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Abstract

Let β > 1 and x ∈ [0, 1) be two real numbers. For any y ∈ [0, 1), the maximal

run-length function rx(y, n) (with respect to x) is de�ned to be the maximal

length of the pre�x of x’s β-expansion which appears in the �rst n digits of y’s.
In this paper, we study the metric properties of the maximal run-length function

and apply them to the hitting time, which generalises many known results. In

the meantime, the fractal dimensions of the related exceptional sets are also

determined.

Keywords: beta-expansion, maximal run-length function, hitting time, Lebesgue

measure, Hausdorff dimension
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1. Introduction

In 1957, Rényi [1] introduced the β-transformation as a model for expanding real numbers

in non-integer bases. Given a real number β > 1, the β-transformation Tβ : [0, 1]→ [0, 1] is

de�ned by

Tβ(x) = βx− ⌊βx⌋ for all x ∈ [0, 1],
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where ⌊·⌋ denotes the integral part of a real number. The transformation Tβ has an invariant

ergodic measure νβ [2], which is equivalent to the Lebesgue measure L on [0, 1] with the

density function

cβ := 1−
1

β
6 θ(x) 6

1

cβ
, x ∈ [0, 1]. (1.1)

Since then, much attention has been paid to the β-dynamical system ([0, 1], Tβ , νβ) and
β-expansions of real numbers, see [3–8], etc, and references therein.

Given β > 1, for any x ∈ [0, 1], the sequence ε(x, β) = ε1(x, β)ε2(x, β) . . . with its digits

εn(x, β) de�ned by εn(x, β) = ⌊βTn−1
β x⌋ for all n ≥ 1 is called the β-expansion of x in base β,

which satis�es

x =
ε1(x, β)

β
+

ε2(x, β)

β2
+ · · · .

We will write εn(x) = εn(x, β) and ε(x) = ε1(x)ε2(x) . . . if it causes no confusion.
In 1970, Erdös and Rényi provided a new law of large numbers in [9]. For independent

repetitions of a fair game, their result can be stated as follows: if the game is played n times, then

the maximal average gain of a player over ⌊log2n⌋ consecutive games tends to 1 almost surely.

Following this interesting result, there were many works devoted to the study of asymptotic

behaviour of the maximal length of consecutive 0’s in a sequence of nonnegative integers,

including the β-expansion of a real number, see [10–16], etc, and references therein.

Fix β > 1 and x ∈ [0, 1), for any n ∈ N, let rx(y, n) be the maximal length of the pre�x of x’s

β-expansion appears in the �rst n digits of y’s, which is called the maximal run-length function

with respect to x, i.e.,

rx(y, n) = max{k > 0 : εi+1(y) = ε1(x), . . . , εi+k(y) = εk(x) for some 0 6 i 6 n− k}.

Note that ε(0) = 00 . . . for any β > 1. Hence, the function r0(y, n) means the maximal length

of consecutive 0’s in the �rst n terms of the β-expansion of y. For β = 2, Erdös and Rényi’s

result, see also [17], implies

lim
n→∞

r0(y, n)

log2 n
= 1, L-a.e. y ∈ [0, 1).

Recently, Tong et al [15] generalised this to all β > 1, they proved that

lim
n→∞

r0(y, n)

logβ n
= 1, L-a.e. y ∈ [0, 1).

They also showed that for any 0 < α < +∞,

dimH

{

y ∈ [0, 1) : lim
n→∞

r0(y, n)

logβ n
= α

}

= 1,

where dimH denotes the Hausdorff dimension.

Fix β > 1 and x ∈ [0, 1), for any n ∈ N, let

In(x) := {y ∈ [0, 1) : ε1(y) = ε1(x), . . . , εn(y) = εn(x)},

it is a closed-open subinterval of [0, 1) with length |In(x)| 6 β−n, see [1]. Let
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t(x) = lim sup
n→∞

−logβ |In(x)|

n
.

In this paper, we study the asymptotic behavior of the function rx(y, n) for general x ∈ [0, 1)

and obtain that

Theorem 1. Given β > 1, for any x ∈ [0, 1), we have

lim inf
n→∞

rx(y, n)

logβ n
=

1

t(x)
, L-a.e. y ∈ [0, 1),

and

lim sup
n→∞

rx(y, n)

logβ n
= 1, L-a.e. y ∈ [0, 1),

where 1
t(x)

= 0 if t(x) = +∞.

The application of Shannon–McMillan–Breiman theorem to the measure νβ ([2],

theorem 2) leads to the conclusion that t(x) = 1 for L-a.e. x ∈ [0, 1). Thus by theorem 1, we

have

Corollary 1. Given β > 1, for L-a.e. x ∈ [0, 1), we have

lim
n→∞

rx(y, n)

logβ n
= 1, L-a.e. y ∈ [0, 1).

For the Hausdorff dimension of the set of x ∈ [0, 1) such that t(x) > 1, the reader is referred

to the paper of Fan and Wang [18].

Fix β > 1 and x ∈ [0, 1), for any y ∈ [0, 1), the hitting time of the set In(x) is de�ned by

Πx(y, n) = inf{k > 0: Tkβy ∈ In(x)}

= inf{k > 0: εk+1(y) = ε1(x), . . . , εk+n(y) = εn(x)}.

As a corollary of theorem 1, we obtain that

Theorem 2. Given β > 1, for any x ∈ [0, 1), we have

lim inf
n→∞

logβ Πx(y, n)

n
= 1, L-a.e. y ∈ [0, 1),

and

lim sup
n→∞

logβ Πx(y, n)

n
= t(x), L-a.e. y ∈ [0, 1).

