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Abstract

We provide two-sided pointwise estimates and uniform asymptotics of the

solutions to the subcritical quasi-geostrophic equation with initial data in

L2/(α−1)(R2), α ∈ (1, 2). Furthermore, we give an upper bound of a similar type

for any derivative of the solutions. Initial data in Lp(R2), p> 2/(α− 1), are

also discussed.
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Mathematics Subject Classi�cation numbers: 35B40, 35K55, 35S10.

1. Introduction

In this paper we study the two-dimensional dissipative quasi-geostrophic equation
{
θt + R⊥θ · ∇θ + (−∆)α/2θ = 0,

θ(0, x) = θ0(x),
(1)

in the subcritical case α ∈ (1, 2). Here, R⊥ = (−R2,R1), where R = (R1,R2) is the two-

dimensional Riesz transform given by Riθ = ∂
∂xi

(−∆)−1/2θ, i ∈ {1, 2}. Throughout the paper
we assume α ∈ (1, 2) and θ is a mild solution to the initial value problem (1), that is θ satis�es
the following equation

θ(t, x) = Ptθ0(x)+

∫ t

0

∫

R2

∇pα(t − s, x− y) · R⊥θ(s, y)θ(s, y)dy ds, (2)
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where Pt = e−t(−∆)α/2 and pα(t, x) are the semigroup and the heat kernel (the fundamental

solution), respectively, related to the operator−(−∆)α/2.

Solutions to the two-dimensional dissipative quasi-geostrophic equation model several phe-

nomena (see [1, 2]) and have been intensively studied for more than the last two decades. In

1995, Resnick [3] proved existence of strong solutions for θ0 ∈ L2(R2) as well as the maximum

principle

‖θ(t, ·)‖p ≤ ‖θ0‖p, (3)

where t > 0 and 1 < p≤ ∞. This inequality has been improved in several directions by

deriving a precise decay rate of ‖θ(t,·)‖p, see e.g. [4–10]. In [4] authors considered the ini-

tial condition θ0 ∈ Lp(R2) with p> 2
α−1

and obtained many interesting bounds for Lq norms,

where q > p, of mild solutions to (1). In particular, they showed that for θ0 ∈ L
2

α−1 (R2) and

any multi-index k = (k1, k2) ∈ N2 (with |k| := k1 + k2) the derivatives∇kθ = ∂|k|

∂x
k1
1
∂x
k2
2

θ admit

the following limit

lim
t→∞

t
|k|
α + d

α

(

α−1
2 − 1

q

)

‖∇kθ(t, ·)‖q = 0. (4)

Under additional assumption θ0 ∈ L1(R2), for every β ∈ [0, 1
α ) there is C > 0 such that

‖∇kθ(t, ·)−∇k(Ptθ0)‖q ≤ C t
− |k|

α − d
α

(

1− 1
q

)

−β
.

Although all of the aforementioned results provide precise bounds for Lp norms of the solu-

tions, they do not say much about pointwise behaviour of these solutions. In particular, there

are no known results on the lower bounds. In fact, this is rather a common problem in the the-

ory of nonlinear differential equations. Nevertheless, in this paper, we solve it in the case the

dissipative quasi-geostrophic equation with nonnegative θ0 ∈ L
2

α−1 by giving two-sided point-

wise estimates as well as some uniform asymptotics of mild solutions. The main results of the

paper are stated in the following theorems.

Theorem 1.1. Let θ0 ∈ L
2

α−1 (R2) be nonnegative.There is a constantC = C(θ0,α) > 1 such

that

1

C
Ptθ0(x) ≤ θ(t, x) ≤ CPtθ0(x), t > 0, x ∈ R

2.

If we remove the nonnegativity condition, the upper bound θ(t, x) ≤ CPt|θ0| holds (see

theorem 1.3). Note that the semigroup Pt and its kernel pα(t, x) are well known objects (see

section 2.2 for the details).

