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Abstract

An exact semiclassical version of the classical KAM theorem about small per-
turbations of vector �elds on the torus is given. Moreover, a renormalization
theorem based on counterterms for some semiclassical systems that are close
to being completely integrable is obtained. We apply these results to charac-
terize the sets of semiclassical measures and quantum limits for sequences of
L2-eigenfunctions of these systems.
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1. Introduction

1.1. Motivation

Let (M, g) be a compact and boundarylessRiemannian manifold, we consider the semiclassical
Schrödinger equation

Ĥ~ Ψ~ = λ~ Ψ~, ‖Ψ~‖L2(M) = 1, (1)

where ~ ∈ (0, 1] is a small parameter, given by a selfadjoint operator Ĥ~ = Op
~
(H) on

L2(M) obtained as the semiclassical Weyl quantization (see for instance [1, 2] among
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many references) of a Hamiltonian function H ∈ C∞(T∗M;R) de�ned on the cotangent
bundle T∗M. A fundamental example to keep in mind is the semiclassical Schrödinger
operator1

Ĥ~ = −~
2
∆g + V(x), (2)

where∆g denotes the Laplace–Beltrami operator and we assume that the potentialV is smooth
and real valued. This operator is the Weyl quantization of the classical Hamiltonian

H(x, ξ) := ‖ξ‖2g + V(x), (x, ξ) ∈ T∗M, (3)

obtained as the sum of the kinetic and the potential energies.
We assume that the spectrumof Ĥ~ is pure-point and unbounded,meaning that there exist an

orthonormal basis of L2(M) consisting of eigenfunctions for Ĥ~, and a sequence of eigenvalues
(λ~,n) satisfying

lim
n→+∞

λ~,n = +∞, for all ~ ∈ (0, 1]. (4)

For example, if Ĥ~ is given by (2) then its spectrum is indeed discrete, and given by a unique
sequence of eigenvalues (λ~,n) ⊂ R satisfying (4).

Therefore, for a given sequence (n~) ⊂ N, and a given E ∈ H(T∗M) ⊂ R, we can choose a
decreasing-to-zero sequence of parameters (~) ⊂ (0, 1] so that

λ~ :=λn~,~ → E, as ~→ 0+.

Modulo adding a constant E0 to H, we can assume that E = 1.
We aim at understanding the accumulation points (in the weak-⋆ topology for Radon mea-

sures) of those sequences of densities |Ψ~(x)|2dx as λ~ → 1. These limits are probability
measures onM and are usually referred to as quantum limits. We will denote byN (Ĥ~) the set
of quantum limits of Ĥ~.

The problem of characterizing the set N (Ĥ~) is in general widely open, but it is well
known that the elements of N (Ĥ~) depend strongly on the classical dynamics generated by
the Hamiltonian H. Recall that H generates a dynamical system on T∗M via the Hamilton
equations

ẋ(t) = ∂ξH, ξ̇(t) = −∂xH, (x(0), ξ(0)) = (x0, ξ0) ∈ T∗M.

We will denote by φHt the Hamiltonian �ow generated by H, that is,

φHt (x0, ξ0) = (x(t), ξ(t)), t ∈ R.

Note that, for the free Schrödinger operator Ĥ~ = −~2∆g, the associated classical Hamiltonian
�ow φHt is nothing but the geodesic �ow on T∗M.

Mostly three cases have been studied so far: the case when φHt is ergodic with respect to
the Liouville measure, the case whenH generates a completely integrable system, and the case
when φHt lies in some mixed or KAM (Kolmogorov–Arnold–Moser) regime.

In this work we focus on systems that are close to completely integrable ones, for which
KAM techniques apply. For these kind of systems, the persistence of invariant tori by the

1We will not deal with this particular operator, but it is important to motivate our problem and connect it with several
related works.
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dynamics of the classic �ow implies a weak dispersive behaviour of the Schrödinger �ow
around these tori. As a consequence, one expects the existence of sequences of eigenfunctions
for Ĥ~ concentrating on these tori. This concentration takes place on the phase space T∗M,
meaning that the semiclassical measure of the sequence (see section 1.2 below, [3] among
many references) has positive mass on these tori.

In the completely integrable setting, if Ĥ~ = −~2∆g andM = Sd, the sphere endowed with
its canonical metric, Jakobson and Zelditch [4] proved that:

N (Ĥ~) = Conv{δγ : γ is a closed geodesic orbit inSd}. (5)

Above, δγ stands for the uniform probability measure on the closed curve γ.2 Property (5) also
holds in manifolds of constant positive curvature [5] or compact-rank-one symmetric spaces
[6]. A natural question in this setting is that of understandingwhether or not the same holds on a
Zoll manifold (that is, a manifold all whose geodesics are closed [7], which is still a completely
integrable system). Macià and Rivière [8, 9] have shown the existence of Zoll surfaces such
that (5) fails. Precisely, an open set of geodesics is excluded to be the support of any quantum
limit; that is, the delta measure δγ can not be a quantum limit for any geodesic γ in this open
set. Similar techniques as those of [8, 9] have been used in the study of spectral asymptotics
for small perturbations of harmonics oscillators, both in the selfadjoint case [10] and the non-
selfadjoint case [11].

On the �at torus Td :=R
d/2πZd, the behaviour of quantum limits is very different. Bour-

gain proved that N (Ĥ~) ⊂ L1(Td); and in particular that quantum limits cannot concentrate
on closed curves, as was the case on the sphere (this result was reported in [12]). In that same
reference, Jakobson proved that for d = 2 the density of any quantum limit is a trigonomet-
ric polynomial, whose frequencies satisfy a certain Pell equation. In higher dimensions, one
can only prove certain regularity properties of the densities, involving decay of its Fourier
coef�cients. These and related results were proven using only the dynamical properties of the
geodesic �ow by Anantharaman and Macià [13–15]; it is also possible to obtain more precise
results on the regularity of the densities [16]. This strategy of proof can be extended to more
general completely integrable Hamiltonian �ows [17], and also allows to deal with domains in
the Euclidean space as disks [18, 19].

The KAM regime has turned out to be more elusive so far. Most of the works dealing with
this case are based on the construction of quasimodes, or approximate eigenfunctions, studying
the asymptotic properties of oscillation and concentration of these quasimodes around the clas-
sical invariant tori, but do not conclude complete results for the quantum limits associated with
the true eigenfunctions of the system. The foundations of this study of quasimodes for KAM
systems can be found in Lazutkin [20]. Construction of quasimodes with exponentially small
error terms is given by Popov [21, 22]. In a very recent work, Gomes [23] applies this result
to discard quantum ergodicity for semiclassical KAM systems on compact Riemannian man-
ifolds. Moreover, in two dimensions, Gomes and Hassell [24] improve the previous result to
show that there exist sequences of eigenfunctions with semiclassical measure having positive
mass on the classical invariant tori.

The present work addresses the problem of characterizing the sets of quantum limits and
semiclassical measures for some perturbed integrable systems, coming fromKAM theory, that
can be renormalized; that is, they can be conjugated to the unperturbed system after adding
integrable counterterms to the principal part of the perturbed Hamiltonian. Our techniques

2 γ = π(σ) is the projection onto Sd of a periodic geodesic σ ⊂ T∗Sd , i.e. σ is a minimal invariant torus by φHt of
dimension one.
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differ from those of [23, 24]. Precisely, we do not work from any quasimode construction.
Alternatively, we show convergence of the quantum normal form via an iterative algorithm
which is shown to converge in the presence of counterterms.

1.2. Quantum limits and semiclassical measures for KAM families of vector fields on the

torus

From now on we �x M = Td , the �at torus endowed with the �at metric. Our �rst and
particularly simple example of KAM system will be the one generated by the Schrödinger
operator

Ĥ~ = P̂ω,~ :=ω · ~Dx + v(x;ω) · ~Dx −
i~
2
Div v(x;ω),

where ω ∈ Rd, v ∈ C∞(Td × Rd;Rd) is a vector �eld depending on the parameter ω, and we
use the notation

Dx = (Dx1 , . . . ,Dxd ), Dx j := − i∂x j .