Given β > 1, for any x ∈ [0, 1) and 0 6 α 6 +∞, de�ne

Ex(α) =

{

y ∈ [0, 1): lim
n→∞

rx(y, n)

logβ n
= α

}

.

In this paper, we also study the Hausdorff dimension of Ex(α) and obtain that

Theorem 3. Given β > 1, for any x ∈ [0, 1), we have

(a) dimHEx(0) = 1;
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(b) when 0 < α < +∞, if t(x) > 1, then Ex(α) = ∅; otherwise, dimHEx(α) = 1;

(c) dimHEx(+∞) =















1, if lim
n→∞

logβ(−logβ|In(x)|)

n
= 0;

0, if lim sup
n→∞

logβ(−logβ |In(x)|)

n
> 0.

When x = 0, we have |In(x)| = β−n for all n ∈ N (see, e.g., lemma 2), and thus t(x) = 1.

Therefore, by theorem 3, for any 0 6 α 6 +∞,

dimHE0(α) = 1,

which generalises the result of Tong et al [15].

This paper is organised as follows: in the next section, we will give some basic facts about

β-expansions. Section 3 is devoted to the proof of theorem 1. Then, we will prove theorem 2

in section 4. Divided into three cases, the proof of theorem 3 will be given in sections 5–7.

2. Preliminaries

In this section, we will give some basic facts about β-expansions. For details, the reader is

referred to the papers of Rényi [1], Parry [2], Schmeling [5] and Fan and Wang [18].

From now to the end of this paper, β > 1 is a �xed real number.

LetΩ = {0, 1, . . . , ⌊β⌋} andΩ∗ = ∪n>1Ω
n. For all n ∈ N andw ∈ Ωn, we denote the length

of the word w by |w| := n. For two words u = u1 · · · um,w = w1 · · ·wn ∈ Ω∗, write uw =

u1 · · · umw1 · · ·wn ∈ Ω∗. Let |∅| = 0 and ∅w = w for the empty-word ∅. For any n ∈ N and

u,w ∈ Ωn, we will write u = w if ui = wi for all 1 6 i 6 n; otherwise, write u 6= w. Let σ
be the shift operator such that for any w = w1 · · ·w|w| ∈ Ω∗ and 0 6 k 6 |w| − 1, one has

σkw = wk+1wk+2 · · ·w|w|.

Let Σ0
β = {∅}. For all n ∈ N, let

Σn
β = {u ∈ Ωn : there exists an x ∈ [0, 1) such that εi(x) = ui for all 1 6 i 6 n}

and

Σ∗
β =

⋃

n>1

Σn
β.

Lemma 1 ([1]). For any β > 1,

βn 6 #Σn
β 6

βn+1

β − 1
,

where # denotes the cardinality of a �nite set.

For all n ∈ N and w ∈ Σn
β , let

I(w) = {x ∈ [0, 1) : ε1(x) · · · εn(x) = w},

it is a closed-open subinterval of [0, 1) with length |I(w)| 6 β−n [1] and In(x) =

I(ε1(x) · · · εn(x)). Note that
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[0, 1) =
⋃

w∈Σn
β

I(w).

Let I(∅) = I0(x) = [0, 1). Let I(w) = ∅ for w ∈ Ω∗\Σ∗
β .

Definition 1. A word w ∈ Σ∗
β is called perfect if |I(w)| = β−|w|.

For all n ∈ N, let

Λn
β = {w ∈ Σn

β:w is a perfectword} and Λ∗
β =

⋃

n>1

Λn
β .

Lemma 2 ([2, 18]). Given β > 1 and u,w ∈ Ω∗, we have the following results:

(a) If w ∈ Σ∗
β , then w0 ∈ Σ∗

β and σ
iw ∈ Σ∗

β for all 0 6 i 6 |w| − 1.

(b) If w ∈ Λ∗
β , then w0 ∈ Λ∗

β and σ
iw ∈ Λ∗

β for all 0 6 i 6 |w| − 1.

(c) If w, u ∈ Λ∗
β , then wu ∈ Λ∗

β .

(d) If w ∈ Λ∗
β and u ∈ Σ∗

β , then wu ∈ Σ∗
β .

(e) If w1 ∈ Σ∗
β , then w0 ∈ Λ∗

β .

Lemma 3 ([19]). For any n ∈ N, among the n+ 1 words w(1), . . . , w(n+1) ∈ Σn
β such that

I
(

w(1)
)

, . . . , I
(

w(n+1)
)

are consecutive intervals, there exists at least one perfect word.

3. Proof of theorem 1

In this section, we will prove theorem 1. The following lemma will be used in the proof.

Lemma 4 ([3]). Given β > 1, there exists a constant 1 < ρ < β such that for any interval

E ⊆ [0, 1) and Borel set F ⊆ [0, 1), we have

νβ(E ∩ T−n
β F) = νβ(E)νβ(F)+ νβ(F)O(ρ

−n),

where the constant implied by O is an absolute constant.

Remark 1. Note that in lemma 4, choose a smaller 1 < ρ < β if necessary, we may assume

that when n ∈ N is large enough,

νβ(E ∩ T−n
β F) ≤ νβ(F)

(

νβ(E)+ ρ−n
)

.

Proposition 1. Given β > 1, for any x ∈ [0, 1), we have

lim sup
n→∞

rx(y, n)

logβ n
= 1, L-a.e. y ∈ [0, 1).

Proof. Fix x ∈ [0, 1). We divide the proof into two parts.

