHX.

Before we proceed further, let us recall some standard properties of expanding maps. We
call a �nite collection of closed subsets P = {Pi}

k
i=1 a Markov partition if it satis�es the

following:

• Their union is X (i.e. ∪k
i=1Pi = X);

• The sets are proper (i.e. each Pi is the closure of their interiors, relative to X);

• Each image TPi, for i = 1, . . . , k, is the union of �nitely many elements from P and
T :Pi 7→ TPi is a local homeomorphism.

The set X is partitioned into pieces P1, . . . ,Pk each of which is mapped under T onto X.
Finally, we observe that the function t 7→ P ( ft) has the following interesting properties:

(a) P (0) = log k;

(b) t 7→ P ( ft) is strictly monotone decreasing; and

(c) t 7→ P ( ft) is analytic on [0, d].

Property (a) is immediate from the de�nition. For the proofs of properties (b) and (c) see
page 32 of [15].
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The above ideas are suf�cient background to explain the reason for the use of pressure
functions in Hausdorff dimension calculations for fractal sets of continued fractions.

3.1. The continued fraction setting

For more thorough results on pressure function in in�nite conformal iterated function systems,
we refer to [16–18]. After de�ning the limit set, they prove an analogue of the Moran–Bowen
formula, identifying its Hausdorff dimension as the zero of the pressure function P (t).
Mauldin–Urbański [17] presented a form of pressure function in conformal iterated function
systems with applications to the geometry of continued fractions.

From these papers, a pressure function with a continuous potential can be approximated by
the pressure function restricted to the subsystems in continued fraction.

Let us consider a �nite or in�nite subset A of N and de�ne

YA = {x ∈ [0, 1) : for all n > 1, an(x) ∈ A}.

Then (YA, T) is a subsystem of ([0, 1), T) where T is a Gauss map as de�ned in equation (1.2).
Given any real function ϕ : [0, 1)→ R, the pressure function restricted to the system (YA, T) is
de�ned as

PA(T,ϕ) := lim
n→∞

1

n
log

∑

a1,...,an∈A

sup
x∈YA

eSnϕ([a1,...,an+x]), (3.1)

where Snϕ(x) denotes the ergodic sum ϕ(x)+ · · ·+ ϕ(Tn−1x). DenotePN(T,ϕ) byP(T,ϕ) for
A = N. Also note that if ϕ satisfy the continuity property than we can remove the supremum
from equation (3.1).

For each n > 1 we represent the nth variation of ϕ by

Varn(ϕ) := sup {|ϕ(x)− ϕ(y)| : In(x) = In(y)} .

The existence of the limit in equation (3.1) is due to the following result.

Proposition 3.3 ([19, proposition 2.4]). Let ϕ : [0, 1)→R be a real function withVar1(ϕ) <
∞ and Varn(ϕ)→ 0 as n→∞. Then the limit de�ning PA(T,ϕ) exists and the value of
PA(T,ϕ) remains the same even without taking supremum over x ∈ YA in (3.1).

The next result by Hanus et al [20] shows that when the system ([0, 1), T) is approximated
by its subsystems (YA, T) then the pressure function has a continuity property in the system of
continued fractions (for an elementary proof see [20] or [19]).

Proposition 3.4 ([20, proposition 2]). Let ϕ : [0, 1)→R be a real function with

Var1(ϕ) <∞ and Varn(ϕ)→ 0 as n→∞. We have

PN(T,ϕ) = sup{PA(T,ϕ) :A is a finite subset ofN}.

From now onwards we consider the speci�c potential

ϕ1(x) = −s(s log B+ log |T ′(x)|)

where 1 < B <∞, s > 0 and T ′ is the derivative of Gauss map T. By applying proposition 3.4
to ϕ1, it is clear that ϕ1 satis�es the variation condition.
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By using equation (2.7) of proposition 2.1, it is easy to check that

Sn(−s(s log B+ log |T ′(x)|)) = −ns2 log B− s log q2n.

Therefore, the pressure function (3.1) with potential ϕ1 becomes

PA(T, s(s log B+ log |T ′(x)|)) = lim
n→∞

1

n
log

∑

a1,...,an∈A

eSn(−s(s log B+log |T ′(x)|))

= lim
n→∞

1

n
log

∑

a1,...,an∈A

(
1

Bnsq2n

)s

.

For any n > 1 and s > 0, let

gn (s) =
∑

a1,...,an∈A

1
(
Bnsq2n

)s .

De�ne

tn,B (A) = inf {s > 0 : gn (s) 6 1} ,

tB(A) = inf{s > 0 :PA(T,−s(s log B+ log |T ′|)) 6 0},

tB(N) = inf{s > 0 :P(T,−s(s log B+ log |T ′|)) 6 0}.

If we take A to be a �nite subset of N, then it is easy to check that both gn (s) and
PA(T,−s(s log B+ log |T ′|)) are monotonically decreasing and continuous with respect to
s (for details see [8]). Therefore, tn,B (A) and tB(A) are respectively the unique solutions to
gn (s) = 1 and PA(T,−s(s log B+ log |T ′|)) = 0.