This operator generates the transport along the vector �eld Xv(ω) :=ω + v(·;ω), meaning that
the solution to the Schrödinger equation

(
i~∂t + P̂ω,~

)
u~(t, x) = 0; u~(0, x) = u0~(x) ∈ L2(Td)

is given by

u~(t, x) = u0~
(
φXv (ω)t (x)

)√
| det dφXv (ω)t (x)|,

where φXv (ω)t is the �ow on Td generated by the vector �eld Xv(ω), and the operator P̂ω,~ is
selfadjoint thanks to the component−i~Divv/2. Note that the unperturbed operator

L̂ω,~ :=ω · ~Dx (6)

on L2(Td) is not elliptic and hence its point-spectrum, given by

Spp
L2(Td)

(
L̂ω,~

)
= {~ω · k : k ∈ Z

d},

is highly unstable under perturbations, in the sense that it could be transformed into continuous
spectrum by the perturbation. However, we will use classical KAM theory to show that under
certain conditions on the perturbation v, the spectrum of P̂ω,~ is stable for a Cantor set of
frequencies ω, modulo renormalization of the vector ω. As was shown by Wenyi and Chi in
[25], this KAM stability is equivalent to the hypoellipticity of the operator P̂ω,~.

On the other hand, the operator P̂ω,~ = Op~(Pω) is the semiclassical Weyl quantization of
the linear Hamiltonian

Pω(x, ξ) = Lω(ξ)+ v(x;ω) · ξ,

where

Lω(ξ) :=ω · ξ.
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In [26], Moser introduced a new approach to the study of quasiperiodic motions by consider-
ing the frequencies of the Kronecker tori as independent parameters. We refer to the work of
Pöschel [27] for a brief introduction to the subject. If Ω ⊂ Rd is a compact Cantor set of fre-
quencies satisfying some Diophantine condition [see condition (8) below] and the perturbation
v is suf�ciently small in some suitable norm, then there exists a close-to-the-identity change
of frequencies

ϕ :Ω→ R
d

so that the related set of Hamiltonians Pϕ(ω) can be canonically conjugated (frequency by fre-
quency) into the constant linear Hamiltonian on T∗Td with frequency ω. More precisely, for
every ω ∈ Ω there exists a canonical transformationΘω : T∗Td → T∗Td so that

Θ
∗
ωPϕ(ω)(x, ξ) = Lω(ξ).

In particular, the Hamiltonian Pϕ(ω) is completely integrable for every ω ∈ Ω.
We focus on the study of the high-energy structure of the eigenfunctions of P̂ω,~. Precisely,

we will study the set of quantum limits of the system, that is, the weak-⋆ accumulation points
of sequences of L2-densities of eigenfunctions.

Furthermore, it is very convenient to extend our analysis to the phase-space, studying not
only the asymptotic distribution of L2-densities of the sequence (Ψ~) on Td , but the related
sequence of Wigner distributions (W~

Ψ~
) on T∗Td .

We recall that the Wigner distribution W~

ψ of a function ψ ∈ L2(Td) is de�ned by
the map

W~

ψ : C∞
c (T∗

T
d) ∋ a 7−→ 〈ψ, Op

~
(a)ψ〉 L2(Td ). (7)

Since Op~(a) is bounded on L2(Td) uniformly in ~ ∈ (0, 1] in terms of the L∞-norms of a �nite
number of derivatives of a, for any sequence (ψ~)~ ⊂ L2(Td) with ‖ψ~‖L2 = 1, there exist a
subsequence (W~

ψ~
) of Wigner distributions, and a distribution µ ∈ D′(T∗Td) such that

lim
~→0

W~

ψ~
(a) = µ(a), ∀a ∈ C∞

c (T∗
T
d).

Furthermore, the distributionµ is certainly a positive Radonmeasure on T∗
T
d [3]. Themeasure

µ is called the semiclassical measure associated to the (sub)sequence (ψ~).
If µ is the semiclassical measure associated with a sequence of eigenfunctions (Ψ~) with

λ~ → 1, thenµ is in fact a positive Radonmeasure on the level-setP−1
ω (1) ⊂ T∗

T
d. If moreover

the measure µ turns out to be a probability measure, then its projection onto the position space

ν(x) =
∫

P−1
ω (1)

µ(x, dξ)

is the quantum limit of the sequence. We emphasize that, since P−1
ω (1) is in general not com-

pact, there can exist some sequences of eigenfunctions with the zero measure as semiclassical
measure.We will denote byM(P̂ω,~) the set of semiclassical measures associated to sequences
of eigenfunctions for P̂ω,~ with λ~ → 1.

From now on, we consider P̂ω,~ with frequencies ω lying in a small neighbourhood of a
compact Cantor set of Diophantine vectors Ω ⊂ Rd satisfying:

|k · ω| > ς

|k|γ−1
, k ∈ Z

d\{0}, (8)
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for some constants ς > 0 and γ > d. For any ρ > 0, let Ωρ be the complex neighbourhood of
Ω given by

Ωρ := {z ∈ C
d : dist(z,Ω) < ρ},

and, given s > 0, we consider also the complex neighbourhood of the d-torus

Ds := {z ∈ T
d
+ iRd : |Iz| < s}.

We assume that the perturbation V(x, ξ;ω) := v(x;ω) · ξ belong to the following family of
linear symbols on the cotangent bundle T∗Td:

Definition 1. A function V ∈ Cω(T∗Td × Ωρ) is in the space of linear symbols Ls,ρ if

V(x, ξ;ω) = ξ · v(x;ω) =
∑

k∈Zd
ξ · v̂(k;ω)ek(x), (9)

for some analytic vector �eld v ∈ Cω(Ds × Ωρ;Cd), where v̂(k;ω) ∈ Cd is the kth-Fourier
coef�cient of v:

v̂(k;ω) := 〈v(·;ω), ek〉L2(Td ), ek(x) :=
eik·x

(2π)d/2
, k ∈ Z

d ,

and

|V|s,ρ := sup
ω∈Ωρ

∑

k∈Zd
|v̂(k;ω)|e|k|s <∞. (10)

The space (Ls,ρ, | · |s,ρ) is a Banach space. We denote by Ls⊂ Ls,ρ the subspace of symbols
that do not depend on ω ∈ Ωρ, and by | · |s its norm in this space.

Our �rst result reads:

Theorem 1. Let s, ρ > 0 and V∈ Ls,ρ be real valued and assume

|V|s,ρ 6 ε, (11)

where ε is a small positive constant depending only on s, ρ, γ and ς . Then there exists a real
change of frequencies ϕ :Ω→ Ωρ such that the point-spectrum of P̂ϕ(ω),~ is

Spp
L2(Td)

(
P̂ϕ(ω),~

)
= {~ω · k : k ∈ Z

d},

and, for every ω ∈ Ω, there exists a diffeomorphism θω :Td → Td of the torus homotopic to the
identity so that, denoting by

Θω(x, ξ) =
(
θω(x), [(∂xθω(x))

T]−1ξ
)
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the symplectic lift of θω into T∗Td ,

M
(
P̂ϕ(ω),~

)
=

⋃

ξ∈L−1
ω (1)

{
(Θω)∗hTd×{ξ}

}
∪ {0},

where h
Td×{ξ} denotes the Haar measure on the invariant torus T

d × {ξ} and (Θω)∗ stands for
the pushforward of Θω; and

N (P̂ϕ(ω),~) =

{
1

(2π)d
(θω)∗ dx

}
.

Moreover,

sup
ω∈Ω

|ϕ(ω)− ω| 6 C1|V|s,ρ, sup
x∈Td

|θω(x)− x| 6 C2|V|s,ρ,

where C1 and C2 are positive constants depending only on s, ρ, γ and ς .

Remark 1. The assumption V ∈ Ls,ρ allows us to use an analytic version of the classical
KAM theorem (theorem 5 below) about perturbations of constant vector �elds on the torus
[26, 28]. This theorem remains valid for less regular symbols V , see for instance [26, 29, 30],
as well as for more general Diophantine conditions than (8), see [27, 28]. We prefer not to state
our result with the greatest possible generality for the sake of clarity.

1.3. Renormalization of semiclassical KAM operators

If the perturbation V does not depend on the vector of frequencies and we consider an isolated
vector ω ∈ Ω, then theorem 1 provides the following direct corollary:

Corollary 1. Let ω ∈ Ω and let V ∈ Ls such that

|V|s 6 ε,

where ε is a small positive constant depending only on s, γ and ς . Then there exist a real vector
λ = λ(V) ∈ Rd such that the point-spectrum of P̂ω+λ,~ is

Spp
L2(Td)

(
P̂ω+λ,~

)
= {~ω · k : k ∈ Z

d},

and a diffeomorphism θ :Td → Td of the torus homotopic to the identity so that

M
(
P̂ω+λ,~

)
=

⋃

ξ∈L−1
ω (1)

{
Θ∗hTd×{ξ}

}
∪ {0}, N (P̂ω+λ,~) =

{
1

(2π)d
θ∗ dx

}
,

where Θ is the symplectic lift of θ into T∗
T
d .