Part I. For any ǫ > 0 and n ∈ N, let

γn(ǫ) = ⌈(1+ ǫ)logβ n⌉ and An(ǫ) = {y ∈ [0, 1) : rx(y, n) > γn(ǫ)},

where ⌈·⌉ denotes the smallest integer not less than a real number. For any 0 6 i 6 n− γn(ǫ),
let

Bn,i(ǫ) = {y ∈ [0, 1) : εi+1(y) · · · εi+γn(ǫ)(y) = ε1(x) · · · εγn(ǫ)(x)}.
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Then

An(ǫ) ⊂

n−γn(ǫ)
⋃

i=0

Bn,i(ǫ).

Since the measure νβ is Tβ-invariant, by (1.1) we obtain that for all 0 6 i 6 n− γn(ǫ),

L(Bn,i(ǫ)) 6 c−1
β νβ(Bn,i(ǫ)) = c−1

β νβ(Iγn(ǫ)(x)) 6 c−2
β |Iγn(ǫ)(x)| 6 c−2

β n−1−ǫ.

Thus,

L(An(ǫ)) 6 L

(

n−γn(ǫ)
⋃

i=0

Bn,i(ǫ)

)

6

n−γn(ǫ)
∑

i=0

L
(

Bn,i(ǫ)
)

6 2nL(Bn,i(ǫ)) 6 2c−2
β n−ǫ.

For all k ∈ N, de�ne mk ∈ N by mk 6 β
k

1+ǫ < mk + 1. Then,

L(Amk (ǫ)) 6 2c−2
β m−ǫ

k < 2c−2
β

(

β
k

1+ǫ − 1
)−ǫ

< 2c−2
β

(

1− β− 1
1+ǫ

)−ǫ

· β− kǫ
1+ǫ .

Thus,

∞
∑

k=1

L(Amk (ǫ)) < +∞.

The Borel–Cantelli lemma implies that L-a.e. y ∈ [0, 1) is contained in Amk (ǫ) for at most

�nitely many k. Note that for any n ∈ N with mk−1 < n 6 mk, since γn(ǫ) = γmk (ǫ) = k, we

have An(ǫ) ⊂ Amk (ǫ). Therefore,L-a.e. y ∈ [0, 1) is contained in An(ǫ) for at most �nitely many

n, which implies that

lim sup
n→∞

rx(y, n)

γn(ǫ)
6 1, L-a.e. y ∈ [0, 1).

By the de�nition of γn(ǫ) and the arbitrariness of ǫ, we then have

lim sup
n→∞

rx(y, n)

logβ n
6 1, L-a.e. y ∈ [0, 1).

Part II. For any ǫ ∈ (0, 1), since

lim inf
n→∞

−logβ |In(x)|

n
= 1 (3.1)

(see [18]), there exists a subsequence {nk}k>1 of positive integers such that

|Ink (x)| > β−nk(1+ǫ). (3.2)

For any k ∈ N, let Nk = ⌊βnk(1+2ǫ)⌋. For all 1 6 j 6 Nk/n
2
k, let

Q j = {y ∈ [0, 1) : εin2
k
+1(y) · · · εin2

k
+nk

(y) 6= ε1(x) · · · εnk (x) for all 0 ≤ i < j}.

2645



Nonlinearity 33 (2020) 2640 F Lü and J Wu

Note thatQ1 = [0, 1)\Ink(x). Then by (1.1), the setQ1 is a union of at most two disjoint intervals

with

νβ(Q1) = 1− νβ(Ink(x)) 6 1− cβ|Ink (x)|. (3.3)

Since

{y ∈ [0, 1) : rx(y,Nk) < nk} ⊂ Q⌊Nk/n
2
k
⌋ = Q1

⋂

T
−n2

k
β Q⌊Nk/n

2
k
⌋−1,

then when k is large enough, by lemma 4, inductively, we have

νβ{y ∈ [0, 1) : rx(y,Nk) < nk} 6 νβ(Q⌊Nk/n
2
k
⌋)

6 νβ(Q⌊Nk/n
2
k
⌋−1) ·

(

νβ(Q1)+ 2ρ−n
2
k

)

6 νβ(Q⌊Nk/n
2
k
⌋−2) ·

(

νβ(Q1)+ 2ρ−n
2
k

)2

6 · · · ≤ νβ(Q1) ·
(

νβ(Q1)+ 2ρ−n
2
k

)⌊Nk/n
2
k
⌋−1

6

(

νβ(Q1)+ 2ρ−n
2
k

)⌊Nk/n
2
k
⌋

.

Thus, by (3.2), (3.3) and the de�nition of Nk, we obtain that

νβ{y ∈ [0, 1) : rx(y,Nk) < nk} 6

(

1− cβ |Ink (x)|+ 2ρ−n
2
k

)⌊Nk/n
2
k
⌋

≤ e(−cβ |Ink (x)|+2ρ
−n2

k )⌊Nk/n
2
k
⌋ = e

−cβ |Ink (x)|⌊Nk/n
2
k
⌋(1−2c−1

β
|Ink (x)|

−1ρ
−n2

k )

6 e−cβ
ǫnk /n2

k

for some constant c > 0. Hence, by (1.1),

∞
∑

k=1

L{y ∈ [0, 1) : rx(y,Nk) < nk} < +∞.

The Borel–Cantelli lemma implies that

lim sup
n→∞

rx(y, n)

logβ n
> lim sup

k→∞

rx(y,Nk)

logβ Nk
>

1

1+ 2ǫ
, L-a.e. y ∈ [0, 1).

Therefore, by the arbitrariness of ǫ, we obtain that

lim sup
n→∞

rx(y, n)

logβ n
> 1, L-a.e. y ∈ [0, 1).

�
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Proposition 2. Given β > 1, for any x ∈ [0, 1), we have

lim inf
n→∞

rx(y, n)

logβ n
=

1

t(x)
, L-a.e. y ∈ [0, 1).

