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Abstract

We show that the quasi-periodic Schrödinger cocycle with a continuous poten-

tial is of parabolic type, with a unique invariant section, at all gap edges where

the Lyapunov exponent vanishes. This applies, in particular, to the almostMath-

ieu equation with critical coupling. It also provides examples of real-analytic

cocycles having a unique invariant section which is not smooth.

Keywords: quasi-periodic cocycle, almost Mathieu operator, discrete

Schrödinger operator

Mathematics Subject Classi�cation numbers: 37C60, 37C70, 37E10, 47B36.

(Some �gures may appear in colour only in the online journal)

1. Introduction

In this note we consider the Schrödinger cocycle on T× R2 given by

FE : (x, y) 7→ (x+ ω,AE(x)y)
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where ω ∈ R\Q,

AE(x) =

(
0 1

−1 v(x)− E

)
∈ SL(2,R)

and v :T→ R is a continuous function. In projective coordinates
(
1
r

)
we can write FE as

GE : (x, r) 7→ (x+ ω, v(x)− E − 1/r).

Since P1(R2) ∼= T we can view GE as a map of T2.

We let

AnE(x) =





A(x+ (n− 1)ω) · · ·A(x) if n ≥ 1;

I, if n = 0;

A(x+ nω)−1 · · ·A(x− ω)−1 if n ≤ −1;

and de�ne the (maximal) Lyapunov exponent by

L(E) = lim
n→∞

1

n

∫

T

log ‖An(x)‖dx (≥ 0).

Note that AnE(x) is the fundamental solution to the Schrödinger equation

−(un+1 + un−1)+ v(x+ (n− 1)ω)un = Eun. (1.1)

We say that the cocycle FE (for some �xed parameter E) is uniformly hyperbolic if

there exists a continuous splittingW+

E (x)⊕W−
E (x) = R2 and constants C, γ > 0 such that the

following holds for all x ∈ T and all n ≥ 1:

|AnE(x)y| 6 Ce−γn|y| for all y ∈ W−
E (x);

|A−n
E (x)y| 6 Ce−γn|y| for all y ∈ W+

E (x).

In particular we have L(E) > 0 when FE is uniformly hyperbolic.

We let σ = σ(v,ω) be the (closed) set of E for which FE fails to be uniformly hyperbolic.

It is well-known [1] that this set coincides with the spectrum of the associated Schrödinger

operator (Hxu)n = −(un+1 + un−1)+ v(x+ nω)un acting on ℓ2(Z) (since v is continuous and

ω irrational, the spectrum of Hx, as a set, is independent of x). This operator is bounded, and

∅ 6= σ ⊂ [min v − 2,max v+ 2]. We shall denote

E1 = min σ. (1.2)

Thus, by de�nition, FE is uniformly hyperbolic for all E < E1. Note that E1 depends on

v and ω. E1 is often called the ground state energy.

If E /∈ σ, it follows from [2] that the subspaces W±
E are as smooth, as functions of x, as

v; and they vary smoothly with E (recall that R\σ is open). Moreover, the splitting must be

invariant under FE, i.e.,

AE(x)W
±
E (x) = W±

E (x+ ω) for all x ∈ T.

In projective coordinates this implies that there are two continuous functions ϕ±
E :T→ P1(R2)

such that GE(x,ϕ
±
E (x)) = (x+ ω,ϕ±

E (x+ ω)) for all x ∈ T. It is also clear, due to uniform
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hyperbolicity, that the graphs of these two functions are the only GE-invariant curves. Fur-

thermore, the Lebesgue measure on T, lifted to the graphs of ϕ±
E are the only ergodic and

invariant Borel probability measures (see [3, proposition 6.2] for details).

If L(E) = 0 for some E (and thus E must be in σ) it follows from the classi�cation in

[4] that the cocycle FE is measurably conjugated to a cocycle BE which is either elliptic,

weakly hyperbolic or parabolic (see [4] for the details). The latter case, which is the one rel-

evant for the present article, means that there is a measurable function C :T→ SL(2,R) and

BE :T→ SL(2,R) of the form

BE(x) =

(
1/γ(x) 0

w(x) γ(x)

)

where
∫
T
log |γ(x)|dx = 0, such that C(x+ ω)−1AE(x)C(x) = B(x) for a.e. x ∈ T.

By far the most studied Schrödinger operator (and cocycle) is the so-called almost Mathieu

operator, which is the one obtained by letting v(x) = λ cos(2πx), where λ is a constant. In this

case we have a very good description of much of the spectral and dynamical properties (see,

e.g., [5], and references therein). A very useful tool in this case is the so-called Aubry duality

(see, for example, [6]); we will also make use of this duality in the present paper. We shall

mainly be interested in the ‘critical’ case, i.e., the case when λ = 2. In this case the Lebesgue

measure of the spectrum σ is zero; it can even be of zero Hausdorff dimension [7] (see also

[8] for uniform upper bounds of the dimension). Plotting the spectrum σ as a function of the

frequencyω gives rise to the famous Hofstadter’s butter�y. Not much seems to be known about

the behaviour of the solutions of the almost Mathieu equation

−(un+1 + un−1)+ 2 cos(x+ nω)un = Eun

for E ∈ σ. However, there can be no solutions in l1(Z) [9]; and typically no l2(Z)

solutions [10].

1.1. Notations

In the formulations of our results below, we use the following notations: let π1 and π2 denote

the projections π1(x, r) = x and π2(x, r) = r. Moreover, we denote by ωE(x, r) and αE(x, r) the
ω-limit set and the α-limit set, respectively, of the point (x, r) under iterations of GE.

In some of the results we will need to assume that the frequencyω satis�es a kind of (strong)

Diophantine condition. Given an irrational number ω, let pn/qn denote the nth order continued

fraction expansion of ω. We let P ⊂ T denote the set of ω ∈ T for which lim
n→∞

q
1/n
n exists and

is �nite. This set has full Lebesgue measure. See [11] for details.

Before stating our results, we mention that in all cases, except the ones which are

speci�cally for the almost Mathieu equation, we could have assumed that v :Td → R and

ω = (ω1, . . . , ωd) ∈ Rd (d ≥ 1) is such that 1,ω1, . . . ,ωd are rationally independent.

1.2. Dynamics at the lowest energy E1

Since the proofs of the results are more elementary and transparent at the lowest (or highest)

energy in σ, we begin by considering this case. The �rst result of this paper is:

Theorem 1. Assume that v :T→ R is continuous and ω ∈ R\Q. Assume also that

L(E1) = 0. Then there exists an upper semi-continuous function ψ :T→ (0,∞) which is

(at least) almost everywhere continuous,
∫
T
log ψ(x)dx = 0, and whose graph Γ is GE1-

invariant, that is, we have GE1(x,ψ(x)) = (x+ ω,ψ(x+ ω)) for all x ∈ T. Moreover, we have

ωE1(x, r), αE1 (x, r) ⊂ Γ̄ for all (x, r) ∈ T× P1(R2).
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Remark 1.