Theorem 1.2. For nonnegative θ0 ∈ L
2

α−1 (R2), we have

lim
t→0

∥∥∥∥
θ(t, ·)
Ptθ0

− 1

∥∥∥∥
∞

= lim
t→∞

∥∥∥∥
θ(t, ·)
Ptθ0

− 1

∥∥∥∥
∞

= lim
|x|→∞

sup
t>0

∣∣∣∣
θ(t, x)

Ptθ0(x)
− 1

∣∣∣∣ = 0. (5)

Finally, we complete these results by establishing upper bounds for derivatives of the

solutions:

Theorem 1.3. For θ0 ∈ L
2

α−1 (R2) and any multi-index k ∈ N× N, there is

C = C(θ0, k,α) > 0 such that
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∣∣∇kθ(t, x)
∣∣ ≤ Ct−|k|/αPt|θ0|(x), t > 0, x ∈ R

2. (6)

Note that ∇kPtθ0 admits the same estimate [see (9)]. It turns out that the power

p= 2
α−1

in the initial condition θ0 ∈ Lp is critical in some sense. One could observe this

phenomenon already in the paper [4]. Depending on whether p is greater or less than 2
α−1

,

different dif�culties occur and different behaviour of solutions is expected. Similar situation

appears in the fractal Burgers equation, which has been studied by the authors in [11, 12]

in the case of (not only) critical power of the nonlinear drift term. The methods developed

there have been improved and adapted to the quasi-geostrophic equation. Nevertheless, some

ideas come from theory of linear perturbations of fractional Laplacian (see e.g. [13, 14]). In

fact, the upper bound in (3) is concluded from [15], where also linear equations have been

considered.

The paper is organised as follows. Section 2 begins with the introduction of notation used

in the paper. Then, we gather some properties of the semigroup kernel pα(t, x) generated by

−(−∆)α/2 as well as some basic facts and initial results for Riesz transform. Section 3 is

devoted to estimates and asymptotics of solutions to (1), while in section 4 we prove the bounds

for their derivatives.

2. Preliminaries

2.1. Notation

Throughout the paper we consider α ∈ (1, 2). Let

ν(z) =
α2α−1Γ

(
1+ α

2

)

πΓ
(
1− α

2

) |z|−2−α, z ∈ R
2. (7)

For (smooth and compactly supported) test functions ϕ ∈ C∞
c (R2), we de�ne the fractional

Laplacian by

∆
α/2ϕ(x) := − (−∆)α/2ϕ(x) = lim

ε↓0

∫

{|z|>ε}
[ϕ(x+ z)− ϕ(x)] ν(z) dz, x ∈ R

2.

In terms of the Fourier transform,
̂
∆

α/2ϕ(ξ) = −|ξ|αϕ̂(ξ). Denote by pα(t, x) the fundamental

solution to the equation ∂ tu = ∆α/2u, that is pα(t, x) solves

{
∂tu = ∆

α/2u, t > 0, x ∈ R
2,

u(0, x) = δ0(x), x ∈ R
2.

By Pt we denote the stable semigroup operator,

Pt f (x) =
(
et∆

α/2
f
)
(x) =

∫

R2

pα(t, x− y) f (y) dy, t > 0, x ∈ R
2.

The name ‘stable’ comes from the α-stable process, which is generated by ∆α/2 and the

semigroup Pt describes its transition probabilities (see, e.g. [16, 17]).
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Wewrite∇ =

(
∂
∂x1

, ∂
∂x2

)
for the standard two-dimensional gradient operator. Furthermore,

for any multi-index k = (k1, k2) ∈ N2 we denote

∇k f (x) =
∂ |k|

∂xk11 ∂x
k2
2

f (x), x = (x1, x2) ∈ R
2,

where |k| = k1 + k2.

By B(x, r) we denote the open ball with centre x ∈ Rd and radius r > 0. Also, we follow the

notation a ∧ b :=min(a, b) and a ∨ b :=max(a, b).

We write f ≈ g ( f . g respectively) for f , g ≥ 0 whenever there is a constant

c = c(α, θ0) ≥ 1 such that c−1 f ≤ g ≤ c f ( f ≤ cg respectively) on their common domain.