Proof. Fix x ∈ [0, 1). Recall that

t(x) = lim sup
n→∞

−logβ |In(x)|

n
.

If t(x) = +∞, take a subsequence {mk}k>1 of positive integers such that

−logβ|Imk (x)|

mk

> 2k. (3.4)

For all k ∈ N, let Mk = ⌈βkmk⌉ and

Ck =

{

y ∈ [0, 1) : rx(y,Mk) >
logβ Mk

k

}

.

Then

Ck ⊂

Mk−

⌈

logβMk
k

⌉

⋃

i=0

{

y ∈ [0, 1) : εi+1(y) · · · ε
i+

⌈

logβMk
k

⌉(y) = ε1(x) · · · ε⌈ logβMk
k

⌉(x)

}

.

Thus, by (1.1) and (3.4),

νβ(Ck) 6 2Mkνβ

(

I⌈ logβMk
k

⌉(x)

)

6 2c−1
β Mk|Imk (x)| 6 4c−1

β β−kmk .

Hence, by (1.1),

∞
∑

k=1

L(Ck) < +∞.

The Borel–Cantelli lemma implies that

lim inf
n→∞

rx(y, n)

logβ n
6 lim inf

k→∞

rx(y,Mk)

logβ Mk

= 0, L-a.e. y ∈ [0, 1).

If t(x) < +∞, we divide the proof into two parts.

Part I. For any ǫ ∈ (0, 1/2), take a subsequence {m′
k}k>1 of positive integers such that

−logβ|Im′
k
(x)|

m′
k

> (1− ǫ)t(x).

For all k ∈ N, let M′
k = ⌈β(1−2ǫ)t(x)m′

k⌉ and

C′
k = {y ∈ [0, 1) : rx(y,M

′
k) > (1− 2ǫ)−1t(x)−1 logβ M

′
k}.

As in the case that t(x) = +∞, we can prove that
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lim inf
n→∞

rx(y, n)

logβ n
6 lim inf

k→∞

rx(y,M
′
k)

logβ M
′
k

6
1

(1− 2ǫ)t(x)
, L-a.e. y ∈ [0, 1).

By the arbitrariness of ǫ, we obtain that

lim inf
n→∞

rx(y, n)

logβ n
6

1

t(x)
, L-a.e. y ∈ [0, 1).

Part II. For any ǫ > 0 and n ∈ N, let δn =
⌊

logβ n

(1+2ǫ)t(x)

⌋

. Then when n is large enough, we

have

−logβ|Iδn (x)|

δn
6 (1+ ǫ)t(x).

Thus,

|Iδn(x)| > β−δn(1+ǫ)t(x) > n−
1+ǫ
1+2ǫ .

For all 1 6 j 6 n/δ2n, let

Q j = {y ∈ [0, 1) : εiδ2n+1(y) · · · εiδ2n+δn
(y) 6= ε1(x) · · · εδn(x) for all 0 ≤ i < j}.

As in the proof of proposition 1, we can obtain that

νβ{y ∈ [0, 1) : rx(y, n) < δn} 6 e−cn
ǫ

1+2ǫ /δ2n

for some constant c > 0. Hence, by (1.1),

∞
∑

n=1

L({y ∈ [0, 1) : rx(y, n) < δn}) < +∞.

The Borel–Cantelli lemma implies that

lim inf
n→∞

rx(y, n)

logβ n
>

1

(1+ 2ǫ)t(x)
, L-a.e. y ∈ [0, 1).

By the arbitrariness of ǫ, we obtain that

lim inf
n→∞

rx(y, n)

logβ n
>

1

t(x)
, L-a.e. y ∈ [0, 1).

�

Proof of theorem 1. It is a corollary of propositions 1 and 2. �

4. Proof of theorem 2

In this section, with theorem 1 in hand, we turn to the proof of theorem 2.
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Proposition 3. Given β > 1, for any x ∈ [0, 1), we have

lim inf
n→∞

logβ Πx(y, n)

n
= 1, L-a.e. y ∈ [0, 1).

Proof. Fix x ∈ [0, 1). Choose an arbitrary y ∈ [0, 1) such that

lim sup
n→∞

rx(y, n)

logβ n
= 1.

We will show that

lim inf
n→∞

logβ Πx(y, n)

n
= 1.

Then the proposition follows from theorem 1.

For any ε ∈ (0, 1), there exists a subsequence {nk}k>1 of positive integers such that

rx(y, nk) > (1− ε)logβnk for all k ∈ N. Then by the de�nitions of rx(y, n) and Πx(y, n), we

should have

Πx(y, ⌈(1− ε)logβ nk⌉) 6 nk.

Thus,

logβ Πx(y, ⌈(1− ε)logβ nk⌉)

⌈(1− ε)logβ nk⌉
6

logβ nk

⌈(1− ε)logβ nk⌉
6

1

1− ε
.

Hence,

lim inf
n→∞

logβ Πx(y, n)

n
6

1

1− ε
.

Therefore, by the arbitrariness of ε, we have

lim inf
n→∞

logβ Πx(y, n)

n
6 1.

On the other hand, for any ε > 0, there exists anN ∈ N such that rx(y, n) < (1+ ε)logβn for

all n > N. For any k > (1+ ε)logβN, since ⌊β
k

1+ε ⌋ > N, we have rx

(

y, ⌊β
k

1+ε ⌋
)

< k. Then

by the de�nitions of rx(y, n) and Πx(y, n), we obtain that

Πx(y, k) > ⌊β
k

1+ε ⌋ − k.

