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Abstract

Let A be an n× n real expanding matrix and D be a �nite subset of Rn with

0 ∈ D. The family of maps { fd(x) = A−1(x+ d)}d∈D is called a self-af�ne iter-

ated function system (self-af�ne IFS). The self-af�ne set K = K(A,D) is the

unique compact set determined by (A,D) satisfying the set-valued equation

K =
⋃
d∈D fd(K). The number s = n ln(#D)/ ln(q) with q = |det(A)|, is the so-

called pseudo similarity dimension of K. As shown by He and Lau, one can

associate with A and any number s > 0 a natural pseudo Hausdorff measure

denoted by Hs
w. In this paper, we show that, if s is chosen to be the pseudo

similarity dimension of K, then the condition Hs
w(K) > 0 holds if and only

if the IFS { fd}d∈D satis�es the open set condition (OSC). This extends the

well-known result for the self-similar case that the OSC is equivalent to K

having positive Hausdorff measure Hs for a suitable s. Furthermore, we relate

the exact value of pseudo Hausdorff measure Hs
w(K) to a notion of upper

s-density with respect to the pseudo norm w(x) associated with A for the

measure µ = limM→∞

∑
d0,...,dM−1∈D

δd0+Ad1+···+AM−1dM−1
in the case that#D 6

|det A|.
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1. Introduction

Definition 1.1. Let Mn(R) denote the set of n× n matrices with real entries. A matrix A ∈
Mn(R) is called expanding if all its eigenvalues λi satisfy |λi| > 1. A self-af�ne set in R

n is a

compact set K ⊆ R
n satisfying the set-valued equation AK =

⋃
d∈D(K + d), whereA ∈ Mn(R)

is an expandingmatrix andD ⊆ R
n is a �nite set of distinct real vectors, which is called a digit

set. K is called a self-similar set if A is a similarity matrix, i.e. A = ρR, where ρ > 1 and R is

an orthogonal matrix. To simplify the notations, we let q = |det(A)|.

For an expandingmatrix A ∈ Mn(R) and a digit setD ⊆ R
n, it has been shown that the pair

(A,D) can uniquely determine a self-af�ne set K :=K(A,D) (see [1]). Given the pair (A,D),

de�ne

fd(x) = A−1(x+ d), d ∈ D.

The family of maps { fd}d∈D is called a self-af�ne iterated function system (self-af�ne IFS).

An important property of these maps is that they are contractive with respect to a suitable norm

on R
n (see [2]). It is clear that the self-af�ne set K :=K(A,D) determined by the pair (A,D)

satis�es K =
⋃
d∈D fd(K).

Definition 1.2. For the pair (A,D) as above, we say that the IFS { fd}d∈D satis�es the open

set condition (OSC) if there exists a non-empty bounded open set V such that

⋃

d∈D

fd(V) ⊂ V and fd(V) ∩ fd′(V) = ∅ for d 6= d′ ∈ D.

The OSC is the most important separation condition in the theory of IFS and it is thus very

useful to �nd conditions equivalent to it. When the IFS is self-similar, it is well-known [3] that

the OSC is equivalent to the self-similar set generated by the IFS having positive Hausdorff

measure. For the self-af�ne case, He and Lau [4] showed that if the OSC is satis�ed, then

the corresponding self-af�ne set has positive pseudo Hausdorff measure. This last measure is

de�ned by using a pseudo norm constructed from thematrixA instead of the classical Euclidean

norm. In this paper, we prove that the OSC is indeed equivalent to the self-af�ne set generated

by the IFS having positive pseudo Hausdorff measure by showing that the converse also holds.

In the following, we always assume, without loss of generality, that 0 ∈ D. For an integer

M > 1, consider the sets

DM =





M−1∑

j=0

A jd j : d j ∈ D



 , and D∞ =

⋃

M>1

DM.

ThenDM ⊂ DM+1 for anyM > 1 since 0 ∈ D. Combining our results with those proved by He

and Lau (theorem 4.4 in [4]), we provide some conditions equivalent to the OSC for self-af�ne

IFSs.

Theorem 1.1. The following conditions are equivalent.

(a) The IFS { fd}d∈D satis�es the OSC;

(b) 0 < Hs
w(K) < ∞, where s = n ln(#D)/ ln(q) and Hs

w(K) denotes the s-dimensional

pseudo Hausdorff measure of K generated by the IFS { fd}d∈D (the detailed de�nition

ofHs
w(K) is given in section 2);

(c) #DM = (#D)M and D∞ is a uniformly discrete set, i.e. there exists δ > 0 such that

‖x− y‖ > δ for any distinct elements x, y of D∞.
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For the proof of theorem 1.1, we utilize the connection between pseudo norm and Euclidean

norm as well as the technique used by Schief [3], Bishop and Peres [5] for the self-similar case.

We also would like to mention that there have been several equivalent characterizations for the

OSC under special cases given by Lagarias and Wang (theorem 1.1 in [2]), by He and Lau

(theorem 4.4 in [4]) and by Fu and Gabardo (theorem 3.2 in [6]).

In fractal geometry, one of the classical questions is to study the Hausdorff dimension and

the corresponding Hausdorff measure of the self-af�ne set K(A,D) determined by the pair

(A,D).

In the case that K(A,D) has positive Lebesgue measure and#D = |det A| ∈ Z, K is called

a self-af�ne tile and the corresponding set D is called a tile digit set, where #D denotes the

number of elements in D. The Lebesgue measure and many aspects of the theory of self-

af�ne tiles including the structure and tiling properties, the connection to wavelet theory, the

fractal structure of the boundaries and the classi�cation of tile digit sets have been investigated

thoroughly (see e.g. [2, 7–14]).

The situation becomes more complicate when #D > q := |det A| because the sets K + d,

d ∈ D, might overlap. He et al [15] considered the problem as to whether or not the Lebesgue

measure of K(A,D) is positive for this case. Qiu [16] provided an algorithm for calculating the

Hausdorff measure of a special class of Cantor sets K(A,D) ⊂ R with overlaps.

It is easy to see that the Lebesgue measure of K(A,D) is 0 if#D < q, a situation which has

motivated many researchers to study the Hausdorff dimension and Hausdorff measure of such

sets K(A,D). For self-similar sets satisfying certain separating conditions (e.g. open set condi-

tion [17], weak separation condition [18, 19], �nite type condition [20]), there exist methods

to calculate their Hausdorff dimensions [15, 17, 20, 21] and the correspondingHausdorff mea-

sures [6, 22, 23–28]. However, nomany results are available in that direction for self-af�ne sets.

The dif�culty stems from the non-uniform contraction in different directions, in contrast to the

self-similar case where the contraction is uniform in every direction. In [4], He and Lau de�ned

a pseudo norm w(x) associated with the matrix A and replaced the Euclidean norm by this

pseudo norm to de�ne the Hausdorff dimension and the Hausdorff measure for subsets in Rn.

They called these the pseudo Hausdorff dimension dimw
H and the pseudo Hausdorff measure

Hs
w, respectively. This setup gives a convenient estimation to the classical Hausdorff dimension

of K(A,D) and, furthermore, it makes K(A,D) have a structure similar to that of a self-similar

set since the pseudo norm de�ned in terms of A absorbs the non-uniform contractivity from A.

In this paper, we are interested in the computation of the pseudo Hausdorff measure of

self-af�ne sets in the case that #D 6 q. This is motivated by the results in [6], which gave

an exact expression for the Lebesgue measure of K(A,D) with #D = q and the Hausdorff

measure of the self-similar set K(A,D) associated with its similarity dimension in the case that

#D 6 q. One of the main results of this paper is to relate the pseudo Hausdorff measure of

K(A,D), namelyHs
w(K(A,D)) where s = n ln(#D)/ ln(q) is the pseudo similarity dimension

of K, to a notion of upper density with respect to (w.r.t.) w(x) for the measure µ which is

de�ned by

µ = lim
M→∞

∑

d0,...,dM−1∈D

δd0+Ad1+···+AM−1dM−1
. (1.1)

The measure µ de�ned in (1.1) is indeed a counting measure on D∞ which counts the

number of repetitions. It is different from the invariantmeasureσ determined by the pair (A,D),

which is de�ned in (3.1).