The vector λ ∈ Rd can be understood as a counterterm that renormalizes the perturbed
operator P̂ω,~ to make it completely integrable and unitarily equivalent to L̂ω,~.

In the classical framework, the renormalization problem [31, 32] asks if, given a small
analytic perturbation V of the linear Hamiltonian Lω , with V = V(x, ξ; ε) de�ned on
Td × Rd × [0, ε0] for some ε0 > 0 suf�ciently small, there exists a counterterm R = R(ξ; ε)
on Rd × [0, ε0], such that the renormalized Hamiltonian

Q(x, ξ; ε) = Lω(ξ)+ V(x, ξ; ε)− R(ξ; ε)
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is integrable and canonically conjugate to the unperturbed Hamiltonian. This was conjectured
by Gallavotti in [31] and �rst proven by Eliasson in [33]. This result can be regarded as a
control theory theorem. Despite the fact that small perturbations of Lω could generate even
ergodic behaviour (see Katok [34]), this shows that modifying in a suitable way the completely
integrable part of theHamiltonian, the system remains stable. Renormalization techniques have
been studied by several authors in the context of quantum �eld theory, as well as its connection
with KAM theory [31, 35–39].

Our goal is to prove a semiclassical version of the renormalization problem. We consider
again the semiclassical Weyl quantization of Lω:

L̂ω,~ = Op
~
(Lω) = ω · ~Dx. (12)

Let (ε~)~ be a semiclassical scaling such that

ε~ 6 ~, (13)

and let V ∈ C(T∗Td;R) be a bounded real function. The precise assumptions on the regularity
of V will be stated below. Our aim is to construct an integrable counterterm R~ = R~(V) ∈
C(Rd), that only depends on the action variable ξ and is uniformly bounded in ~ ∈ (0, 1], so
that the quantum Hamiltonian

Q̂~ := L̂ω,~ + ε~Op~(V − R~) (14)

is unitarily equivalent to the unperturbed operator L̂ω,~. This will show that the spectrum of
the operator L̂ω,~ + ε~Op~(V) can be stabilized by adding the counterterm ε~Op~(R~) to the
system. Moreover, we will show that the sets of quantum limits and semiclassical measures
of sequences of eigenfunctions for the operator Q̂~ coincide with those of the unperturbed
operator L̂ω,~.

In a related work, Graf� and Paul [40] showed that the perturbed operator

P̂~ = L̂ω,~ + Op
~
(Vω)

can be conjugated to a convergentquantumnormal form for a speci�c class of bounded analytic
perturbations of the form

Vω(x, ξ) = V(x,ω · ξ), (x, ξ) ∈ T∗
T
d , (15)

(see Gallavotti [31] for a discussion of this condition). As a consequence, it is most likely
that the set of semiclassical measures is stable under perturbations of this type, without
necessity of renormalization. The main difference in our approach is the substitution of
the particular dependence on ω · ξ of V , which is stable under the conjugacies employed
by Graf� and Paul to construct the normal form, by the addition of the renormalization
function R~.

We emphasize that, compared to [32, 33, 41], our work is not based on the study of the
convergence of Lindstedt series. Alternatively, we will use an algorithm similar to that of
Govin et al [42] to construct a normal form, obtaining the counterterm R~ step by step.
We expect that condition (13) is not sharp. One should be able to deal with perturba-
tions of order O(1). The main dif�culty arises when managing the loss of analyticity in the
variable ξ.
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We will consider semiclassical perturbations Op~(V) whose symbol V enjoys some regu-
larity properties. We �rst consider the following spaces of analytic functions:

Definition 2. Let s > 0, we de�ne the Banach space As(Rd) of analytic functions
f ∈ Cω(Rd;R) such that

‖ f ‖As(Rd) :=
1

(2π)d/2

∫

Rd
| f̂ (η)| e|η|s dη <∞,

where f̂ denotes the Fourier transform of f . Let ρ > 0, we also de�ne the spaceAs,ρ(T∗Td) of
analytic functions g ∈ Cω(T∗Td;R) such that

‖g‖s,ρ :=
1

(2π)d/2
∑

k∈Zd
‖ĝ(k, ·)‖As(Rd) e

|k|ρ <∞,

where

ĝ(k, ξ) :=
1

(2π)d/2

∫

Td
g(x, ξ)e−ix·k dx, k ∈ Z

d.

Finally, we de�ne the space Aρ(Td) of functions v ∈ Cω(Td;R) such that

‖v‖Aρ(Td) :=
1

(2π)d/2
∑

k∈Zd
|v̂(k)|e|k|ρ <∞.

By the Calderón–Vaillancourt theorem (see lemma A.2 below), the semiclassical Weyl
quantization Oph(a) of a symbol a ∈ As,ρ(T∗Td) satis�es

‖Op~(a)‖L(L2) 6 Cd,ρ‖a‖s,ρ, ∀~ ∈ (0, 1].

We next proceed to state our second result:

Theorem 2. Let ω ∈ Rd be a Diophantine vector satisfying (8), and let V be a real valued
function that belongs to As,ρ(T∗

T
d) for some �xed s, ρ > 0. Assume that ε~ = ~ and

‖V‖s,ρ 6 ε, (16)

where ε > 0 is a small constant that depends only on s, ρ, γ and ς. Then, there exists a sequence
of integrable counterterms3 R~ = R~(V) ∈ As(Rd) with ‖R~‖As(Rd) . ‖V‖s,ρ, uniformly in
~ ∈ (0, 1], and

Spp
L2(Td)

(
Q̂~

)
= Spp

L2(Td )

(
L̂ω,~

)
= {~ω · k: k ∈ Z

d}. (17)

Moreover, denoting by M
(
Q̂~

)
the set semiclassical measures of sequences of normalized

eigenfunctions of the Hamiltonian Q̂~ with eigenvalues verifying λ~ → 1 as ~→ 0,

M
(
Q̂~

)
= M

(
L̂ω,~

)
=

⋃

ξ∈L−1
ω (1)

{
hTd×{ξ}

}
∪ {0}, (18)

3That is, R~ is a function only of the action variable ξ ∈ Rd .
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and the set of quantum limits of Q̂~ is precisely

N (Q̂~) =

{
1

(2π)d
dx

}
. (19)

In the case ε~ ≪ ~, condition (16) can be removed. Moreover, in this case we can relax
the regularity hypothesis on V in the ξ variable. Essentially, we just need that ξ 7→ V(x, ξ) is
bounded together with all its derivatives to ensure that Op~(V) is bounded on L2(T∗Td). In [43,
44], Sjöstrand introduced a Wiener algebra of L2-pseudodifferential operators with symbols
containing the class S0(R2d) (the class of symbols a ∈ C∞(R2d) that are bounded together with
all its derivatives) that is stable under composition. From these works, we de�ne the following
spaces:

Definition 3. Let e1, . . . , ed be a basis of Rd, we say that Γ = ⊕d
1Ze j is a lattice. Let

χ0 ∈ S(R2d) have the property that 1 =
∑

j∈Γχ j, where χ j(ξ) = χ0(x− j). We say that
f ∈ SW(Rd) if

U(η) := sup
j∈Γ

|χ̂ j f (η)| ∈ L1(Rd).

The space SW is a Banach space with the norm

‖ f ‖W :=Cd‖sup
j∈Γ

|χ̂ j f |‖L1(Rd ), (20)

where Cd is a �xed and large constant depending only on d. Let ρ > 0, we say that
g ∈ C∞(R2d;R) belong to AW,ρ(R2d) if

‖g‖W,ρ :=
1

(2π)d/2
∑

k∈Zd
‖ĝ(k, ·)‖W e|k|ρ <∞.

Remark 2. The de�nition of SW(Rd) does not depend on the choice of Γ, χ0, see ([43],
lemma 1.1).

Remark 3. Observe that, for every s, ρ > 0, As,ρ(T∗
T
d) ⊂ AW,ρ(T∗

T
d) and As(Rd) ⊂

SW(Rd). Notice also thatAW,ρ(T∗Td) is contained in the space of bounded continuous functions
on T∗Td .