Thus,

lim inf
k→∞

logβ Πx(y, k)

k
>

1

1+ ε
.

Therefore, by the arbitrariness of ε, we have

lim inf
n→∞

logβ Πx(y, n)

n
> 1.

�
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Proposition 4. Given β > 1, for any x ∈ [0, 1), we have

lim sup
n→∞

logβ Πx(y, n)

n
= t(x), L-a.e. y ∈ [0, 1).

Proof. Fix x ∈ [0, 1). Choose an arbitrary y ∈ [0, 1) such that

lim inf
n→∞

rx(y, n)

logβ n
=

1

t(x)
.

We will show that

lim sup
n→∞

logβ Πx(y, n)

n
= t(x).

Then the proposition follows from theorem 1.

For any ε > 0, there exists a subsequence {nk}k>1 of positive integers such that rx(y, nk) <
(

1
t(x)

+ ε
)

logβ nk for all k ∈ N. Then by the de�nitions of rx(y, n) andΠx(y, n), we should have

Πx

(

y,

⌈(

1

t(x)
+ ε

)

logβ nk

⌉)

> nk −

⌈(

1

t(x)
+ ε

)

logβ nk

⌉

.

Thus,

lim sup
n→∞

logβ Πx(y, n)

n
>

1
1
t(x)

+ ε
.

Therefore, by the arbitrariness of ε, we have

lim sup
n→∞

logβ Πx(y, n)

n
> t(x).

On the other hand, assuming that t(x) < +∞, for any ε ∈ (0, 1
t(x)

), there exists an N ∈ N

such that rx(y, n) >
1

t(x)+ε logβ n for all n > N. For any k > 1
t(x)+ε logβ N, since ⌈β

k(t(x)+ε)⌉ > N,

we have rx(y, ⌈βk(t(x)+ε)⌉) > k. Then by the de�nitions of rx(y, n) and Πx(y, n), we obtain that

Πx(y, k) < ⌈βk(t(x)+ε)⌉.

Thus,

lim sup
k→∞

logβ Πx(y, k)

k
6 t(x)+ ε.

Therefore, by the arbitrariness of ε, we have

lim sup
n→∞

logβ Πx(y, n)

n
6 t(x).

�
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Proof of theorem 2. It is a corollary of propositions 3 and 4. �

5. Proof of theorem 3 for α = 0

Recall that for any x ∈ [0, 1) and 0 6 α 6 +∞,

Ex(α) =

{

y ∈ [0, 1): lim
n→∞

rx(y, n)

logβ n
= α

}

.

In this section, we shall prove the following proposition.

Proposition 5. Given β > 1, for any x ∈ [0, 1), we have dimHEx(0) = 1.

Proof. Fix x ∈ [0, 1). Take N0 ∈ N large enough such that βN > 2(N + 1)2 for all N > N0.

For any N > N0, let

ΦN(x) = {w ∈ ΛN
β :w 6= εi+1(x) · · · εi+N(x) for all 0 6 i 6 N − 1}.

Then by lemmas 1 and 3,

#ΦN(x) > #ΛN
β − N > βN/(N + 1)− 1− N > βN/(2N + 2). (5.1)

For all k ∈ N, let

DN,k(x) = {y ∈ [0, 1): ε(i−1)N+1(y) · · · εiN(y) ∈ ΦN(x) for all 1 6 i 6 k}

and

DN(x) =

∞
⋂

k=1

DN,k(x).

Then DN(x) = {y ∈ [0, 1) : ε(i−1)N+1(y) · · · εiN(y) ∈ ΦN(x) for all i ∈ N}. Thus, it is clear that
for any y ∈ DN(x), we have rx(y, n) < 2N − 1 for all n ∈ N. Hence,

lim
n→∞

rx(y, n)

logβ n
= 0.

Therefore, DN(x) ⊂ Ex(0).

Next, we will prove that

dimHDN(x) > 1−
logβ(2N + 2)

N
for allN > N0. (5.2)

Since dimHEx(0) > dimHDN(x) for all N > N0, we then obtain that dimHEx(0) > 1. More pre-

cisely, we will distribute a Borel probability measure µ0 on DN(x), and show that for any

y ∈ DN(x),

lim inf
r→0

log µ0(B(y, r))

log r
> 1−

logβ(2N + 2)

N
,

where B(y, r) denotes the ball with centre point y and a radius of r. Then (5.2) follows by

proposition 10.1 in [20].
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We �rst distribute a Borel probability measure µ0 on DN(x). Let µ0([0, 1)) = 1. For any

w ∈ ΣN
β , let

µ0(I(w)) =

{

1/#ΦN(x), ifw ∈ ΦN(x);

0, ifw ∈ ΣN
β \ΦN(x).

For any k > 2 and w(1), . . . , w(k) ∈ ΣN
β , let

µ0(I(w
(1) · · ·w(k))) = µ0(I(w

(1) · · ·w(k−1))) · µ0(I(w
(k))) = · · · =

k
∏

i=1

µ0(I(w
(i))).

Then, we have

µ0(I(w
(1) · · ·w(k−1))) =

∑

w(k)∈ΣN
β

µ0(I(w
(1) · · ·w(k−1)w(k))).

Note that the set I(w(1) · · ·w(k)) is empty if w(1) · · ·w(k) /∈ Σ∗
β . Hence, by lemma 2,

I(w(1) · · ·w(k−1)) =
⋃

w(k)∈ΣN
β

I(w(1) · · ·w(k−1)w(k)).

Therefore, one can check that the nonnegative set functionµ0 is a pre-measure on the collection

of sets {I(w(1) · · ·w(k)): k ∈ N,w(1), . . . , w(k) ∈ ΣN
β }, and so it can be uniquely extended to a

Borel probability measure on [0, 1).