The constants c,C, ci, whose exact values are unimportant, may change in each statement and

proof.

Finally, we write B(a, b) for the classical beta function, i.e.

B(a, b) =
∫ 1

0

ua−1(1− u)b−1du, a, b > 0.

2.2. Stable semigroup

In this sectionwe recall some results on the stable semigroupPt and derive some new properties

that are needed in the sequel. It is well known that the semigroup kernel pα(·, ·) ∈ C∞((0,∞)

× R2) and it is radial in space, i.e. pα(t, x) = pα(t, y) for any t > 0 and x, y ∈ R2 such that

|x| = |y|. It also enjoys the following scaling and semigroup properties

pα(t, x) = t−2/αpα(1, t
−1/αx), t > 0, x ∈ R

2,

pα(t, x) =

∫

R2

pα(t − s, x− z)pα(s, z) dz, t > s > 0, x ∈ R
2,

as well as pointwise estimates

pα(t, x) ≈
t

(
t1/α + |x|

)2+α ≈ t−2/α ∧ t

|x|2+α
, t > 0, x ∈ R

2. (8)

By scaling property and ([18], lemma 3.1) (see also [19, 20] for more general setting),

|∇kpα(t, x)| ≤ ckt
− |k|

α pα(t, x), t > 0, x ∈ R
2. (9)

From (9), we easily get the Lp-estimates:

‖∇kpα(t, ·)‖p . t
− 2

α

(

1− 1
p

)

− |k|
α . (10)

Furthermore, for f ∈ L
2

α−1 (R2) and p ∈
[

2
α−1

,∞
]
, the following estimate for stable semigroup

holds ([21]),

‖Pt f ‖p . t
− (α−1)

α + 2
αp‖ f ‖ 2

α−1
. (11)

In the lemma below, we note some additional decay properties.
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Lemma 2.1. For f ∈ L
2

α−1 (R2), we have

lim
t→0

‖t α−1
α Pt f ‖∞ = 0, (12)

lim
t→∞

‖t α−1
α Pt f ‖∞ = 0, (13)

lim
|x|→∞

sup
t>0

∣∣∣t α−1
α Pt f (x)

∣∣∣ = 0. (14)

Proof. The limit (12) follows from [[4], (2.2)]. Next, for every ε > 0 there is R > 0 such

that ‖ f 1B(0,R)c‖ 2
α−1

< ε. By Young inequality and (9),

‖Pt( f 1B(0,R)c)‖∞ ≤ ‖pα(t, ·)‖ 2
3−α

‖ f 1B(0,R)c‖ 2
α−1

≤ c1t
1−α
α ε.

Hence,

‖t α−1
α Pt f ‖∞ ≤ t

α−1
α
(
‖Pt( f 1B(0,R))‖∞ + ‖Pt( f 1B(0,R)c)‖∞

)

≤ c1t
α−1
α

(
‖pα(t, ·)∞‖‖1B(0,R)‖ 2

3−α
‖ f ‖ 2

α−1
+ t

1−α
α ε
)

≤ c2

(
t
α−3
α + ε

)
,

which yields (13). Finally, for |x| > 2R and |y| < R, by (8), we have pα(t, x− y)

. t
1−α
α |x− y|α−3 . t

1−α
α |x|α−3. Therefore, for |x| > 2R,

sup
t>0

∣∣∣t α−1
α Pt f (x)

∣∣∣ ≤ sup
t>0

t
α−1
α
(
|Pt( f 1B(0,R))(x)|+ ‖Pt( f 1B(0,R)c )‖∞

)

. |x|α−3‖ f 1B(0,R)‖1 + ε . |x|α−3‖ f ‖ 2
α−1

+ ε

and (14) holds. �

Finally, we show that if t is bounded and separated from zero, than Pt| f |(x) admits the same

lower bound as pα(t, x).