Theorem 3. Let ω ∈ Rd be a strongly non-resonant frequency satisfying (8), and let
V ∈ AW,ρ(T∗Td) for some �xed ρ > 0. Let (ε~) be a sequence of positive real numbers
satisfying

ε~ ≪ ~. (21)

Then, there exists a sequence of integrable counterterms R~ = R~(V) ∈ SW(Rd) such that
‖R~‖W . ‖V‖W,ρ, uniformly in ~ ∈ (0, 1], so that (17)–(19) hold.

2. Proof of theorem 1

To prove theorem 1, we will use a classical KAM result due to Moser [26] about small per-
turbations of constant vector �elds on the torus. Precisely, we will recall a work of Pöschel
[28] that simpli�es the KAM iteration argument. On the other hand, we will use Egorov’s
theorem to establish the classic-quantum correspondence to obtain our result in terms of the
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quantum system. Our approach is similar to that of Bambusi et al in [45], in which they obtain
reducibility for a class of perturbations of the quantum harmonic oscillator.

The proof of theorem 1 is divided in two parts. First, we prove that the family P̂ϕ(ω),~ is
unitarily equivalent to L̂ω,~. This shows the stability of the spectrum along this family. The
following holds:

Theorem 4. Let s, ρ > 0 and V ∈ Ls,ρ be real analytic verifying (11). Then, there exist a
real change of frequencies ϕ :Ω→ Ωρ satisfying

sup
ω∈Ω

|ϕ(ω)− ω| 6 C1|V|s,ρ,

and a family of unitary operators Ω ∋ ω 7−→ Uω on L2(Td) such that

Uω P̂ϕ(ω),~ U∗
ω = L̂ω,~. (22)

Remark 4. In particular, if V = 0 then ϕ = Id and Uω = Id.

In the second part, wewill compare the semiclassicalmeasures and quantum limits of P̂ϕ(ω),~
with those of L̂ω,~.

2.1. A classical KAM theorem

We �rst recall the result of Pöschel [28]. We will use the Diophantine property (8) for the sake
of simplicity, but the more general Rüssmann condition considered in [28] would be valid as
well.

Theorem 5 ([28]). Let Ω ⊂ Rd be a compact set of strongly nonresonant frequencies, that
is, ω ∈ Ω satis�es (8). Let s, ρ > 0 and V ∈ Ls,ρ such that

|V|s,ρ = ε <
ρ

16
6

ς

32λγ
, (23)

where the constants ς and γ are de�ned in (8), and λ is so large that

r := 8γ

(
1+ log λ

λ

)
<

s

2
. (24)

Then there exists a real map ϕ :Ω→ Ωρ and, for every ω ∈ Ω, a real analytic diffeomorphism
θω of the d-torus such that, denoting

Θω(x, ξ) =
(
θω(x), [(∂xθω(x))

T]−1ξ
)
,

the following holds:

(
Lϕ(ω) + V(·;ϕ(ω))

)
◦Θω = Lω. (25)

Moreover,

sup
ω∈Ω

|ϕ(ω)− ω| 6 ε, sup
ω∈Ω

sup
x∈Td

|θω(x)− x| 6 r ς−1λγε. (26)

This means that, for every ω′ in the Cantor set ϕ(Ω), the Hamiltonian Pω′ is canonically
conjugate to the unperturbed one Lω , where ω = ϕ−1(w′), and hence the energy level P−1

ω′ (1)
is foliated by invariant tori with frequency ω.
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Using this result, the proof of theorem 4 is straightforward in terms of Egorov’s theorem:

Proof of theorem 4. We de�ne the unitary operator Uω : L2(Td)→ L2(Td) by

Uωψ(x) :=
√
| det dθω(x)|ψ (θω(x)) . (27)

By Egorov’s theorem, which is exact in this case, we conclude that

Uω P̂ϕ(ω),~ U∗
ω = Op

~

(
(Lϕ(ω) + V(·,ϕ(ω))) ◦Θω

)
= Op

~
(Lω) = L̂ω,~.

�

2.2. Quantum limits and semiclassical measures

We next complete the proof of theorem 1.

Proposition 1. Let ω ∈ Rd be linearly independent over the rationals4. Then

M(L̂ω,~) =
⋃

ξ∈L−1
ω (1)

{
hTd×{ξ}

}
∪ {0}, N (L̂ω,~) =

{
1

(2π)d
dx

}
.

Proof. We recall that the point-spectrum of L̂ω,~ is given by

Spp
L2(Td)

(
L̂ω,~

)
= {λk,~ = ~ω · k : k ∈ Z

d}.

Each eigenvalue hasmultiplicity equal to one due to the nonresonant condition onω. Moreover,
the set of eigenfunctions is just given by

ek(x) =
eik·x

(2π)d/2
, k ∈ Z

d.

By a direct calculation using identity (7) for the Wigner distribution on the torus, for every test
function a ∈ C∞

c (T∗Td):

W~

ek
(a) =

1
(2π)d

∫

Td
a(x, ~k) dx, k ∈ Z

d.

Equivalently,W~
ek
= hTd×{~k}. Given a sequence

λk j,~ j = ~ j ω · k j → 1, as ~ j → 0, (28)

if ~ jk j → ξ ∈ Rd then clearly ξ ∈ L−1
ω (1). In other words, hTd×{ξ} ∈ M(L̂ω,~). Reciprocally,

any point ξ ∈ L−1
ω (1) can be obtained as the limit of a sequence (~ jk j) satisfying (28), and

hence any measure hTd×{ξ} is the semiclassical measure associated to some sequence of eigen-
functions. Finally, since L−1

ω (1) is not compact, there are also sequences (~ jk j) satisfying (28)
such that

lim
j→∞

|~ jk j| = ∞.

For those sequences, we have µ = 0. Thus 0 ∈ M(L̂ω,~).

4That is, if k ∈ Zd satis�es ω · k = 0 then k = 0.
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The second assertion is trivial since

|ek(x)|2 =
1

(2π)d
, k ∈ Z

d.

�

We are now in position to conclude the proof of theorem 1. Since

L̂ω,~ = Uω P̂ϕ(ω),~ U∗
ω ,

where Uω is unitary on L2(Td), the spectrum of P̂ϕ(ω),~ is the same as the spectrum of L̂ω,~, and
the eigenfunctions are precisely

Ψk = U∗
ωek, k ∈ Z

d.

Thus, applying Egorov’s theorem,

W~

Ψk
(a) = W~

ek
(a ◦Θω)+ O(~), a ∈ C∞

c (T∗
T
d),

and similarly, using (27),
∫

Td
b(x)|Ψk(x)|2 dx =

∫

Td
b ◦ θω(x)|ek(x)|2 dx, b ∈ C∞(Td). (29)

Then the proof of theorem 1 reduces to the proof of proposition 1.

3. Proof of theorems 2 and 3

The main ingredient in the proof of theorem 2 is the following quantum version of the
renormalization problem:

Theorem 6. Let ω ∈ Rd be a strongly non resonant frequency satisfying (8), and let
V ∈ As,ρ(T∗Td) for some �xed s, ρ > 0. Assume that ε~ = ~, and

‖V‖s,ρ 6
ς

64

( √
ρ

2(γ − 1)

)2(γ−1)

. (30)

Then there exist a sequence of unitary operators U~ : L2(Td)→ L2(Td), and a sequence of
counterterms R~ ∈ As(Rd) such that

U~

(
L̂ω,~ + ε~Op~(V − R~)

)
U∗
~ = L̂ω,~. (31)

Moreover,

‖R~‖As(Rd) 6 2‖V‖s,ρ, ∀~ ∈ (0, 1].

In the case ε~ ≪ ~, we can remove condition (30); we will prove theorem 3 applying the
following version of theorem 6 with less regularity:

Theorem 7. Let ω ∈ Rd be a strongly non resonant frequency satisfying (8), and let
V ∈ AW,ρ(T∗Td) for some �xed ρ > 0. Assume that ε~ ≪ ~. Then there exist a sequence of
unitary operators U~ : L2(Td)→ L2(Td), and a sequence of counterterms R~ ∈ SW(Rd) such
that (31) holds. Moreover,

‖R~‖W 6 2‖V‖W,ρ, ∀~ ∈ (0, 1].

2574



Nonlinearity 33 (2020) 2562 V Arnaiz

3.1. KAM iterative algorithm

To �nd R~, we start from the full renormalized operator Q̂~ with R~ as unknown and then we
will construct U~ and R~ by an iterative averaging method. We will �nd the renormalization
function R~ as an in�nite sum of the form

R~ :=
∞∑

j=1

R j,~,

where each R j,~ will be determined at each step of the iteration and the sum will be proven to
converge.