Now we estimate

lim inf
r→0

log µ0(B(y, r))

log r

for any y ∈ DN(x). Fix y ∈ DN(x). For any 0 < r < β−N , there exists a unique k ∈ N such that

β−(k+1)N 6 r < β−kN . Note that for any w(1), . . . , w(k) ∈ ΣN
β , we have µ0(I(w

(1) · · ·w(k))) > 0

if and only if w(i) ∈ ΦN(x) ⊂ ΛN
β for all 1 6 i 6 k. Then by lemma 2, if µ0(I(w

(1) · · ·w(k))) >

0, we must have w(1) · · ·w(k) ∈ Λ∗
β , and thus |I(w(1) · · ·w(k))| = β−kN . Hence, the ball B(y, r)

intersects with at most three such intervals, and by (5.1),

µ0(B(y, r)) 6
3

(#ΦN(x))k
6

3(2N + 2)k

βkN
.

Therefore,

lim inf
r→0

log µ0(B(y, r))

log r
> lim inf

k→∞

kN − logβ 3− k logβ(2N + 2)

(k + 1)N
= 1−

logβ(2N + 2)

N
.

�

6. Proof of theorem 3 for α = +∞

Given β > 1, for any x ∈ [0, 1) and h ∈ [1,+∞), let

lh(x) = min{k > h: ε1(x) · · · εk−1(x)1 ∈ Σk
β}.
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It is easy to check that lh(x) is non-decreasing as h increases and by lemma 2, lh(x) < +∞ for

any h ∈ [1,+∞).

Lemma 5. Given β > 1, for any x ∈ [0, 1) and n ∈ N, we have

β−ln(x) 6 |Iln(x)−1(x)| 6 |In−1(x)| 6 β−ln(x)+1.

Therefore,

lim
n→∞

−logβ |In−1(x)|

ln(x)
= 1.

Proof. By the de�nition of lh(x) and lemma 2, we know that

ε1 · · · εln(x)−10 ∈ Λ
ln(x)
β and In−1(x) = I(ε1(x) · · · εn−1(x)0

ln(x)−n).

Thus, β−ln(x) 6 |Iln(x)−1(x)| 6 |In−1(x)| 6 β−ln(x)+1. �

We will write lh = lh(x) if it causes no confusion. By lemma 5, in order to prove theorem

3(c), it is enough to prove the following proposition. �

Proposition 6. Given β > 1, for any x ∈ [0, 1), we have

dimHEx(+∞) =











1, if lim
n→∞

logβ ln(x)

n
= 0;

0, if lim sup
n→∞

logβ ln(x)

n
> 0.

Proof. Assume that

lim
n→∞

logβ ln

n
= 0. (6.1)

Let F0 = {∅} and a0 = 1. For all k ∈ N, let

Fk = {uε1(x) · · · εlk−1(x)0v
(1) · · · v(lk+1−1) : u ∈ Fk−1, v

(1), . . . , v(lk+1−1) ∈ Λ
lk
β }

and ak =
∑k

i=1 lili+1. Then by lemma 2, Fk ⊂ Λ
ak
β for all k ∈ N. Let

Fk =
⋃

w∈Fk

I(w) and F =

∞
⋂

k=1

Fk.

Fix y ∈ F. For any n > a1, there exists a k ∈ N such that ak 6 n < ak+1. Since y ∈ F ⊂ Fk,

then ε1(y) · · · εak (y) ∈ Fk, and thus rx(y, n) > lk − 1. Hence, by (6.1)

lim
n→∞

rx(y, n)

logβ n
> lim

k→∞

lk − 1

logβ ak+1

> lim
k→∞

lk − 1

logβ[(k+ 1)l2k+2]
= +∞,

where the last inequality follows from the fact that the sequence {ln}n>1 is non-decreasing.

Therefore, F ⊂ Ex(+∞).

We then distribute a Borel probability measure µ∞ on F. Let µ∞(I(∅)) = µ∞([0, 1)) = 1

and µ∞(∅) = 0. For any k ∈ N and w ∈ Fk, let
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µ∞(I(w)) =
µ∞(I(u))

(

#Λ
lk
β

)lk+1−1
,

where u ∈ Fk−1 is the pre�x of w. Note that by lemmas 1 and 3, we have

βlk

lk + 1
− 1 6 #Λ

lk
β 6

βlk+1

β − 1
. (6.2)

For any n ∈ N and τ ∈ Σn
β , de�ne

µ∞(I(τ )) =
∑

µ∞(I(w)),

where the sum is taken over all w ∈ Fk with ak−1 < n 6 ak such that I(w) ⊂ I(τ ). Then, one
can check that the nonnegative set function µ∞ is a pre-measure on the collection of sets

{I(τ ): τ ∈ Σ∗
β} ∪ {∅}, and so it can be uniquely extended to a Borel probability measure on

[0, 1).