Lemma 2.2. Let 0 < t1 < t2 < ∞ and f ∈ L
2

α−1 (R2). If ‖ f ‖ 2
α−1

> 0, then there exists a

constant C = C(t1, t2, θ0) such that

Pt| f |(x) ≥
C

(1+ |x|)2+α
, t2 > t > t1, x ∈ R

2.

Proof. Since f ∈ L
2

α−1 , then f ∈ L1loc. Hence, there is R > 0 such that C <
∫
B(0,R)| f (y)|dy

< ∞ for some c > 0. Consequently, using (8), we get
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Pt| f |(x) ≥
∫

B(0,R)

pα(t, x− y)| f (y)|dy ≥ c1
t

(t1/α + 2R+ |x|)2+α

∫

B(0,R)

| f (y)|dy

≥ cc1
t1

(2t
1/α
2 + 2R+ |x|)2+α

≥ C

(1+ |x|)2+α
.

�

2.3. Riesz transform

Let R = (R1,R2) be the two-dimensional Riesz transform, i.e.

Ri f (x) = c P.V.

∫

R2

yi

|y|3 f (x− y) dy, x = (x1, x2) ∈ R
2,

where c is some constant and P.V. denotes the principal value of the integral. Next, we denote
R⊥ = (−R2,R1). It is clear that |R⊥ f | = |R f |. It is well known that the Riesz transform is

continuous on Lp for p ∈ (1,∞), i.e. for f ∈ Lp we have [see e.g. ([22], corollary 4.8)]

‖R f ‖p ≤ cp‖ f ‖p. (15)

In particular, taking∇kpα(t, ·) as f , (10) gives us

‖R∇kpα(t, ·)‖p ≤ cp,k t
− 2

α

(

1− 1
p

)

− |k|
α , 1 < p< ∞, t > 0. (16)

The next proposition not only shows that the above bound holds for p= ∞, but also improves

it by providing a pointwise estimate with some dependence on the space argument.

Proposition 2.3. For any multi-index k ∈ N× N there is a constant C > 0 such that

|R⊥∇kpα(t, x)| ≤ Ct−
|k|
α

1

(t1/α + |x|)2 , t > 0, x ∈ R
2. (17)

Proof. It is easy to see that both sides of (17) admit the scaling property f (t, x)

= t−(2+|k|)/α f (1, t−1/αx). Hence, it is enough to consider t = 1. First, let us write

|Ri∇kpα(1, x)| = c

∣∣∣∣P.V.
∫

R2

yi

|y|3∇
kpα(1, x− y)dy

∣∣∣∣

≤ c

∣∣∣∣P.V.
∫

|y|≤1

yi

|y|3∇
kpα(1, x− y)dy

∣∣∣∣+ c

∫

|y|>1

1

|y|2
∣∣∇kpα(1, x− y)

∣∣ dy.

It follows from (9) that
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sup
|w|≤1

∣∣∇
(
∇kpα(1, x+ w)

∣∣ . t−(|k|+1)/αpα(t, x).

Hence, since

P.V.

∫

|y|≤1

yi

|y|3∇
kpα(1, x)dy = 0,

the mean value theorem gives us

∣∣∣∣P.V.
∫

|y|≤1

yi

|y|3∇
kpα(1, x− y)dy

∣∣∣∣ =
∣∣∣∣P.V.

∫

|y|≤1

yi

|y|3 (∇
kpα(1, x− y)−∇kpα(1, x))dy

∣∣∣∣

=

∣∣∣∣
∫

|y|≤1

yi

|y|3 y · ∇
(
∇kpα(1, x+ wy) dy

∣∣∣∣

≤
∫

|y|≤1

|y|2
|y|3 sup|w|≤1

∣∣∇
(
∇kpα(1, x+ w)

∣∣ dy

. pα(1, x) .
1

x2 + 1
.