For any M ∈ N, take AM = {1, 2, . . . , M}. For simplicity, write tn,B (M) for tn,B (AM),
tB (M) for tB (AM), tn,B for tn,B (N) and tB for tB (N).

From proposition 3.4 and the de�nition of tn,B(M) we have the following result.

Corollary 3.5. For any integer M ∈ N,

lim
n→∞

tn,B(M) = tB(M), lim
M→∞

tB(M) = tB.

Since the function of B belongs to (1,∞), therefore the dimensional number tB is continuous
with respect to B and

lim
B→1

tB = 1, lim
B→∞

tB = 1/2.

Proof. This can be proved by following similar steps as for sB in [8]. �

Also note that from equation (2.4) and de�nition of tn,B(M), we have 0 6 tB(M) 6 1.

4. Proof of theorem 1.7

Proof. The proof of theorem 1.7 consist of two cases:

(a) When 1 < B <∞;

(b) When B = ∞. �
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4.1. Case 1.When 1 < B <∞

By the choice of B in the statement of theorem 1.7 one can easily note that

dimH F (Φ) = dimH F (Φ : n→ Bn) when 1 < B <∞.

Therefore, we can simply take the approximating function Φ(n) :=Bn and rewrite the set
F (Φ) as

F (B) =

{

x ∈ [0, 1) :
an(x)an+1(x) > Bn for infinitelymany n ∈ N and

an+1(x) < Bn for all sufficiently large n ∈ N

}

.

The aim is to show dimH F (B) = tB. The details of the proof of theorem 1.7 is divided into
two further subsections. That is �nding the upper bound

dimH F (B) 6 tB,

and the lower bound

dimH F (B) > tB

separately. Taken together, this will conclude our proof for case 1.

4.1.1. The upper bound for F(B). For the upper bound of dimH F (B), we consider two sets:

F1(B) = {x ∈ [0, 1) : an(x) > Bn for in�nitelymany n ∈ N} and

F2(B) =

{

x ∈ [0, 1) :
1 6 an(x) 6 Bn, an+1(x) > Bn/an(x) for in�nitelymany n ∈ N and

an+1(x) < Bn for all suf�ciently large n ∈ N

}

.

From the de�nition of Hausdorff dimension it follows that

dimH F (B) 6 max{dimH F1(B), dimH F2(B)}.

The Hausdorff dimension of F1(B) follows from theorem 1.3. So it remains to obtain the
upper bound for the Hausdorff dimension of F2(B). Recall that the pressure function P(T) is
monotonic with respect to the potential which implies then sB 6 tB. So, once we can show
dimH F2(B) 6 tB, the upper bound for the dimH F (B) follows.

Fix ǫ > 0 and let s = tB + 2ǫ. We will show that dimH F2(B) 6 s.
By the de�nition of tB, one has for any n large,

∑

a1,...,an−1∈N

(
1

Bnsq2n−1

)s

6
∑

a1,...,an−1∈N

(
1

Bn(tB+ǫ)q2n−1

)tB+ǫ

· B−nǫ2 6 B−nǫ2 . (4.1)
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Recall that

F2(B) =

{

x ∈ [0, 1) :
1 6 an(x) 6 Bn, an+1(x) > Bn/an(x) for in finitelymany n ∈ N and

an+1(x) < Bn for all sufficiently large n ∈ N

}

⊂ {x ∈ [0, 1) : 1 6 an(x) 6 Bn, (Bn/an(x)) 6 an+1(x) < Bn for infinitelymany n ∈ N}

=

∞⋂

N=1

⋃

n>N

{x ∈ [0, 1) : 1 6 an(x) 6 Bn, (Bn/an(x)) 6 an+1(x) < Bn}

=

∞⋂

N=1

⋃

n>N

FI ∪ FII (4.2)

where

FI = {x ∈ [0, 1) : 1 6 an(x) < αn, (Bn/an(x)) 6 an+1(x) < Bn}

FII = {x ∈ [0, 1) :αn 6 an(x) 6 Bn, (Bn/an(x)) 6 an+1(x) < Bn}

and αn > 1. Here we have assumed that for a real number α > 1 we have αn > 1 for large
enough n ∈ N.

Next we will separately �nd suitable covering for set FI and FII whereas the union of the
coverings for both these sets will serve as an appropriate covering for F2(B).

The set FI can be covered by collections of fundamental cylinders Jn of order n:

FI ⊂ {x ∈ [0, 1) : 1 6 an(x) 6 αn, (Bn/an(x)) 6 an+1(x)}

=
⋃

a1,...,an−1∈N

{x ∈ [0, 1) : ak(x) = ak,1 6 k 6 n− 1, 1 6 an(x) 6 αn, (Bn/an(x)) 6 an+1(x)}

=
⋃

a1,...,an−1∈N

⋃

16an<αn

⋃

an+1>Bn/an

In+1(a1, . . . , an+1)

=
⋃

a1,...,an−1∈N,
16an6α

n

Jn(a1, . . . , an).