Theorem 1.2. Let K := K(A,D) be a self-af�ne set and let s = n ln(#D)/ ln(q) be the
pseudo similarity dimension of K. ThenHs

w(K) = (E+
w,s(µ))

−1, where µ is de�ned by (1.1) and

2594



Nonlinearity 33 (2020) 2592 X Fu et al

E+
w,s(µ) is the upper s-density of µ w.r.t. w(x) de�ned by

E+
w,s(µ) = lim

r→∞
sup

diamwU>r>0

µ(U)

(diamwU)s
,

where the supremum is over all convex sets U with diamwU > r > 0 w.r.t. w(x) and diamwU

is de�ned in section 2 by using w(x) instead of the classical Euclidean norm in the de�nition

of diamU.

We will divide the proof of theorem 1.2 into two cases, (a) and (b), with the case (a) cor-

responding to the situation where the IFS { fd}d∈D satis�es the OSC and the case (b) where it

does not.

It follows from theorem 1.1 that if the IFS { fd}d∈D satis�es the OSC, then K := K(A,D) is

an s-set w.r.t.w(x). By analysing the upper convex s-density w.r.t.w(x) of points in K, we have
the following expression ofHs

w(K).

Lemma 1.3. Let K :=K(A,D) be the self-af�ne set associated with an IFS { fd}d∈D satis-

fying the OSC. Let s = n ln(#D)/ ln(q) and let σ be the invariant measure supported on K

satisfying

∫
f dσ =

1

#D

∑

d∈D

∫
f ◦ fd dσ

for any compactly supported continuous function f on Rn. Then, for any r0 > 0,

(Hs
w(K))

−1 = sup
0<diamwU6r0

σ(U)

(diamwU)s
,

where the supremum is taken over all convex sets U with U
⋂
K 6= ∅ and 0 < diamwU 6 r0.

For case (a), theorem 1.2 will follow from lemma 1.3 after we prove that

E+
w,s(µ) = sup

0<diamwU6r0

σ(U)

(diamwU)s
.

For case (b), we show E+
w,s(µ) = ∞ by using the third equivalent condition in theorem 1.1.

The paper is organized as follows. In section 2, we collect some de�nitions and some known

results on pseudo norm, pseudo Hausdorff dimension and pseudo Hausdorff measures that we

will use. In section 3, we prove theorem 1.1. Some properties of upper convex s-density w.r.t.

w(x) of points in K(A,D) and the upper s-density of µ w.r.t. w(x) are investigated respectively
in sections 4 and in 5. In section 6, lemma 1.3 and theorem 1.2 are proved.

2. Preliminaries

In this section, we recall the notions of pseudo norm and pseudo Hausdorff measure de�ned

in [4] and collect some known results about these that we will use later.

Let A ∈ Mn(R) be expanding with q := |det A| ∈ R. We can assume without loss of gen-

erality that A has the property that ‖x‖ 6 ‖Ax‖ and equality holds only for x = 0, where the

norm ‖ · ‖ is the Euclidean norm, since ‖ · ‖ in R
n can be renormed with an equivalent norm

‖ · ‖′ so that ‖x‖′ < ‖Ax‖′ for all 0 6= x ∈ R
n [2]. He and Lau [4] introduced a pseudo norm

w(x) associated with A as follows:

• For 0 < δ < 1/2, choose a positive functionφδ(x) ∈ C∞(Rn) with support in Bδ :=B(0, δ)
(the closed ball centred at 0 with radius δ) such that φδ(x) = φδ(−x) and

∫
φδ(x), dx = 1.
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• Let V = AB1\B1 and h(x) = χV ∗ φδ(x). De�ne

w(x) =

∞∑

j=−∞

q−
j
n h(A jx), x ∈ R

n. (2.1)

Note that V is an annular region by our convention that ‖x‖ < ‖Ax‖ for x 6= 0. It is clear that

R
n\{0} =

⋃
k∈ZA

kV , where the union is disjoint.

Proposition 2.1 ([4]). The w(x) de�ned in (2.1) is a C∞ function on Rn and satis�es

(a) w(x) = w(−x), w(x) = 0 ⇔ x = 0;

(b) w(Ax) = q1/nw(x), x ∈ R
n;

(c) There exists an integer p > 0 such that for each x ∈ R
n, the sum in (2.1) has at most p

non-zero terms and α 6 w(x) 6 pqp/n, x ∈ V, where α = infx∈V h(x) > 0.

He and Lau [4] showed that the pseudo norm w(x) is comparable with the Euclidean norm

‖x‖ throughλmax and λmin, the maximal and minimal moduli of the eigenvalues of A. For more

details about the properties of w(x) and its relationship with the Euclidean norm, please refer

to [4, 29, 30].

Proposition 2.2 ([4]). Let A ∈ Mn(R) be an expanding matrix with |det A| = q and let

w(x) be a pseudo norm associated with A. Then for any 0 < ǫ < λmin − 1, there exists C > 0

(depending on ǫ) such that

C−1‖x‖ln q/(n ln(λmax+ǫ)) 6 w(x) 6 C‖x‖ln q/(n ln(λmin−ǫ)), ‖x‖ > 1,

C−1‖x‖ln q/(n ln(λmin−ǫ)) 6 w(x) 6 C‖x‖ln q/(n ln(λmax+ǫ)), ‖x‖ 6 1.

Unlike Euclidean norm, the triangle inequality is not satis�ed for pseudo norm any more.

However, we have the following inequality instead.

Lemma 2.3 ([4]). There exists β > 0 such that for any x, y ∈ R
n,

w(x+ y) 6 βmax{w(x),w(y)}.

Furthermore, we can modify lemma 2.3 into the following lemma, which will be used in

section 5.

Lemma 2.4. For any ǫ > 0, there is a positive number λǫ > 1 such that for any x1, x2 ∈ R
n

with w(x2) > λǫw(x1), w(x1 + x2) < (1+ ǫ)w(x2) holds.

Proof. Let V = AB1\B1. Denote θ = max{‖x‖ : x ∈ V} and V1 =
⋃
x∈V B(x, 1). Obviously,

w ∈ C(V1) since w ∈ C∞(Rn). So, for any ǫ > 0, there exists a number δ with 0 < δ < 1 such

that w(z1)− w(z2) < αǫ whenever z1, z2 ∈ V1 with ‖z1 − z2‖ 6 δ, where α = infx∈Vh(x) as

introduced in proposition 2.1. Choose λǫ > 1 large enough such that

n ln(λǫ α/(pq
p/n))

ln q
>

− ln(δ/θ)

lnλmin

,
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where p, q are the same as in proposition 2.1. For any x1, x2 ∈ R
n with w(x2) > λǫw(x1), with-

out loss of generality, assume x1 6= 0 and write x1 = Al1y1 and x2 = Al2y2 with l1, l2 ∈ Z and

y1, y2 ∈ V . It is easy to cheque that w(xi) = qli/nw(yi) for i = 1, 2, and hence

q(l2−l1)/n > λǫw(y1)/w(y2) > λǫα/(pq
p/n),

since α 6 w(yi) 6 pqp/n for i = 1, 2 by proposition 2.1(c). This gives that

l2 − l1 >
n ln(λǫ α/(pq

p/n))

ln q

and thus l2 − l1 >
− ln(δ/θ)
ln λmin

> 0. Hence

‖Al1−l2y1‖ = ‖(A−1)l2−l1y1‖ 6 λl1−l2min θ < δ.

So we have

w(x1 + x2) = w(Al2(Al1−l2y1 + y2)) = ql2/n w(Al1−l2y1 + y2) < ql2/n (w(y2)+ α ǫ)

since y1, y2 ∈ V and ‖Al1−l2y1‖ < δ, and thus

w(x1 + x2) < (1+ ǫ) ql2/nw(y2) = (1+ ǫ)w(x2).

�

Next, we come to the de�nition of pseudo Hausdorff measure and pseudo Hausdorff

dimension. For a given set E ⊂ R
n, the diameter of E w.r.t. w(x) is de�ned by

diamwE = sup{w(x− y) : x, y ∈ E}.

