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Abstract

For a planar analytic near-Hamiltonian system, whose unperturbed system has

a family of periodic orbits �lling a period annulus with the inner boundary an

elementary centre and the outer boundary a homoclinic loop through a nilpotent

singularity of arbitrary order, we characterize the coef�cients of the terms with

degree greater than or equal to 2 in the expansion of the �rst order Melnikov

function near the homoclinic loop. Based on these expression of the coef�cients,

we discuss the limit cycle bifurcations and obtain more number of limit cycles

which bifurcate from the family of periodic orbits near the homoclinic loop and

the centre. Finally, as an application of our main results we study limit cycle

bifurcation of a (m+ 1)th order Liénard system with an elliptic Hamiltonian

function of degree 4, and improve the lower bound of the maximal number of

the isolated zeros of the related Abelian integral for any m ≥ 4.

Keywords: limit cycle bifurcation, homoclinic loop, nilpotent singularity, the �rst

order Melnikov function

Mathematics Subject Classi�cation numbers: 34C07, 37C29, 37G15, 37M20.

1. Introduction and statement of the main results

Hilbert in 1900 posed 23 open problems, in which the second part of the 16th problem is on

the maximum number of limit cycles and their distribution of planar polynomial differential

systems, see [1]. So far there are many excellent results on this problem, but it still remains
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Figure 1. The phase portraits of the Hamiltonian system (1)|ε=0 has a family or two
families of periodic orbits, an elementary centre at C and a nilpotent singularity at S. (A)
The nilpotent singularity is a saddle. (B) The nilpotent singularity is a cusp.

unsolved, even for n = 2. Arnold [2] in 1977 proposed the weakened Hilbert’s 16th problem:

letH be a real polynomial of degree n+ 1, whose level set includes a family of continuous and

close curves {Lh}, h ∈ I with I an interval, and let ω = qdx− pdy be a 1-form of degree n in

the variables (x, y). How many isolated zeros the Abelian integral

I(h) =

∫

Lh

ω

can have?

The weakened version can be understood to search for the maximum number of isolated

zeros of the Abelian integral or of the �rst order Melnikov function of real polynomial near-

Hamiltonian system of degree n related to H. The maximum number provides lower bound of

the maximum number of limit cycles that this kind of systems can have. In the past several

decades, there are plenty of outstanding works on this weakened version, such as [3–12] and

so on.

Consider an analytic near-Hamiltonian system of the form:

{
ẋ = Hy(x, y)+ εP0(x, y, ε, δ),

ẏ = −Hx(x, y)+ εQ0(x, y, ε, δ),
(1)

where H,P0,Q0 ∈ Cω(R2), ε ≥ 0 is small and δ ∈ D ⊂ Rm is a vector valued parameter with

D a compact subset.

In this paper we suppose that the unperturbed system (1)|ε=0 has a family of periodic orbits

Lh ∈ {(x, y)|H(x, y) = h}, which form a period annulus, with a centre C as its inner boundary

and a homoclinic loop Lhs through a nilpotent singularity S as its outer boundary. Without

loss of generality, we suppose S = (0, 0), C = (xc, 0) and h ∈ (hc, hs) or h ∈ (hs, hc) with hs =

H(0, 0) and hc = H(xc, 0), see �gure 1. In what follows, we assume without loss of generality

that hc < hs.

Since the origin is nilpotent, we assume without loss of generality that

H(x, y) = H0(x)+ y2H̃(x, y), (2)

where

H0(x) =
∑

j≥k
h jx

j, H̃(x, y) =
∑

j≥0

H∗
j y

j, H∗
j =

∑

i≥0

hi jx
i, (3)
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with hkh00 6= 0. The following de�nitions on three types of nilpotent singularities are well

known, see e.g. [13, 14]

Definition 1. Let the unperturbed system (1)|ε=0 have a nilpotent singularity at the origin,

and let the corresponding Hamiltonian function be of the forms (2) and (3). The origin is a

nilpotent centre of order m for the unperturbed system (1)|ε=0 if k = 2m+ 2 and hk > 0. The

origin is a nilpotent saddle of order m if k = 2m+ 2 and hk < 0. The origin is a cusp of order

m if k = 2m+ 1 and hk 6= 0.

Assume that the unperturbed system (1)|ε=0 has a family of periodic orbits Lh, h ∈ (hc, hs).

Then the �rst order Melnikov function along the family of periodic orbits is

M(h, δ) =

∮

Lh

Q0dx− P0dy|ε=0, h ∈ (hc, hs), (4)

where δ denotes the parameters in system (1). The next result exhibits the derivative ofM(h, δ)

in h, see e.g. [15, 16].

Lemma 2. For the �rst order Melnikov function M(h, δ) de�ned by (4), one has

∂M(h, δ)

∂h
=

∮

Lh

(
∂P0

∂x
+
∂Q0

∂y

)∣∣∣∣
ε=0

dt.

The next two results, see [17–19], show properties of the �rst order Melnikov function near

a homoclinic loop passing a nilpotent singularity.

Lemma 3. For the analytic near-Hamiltonian system (1) with the Hamiltonian H satisfying

(2) and (3), and k ≥ 4 even and hk < 0, the �rst order Melnikov function near and inside Lhs
has the expansion

M(h, δ) = − 1

2k
h ln |h|I∗

1, k
2
−1
(h)+ |h| 12

k−1∑

r=1

r 6= k
2

Ar−1I
∗
1,r−1(h)|h|

r
k + ϕ(h, δ), (5)

0 < −h≪ 1,

where ϕ(h, δ), I∗1r(h) ∈ Cω , and Ar are constants, depending on δ, for 0 ≤ r ≤ k − 1.

Lemma 4. For the analytic near-Hamiltonian system (1) with H satisfying (2) and (3), and

k ≥ 3 odd and hk < 0, the �rst order Melnikov function near and inside Lhs has the expansion

M(h, δ) = |h| 12
k−1∑

r=1

Ar−1I
∗
1,r−1(h)|h|

r
k + ψ(h, δ), 0 < −h≪ 1, (6)

where ψ(h, δ), I∗1r(h) ∈ Cω , and Ar are constants, depending on δ, for 0 ≤ r ≤ k − 1.

For studying limit cycle bifurcation near a homoclinic loop, the exact expressions of the

coef�cients in the expansion of the �rst order Melnikov function play an important role. For

(5), in paper [17] the authors provided an algorithm to compute the coef�cients of the expansion

in the �rst and second terms in (5) with the help of the Maple programme, and obtained the

concrete coef�cients of h0 and h1 in the asymptotic expansion of ϕ(h, δ) in (5) with k = 4.

For (6), the authors [18, 20, 21] using Maple programme studied the �rst several coef�cients

in the asymptotic expansion of the �rst term in (6), as well as the �rst two coef�cients of the
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asymptotic expansion of ψ(h, δ) in (6) for k = 3, 5, and the property of the coef�cient of h1 in

ψ(h, δ) for odd k ≥ 7.

The known results do not provide an exact expression of the coef�cients of hi, i ≥ 2. It

prevents from �nding more limit cycles near a homoclinic loop. In this paper, we deal with

this problem and study the expression of the coef�cients of the terms with high degrees in

the �rst order Melnikov function near the loop. For doing so, we need to know explicitly the

coef�cients of the termswith low degrees of the �rst orderMelnikov function near a homoclinic

loop through a nilpotent singularity of arbitrary order, which can be seen in section 2.

For analytic near-Hamiltonian system (1) with the analytic perturbations Pi and Qi, i ∈ N
instead of P0 and Q0, by lemmas 3 and 4, the �rst order Melnikov function near and inside a

homoclinic loop is written either in the asymptotic expansion

Mi(h, δ) =Bi0 + |h| 12
∑

j≥0

k j+ k
2−1∑

r=k j+1

Bir|h|
r
k +

∑

j≥0

Bi
k j+ k

2

h j+1 ln |h|

+ |h| 12
∑

j≥0

( j+1)k−1∑

r=k j+ k
2

Bir+1|h|
r
k , 0 < −h≪ 1, (7)

for k even, or in the asymptotic expansion

Mi(h, δ) =Bi0 + |h| 12
∑

j≥0

k j+ k−1
2∑

r=k j+1

Bir|h|
r
k +

∑

j≥0

Bi
k j+ k+1

2

h j+1

+ |h| 12
∑

j≥0

( j+1)k−1∑

r=k j+ k+1
2

Bir+1|h|
r
k , 0 < −h≪ 1, (8)

for k odd.

For the �rst order Melnikov function near an elementary centre, Han et al [22] showed that

Mi(h, δ) =
∑

r≥0

Ci
r(h− hc)

r+1, 0 < h− hc ≪ 1, (9)

where Ci
0 = T

(
∂Pi
∂x

+
∂Qi
∂y

)
(C, δ) with T a constant.

Set

∆
i
l :=

{
δ:Ci

j = 0,Bir = 0, r = k j+ 1, k j+ 2, . . . , k j+

[
k

2

]
,

k j+

[
k

2

]
+ 2, . . . , k j+ k, j = 0, 1, . . . , l

}
.

(10)

Our �rst result characterizes the coef�cients of the termswith high degrees in the asymptotic

expansion of the �rst order Melnikov function (4) near a homoclinic loop with a nilpotent

singularity for the near-Hamiltonian system (1).
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Theorem 5. Assume that

(a) The analytic near-Hamiltonian system (1)with the Hamiltonian functionH(x, y) satisfying

(2) and (3), has an elementary centre and an oriented clockwise homoclinic loop passing

a nilpotent singularity,

(b) There exist analytic functions Pi(x, y, δ) and Qi(x, y, δ) for i = 1, 2, . . . ,m, such that for

δ ∈ ∆
0
i−1

(
∂Pi−1

∂x
+
∂Qi−1

∂y

)
(x, y, δ) =

∂H(x, y)

∂x
Pi(x, y, δ)+

∂H(x, y)

∂y
Qi(x, y, δ), (11)

over U :=
⋃

hc≤h≤hs
Lh.