We initially set V1 :=V , and consider

Q̂1,~ := Q̂~ = L̂ω,~ + ε~


Op

~
(V1)−

∞∑

j=1

Op
~
(R j,~)


 . (32)

The goal at the �rst step of the iteration is to choose a good �rst term R1,~, then average the term
V1 by the �ow generated byLω , and �nally estimate the remainder terms. Given a ∈ C∞(T∗Td)
we de�ne its average 〈a〉 along the �ow

φLωt : (x, ξ) 7→ (x+ tω, ξ),

by the following limit in the C∞-topology of T∗Td:

〈a〉(ξ) := lim
T→∞

1
T

∫ T

0
a ◦ φLωt (x, ξ) dt =

1
(2π)d

∫

Td
a(x, ξ) dx =

1
(2π)d/2

â(0, ξ),

(33)

where recall that we have used the convention for the Fourier coef�cients of a,

â(k, ξ) := 〈a, ek〉L2(Td) =
1

(2π)d/2

∫

Td
a(x, ξ)e−ik·x dx, k ∈ Z

d.

If a is bounded together with all its derivatives, Egorov’s theorem allows us to de�ne the
quantum average of Op~(a) by

〈Op~(a)〉 := lim
T→∞

1
T

∫ T

0
e

it
~
L̂ω,~ Op~(a) e

− it
~
L̂ω,~ dt, (34)

and, sinceLω is a polynomial of degree one, we have that the limit exists in the strong-operator
norm, and

〈Op~(a)〉 = Op~(〈a〉).

We set R1,~ := 〈V1〉 and consider a unitary operator of the form

U1,~(t) := e
itε

~
~

Op~(F1) =

∞∑

j=0

1
j!

(
itε~
~

) j

Op~(F1)
j, t ∈ [0, 1],

where Op~(F1) will be the solution of the cohomological equation

i

~
[L̂ω,~, Op~(F1)] = Op~(V1 − R1), 〈F1〉 = 0. (35)
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We show in lemma 1 below how to solve this cohomological equation.Moreover, the Diophan-
tine condition (8) on ω will allow us to bound the solution F1 with a bit of loss of analyticity
in the variable x. Denoting now U1,~ = U1,~(1) and Q̂2,~ :=U1,~ Q̂1,~U∗

1,~, and using Taylor’s
theorem, we get

Q̂2,~ = L̂ω,~ +
iε~
~

[Op
~
(F1), L̂ω,~]+ ε~Op~(V1 − R1)

+

(
iε~
~

)2∫ 1

0
(1− t)U1,~(t)[Op~(F1), [Op~(F1), L̂ω,~]]U1,~(t)

∗ dt

+
iε2

~

~

∫ 1

0
U1,~(t)[Op~(F1), Op~(V1 − R1)]U1,~(t)

∗ dt

−ε~
∞∑

j=2

U1,~Op~(R j,~)U
∗
1,~.

With this and the cohomological equation (35), we obtain

Q̂2,~ = L̂ω,~ + ε~


Op

~
(V2,~)−

∞∑

j=2

U1,~Op~(R j,~)U
∗
1,~


 ,

where

Op
~
(V2,~) =

iε~
~

∫ 1

0
tU1,~(t)[Op~(F1), Op~(V1 − R1)]U1,~(t)

∗ dt. (36)

Now we proceed to explain the induction step. Assume we have constructed unitary
operators U1,~, . . . ,Un−1,~ and counterterms R1,~, . . . ,Rn−1,~ so that

Q̂n,~ = Un−1,~ · · ·U1,~ Q̂1,~U
∗
1,~ · · ·U∗

n−1,~ = L̂ω,~ + ε~

(
Op

~
(Vn,~)−

∞∑

j=n

Ên, j,~

)
, (37)

where, for every j > n:

Ên, j,~ = Op
~
(En, j,~) :=Un−1,~ · · · U1,~Op~(R j,~)U

∗
1,~ · · · U∗

n−1,~.

We will choose Rn,~ to be the unique solution of the operator equation

〈Ên,n,~〉 = 〈Un−1,~ · · · U1,~Op~(R j,~)U
∗
1,~ · · · U∗

n−1,~〉 = 〈Op
~
(Vn,~)〉, (38)

given by lemma 2 below. We next consider the unitary operator

Un,~(t) := e
itε

~
~

Op~(Fn,~)
=

∞∑

j=0

1
j!

(
itε~
~

) j

Op
~
(Fn,~)

j, t ∈ [0, 1],

where Op~(Fn,~) solves the cohomological equation (see lemma 1):

i

~
[L̂ω,~, Op~(Fn,~)] = Op~(Vn,~ − En,n,~), 〈Fn,~〉 = 0. (39)
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As in the �rst step, we denote Un,~ :=Un,~(1). De�ning Q̂n+1,~ :=Un,~ Q̂n,~U∗
n,~, we use

Taylor’s theorem to expand

Q̂n+1,~ = L̂ω,~ +
iε~
~

[Op
~
(Fn,~), L̂ω,~]+ ε~Op~(Vn,~ − En,n,~)

+

(
iε~
~

)2∫ 1

0
(1− t)Un,~(t)[Op~(Fn,~), [Op~(Fn,~), L̂ω,~]]Un,~(t)

∗ dt

+
iε2

~

~

∫ 1

0
Un,~(t)[Op~(Fn,~), Op~(Vn,~ − En,n,~)]Un,~(t)

∗ dt

−ε~
∞∑

j=n+1

Un,~Op~(En, j,~)U
∗
n,~,

and using the cohomological equation (39), we obtain

Q̂n+1,~ = L̂ω,~ + ε~


Op

~
(Vn+1,~)−

∞∑

j=n+1

Op
~
(En+1, j,~)


 ,

where

Op
~
(Vn+1,~) =

iε~
~

∫ 1

0
tUn,~(t)[Op~(Fn), Op~(Vn,~ − En,n,~)]Un,~(t)

∗dt, (40)

and, for every j > n+ 1,

Ên+1, j,~ = Op~(En+1, j,~) :=Un,~Op~(En, j,~)U
∗
n,~.

This iteration procedure will converge provided that V is suf�ciently small. Precisely, we
will obtain a unitary operator U~ as the limit, in the strong operator L(L2)-norm,

U~ := lim
n→∞

Un,~ · · · U1,~.

3.2. Cohomological equations

In this sectionwe explain how to solve the cohomological equations appearing in our averaging
method. This is a standard technique when dealing with small divisors problems.

Lemma 1. Let V ∈ As,ρ(T∗Td). Then, the cohomological equation

i

~
[L̂ω,~, Op~(F)] = Op~(V − 〈V〉), 〈F〉 = 0, (41)

has a unique solution F ∈ As,ρ−σ(T∗Td), for every 0 < σ < ρ, such that

‖F‖s,ρ−σ 6 ς−1

(
γ − 1
eσ

)γ−1

‖V‖s,ρ. (42)

Similarly, if V ∈ AW,ρ(R2d), then there exists a unique F ∈ AW,ρ−σ(T∗Td) solving (41), and
(42) holds replacing ‖·‖s,· by ‖·‖W,·.
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Proof. Using the properties of the symbolic calculus for the Weyl quantization, which in
this case is exact since Lω is a polynomial of degree one, equation (41) at symbol level
is just

{Lω ,F} = V − 〈V〉, 〈F〉 = 0. (43)

Recall also that, by (33), the average of V is given by

〈V〉(ξ) = 1
(2π)d

∫

Td
V(x, ξ) dx =

1
(2π)d/2

V̂(0, ξ).

On the other hand, since

{Lω ,F}(x, ξ) =
∑

k∈Zd
iω · k F̂(k, ξ)ek(x),

we obtain the following formal series for the solution of (43):

F(x, ξ) =
∑

k∈Zd\{0}

V̂(k, ξ)
iω · k ek(x). (44)

Finally, by Diophantine condition (8) and estimate (A.2), we conclude that

‖F‖s,ρ−σ 6 ς−1

(
γ − 1
eσ

)γ−1

‖V‖s,ρ. (45)

Since the loss of analyticity of F with respect to V occurs only in the variable x, one
can substitute the norms ‖·‖s,· by ‖·‖W,· in (45) to obtain also the second assertion of the
statement. �

3.3. Convergence

We next show that the algorithm sketched in section 3.1 converges under appropriate
hypothesis.