A collection of sets {Ui}∞i=1 inR
n is called a δ-cover of E ⊂ R

n w.r.t.w(x) if E ⊆
⋃∞
i=1 Ui and

diamwUi 6 δ. Such a collection is called an open δ-cover of E if Ui is open for all i > 1. For

E ⊂ R
n and s > 0, δ > 0, de�ne

Hs
w,δ(E) = inf

{
∞∑

i=1

(diamwUi)
s : {Ui}

∞
i=1 is a δ − cover ofEw.r.t.w(x)

}
.

Since Hs
w,δ(E) is increasing when δ tends to 0, we can de�ne the s-dimensional Hausdorff

measure of E w.r.t. w(x) (the s-dimensional pseudo Hausdorff measure of E) by

Hs
w(E) = lim

δ→0
Hs

w,δ(E) = sup
δ>0

Hs
w,δ(E).

It is direct to see that Hs
w is a Borel measure on Rn. By proposition 2.1(b), it is easy to obtain

that

Hs
w(AE) = qs/nHs

w(E). (2.2)

As usual, we de�ne theHausdorff dimension of E w.r.t. w(x) (the pseudo Hausdorff dimension
of E) to be the quantity

dimw
H E = inf{s : Hs

w(E) = 0} = sup{s : Hs
w(E) = ∞}.
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This setup gives a convenient estimation of the classical Hausdorff dimension and makes a

self-af�ne set have a structure as a self-similar set since the pseudo norm de�ned in terms of

A absorbs the non-uniform contractivity from A.

Theorem 2.5 ([4]). Let A ∈ Mn(R) be an expanding matrix with |det A| = q ∈ R and let

w(x) be a pseudo norm associated with A. Then for any subset E ⊂ R
n,

ln q

n lnλmax

dimw
H E 6 dimH E 6

ln q

n lnλmin

dimw
H E,

where λmax,λmin denote the maximal and minimal moduli of the eigenvalues of A, and dimHE

is the classical Hausdorff dimension of E.

It follows immediately that dimw
H E = dimH E when λmax = λmin. This includes the special

case that A is a similarity matrix.

3. Proof of theorem 1.1

In the following, let A ∈ Mn(R) be expanding with |det A| = q and 0 ∈ D ⊂ R
n be a digit set.

Let K :=K(A,D) be a self-af�ne set associated with (A,D). We always assume that w(x) is a
pseudo norm associated with A.

He and Lau [4] proved the direction ‘OSC⇒ 0 < Hs
w(K) < ∞’ for the self-af�ne case.

Theorem 3.1 ([4]). Suppose that the IFS { fd}d∈D satis�es the OSC. Then dimw
H K =

s := n ln(#D)/ ln(q) and 0 < Hs
w(K) < ∞.

In particular, if A is a similarity matrix with scaling factor ρ > 1, then s := ln(#D)/ ln(ρ)
is the similarity dimension of the self-similar set K(A,D). For consistency, we call

s := n ln(#D)/ ln(q) the pseudo similarity dimension of the self-af�ne set K(A,D).

To prove the other direction ‘0 < Hs
w(K) < ∞ ⇒ OSC’, lemmas 3.2 and 3.6 below are

needed. It is well-known ([1]) that the IFS { fd}d∈D determines a unique Borel probability

measure σ supported on the set K(A,D) satisfying

∫
f dσ =

1

#D

∑

d∈D

∫
f ◦ fddσ, (3.1)

for any compactly supported continuous function f on R
n. We say that σ has no overlap if

σ( fd(K) ∩ fd′ (K)) = 0 for d 6= d′ ∈ D. Lemma 3.2 and its proof show that if the self-af�ne set

K has positive pseudo Hausdorff measure associated with the dimension s := n ln(#D)/ ln(q),
then the invariant measure σ has no overlap.

Lemma 3.2. Suppose that 0 < Hs
w(K) < ∞ with s := n ln(#D)/ ln(q) and σ is a self-af�ne

measure de�ned in (3.1). Then

σ = (Hs
w(K))

−1Hs
w ↾ K,

(i.e. σ is the restriction ofHs
w to K normalized so as to give σ(K) = 1).

Proof. For any Borel subset E ⊂ R
n and d ∈ D, we have

Hs
w( f

−1
d (E)) = Hs

w(AE− d) = Hs
w(AE) = qs/nHs

w(E) = (#D)Hs
w(E).
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Similarly,Hs
w( fd(E)) =

1
#DH

s
w(E). Then, we have

Hs
w(K)= Hs

w

(
⋃

d∈D

fd(K)

)
6
∑

d∈D

Hs
w( fd(K))

= #D ·
1

#D
Hs

w(K) = Hs
w(K).

This implies that Hs
w ( fd(K) ∩ fd′(K) = 0 for d 6= d′ ∈ D since 0 < Hs

w(K) < ∞. Then for

any Borel set E,

Hs
w(E ∩ K) =

∑

d∈D

Hs
w(E ∩ fd(K)) =

∑

d∈D

1

#D
Hs

w( f
−1
d (E) ∩ K).

This proves that Hs
w ↾ K is invariant for the IFS { fd}d∈D and thus the probablility measure

(Hs
w(K))

−1Hs
w ↾ K coincides with σ as this last measure is unique. �

For E,F ⊂ R
n and z ∈ R

n, we let

D(E,F) = inf{d(x, y) : x ∈ E, y ∈ F}
D(z,E) = D({z},E) and D(E, z) = D(E, {z}).

where d denotes the distance induced by the Euclidean norm. TheHausdorff distance between

compact sets E,F ⊂ R
n is denoted by DH(E,F) and de�ned by

DH(E,F) = max

{
sup
x∈E

D(x,F), sup
y∈F

D(E, y)

}
.

Denote Comp(Rn) the set of compact subsets in R
n. Then Blaschke selection theorem [5]

implies that

Theorem 3.3 ([5]). (Comp(Rn),DH) is a compact metric space.

We use the pseudo norm to replace the Euclidean norm and let

Dw(E,F) = inf{dw(x, y) :=w(x− y) : x ∈ E, y ∈ F},
Dw(z,E) = Dw({z},E) and Dw(E, z) = Dw(E, {z}).

De�ne the Hausdorff distance w.r.t. w(x) between compact sets E and F in Rn by

DH,w(E,F) = max

{
sup
x∈E

Dw(x,F), sup
y∈F

Dw(E, y)

}
.

Denote Uw(x, ǫ):= {y ∈ R
n : dw(x, y) < ǫ} to be the open ǫ-neighbourhood of x ∈ R

n w.r.t.

w(x) and Uw(F, ǫ) =
⋃
{Uw(x, ǫ) : x ∈ F}. Let f 1, f 2, . . . , f N be the IFS associated with

the expanding matrix A ∈ Mn(R) and the digit set D = {d1, d2, . . . , dN} ⊂ R
n. Let Σ =

{1, 2, . . . ,N} and Σm = {(i1i2 . . . im) : 1 6 i j 6 N} for m > 1. Write Σ∗ =
⋃
m>0Σ

m with

Σ0 := ∅. For i = (i1i2 . . . im) and j = ( j1 j2 . . . jk) in Σ∗, we use the notation ij for the element

(i1i2 . . . im j1 j2 . . . jk) ∈ Σ∗, and say that i and j are incomparable if there exists no k such that

i = jk or j = ik. It follows from proposition 2.1(b) that for any i ∈ Σ

w( fi(x)− fi(y)) = q−
1
nw(x− y). (3.2)
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Let r = q−
1
n . For i ∈ Σm, m > 1, the length of i is denoted by |i| = m. De�ne

fi = fi1 ◦ fi2 · · · ◦ fim , Ki = fi(K) and ri = r|i| = q−
m
n .

It is obvious that, for any m > 1, K =
⋃

i∈Σm Ki. Particularly, for i, j, k ∈ Σ∗, it follows from

(3.2) that we can get some elementary property on diamw,Dw andDH,w related to the IFSmaps

f k. For later use, we collect them as follows.

Proposition 3.4. Given i, j, k ∈ Σ∗, we have the following identities.

diamw(Ki) = r|i|diamwK,

Dw( fk(Ki), fk(Kj)) = r|k|Dw(Ki,Kj),

DH,w( fk(Ki), fk(Kj)) = r|k|DH,w(Ki,Kj).

According to lemma 3.2, it is direct to get the following result.