Then for the coef�cients of the �rst order Melnikov functions, given in (7)–(9), of the system

(1), the following statements hold for integers r = 1, 2, . . . , k.

(a) For r = 1, 2, . . . ,
[
k−1
2

]
,

B0
ki+r

∣∣
∆0
i−1

=
(−1)i(2k)i

i∏
j=1

(k + 2(r+ k j))

Bir.

(b) For r =
[
k+1
2

]
,

B0
ki+r

∣∣
∆0
i−1

=
1

(i+ 1)!
Bir.

(c) For r = k
2
+ 1,

B0
ki+r

∣∣
∆0
i−1

=
(−1)i

(i+ 1)!
Bir +

(−1)i

(i+ 1)!

(
i+1∑

n=2

1

n

)
Bir−1.

(d) For r =
[
k
2

]
+ 2, . . . , k,

B0
ki+r

∣∣
∆0
i−1

=
(−1)i(2k)i

i∏
j=1

(k − 2+ 2(r+ k j))

Bir.

(e)

C0
i

∣∣
∆0
i−1

=
T

(i+ 1)!

(
∂Pi

∂x
+
∂Qi

∂y

)
(C, δ),

where constants Bij with nonnegative integers i, j are given in (42).

Theorem 5 presents the properties of parts of the coef�cients in the asymptotic expansion

of the Melnikov function under some conditions. The next result is in general setting, and as

an application it illustrates that the conditions (11) for i ≥ 1 in theorem 5 can be realized for a

certain kind of analytic near-Hamiltonian systems.

Theorem 6. Assume that theHamiltonianH(x, y) satis�es the condition (a) of theorem 5 and

the following conditions: ∂H
∂y
(x, y) is nonzero in U\{y = 0} with U de�ned in theorem 5 and

∂2H
∂y2

(x, 0) is nonzero. Then, for any analytic 1-form ω = Pdy− Qdx whose exterior derivative

dω = f (x, y)dx ∧ dy is such that f (x, 0) = xk−1(x− xc)µ(x)withµ(x) analytic in U, there exists

an analytic 1-form η = Ady− Bdx such that

dω = dH ∧ η.
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Note that this 1-form η, usually written as dω
dH
, is the so-called Gelfand–Leray derivative

of ω.

Finally we will apply theorems 6 and 17 to study limit cycle bifurcation of a Liénard system

of the form

ẋ = y, ẏ = −gn(x)+ εy fm(x), (12)

where ε > 0 is suf�ciently small, gn and f m are polynomials of degree n and m, respectively.

The unperturbed system (12)|ε=0 is a Hamiltonian one with the Hamiltonian func-

tion Hn+1(x, y) =
1
2
y2 +

∫ x
0
gn(s)ds. Denote by Z(n,m) the maximum number of zeros of∫

Lh
y fm(x)dx, where Lh = {Hn+1(x, y) = h} is assumed to be periodic orbit of (12)|ε=0. For

n = 1, according to Blows and Lloyd [23] the lower bound of the maximum number is
[
m
2

]
.

For n = 2, many authors studied the maximum number Z(2,m), see e.g. [24–26], Petrov [27,

28] completed the analysis in this case and showed that Z(2,m) =
[
2m+1

3

]
for m ≥ 1.

For n = 3, according to different choice of gn(x), the level curves of H4 related to sys-

tem (12) could have �ve topological structures: a heteroclinic cycle connects two saddles (for

abbreviating two saddle cycle), a homocilnic loop connects a saddle (saddle loop), a homocilnic

loop connects a cusp (cuspidal loop), eight-loop and global centre. Restricting to the 1-forms

y f m(x)dx, Christopher and Lynch [29] exhibited the maximum number Z(3,m) ≥ 2
[
3m+6

8

]

with 2 ≤ m ≤ 50. Dumortier and Li [30–33] showed the maximumnumber Z(3, 2) = 6 of sys-

tem (12). Yang et al [34] obtained themaximumnumberZ(3,m) ≥
[
3m+14

4

]
with 3 ≤ m ≤ 8 by

system (12) with a eight-loop. Yang and Han [35] presented the maximum number Z(3,m) ≥
m+ 2−

[
m+1
4

]
with 6 ≤ m ≤ 22 by system (12) with a cuspidal loop. Han and Romanovski

[36] gained Z(3,m) ≥ 2
[
m−1
4

]
+
[
m−1
2

]
withm ≥ 3, whose results are better than previous one

only when m ≥ 17. For any n ≥ 4, there are also many works on the lower bound of the max-

imum number of limit cycles, see [37–39] and the references therein, but there does not have

a result on the optimal lower bound.

In this paper, we go on studying the weakened Hilbert’s 16th problem of the Liénard system

(12) with n = 3. We will restrict to g3(x) = x2(x− 1), aiming at �nding more limit cycles of

the Liénard system (12) with n = 3 using our main results. Our result is the following.

Theorem 7. There exists a Liénard system of the form (12) with n = 3 and g3 = x2(x− 1),

which can have 2m− 2 ·
[
m
4

]
− 1 limit cycles for m ≥ 4.

Theorem 7 indicates that the lower bound of the maximum number of zeros of the Abelian

integral associated to the Liénard system (12) with n = 3, is greater than or equal to 2m− 2 ·[
m
4

]
− 1 for m ≥ 4. This is a new lower bound for m > 5.

We remark that the number of limit cycles in theorem 7 is compatible with the results of

Panazzolo and Roussarie [40], who showed that for the same unperturbed system the cyclicity

of cuspidal loops grows asymptotically as fast as 5m
4
. Tian and Han [41] studied the following

polynomial system

ẋ = y+ ε f (x, y), ẏ = x− x3 + εg(x, y),

with l = max(deg( f (x, y)), det(g(x, y))). They proved that for l = 3, 5, 7, 9, the related Abelian

integral can have
[
7l−6
3

]
isolated zeros for suitable values of the parameters.

To study the expansion of the Melnikov function associated to system (1), without loss of

generality we set

P0(x, y, 0, δ) =
∑

i+ j≥0

ai jx
iy j, Q0(x, y, 0, δ) =

∑

i+ j≥0

bi jx
iy j, (13)
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This paper is organized as follows. In section 2, we shall characterize the �rst several coef-

�cients of the �rst orderMelnikov function near a homoclinic loop with a nilpotent singularity.

The proofs of theorems 5 and 6 are presented in section 3, where we study the properties of the

coef�cients of the terms with high order in the asymptotic expansion of the Melnikov function

near the homoclinic loop, and the limit cycle bifurcation. In section 4, we extend our main

results to limit cycle bifurcation near a cuspidal loop. In the last section, we prove the results,

which are related to an application of our theoretic results to a concrete example.

2. Melnikov function near a homoclinic loop with a nilpotent singularity

The goal of this section is to characterize the �rst several coef�cients in the expansion of the

�rst order Melnikov function near a homoclinic loop with a nilpotent singularity. In [13, 17,

18] the authors provided some ideas to study properties of the �rst several coef�cients, and

an algorithm to compute the �rst several coef�cients in case of a nilpotent singularity of order

1. We assume that the analytic near-Hamiltonian system (1) with the Hamiltonian function

H(x, y) satis�es (2) and (3) and has an oriented clockwise homoclinic loop passing a nilpotent

singularity. This last condition implies that (3) satis�es k ≥ 3 and hk < 0. Next, we introduce

the ideas given in the references [13, 17, 18], which will used later on.

Using Green’s formula, the Melnikov function in (4) can be written as

M(h, δ) =

∮

H(x,y)=h

q̄(x, y, δ)dx, (14)

where

q̄(x, y, δ) = Q0(x, y, 0, δ)− Q0(x, 0, 0, δ)+

∫ y

0

∂P0

∂x
(x, v, 0, δ)dv

=
∑

j≥1

q j(x)y
j

(15)

with

q j(x) =
∑

i≥0

b̄i jx
i, (16)

satisfying

b̄i j = bi j +
i+ 1

j
ai+1, j−1. (17)

Taking a small positive constant x0 such that the line x = x0 intersects Lh at two points, then

the closed curve Lh is separated into two arcs L1 = Lh|x≤x0 and L2 = Lh|x≥x0 . Correspondingly,
the integralM(h, δ) has the next form

M(h, δ) = M1(h, δ)+M2(h, δ),

where

M j(h, δ) =

∫

L j

q̄(x, y, δ)dx, j = 1, 2.
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Clearly, M2(h, δ) ∈ Cω in h. Note that the Hamiltonian in (2) satis�es ∂H
∂y
(x, 0) = 0

for small |x|. Then H(x, y) = h is equivalent to ω = |y|(H̃(x, y)) 12 , where ω =
√
h− H0(x),

H̃(x, y) = h00 + O(|x, y|). It means that H(x, y) = h has two locally analytic solutions,

y1(x,ω) and y2(x,ω), where y1(x,ω) =
√
2ω(1+ O(|x,ω|)) = y2(x,−ω) near (x,ω) = (0, 0),

0 ≤ x ≤ x0, |h| ≪ 1. y1(x,ω) can be expanded in ω.

y1(x,ω) =
∑

i≥1

ai(x)ω
i, (18)

where

a1(x) =
1√
H∗

0

,

with H∗
0 de�ned in (3).

Together with (15), the integralM(h, δ) in (14) can be exressed as

M(h, δ) =

∫ x0

b(h)

(q̄(x, y1(x,ω), δ)− q̄(x, y2(x,ω), δ)) dx

=

∫ x0

b(h)

∑

j≥1

q j(x)(y
j
1 − y

j
2)dx

=

∫ x0

b(h)

∑

j≥0

q̄ j(x)(h− H0(x))
2 j+1
2 dx, (19)

where b(h) is a solution of equation H0(x) = h in a neighbourhood of x = 0, and

q̄0(x) = 2q1(x)a1(x). (20)

For computing the integral (19), we introduce a new variable

u = Φ(x) =

{
sgn(x) · (−H0(x))

1
k , for k even,

(−H0(x))
1
k , for k odd.