(a) Note that π2(π
−1
1 (x) ∩ Γ̄) = {ψ(x)} at each point x ∈ T where ψ is continuous (that is, for

almost every x ∈ T). We do not know if ψ is continuous everywhere.

(b) Since all points are attracted to the closure of the graph of the almost everywhere contin-

uous function ψ, it easily follows that the Lebesgue measure on T, lifted to the graph of

ψ, is the only GE1-invariant and ergodic Borel probability measure (see [3] for details).

(Note that the projection onto the x-coordinate of any GE-invariant Borel measure must

be the Lebesgue measure, due to the unique ergodicity of the shift x 7→ x+ ω on T.)

Before stating a corollary of this result we note the following. Assume that ψ :T→ (0,∞)

satis�es GE(x,ψ(x)) = (x+ ω,ψ(x+ ω)). Let g(x) = logψ(x) and let an(x) =
∑n

k=0 g(x+

kω) for n > 0, a0(x) = 0, and an(x) = −a−n(x+ nω) for n < 0. Then it is easy to verify

that

un(x) = exp(an(x)) (1.3)

is a formal solution to the Schrödinger equation (1.1).

Corollary 1. Assume that v :T→ R is continuous and ω ∈ R\Q. Assume also that

L(E1) = 0. Let ψ :T→ R be as in theorem 1, and let g, an and un be as above. Moreover,

let X ⊂ T denote the sets of continuity points of ψ. Then:

(a) we have limn→±∞‖AnE1(x)‖ = ∞ for all x ∈ T.

(b) the cocycle FE1 is of parabolic type.

(c) lim infn→±∞ |un(x)− 1| = 0 for a.e. x ∈ T.

(d) supn∈Z |AnE1(x)y| = ∞ for all x ∈ T\X and all y ∈ R2\{0}. Moreover, if there is a constant
c > 1 and x0 ∈ T, y0 ∈ R2\{0} such that 1/c < |AnE1(x0)y0| < c for all n ∈ Z, then there

is a constant c′ > 1 such that 1/c′ < |un(x)| < c′ for all n ∈ Z and all x ∈ X.

Remark 2.

(a) A direct computation shows that C(x) =

(
ψ(x− ω) 1

ψ(x− ω)ψ(x)− 1 ψ(x)

)
satis�es

C(x+ ω)−1AE1(x)C(x) =

(
ψ(x)−1 0

ψ(x− ω)ψ(x)− 2 ψ(x)

)
. Thus, AE1 is of parabolic

type.

(b) Note that (c) follows directly from Atkinson’s lemma (see, e.g., [12]), which states that

lim infn→±∞ |an(x)| = 0 for a.e. x ∈ T since
∫
T
g(x)dx = 0.

(c) It is well-known that the equation −(wn+1 + wn−1)+ v(x+ (n− 1)ω)wn = E1wn (since

E1 ∈ σ) has a (non-trivial) bounded solution for some phase x0 ∈ T (see, e.g., [[1],

theorem 1.7]). We shall see (in section 3) that we must have wn = Cun(x0) for some con-

stant C 6= 0. Thus, if this solution is bounded away from zero, it would follow from (c)

that un(x) is bounded for a.e. x ∈ T.

(d) Note that (d) can be viewed as a version of the classical Gottschalk–Hedlund theorem

(see, e.g., [13, theorem 2.9.4]).

(e) In connection to this, we also recall a related result (which does not apply in our situa-

tion): if (‖AnE(x0)‖)n≥0 is bounded for some E and some x0 ∈ T, then the cocycle FE is

continuously conjugated to a cocycle map taking values in SO(2,R) [14].

The remaining parts of corollary 1 will be proved in section 3 below.

2710



Nonlinearity 33 (2020) 2707 K Bjerklöv

Figure 1. A numerical plot of the graphs of ϕ±
E (which are very close to each other)

for v(x) = 2 cos(2πx), ω = (
√
5− 1)/2 and E = −2.597 515 1854. This gives an idea

of what the graph of the function ψ in theorem 2 might look like.

One can also consider the inverse problem, i.e., specify the invariant curve ψ̃ and ω and use

them to de�ne v (as we did in [15]). More precisely let ψ̃:T→ (0,∞) be a continuous function

such that
∫
T
log ψ̃(x)dx = 0, and de�ne v(x) = exp(ψ̃(x+ ω))+ exp(−ψ̃(x)). Then it is easy

to verify that E1 = 0 and L(E1) = 0, and ψ = ψ̃. Furthermore, if ψ̃ is chosen so that log ψ̃
is not a coboundary, i.e., the equation h(x+ ω)− h(x) = log ψ̃(x) has no continuous solution

h, then the Gottschalk–Hedlund theorem implies that supn≥0|an(x)| = ∞ for all x ∈ T (see,

e.g., [16] and the references therein for more information on this topic). Thus, in this case it

follows from corollary 1(d) that for all x ∈ T and all y ∈ R2\{0}we have infn∈Z |AnE1(x)y| = 0

or supn∈Z |AnE1(x)y| = ∞.

The above argument shows, in particular, that any cylinder transformation (see, e.g., [16])

T(x, t) = (x+ ω, t+ g(x)) can be imbedded into a Schrödinger cocycle.

Next we consider the special case when v(x) = 2 cos(2πx). In this case it is well-known that
L(E) = 0 for all E ∈ σ (see, e.g., [17, corollary 2]). In particular we have L(E1) = 0. Thus the

previous theorem applies for this v. In �gure 1 we have numerically plotted an approximation

of the function ψ; from these numerical investigations it looks as if ψ is continuous; but we do

not know if this really is the case. However, we have (recall the de�nition of the full-measure

set P in subsection 1.1):

Theorem 2. Assume that v(x) = 2 cos(2πx) and ω ∈ P . Then ψ /∈ C1+α(T) for any

α > 1/2, where ψ is the function in theorem 1.

Remark 3.

(a) Since 2 cos(2πx) obviously is real-analytic, it follows immediately from [2], as we men-

tioned above, that for all E < E1 the map GE has two real-analytic invariant curves which
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control all the dynamics. But, as we saw above,GE1 is uniquely ergodic, and the measure

is supported on the graph of ψ.

(b) If v(x) = λ cos(2πx) where λ > 0 is suf�ciently small (provided that ω is Diophantine),

then it follows from [18] (see also [19]) that GE has real-analytic invariant curves for all

E 6 E1.