Next,

∫

|y|>|x|∨1

1

|y|2
∣∣∇kpα(1, x− y) dy

∣∣.
∫

|y|>1∨|x|

1

1+ |x|2 pα(1, x− y)dy≤ 1

1+ |x|2 ,

which gives (17) for |x| ≤ 1. Finally, for 1 < |y| ≤ |x|, we have 1+|y|2+α

|y|2 ≤ 2|y|α ≤ 2|x|α

≤ 2
2+|x|2+α

|x|2 , which yields 1
|y|2 . pα(1,y)

pα(2,x)(1+|x|2) . Thus,

∫

1<|y|≤|x|

1

|y|2
∣∣∇kpα(1, x− y) dy

∣∣ .
∫

R2

1

1+ |x|2
pα(1, y)pα(1, x− y)

pα(2, x)
dy =

1

1+ |x|2 .

�

Proposition 2.4. For every k ∈ N2 there is a constant Ck > 0 such that for all t > 0,

‖∇kR⊥Ptϕ‖∞ ≤ Ckt
− |k|+α−1

α ‖ϕ‖ 2
α−1

, ϕ ∈ L
2

α−1 (R2). (18)

Furthermore

lim
t→0

‖t α−1
α R⊥Ptϕ‖∞ = lim

t→∞
‖t α−1

α R⊥Ptϕ‖∞ = lim
|x|→∞

sup
t>0

∣∣∣t α−1
α R⊥Ptϕ(x)

∣∣∣ = 0.

Proof. First, (16) gives us for i ∈ {1, 2}
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|∇kRiPtϕ(x)| =
∣∣∣∣∇k

∫

R2

pα(t, x− y)Riϕ(y)dy

∣∣∣∣

≤
∫

R2

|∇kpα(t, x− y)Riϕ(y)| dy

≤ ‖∇kpα(t, ·)‖ 2
3−α

‖Riϕ‖ 2
α−1

. t−(|k|+α−1)/α‖ϕ‖ 2
α−1

,

which implies the inequality (18). Let us �x ε > 0. There are Mε > 0 and Rε such that

‖ϕ1{|ϕ|>Mε}‖ 2
α−1

≤ ε and ‖ϕ1B(0,Rε)c‖ 2
α−1

≤ ε. Hence, by (16), we get

∫

|ϕ|>Mε

|Ripα(t, x− y)ϕ(y)|dy . ‖pα(t, ·)‖ 2
3−α

(∫

|ϕ|>Mε

|ϕ(y)| 2
α−1 dy

) α−1
2

≤ ε t−
α−1
α , (19)

∫

|y|>Rε
|Ripα(t, x− y)ϕ(y)|dy . ‖pα(t, ·)‖ 2

3−α

(∫

|y|>Rε
ϕ(y)

2
α−1 dy

) α−1
2

≤ ε t−
α−1
α . (20)

Next, using (19) and (16), we obtain

|RiPtϕ(x)| =
∣∣∣∣
∫

R2

Ripα(t, x− y)ϕ(y)dy

∣∣∣∣

≤
√
Mε

∫

|ϕ|≤Mε

|Ripα(t, x− y)|
√
|ϕ(y)|dy+

∫

|ϕ|>Mε

|Ripα(t, x− y)ϕ(y)|dy

.
√
Mε‖Ripα(t, ·)‖ 4

5−α
‖ϕ‖ 2

α−1
+ ε t−

α−1
α

.
√
Mεt

− α−1
2α + ε t−

α−1
α ,

and consequently ‖t α−1
α R⊥Ptϕ‖∞ .

√
Mεt

α−1
2α + ε, which proves the �rst limit from the

assertion.

Next, combining (10), (17), (19) and (20), we get

|RiPtϕ| =
∣∣∣∣
∫

R2

Ripα(t, x− y)ϕ(y)dy

∣∣∣∣

≤ Mε

∫
|ϕ|≤Mε
|y|≤Rε

|Ripα(t, x− y)|dy+
∫

|ϕ|>Mε

|Ripα(t, x− y)ϕ(y)|dy

+

∫

|y|>Rε
|Ripα(t, x− y)ϕ(y)|dy

. MεR
2
ε t

−2/α
+ ε t−

α−1
α ,

which lets us conclude limt→∞ ‖t α−1
α R⊥Ptϕ‖∞ = 0. By virtue of the previous two limits, it is

enough to prove that for any 0 < t1 < t2 < ∞

lim
|x|→∞

sup
t∈(t1,t2)

∣∣R⊥Ptϕ(x)
∣∣ = 0.