(21)

Then the Melnikov function (19) becomes

M1(h, δ) =
∑

j≥0

∫ u0

−h
1
k

q̃ j(u)(h− uk)
2 j+1
2 du (22)

where u0 = Φ(x0) > 0 and

q̃ j(u) =
q̄ j(x)

Φ
′(x)

∣∣∣∣
x=Φ−1(u)

, (23)

can be expanded as a power series in u in a neighbourhood of u = 0, i.e.

q̃ j(u) =
∑

i≥0

wi ju
i, (24)
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where wi j are constants for all integers i, j ≥ 0, which depend on the coef�cients of the per-

turbed terms of the analytic differential system (1). Substituting the last expression q̃ j into (22),

one gets

M1(h, δ) =
∑

i+ j≥0

wi jIi j(h, u0), 0 < |h| ≪ 1, (25)

where

Ii j(h, u0) =

∫ u0

(−h)
1
k

ui(h+ uk)
2 j+1
2 du, 0 < |h| ≪ 1.

Next, we further simplify the expression of the integralM1(h, δ) in (25), as shown in the next

lemma.

Lemma 8. There exist Cω functions Ĩ1 and ϕ̃r(h, u0), r = 0, . . . , k − 1, such that for

0 ≤ |h| ≪ 1,

M1(h, δ) = Ĩ1(h)+

k−1∑

r=0

I∗1r(h)Ir0(h, u0),

where

Ir0(h, u0) =





Ar|h|
1+r
k + 1

2 + ϕ̃r(h, u0), r 6= k

2
− 1,

− 1

2k
h ln |h|+ ϕ̃r(h, u0), r =

k

2
− 1,

and

I∗1r(h) =
∑

m, j≥0

wmk+r, jα
∗
mk+r, jβ

∗
mk+rh

j+m, (26)

with

Ar =





− k

2(r+ 1)+ k

∫ 1

0

v
k
2
−r−2

√
1− vk

dv, 0 ≤ r <
k

2
− 1,

− 2k

k2 − 4(1+ r)2
− k

k + 2(r + 1)

∫ 1

0

v
3
2 k−r−2

√
1− vk(1+

√
1− vk)

dv,
k

2
− 1 < r < k − 1,

0 r = k − 1,
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α∗
i j =





3
2
k · 5

5
k × · · · × 2 j+1

2
k(

3
2
k + i+ 1

)
× · · · ×

(
2 j+1
2
k + i+ 1

) , i ≥ 0, j ≥ 1,

1, i ≥ 0, j = 0,

(27)

β∗
mk+r =





(−1)m(r + 1)(k+ r + 1)× · · · × ((m− 1)k+ r + 1)(
3
2
k + r + 1

) (
5
2
k + r + 1

)
× · · · ×

(
2m+1

2
k+ r + 1

) , m ≥ 1, 0 ≤ r ≤ k − 1,

1, m = 0, 0 ≤ r ≤ k − 1,

(28)

and wi j given in (25).

We note that lemmas 3 and 4 can be derived by using lemma 8. Whereas lemma 8 was

obtained in [17] for nilpotent saddles of arbitrary order. Of course, it also works for nilpotent

cusps of arbitrary order. In [18, 20, 21] there dealt with only the coef�cients of terms with

degree less than 2 in the expansion of the �rst term in (6). We make a different change of

variable given in the second line of (21) from that of the three papers, such that the coef�cients

of terms with degree greater than 2 in the expansion of the �rst term in (6) can be obtained.

We remark that the algorithm with Maple programme in [17, 18] demands a �xed integer

k. Here we get to a general result for any k ≥ 3.

For our goal, we need to know the expressions q̃0(u) in (22) and (23), q̄0(u) in (19) and (20),

and study the properties of wi0 in (25). These properties will be the key points in calculating

the coef�cients of the terms of degree 1 and of high degrees in the asymptotic expansion of the

�rst order Melnikov function of system (1) near a homoclinic loop with a nilpotent singularity.

For more details, see the proofs of theorems 11 and 12 and those in section 3.

Lemma 9. For the expression (24), there exist constants dil, l = 0, 1, . . . , i, depending on the

coef�cients of the Hamiltonian of the analytic near-Hamiltonian system (1), such that for all

nonnegative integer i,

wi0 =

i∑

l=0

dil
(
(l+ 1)al+1,0 + bl1

)
=

i∑

l=0

dil

l!

∂ l

∂xl

(
∂P0

∂x
+
∂Q0

∂y

)
(S, δ),

with dii = 2(−hk)−
i+1
k (h00)

− 1
2 nonzero.

Proof. According to the expression of H0(x) in (3), one gets

u = Φ(x) = (−hk)
1
k

∑

i≥1

µix
i, (29)

where µi’s, i ≥ 2, are functions depending on h j+k, j = 1, . . . , i− 1, and have the concrete

expressions
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µi =





1, i = 1,
i−1∑

m=1

(−1)m

m!(khk)m

m−1∏

j=0

( jk − 1)
∑

j1+···+ jm=i−1

h j1+k × · · · × h jm+k, i ≥ 2.

By (29), it follows that

1

Φ
′(x)

= (−hk)−
1
k

∑

i≥0

nix
i, (30)

with

ni =





1, i = 0,
i∑

m=1

(−1)m
∑

j1+···+ jm=i

( j1 + 1)× · · · × ( jm + 1)× µ j1+1 × · · · × µ jm+1, i ≥ 1.

We further compute the expansion of x = Φ−1(u) in (29) in a neighbourhood of u = 0. Set

x = Φ
−1(u) :=

∑

i≥1

µ̄iu
i, (31)

and substitute it into u = Φ(x), one gets

u = Φ(Φ−1(u)) = (−hk)
1
k

∑

i≥1

(
i∑

m=1

µm
∑

j1+···+ jm=i

µ̄ j1 × · · · × µ̄ jm

)
ui.

Equating the coef�cients of ui in both sides of this last expression yields

µ̄i =





(−hk)−
1
k µ−1

1 = (−hk)−
1
k , i = 1,

−
i∑

m=2

µm
∑

j1+···+ jm=i

µ̄ j1 × · · · × µ̄ jm , i ≥ 2.
(32)

From (3), the function a1(x) in (18) has the next expansion in x in a neighbourhood of the

origin,

a1(x) = (h00)
− 1

2

(
1+

1

h00

∑

i≥1

hi0x
i

)− 1
2

= (h00)
− 1

2

∑

i≥0

mix
i, (33)

with

mi =





1, i = 0,
i∑

l=1

− 1
2

(
− 1

2
− 1
)
· · ·
(
− 1

2
− l+ 1

)

l!

∑

j1+···+ jl=i

h j1,0 × · · · × h jl,0, i ≥ 1.

Substituting (16), (20), (30) and (33) into (23), one has
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q̃0(Φ(x)) =
2q1(x)a1(x)

Φ
′(x)

= 2(−hk)−
1
k (h00)

− 1
2

∑

i≥0

tix
i,

where ti =
∑

i1+i2+i3=i

b̄i3,1ni1mi2 , i1, i2, i3 ≥ 0. Especially, t0 = b̄01. Together with (31) and (32),

we have

q̃0(u) =
2q1(x)a1(x)

Φ
′(x)

∣∣∣∣
x=Φ−1(u)

= 2(−hk)−
1
k (h00)

− 1
2

(
t0 +

∑

i≥1

ui
i∑

m≥1

tm
∑

j1+···+ jm=i

µ̄ j1 × · · · × µ̄ jm

)
. (34)

It follows from (24) and (34) that

w00 = 2(−hk)−
1
k (h00)

− 1
2 t0 = 2(−hk)−

1
k (h00)

− 1
2 b̄01,

wi0 = 2(−hk)−
1
k (h00)

− 1
2

i∑

m≥1

m∑

l=0

b̄l1




∑

i1+i2=m−l
ni1mi2




∑

j1+···+ jm=i

µ̄ j1 × · · · × µ̄ jm

=

i∑

l≥0

dilb̄l1, i ≥ 1,

where

di0 = 2(−hk)−
1
k (h00)

− 1
2

i∑

m=1

(
∑

i1+i2=m

ni1mi2

)
∑

j1+···+ jm=i

µ̄ j1 × · · · × µ̄ jm ,

dil = 2(−hk)−
1
k (h00)

− 1
2

i∑

m=l




∑

i1+i2=m−l
ni1mi2




∑

j1+···+ jm=i

µ̄ j1 × · · · × µ̄ jm , l = 1, . . . , i.

In particular, dii = 2(−hk)−
i+1
k (h00)

− 1
2 . Here, dil’s depend only on the coef�cients of the

Hamiltonian function H(x, y) given in (2) and (3).

It proves the lemma using (17). �

Corollary 10. For the expression (24), there exist constants dii, given in lemma 9, such that

for all positive integers i,

wi0 = dii((i+ 1)ai+1,0 + bi1)+Φ(w00,w10, . . . ,wi−1,0),

where Φ(·) is a �rst order homogeneous function in its variables.
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The following two theorems present the �rst several coef�cients of the asymptotic expan-

sion of the �rst order Melnikov function near and inside a homoclinic loop with a nilpotent

singularity. Their proofs will use the properties of the wi0’s in lemma 9.