(c) If v(x) = λ cos(2πx) where λ > 2 we have a totally different behaviour at E = E1 (since

L(E1) > 0). In this case GE1 has two ‘fractal’ invariant graphs. See, [20]. (See also [21]

for results for more general v.)

(d) We recall the phenomenon with ‘the last’ invariant curve in certain Hamiltonian systems.

See, e.g., [22] and references therein.

(e) If ω would satisfy a weaker Diophantine condition, the function ψ could be of higher,

but still �nite, regularity. The arithmetic condition on ω is needed when we solve the

homological equation (4.2). However, we do not elaborate on this.

We will prove theorems 1 and 2 by combining previous results by Delyon [9], Herman [23]

and Johnson [24]. In fact, the statements in theorem 1 follow immediately from the proposition

below. This propositions will be proved in section 2.

Proposition 1.1. Assume that v :T→R is continuous and ω ∈ R\Q. Then there exist a
constant c > 0 and two functions ψ± :T→ [1/c, c], where ψ+ is upper semi-continuous and

ψ− is lower semi-continuous, whose graphs are GE1-invariant. Moreover, if L(E1) = 0, then

ψ+(x) = ψ−(x) for almost all x ∈ T, and ψ± are continuous almost everywhere. Furthermore,
for all (x, r) we have

α(x, r), ω(x, r) ⊂ M := {(x, r): x ∈ T, ψ−(x) ≤ r ≤ ψ+(x)}.

Remark 4.

(a) These statements are close in spirit of [23, 24]. Moreover, the �rst part of the proposition is

essentially a special case of [25, theorem 5.3] (which is based on [24, lemma 3.4]). How-

ever, we will provide an elementary proof of the statements in section 2 (the arguments

become easier because we consider the lowest energy, E1, in the spectrum).

(b) Note that, by the semi-continuity of ψ±, the set M is closed.

We will prove corollary 1 and theorem 2 in sections 3 and 4, respectively.

1.3. Dynamics at other gap edges

We now consider the more general problemof describing the dynamics ofFE (and its projective

action GE) at other gap edges of R\σ where the Lyapunov exponent vanishes.

By symmetry it is easy to check that the analogous picture to the one above holds for

E2 = max σ, i.e., for the highest energy in the spectrum. In particular, if v(x) = λ cos 2πx then
E2 = −E1; and ifψ solvesψ(x+ ω) = v(x)− E1 − 1/ψ(x), thenψ1(x) = −ψ(x+ 1/2) solves
ψ1(x+ ω) = v(x)+ E1 − 1/ψ(x).

The following theorem is a generalisation of theorems 1 and 2 to other gap edges.

Theorem 3. Assume that v :T→ R is continuous and ω ∈ R\Q. Assume further that E∗ is
a gap edge of a non-collapsed gap in R\σ, and that L(E∗) = 0. Then

(a) there exists an upper semi-continuous function ψ :T→ P1(R2) which is (at least)

almost everywhere continuous and whose graph Γ is GE∗ -invariant. Moreover, we have

ωE∗(x, r),αE∗(x, r) ⊂ Γ̄ for all (x, r) ∈ T× P1(R2).
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(b) limn→±∞‖AnE∗(x)‖ = ∞ for all x ∈ T; and the cocycle FE∗ is of parabolic type.

(c) for almost every x ∈ T there exists a unit vector U(x) ∈ R2 such that

lim infn→±∞ ‖AnE∗(x)U(x)| − 1| = 0.

(d) supn∈Z |AnE1(x)y| = ∞ for all x ∈ T where ψ fails to be continuous and all y ∈
R2\{0}. Moreover, if there is a constant c > 1 and x0 ∈ T, y0 ∈ R2\{0} such that

1/c < |AnE∗(x0)y0| < c for all n ∈ Z, then all x ∈ Twhere ψ is continuous there is a vector
y(x) ∈ R2\{0} such that 1/c < |AnE∗(x)y(x)| < c for all n ∈ Z.

(e) if v(x) = 2 cos(2πx) and ω ∈ P , then the function ψ cannot be of class C1+α for any

α > 1/2.

Remark 5. That ψ is semi-continuous means that, by viewing P1(R2) as the circle T, there

exists a lift ψ̂ :R→ R of ψ which is semi-continuous.

This theorem is proved in section 5 below. In the proof we also apply results from

Thieullen [4].

1.4. Open questions

We do not know if the functionψ in theorem 3 must be continuous.We also have the following

related question:

Question 1. Does there exist a real-analytic (or smooth) B :T→ SL(2,R) and irrational ω
such that the cocycle (x, y) 7→ (x+ ω,B(x)y) has a measurable invariant sectionψ :T→ P1(R2)

which is discontinuous almost everywhere and which attracts (in the projective action) all (or

almost all) forward and backward iterations1?

More generally, does there exists a smooth family of circle diffeomorphisms fx :T→ T and

irrational ω such that the map T :T2 → T2 given by T(x, y) = (x+ ω, f x(y)) has an invariant

graph y = ψ(x) which is discontinuous almost everywhere and which attract all (or almost all)

forward and backward iterations?

Remark 6. In [26] numerical investigations of the dynamics of G0 (i.e., for E = 0), for

v(x) = 2 cos(2πx), are presented. It should be noted that 0 ∈ σ, but E = 0 cannot be the end-

point of any spectral gap (see [26] for more details). The authors conjecture that F0 is of

parabolic type. If this is true the invariant section (for G0) must be discontinuous (by a topo-

logical argument, due to the fact that the so-called �bred rotation number is rational). We have

made numerical computations on this model which seem to indicate(?) that ‘for typical x’ we

have lim infn→∞ ‖AnE=0(x)‖ = ‖Id‖ (recall [4, lemma 1.3]). This would imply that points in

the same �bre, in projective coordinates, are not contracted to each other. Thus, if it indeed is

true that the cocycle F0 is of parabolic type, it is possible that an invariant section (in projec-

tive space) is not an attractor for G0 (at least not in the sense as Γ̄ is an attractor for GE∗ in

theorem 3).

1Of course there are plenty of examples of real-analytic cocycles with two ‘highly’ discontinuous invariant sections

(Oseledets’ directions); one attracting the forward iterations and the other one attracting the backward iterations. See,

e.g., [20] and references therein.
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2. Monotonicity—proof of proposition 1.1

In this section we assume that v :T→ R is a continuous function and ω ∈ R\Q. Recall the

de�nition of E1 in (1.2). We shall use projective coordinates
(
1
r

)
, r ∈ R ∪ {∞}.