Corollary 3.5. Suppose that 0 < Hs
w(K) < ∞with s := n ln(#D)/ ln(q). Then i, j ∈ Σ∗ are

incomparable if and only ifHs
w(Ki ∩ Kj) = ∅.

Also if we admit only open sets in the covers of E, then Hs
w,δ(E) (also Hs

w(E)) does not

change.

Lemma 3.6. For E ⊂ R
n and s > 0, δ > 0, de�ne

H̃s
w,δ(E) = inf

{
∞∑

i=1

(diamwUi)
s : {Ui}

∞
i=1 is an open δ − cover of E w.r.t.w(x)

}
.

Then H̃s
w,δ(E) = Hs

w,δ(E).

Proof. It is obvious that Hs
w,δ(E) 6 H̃s

w,δ(E). For any ǫ > 0, by the de�nition of Hs
w,δ(E),

there exists a δ-cover {Ui}∞i=1 of E w.r.t. w(x) such that

Hs
w,δ(E) >

∞∑

i=1

(diamwUi)
s − ǫ.

Denote U(Ui, 1) = {y ∈ R
n : ‖y− x‖ < 1 for some x ∈ Ui} to be the open 1-neighbourhood

of Ui. For the above ǫ > 0, by using w(x) ∈ C(U(Ui, 1)), there exists δi > 0 such that |w(x)−
w(y)| < diamw(Ui)ǫ whenever ‖x− y‖ 6 δi and x, y ∈ U(Ui, 1). Take δi

′ = min{δi, 1} and

Vi = U

(
Ui,

δ′i
2

)
. Then Ui ⊂ V i ⊂ U(Ui, 1) and V i is open. For any z1, z2 ∈ V i, by the

de�nition of V i, there exist x1, x2 ∈ Ui such that ‖x j − z j‖ 6
δ′i
2
, j = 1, 2. This and w(x) ∈

C(Vi) imply that

w(z1 − z2) 6 w(x1 − x2)+ diamw(Ui)ǫ 6 diamw(Ui)+ diamw(Ui)ǫ < (1+ ǫ)δ. (3.3)

It follows from (3.3) that diamw(V i) 6 (1+ ǫ)diamw(Ui) < (1+ ǫ)δ since z1, z2 ∈ V i are

arbitrary. Using the de�nition of H̃s
w,δ ,

H̃s
w,(1+ǫ)δ(E)6

∑
(diamwVi)

s 6 (1+ ǫ)s(diamwUi)
s

6 (1+ ǫ)s(Hs
w,δ(E)+ ǫ).

Letting ǫ→ 0, one can get H̃s
w,δ(E) 6 Hs

w,δ(E). �
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To prove the direction ‘0 < Hs
w(K) < ∞ ⇒ OSC’, we use the idea due to [3, 5] for the

self-similar case and lemma 2.3 on the connection between Pseudo norm and Euclidean

norm.

Theorem 3.7. If 0 < Hs
w(K(A,D)) < ∞ with s := n ln(#D)/ ln(q), then the IFS { fd}d∈D

satis�es the OSC.

Proof. Let t > 0. By the de�nition ofHs
w(K) and lemma 3.6, there exists a sequence of open

sets {Ui}i>1 such that

U :=

∞⋃

i=1

Ui ⊃ K and

∞∑

i=1

(diamwUi)
s 6 (1+ ts)Hs

w(K).

�

Claim 1. Denote δ = Dw(K,U
c), where Uc denotes the complement of U. Then for all

incomparable i, j with rj > tri, we have DH,w(Ki,Kj) > δri.

Proof. Suppose that claim 1 does not hold. Then there exist a pair i, j with rj > tri and

DH,w(Ki,Kj) < δri. Since clearly Dw(Ki, ( fi(U))
c) = δri, we get

Kj ⊂ Uw(Ki, δri) ⊂ fi(U).

This implies that

Hs
w(K) r

s
i (1+ ts)< Hs

w(K) (r
s
i + rsj ) = Hs

w(Ki)+Hs
w(Kj)

= Hs
w(Ki ∪ Kj) 6

∞∑

i=1

(diamw fi(Ui))
s

=

∞∑

i=1

rsi (diamwUi)
s 6 Hs

w(K) r
s
i (1+ ts),

which is a contradiction. (The second to the last inequality follows from the fact thatKi ∪ Kj ⊂
f i(U) and the second equality is obtained from corollary 3.5). �

For 0 < b < 1, we set Ib = {i ∈ Σ∗ : r|i| 6 b < r|i|−1}. The elements of Ib are obviously

incomparable and satisfy K =
⋃

i∈Ib
Ki.

Fix 0 < ε < min{diamwK, β diamwK, (β diamwK)
2,λmin − 1}, where β satis�es the

inequality in lemma 2.3 and λmin is the minimal moduli of the eigenvalues of A. For k ∈ Σ∗,

denote Gk = Uw(Kk, εrk). Note that for any k > 1, the pair (A,A−kD) can determine a self-

af�ne set A−kK if K is determined by the pair (A,D) and the IFS { fd}d∈D satis�es the OSC

if and only if { fA−kd}d∈D satis�es the OSC. To simplify the notations, WLOG we can assume

that diamwK is small enough such that diamwGk < 1 for any k ∈ Σ∗ since we can always use

A−kK and { fA−kd}d∈D instead of K and { fd}d∈D if diamwK is not small enough.

Claim 2. Denote I(k) = {i ∈ IdiamwGk
:Ki ∩ Gk 6= ∅}, and γ = sup

k

#I(k). Then γ < ∞.

Proof. For the given ε > 0, let Ci and αi, i = 1, 2, be the number as in proposition 2.2

satisfying the inequality that ‖x− y‖ 6 (Cidw(x, y))
αi for ‖x− y‖ > 1 and ‖x− y‖ 6 1 respec-

tively. Take C = C1 and α = α1 if (C1β
3(diamwK)

2)α1 > (C2β
3(diamwK)

2)α2 and if not, we

take C = C2 and α = α2. Let B be the closed (Cβ3(diamwK)
2)α-neighbourhood of K, i.e.

B = {x ∈ R
n : D(x,K) 6 (Cβ3(diamwK)

2)α}. Then for any k ∈ Σ∗, it holds that

f −1
k (Ki) ⊂ B, ∀ i ∈ I(k). (3.4)
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In fact, noticing that Ki ∩Gk 6= ∅ if i ∈ I(k), for any y ∈ Ki, it follows from the de�nition of

dw and lemma 2.3 that,

Dw(y,Kk) 6 βmax{dw(y, z),Dw(z,Kk)} 6 βmax{diamwKi, εrk},

where z is any point in Ki ∩ Gk. This gives that

Dw( f
−1
k (y),K) 6 βmax{r−1

k ridiamwK, ε}. (3.5)

On the other hand, if i ∈ I(k), then i ∈ IdiamwGk
and thus we have ri 6 diamwGk by the

de�nition of IdiamwGk
. Next, we will utilize lemma 2.3 to give an estimation on diamwGk. Let

z1, z2 ∈ Gk. Then there exist x1, x2 ∈ Kk satisfying that dw(zi, xi) < εrk for i = 1, 2. By lemma

2.3, we obtain

dw(z1, z2)= w(z1 − x1 + x1 − x2 + x2 − z2)

6 βmax{w(z1 − x1),w(x1 − x2 + x2 − z2)}
6 βmax{w(z1 − x1), βmax{w(x1 − x2),w(x2 − z2)}}
6 βmax{εrk, βmax{rkdiamwK, εrk}}
6 β2rkdiamwK.

The last inequality is obtained by the restriction of ε. This and ri 6 diamwGk give ri 6

β2rkdiamwK. Substituting this into (3.5), one can get Dw( f
−1
k (y),K) 6 β3(diamwK)

2. Then

by using proposition 2.2, we have

D( f −1
k (y),K)6

{
(C1Dw( f

−1
k (y),K))α1, ifD( f −1

k (y),K) > 1,

(C2Dw( f
−1
k (y),K))α2, ifD( f −1

k (y),K) 6 1

6 (Cβ3(diamwK)
2)α,

which proves (3.4).