Theorem 11. For the analytic near-Hamiltonian system (1) with the Hamiltonian function

H(x, y) satisfying (2) and (3) with k ≥ 4 even and hk < 0, the �rst order Melnikov function

near and inside the homoclinic loop Lhs has the form

M(h, δ) =B0 + |h| 12
k
2
−1∑

r=1

Br|h|
r
k + B k

2
h ln |h|+ B k

2+1
|h|+ |h| 12

k−1∑

r= k
2+1

Br+1|h|
r
k

+ |h| 12
3
2
k−1∑

r=k+1

Br|h|
r
k + B 3

2 k
h2 ln |h|+ O(h2), 0 < −h≪ 1, (35)

where

B0 =

∮

Lhs

Q0dx− P0dy|ε=0, Br = Ar−1wr−1,0, r = 1, . . . ,
k

2
− 1,

B k
2
= − 1

2k
w k

2
−1,0, Br = Ar−2wr−2,0, r =

k

2
+ 2, . . . , k,

B k
2
+1 = −

∮

Lhs



(
∂P0

∂x
+
∂Q0

∂y

)∣∣∣∣
ε=0

−
k
2
−1∑

i=0

(
(i+ 1)a+i+1,0 + b+i1

)
xi


 dt +

k
2∑

i=1

TiBi,

Br = −Ar−k−1

(
3k

k + 2r
wr−k−1,1 −

2(r − k)

k+ 2r
wr−1,0

)
, r = k+ 1, . . . ,

3

2
k − 1,

B 3
2 k

= − 1

2k

(
3

4
w k

2−1,1
− 1

4
w 3

2 k,0

)
,

with wi0(h), w j1(h), 0 ≤ i ≤ 3
2
k, 0 ≤ j ≤ k

2
− 1, given in (25), constants Ar, r =

0, 1, . . . , k− 2, given in lemma 8, and Ti, i = 2, 3, . . . , k
2
+ 1, dependent on the coef�cients

of the Hamiltonian function H(x, y) in (2) and (3).

Proof. The asymptotic expansion ofM(h, δ) in (5) has the form (35). Next, we calculate the

corresponding coef�cients.

Taking limit h→ 0 on both sides of equality (35), it follows thatB0 = M(0, δ) =
∮
Lhs
Q0dx−

P0dy|ε=0.

By (26)–(28) in lemma 8, one gets for 0 ≤ r ≤ k − 1,

I∗1r(0) = wr0α
∗
r0β

∗
r ,

∂

∂h
I∗1r(0) = wr1α

∗
r1β

∗
r + wk+r,0α

∗
k+r,0β

∗
k+r,

α∗
r0 = 1, β∗

r = 1,

α∗
k+r,0 = 1, β∗

k+r = − 2(r + 1)

3k+ 2r + 2
,

α∗
r1 =

3k

3k+ 2r + 1
. (36)
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Substituting them into (5), and comparing it with the expansion in (35), one gets the mentioned

coef�cients of theMelnikov function in (35) except forB k
2+1. Next, we compute the coef�cient

B k
2
+1.

Differentiating both sides of the equality (35) with respect to h, gives for 0 < −h≪ 1,

∂

∂h
M(h, δ) = −|h|− 1

2

k
2−1∑

r=1

(
1

2
+
r

k

)
Br|h|

r
k + B k

2
(ln |h|+ 1)− B k

2+1
+ O

(
h

1
k

)
.

According to lemma 2, together with lemma 9, it follows that for 0 < −h≪ 1,

∮

Lh

(
∂P0

∂x
+
∂Q0

∂y

) ∣∣∣∣
ε=0

dt

= −|h|− 1
2

k
2−1∑

r=1

(
1

2
+
r

k

)
Ar−1|h|

r
k

r−1∑

l=0

dr−1,l

(
(l+ 1)al+1,0 + bl1

)

− 1

2k
(1+ ln |h|)

k
2
−1∑

l=0

d k
2−1,l

(
(l+ 1)al+1,0 + bl1

)
− B k

2+1
+ O

(
h

1
k

)
.

(37)

Since the integrals
∮
Lh
xidt for 0 ≤ i ≤ k

2
− 1 are independent of parameters ai j’s and bi j’s in

(13), taking P0 = 0, Q0 = xiy, 0 ≤ i ≤ k
2
− 1, one gets

∮

Lh

xidt = −|h|− 1
2

k
2−1∑

r=i+1

(
1

2
+
r

k

)
Ar−1dr−1,i|h|

r
k − 1

2k
(1+ ln |h|)d k

2−1,i + ti + O
(
h

1
k

)

for 0 ≤ i ≤ k
2
− 2; and

∮

Lh

xidt = − 1

2k
(1+ ln |h|)d k

2−1, k2−1 + t k
2−1 + O

(
h

1
k

)

for i = k
2
− 1, where all ti’s, i = 0, 1, . . . , k

2
− 1 are constants. Taking limit h→ 0 to these last

two equalities, yields for 0 ≤ i ≤ k
2
− 2,

lim
h→0



∮

Lh

xidt + |h|− 1
2

k
2−1∑

r=i+1

(
1

2
+
r

k

)
Ar−1dr−1,i|h|

r
k +

1

2k
(1+ ln |h|)d k

2−1,i


 = ti,

and for i = k
2
− 1,

lim
h→0

(∮

Lh

x
k
2
−1dt +

1

2k
(1+ ln |h|)d k

2−1, k2−1

)
= ti,
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Taking limit h→ 0 to the equality (37), together with these last two equalities, we get

B k
2+1 = − lim

h→0



∮

Lh

(
∂P0

∂x
+
∂Q0

∂y

)∣∣∣∣
ε=0

dt +
1

2k
(1+ ln |h|)

k
2−1∑

i=0

d k
2−1,i

(
(i+ 1)ai+1,0 + bi1

)

+ |h|− 1
2

k
2−1∑

r=1

(
1

2
+
r

k

)
Ar−1|h|

r
k

r−1∑

i=0

dr−1,i

(
(i+ 1)ai+1,0 + bi1

)



= −
∫

L
+

0



(
∂P0

∂x
+
∂Q0

∂y

)∣∣∣∣
ε=0

−
k
2−1∑

i=0

(
(i+ 1)ai+1,0 + bi1

)
xi


 dt (38)

+

k
2
−1∑

i=0

ti
(
(i+ 1)ai+1,0 + bi1

)
.

According to lemma 9 and expression (17), we have wi0 =
∑i

l=0 dil((l+ 1)al+1,0 + bl1) =∑i
l=0 dilb̄l1. Clearly, w00,w10, . . . ,wi0 are linear functions in b̄01, b̄11, . . . , b̄i1, and they are

functionally independent in Ri+1 due to nonzeros dii’s.

Set vectors r :=
(
w00, w10, . . . , w k

2−1,0

)T
, b :=

(
b̄01, b̄11, . . . , b̄ k

2−1,1

)T
, then r = Gb,

where G is a lower triangular matrix of order k
2
− 1, whose element in the mth row and nth

column is dmn, n ≤ m, given in lemma 9. Noting that dii = 2(−hk)−
i+1
k (h00)

− 1
2 are nonzero,

then the matrix G is invertible. Thus, b = G−1
r with G−1 a lower triangular matrix, too.

Set vector t :=
(
t0, t1, . . . , t k

2−1

)
, then

k
2−1∑

i=0

ti((i+ 1)ai+1,0 + bi1) =

k
2−1∑

i=0

tib̄i1 = tb = tG−1
r =

k
2−1∑

i=0

wi0d̂i, (39)

where d̂i is the product of t with the ith column of G−1 for i = 0, 1, . . . , k
2
− 1, and is con-

stant depending on the coef�cients of the Hamiltonian function in (2) and (3). Using the

relationship among the coef�cients of the function (35), it is easy to see that wi0 =
Bi+1

Ai
, i =

0, 1, . . . , k
2
− 1, whereA k

2
−1 = − 1

2k
, andAi 6= 0 for i = 0, 1, . . . , k

2
− 1. Substituting them into

the expressions (39) and (38), together with the expressions Ti =
d̂i−2

Ai−2
, i = 2, 3, . . . , k

2
+ 1,

we get the expression of B k
2
+1, which depends only on the coef�cients of the Hamiltonian

H(x, y).

It completes the proof of the theorem. �

The expression (35) in theorem11 can be found in [17, 19] for k = 3. The following theorem

can be found in [18, 20, 21] except for the exact expression of B k+1
2

in (40) for odd k ≥ 7. So

the calculation of B k+1
2

is our objective.

Theorem 12. For the analytic near-Hamiltonian system (1) with the Hamiltonian function

H(x, y) satisfying (2) and (3) with k ≥ 3 odd and hk < 0, the �rst order Melnikov function near
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and inside the homoclinic loop Lhs has the form

M(h, δ) = B0 + |h| 12
k−1
2∑

r=1

Br|h|
r
k + B k+1

2
h+ |h| 12

k−1∑

r= k+1
2

Br+1|h|
r
k + |h| 12

3k−1
2∑

r=k+1

Br|h|
r
k + O(h2),

0 < −h≪ 1,

(40)

where

B0 =

∮

Lhs

Q0dx− P0dy|ε=0,

Br = Ar−1wr−1,0, r = 1, . . . ,
k− 1

2
,

B k+1
2

=

∮

L+
hs



(
∂P0

∂x
+
∂Q0

∂y

)∣∣∣∣
ε=0

−
k−3
2∑

i=0

(
(i+ 1)a+i+1,0 + b+i1

)
xi


 dt +

k−1
2∑

i=1

SiBi,

Br = Ar−2wr−2,0, r =
k+ 1

2
+ 1, . . . , k,

Br = −Ar−k−1

(
3k

k + 2r
wr−k−1,1 −

2(r − k)

k + 2r
wr−1,0

)
, r = k + 1, . . . ,

3k− 1

2
,

withwi0(h), w j1(h), 0 ≤ i ≤ 3
2
k, 0 ≤ j ≤ k

2
− 1, given in (25), Ar, r = 0, 1, . . . , k− 2, given in

lemma 8, and Si, i = 2, 3, . . . , k+1
2
, dependent on the coef�cients of the Hamiltonian H(x, y)

in (2) and (3).