In [23, section 4.14] it is shown that for each E < E1, the two continuous functions ϕ
±
E (the

projectivization of W±
E ) satisfy ϕ

±
E :T→ (0,∞). We recall that their graphs are GE-invariant,

i.e.,

ϕ±
E (x+ ω) = v(x)− E − 1

ϕ±
E (x)

for all x ∈ T. (2.1)

We shall denote the graphs by Γ±
E , i.e., Γ

±
E = {(x, r) : x ∈ T, r = ϕ±

E (x)}.
It is clear that the two graphs cannot intersect.Moreover, they are connected to the Lyapunov

exponent L(E) via

∫

T

logϕ±(x)dx = ±L(E)

(see [23, section 4.15]). Since L(E) > 0 for all E < E1 we clearly have ϕ
−
E (x) < ϕ+

E (x) for all

x ∈ T.

Since FE is uniformly hyperbolic when E < E1 it follows that for each E < E1 we

have ωE(x, r) = Γ
+

E for all (x, r) /∈ Γ
−
E , and αE(x, r) = Γ

−
E for all (x, r) /∈ Γ

+

E . Moreover,

it is easy to check that the iterates are oriented as follows: if ϕ+

E (x) < r ≤ ∞, then

ϕ+

E (x+ kω) < π2(G
k
E(x, r)) <∞ for all k ≥ 1; if ϕ−

E (x) < r < ϕ+

E (x) then ϕ−
E (x+ kω)

< π2(G
k
E(x, r)) < ϕ+

E (x+ kω) for all k ≥ 1; if r < ϕ−
E (x), then there exists a k ≥ 1 such that

ϕ+

E (x+ kω) < π2(G
k
E(x, r)) ≤ ∞. The analogous result holds for backward iteration.

Remark 7. If v(x) = v(−x) for all x, then we have the relation ϕ−
E (x) = 1/ϕ+

E (ω − x).

Indeed, if we let f (x) = 1/ϕ+

E (ω − x), then

f (x+ ω) =
1

ϕ+

E (−x)
= v(−x)− E − ϕ+

E (−x+ ω) = v(x)− E − 1

f (x)
.

The following monotonicity result is essentially a special case of [24, lemma 3.4] (where

the time-continuousHill’s equation is considered). For completenesswe include an elementary

proof in our setting.

Proposition 2.1. For all E < E′ < E1 we have

(a) ϕ+

E′ (x) < ϕ+

E (x) for all x ∈ T.

(b) ϕ−
E′ (x) > ϕ−

E (x) for all x ∈ T.

Proof. (1) We �x E′ < E1. If E < −2max|v(x)|+ 10 it is easy to verify that the band T×
[−E/2,−2E] is GE-invariant. Thus the graph of ϕ+

E must lie in this band. Since −E/2→∞
as E→−∞ we conclude that for all E ≪ E′ we have ϕ+

E (x) > ϕ+

E′ (x) for all x ∈ T.

We need to show that ϕ+

E (x) > ϕ+

E′ (x) for all x ∈ T and for all E < E′. We recall that ϕ±
E

are continuous in E (for E < E1). Let E
′′ = min{E ≤ E′ :ϕ+

E′′ (p) = ϕ+

E′ (p) for some p ∈ T}.
Thus we have ϕ+

E′′ (p) = ϕ+

E′ (p) for some point p ∈ T and ϕ+

E′′ (x) ≥ ϕ+

E′ (x) for all x. Assume

that E′′ < E′. Since the graphs of ϕ+

E′′ and ϕ
+

E′ are invariant under GE′′ and GE′ , respectively,

we would get

v(p− ω)− E′′ − 1/ϕ+

E′′ (p− ω) = ϕ+

E′′ (p) = ϕ+

E′ (p) = v(p− ω)− E′ − 1/ϕ+

E′(p− ω),

2714
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i.e., E′ − E′′ = 1/ϕ+

E′′ (p− ω)− 1/ϕ+

E′(p− ω). By the fact that ϕ+

E′′ (x) ≥ ϕ+

E′ (x) > 0 for all x,

we see that the right-hand side is ≤ 0; but the left-hand side is > 0. This contradiction shows

the statement.

The proof of (2) is similar. In the case when v(x) = v(−x) the statement follows immediately

from (1) combined with remark 7. �

By this monotonicity we have

ϕ−
E (x) < ϕ+

E′ (x) for all x ∈ T and allE,E′ ∈ (−∞,E1).

It also follows that

ψ±(x) := lim
EրE1

ϕ±
E (x)

exists for all x ∈ T, and ϕ−
E (x) < ψ−(x) ≤ ψ+(x) < ϕ+

E (x) for all x ∈ T and all E < E1 (in

particular there is a constant c > 1 such that ψ±(x) ∈ [1/c, c] for all x ∈ T). Moreover, since

(2.1) holds for all E < E1, the graphs of ψ
± are GE1-invariant, i.e.,

ψ±(x+ ω) = v(x)− E1 −
1

ψ±(x)
for all x ∈ T. (2.2)

Furthermore, again by monotonicity, the function ψ+ is upper semi-continuous, and ψ− is

lower semi-continuous.

We summarise these observations in

Proposition 2.2. There exist a constant c > 0 and two functions ψ± :T→ [1/c, c], where
ψ+ is upper semi-continuous and ψ− lower semi-continuous, such that ψ−(x) ≤ ψ+(x) for all

x ∈ T, and whose graphs are GE1 -invariant (i.e., both satis�es equation (2.2)).

From these facts it thus follows that the closed sets

ME := {(x, r) : x ∈ T, ϕ−
E (x) ≤ r ≤ ϕ+

E (x)}

satisfyME′ ⊃ ME for all E′ < E < E1; and

M := {(x, r) : x ∈ T, ψ−(x) ≤ r ≤ ψ+(x)} =
⋂

E<E1

ME.

Note that the set M is GE1-invariant.

We now show that the iterates of any point (x, r) under GE accumulate onM.

Proposition 2.3. We have ωE1(x, r),αE1(x, r) ⊂ M for all (x, r) ∈ T× R ∪ {∞}.

Proof. Recall the discussion on iterations of GE for E < E1 in the beginning of this section.

Fix x ∈ T. Since the set M is GE1-invariant we need only consider the cases

−∞ < r < ψ−(x) and ψ+(x) < r ≤ ∞.