Note that since

Jn(a1, . . . , an) =
⋃

an+1>Bn/an

In+1(a1, . . . , an+1),

therefore we have

|Jn(a1, . . . , an)| ≍
1

Bnanq
2
n−1

.

Cover the set FII by the collection of fundamental cylinders J′n−1 of order n− 1:
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FII ⊂ {x ∈ [0, 1) : an(x) > αn}

=
⋃

a1,...,an−1∈N

{x ∈ [0, 1) : ak(x) = ak, 1 6 k 6 n− 1, an(x) > αn}

=
⋃

a1,...,an−1∈N

⋃

an>αn

In(a1, . . . , an)

=
⋃

a1,...,an−1∈N

J′n−1(a1, . . . , an−1).

Since

J′n−1(a1, . . . , an−1) =
⋃

an>αn

In(a1, . . . , an),

therefore we have

|J′n−1(a1, . . . , an−1)| ≍
1

αnq2n−1

.

Now we consider the s-volume of the cover of FI

⋃
FII:

∑

a1,...,an−1∈N

∑

16an6αn

(
1

Bnanq
2
n−1

)s

+
∑

a1,...,an−1∈N

(
1

αnq2n−1

)s

≍
∑

a1,...,an−1∈N

αn(1−s)
(

1

Bnq2n−1

)s

+
∑

a1,...,an−1∈N

(
1

αnq2n−1

)s

(integratingon an)

=
∑

a1,...,an−1∈N

[(
1

αnq2n−1

)s

+

(
1

αnq2n−1

)s ]

(byα = Bs)

≍
∑

a1,...,an−1∈N

(
1

Bnsq2n−1

)s

.

Therefore, from equation (4.2), we obtain

F2(B) ⊂
∞⋂

N=1

⋃

n>N







⋃

a1, . . . , an−1 ∈ N

1 6 an 6 αn

Jn(a1, . . . , an)
⋃ ⋃

a1,...,an−1∈N

J′n−1(a1, . . . , an−1)







. (4.3)

Thus from equations (4.3) and (4.1), we obtain s-dimensional Hausdorff measure of F2(B)
as

Hs(F2(B)) 6 lim inf
N→∞

∞∑

n>N

∑

a1,...,an−1∈N

(
1

Bnsq2n−1

)s

6 lim inf
N→∞

∞∑

n>N

1

Bnǫ
2 = 0.
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This gives dimH F2(B) 6 s = tB + 2ǫ. Since ǫ > 0 is arbitrary, we have dimH F2(B) 6 tB.
Consequently,

dimH F (B) 6 tB. (4.4)

4.1.2. The lower bound for F(B). In this subsection we will determine the lower bound for
dimH F (B). Here the pressure function material will be utilised.

To prove dimH F (B) > tB it is suf�cient to show that dimH F (B) > tL,B(M) for all large
enoughM and L (corollary 3.5). For this we will construct a subsetFM(B) ⊂ F (B) and use the
lower bound for Hausdorff dimension of FM(B) to approximate that of F (B).

Fix s < tL,B(M). Let α = Bs where α 6 B and αn > 1 for all large enough n. Choose a
rapidly increasing sequence of integers {nk}k>1 and, for convenience, we let n0 = 0.

De�ne the subset FM(B) of F (B) as follows

FM(B) =

{

x ∈ [0, 1) :
Bnk

2αnk
6 ank+1(x) 6

Bnk

αnk
, ank(x) = 2αnk for all k > 1

and 1 6 a j(x) 6 M, for all j 6= nk, nk + 1

}

. (4.5)

4.1.3. Structure of FM(B). For any n > 1, de�ne the set of strings

Dn =

{

(a1, . . . , an) ∈ Nn :
Bnk

2αnk
6 ank+1(x) 6

Bnk

αnk
, ank (x) = 2αnk

and 1 6 a j(x) 6 M, j 6= nk, nk + 1

}

.

Recall that for any n > 1 and (a1, . . . , an) ∈ Dn, we call In (a1, . . . , an) a basic cylinder of
order n and

Jn := Jn (a1, . . . , an) :=
⋃

an+1

In+1(a1, . . . , an, an+1) (4.6)

a fundamental cylinder of order n, where the union in (4.6) is taken over all an+1 such that
(
a1, . . . , an, an+1

)
∈ Dn+1.

Note that in (4.5) according to the limitations on the partial quotients we have three distinct
cases for Jn. For

(
a1, . . . , an, an+1

)
∈ Dn+1:

nk−1 + 1 6 n 6 nk − 2, Jn =
⋃

16an+16M

In+1(a1, . . . , an, an+1), (4.7)

n = nk − 1, Jn =
⋃

an+1=2αn

In+1(a1, . . . , an, an1+1), (4.8)

n = nk, Jn =
⋃

Bn

2αn6an+16
Bn

αn

In+1(a1, . . . , an, an+1).