Proof. Similar to the proof of theorem 11, one gets that for 0 < −h≪ 1,

∮

Lh

(
∂P0

∂x
+
∂Q0

∂y

)∣∣∣∣
ε=0

dt

= −|h|− 1
2

k−1
2∑

r=1

(
1

2
+
r

k

)
Ar−1|h|

r
k

r−1∑

l=0

dr−1,l

(
(l+ 1)al+1,0 + bl1

)
+ B k+1

2
+ O

(
h

1
2k

)
,

(41)

and

lim
h→0



∮

Lh

xidt + |h|− 1
2

k−1
2∑

r=i+1

(
1

2
+
r

k

)
Ar−1dr−1,i|h|

r
k


 = si.

Taking limit h→ 0 in (41), together with the last equality, one has

B k+1
2

=

∫

L
+

0

(
∂P0

∂x
+
∂Q0

∂y

)∣∣∣∣
ε=0

−
k−3
2∑

i=0

(
(i+ 1)ai+1,0 + bi1

)
xidt +

k−3
2∑

i=0

si
(
(i+ 1)ai+1,0 + bi1

)
.
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Furthermore, some similar treatments to (38) and (39) yield

k−3
2∑

i=0

si((i+ 1)ai+1,0 + bi1) =

k−3
2∑

i=0

sib̄i1 =

k−1
2∑

i=1

SiBi,

where Si’s, i = 1, 2, . . . , k−1
2
, are constants depending only on the coef�cients of the function

H(x, y).

It completes the proof of the theorem. �

3. Limit cycle bifurcations near a homoclinic loop and a centre

For the analytic near-Hamiltonian system (1)with the perturbed analytic termsPi andQi, i ∈ N,
instead of P0 and Q0, by Theorems 11 and 12, the coef�cients of the terms with degree less

than 2 in the asymptotic expansion of the �rst order Melnikov function (7) or (8) satisfy

Bi0 =

∮

Lhs

Qidx− Pidy|ε=0, (42)

Bir = Ar−1

r−1∑

l=0

dr−1,l

l!

∂ l

∂xl

(
∂Pi

∂x
+
∂Qi

∂y

)
(S, δ), r = 1, . . . ,

[
k − 1

2

]
,

Bik
2

= − 1

2k

k
2−1∑

l=0

d k
2
−1,l

l!

∂ l

∂xl

(
∂Pi

∂x
+
∂Qi

∂y

)
(S, δ),

Bir = Ar−2

r−2∑

l=0

dr−2,l

l!

∂ l

∂xl

(
∂Pi

∂x
+
∂Qi

∂y

)
(S, δ), r =

[
k

2

]
+ 2, . . . , k,

Bi[
k
2

]

+1
= (−1)k−1

∮

Lhs



(
∂Pi

∂x
+
∂Qi

∂y

)∣∣∣∣
ε=0

−

[

k
2

]

−1∑

l=0

1

l!

∂ l

∂xl

(
∂Pi

∂x
+
∂Qi

∂y

)
(S, δ)xl


dt+

[

k
2

]

∑

l=1

TlB
i
l,

Now we have enough preparation to prove theorem 5.

Proof of theorem 5. We just prove the case that the analytic near-Hamiltonian system (1)

with an elementary centre and a homoclinic loop passing a nilpotent saddle. The case of a

nilpotent cusp can be proved using similar arguments as that of a nilpotent saddle.

For i = 1, the condition δ ∈ ∆
0
0 implies B0

r = 0 for r = 0, 1, . . . ,
[
k−1
2

]
, k

2
,
[
k
2

]
+ 2, . . . , k,

and C0
0 = 0. Then it follows from (7) and (9) that for 0 < h− hc ≪ 1,

∂M0(h, δ)

∂h
=
∑

r≥0

(r + 2)C0
r+1(h− hc)

r+1. (43)

and for 0 < −h≪ 1,
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∂M0(h, δ)

∂h
= −B0

k
2+1

− |h| 12
∑

j≥0

k j+ k
2−1∑

r=k j+1

(
r

k
+

3

2

)
B0
r+k|h|

r
k +

∑

j≥0

( j+ 2)B0

k( j+1)+ k
2

h j+1 ln |h|

+
∑

j≥0

((−1) j+1B0

k( j+1)+ k
2

− ( j+ 1)B0

k( j+1)+ k
2+1

)|h| j+1

− |h| 12
∑

j≥0

( j+1)k−1∑

r=k j+ k
2

(
r

k
+

3

2

)
B0
r+k+1|h|

r
k . (44)

On the other hand, by lemma 2 and (11) we have

∂M0(h, δ)

∂h
=

∮

Lh

Q1dx− P1dy =:M1(h, δ). (45)

Clearly, the expressions (43) and (45) are the same one for 0 < h− hc ≪ 1, and the expressions

(44) and (45) are also the same one for 0 < −h≪ 1. Comparing the expression ofM1(h, δ) in

(45) with that of M(h, δ) in (4), we can view P1 and Q1 as the perturbed terms of system (1)

instead of the perturbationsP0 andQ0, and regardM
1(h, δ) as the �rst order Melnikov function

of the new near-Hamiltonian system (1) with the perturbations P1 and Q1. Since both P1 and

Q1 are analytic functions, they can be expressed as power series of the forms in (13).

Again applying lemma 9 and the expansion (35) near the homoclinic loop, and the expansion

(9) near the elementary centre, the expressions of the �rst several coef�cients of the �rst order

Melnikov functions near the loop and the centre are respectively given in (42) and (9), for

r ≥ 0 under δ ∈ ∆
0
0. And in this case the �rst order Melnikov function M1(h, δ) in U of the

new near-Hamiltonian system (1) with the perturbations P1 and Q1 satis�es lemma 2.

Repeating the above process j(≤ m) times, we have

∂M j−1(h, δ)

∂h

∣∣∣∣
∆

j−1
0

=

∮

Lh

Q jdx− P jdy =:M j(h, δ).

Note that the expansion of the functionM j−1(h, δ) has the form (9) for 0 < h− hc ≪ 1, and the

form (7) for 0 < −h≪ 1. Differentiating it with respect to h for δ ∈ ∆
j−1
0 , and comparing the

resulting function with the expansion of the functionM j(h, δ) given in (9) or (7), one gets the

relations among the coef�cients of their asymptotic expansions as follow: for all nonnegative

integers l,

C
j
l = (l+ 2)C

j−1
l+1

∣∣∣
∆

j−1
0

, (46)

and

B
j
0 = −B j−1

k
2+1

∣∣∣
∆

j−1
0

, (47)

for r = kl+ 1, . . . , kl+
[
k−1
2

]
,

B j
r = −3k+ 2r

2k
B
j−1
r+k

∣∣∣∣
∆

j−1
0

, (48)

for r = kl+ k
2
,
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B j
r = (l+ 2)B

j−1
r+k

∣∣∣
∆

j−1
0

, (49)

for r = kl+ k
2
+ 1,

B j
r = (−1)l+1B

j−1
r+k−1

∣∣∣
∆

j−1
0

−(l+ 2)B
j−1
r+k

∣∣∣
∆

j−1
0

, (50)

for r = kl+ k+4
2
, . . . , k(l+ 1)− 1,

B j
r = −3k+ 2r − 2

2k
B
j−1
r+k

∣∣∣∣
∆

j−1
0

. (51)

We claim that given a positive integer n ≤ m, the sets∆
j
l for any j and l satisfying j+ l = n,

are the same one. Indeed, according to the de�nition of∆i
l in (10), δ ∈ ∆

n
0 indicates B

n
r = 0 for

r = 0, 1, . . . , k
2
, k

2
+ 2, . . . , k, andCn

0 = 0. By (46)–(51), Bnr = 0 andCn
0 = 0 are equivalent to

Bn−1
r+k

∣∣
∆n−1

0

= 0 for r = 0, 1, . . . , k
2
, k

2
+ 2, . . . , k, andCn−1

1

∣∣
∆n−1

0

= 0, implying δ ∈ ∆
n−1
1 , and

vice versa. Repeating this process, one gets

∆
n
0 = ∆

j
n− j (52)

for any integers 0 ≤ j ≤ n. This proves the claim.

(a) By (48), taking l = 0 and j = i. Obviously, for i = 1 the conclusion holds. For i > 1, by

induction one has

Bir =
(−1)i

(2k)i

i∏

j=1

(k + 2(r+ jk))B0
r+ik

∣∣
∆0
i−1
,

statement (a) follows.

(b) From (49), by induction it follows that

B
j

kl+ k
2

=
( j+ l+ 1)!

(l+ 1)!
B0

k( j+l)+ k
2

∣∣∣∣
∆0

j−1

. (53)

Taking l = 0 and j = i yields the conclusion (b).

(c) From (50), by induction again and together with (53) repeatedly, one gets that for

r = k
2
+ 1

B
j
k
2+1

∣∣∣∆0
j−1

= −
j∏

l=1

l!B
j−l
kl+ k

2

∣∣∣∣
∆

j−l
l−1

+ (−1) j( j+ 1)!B0

k j+ k
2+1

∣∣∣∣
∆0

j−1

= −
j+1∑

n=2

1

n
( j+ 1)!B0

k j+ k
2

∣∣∣∣
∆0

j−1

+ (−1) j( j+ 1)!B0

k j+ k
2+1

∣∣∣∣
∆0

j−1

= −
j+1∑

n=2

1

n
B
j
k
2

+ (−1) j( j+ 1)!B0

k j+ k
2+1

∣∣∣∣
∆0

j−1

,

implying the conclusion (c).
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The statements (d) and (e) follow from the same arguments as those in the above proofs. It

completes the proof of the theorem. �

Next we turn to the proof of theorem 6.

Proof of theorem 6. To prove the theorem is equivalent to prove that there exist analytic

functions A(x, y) and B(x, y) such that

f (x, y) :=∂xP+ ∂yQ = ∂xHA+ ∂yHB. (54)

By the conditions on H given in (2) and (3), equation (54) on y = 0 is reduced to

f (x, 0) = ∂xH(x, 0)A(x, 0).