We �rst assume that ψ+(x) < r ≤ ∞. Let rk = π2(G
k
E1
(x, r)). Note that ∞ > r1 = v(x)

− E1 − 1/r > v(x)− E1 − 1/ψ+(x) = ψ+(x+ ω). Inductively we thus get ψ+(x+ kω)
< rk <∞ for all k ≥ 1. Moreover, given any E < E1, let sk(E) = π2(G

k
E(x, r)). It is easy to

inductively verify that rk < sk(E) for all k ≥ 1 and all E < E1. Indeed, we have s1(E)− r1
= E1 − E > 0; and if sk(E)− rk > 0 then sk+1(E)− rk+1 = E1 − E + (sk(E)

− rk)/(rksk(E)) > 0. Here we use that rk > ψ+(x+ kω) > 0.
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Next, note that we have ωE(x, r) = Γ
+

E ⊂ ME for all E < E1. Since ψ
+(x+ kω) < rk <

sk(E) for all k ≥ 1 and all E < E1, it thus follows that ωE1(x, r) ⊂
⋂
E<E1

ME = M.

We now assume that−∞ < r < ψ−(x). We claim that there exists k0 > 0 such that ψ+(x+

k0ω) < rk0 ≤ ∞. Since ψ±(x) > 0 it follows from (2.2) that if r ≤ 0 we have ψ+(x+ ω) <
r1 = v(x)− E1 − 1/r ≤ ∞. Assume that 0 < r < ψ−(x). De�ne rk and sk(E) as above. Note
that r < ϕ−

E (x) for all E suf�ciently close to E1 (since ϕ
−
E (x) ր ψ−(x) as E ր E1). Fix such an

E′ < E1. If we would have rk > 0 for all k > 0 it would follow, as above, that ϕ−
E′ (x+ kω) >

sk(E
′) > rk > 0 for all k > 0; but we know that s j(E

′) > ϕ+

E′ for some j > 0. Therefore this is

impossible. We conclude that ψ+(x+ k0ω) < rk0 ≤ ∞ for some k0.

That αE1 (x, r) ⊂ M is proved similarly. �

Corollary 2.4. For all x ∈ T we have ‖AnE1(x)‖→∞ as n→±∞.

Proof. If there were an x ∈ T, a constant C > 0 and a subsequence nk (either going to ∞
or −∞) such that ‖AnkE1(x)‖ < C for all k it would be impossible that all orbits under GE1

accumulate on the set M (as the statement in the previous proposition yields). �

Proposition 2.5. Assume that L(E1) = 0. Then ψ+(x) = ψ−(x) for a.e. x ∈ T. Moreover,

ψ± are continuous at each point where ψ+(x) = ψ−(x). Furthermore, the set of continuity
points is invariant under translation x 7→ x+ ω.

Proof. Since L(E1) = 0 we must have

∫

T

log ψ±(x)dx = 0.

By using the fact that c ≥ ψ+(x) ≥ ψ−(x) ≥ 1/c > 0 for all x, we conclude that ψ+(x)

= ψ−(x) for a.e. x ∈ T. We recall that ψ+ is upper semi-continuous and ψ− is lower

semi-continuous. Thus, for all x ∈ T we have ψ−(x) ≤ lim ξ→x ψ
−(ξ) ≤ lim ξ→x ψ

+(ξ)
≤ ¯limξ→x ψ

+(ξ) ≤ ψ+(x) and ψ−(x) ≤ lim ξ→x ψ
−(ξ) ≤ ¯limξ→x ψ

−(ξ) ≤ ¯limξ→x ψ
+(ξ)

≤ ψ+(x). At the points x ∈ T where ψ−(x) = ψ+(x) we thus have equality everywhere in the

two expressions. Thus, the two functions ψ± are continuous whenever ψ+(x) = ψ−(x).
The last statement follows from equation (2.2). �

Remark 8. If L(E1) = 0 it thus follows that the set M above satis�es M ∩ π−1
1

(
{x}

)

= {ψ+(x)} at each point where ψ+ is continuous.

3. Proof of corollary 1

Assume that v :T→ R is continuous and ω ∈ R\Q. Assume also that L(E1) = 0. From

corollary 2.4 we know that ‖AnE1(x)‖→∞ as n→±∞ for all x ∈ T. Thus, recalling remark

7, it remains to prove statement (d) in corollary 1.

Let ψ = ψ+ be as in proposition 1.1, and let an(x), un(x) be as in (1.3). Let X ⊂ T be the set

of points where ψ is continuous.

By combining proposition 2.3 and lemma A.2 we see that for all x ∈ T we have

limn→∞|An(x)y| = ∞ for all y 6= 0 which do not correspond to the direction ψ−(x); and
limn→−∞|An(x)y| = ∞ for all y 6= 0 which do not correspond to the direction ψ+(x). From

this we conclude that |An(x)y| cannot be bounded for any y 6= 0 and x ∈ T such that

ψ+(x) 6= ψ−(x).
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Assume that that there is a constant c > 1 and x0 ∈ T, y0 ∈ R2\{0} such that 1/c <
|An(x0)y0| < c for all n ∈ Z. From the above observation we note that we must have ψ+(x0) =

ψ−(x0), i.e., x0 ∈ X (by proposition 2.5).Moreover,we must have y0 = s
(

1
ψ(x0)

)
for some con-

stant s 6= 0. Thus we have supn∈Z |an(x0)| < c′ for some constant c′. Since the set X is invariant

under the translation x 7→ x+ ω it now follows from lemma A.1 that supn∈Z |an(x)| ≤ 2c′ for
all x ∈ X. Since un(x) = exp(an(x)) this �nishes the proof.

4. Proof of theorem 2

Here we assume that v(x) = 2 cos(2πx). We know that L(E) = 0 for all E ∈ σ (see, e.g., [17,

corollary 2]). In particular we have L(E1) = 0. Let ψ denote the function ψ+ in proposition

2.5. Recall that ψ :T→ [1/c, c] for some constant c > 1. Thus logψ has the same regularity

as ψ. We have

∫

T

log ψ(x)dx = 0. (4.1)

Fix ω ∈ P (recall the de�nition in subsection 1.1). We claim that ψ /∈ C1+α(T) for any

α > 1/2. To show this, we shall argue by contradiction.We therefore assume thatψ ∈ C1+α(T)

for some α > 1/2. Hence log ψ ∈ C1+α(T). The strategy we shall use is essentially the one in

[27, remark 1.6].