Since for any i, j ∈ Σm, ri = rj = rm. Then rj > rir holds. We may apply claim 1 for t = r

to get δ > 0 such that

DH,w(Ki,Kj) > δri > δrkrdiamwG

for any distinct i, j ∈ I(k), where G = Uw(K, ǫ). Hence, by proposition 3.4, we have

DH,w( f
−1
k (Ki), f

−1
k (Kj)) > δ r diamwG

and

DH( f
−1
k (Ki), f

−1
k (Kj)) > (C′ δ r diamwG)

α′
,

with some positiveC′,α′ for all i, j ∈ I(k) by proposition2.2. By theorem3.3,#I(k) is bounded

by the maximal number of compact subsets of B which are (C′δrdiamwG)
α′
-separated in the

Hausdorff metric, which is obviously independent of k ∈ Σ∗. �

Claim 3. Choose k such that γ = #I(k). Then for any j ∈ Σ∗, I(jk) = {ji : i ∈ I(k)}.

Proof. Notice that ∅ 6= Ki ∩ Gk implies

∅ 6= fj(Ki ∩ Gk) = fj(Ki) ∩ fj(Gk) = Kji ∩ fj(Uw(Kk, εrk))
= Kji ∩Uw(Kjk, εrjk) = Kji ∩ Gjk.

This shows that {ji : i ∈ I(k)} ⊆ I(jk). On the other hand, we further note that #{ji : i ∈
I(k)} = #I(k) = γ. By the selection of k and the maximality of#I(k), claim 3 follows. �
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Claim 4. Dw(Kiik,K j) > εriik for any j 6= i and any i ∈ Σ∗.

Proof. For any word jlwith j 6= i, claim 3 implies that jl /∈ I(iik). By the de�nition of I(iik),

for jl ∈ IdiamwGiik , K jl ∩Giik = ∅. Hence, Dw(Kiik,K jl) > εriik. Noticing that

K j ⊆
⋃

{K jl : jl ∈ IdiamwGiik},

then claim 4 follows. �

Claim 5. For i ∈ Σ∗, denote G∗
i = Uw(Ki, β

−1εri). Then U =
⋃

j∈Σ∗G∗
jk gives the OSC.

Proof. Clearly, U is open and Kk ⊂ G∗
k ⊂ U. For each i,

fi(U) =
⋃

j∈Σ∗

fi(G
∗
jk) =

⋃

j∈Σ∗

G∗
ijk ⊂ U.

For i 6= j, f i(U) ∩ f j(U) = ∅. Indeed, if not, there exist i, j such that G∗
iik ∩ G∗

jjk 6= ∅. Let y ∈

G∗
iik ∩ G∗

jjk. Then there exist y1 ∈ Kiik and y2 ∈ K jjk such thatw(y− y1) < β−1εriik andw(y−

y2) < β−1εr jjk. Without loss of generality, we assume that riik > r jjk. Then we have w(y1 −
y2) < εriik. Hence, Dw(Kiik,K j) < εriik, which contradicts claim 4. �

This completes the proof of theorem 3.7. �

There is another equivalent condition for the OSC provided by He and Lau in [4].

Theorem 3.8 ([4]). Let A ∈ Mn(R) be expanding and let D ⊂ R
n be a digit set. Then the

IFS { fd}d∈D satis�es the OSC if and only if #DM = (#D)M and D∞ is a uniformly discrete

set.

Theorem 3.7 together with theorems 3.8 and 3.1 imply theorem 1.1.

4. The upper convex density w.r.t.w(x)

In this section, we introduce the notion of s-sets w.r.t. the pseudo norm w(x), and study the

upper convex density of an s-set w.r.t. w(x) at certain points. These are de�nitions analogous

to those corresponding to the Euclidean norm. (See, for example, section 2 in [17].)

A subset E ⊂ R
n is called an s-set (0 6 s 6 n) w.r.t. w(x) if E is Hs

w-measurable and 0 <
Hs

w(E) < ∞. The upper convex s-density of an s-set E w.r.t. w(x) at x is de�ned as

Ds
w,c(E, x) = lim

r→0
sup

0<diamwU6r,x∈U

Hs
w(E ∩ U)

(diamwU)s
,

where the supremum is over all convex sets U with x ∈ U and 0 < diamwU 6 r, and the limit

exists obviously. We have the following result similar to theorems 2.2 and 2.3 in [17].

Theorem 4.1. If E is an s-set w.r.t. w(x) in Rn, then Ds
w,c(E, x) = 1 atHs

w-almost all x ∈ E

and Ds
w,c(E, x) = 0 atHs

w-almost all x ∈ Ec.

We will prove theorem 4.1 by showing that Ds
w,c(E, x) = 0 atHs

w-almost all x ∈ Ec (lemma

4.4) andDs
w,c(E, x) = 1 atHs

w-almost all x ∈ E (lemma 4.5) respectively.We need an analogue

of Vitali covering theorem [17] and the following lemma. We should mention that the sets

encountered in the following can always be represented in terms of known Hs
w-measurable
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sets using combinations of lim, lim , countable unions and intersections. So without explicit

mention in this section, we always assume that the sets involved areHs
w-measurable.

Lemma 4.2. Let E ⊂ R
n be Hs

w-measurable with H
s
w(E) < +∞ and let ε > 0. Then there

exists ρ > 0, depending only on E and ε, such that for any collection of Borel sets {Ui}∞i=1 with

0 < diamwUi 6 ρ, we have

Hs
w

(
E ∩

⋃

i

Ui

)
<
∑

i

(diamwUi)
s + ε.

Proof. By the de�nition that Hs
w = lim

δ→0
Hs

w,δ , we may choose ρ > 0 such that

Hs
w(E) 6

∑

i

diamw(Wi)+ ε/2 (4.1)

for any ρ-cover {W i} of E w.r.t. w(x). Given Borel sets {Ui} with 0 < diamw(Ui) 6 ρ, by the
de�nition ofHs

w, we can �nd a ρ-cover {V i} of E\
⋃
iUi w.r.t. w(x) satisfying

Hs
w(E\

⋃

i

Ui)+ ε/2 >
∑

i

diamw(Vi).

Then {Ui} ∪ {V i} is a ρ-cover of E w.r.t. w(x), and using (4.1), we have

Hs
w(E) 6

∑

i

diamw(Ui)+
∑

i

diamw(Vi)+ ε/2.

Hence,

Hs
w

(
E ∩

⋃

i

Ui

)
= Hs

w(E)−Hs
w

(
E\
⋃

i

Ui

)

<
∑

i

diamw(Ui)+
∑

i

diamw(Vi)+ ε/2−
∑

i

diamw(Vi)+ ε/2

=
∑

i

diamw(Ui)+ ε.

�

A collection of sets V is called a Vitali class for E w.r.t. w(x) if for each x ∈ E and δ > 0,

there exists U ∈ V with x ∈ U and 0 < diamwU 6 δ.

Theorem 4.3 (Vitali covering theorem).

(a) Let E be an Hs
w-measurable subset of R

n and let V be a Vitali class of closed sets for E

w.r.t. w(x). Then we may select a (�nite or countable) disjoint sequence Ui from V such

that either
∑

i(diamwUi)
s = ∞ orHs

w(E\
⋃
iUi) = 0.

(b) IfHs
w(E) < +∞, then for any given ε > 0, we may also require that

Hs
w(E) 6

∑

i

(diamwUi)
s + ε.

Proof.

(a) Fix ρ > 0. We may assume that diamwU 6 ρ for all U ∈ V . Let U1 ∈ V and U1 ∩ E 6= ∅.
We choose Ui, i > 2 inductively. Suppose that U1, . . . ,Um have been chosen, and let
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dm = sup{diamwU : U ∈ V and U ∩Ui = ∅, i = 1, 2, . . . , m}.

Note that {dm}m>1 is decreasing. If dm = 0, then E ⊂
⋃m
i=1Ui. Indeed, if there existed a point

x ∈ E\
⋃m
i=1Ui, then, letting

δx =
1

2
inf{w(x− y), y ∈

m⋃

i=1

Ui} > 0,

we could �ndU ∈ V such that x ∈ U and 0 < diamwU < δx, contradicting the fact that dm = 0.

So (a) follows and the process terminates. Otherwise, letUm+1 ∈ V be a set satisfying Um+1 ∩(⋃m
i=1 Ui

)
= ∅ and diamw(Um+1) >

1
2
dm.