Set

A(x, y) =
f (x, 0)
∂H
∂x
(x, 0)

,

and

B(x, y) =
f (x, y) ∂H

∂x
(x, 0)− f (x, 0) ∂H

∂x
(x, y)

∂H
∂x
(x, 0) ∂H

∂y
(x, y)

.

Then A and B satisfy the equation (54).

Next we only need to prove the analyticity of A and B. Noting from (2) and (3)

that ∂H
∂x
(x, 0) = khkx

k−1(x− xc)v(x) with v(x) 6= 0 for (x, 0) ∈ U and ∂H
∂y
(x, y) = 2h00y(1+

O(|x, y|)). By the assumption on f (x, 0) it follows that A(x, y) is analytic in U.

We rewrite the expression on B as

B(x, y) =
1

∂H
∂y
(x, y)

(
f (x, y)− f (x, 0)−

(
∂H

∂x
(x, y)− ∂H

∂x
(x, 0)

)
A(x, y)

)
.

The expression H(x, y) in (2) and the conditions in theorem 6 indicate that ∂H
∂y
(x, y) = yg(x, y)

with nonzero function g(x, y) in U. Hence B(x, y) is analytic in U. This proves the theorem. �

Finally we study the limit cycle bifurcation using theorem 5. Set B0 :=B0
0. For 1 ≤ r ≤ k

and r 6=
[
k
2

]
+ 1, set

Bki+r :=




B0
r , i = 0,

B0
ki+r|∆0

i−1
, i > 0,

(55)

For r =
[
k
2

]
+ 1, set

Bki+r :=





(−1)k−1

∮

Lhs



(
∂P0

∂x
+
∂Q0

∂y

)∣∣∣∣
ε=0

−

[

k
2

]

−1∑

l=0

1

l!

∂ l

∂xl

(
∂P0

∂x
+
∂Q0

∂y

)
(S, δ)xl


dt, i = 0,

(−1)k−1

∮

Lhs



(
∂Pi

∂x
+
∂Qi

∂y

)∣∣∣∣
ε=0

−

[

k
2

]

−1∑

l=0

1

l!

∂ l

∂xl

(
∂Pi

∂x
+
∂Qi

∂y

)
(S, δ)xl




∣∣∣∣∣∣∣
∆0
i−1

dt, i > 0,

(56)
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and

Ci :=




C0
0 , i = 0,

C0
i |∆0

i−1
, i > 0.

(57)

Theorem 13. Let the assumptions in theorem 5 or in theorem 6 hold. If there exist positive

integers n(≤ m), l(≤ k) and δ0 ∈ Rs, such that

Bkn+l(δ0)Cn(δ0) 6= 0,

Br(δ0) = C j(δ0) = 0, r = 0, 1, . . . , kn+ l− 1, j = 0, 1, . . . , n− 1,

rank
∂(B0, . . . , Bkn+l−1,C0, . . . , Cn−1)

∂(δ1, . . . , δs)
(δ0) = (k + 1)n+ l,

then system (1) can have (k+ 1)n+ l limit cycles near the centre and the homoclinic loop for

some (ε, δ) near (0, δ0).

Proof. Consider the case l >
[
k
2

]
+ 2. Without loss of generality, we assume

(−1)kn+lBkn+l(δ0) > 0 and (−1)nCn(δ0) > 0, and choose B j, j = 0, 1, . . . , kn+ l− 1,

and Cs, s = 0, 1, . . . , n− 1, as free parameters.

In order to study the expansion of the �rst order Melnikov function using B j and Cs, we

need the relations between B j and B
0
j , and between Cs and C

0
s . Denote

A0
j :=

(
B0
k j+1, B

0
k j+2, . . . , B

0

k j+
[

k
2

], B0

k j+
[

k
2

]

+2
, . . . , B0

k j+k

)
,

A j :=

(
Bk j+1, Bk j+2, . . . , Bk j+

[

k
2

], B
k j+

[

k
2

]

+2
, . . . , Bk j+k

)
,

O j :=O

(
|Bk j+1, Bk j+2, . . . , Bk j+

[

k
2

]|
)
,

and

O j :=

{
O(|A0, A1, . . . , A j−1|)+ O(|C0, C1, . . . , C j−1|), j > 0,

0, j = 0.

It is easy to see from (55)–(57) that C0
0 = C0, and

B0
r =





Br, 0 ≤ r ≤ k, r 6=
[
k

2

]
+ 1,

Br +

[

k
2

]

∑

l=1

TlBl, r =

[
k

2

]
+ 1.

when i ≥ 1,

B0
ki+r = B0

ki+r|∆0
i−1

+ O(|A0
0, A

0
1, . . . , A

0
i−1|)+ O(|C0

0 , C
0
1 , . . . , C

0
i−1|),
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and

C0
i = C0

i |∆0
i−1

+ O(|A0
0, A

0
1, . . . , A

0
i−1|)+ O(|C0

0 , C
0
1 , . . . , C

0
i−1|),

= Ci + O(|A0
0, A

0
1, . . . , A

0
i−1|)+ O(|C0

0, C
0
1 , . . . , C

0
i−1|).

Thus, it follows from (55)–(57) that for 1 ≤ r ≤ k, r 6=
[
k
2

]
+ 1,

B0
ki+r = Bki+r + O(|A0

0, A
0
1, . . . , A

0
i−1|)+ O(|C0

0 , C
0
1 , . . . , C

0
i−1|),

and together with conclusions (b) and (c) of theorem 5 that for r =
[
k
2

]
+ 1,

B0
ki+r =

(−1)(k−1)i

(i+ 1)!
Bki+r +

[

k
2

]

∑

l=1

T̃ lBki+l + O(|A0
0, A

0
1, . . . , A

0
i−1|)+ O(|C0

0 , C
0
1 , . . . , C

0
i−1|)

=
(−1)(k−1)i

(i+ 1)!
Bki+r + Oi

+ O(|A0
0, A

0
1, . . . , A

0
i−1|)+ O(|C0

0 ,C
0
1 , . . . , C

0
i−1|),

with constants T̃ l. Using these last three equalities, we can prove by induc-

tion that O(|A0
0, A

0
1, . . . , A

0
i−1|)+ O(|C0

0 , C
0
1 , . . . , C

0
i−1|) = O(|A0, A1, . . . , Ai−1|)+

O(|C0, C1, . . . , Ci−1|).These imply that

B0
ki+r =

(−1)(k−1)i

(i+ 1)!
Bki+r + Oi

+ O(|A0, A1, . . . , Ai−1|)+ O(|C0, C1, . . . , Ci−1|),

C0
i = Ci + O(|A0, A1, . . . , Ai−1|)+ O(|C0, C1, . . . , Ci−1|),

which provide the relations between B j and B
0
j , and between Cs and C

0
s . If k is even, then the

homoclinic loop connects a nilpotent saddle. By the expression (7), the expansion of the �rst

order Melnikov function near the homoclinic loop and an elementary centre of system (1) can

be respectively written in

M(h, δ) = B0 + |h| 12
n∑

j=0

k j+
[

k−1
2

]

∑

r=k j+1

(Br + O j)|h|
r
k +

n∑

j=0

(
B
k j+ k

2
+ O j

)
h j+1 ln |h|

+

n∑

j=0


 (−1)

j+k−2
[

k
2

]

( j+ 1)!
B
k j+

[

k
2

]

+1
+ O j + O j


|h| j+1

+ |h| 12
n−1∑

j=0

( j+1)k−1∑

r=k j+
[

k
2

]

+1

(Br+1 + O j)|h|
r
k

+ |h| 12
kn+l−2∑

r=kn+
[

k
2

]

+1

(Br+1 + On)|h|
r
k + B̃kn+l|h|n+

l
k+

1
2 + o

(
|h|n+ l

k+
1
2

)
, (58)

for 0 < −h ≪ 1, and
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M(h, δ) =

n−1∑

r=0

(Cr + Or)(h− hc)
r+1

+ C̃n(h− hc)
n+1

+ o(|h− hc|n+1),

for 0 < h− hc ≪ 1, where B̃kn+l = Bkn+l(δ0)+ O(|B0, B1, . . . , Bkn+l−1|) and C̃n = Cn(δ0)+

O(|C0, C1, . . . , Cn−1|). We take the free parameters Bi’s and Ci’s such that

0 <(−1)k jBk j ≪ (−1)k j+1Bk j+1 ≪ · · · ≪ (−1)k j+
k
2−1B

k j+ k
2−1

≪ (−1)k j+
k
2+ jB

k j+ k
2
≪ (−1)k j+

k
2+1+ jB

k j+ k
2+1

≪ (−1)k j+
k
2+2B

k j+ k
2+2

≪ · · · ≪ (−1)k j+sBk j+s ≪ 1, 0 ≤ j ≤ n, k j+ s ≤ min{kn+ l− 1, k j+ k},

0 <(−1)r−1Cr−1 ≪ (−1)rCr ≪ 1, 1 ≤ r ≤ n− 1,

satisfying |Bkr| ≪ |Cr| ≪ |Bk(r+1)+1|.
The previous calculations show that the �rst order Melnikov function M(h, δ) can have

kn+ l simple negative zeros near h = 0, and n simple zeros near h = hc. So, we conclude

using the implicit function theorem to the Poincaré map that system (1) can have k(n+ 1)+ l

limit cycles near the loop and the centre.

If k is odd, then the homoclinic loop passes a nilpotent cusp. By the expression (8), the

expansion of the �rst order Melnikov function of system (1) near the loop has a form similar

to (58) without the terms
∑n

j=0

(
Bk j+ k

2
+ O j

)
h j+1 ln |h|. Consequently, we can choose the

appropriate free parameters such that system (1) has the number of limit cycles as stated in the

theorem.

The proofs of the other cases are similar, and so are omitted. This ends the proof of the

theorem. �

4. Limit cycle bifurcations near a cuspidal loop and a centre

Sections 2 and 3 describe the characteristics of the coef�cients of the asymptotic expansion of

the �rst orderMelnikov function inside and near a homoclinic loop with a nilpotent singularity.