Since log ψ ∈ C1+α(T) and ω ∈ P it follows from [11, theorem 1.2] that the homomolog-

ical equation

g(x+ ω)− g(x) = log ψ(x) (4.2)

has a solution g :T→ R which is α′-Hölder for any α′ < α. Fix 1/2 < α′ < α.
Let h(x) = exp(g(x+ ω)). Then we can write, by using (4.2), h(x+ ω) = ψ(x+ ω)h(x) and

h(x− ω) = h(x)/ψ(x). Since ψ satis�es (2.2) we get

−(h(x+ ω)+ h(x− ω))+ v(x)h(x) = E1h(x) for all x ∈ T. (4.3)

Let an denote the Fourier coef�cients of h. Since g (and hence h) is α
′-Hölder, and α′ > 1/2, it

follows from a theorem by Bernstein (see [28, I.6.3]) that the Fourier series of h is absolutely

convergent, i.e, (an) ∈ ℓ1(Z). However, since v(x) = 2 cos 2πx = e2πix + e−2πix, and since (4.3)

holds, it is easy to check that the Fourier coef�cients an must satisfy

−2 cos(2πnω)an + (an+1 + an−1) = E1an

(this is essentially the Aubry duality). From [9] (see also [10]) it therefore follows that we must

have (an) /∈ ℓ1(Z). This contradiction �nishes the proof.

5. Dynamics at other gap edges—proof of theorem 3

Here it will be convenient to use the following coordinates onP1(R2) ∼= T: the point
(
1
r

)
, r ∈ R,

is associated with θ = arctan(r)/π + 1/2 ∈ (0, 1); and
(
0
1

)
is associated with θ = 0.
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By dwe shall denote the distance on the circleT; and an interval (a, b) ⊂ Tmeans a counter-

clockwise oriented interval. We will slightly abuse the notation and write GE both for the map

on T× P1(R2) as well as the map on T× T.

Proof of Theorem 3. Assume that v :T→ R is continuous and ω ∈ R\Q. We further

assume that J := (E−,E+) is a non-collapsed gap inR\σ (and thus the cocycleFE is uniformly

hyperbolic for all E ∈ J) and that L(E±) = 0.

For E ∈ J we have the continuousGE-invariant sections ϕ
±
E :T→ P1(R2) (the projectiviza-

tions of the subspacesW±
E ); we recall that theymove continuouslywith E (within J). Moreover,

we recall that for all E ∈ J we have: for each x ∈ T and each θ 6= ϕ−(x)

d(π2(G
n
E(x, θ)),ϕ

+

E (x+ nω))→ 0 as n→∞; (5.1)

and for each x ∈ T and each θ 6= ϕ+(x)

d(π2(G
n
E(x, θ)),ϕ

−
E (x+ nω))→ 0 as n→−∞.

Since P1(R2) ∼= T, each ϕ±
E (for E ∈ J) has a lift ϕ̂±

E :R→ R, and we can choose the lifts

so that (x,E) 7→ ϕ̂±
E (x) are continuous on R× J.

We focus on the dynamics at E+; the analysis of E− is symmetric. By Johnson’s mono-

tonicity lemma [24, lemma 3.4] (see [25, theorem 5.3] for exactly our setting) it follows

that ϕ+

E (x) moves in the clockwise direction as E increases; and ϕ−
E (x) moves in the counter

clockwise direction. This means that ϕ̂+

E′ (x) < ϕ̂+

E (x) and ϕ̂
−
E′(x) > ϕ̂−

E (x) for all x ∈ R and all

E− < E < E′ < E+. Thus we have

(ϕ−
E (x),ϕ

+

E (x)) ⊃ [ϕ−
E′ (x),ϕ

+

E′(x)] for all x ∈ T and allE < E′ in J. (5.2)

From this it follows that ψ±(x) = limEրE+ϕ
±
E (x) exists for all x ∈ T. By monotonicity the lifts

ofψ+ are upper semi-continuous; and the lifts ofψ− are lower semi-continuous. It also follows

that ψ± :T→ P1(R2) are GE+ -invariant sections. We note that

(ϕ−
E (x),ϕ

+

E (x)) ⊃ [ψ−(x),ψ+(x)] for all x ∈ T and allE ∈ J. (5.3)

LetME be the closed strips

ME = {(x, θ) : x ∈ T, θ ∈ [ϕ−
E (x),ϕ

+

E (x)]}.

Then we haveME ⊃ ME′ for all E < E′ in J, and

ME+ := {(x, θ) : x ∈ T, θ ∈ [ψ−(x),ψ+(x)]} =
⋂

E∈J
ME.

We shall now show that ωE+ (x, r) ⊂ ME+ for all (x, θ) /∈ ME+ (clearly this holds for all

(x, θ) ∈ ME+ ). Fix x0 ∈ T and assume θ0 /∈ [ψ−(x),ψ+(x)]. Then there exists E′ < E such

that

θ /∈ [ϕ−
E (x),ϕ

+

E (x)] for allE ∈ [E′,E+). (5.4)

Let θk = π2(GE+ (x0, θ0)) and sk(E) = π2(GE(x0, θ0)). Since (5.4) holds it follows that

|[ϕ+

E (x0 + kω), sk(E)]| → 0 as k→∞ for all E ∈ [E′,E+). Moreover, by using the fact that

∂E(π2(GE(x, θ))) < 0, combined with the fact that the graph of ψ+ is GE+ -invariant, it is

easy to verify that [ψ+(x∗ + kω), θk] ⊂ [ψ+(x+ kω), sk(E)] for all E ∈ [E′,E+). From this

we conclude that for all E ∈ [E′,E+) there is a K = K(E) > 0 such that (xk, θk) ∈ [ψ+(x+

2718



Nonlinearity 33 (2020) 2707 K Bjerklöv

kω), ϕ+

E (x+ kω)] for all k ≥ K(E). By recalling (5.2) and (5.3) we conclude that ωE+ (x, θ) ⊂
ME+ . Analogously, by considering backward iterations, one shows that αE+ (x, θ) ⊂ ME+ for

all (x, θ) /∈ ME+ .

Since αE+ (x, θ),ωE+(x, r) ⊂ ME+ for all (x, θ) ∈ T2, and since clearlyME+ 6= T2, we must

have ‖An
E+

(x)‖→∞ as n→±∞ for all x ∈ T. Since L(E+) = 0, and since the graphs of

ψ± are GE+ -invariant, it therefore follows from [4, proposition 1.6(ii)] that ψ+(x) = ψ−(x)
for almost every x ∈ T. By semi-continuity we thus have that ψ+ is continuous a.e.; and

π−1
1

(
{x}

)
∩M = {ψ+(x)} for a.e. x ∈ T.

Next, from the fact that the graph of ψ+ :T→ P1(R2) is invariant under GE+ it follows

that there is a function Z : 2T→ R2, |Z(x)| = 1 for all x, and which is as smooth as ψ+,

satisfying

Z(x+ ω) = c(x)AE+(x)Z(x)

where c :T→ R is positive (clearly the vector Z(x) corresponds to the direction ψ(x)). Since
L(E+) = 0 we have

∫
T log c(x)dx = 0. Moreover, Z(x) is 1-periodic if the degree of ψ is even;

and Z(x) is 2-periodic and such that Z(x+ 1) = −Z(x) for all x if the degree of ψ is odd.