By (15), (17), (20) and Hölder inequality, we get for |x| > Rε and t ∈ (t1, t2),
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|RiPtϕ(x)| =
∣∣∣∣
∫

R2

Ripα(t, x− y)ϕ(y)dy

∣∣∣∣

.

∫

|y|>Rε
|Ripα(t, x− y)ϕ(y)|dy+

∫

|y|≤Rε

1

(t
1/α
1 + |x− y|)2

ϕ(y)dy

. ε t
− α−1

α
1 +

1

(|x| − Rε)2

(∫

R2

1{|y|≤Rε}dy

) 3−α
2

‖ϕ‖ 2
α−1

,

which is arbitrarily small for large |x|. This proves the last assertion. �

3. Asymptotics and estimates of solutions

First, we recall some results from [4] concerningLp estimates of the solutions to (1).We assume

below that θ0 ∈ L
2

α−1 . For p ∈
[

2
α−1

,∞
]
, we have [see ([4], proposition 3.2)]

t
α−1+|k|

α − 2
αp∇kθ ∈ Cb((0,∞), Lp(R2)), (21)

where Cb((0,∞), Lp(R2)) denotes the space of bounded and continuous functions from the

half-line (0,∞) into the space Lp(R2). In particular, for p ∈
[

2
α−1

,∞
]
,

‖θ(t, ·)‖p . t
− α−1

α + 2
αp , t > 0. (22)

Combining this with (15), for p ∈ [ 2
α−1

,∞), we get

‖R⊥θ(t, ·)‖p . t
− α−1

α + 2
αp , t > 0. (23)

The following technical lemma will be needed in the sequel.

Lemma 3.1. Let p≥ 2
α−1

and q =
p

p−1
. Assume that f (s, ·) ∈ Lq(R2) and g(s, ·) ∈ Lp(R2)

satisfy

‖ f (s, ·)‖q ≤ c1s
− 3

α+
2
αq , ‖g(s, ·)‖p ≤ c2s

− α−1
α + 2

αp .

Then there is a constant C such that for p≥ 2
α−1

∫

R2

| f (t− s, x− y||g(s, y)|dy ≤ C(t− s)
−
(

1
α+

2
pα

)

s
− α−1

α + 2
αp , 0< s< t, x ∈R

2. (24)

Furthermore, for t > 0, x ∈ R2 and p> 2
α−1

, we have

∫ t

0

∫

R2

| f (t− s, x− y)| g(s, y)| s− α−1
α dy ds ≤ CB

(
p(α− 1)− 2

pα
,
p(2− α)+ 2+ p

αp

)
t−

α−1
α .

(25)
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Proof. By Hölder inequality,

∫

R2

| f (t − s, x− y)||g(s, y)|dy ≤ ‖ f (t− s, ·)‖ p
p−1

‖g(s, ·)‖p ≤ c1c2(t− s)−
1
α− 2

αp s
− α−1

α + 2
αp ,

which gives (24). Furthermore, this implies

∫ t

0

∫

R2

| f (t− s, x− y)| g(s, y)| s− α−1
α dy ds ≤ c

∫ t

0

(t − s)−
1
α− 2

pα s
− 2α−2

α + 2
αp ds

= ct−
α−1
α

∫ 1

0

(1− u)−
1
α− 2

pα u
− 2α−2

α + 2
αp du

= cB
(
p(α− 1)− 2

pα
,
(2− α)p+ 2

pα

)
t−

α−1
α .