(4.9)

Then,

FM(B) =
∞⋂

n=1

⋃

(a1,...,an)∈Dn

Jn (a1, . . . , an) .
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4.1.4. Lengths of fundamental cylinders. In the following subsection we will estimate the
lengths of the fundamental cylinders de�ned in subsection 4.1.3.
I. If nk−1 + 1 6 n 6 nk − 2 then from equation (4.7) and using equation (2.4) we have

|Jn(a1, . . . , an)| =
∑

16an+16M

∣
∣In+1

(
a1, . . . , an, an+1

)∣
∣

=
∑

16an+16M

1

qn+1

(
qn+1 + qn

) (4.10)

=

M∑

an+1=1

1

qn

(
1

qn+1
−

1

qn+1 + qn

)

=
1

qn

M∑

an+1=1

(
1

an+1qn + qn−1
−

1
(
an+1 + 1

)
qn + qn−1

)

=
1

qn

(
1

qn + qn−1
−

1

(M + 1) qn + qn−1

)

=
M

((M + 1) qn + qn−1) (qn + qn−1)
.

Also, from equation (4.10) we have

1

6q2n
6 |Jn(a1, . . . , an)| 6

1

q2n
. (4.11)

In particular for n = nk + 1,

1

24B2nq2n−2

6 |Jn(a1, . . . , an)| 6
1

4B2nq2n−2

. (4.12)

II. If n = nk − 1 then from equation (4.8) and following the same steps as for case I we have

|Jn(a1, . . . , an)| =
1

(2αnqn + qn−1)((2αn + 1)qn + qn−1)

and

1

12αn+1q2n
6 |Jn(a1, . . . , an)| 6

1

2αn+1q2n
. (4.13)

III. If n = nk then from equation (4.9) and following the similar steps as for I we obtain

|Jn(a1, . . . , an)| =
Bn

2αn + 1
(
Bn

2αn qn + qn−1

) ((
Bn

αn + 1
)
qn + qn−1

)

and

αn

6Bnq2n
6 |Jn(a1, . . . , an)| 6

2αn

Bnq2n
.

Further,

1

32αnBnq2n−1

6 |Jn(a1, . . . , an)| 6
1

2αnBnq2n−1

. (4.14)
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4.1.5. Supporting measure on FM(B). To construct a suitable measure supported on FM(B)
�rst recall that tL,B(M) is the solution to

∑

a1,...,aL∈AM

(
1

BLsq2L

)s

= 1.

For α = Bs this sum becomes

∑

a1,...,aL∈AM

(
1

αLq2L

)s

= 1.

Let mkL = nk − nk−1 − 1 for any k > 1. Note that m1L = n1 − 1 since we have assumed
n0 = 0 and de�ne

w =
∑

a1,...,aL∈AM

(
1

αLq2L(ank−1+t+1, . . . , ank−1+(t+1)L)

)s

where 0 6 t 6 mk − 1.
Step I. Let 1 6 m 6 m1. We �rst de�ne a positive measure for the fundamental cylinder
JmL(a1, . . . , amL) as

µ(JmL(a1, . . . , amL)) =
m−1∏

t=0

1

w

(
1

αLq2L(atL+1, . . . , a(t+1)L)

)s

,

and then we distribute this measure uniformly over its next offspring.
Step II. When n = m1L = n1 − 1 then de�ne a measure

µ(Jm1L(a1, . . . , am1L)) =
m1−1
∏

t=0

1

w

(
1

αLq2L(atL+1, . . . , a(t+1)L)

)s

.

Step III. When n = m1L+ 1 = n1 then for Jn1(a1, . . . , an1), de�ne a measure

µ(Jn1(a1, . . . , an1)) =
1

2αn1
µ(Jn1−1(a1, . . . , an1−1))

In other words, the measure of Jn1−1 is uniformly distributed on its next offspring Jn1 .
Step IV.When n = n1 + 1.

µ(Jn1+1(a1, . . . , an1+1)) =
2αn1

Bn1
µ(Jn1(a1, . . . , an1))

The measure of other fundamental cylinders of level less than n1 − 1 is given by the
consistency of a measure. To be more precise, for any n < n1 − 1, suppose

µ(Jn(a1, . . . , an)) =
∑

Jm1L
⊂Jn

µ(Jm1L).

So for any m < m1, the measure of fundamental cylinder JmL is given by

µ(JmL(ank−1+t+1 · · · ank−1+(t+1)L)) =
∑

Jm1L
⊂JmL

µ(Jm1L) =
m−1∏

t=0

1

w

(
1

αLq2L(atL+1, . . . , a(t+1)L)

)s

.
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The measure of fundamental cylinders for other levels can be de�ned inductively.
For k > 2 de�ne,

µ(Jnk−1(a1, . . . , ank−1)) = µ
(
Jnk−1+1(a1, . . . , ank−1+1)

)

·

mk−1
∏

t=0

1

w

(
1

αLq2L(ank−1+tL+1, . . . , ank−1+(t+1)L)

)s

,

µ(Jnk (a1, . . . , ank )) =
1

2αnk
µ
(
Jnk−1(a1, . . . , ank−1)

)
,

and

µ(Jnk+1(a1, . . . , ank+1)) =
2αnk

Bnk
µ
(
Jnk(a1, . . . , ank )

)
·

4.1.6. The Hölder exponent of the measure µ. Estimation of µ(Jn(a1, . . . , an)). In this sub-
section we will estimate the measure µ of the fundamental cylinders de�ned above. For this
we split the process into several cases. Recall that αn > 1 for large enough n which implies
αL > 1. For suf�ciently large k0 choose ǫ0 >

nk−1
nk

+
1
nk

such that

mkL

nk
=
nk

nk
−
nk−1

nk
−

1

nk
> 1− ǫ0, for all k > k0. (4.15)

Case 1.When n = mL for some 1 6 m < m1.