Suppose that the process continues inde�nitely and that
∑

(diamwUi)
s < ∞. For each i, let

Bi be a pseudo ball centred in Ui with radius 2 β diamw(Ui), where β is the constant in lemma

2.3. We claim that for every k > 1,

E\
k⋃

i=1

Ui ⊂
∞⋃

i=k+1

Bi. (4.2)

In fact, for x ∈ E\
⋃k
i=1Ui, there exists U ∈ V with x ∈ U and U ∩

(⋃k
i=1Ui

)
= ∅. By the

assumption that
∑

(diamwUi)
s < ∞, we obtain that limi→∞diamwUi = 0. Hence, we have

diamwU > 2 diamwUℓ > dℓ−1 for some ℓ > k + 2. If U ∩U j = ∅ for k < j < ℓ and thus for

1 6 j 6 ℓ− 1, it would follow that

diamwU > 2 diamwUℓ > dl−1 > diamwU,

a contradiction. Let thus i be the smallest integer jwith k < j < ℓ such thatU ∩ U j 6= ∅. Since
U ∩ U j = ∅ for 1 6 j 6 i− 1, we have

diamwU 6 di−1 6 2 diamwUi.

By elementary geometry, we have U ⊂ Bi and (4.2) follows.

Thus, if δ > 0,

Hs
w,δ

(
E\

∞⋃

i=1

Ui

)
6 Hs

w,δ

(
E\

k⋃

i=1

Ui

)
6

∞∑

i=k+1

(diamwBi)
s 6 2sβ2s

∞∑

i=k+1

(diamwUi)
s,

provided that k is large enough to ensure that diamwBi 6 δ for i > k. Hence, for all δ > 0,

Hs
w,δ

(
E\

∞⋃

i=1

Ui

)
= 0.

SoHs
w

(
E\
⋃∞
i=1 Ui

)
= 0 which proves (a).

(b) Suppose that ρ chosen at the beginning of the proof is the number corresponding to ε and
E given in lemma 4.2. If

∑
i(diamwUi)

s = +∞, then (b) is obvious. Otherwise, by (a) and

lemma 4.2, we obtain
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Hs
w(E)= Hs

w

(
E\

∞⋃

i=1

Ui

)
+Hs

w

(
E ∩

(
∞⋃

i=1

Ui

))

= 0+Hs
w

(
E ∩

∞⋃

i=1

Ui

)
<

∞∑

i=1

(diamwUi)
s + ε.

�

Lemma 4.4. If E is an s-set w.r.t. w(x) in Rn, then Ds
w,c(E, x) = 0 forHs

w-almost all x ∈ Ec.

Proof. Fix α > 0, we show that the measurable set F = {x /∈ E : Ds
w(E, x) > α} has zero

pseudo Hausdorff measure. By the regularity ofHs
w, for any given δ > 0, there exists a closed

set E1 ⊂ E such that Hs
w(E\E1) < δ. For ρ > 0, let

V = {U closed & convex : 0 < diamwU 6 ρ, U ∩ E1 = ∅, Hs
w(E ∩U) > α(diamwU)

s}.

Then V is a Vitali class of closed sets for F w.r.t. w(x). It follows from theorem 4.3(a)

that we can �nd a disjoint sequence of sets {Ui} in V with either
∑

(diamwUi)
s = +∞ or

Hs
w

(
F\
⋃
iUi

)
= 0. However, by the de�nition of V ,

∑

i

(diamwUi)
s <

1

α

∑

i

Hs
w(E ∩ Ui) =

1

α
Hs

w

(
E ∩

⋃

i

Ui

)

6
1

α
Hs

w(E\E1) <
δ

α
< +∞.

This implies thatHs
w

(
F\
⋃
iUi

)
= 0, and thus we have

Hs
w,ρ(F)6 Hs

w,ρ

(
F\
⋃

i

Ui

)
+Hs

w,ρ

(
F ∩

⋃

i

Ui

)

6 Hs
w

(
F\
⋃

i

Ui

)
+
∑

i

(diamwUi)
s <

δ

α
+ 0.

This is true for any δ > 0 and any ρ > 0. SoHs
w(F) = 0. �

Lemma 4.5. If E is an s-set w.r.t. w(x) in Rn, then Ds
w,c(E, x) = 1 atHs

w-almost all x ∈ E.

Proof. Firstly, we use the de�nition of pseudo Hausdorff measure w.r.t. w(x) to show that

Ds
w,c(E, x) > 1 a.e. in E. Take α < 1 and ρ > 0. Let

F = {x ∈ E:Hs
w(E ∩ U) 6 α(diamwU)

s for all convexU with x ∈ U and diamwU 6 ρ}.

For any ε > 0, we may �nd a ρ-cover of F by convex sets {Ui} such that

∑
(diamwUi)

s < Hs
w(F)+ ε.

Hence, assuming that each Ui contains some points of F and using the de�nition of F, we

obtain

Hs
w(F) 6

∑

i

Hs
w(F ∩ Ui) 6

∑

i

Hs
w(E ∩ Ui) 6 α

∑

i

(diamwUi)
s 6 α (Hs

w(F)+ ε).
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Since α < 1 and the outer inequality holds for all ε > 0, we conclude thatHs
w(F) = 0.We may

de�ne such F for any ρ > 0. So Ds
w,c(E, x) > α for a.e. x ∈ E by the de�nition. This is true for

all α < 1, so we conclude that Ds
w,c(E, x) > 1 a.e. in E.

Secondly, we use a Vitali method to show that Ds
w,c(E, x) 6 1 a.e. in E. Given α > 1, let

F := {x ∈ E : Ds
w,c(E, x) > α} be a measurable subset of E and let

F0 = {x ∈ F : Ds
w,c(E\F, x) = 0}.

Then Hs
w(F\F0) = 0 by lemma 4.4. By the de�nition of upper convex s-density, for x ∈ F0,

we have

Ds
w,c(F, x) > Ds

w,c(E, x)− Ds
w,c(E\F, x) > α.

Thus,

V = {U closed & convex : Hs
w(F ∩U) > α (diamwU)

s} (4.3)

is a Vitali class for F0. Then, by theorem 4.3(b), for any given ε > 0, we can �nd a disjoint

sequence {Ui}i in V such thatHs
w(F0) 6

∑
i(diamwUi)

s + ε. By (4.3), we obtain that

Hs
w(F) = Hs

w(F0) 6
∑

i

(diamwUi)
s + ε <

1

α

∑

i

Hs
w(F ∩ Ui)+ ε 6

1

α
Hs

w(F)+ ε.

This inequality holds for any ε > 0. Hence, we haveHs
w(F) = 0 if α > 1 as required. �

Theorem 3.1 implies that if the IFS { fd}d∈D satis�es the OSC, then the corresponding

self-af�ne set K :=K(A,D) is an s-set w.r.t. w(x), where s = dimw
H K = n ln(#D)/ ln(q) is

the pseudo similarity dimension of K. Thus theorem 4.1 can be applied to K directly.

5. The upper s-density of µ w.r.t.w(x)

In this section, let µ be a Borel measure on R
n, we use the pseudo norm w(x) instead of the

Euclidean norm to de�ne the upper s-density of µ w.r.t. w(x). It will be used to �nd a different
expression for the pseudo Hausdorff measure of K(A,D). This is motivated by the connection

between the upper s-density of µ in (1.1) which was �rst introduced in [6] and the Hausdorff

measure of a self-similar set K(A,D).

Definition 5.1. Let µ be a Borel measure in R
n. The upper s-density of µ w.r.t. w(x) is

de�ned by

E+
w,s(µ) = lim

r→∞
sup

diamwU>r>0

µ(U)

(diamwU)s
,

where the supremum is over all compact convex sets U ⊆ R
n with diamwU > r > 0.

Let µ be a Borel measure and let σ be a Borel probability measure. The convolution µ ∗ σ
is de�ned to be the measure so that

∫

Rn

φ(z)d(µ ∗ σ)(z) :=

∫

Rn

∫

Rn

φ(x+ y)dµ(x)dσ(y),

holds for any compactly supported continuous function φ on Rn.