The following corollary is an immediate consequence of lemma 3.1. �

Corollary 3.2. Let θ be a solution to (1) with θ0 ∈ L
2

α−1 (R2). For every t > 0, we have

∫ t

0

∫

R2

|R∇pα(t − s, x− y)| |R⊥θ(s, y)| s− α−1
α dy ds ≤ Ct−

α−1
α . (26)

Proof. Both of the bounds follow from (10), (15), (21) and (23) applied to (25). �

In the subsequent proposition we show that the range of p in estimate (23) may be extended

to (1,∞].

Proposition 3.3. Assume θ0 ∈ L
2

α−1 (R2). There is a constant C > 0 such that

‖R⊥θ(t, ·)‖∞ ≤ Ct−
α−1
α . (27)

Proof. For i = 1, 2 we rewrite Riθ(t, x) using (2) as

Riθ(t, x) = RiPtθ0(x)+

∫ t

0

∫

R2

Ri∇pα(t − s, x− y) · R⊥θ(s, y)θ(s, y)dy ds.

By proposition 2.4, we have ‖RiPtθ0‖∞ ≤ ct−
α−1
α and the assertion follows from (22)

and (26). �

Now, we pass to the proof of pointwise upper bounds for solutions to (1). First, let us intro-

duce several function spaces that will appear in the proof of the next theorem. By Lp,λ(R2) we

denote the Morrey space, i.e.

Lp,λ(R2) =

{
f ∈ Lp(R2): ‖ f ‖Lp,λ := sup

r>0

sup
x∈R2

r−λ

∫

B(x,r)∩Ω
| f (z)|p dz < ∞

}
.

The Morrey space is a Banach space with the norm ‖ f ‖Lp,λ. For any Banach space X equipped

with the norm ‖·‖X we denote by Lp,λ((0,∞);X) the space of functions f : (0,∞)→ X such

that
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‖ f ‖Lp,λ((0,∞);X) := sup
0<s<t<∞

(
(t− s)−λ

∫ t

s

‖ f (r)‖pXdr
) 1

p

< ∞.

It is also a Banach space with the norm ‖ f ‖Lp,λ((0,∞);X). As a space X we will be considering

the Campanato space Lp,λ
(
R2
)
de�ned by

Lp,λ
(
R

2
)
:=



 f ∈ L

p
loc

(
R

2
)
:

‖ f ‖Lp,λ(R2) := sup
x∈R2

r>0

(
r−λ

∫

B(x,r)

∣∣∣∣ f (y)−
1

|B(x, r)|

∫

B(x,r)

f (z)dz

∣∣∣∣
p

dy

)1/p

< ∞



 ,

as well as the space

L1u loc(R
2) :=

{
f ∈ L1(R2): ‖ f ‖L1

u loc
:= sup

x∈R2

∫

B(x,1)

| f (z)|dz < ∞
}
.

Finally, we de�ne

L∞loc((0,∞); L1loc(R
2)) :=

{
f ∈ L1loc

(
(0,∞)× R

2
)
: sup
t∈(0,R)

∫

B(0,R)

| f (z)|dz < ∞ for allR > 0

}
.

Lemma 3.4. Let θ0 ∈ L
2

α−1 (R2). There is a constant C > 0 such that for all t > 0 and

x ∈ R2, we have

θ(t, x) ≤ CPt|θ0|(x). (28)

Proof. Let v = R⊥θ and consider the linear equation

∂tu = ∆
α/2u+ v · ∇u. (29)

By ([15], corollary 1.4), the fundamental solution p̃(t, x, y) of (29) is bounded by pα(t, x− y),

that is

p̃(t, x, y) ≤ c pα(t, x− y), t > 0, x, y ∈ R
2. (30)

Indeed, taking λ =
2(2−α)

α
and q = ∞ in ([15], corollary 1.4), we only need to show that all

required assumptions are satis�ed, i.e. ∇v = 0 and

v ∈ L2,
2
α− λ

2 ((0,∞);L 4
α ,λ(R2)), (31)

v ∈ L∞loc((0,∞); L1loc(R
2)), (32)

v ∈ L1,
1
α ((0,∞); L1u loc(R

2)). (33)

Since λ =
2(2−α)