µ(JmL(a1, . . . , amL)) 6
m−1∏

t=0

(
1

αLq2L(atL+1, . . . , a(t+1)L)

)s

6

m−1∏

t=0

(
1

q2L(atL+1, . . . , a(t+1)L)

)s

.

µ(JmL(a1, . . . , amL)) 6 (4m−1)

(
1

q2mL(a1, . . . , amL)

)s

(by (2.6))

=

(
1

q2mL(a1, . . . , amL)

)s− 2
L

(by P1)

6 6|JmL(a1, . . . , amL)|
s− 2

L (by (4.11)).

Case 2.When n = m1L = n1 − 1.

µ(Jm1L(a1, . . . , am1L)) 6
m1−1
∏

t=0

(
1

αLq2L(atL+1, . . . , a(t+1)L)

)s

6

(
1

αm1L

)s
(

1

q2m1L
(a1, . . . , am1L)

)s− 2
L

6

(
1

α1−ǫ0

)sn1
(

1

q2m1L
(a1, . . . , am1L)

)s− 2
L

(by (4.15))

2630



Nonlinearity 33 (2020) 2615 A Bakhtawar et al

6

(

1

αn1q2n1−1

)s− 2
L−ǫ0

(4.16)

6 12|Jm1L(a1, . . . , am1L)|
s− 2

L−ǫ0 (by (4.13)).

Case 3.When n = m1L+ 1 = n1.

µ(Jn1(a1, . . . , an1)) =
1

2αn1
µ(Jn1−1(a1, . . . , an1−1))

6
1

2αn1

(

1

αn1q2n1−1

)s− 2
L−ǫ0

(by (4.16))

=
1

2Bsn1

(

1

αn1q2n1−1

)s− 2
L−ǫ0

(α = Bs)

6
1

2

(

1

Bn1αn1q2n1−1

)s− 2
L−ǫ0

6 16|Jn1(a1, . . . , an1)|
s− 2

L−ǫ0 (by (4.14)).

Case 4.When n = n1 + 1.

µ(Jn1+1(a1, . . . , an1+1)) =
2αn1

Bn1
µ(Jn1)

6
2αn1

2Bn1

(

1

Bn1αn1q2n1−1

)s− 2
L−ǫ0

6

(

1

B2n1αn1q2n1−1

)s− 2
L−ǫ0

6 24|Jn1+1(a1, . . . , an1+1)|
s− 2

L−ǫ0 (by (4.12)).

Here for the second inequality,we useB/α > (B/α)s which is always true forα 6 B and s 6 1.
For a general fundamental cylinder, we only give the estimation on the measure of

Jnk−1(a1, . . . , ank−1). The estimation for other fundamental cylinders can be carried out
similarly. Recall that

µ(Jnk−1(a1, . . . , ank−1)) = µ
(
Jnk−1+1(a1, . . . , ank−1+1)

)

·

mk−1
∏

t=0

1

w

(
1

αLq2L(ank−1+tL+1, . . . , ank−1+(t+1)L)

)s

.

This further implies,
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µ
(
Jnk−1

(
a1, . . . , ank−1

))
6





k−1∏

j=1




1

Bn j

m j−1
∏

t=0




1

αLq2L

(

an j−1+tL+1, . . . , an j−1+(t+1)L

)





s







·

mk−1
∏

t=0

(
1

αLq2L
(
ank−1+tL+1, . . . , ank−1+(t+1)L

)

)s

6





k−1∏

j=1




1

Bn j

m j−1
∏

t=0




1

αLq2L

(

an j−1+tL+1, . . . , an j−1+(t+1)L

)





s







·

mk−1
∏

t=0

(
1

αLq2L
(
ank−1+tL+1, . . . , ank−1+(t+1)L

)

)s

.

By similar arguments as used in (case 4) for the �rst product and (case 2) for the second
product, we obtain

µ
(
Jnk−1(a1, . . . , ank−1)

)
6

k−1∏

j=1

(

1

B2n jq2m jL
(an j−1+tL+1, . . . , an j−1+(t+1)L)

)s− 2
L−ǫ

·

(

1

αnkq2mkL(ank−1+tL+1, . . . , ank−1+(t+1)L)

)s− 2
L−ǫ0

6 42k
(

1

αnkq2nk−1

)s− 2
L−ǫ0

6

(

1

αnkq2nk−1

)s− 2
L−ǫ0−

4
L

6 12|Jnk−1(a1, . . . , ank−1)|
s− 6

L−ǫ0 (by (4.13)).