Fix y ∈ F. For any r ∈ (0, β−a1), there exists a k ∈ N and an 0 6 i < lk+2 such thatβ
−ak+1 6

β−ak−(i+1)lk+1 6 r < β−ak−ilk+1 6 β−ak . Then

µ∞(B(y, r)) 6
∑

µ∞(I(w)) =
∑

k+1
∏

j=1

(

#Λ
l j
β

)1−l j+1

6 3
(

#Λ
lk+1

β

)1−i
k
∏

j=1

(

#Λ
l j
β

)1−l j+1

,

where the sum is taken over allw ∈ Fk+1 such that I(w) ∩ B(y, r) 6= ∅. Thus, by (6.2), we have

lim inf
r→0

log µ∞(B(y, r))

log r

> lim inf
k→∞

inf
06i<lk+2

−logβ 3+ (i− 1)logβ #Λ
lk+1

β +
∑k

j=1 (l j+1 − 1)logβ #Λ
l j
β

ak + (i+ 1)lk+1

= lim inf
k→∞

inf
06i<lk+2

(i− 1)lk+1 +
∑k

j=1 (l j+1 − 1)l j

ak + (i+ 1)lk+1

= lim inf
k→∞

inf
06i<lk+2

ak−1 + (lk + i− 1)lk+1

ak−1 + (lk + i+ 1)lk+1

= 1,

where the �rst two equalities follow from the fact that by the Stolz–Cesàro theorem, one has

lim
k→∞

∑k
j=1 (l j+1 − 1)logβ(l j + 1)

ak
= 0 and lim

k→∞

∑k
j=1 l j

ak
= 0.

Hence, by proposition 10.1 in [20], we obtain that dimHEx(+∞) > dimHF > 1.

On the other hand, assume that lim sup
n→∞

logβ ln

n
> 0. Then there exists an ǫ ∈ (0, 1) and

a subsequence {nk}k>1 of positive integers such that lnk > ⌈βǫnk⌉+ 1, and thus |Ink(x)| 6
|Ink−1(x)| 6 β−⌈βǫnk ⌉ for all k > 1 by lemma 5. For all N ∈ N, let
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HN =

∞
⋂

n=N

{y ∈ [0, 1): rx(y, n) > λn},

where λn = ⌈2/ǫ · logβn⌉, we will show that dimHHN = 0. Note that

Ex(+∞) =

{

y ∈ [0, 1): lim
n→∞

rx(y, n)

logβ n
= +∞

}

⊂
∞
⋃

N=1

HN ,

then dimHEx(+∞) = 0.

Fix N ∈ N. For all n > N, we have

HN ⊂ {y ∈ [0, 1): rx(y, n) > λn}

⊂
n−λn
⋃

i=0

{y ∈ [0, 1): εi+1(y) · · · εi+λn(y) = ε1(x) · · · ελn(x)}

⊂
n−λn
⋃

i=0

⋃

u∈Σi
β

I(uε1(x) · · · ελn (x)).

For any 0 6 i 6 n− λn and u ∈ Σi
β , by (1.1), we obtain that

|I(uε1(x) · · · ελn(x))| 6 c−1
β νβ(I(uε1(x) · · · ελn (x)))

6 c−1
β νβ(T

−i
β I(ε1(x) · · · ελn(x))) = c−1

β νβ(I(ε1(x) · · · ελn(x)))

6 c−2
β |I(ε1(x) · · · ελn(x))|.

Then for any s > 0, by lemma 1, the s-dimensional Hausdorff measure

Hs(HN) 6 lim inf
k→∞

⌈βǫnk/2⌉−nk
∑

i=0

∑

u∈Σi
β

|I(uε1(x) · · · εnk (x))|
s

6 lim inf
k→∞

⌈βǫnk/2⌉−nk
∑

i=0

βi+1

β − 1
c−2s
β β−⌈βǫnk ⌉s < +∞.

Thus, dimHHN 6 s for all s > 0. Therefore, dimHHN = 0. �

7. Proof of theorem 3 for 0 < α < +∞

In this section, we will prove the following proposition.

Proposition 7. Given β > 1, for any x ∈ [0, 1) and 0 < α < +∞, if t(x) > 1, then Ex(α) =
∅; otherwise, dimHEx(α) = 1.

Proof. Assume that t(x) > 1. Then there exists a subsequence {nk}k>1 of positive integers

such that for all k ∈ N, |Ink (x)| < β−(t(x)+1)nk/2. Thus, the word ε1(x) · · · εnk(x)0
i is not perfect

for all 0 6 i 6 ⌊(t(x)+ 1)nk/2⌋ − nk. Hence by lemma 2,

Ink (x) = I(ε1(x) · · · εnk (x)0
⌊(t(x)+1)nk/2⌋−nk ), (7.1)
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i.e., the word ε1(x) · · · εnk (x)w ∈ Σ
⌊(t(x)+1)nk/2⌋
β if and only if w = 0⌊(t(x)+1)nk/2⌋−nk . Therefore,

by lemma 2 again, if the word ε1(x) · · · εnk (x) appears in the β-expansion of some y ∈ [0, 1),

then it must be followed by ⌊(t(x)+ 1)nk/2⌋ − nk consecutive 0’s.

Assume that Ex(α) 6= ∅. Take ǫ ∈ (0,α) small enough such that (α− ǫ)(t(x)+ 1) > 2α.
For any y ∈ Ex(α), there exists a K ∈ N such that for all n > K, we have

βn/(α−ǫ) > K and rx(y, n) > (α− ǫ)logβ n.

Then rx(y, ⌈βnk/(α−ǫ)⌉) > nk for any k > K. Thus by the argument after (7.1),

rx(y, ⌈β
nk/(α−ǫ)⌉+ ⌊(t(x)+ 1)nk/2⌋) > ⌊(t(x)+ 1)nk/2⌋.

Hence,

lim sup
k→∞

rx(y, ⌈βnk/(α−ǫ)⌉+ ⌊(t(x)+ 1)nk/2⌋)

logβ
(

⌈βnk/(α−ǫ)⌉+ ⌊(t(x)+ 1)nk/2⌋
) >

(α− ǫ)(t(x)+ 1)

2
> α,

which contradicts with the fact that y ∈ Ex(α).
On the other hand, assume that t(x) = 1. Then by (3.1),

lim
n→∞

−logβ |In(x)|

n
= 1.

and thus by lemma 5,

lim
n→∞

ln

n
= 1. (7.2)

Take k0 ∈ N large enough such that for all k ∈ N, we have

(a) α(k0 + k) > 1;

(b) βk0+k > 2(k0 + k + 1)(lα(k0+k)2 + k0 + k);

(c) β(k0+k)
2
− β(k0+k−1)2 > lα(k0+k)2 + (k0 + k)3.