Lemma 5.1. Let µ and σ be two Borel measures on Rn with σ being a probability measure.
Then E+

w,s(µ ∗ σ) = E+
w,s(µ).
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Proof. By the de�nition of E+
w,s(µ) and the convolution of µ ∗ σ, we get

E+
w,s(µ ∗ σ) = lim

r→∞
sup

diamwU>r>0

µ ∗ σ(U)

(diamwU)s

= lim
r→∞

sup
diamwU>r>0

∫
Rn

∫
Rn

χU(x+ y)dµ(x)dσ(y)

(diamwU)s

= lim
r→∞

sup
diamwU>r>0

∫
Rn

µ(U − y)dσ(y)

(diamwU)s
,

6 lim
r→∞

sup
diamwU>r>0

sup
y∈Rn

µ(U − y)

(diamwU)s
(sinceσ is a Borel probabilitymeasure)

= lim
r→∞

sup
diamwU>r>0

µ(U)

(diamwU)s

= E+
w,s(µ), (5.1)

where the supremum is over all convex sets U ⊂ R
n with diamwU > r > 0. Thus, E+

w,s(µ ∗
σ) 6 E+

w,s(µ) by (5.1).
For the reverse inequality, �x a real numberR > 0. Let ǫ > 0 and r > λǫ β

2Rwhere λǫ is the

same as in lemma 2.4 and β is de�ned in lemma 2.3. For any set U ⊂ R
n with diamwU > r,

choose a set Ũ =
⋃
y∈Bw (0,R)

(U + y). Obviously U ⊂ Ũ − y for any y ∈ Bw(0,R), the closed

ball centred at 0 with radiusRw.r.t.w(x). Moreover, we claim that diamwŨ 6 (1+ ǫ) diamwU.

In fact, for any two points x1, x2 ∈ Ũ, we write xi = zi + yi with zi ∈ U and yi ∈ Bw(0,R) for

i = 1, 2. Then w(y1 − y2) 6 βR. If w(z1 − z2) > λǫβR, then we have w(z1 − z2) > λǫw(y1 −
y2), and this gives

w(x1 − x2) = w((z1 − z2)+ (y1 − y2)) < (1+ ǫ)w(z1 − z2)

by lemma 2.4. Otherwise if w(z1 − z2) 6 λǫβR, then we have

w(x1 − x2) 6 βmax{w(z1 − z2),w(y1 − y2)} 6 βmax{λǫβR, βR} = λǫβ
2R 6 r.

Thus we have w(x1 − x2) 6 (1+ ǫ)diamwU in both cases, which yields the claim since x1, x2
are arbitrary points in Ũ. Then we have

∫
Bw (0,R)

µ(U)dσ(y)

(diamwU)s
6

∫
Bw (0,R)

µ(Ũ − y)dσ(y)

(diamwŨ)s
·
(diamwŨ)

s

(diamwU)s

6

∫
Bw (0,R)

µ(Ũ − y)dσ(y)

(diamwŨ)s
· (1+ ǫ)s.

Hence, we have

lim
r→∞

sup
diamwU>r>0

∫
Bw (0,R)

µ(U)dσ(y)

(diamwU)s

6 lim
r→∞

sup
diamwU′>r>0

∫
Bw (0,R)

µ(U′ − y)dσ(y)

(diamwU′)s
· (1+ ǫ)s

6 lim
r→∞

sup
diamwU′>r>0

∫
Rd

µ(U′ − y)dσ(y)

(diamwU′)s
· (1+ ǫ)s

= E+
w,s(µ ∗ σ) · (1+ ǫ)s.

2608



Nonlinearity 33 (2020) 2592 X Fu et al

By letting ǫ→ 0 and R→∞, we obtain that E+
w,s(µ) 6 E+

w,s(µ ∗ σ). �

Lemma 5.2. Let σ be the Borel probability measure supported on K(A,D) which satis�es

(3.1). For M > 1, de�ne µM =
∑
x∈DM

δx, then for any Borel measurable set W ⊂ R
n, we have

σ(A−MW) = 1
(#D)M

(µM ∗ σ) (W).

Proof. For any Borel measurable set W ⊂ R
n, we deduce from the identity (3.1) that

σ(A−MW)=

∫

Rn

χA−MW(x)dσ(x)

=
1

(#D)M

∑

d1,d2,...,dM∈D

∫

Rn

χA−MW(A
−Mx+ A−1d1 + · · ·+ A−MdM)dσ(x)

=
1

(#D)M

∑

d1,d2,...,dM∈D

∫

Rn

χW(x+ AM−1d1 + · · ·+ dM)dσ(x)

=
1

(#D)M

∫

Rn

χW(x)d(σ ∗ µM)(x)

=
1

(#D)M
σ ∗ µM(W).

�

6. Pseudo Hausdorff measure of self-affine sets

This section is devoted to proving theorem 1.2 by considering the IFS { fd}d∈D satis�es and

does not satisfy the OSC separately. The following technical lemma is needed. We borrow the

technique of its proof from [33] for the self-similar case.

Lemma 6.1. Let the IFS { fd}d∈D satisfy the OSC. Then Hs
w(K ∩ U) 6 (diamwU)

s for any

subset U in Rn.

Proof. We will prove the statement by a contradiction. Assume that there exists a sub-

set U ⊂ R
n such that Hs

w(K ∩ U) > (diamwU)
s. Then we can �nd some 0 < κ < 1 such

that (1− κ)Hs
w(K ∩ U) > (diamwU)

s. Fix δ > 0 and choose a positive integer m such that

diamw f i(U) 6 δ for all words i ∈ Σm, where Σm is de�ned in section 3. Note that

⋃

i∈Σm

fi(K ∩ U) ⊂ K ∩
⋃

i∈Σm

fi(U), (6.1)

since fi(K) ⊂
⋃

j∈Σm fj(K) = K for each i ∈ Σm. By the assumption that the IFS { fd}d∈D
satis�es the OSC, then by using theorem 3.1 and lemma 3.2, we have Hs

w( fi(K ∩ U)) ∩
fj(K ∩ U)) = 0 for distinct i, j ∈ Σm. Therefore, by (6.1), we obtain

Hs
w(K ∩

⋃

i∈Σm

fi(U)) > Hs
w

(
⋃

i∈Σm

fi(K ∩U)

)

=
∑

i∈Σm

Hs
w( fi(K ∩U)) = Hs

w(K ∩ U). (6.2)

De�ning η = 1
2
κHs

w(K ∩
⋃

i∈Σm fi(U)), it follows from (6.2) that

η >
1

2
κHs

w(K ∩ U) >
1

2
κ
(diamwU)

s

1− κ
> 0.
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For η > 0, we can choose a sequence of sets {Ui}i with
⋃
i

Ui ⊇ K\
⋃

i∈Σm

fi(U) and

diamw(Ui) < δ such that

∑

i

(diamwUi)
s 6 Hs

w,δ(K\
⋃

i∈Σm

fi(U))+ η

6 Hs
w

(
K\
⋃

i∈Σm

fi(U)

)
+ η. (6.3)

The family { fi(U)}i∈Σm ∪ {Ui}i is clearly a δ-cover of K w.r.t. w(x). Using the fact that∑
i∈Σm

rsi = 1 and (6.3), we obtain that

Hw,δ(K)6
∑

i∈Σm

(diamw fi(U))
s +
∑

i

(diamwUi)
s

6 (diamwU)
s +Hs

w

(
K\
⋃

i∈Σm

fi(U)

)
+ η

6 (1− κ)Hs
w(K ∩ U)+Hs

w

(
K\
⋃

i∈Σm

fi(U)

)
+ η

Taking the inequality (6.2) into account, this yields

Hw,δ(K)6 (1− κ)Hs
w

(
K ∩

⋃

i∈Σm

fi(U)

)
+Hs

w

(
K\
⋃

i∈Σm

fi(U)

)
+ η

6 Hs
w(K)− κHs

w

(
K ∩

⋃

i∈Σm

fi(U)

)
+ η

= Hs
w(K)− η

6 Hs
w(K)−

1

2
κHs

w(K ∩U).

Letting δ → 0, we get

Hs
w(K) 6 Hs

w(K)−
1

2
κHs

w(K ∩ U),

which is a contradiction since 0 < Hs
w(K) < ∞ and 1

2
κHs

w(K ∩ U) > 0. �

Lemma 3.2 shows that if the IFS { fd}d∈D satis�es the OSC, then the probability measure

σ in (3.1) is a multiple of the restriction of the s-dimensional pseudo Hausdorff measure Hs
w

to the set K, with s = dimw
H K = n ln(#D)/ ln(q), i.e.