We write Z(x) =
(
z1(x)
z2(x)

)
. A direct computation shows that C(x) =

(
z2(x) z1(x)

−z1(x) z2(x)

)

satis�es C(x+ ω)−1AE+ (x)C(x) =

(
c(x) 0

q(x) 1/c(x)

)
, where q(x) = −v(x)(z1(x)z2(x+ ω)

+ z2(x)z1(x+ ω)). Thus the cocycle FE+ is parabolic.

To prove statements (c) and (d) in theorem 3 we proceed as follows. Let g(x) =

−log c(x) and let an(x) =
∑n

k=0 g(x+ kω) for n > 0, a0(x) = 0, and an(x) = −a−n(x+ nω) for
n < 0. Then Un(x) = Z(x+ nω) exp(an(x)) satis�es Un(x) = An

E+
(x)U0(x) for all n ∈ Z. Since

lim infn→±∞|an(x)| = 0 for a.e. x ∈ T (by Atkinson’s theorem; see, e.g., [12]) we have

lim infn→±∞ ‖Un(x)| − 1| = 0 for a.e. x ∈ T.

Since αE+ (x, θ),ωE+(x, r) ⊂ ME+ for all (x, θ) ∈ T2, and since lemma A.2 holds, it fol-

lows that for all x ∈ T we have limn→∞|An(x)y| = ∞ for all y 6= 0 which do not correspond

to the direction ψ−(x); and limn→−∞|An(x)y| = ∞ for all y 6= 0 which do not correspond to

the direction ψ+(x). Assume that there is a constant c > 1 and x0 ∈ T, y0 ∈ R2\{0} such that
1/c < |An

E+
(x0)y0| < c for all n ∈ Z. Then we must have y0 = sU(x0) for some constant s 6= 0;

and we must have ψ+(x0) = ψ−(x0), i.e., ψ+ (and thus c) is continuous at x0. Thus we have

supn∈Z |an(x0)| <∞; and since the continuity points of c are invariant under translation it fol-

lows from lemma A.1 that supn∈Z |an(x)| <∞ for a.e. x ∈ T. Hence supn∈Z |Un(x)| <∞ for

a.e. x ∈ T.

It remains to show part (e) of theorem 3. We therefore assume that v(x) = 2 cos(2πx) and
that ω ∈ P . The proof is essentially the same as that of theorem 2, and uses, as also mentioned

above, the strategy in [27, remark 1.6]. Figure 2 gives an idea of what the graph of ψ+ might

look like in this case.

We shall argue by contradiction and thus assume that ψ+ is C1+α for some α > 1/2.
The functions c (and hence log c) and Z above have the same smoothness. Let h :T→ R

be a solution of h(x+ ω)− h(x) = −log c(x). Since log c(x) is C1+α (by assumption) and

ω ∈ P , it follows [11] that h is α′-Hölder for any α′ < α. Fix α′ such that 1/2 < α′ < α.
Let Q(x) = exp(h(x))Z(x); note that Q is α′-Hölder. Then Q satis�es Q(x+ ω) = AE+ (x)Q(x).

Writing Q(x) =
(
q1(x)

q2(x)

)
we see that q2(x) solves

−(q2(x+ ω)+ q2(x− ω))+ (2 cos(2πx)− E+)q2(x) = 0. (5.5)
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Figure 2. A numerical plot of the graphs of ϕ±
E (which are very close to each other)

for v(x) = 2 cos(2πx), ω = (
√
5− 1)/2 and E = 1.874 219. In this case the degree of

ϕ±
E is −1.

If Z(x) has period 1, it follows that q2(x) also is of period 1. Letting
∑

n∈Z ane
2πinx be the

Fourier series of q2, the relation (5.5) gives us −(an+1 + an−1)+ (2 cos(2πnω)+ E+)an = 0.

If Z(x) has period 2, and thus satis�es Z(x+ 1) = −Z(x), the same also holds for

q2 (i.e., q2(x+ 1) = −q2(x)). This implies that the Fourier series of q2 can be written

eπix
∑

n∈Z ane
2πinx. The equation (5.5) implies that the Fourier coef�cients satisfy −(an+1 +

an−1)+ (2 cos(2πnω+ πω)+ E+)an = 0.

In both of these situations it follows from [9] that (an) /∈ ℓ1(Z). But since q is α′-Hölder it
follows (as in section 4) that the Fourier series of q is absolutely convergent, and thus (an) ∈
ℓ1(Z). This contradiction �nishes the proof. �
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Appendix A. Misc

The following lemma is essentially a part of the proof of the classical Gottschalk–Hedlund

theorem (see, e.g., [13, theorem 2.9.4]). We include a proof for completeness.
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Lemma A.1. Assume that ω ∈ R\Q. Assume that f :T→ R is such that the set X := {x ∈
T : f is continuousat x} is invariant under the translation x 7→ x+ ω (i.e., X = X + ω).
If supn≥0

∣∣∑n
k=0 f (x0 + kω)

∣∣ < M for some x0 ∈ T and some constant M > 0, then

supn≥0

∣∣∑n
k=0 f (x+ kω)

∣∣ ≤ 2M for all x ∈ X.

Proof. Take x ∈ X. We argue by contradiction. Assume that
∣∣∣
∑N

k=0 f (x+ kω)
∣∣∣ > 2M for

some N ≥ 0. Since the set X is invariant under the translation we know that f is contin-

uous at the points x+ jω (0 ≤ j ≤ N). Therefore we have

∣∣∣
∑N

k=0 f (y+ kω)
∣∣∣ > 2M for all

y suf�ciently close to x. Since ω is irrational it thus follows that there is T > 0 such that∣∣∣
∑N

k=0 f ((x0 + Tω)+ kω)
∣∣∣ > 2M. Writing

N+T∑

k=0

f (x0 + kω)−
T−1∑

k=0

f (x0 + kω) =

N+T∑

k=T

f (x0 + kω)

we get that the absolute value of the left-hand side is < 2M; and the absolute value of the

right-hand side is > 2M. This contradiction �nishes the proof. �

The next lemma contains simple results from linear algebra. It gives information about the

growth of vectors under assumptions on the associated projective action.

We assume that An ∈ SL(2,R) (n ≥ 1) and let Ân :P
1(R2)→ P1(R2) denote the induced

projective action. Given θ ∈ P1(R2) we denote by W(θ) ⊂ R2 the subspace of vectors corre-

sponding to θ.

Lemma A.2. Assume that there is a direction θ− ∈ P1(R2) such that |Ân([a, b])| → 0 as

n→∞ for each arc [a, b] not containing θ−. Then |Anw| →∞ as n→∞ for every vector

0 6= w ∈ R\W(θ−).