Consequently,

µ(Jnk (a1, . . . , ank )) =
1

2αnk
µ
(
Jnk−1(a1, . . . , ank−1)

)

6
1

2(Bs)nk

(

1

αnkq2nk−1

)s− 2
L−ǫ0−

4
L

6
1

2

(

1

Bnkαnkq2nk−1

)s− 2
L−ǫ0−

4
L

6 16|Jnk (a1, . . . , ank )|
s− 6

L−ǫ0 (by (4.14)).

In summary, we have shown that

µ (Jn (a1, . . . , an)) ≪ |Jn (a1, . . . , an) |
s− 2

L−ǫ0−
4
L ,

for any n > 1 and (a1, . . . , an) ∈ Dn.

4.1.7. Estimation of µ(B(x, r)). First we estimate the gaps between the adjoint fundamental
cylinders (de�ned in (4.6)) of same order which will be useful for estimating µ(B(x, r)).
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Let us start by assuming n is even (similar steps can be followed when n is odd). Then for
(a1, a2, . . . , an) ∈ Dn, given a fundamental cylinder Jn (a1, a2, . . . , an), represent the distance
between Jn (a1, a2, . . . , an) and its left (respectively right) adjoint fundamental cylinder say

J′n = J′n(a1, . . . , an−1, an − 1) (if exists)

(respectively, J′′n = J′′n (a1, . . . , an−1, an + 1)) of order n by gl(a1, . . . , an) (respectively,
gr(a1, . . . , an)). Let

Gn (a1, a2, . . . , an) = min
{
gr (a1, a2, . . . , an) , g

l (a1, a2, . . . , an)
}
.

Again we will consider three different cases according to the range of n as in (4.7) and
(4.8) forFM(B) in order to estimate the lengths of gaps on both sides of fundamental cylinders
Jn (a1, a2, . . . , an).
Gap I. When nk−1 + 1 6 n 6 nk − 2, for all k > 1.

There exists a basic cylinder of order n contained in In−1 (a1, a2, . . . , an−1) which
lies on the left of In (a1, a2, . . . , an), also there exists a basic cylinder of order n con-
tained in In−1 (a1, a2, . . . , an−1) which lies on the right of In (a1, a2, . . . , an). In this case,
(a1, a2, . . . , an − 1) ∈ Dn, (a1, a2, . . . , an + 1) ∈ Dn, whereas gl (a1, a2, . . . , an) is just the
distance between the right endpoint of J′n (a1, a2, . . . , an − 1) and the left endpoint of
Jn (a1, a2, . . . , an).

The right endpoint of J′n (a1, a2, . . . , an − 1) is the same as the left endpoint of
In (a1, a2, . . . , an) . Since n is even, from equation (2.1) this has formula pn

qn
.

Note that the left endpoint of Jn (a1, a2, . . . , an) lies on the extreme left of all the constituent
cylinders

{
In+1

(
a1, a2, . . . , an−1, an, an+1

)
: 1 6 an+1 6 M

}
.

This tells us that an+1 = M. Since n+ 1 is odd, again from equation (2.1) this has formula

(Mpn + pn−1)+ pn

(Mqn + qn−1)+ pn
=

(M + 1) pn + pn−1

(M + 1) qn + qn−1
.

Therefore, we have

gl (a1, a2, . . . , an) =
(M + 1) pn + pn−1

(M + 1) qn + qn−1
−
pn

qn

=
pn−1qn − qn−1pn

((M + 1) qn + qn−1) qn

=
1

((M + 1) qn + qn−1) qn
.

Whereas in this case gr (a1, a2, . . . , an) is just the distance between the right endpoint of
Jn (a1, a2, . . . , an) and the left endpoint of J′′n (a1, a2, . . . , an + 1).

The right endpoint of Jn (a1, a2, . . . , an) is the same as the right endpoint of
In (a1, a2, . . . , an). Since n is even, again using equation (2.1) this has formula

pn + pn−1

qn + qn−1
.
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Also, the left endpoint of J′′n (a1, a2, . . . , an + 1) lies on the extreme left of all the constituent
cylinders

{
In+1

(
a1, a2, . . . , an−1, an + 1, an+1

)
: 1 6 an+1 6 M

}
. This tells us that an+1 = M.

Since n+ 1 is odd, from (P3) this is given by

(M + 1) [(an + 1) pn−1 + pn−2] + pn−1

(M + 1) [(an + 1) qn−1 + qn−2]+ qn−1
=

(M + 1) (pn + pn−1)+ pn−1

(M + 1) (qn + qn−1)+ qn−1
.

Therefore,

gr (a1, a2, . . . , an) =
(M + 1) (pn + pn−1)+ pn−1

(M + 1) (qn + qn−1)+ qn−1
−
pn + pn−1

qn + qn−1

=
1

((M + 1) (qn + qn−1)+ qn−1) (qn + qn−1)
.

Hence

Gn (a1, a2, . . . , an) =
1

((M + 1) (qn + qn−1)+ qn−1) (qn + qn−1)
. (4.17)

Also, by comparing Gn(a1, . . . , an) with Jn(a1, . . . , an) we notice that

Gn(a1, . . . , an) >
1

2M
|Jn(a1, . . . , an)|.