Proof of theorem 6. We start by �xing the following universal constants:

α :=
1
4
, β :=

1
16

, λ := e
β

1−√
α − 1. (46)

Now set

ρ1 := ρ, σ1 :=
ρ

2e(γ − 1)
α

1
2(γ−1) . (47)

By lemma 1, (47) and hypothesis (30),

‖F1‖s,ρ1−σ1 6 ς−1

(
γ − 1
eσ1

)γ−1

‖V1‖s,ρ1 6
β

2
.
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Then, using (36) and the conventions of appendix A,

V2,~ =
iε~
~

∫ 1

0
tΨε~F1

t,~ ([F1,V1 − R1]~) dt,

where [·, ·]~ andΨF
t,~ are de�ned in (A.7) and (A.8), estimate (A.9), and lemma A.4, we obtain

‖V2‖s,ρ1−σ1 6 β(1+ β)‖V1‖s,ρ1 6 α‖V1‖s,ρ1 .

Moreover, by de�nition of R1 and of our analytic spaces (de�nition 2):

‖R1‖As(Rd ) = ‖〈V1〉‖As(Rd ) 6 ‖V1‖s,ρ1 .

This shows the starting step of the induction. We next de�ne sequences

σn+1 :=σnα
1

2(γ−1) , ρn+1 := ρn − σn, n > 1,

and assume the following induction hypothesis: for every n > 2 and 1 6 j 6 n− 1, there exist
F j,~ and R j,~ so that

‖F j,~‖s,ρ j 6
βα

j−1
2

2
, ‖R j,~‖s 6

α j−1

1− λ
‖V1‖s,ρ1 , (48)

and, for Vn,~ obtained in (37),

‖Vn,~‖s,ρn 6 αn−1‖V1‖s,ρ1 . (49)

To prove the induction step, we �rst recall that, for every j > n, Ên, j,~ = Op
~
(En, j,~), where

En, j,~ = Ψ
ε~Fn−1
1,~ ◦ · · · ◦Ψε~F1

1,~ R j,~.

Our choice of Rn,~ is the unique solution of equation (38). At symbol level, equation (38)
reads

〈En,n,~〉 = 〈Ψε~Fn−1
1,~ ◦ · · · ◦Ψε~F1

1,~ Rn,~〉 = 〈Vn,~〉. (50)

The solution exists and is unique in view of the following: �

Lemma 2. Assume that ε~ 6 ~. Let 〈V〉 ∈ As(Rd) and let F j ∈ As,ρ j(T
∗Td) for 1 6 j 6

n− 1 and some positive numbers ρ1 > · · · > ρn−1 > 0 such that

2‖F j‖s,ρ j−σ j 6 β α
j−1
2 ,

where α, β > 0 satisfy

λ := e
β

1−√
α − 1 < 1.

Then, there exists R ∈ As(Rd) so that

〈Ψε~Fn−1
1,~ ◦ · · · ◦Ψε~F1

1,~ R〉 = 〈V〉,
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and

‖R‖As(Rd) 6
1

1− λ
‖〈V〉‖As(Rd ), ‖Ψε~Fn−1

1,~ ◦ · · · ◦Ψε~F1
1,~ R‖s,ρn 6

1+ λ

1− λ
‖〈V〉‖As(Rd).

Proof. De�ne the map T :As(Rd)→As(Rd) by

T(R) := 〈Ψε~Fn−1
~,1 ◦ · · · ◦Ψε~F1

~,1 R〉.

By lemma A.4, we have

‖T(R)− R‖As(Rd )

6



n−1∏

j=1

(
1+ βα

j−1
2

)
− 1


 ‖R‖As(Rd ) 6

(
e

β
1−√

α − 1

)
‖R‖As(Rd) = λ‖R‖As(Rd ).

Then, there exists an inverse map T−1:As(Rd)→As(Rd) de�ned by Neumann series, and

‖T−1‖As→As 6
1

1− λ
.

Finally, applying lemma A.4 one more time, we obtain:

‖Ψε~Fn−1
~,1 ◦ · · · ◦Ψε~F1

~,1 R‖s,ρn 6
1+ λ

1− λ
‖〈V〉‖As(Rd ).

This concludes the proof of the lemma. �

Applying this lemma to (50), we obtain

‖Rn,~‖s,ρn 6
1

1− λ
‖Vn,~‖s,ρn 6

αn−1

1− λ
‖V1‖s,ρ1 ,

‖En,n,~‖s,ρn 6
1+ λ

1− λ
‖Vn,~‖s,ρn 6

1+ λ

1− λ
αn−1‖V1‖s,ρ1 .

Note that, with our choice of constants (46):

β(1+ β)

(
1+

1+ λ

1− λ

)
6 α.

We next observe that, by lemma 1 and hypothesis (30), there exists Fn,~ solving (39) such
that:

‖Fn,~‖s,ρn−σn 6 ς−1

(
γ − 1
eσn

)γ−1

‖Vn − En,n,~‖s,ρn

6 ς−1

(
γ − 1
eσ1

)γ−1(
1+

1+ λ

1− λ

)
α

n−1
2 ‖V1‖s,ρ1

6
βα

n−1
2

2
.
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Then, recalling (40), which at symbol level reads

Vn+1,~ =
iε~
~

∫ 1

0
tΨε~Fn

t,~

(
[Fn,Vn,~ − En,n,~]~

)
dt,

we can apply estimate (A.9) and lemmas A.4 and 2 to obtain:

‖Vn+1,~‖s,ρn−σn 6 β(1+ β)

(
1+

1+ λ

1− λ

)
‖Vn,~‖s,ρn

6 α‖Vn,~‖s,ρn 6 αn‖V1‖s,ρ1 .

This �nishes the induction step. Note that our choice of constants also ensures that

∞∑

n=1

σn = σ1

∞∑

j=0

(
1
2

) j
γ−1

6
ρ

2e(γ − 1)
1

log 2
1

γ−1
6

ρ

2e log 2
6
ρ

2
.

Moreover,

‖R~‖As(Rd) 6

∞∑

j=1

‖R j,~‖As(Rd ) 6


 1
1− λ

∞∑

j=0

α j


 ‖V1‖s,ρ 6 2‖V1‖s,ρ.

It remains to show that there exists a unitary operator U~ so that

U~ := lim
n→∞

Un,~ · · · U1,~.

For every 1 6 n, we set the unitary operator Un,~ by

Un,~ :=Un,~ · · · U1,~.

We have, for every p> 1:

Un+p,~ − Un,~ = Un,~ R~(n, p),

where

Rh(n, p) := e
iε~
~
F̂n+1,~ · · · e

iε~
~
F̂n+p,~ − I, F̂j,~ :=Op

~
(Fj,~).

By Taylor’s theorem, we can write

e
iε
~
~
F̂j,~ = I + B̂ j,~, B̂ j,~ :=

iε~
~
F̂j,~

∫ 1

0
e
itε

~
~

F̂j,~ dt.

Moreover, lemma A.2 and (48) allow us to bound the L(L2) norm of B̂ j,~ by:

‖B̂ j,~‖L(L2) 6
Cd,ρβα

j−1
2

2
.
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Thus

‖R~(n, p)‖L(L2) 6 −1+
p∏

j=1

(
1+ ‖B̂n+ j,~‖L(L2)

)
6 −1+ exp

[
Cd,ρβα

n−1
2

2(1− α1/2)

]
.

Finally, taking the limit n→∞, we obtain that the sequence {Un,~}n>1 is a Cauchy sequence
in the operator norm, and then the result holds. �

Proof of theorem 7. The proof of theorem 7 follows the same lines of the proof of theorem
6, after replacing respectively the spaces As,ρ(T∗Td) and As(Rd) by AW,ρ(T∗Td) and SW(Rd).
Notice that condition (30) is not required since, by the hypothesis ε~ ≪ ~, it is satis�ed for
ε~
~
‖V‖W,ρ instead of ‖V‖s,ρ if ~ is suf�ciently small. Observe also that lemmaA.4 remains valid

in view of corollary A.5; estimate (A.9) can be replaced by (A.10), and one can use estimate
(A.6) instead of lemma A.2. �

3.4. Semiclassical measures and quantum limits

We next complete the proof of theorem 2. We will require the following two lemmas:

Lemma 3. Let s, ρ > 0. Assume that ε~ = ~ and V ∈ As,ρ(T∗Td) satis�es (30). Then, for
every a ∈ As,ρ(T∗Td),

‖U~Op~(a)U∗
~
− Op

~
(a)‖L(L2) = O(ε~), (51)

and similarly, for every b ∈ Aρ(Td),

‖U~Op~(b)U∗
~ − Op~(b)‖L(L2) = O(ε~). (52)

Proof. For every n > 1, we de�ne:

δn :=

(
1
2

) n−1
3

δ1, δ1 := min
{ ρ

10
,
s

10

}
.