Proof. Assume, to derive a contradiction, that there exists a unit vector v /∈ W(θ−) and a con-
stantC > 0 such that |Ankv| < C for all k ≥ 1. To get easier notationwe assume that |Anv| < C

for all n ≥ 1. Take a unit vector w /∈ W(θ−) such that α = ∠(v,w) > 0. Since each An ∈
SL(2,R) we get sinα = |Anv ‖ Anw|sinαn, where αn = ∠(Anv,Anw). Since v,w /∈ W(θ−) it
follows by assumption that sinαn → 0 as n→∞. Since |Anv| is bounded we conclude that

|Anw| →∞ as n→∞.

Let un, |un| = 1, be a vector which is contracted the most by An. We note that |Anun| → 0 as

n→∞. Let βn = ∠(v, un). Then sin βn = |Anun‖Anv| sin(∠(Anv,Anun))→ 0 as n→∞. But

this means that there is an arc [a, b], which contains the projectivization of v in its interior, but

not containing θ−, such that |Ân([a, b])| 6→ 0 as n→∞. �
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[11] Jakšić V andMolchanov S 2000 A note on the regularity of solutions of linear homological equations

Appl. Anal. 75 371–7
[12] Schmidt K 2006 Recurrence of cocycles and stationary random walks Dynamics & Stochastics

(IMS Lecture Notes Monogr. Ser. vol 48) (Beachwood, OH: Institute of Mathematical Statistics)
pp 78–84

[13] Katok A and Hasselblatt B 1995 Introduction to the modern theory of dynamical systems (Ency-
clopedia of Mathematics and its Applications) (Cambridge Mathematical Library vol 54) (Cam-
bridge: Cambridge University Press) pp xviii–802

[14] Yoccoz J-C 2004 Some questions and remarks about SL(2,\R) cocyclesModern Dynamical Systems
and Applications (Cambridge: Cambridge University Press) pp 447–58

[15] Bjerklöv K 2006 Explicit examples of arbitrarily large analytic ergodic potentials with zero
Lyapunov exponent Geomet. Funct. Anal. 16 1183–200

[16] Fraczek K and Lemanczyk M 2010 On the Hausdorff dimension of the set of closed orbits for a
cylindrical transformation Nonlinearity 23 2393–422

[17] Bourgain J and Jitomirskaya S 2002 Continuity of the Lyapunov exponent for quasiperiodic
operators with analytic potential J. Stat. Phys. 108 1203–18

[18] Eliasson H 1992 Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation
Commun. Math. Phys. 146 447–82

[19] Hadj Amor S 2009 Hölder continuity of the rotation number for quasi-periodic co-cycles in SL(2,R)
Commun. Math. Phys. 287 565–88

[20] Haro A and Puig J 2006 Strange nonchaotic attractors in Harper maps Chaos 16 033127
[21] Bjerklöv K 2007 Dynamics of the quasi-periodic Schrödinger cocycle at the lowest energy in the

spectrum Commun. Math. Phys. 272 397–442
[22] Koch H 2008 Existence of critical invariant tori Ergod. Theor. Dyn. Syst. 28 1879–94
[23] HermanM 1983 Une méthode pour minorer les exposants de Lyapounov et quelques exemples mon-

trant le caractère local d’un théorème d’Arnol’d et de Moser sur le tore de dimension 2 Comment
Math. Helv. 58 453–502

[24] Johnson R A 1982 The recurrent Hill’s equation J. Differ. Equ. 46 165–93
[25] Jorba A, Tatjer J C, Núñez C and Obaya R 2007 Old and new results on strange nonchaotic attractors

Int. J. Bifurcation Chaos Appl. Sci. Eng. 17 3895–928
[26] Datta S, Jäger T, Keller G and Ramaswamy R 2004 On the dynamics of the critical Harper map

Nonlinearity 17 2315–23
[27] Avila A and Krikorian R 2006 Reducibility or nonuniform hyperbolicity for quasiperiodic

Schrödinger cocycles Ann. Math. 164 911–40
[28] Katznelson Y 2004 An Introduction to Harmonic Analysis 3rd edn (Cambridge: Cambridge Univer-

sity Press)

2722

https://doi.org/10.1007/bf02392693
https://doi.org/10.1007/bf02392693
https://doi.org/10.1007/s00220-016-2620-0
https://doi.org/10.1007/s00220-016-2620-0
https://arxiv.org/abs/1909.04429
https://doi.org/10.1088/0305-4470/20/1/005
https://doi.org/10.1088/0305-4470/20/1/005
http://w3.impa.br/~avila/scspectrum.pdf
https://doi.org/10.1080/00036810008840855
https://doi.org/10.1080/00036810008840855
https://doi.org/10.1214/074921706000000112
https://doi.org/10.1017/CBO9780511809187
https://doi.org/10.1007/s00039-006-0581-8
https://doi.org/10.1007/s00039-006-0581-8
https://doi.org/10.1088/0951-7715/23/10/003
https://doi.org/10.1088/0951-7715/23/10/003
https://doi.org/10.1023/a:1019751801035
https://doi.org/10.1023/a:1019751801035
https://doi.org/10.1007/bf02097013
https://doi.org/10.1007/bf02097013
https://doi.org/10.1007/s00220-008-0688-x
https://doi.org/10.1007/s00220-008-0688-x
https://doi.org/10.1063/1.2259821
https://doi.org/10.1063/1.2259821
https://doi.org/10.1007/s00220-007-0238-y
https://doi.org/10.1007/s00220-007-0238-y
https://doi.org/10.1017/s0143385708000199
https://doi.org/10.1017/s0143385708000199
https://doi.org/10.1007/bf02564647
https://doi.org/10.1007/bf02564647
https://doi.org/10.1016/0022-0396(82)90114-0
https://doi.org/10.1016/0022-0396(82)90114-0
https://doi.org/10.1142/s0218127407019780
https://doi.org/10.1142/s0218127407019780
https://doi.org/10.1088/0951-7715/17/6/017
https://doi.org/10.1088/0951-7715/17/6/017
https://doi.org/10.4007/annals.2006.164.911
https://doi.org/10.4007/annals.2006.164.911

	Some remarks on the dynamics of the almost Mathieu equation at critical couplingtnqx2a;
	1.  Introduction
	1.1.  Notations
	1.2.  Dynamics at the lowest energy 

	2.  Monotonicitytnqx2014;proof of proposition 1.1
	3.  Proof of corollary 1
	4.  Proof of theorem 2
	5.  Dynamics at other gap edgestnqx2014;proof of theorem 3
	Acknowledgments
	Appendix A. Misc
	References