Gap II. When n = nk − 1, we have

In this case the left gap gl (a1, a2, . . . , an) is larger than the distance between the left
endpoint of In (a1, a2, . . . , an−1, an) and the left endpoint of Jn (a1, a2, . . . , an−1, an) whereas
the right gap gr (a1, a2, . . . , an) is larger than the distance between the right endpoint of
In (a1, a2, . . . , an−1, an) and the right endpoint of Jn (a1, a2, . . . , an−1, an).

Thus proceeding in the similar way as in gap I, we obtain

gl (a1, a2, . . . , an) >
(2αn + 1) pn + pn−1

(2αn + 1) qn + qn−1
−
pn

qn

=
1

((2αn + 1) qn + qn−1) qn
.

and the left gap is

gr (a1, a2, . . . , an) >
pn + pn−1

qn + qn−1
−

(2αn + 1) pn + pn−1

(2αn + 1) qn + qn−1

=
1

((2αn + 1) pn + pn−1) (qn + qn−1)

Therefore,

gr (a1, a2, . . . , an) >
2αn

((2αn + 1) qn + qn−1) (qn + qn−1)
.

Thus

Gn (a1, a2, . . . , an) >
1

((2αn + 1) qn + qn−1) (qn + qn−1)
. (4.18)
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Further, in this case we have

Gn(a1, . . . , an) >
1

2
|Jn(a1, . . . , an)|.

Gap III. When n = nk. Following the similar arguments as in gap II we conclude

gl (a1, a2, . . . , an) >

(
Bn

αn
+ 1
)
pn + pn−1

(
Bn

αn
+ 1
)
qn + qn−1

−
pn

qn

=
1

((
Bn

αn
+ 1
)
qn + qn−1

)
qn

,

and the right gap can be estimated as

gr (a1, a2, . . . , an) >
pn + pn−1

qn + qn−1
−

(
Bn

2αn + 1
)
pn + pn−1

(
Bn

2αn + 1
)
qn + qn−1

=

Bn

2αn((
Bn

2αn + 1
)
qn + qn−1

)
(qn + qn−1)

.

Thus we have,

Gn (a1, a2, . . . , an) >
1

((
Bn

αn
+ 1
)
qn + qn−1

)
(qn + qn−1)

, (4.19)

and

Gn(a1, . . . , an) >
1

4
|Jn(a1, . . . , an)|.

4.1.8. The measure µ on general ball B(x, r). Nowwe are in a position to estimate the measure
µ on general ball B(x, r). Fix x ∈ FM(B) and let B(x, r) be a ball centred at x with radius r small
enough. There exists a unique sequence a1, a2, . . . , an such that x ∈ Jn(a1, . . . , an) for each
n > 1 and

Gn+1(a1, . . . , an+1) 6 r < Gn(a1, . . . , an).

It is clear, by the de�nition of Gn that B(x, r) can intersect only one fundamental cylinder of
order n i.e Jn(a1, . . . , an).

Case I. n = nk. Since in this case

|Ink+1(a1, . . . , ank+1)| =
1

qnk+1(qnk+1 + qnk)
>

1

6a2nk+1
q2nk

>
α2nk

6B2nkq2nk
,

the number of fundamental cylinders of order nk + 1 contained in Jnk (a1, . . . , ank ) that the ball
B(x, r) intersects is at most
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2r
6B2nk

α2nk
q2nk + 2 6 24r

B2nk

α2nk
q2nk .

Therefore,

µ(B(x, r)) 6 min

{

µ(Jnk ), 24r
B2nk

α2nk
q2nkµ(Jnk+1)

}

6 µ(Jnk) min

{

1, 48r
Bnk

αnk
q2nk

}

6 c|Jnk |
s− 6

L−ǫ0 min

{

1, 48r
Bnk

αnk
q2nk

}

6 c

(

2αnk

Bnkq2nk

)s− 6
L−ǫ0(

48r
Bnk

αnk
q2nk

)s− 6
L−ǫ0

6 c0r
s− 6

L−ǫ0 .

Here we use min{a, b} 6 a1−sbs for any a, b > 0 and 0 6 s 6 1.

Case II. n = nk − 1. In this case, since

|Ink (a1, . . . , ank )| =
1

qnk (qnk + qnk−1)
>

1

6a2nkq
2
nk−1

>
1

24α2nkq2nk−1

,

the number of fundamental intervals of order nk contained in Jnk−1(a1, . . . , ank−1) that the ball
B(x, r) intersects is at most

48rα2nkq2nk−1 + 2 6 96rα2nkq2nk−1.

Therefore,

µ(B(x, r)) 6 min
{
µ(Jnk−1), 96rα

2nkq2nk−1µ(Jnk )
}

6 µ(Jnk−1) min
{
1, 48rαnkq2nk−1

}

6 12|Jnk−1|
s− 6

L−ǫ0 min
{
1, 48rαnkq2nk−1

}

6 12

(

1

2αnkq2nk−1

)s− 6
L−ǫ0

(48rαnkq2nk−1)
s− 6

L−ǫ0

6 c0r
s− 6

L−ǫ0 .