Note that

∞∑

n=1

δn 6 min
{ρ
2
,
s

2

}
.

By (48), we have

‖Fn,~‖s,ρn 6 Cρ δ
3
n ,

where the constant Cρ depends only on ρ. Hence, de�ning the sequence un :=min{s, ρn}, one
has that, for every n > 1 and ~ > 0 suf�ciently small:

2‖ε~Fn,~‖un
δ2n

6 Cρ δn ε~ 6
1
2
,
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where the norm ‖·‖un is de�ned by (A.11). Using lemma A.7, for every a ∈ As,ρ(T∗Td), we
have

∥∥∥Ψε~Fn,~
1,~ (a)− a

∥∥∥
un−δn

6 Cρ δn ε~‖a‖s,ρ. (53)

Finally, recalling thatU~ = limn→∞Un,~ · · · U1,~, that every operatorUn,~ is unitary on L2(Td),
and using lemma A.2 and (53), we obtain:

‖U~Op~(a)U∗
~ − Op~(a)‖L(L2)
6 Cρ

∞∑

n=1

‖Ψε~Fn,~
1,~ (a)− a‖un−δn 6 Cρ ε~‖a‖s,ρ

∞∑

n=1

δn 6 Cρ ε~‖a‖s,ρ.

This shows (51). The proof of (52) is completely analogous but, in this case, using lemma A.7
to show that

∥∥∥Ψε~Fn,~
1,~ (b)− b

∥∥∥
un−δn

6 Cρ δn ε~‖b‖Aρ(Td),

instead of (53). �

Lemma 4. Let s, ρ > 0. Assume that ε~ = ~ and V ∈ As,ρ(T∗Td) satis�es (30). Then, for
every a ∈ C∞

c (T∗Td),

‖U~Op~(a)U∗
~
− Op

~
(a)‖L(L2) = o(1), as ~→ 0+. (54)

Proof. Let ε > 0 and a ∈ C∞
c (T∗

T
d). Assume that, for every s, ρ > 0, there exists

a† ∈ As,ρ(T∗Td) such that

‖a− a†‖L∞(T∗Td ) 6 ε. (55)

Then, by lemma 3, the triangular inequality and ([2], theorem 13.13):

‖U∗
~Oph(a)U~ − Oph(a)‖L(L2)
6 ‖U~Oph(a− a†)U∗

~
‖L(L2) + ‖U~Oph(a

†)U∗
~
− Oph(a

†)‖L(L2) + ‖Oph(a− a†)‖L(L2)
6 Cd‖a− a†‖L∞(T∗Td ) + Oε(~),

and hence

lim sup
~→0+

‖U~Op~(a)U∗
~ − Oph(a)‖L(L2) 6 Cd ε.

Since the choice of ε > 0 was arbitrarily, we conclude that

lim
~→0+

‖U~Oph(a)U∗
~
− Oph(a)‖L(L2) = 0.

It remains to show (55). Using the notation (A.3) of the appendix A, we write

a(z) =
1

(2π)d

∫

Zd
â(w)eiz·wκ(dw), z = (x, ξ) ∈ T∗

T
d.
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For R > 1, we de�ne aR ∈ As,ρ(T∗Td) by

âR(w) = â(w)e−
|w|2
R .

It satis�es

‖aR − a‖L∞(T∗Td) 6
1

(2π)d

∫

Zd
|â(w)|

∣∣∣∣e−
|w|2
R − 1

∣∣∣∣κ(dw)→ 0, asR→∞.

Then it is suf�cient to take a† = aR for R suf�ciently large. �

Proof of theorem 2. By proposition 1,

M(L̂ω,~) =
⋃

ξ∈L−1
ω (1)

{
hTd×{ξ}

}
∪ {0}, N (L̂ω,~) =

{
1

(2π)d
dx

}
. (56)

On the other hand, theorem 6 implies that the set of normalized eigenfunctions of Q̂~ is
precisely the orthonormal basis of L2(Td) given by

{Ψk,~ = U∗
~ek : k ∈ Z

d}.

Using lemma 4, we obtain that, for every a ∈ C∞
c (T∗Td),

W~

Ψk,~
(a) = W~

ek
(a)+ o(1), k ∈ Z

d.

Finally, by (52) and since Aρ(Td) is dense in C(Td), we obtain that, for every b ∈ C(Td),

∫

Td
b(x)|Ψk,~(x)|2 dx =

∫

Td
b(x)|ek(x)|2 dx+ o(1).

Therefore, the proof of the theorem follows from (56). �

Finally, we complete the proof of theorem 3. It follows essentially the same arguments as
before, but substituting lemmas 3 and 4 by the following one:

Lemma 5. Let ρ > 0. Let V ∈ AW,ρ(T∗Td), and assume that ε~ ≪ ~. Then, for every a ∈
C∞
c (T∗Td),

‖U~ Op~(a)U∗
~ − Op~(a)‖L(L2) = o(1), as ~→ 0+, (57)

and similarly, for every b ∈ C(Td),

‖U~ Op~(b)U∗
~
− Op

~
(b)‖L(L2) = o(1), as ~→ 0+. (58)

Proof. Recall that, in the case V ∈ AW,ρ(T∗
T
d), the �rst estimate of (48) remains valid and

can be rewriten as

‖F j,~‖W,ρ j 6
βα

j−1
2

2
.
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Thus, by corollary A.5, for every a ∈ AW,ρ(T∗Td) and n > 1:

‖Ψε~Fn,~
1,~ (a)− a‖W,ρn 6 O

(ε~
~

)
α

n−1
2 ‖a‖W,ρ. (59)

Finally, recalling again that U~ = limn→∞Un,~ · · · U1,~, that every operator Un,~ is unitary on
L2(Td), and using (A.6) and (59), we obtain:

‖U~Op~(a)U∗
~
− Op

~
(a)‖L(L2)

6 Cρ

∞∑

n=1

‖Ψε~Fn,~
1,~ (a)− a‖W,ρn 6 Oρ

(ε~
~

) ∞∑

n=1

α
n−1
2 ‖a‖W,ρ = O

(ε~
~

)
.

Therefore, (57) follows by density of C∞
c (T∗Td) ∩AW,ρ(T∗Td) in C∞

c (T∗Td); and, since
Aρ(Td) ⊂ AW,ρ(T∗

T
d), (58) follows by density of Aρ(Td) in C(Td). �

Proof of theorem 3. Applying lemma 5, the proof of theorem 3 reduces to the proof of
theorem 2. �
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Appendix A. Pseudodifferential calculus on the torus

We include some basic lemmas about the quantization of the spaces As,ρ(T∗
T
d), As(Rd),

Aρ(Td), AW,ρ(T∗Td) and SW(Rd). We �x s, ρ > 0 all along this appendix.

Definition A.1. Let a : T∗Td → C be a symbol. The semiclassical Weyl quantizationOp~(a)
acting on ψ ∈ S(Td) is de�ned by

Op
~
(a)ψ(x) =

∑

k, j∈Zd
â

(
k− j,

~(k+ j)
2

)
ψ̂(k)ei j·x,

where â(k− j, ·) denotes the (k − j)th-Fourier coef�cient in the variable x.

Lemma A.2 (Analytic Calderón–Vaillancourt theorem). For every a ∈ As,ρ(T∗Td), the
following holds:

‖Op~(a)‖L(L2(Td )) 6 Cd,ρ‖a‖s,ρ, ~ ∈ (0, 1]. (A.1)

Proof. By the usual Calderón–Vaillancourt theorem, see for instance ([40], proposition 3.5),
the following estimate holds:

‖Op
~
(a)‖L(L2) 6 Cd

∑

|α|6Nd

‖∂αx a‖L∞(T∗Td), ~ ∈ (0, 1].
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Now, using the elementary estimate

sup
t>0

tme−tρ =

(
m

eρ

)m

, m > 0, (A.2)

we obtain

‖∂αx a‖L∞(T∗Td) 6
1

(2π)d/2
∑

k∈Zd
|kα|‖â(k, ·)‖L∞(Rd) 6

( |α|
eρ

)|α|
‖a‖s,ρ = Cα,ρ‖a‖s,ρ.