σ = (Hs
w(K))

−1Hs
w ↾ K. (6.4)

Combining the formula (6.4), lemma 6.1, theorems 3.1 and 4.1, we obtain the following

lemma.

Lemma 6.2. Let K :=K(A,D) be a self-af�ne set and let the IFS { fd}d∈D satisfy the OSC.

Then for any r0 > 0,

(Hs
w(K))

−1 = sup
0<diamwU6r0

σ(U)

(diamwU)s
,
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where s is the pseudo similarity dimension of K, σ is de�ned by (3.1) and the supremum is over

all convex sets U with U
⋂
K 6= ∅ and 0 < diamwU 6 r0.

Proof. By applying theorem 3.1, K is an s-set w.r.t. w(x). From theorem 4.1, we can pick a

point x ∈ K such thatDs
w,c(K, x) = 1. Then there exists a positive sequence {rn}n with rn 6 r0,

rn → 0 as n→∞ such that

sup
0<diamwU6rn ,x∈U

Hs
w(K ∩ U)

(diamwU)s
−

1

n
6 1 6 sup

0<diamwU6rn ,x∈U

Hs
w(K ∩ U)

(diamwU)s
+

1

n
.

For each n, there exists a convex set Un containing x with 0 < diamwUn 6 rn such that

sup
0<diamwU6rn ,x∈U

Hs
w(K ∩ U)

(diamwU)s
6

Hs
w(K ∩ Un)

(diamwUn)s
+

1

n
.

Thus

Hs
w(K ∩ Un)

(diamwUn)s
−

1

n
6 1 6

Hs
w(K ∩Un)

(diamwUn)s
+

2

n
,

which yields that Hs
w (K∩Un)

(diamwUn)s
→ 1 as n→∞. Moreover, by lemma 6.1, for each convex set U

with K ∩ U 6= ∅, we have Hs
w(K∩U)

(diamwU)s
6 1. Hence sup0<diamwU6r0

Hs
w (K∩U)

(diamwU)s
= 1. By applying the

formula (6.4) to the above equality, the lemma follows. �

We have the following representation for the pseudo Hausdorff measure of self-af�ne sets.

Theorem 6.3. Let K := (A,D) be a self-af�ne set and let s:= n ln(#D)/ ln(q) be the pseudo
similarity dimension of K. ThenHs

w(K) = (E+
w,s(µ))

−1, where µ is de�ned by (1.1).

Proof. Let us assume �rst that Hs
w(K) > 0 and thus that the OSC holds by theorem 1.1. By

lemma 6.2, it is suf�cient to prove that

E+
w,s(µ) = sup

0<diamwU6r0

σ(U)

(diamwU)s

for some r0 > 0, where the supremum is over all convex sets U with U ∩ K 6= ∅ and 0 <
diamwU 6 r0.

Fix r0 > 0. It follows from lemma 6.2 that sup0<diamwU6r0

σ(U)
(diamwU)s

is �nite. Then, for any

given ε > 0, there exists a convex set U0 with diamwU0 6 r0 and U0 ∩ K 6= ∅ such that

σ(U0)

(diamwU0)s
> sup

0<diamwU6r0

σ(U)

(diamwU)s
− ε. (6.5)

For any N > 1, de�ne µN =
∑

d0,...,dN−1∈D
δd0+Ad1+···+AN−1dN−1

. Using lemmas 5.1 and 5.2, we

have
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σ(U0)

(diamwU0)s
=

σ ∗ µN(ANU0)

(diamw(ANU0))s
= lim

N→∞

σ ∗ µN(ANU0)

(diamw(ANU0))s

6 lim
r→∞

sup
diamwU>r>0

σ ∗ µ(U)

(diamwU)s

= E+
w,s(σ ∗ µ) = E+

w,s(µ). (6.6)

It follows from (6.5) and (6.6) that

sup
0<diamwU6r0

σ(U)

(diamwU)s
6 E+

w,s(µ)+ ε.

By letting ε→ 0, we get

sup
0<diamwU6r0

σ(U)

(diamwU)s
6 E+

w,s(µ).

Conversely, for any given convex set U, using lemma 5.2, we have,

σ ∗ µ(U)

(diamwU)s
= lim

N→∞

σ ∗ µN(U)

(diamwU)s
= lim

N→∞

σ(A−NU)

(diamw(A−NU))s

6 sup
0<diamwV6r0

σ(V)

(diamwV)s
.

Using lemma 5.1 again, we have thus that

E+
w,s(µ) = E+

w,s(µ ∗ σ) 6 sup
0<diamwV6r0

σ(V)

(diamwV)s
.

Thus we have proved the desired result in the case thatHs
w(K) > 0.

On the other hand, ifHs
w(K) = 0, then the IFS { fd}d∈D does not satisfy the OSC by theorem

1.1. Thus, by theorem 1.1, either the (#D)M expansions in DM are not distinct for someM or

D∞ is not uniformly discrete. For z ∈ R
n, we will use

Ik(z) =

{
y = (y1, . . . , yn) ∈ R

n : |yi − zi| 6
k

2
, i = 1, 2, . . . , n

}

to denote the cube centred at z = (z1, . . . , zn) ∈ R
n with side length k.

Assume�rst that there exists someM such that the (#D)M expansions inDM are not distinct.

Then there exists a ∈ DM which can be represented in two different ways in terms of the digits

in D, i.e.

a =

M−1∑

j=0

A j d j =

M−1∑

j=0

A j d′j, d j, d
′
j ∈ D,

with d j 6= d j
′ for at least one 0 6 j 6 M − 1. Then a+ AMa has at least four distinct expan-

sions inD2M. More generally, for k > 1,
∑k−1

j=0 A
Mja has at least 2k distinct expansions inDkM .

Then, if ak =
∑k−1

j=0 A
Mja, then µ({ak}) > 2k. Then, for any r > 0, we have

µ(Ir(ak))

(diamwIr(ak))s
>

2k

(diamwIr(0))s
→∞, k→∞,

This implies that supdiamwU>r>0
µ(U)

(diamwU)s
= ∞ for any r > 0, and in particular, E+

w,s(µ) = ∞.
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Next, assume that#DM = (#D)M holds for eachM > 1, butD∞ is not a uniformly discrete

set. Then there exists M1 > 1 and x1, y1 ∈ DM1
⊆ D∞ with x1 6= y1 such that ‖x1 − y1‖ < 1

2
.

Write F1 = {x1, y1} and w1 = x1. Then F1 ⊂ Dk1 ⊂ D∞ and ‖z1 − w1‖ < 1
2
for any z1 ∈ F1.

Let S1 = 0. Inductively, for k > 2, assume that M j, S j and x j, y j ∈ DM j
, F j ⊂ DS j+M j

have

been de�ned for 1 6 j 6 k − 1. Let Sk =
∑k−1

j=1M j. Choose Mk and xk, yk ∈ DMk
⊂ D∞ with

xk 6= yk and ‖xk − yk‖ < 1

2k‖A‖Sk
. Write

Fk = {z1 + AS2z2 + · · ·+ ASkzk : zi ∈ {xi, yi}, 1 6 i 6 k},
wk = x1 + AS2x2 + · · ·+ ASkxk.

Then Fk ⊂ DSk+Mk
⊂ D∞, wk ∈ DSk+Mk

. Thus for any k > 1, z ∈ Fk, we have

‖z− wk‖= ‖(z1 − x1)+ AS2(z2 − x2)+ · · ·+ ASk(zk − xk)‖

6
1

2
+ ‖A‖S2

1

22‖A‖S2
+ · · · ‖A‖Sk

1

2k‖A‖Sk
< 1.

This shows that µ(I2(wk)) > 2k. Hence, for any r > 2, we have I2(wk) ⊂ Ir(wk) and

µ(Ir(wk))

(diamwIr(wk))s
>

2k

(diamwIr(0))s
→∞, k→∞.

So E+
w,s(µ) = ∞ as before.

Therefore, we always haveHs
w(K) = (E+

w,s(µ))
−1. �
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