Case III. nk−1 + 1 6 n 6 nk − 2. Since in this case 1 6 an(x) 6 M and |Jn| ≍ 1/q2n thus we
have

µ(B(x, r)) 6 µ(Jn) 6 c|Jn|
s− 6

L−ǫ0

6 c

(
1

q2n

)s− 6
L−ǫ0

6 c4M2

(
1

q2n+1

)s− 6
L−ǫ0
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6 c24M2|Jn+1|
s− 6

L−ǫ0

6 c48M3G
s− 6

L−ǫ

n+1

6 c48M3rs−
6
L−ǫ.

Conclusion for the lower bound: thus combining all the above cases and applying the
mass distribution principle we have shown that dimH FM(B) > s− 6

L
− ǫ0. Now letting L→

∞, M→∞, by the choice of ǫ0 for all large enough k and since s < tB is arbitrary, we have
s− 6

L
− ǫ0 → tB.

Thus we have,

dimH F (B) > dimH FM(B) > tB. (4.20)

Taken together results (4.4) and (4.20), completes the proof of the desired theorem for the case
1 < B <∞.

Next we prove theorem 1.7 for the case when B = ∞.

4.2. Case 2.When B = ∞

One can easily note that

an(x)an+1(x) > Φ(n) =⇒ an(x) > Φ(n)
1
2 or an+1(x) > Φ(n)

1
2 .

Thus

F (Φ) ⊆ E2(Φ) ⊂ G1(Φ) ∪ G2(Φ), (4.21)

where

G1(Φ) :=
{

x ∈ [0, 1) : an(x) > Φ(n)1/2 for in�nitelymany n ∈ N

}

and

G2(Φ) :=
{

x ∈ [0, 1) : an+1(x) > Φ(n)1/2 for in�nitelymany n ∈ N

}

.

(a) If b = 1. Then for any δ > 0, log log Φ(n)
n

6 log(1+ δ) that is Φ(n) 6 e(1+δ)
n
for in�nitely

many n ∈ N. Since

{
x ∈ [0, 1) : an(x) > e(1+δ)

n

for all sufficiently large n ∈ N
}
⊂ F (Φ).

Therefore, by using lemma (2.3)

dimH F (Φ) > lim
δ→0

1

1+ 1+ δ
=

1

2
.

Note that as B = ∞, therefore for any C > 1, Φ(n) > Cn for all suf�ciently large n ∈ N.
Thus by (4.21)

F (Φ) ⊆ E2(Φ) ⊂ {x ∈ [0, 1) : an(x) > Cn for infinitelymany n ∈ N} .
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By proposition (1.4), theorem (1.3)

dimH F (Φ) 6 lim
C→∞

sC =
1

2
.

(b) If 1 < b <∞. For any δ > 0, log log Φ(n)
n

6 log(b+ δ) that is Φ(n) 6 e(b+δ)
n
for in�nitely

many n ∈ N, whereas Φ(n) > e(b−δ)
n
for all suf�ciently large n ∈ N. Since

{
x ∈ [0, 1) : an(x) > e(1+δ)

n

for all sufficiently large n ∈ N
}
⊂ F (Φ).

Therefore, by using lemma (2.3)

dimH F (Φ) > lim
δ→0

1

1+ b+ δ
=

1

1+ b
.

Further note that from the de�nition of the set Gi(Φ) it is clear that

F (Φ) ⊆ E2(Φ) ⊂
{

x ∈ [0, 1) : an(x) > e
1

2(b−δ) (b−δ)
n

for infinitelymany n ∈ N

}

.

By lemma 2.3

dimH F (Φ) 6 lim
δ→0

1

1+ b− δ
=

1

1+ b
.

(c) If b = ∞. Then by using the same argument as for showing the upper bound in case (b)
we have for any C > 1, Φ(n) > eC

n
for all suf�ciently large n ∈ N. Thus by (4.21)

F (Φ) ⊆ E2(Φ) ⊂
{
x ∈ [0, 1) : an(x) > eC

n

for infinitelymany n ∈ N
}
.

By proposition (1.4), theorem (1.3)

dimH F (Φ) 6 lim
C→∞

1

C + 1
= 0.

This completes the proof of theorem 1.7. �

Finally, we remark that it is possible to generalise the set F (Φ) to the more general set of
the form, for any m > 2

Fm(Φ) =







x ∈ [0, 1) :

m∏

k=1

an+k−1(x) > Φ(n) for infinitelymany n ∈ N and

m−1∏

k=1

an+k−1(x) < Φ(n) for all sufficiently large n ∈ N







.

By following the same method as we have used for the proof of theorem 1.7, we can show
that:

Theorem 4.1. Let Φ :N→ (1,∞) be any function with lim
n→∞

Φ(n) = ∞. De�ne B, b as in

theorem 1.7. Then

(a) dimH Fm(Φ) = inf{s > 0 :P(T,−gm log B− s log |T ′|) 6 0} when 1 < B <∞, where

g1 = s, gm =
sgm−1(s)

1−s+gm−1(s)
for m > 2;

(b) dimH Fm(Φ) = 1/(1+ b) when B = ∞.
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