�

Let a, b : T∗Ts → C, the operator given by the composition Op~(a)Op~(b) is another Weyl
pseudodifferential operator with symbol c given by the Moyal product c = a♯~b, see for
instance ([1], chapter 7). To write c conveniently,we consider the product spaceZd :=Zd × Rd

and the measure κ on Zd de�ned by

κ(w) = K
Zd (k)⊗ L

Rd (η), w = (k, η) ∈ Zd,

where LRd denotes the Lebesgue measure on Rd, and

K
Zd (k) :=

∑

j∈Zd
δ(k− j), k ∈ Z

d.

Using this measure, we can write any function a ∈ As,ρ(T∗Td) as

a(z) =
1

(2π)d

∫

Zd
Fa(w)eiz·wκ(dw), (A.3)

where z = (x, ξ) ∈ T∗Td , and F denotes the Fourier transform in T∗Td:

Fa(w) =
1

(2π)d

∫

T∗Td
a(z)e−iw·z dz.

With these conventions, the Moyal product c = a♯~b can be written by the following integral
formula:

a♯~b(z) =
1

(2π)2d

∫

Zd×Zd
(Fa) (w′) (Fb) (w − w′)e

i~
2 {w′,w−w′}eiz·wκ(dw′)κ(dw), (A.4)

where {·, ·} stands for the standard symplectic product in Zd ×Zd:

{w,w′} = k · η′ − k′ · η, w = (k, η), w′
= (k′, η′).

Alternatively, we can deduce from (A.4) the following formula:

a♯~b(x, ξ) =
1

(2π)d
∑

k,k′∈Zd
â

(
k′, ξ +

~(k− k′)
2

)
b̂

(
k− k′, ξ − ~k′

2

)
eik·x, (A.5)

which also holds for symbols a, b ∈ AW,ρ(T∗Td). �
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Lemma A.3. Let ρ > 0 and a, b ∈ AW,ρ(T∗Td). Then a♯~b ∈ AW,ρ(T∗Td) and

‖a♯~b‖W,ρ 6 ‖a‖W,ρ‖b‖W,ρ,

provided that the constant Cd in (20) is suf�ciently large.

The proof of lemma A.3 can be obtained following the same ideas of ([44], theorem 2.1).
We omit the details for the sake of shortness. Moreover, one can show L2 boundness
for pseudodifferential operators with symbols in AW,ρ(T∗Td). Precisely, the following
Calderón–Vailancourt-type result holds [see ([44], section 3)]: for every a ∈ AW,ρ(T∗Td):

‖Op
~
(a)‖L(L2) 6 Cd,ρ‖a‖W,ρ, ~ ∈ (0, 1]. (A.6)

Coming back to the symbolic calculus for Weyl pseudodifferential operators, we will
employ the notation

[a, b]~ := a♯~b− b♯~a, (A.7)

for theMoyal commutator.Hence [Op~(a), Op~(b)] = Op~([a, b]~).Moreover, given two sym-
bols a,F ∈ AW,ρ(T∗Td), we have the following formula for the conjugation of Op~(a) by
ei

t
~
Op~(F):

ei
t
~
Op~(F)Op

~
(a)e−i t

~
Op~(F)

= Op
~

(
Ψ
F
t,~(a)

)
, t ∈ [0, 1],

where the symbolΨF
t,~(a) is given by

Ψ
F
t,~(a) :=

∞∑

j=0

1
j!

(
it
~

)
Ad♯~, j

F (a), t ∈ [0, 1], (A.8)

and, as usual in the terminology of Lie algebras,

Ad♯~, j
F (a) = [F, Ad♯~, j−1

F (a)]~, Ad♯~,0
F (a) = a.

Lemma A.4. Assume that a,F ∈ As,ρ(T∗Td). Let ε~ 6 ~ such that

β = 2‖F‖s,ρ 6 1/2,

then

‖Ψε~F
t,~ (a)− a‖s,ρ 6 β‖a‖s,ρ, |t| 6 1.

Proof. Using the expression

[a, b]~(z) = 2i
∫

Z2d
Fa(w′)Fb(w − w′) sin

(
~

2
{w′,w − w′}

)
eiw·z

(2π)2d
κ(dw′)κ(dw),

for the Moyal commutator, we obtain that

‖[F, a]~‖s,ρ 6 2‖F‖s,ρ‖a‖s,ρ. (A.9)
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Applying this succesively, we conclude that

‖Ψε~F
t,~ (a)− a‖s,ρ 6

∞∑

j=1

1
j!

( t
~

) j
‖Ad♯~, j

ε~F
(a)‖s,ρ 6

∞∑

j=1

2 j‖F‖ js‖a‖s
j!

6 β‖a‖s,ρ.

�

Corollary A.5. The same holds replacing the space As,ρ(T∗Td) by AW,ρ(T∗Td).

Proof. Note that, by lemma A.3,

‖[F, a]~‖W,ρ 6 2‖F‖W,ρ‖a‖W,ρ. (A.10)

�

Finally, we will improve the above estimates for our analytic spaces, allowing some loss of
analyticity. Let 0 < u 6 min{s, ρ}, we denote

‖a‖u :=
1

(2π)d

∫

Zd
|Fa(w)|e|w|uκ(dw) = ‖a‖u,u 6 ‖a‖s,ρ. (A.11)

Lemma A.6. Let a, b ∈ As,ρ(T∗Td). Then, for 0 < σ1 + σ2 < u :=min{s, ρ}:

‖[a, b]~‖u−σ1−σ2 6
2~

e2σ1(σ1 + σ2)
‖a‖u‖b‖u−σ2. (A.12)

Moreover, if c ∈ Aρ(Td), then:

‖[a, c]~‖u−σ1−σ2 6
~

e2σ1(σ1 + σ2)
‖a‖u‖c‖Aρ−σ2 (Td ). (A.13)

Proof. By (A.4), we have

[a, b]~(z) = 2i
∫

Z2d
Fa(w′)Fb(w − w′) sin

(
~

2
{w′,w − w′}

)
eiw·z

(2π)2d
κ(dw′) κ(dw).

Then, using that

|{w′,w − w′}| 6 2|w′||w − w′|, (A.14)

we obtain:

‖[a, b]~‖u−σ1−σ2
6 2~

∫

Z2d
|Fa(w′)||w′||Fb(w − w′)||w − w′|e(u−σ1−σ2)(|w−w′|+|w′|)κ(dw′)κ(dw)

6 2~

(
sup
r>0

re−σ1r
)(

sup
r>0

re−(σ1+σ2)r

)
‖a‖u‖b‖u−σ2

6
2~

e2σ1(σ1 + σ2)
‖a‖u‖b‖u−σ2.

To prove (A.13), observe that, in view of (A.4) and (A.5),
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[a, c]~(z) = 2i
∑

k∈Zd

∫

Zd
Fa(w′)̂c(k− k′) sin

(
~

2
(k− k′) · η′

)
ei(k·x+η

′ ·ξ) κ(dw
′)

(2π)3d/2
.

Then (A.13) follows by the the same argument as before but with the estimate

|(k− k′) · η′| 6 |w′||k − k′|,

instead of (A.14). �

Lemma A.7. Assume a,F ∈ As,ρ(T∗Td) and b ∈ Aρ(Td). Let 0 < σ < u :=min{s, ρ}.
Assume that

β =
2‖F‖u
σ2

6 1/2.

Then

‖ΨF
t,~(a)− a‖u−σ 6 β‖a‖u, ‖ΨF

t,~(b)− b‖u−σ 6 β‖b‖Aρ(Td), |t| 6 1. (A.15)

Proof. By estimate (A.12), for every j > 1,

‖Ad♯~, j
F (a)‖u−σ = ‖[F, Ad♯~, j−1

F (a)]~‖u−σ

6
2~ j
e2σ2

‖F‖u‖Ad♯~ , j−1
F (a)‖u−σ( j−1)/ j

6
4~2 j3

e4σ4( j− 1)
‖F‖2u‖Ad♯~, j−2

F (a)‖u−σ( j−2)/ j

6 · · · 6
(

2~
e2σ2

) j j2 j

j!
‖F‖ ju‖a‖u.

Using Stirling’s formula: j j/e j−1 j! 6 1 for j > 1, we conclude that

‖ΨF
t,~(a)− a‖u−σ 6

‖a‖u
e2

∞∑

j=1

β j 6 β‖a‖u.

The proof of the second inequality in (A.15) follows by the same argument, but using (A.13)
instead of (A.12) to obtain

‖[F, b]‖u−σ/ j 6
~ j2

e2σ2
‖F‖u‖b‖Aρ(Td).

�
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