If the singularity is a nilpotent saddle, the unperturbed system (1)|ε=0 has a family of periodic

orbits either inside or outside the homoclinic loop. If the singularity is a nilpotent cusp, there

exist two families of periodic orbits locating respectively inside and outside the homoclinic

loop, see �gure 1(B). So in this second case, it is possible that there are limit cycles bifurcating

from the periodic orbits located in both sides of the cuspidal loop for the near-Hamiltonian

system (1).

In this section, we characterize the coef�cients of the expansion of the �rst order Melnikov

function outside and near the cuspidal loop, aimed at �nding more limit cycles of the near-

Hamiltonian system (1) with a cuspidal loop and an elementary centre. Here, we state the

results without proofs, because they are similar to those in sections 2 and 3.

Theorem 14. For the analytic near-Hamiltonian system (1) with the analytic perturbations

Pi and Qi instead of P0 and Q0, we assume that the corresponding Hamiltonian system has

an elementary centre on the x-axis and a cuspidal loop with a cusp at the origin, and satis�es

(2) and (3) with hk < 0, then the �rst order Melnikov functions near the centre and inside the

cuspidal loop are given in (9) and (8) with (42) respectively. And the Melnikov function near

and outside the loop can be written in the form
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Mi(h, δ) =bi0 + h
1
2

∑

j≥0

k j+ k−1
2∑

r=k j+1

birh
r
k +

∑

j≥0

bi
k j+ k+1

2

h j+1

+ h
1
2

∑

j≥0

( j+1)k−1∑

r=k j+ k+1
2

bir+1h
r
k . 0 < h ≪ 1, (59)

where

bi0 = Bi0, bir =
A∗
r−1

Ar−1

Bir, r = 1, . . . ,

[
k − 1

2

]
,

bi[
k
2

]

+1
= Bi[

k
2

]

+1
+

[

k
2

]

∑

l=1

T∗
l B

i
l, bir =

A∗
r−2

Ar−2

Bir, r =

[
k

2

]
+ 2, . . . , k, (60)

with constants T∗
l and

A∗
r =





k

2(r + 1)+ k

(∫ 1

−1

vr√
1+ vk

dv +

∫ 1

0

v
k
2−r−2

√
1+ vk

dv

)
> 0, 0 ≤ r <

k

2
− 1,

2k

k2 − 4(1+ r)2
+

k

k + 2(r+ 1)

(∫ 1

−1

vr√
1+ vk

dv −
∫ 1

0

v
3k
2 −r−2

√
1+ vk(1+

√
1+ vk)

dv

)
< 0,

k

2
− 1 < r < k− 1.

(61)

We remark that the asymptotic expansion (59) of the �rst order Melnikov function can be

derived from [18]. The expressions (60) except for the coef�cients bi[
k
2

]

+1
can be found in

[18] for k = 3, in [20] for k = 5, and in [21] for odd k > 5. We note that the constants A∗
r

in (61) are slightly different from the constants B∗
r0 in the mentioned three papers, owing the

change of variable (21) which is different from that of the three papers. This difference also

appears in theorem 12. The derivation of the coef�cients bi[
k
2

]

+1
is similar to that of B[

k
2

]

+1
in

theorem 12.

Theorem 15. Assume that

(a) The analytic near-Hamiltonian system (1) with the Hamiltonian H(x, y) satisfying (2) and

(3), has an elementary centre and an oriented clockwise cuspidal loop,

(b) There exist analytic functions Pi(x, y, δ) and Qi(x, y, δ) for i = 1, 2, . . . ,m, such that for

δ ∈ ∆
0
i−1 the equalities (11) hold over the disc Ū :=

⋃
hc≤h<h̄

Lh with h̄ > hs.

Then the statements (a), (b), (d) and (e) in theorem 5 hold, and the following statements

hold.

(a) For r = 1, 2, . . . , k−1
2
,

b0ki+r
∣∣
∆0
i−1

=
(2k)i

i∏
j=1

(k + 2(r + k j))

bir.
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(b) For r = k+1
2
,

b0ki+r
∣∣
∆0
i−1

=
1

(i+ 1)!
bir.

(c) For r = k+3
2
, . . . , k,

b0ki+r
∣∣
∆0
i−1

=
(2k)i

i∏
j=1

(k − 2+ 2(r + k j))

bir.

Theorem 16. Assume that

(a) The analytic near-Hamiltonian system (1) with the Hamiltonian H(x, y) satisfying (2) and

(3) has an elementary centre and an oriented clockwise cuspidal loop,

(b) ∂H
∂y
(x, y) is nonzero in Ū\{y = 0} and ∂2H

∂y2
(x, 0) is nonzero.

Then there exist analytic functions Pi(x, y, δ) and Qi(x, y, δ) for i ∈ Z+ such that for δ ∈
∆

0
i−1 the equalities (11) in theorem (5) hold. Furthermore, the statements (a), (b), (d), (e) in

theorem 5 and the statements (a)–(c) in theorem 15 hold for any i ≥ 1.

Theorem 17. Let the assumptions in theorem 15 or in theorem 16 hold. If there exist positive

integers n(≤ m), l(≤ k) and δ0 ∈ Rs, such that for B j andC j de�ned in (55)–(57), the following

statements hold.

Bkn+l(δ0)Cn(δ0) 6= 0,

Br(δ0) = C j(δ0) = 0, r = 0, 1, . . . , kn+ l− 1, j = 0, 1, . . . , n− 1,

rank
∂(B0, . . . , Bkn+l−1, C0, . . . , Cn−1)

∂(δ1, . . . , δs)
(δ0) = (k + 1)n+ l,

then when l > 0(resp. = 0) system (1) can have 2kn+ 2l− 1(resp.2kn+ 2l) limit cycles near

the centre and the cuspidal loop for some (ε, δ) near (0, δ0).

Proof. Since k is odd, the homoclinic loop connects a nilpotent cusp. Consider the case

l > k+3
2
. Without loss of generality, we assume (−1)kn+lBkn+l(δ0) > 0 and (−1)nCn(δ0) > 0,

and chooseB j, j = 0, 1, . . . , kn+ l− 1, andCs, s = 0, 1, . . . , n− 1, as free parameters. Similar

to the proof of theorem 13, one gets the following relations between B j and B
0
j , and between

Cs and C
0
s ,

B0
ki+r =





Bki+r + Oi, r 6= k + 1

2
,

1

(i+ 1)!
Bki+r + Oi

+ Oi, r =
k + 1

2
,

C0
i = Ci + Oi,

By the expressions (8) and (59), the expansions of the �rst order Melnikov function can be

respectively written in

2747



Nonlinearity 33 (2020) 2723 L Wei and X Zhang

M(h, δ) = B0 + |h| 12
n∑

j=0

k j+ k−1
2∑

r=k j+1

(Br + O j)|h|
r
k +

n∑

j=0

(
(−1) j+1

( j+ 1)!
B
k j+ k+1

2
+ O j + O j

)
|h| j+1

+ |h| 12
n−1∑

j=0

( j+1)k−1∑

r=k j+ k+1
2

(Br+1 + O j)|h|
r
k + |h| 12

kn+l−2∑

r=kn+ k+1
2

(Br+1 + On)|h|
r
k

+ B̃kn+l|h|n+
l
k
+ 1

2 + o
(
|h|n+ l

k
+ 1

2

)
, (62)

near and inside the homoclinic loop of system (1) for 0 < −h≪ 1, and

M(h, δ) = B0+ h
1
2

n∑

j=0

k j+ k−1
2∑

r=k j+1

((−1) j
A∗
r−1

Ar−1

Br + O j)h
r
k +

n∑

j=0

(
1

( j+ 1)!
B
k j+ k+1

2
+ O j + O j

)
h j+1

+ h
1
2

n−1∑

j=0

( j+1)k−1∑

r=k j+ k+1
2

((−1) j
A∗
r−1

Ar−1

Br+1 + O j)h
r
k + h

1
2

kn+l−2∑

r=kn+ k+1
2

((−1)n
A∗
r−1

Ar−1

Br+1 + On)h
r
k

+ B̂kn+lh
n+ l

k+
1
2 + o

(
hn+

l
k+

1
2

)
, (63)

near and outside the loop for 0 < h ≪ 1, and

M(h, δ) =

n−1∑

r=0

(Cr + Or)(h− hc)
r+1

+ C̃n(h− hc)
n+1

+ o(|h− hc|n+1), (64)

near an elementary centre for 0 < h− hc ≪ 1, where B̃kn+l = Bkn+l(δ0)+

O(|B0, B1, . . . , Bkn+l−1|), B̂kn+l = (−1)n
A∗
kn+l−2

Akn+l−2
Bkn+l(δ0)+ O(|B0, B1, . . . , Bkn+l−1|) and

C̃n = Cn(δ0)+ O(|C0, C1, . . . , Cn−1|). Indeed, the expansion (63) follows from (59) with

j = 0. And for r = 1, 2, . . . , k−1
2
,

b0k j+r = b0k j+r|∆0
j−1

+ O(|A0
0, A

0
1, . . . , A

0
j−1|)+ O(|C0

0 , C
0
1 , . . . , C

0
j−1|),

=
(2k) j

j∏
i=1

(k+ 2(r + ki))

b jr + O(|A0
0, A

0
1, . . . , A

0
j−1|)+ O(|C0

0, C
0
1 , . . . , C

0
j−1|),

=
(2k) j

j∏
i=1

(k+ 2(r + ki))

B j
r + O(|A0

0, A
0
1, . . . , A

0
j−1|)+ O(|C0

0 , C
0
1 , . . . , C

0
j−1|),

= (−1) j
A∗
r−1

Ar−1

B0
k j+r|∆0

j−1
+ O(|A0

0, A
0
1, . . . , A

0
j−1|)+ O(|C0

0, C
0
1 , . . . , C

0
j−1|),

= (−1) j
A∗
r−1

Ar−1

Bk j+r + O(|A0
0, A

0
1, . . . , A

0
j−1|)+ O(|C0

0, C
0
1 , . . . , C

0
j−1|).