Let b0 = 0 and d0 = 1. For all k ∈ N, let dk = lα(k0+k)2 ,

nk =

⌊

β(k0+k)
2
− bk−1 − dk

k0 + k

⌋

and bk = bk−1 + dk + nk(k0 + k). It is clear that dk > k0 + k,

β(k0+k)
2

− (k0 + k) < bk 6 β(k0+k)
2

and nk > (k0 + k)2. Thus,

lim
k→∞

logβ bk

(k0 + k)2
= 1. (7.3)

Let G0 = {∅}. For all k ∈ N, let

Ψk(x) = {w ∈ Λ
k0+k

β :w 6= εi+1(x) · · · εi+k0+k(x) for all 0 6 i 6 dk + k0 + k − 2}.
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Then by lemmas 1 and 3,

#Ψk(x) > #Λ
k0+k

β − dk − k0 − k + 1 >
βk0+k

k0 + k + 1
− dk − k0 − k >

βk0+k

2(k0 + k + 1)
.

(7.4)

Let Gk = {uε1(x) · · · εdk−1(x)0v
(1) · · · v(nk): u ∈ Gk−1, v

(1), · · · , v(nk) ∈ Ψk(x)}. Then by

lemma 2, we have Gk ⊂ Λ
bk
β . Let

Gk =
⋃

w∈Gk

I(w) and G =

∞
⋂

k=1

Gk,

we will show that G ⊂ Ex(α) and dimHG > 1.

Fix y ∈ G. For any n ∈ N, there exists a k ∈ N such that bk−1 < n 6 bk. Then by the

de�nition of Gk, we have dk−1 − 1 6 rx(y, n) 6 dk + 2(k0 + k)− 3. Thus, by (7.2) and (7.3),

α = lim
k→∞

dk−1 − 1

logβ bk
6 lim

n→∞

rx(y, n)

logβ n
6 lim

k→∞

dk + 2(k0 + k)− 3

logβ(bk−1 + 1)
= α.

Hence, G ⊂ Ex(α).
We then distribute a Borel probability measure µα on G. Let µα(I(∅)) = µα([0, 1)) = 1 and

µα(∅) = 0. For any k ∈ N and w ∈ Gk, let

µα(I(w)) =
µα(I(u))

(#Ψk(x))
nk
,

where u ∈ Gk−1 is the pre�x of w. For any n ∈ N and τ ∈ Σn
β , de�ne

µα(I(τ )) =
∑

µα(I(w)),

where the sum is taken over all w ∈ Gk with bk−1 < n 6 bk such that I(w) ⊂ I(τ ). Then,
one can check that the nonnegative set function µα is a pre-measure on the collection of sets

{I(τ ): τ ∈ Σ∗
β} ∪ {∅}, and so it can be uniquely extended to a Borel probability measure on

[0, 1).

Fix y ∈ G. For any r ∈ (0, β−b1), there exists a k ∈ N such that β−bk+1 6 r < β−bk . If r >

β−bk−dk+1 , then

µα(B(y, r)) 6
∑

µα(I(w)) =
∑

k
∏

j=1

(

#Ψ j(x)
)−n j

6 3

k
∏

j=1

(

#Ψ j(x)
)−n j.

where the sum is taken over all w ∈ Gk such that I(w) ∩ B(y, r) 6= ∅. Thus

log µα(B(y, r))

log r
>

−logβ 3+
∑k

j=1 n j logβ #Ψ j(x)

bk + dk+1

If β−bk−dk+1−(i+1)(k0+k+1) 6 r < β−bk−dk+1−i(k0+k+1) for some 0 6 i < nk+1, then
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µα(B(y, r)) 6
∑

µα(I(w)) =
∑

k+1
∏

j=1

(

#Ψ j(x)
)−n j

6 3
(

#Ψk+1(x)
)1−i

k
∏

j=1

(

#Ψ j(x)
)−n j ,

where the sum is taken over all w ∈ Gk+1 such that I(w) ∩ B(y, r) 6= ∅. Thus,

log µα(B(y, r))

log r
>

−logβ 3+ (i− 1)logβ #Ψk+1(x)+
∑k

j=1 n j logβ #Ψ j(x)

bk + dk+1 + (i+ 1)(k0 + k + 1)
.

Since by (7.2), (7.4), lemma 1 and the Stolz–Cesàro theorem, we have

lim
k→∞

−logβ 3+
∑k

j=1 n j logβ #Ψ j(x)

bk + dk+1

= 1

and

lim inf
k→∞

inf
06i<nk+1

−logβ 3+ (i− 1)logβ #Ψk+1(x)+
∑k

j=1 n j logβ #Ψ j(x)

bk + dk+1 + (i+ 1)(k0 + k + 1)

> lim inf
k→∞

inf
06i<nk+1

∑k−1
j=1 n j(k0 + j)+ [nk(k0 + k)+ (i− 1)(k0 + k + 1)]

(bk−1 + dk + dk+1)+ (nk + i)(k0 + k + 1)
= 1,

then,

lim inf
r→0

log µα(B(y, r))

log r
> 1.

Therefore, by proposition 10.1 in [20], we obtain that dimHG > 1.

�

Proof of theorem 3. It is an easy corollary of propositions 5–7. �
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