The others hold for r = k+1
2
, k+3

2
, . . . , k, by the similar computation. We take the free

parameters Bi’s and Ci’s such that
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0 <(−1)k jBk j ≪ (−1)k j+1Bk j+1 ≪ · · · ≪ (−1)k j+
k−1
2 Bk j+ k−1

2
≪ (−1)k j+

k+1
2 + jB

k j+ k+1
2

≪ (−1)k j+
k+3
2 B

k j+ k+3
2

≪ · · · ≪ (−1)k j+sBk j+s ≪ 1,

0 ≤ j ≤ n, k j+ s ≤ min{kn+ l− 1, k j+ k},

0 <(−1)r−1Cr−1 ≪ (−1)rCr ≪ 1, 1 ≤ r ≤ n− 1,

satisfying |Bkr| ≪ |Cr| ≪ |Bk(r+1)+1|.
Then the �rst order Melnikov function M(h, δ) can have kn+ l simple negative zeros and

(k− 1)n+ l− 1 simple positive zeros near h = 0, and n simple zeros near h = hc. So, we

conclude using the implicit function theorem to the Poincaré map that system (1) can have

2kn+ 2l− 1 limit cycles near the loop and the centre.

The proofs of the other cases are similar, and so are omitted. This ends the proof of the

theorem. �

5. Proof of theorem 7

Consider the Liénard system of the form:

ẋ = y, ẏ = −x2(x− 1)+ εy fm(x). (65)

with a polynomial fm(x) =
∑m

i=0 bi1x
i. Obviously, the Hamiltonian function of the unperturbed

system (65)|ε=0 is H(x, y) =
1
2
y2 − 1

3
x3 + 1

4
x4, having an elementary centre at the point (1, 0)

and a cuspidal loop Lhs , which is the level set H(x, y) = 0, with a cusp of order 1 at the origin.

It follows from theorem 12 that

B0 =

m∑

j=0

b j1I j, B1 = 2
3
2 3

1
3A0b01, B2 =

m∑

j=1

b j1J j, (66)

B3 = 2
1
2 3

2
3A1(b01 + 2b11), C0 = 2π

m∑

i=0

bi1,

where

I j =

∮

Lhs

yx jdx =

√
2(2 j+ 3)!!

(2 j+ 6)!!

(
4

3

) j+3

π, j = 0, 1, . . . , m,

and

J j =

∮

Lhs

x jdt = 2
√
2

(
4

3

) j−1
(

j−1∑

l=1

(−1)l
(
j− 1

l

)
(2 j− 1)!!

(2 j)!!
+ 1

)
π,

j = 1, . . . , m,

and A0,A1 are constants, and are given in lemma 8. The expressions (66) imply

(B0, B1, B2, B3, C0)
T
= R0(b01, b11, . . . , bm1)

T, (67)
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with R0 a 5× (m+ 1) matrix of the form

R0 =




I0 I1 I2 · · · Im

2
3
2 3

1
3A0 0 0 · · · 0

0 J1 J2 · · · Jm

2
1
2 3

2
3A1 2

3
2 3

2
3A1 0 · · · 0

2π 2π 2π · · · 2π



. (68)

It is easy to see that the assumptions of theorem 6 hold, so the equalities (11) in theorem 5

and the conclusions (a)–(e) hold. According to (11), we have Q1 = 0 and P1 =
fm(x)

x2(x−1)
|∆0

0
=

∑m−3
j=0 a

1
j0x

j, where a1j0 =
∑m

l= j+3 b j1 for 0 ≤ j ≤ m− 3. Especially, a100 =
∑m

l=3 bl1 = −b21.
Set Pi−1 :=

∑ni−1

j=0 a
i−1
j0 x

j and Qi−1 := 0 for i ≥ 2, then it follows from (11) that Qi = 0

and Pi =
∑ni−1−4

j=0 aij0x
j, where aij0 =

∑ni−1

l= j+4 la
i−1
l0 , for 0 ≤ j ≤ ni−1 − 4. Especially, ai00 =∑ni−1

l=4 a
i−1
l0 = −3ai−1

30 . They indicate deg(Pi) = ni = m− 4i+ 1 for 1 ≤ i ≤
[
m
4

]
, and together

with induction we get

(ai10, a
i
20, . . . , a

i
m−4i+1,0)

T
=

i−1∏

j=0

AijB
i(b4i,1, b4i+1,1, . . . , bm,1)

T, (69)

with the identity matrix Ai0 of order m− 4i+ 1, the upper triangular matrices of order m−
4i+ 1

Aij =




4 j+ 1 4 j+ 2 · · · m− 4( j− 1)+ 1

0 4 j+ 2 · · · m− 4( j− 1)+ 1

...
...

. . .
...

0 0 · · · m− 4( j− 1)+ 1


 , (70)

for 1 ≤ j ≤ i− 1, and

Bi =




1 1 · · · 1

0 1 · · · 1

...
...

. . .
...

0 0 · · · 1


 , (71)

for 0 ≤ j ≤ i− 1.

It follows from (42) that for 1 ≤ i ≤
[
m
4

]
− 1,

Bi1 = 2
3
2 3

1
3A0a

i
10, Bi2|Bi

1
=0 =

m−4i+1∑

j=1

( j+ 1)aij+1,0J j,

Bi3 = 2
1
2 3

2
3A1(a

i
10 + 4ai20), Ci

0 =

m−4i∑

j=0

( j+ 1)aij+1,0.

Namely, for 1 ≤ i ≤
[
m
4

]
− 1,

(Bi1, B
i
2|Bi

1
=0, B

i
3, C

i
0)

T
= Ui(ai10, a

i
20, . . . , a

i
m−4i+1,0)

T, (72)
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with the 4× (m− 4i+ 1) matrices

Ui
=




2
3
2 3

1
3A0 0 0 · · · 0

0 2J1 3J2 · · · (m− 4i+ 2)Jm−4i+1

2
1
2 3

2
3A1 2

5
2 3

2
3A1 0 · · · 0

2π 2π 2π · · · 2π


 . (73)

According to theorem 5, together with the de�nitions of B3i+r and Ci in (55)–(57), one gets

for 1 ≤ i ≤
[
m
4

]
− 1,

(B3i+1, B3i+2, B3i+3, Ci)
T
= V i(Bi1, B

i
2|Bi

1
=0, B

i
3, C

i
0)

T, (74)

with the diagonal matrices of order 4

V i
=




(−6)i

i∏
j=1

(3+ 2r + 6 j)

0 0 0

0
1

(i+ 1)!
0 0

0 0
(−6)i

i∏
j=1

(1+ 2r + 6 j)

0

0 0 0 4
√
2




. (75)

Substituting (69)–(73) into (74) gives for 1 ≤ i ≤
[
m
4

]
− 1,

(B3i+1, B3i+2, B3i+3, Ci)
T
= V iUi

i−1∏

j=0

AijB
i(b4i,1, b4i+1,1, . . . , bm,1)

T. (76)

If 4|m, it follows from (67) and (76), together with (68), (70), (71), (73) and (75), that all

B j, j = 0, 1, . . . , 3m
4
, and Cl, l = 0, 1, . . . , m

4
− 1, are linear functions in b01, b11, . . . , bm1, and

that both the Jacobian matrices

∂
(
B0, B1, B2, B3, C0, . . . , Cm

4 −2, B 3m
4
−2, B 3m

4
−1, B 3m

4

)

∂(b01, b11, . . . , bm1)

and

∂
(
B0, B1, B2, B3, C0, . . . , Cm

4 −2, B 3m
4
−2, B 3m

4
−1, Cm

4 −1

)

∂(b01, b11, . . . , bm1)

are upper triangular blockmatrices and are invertible. So the conditions of theorem17 holdwith

n = m
4
− 1 and l = 3, and consequently system (65) can have 6 · m

4
− 1 limit cycles bifurcating

from periodic orbits near the centre and the homoclinic loop by theorem 17.

If 4 ∤ m, there exists a positive integer r ≤ 3 such that m = 4
[
m
4

]
+ r. Denote the projec-

tion onto the submatrix formed by erasing the rows l+ 1, . . . , 3, of a matrix with 0 < l ≤ 3

by πl:R
l×s × R(4−l−1)×s × R1×s → Rl×s × R1×s, and denote the projection onto the subma-

trix formed by erasing the row l+ 1, . . . , 3, and the column l+ 1, . . . , 3, with 0 < l ≤ 3 by
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ρl:R
4×4 → Rl×l. Repeating the processes (72)–(76) again for i =

[
m
4

]
, one gets

(B3i+1, . . . , B3i+r, Ci)
T
= ρr(V

i)πr(U
i)

i−1∏

j=0

AijB
i(b4i,1, b4i+1,1, . . . , bm,1)

T. (77)

So it follows from (67) and (77), together with (68), (70), (71), (73) and (75), that all B j, j =

0, 1, . . . , 3
[
m
4

]
+ r, andCl, l = 0, 1, . . . ,

[
m
4

]
, are linear functions in b01, b11, . . . , bm1, and that

both the Jacobian matrices

∂
(
B0, B1, B2, B3, C0, . . . , C[ m4 ]−1, B3[m4 ]+1, . . . , B3[m4 ]+r

)

∂(b01, b11, . . . , bm1)

and

∂
(
B0, B1, B2, B3, C0, . . . , C[ m4 ]−1, B3[m4 ]+1, . . . , B3[m4 ]+r−1, C[ m4 ]

)

∂(b01, b11, . . . , bm1)

are upper triangular block matrices and are invertible. So the conditions of theorem 17 hold

with n =
[
m
4

]
and l = m− 4 ·

[
m
4

]
, and consequently system (65) can have 2m− 2

[
m
4

]
− 1

limit cycles bifurcating from periodic orbits near the centre and the homoclinic loop by

theorem 17.

It completes the proof of the theorem. �
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