α
< 2 for α > 1, the Campanato space L 4

α ,λ(R2) reduces to the Morrey space

L
4
α ,λ(R2), see, e.g. [23]. Clearly, we have ∇v = 0. Furthermore, by (15), (22) and Hölder

inequality,

2696



Nonlinearity 33 (2020) 2686 T Jakubowski and G Serafin

‖R⊥θ(u, ·)‖
L
4
α ,

2(2−α)
α

≤ sup
x∈R2 ,r>0

(
r−

2(2−α)
α

∫

B(x,r)

|Rθ(t, z)| 4α dz
) α

4

≤ sup
x∈R2 ,r>0

(
r−

2(2−α)
α

(∫

B(x,r)

dz

) 2−α
α
(∫

R2

|Rθ(t, z)| 2
α−1 dz

) 2(α−1)
α

) α
4

≤ c‖θ0‖ 2
α−1

.

Hence,

‖v‖
L
2, 2α− λ

2

(

(0,∞);L
4
α ,

2(2−α)
α

) = sup
t>0

sup
0<s<t

(
(t− s)−1

∫ t

s

‖Rθ(u, ·)‖2
L
4
α ,

2(2−α)
α

du

) 1
2

≤ c‖θ0‖ 2
α−1

,

which gives (31). Next, (32) is an immediate consequence of (27). Finally, also by (27), we

have

‖R⊥θ(t, ·)‖L1
u loc

(R2) = sup
x∈R2

∫

B(x,1)

|R⊥θ(t, y)|dy . ‖R⊥θ‖∞ . t−(α−1)/α.

Consequently,

sup
t>0

sup
0<s<t

(
(t − s)−1/α

∫ t

s

‖R⊥θ(u, ·)‖L1
u loc

(R2)du

)

. sup
t>0

sup
0<s<t

(
(t − s)−1/α

∫ t−s

0

u−(α−1)/αdu

)
≤ α,

which yields (33). Now consider (29) with initial condition u0 = θ0. Clearly,

θ(t, x) =

∫

R2

p̃(t, x, y)θ0(y) dy

is a solution to this problem and (30) gives us

|θ(t, x)| ≤
∫

R2

p̃(t, x, y)|θ0(y)| dy ≤ c

∫

R2

pα(t, x− y)|θ0(y)| dy = c Pt|θ0|(x).

The proof is complete. �

Proposition 3.5. Assume θ0 ∈ L
2

α−1 (R2). We have

lim
t→0

‖t α−1
α Rθ(t, ·)‖∞ = lim

t→∞
‖t α−1

α Rθ(t, ·)‖∞ = lim
|x|→∞

sup
t>0

∣∣∣t α−1
α Rθ(t, x)

∣∣∣ = 0. (34)

Proof. We will use the integral form of the solution from (2). The required results

for the term RiPtθ0(x) have been provided in proposition 2.4, so what has left

is to deal with the integral term. Formulas (28) and (12) ensure that for every

δ > 0 there are tδ , Tδ > 0 such that ‖θ(s, ·)‖∞ < δs−(α−1)/α for s < tδ or s > Tδ. We �x some

p> 2
α−1

.
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Consequently, by (26),

∣∣∣∣
∫ t

0

∫

R2

Ri∇pα(t − s, x− y) · R⊥θs(y)θ(s, y)dy ds

∣∣∣∣ ≤ δct−
α−1
α , x ∈ R

2, t ≤ tδ , (35)

which gives the �rst limit in (34). Now, let t > 2Tδ . By (26), we get

∣∣∣∣
∫ t

Tδ

∫

R2

Ri∇pα(t − s, x− y) · R⊥θs(y)θ(s, y)dy ds

∣∣∣∣ ≤ δct−
α−1
α , x ∈ R

2, t > 2Tδ.

Next, by (24) (with f = Ri∇p and g = θR⊥θ) and (22),

∣∣∣∣
∫ Tδ

0

∫

R2

Ri∇pα(t − s, x− y) · R⊥θ(s, y)θ(s, y)dy ds

∣∣∣∣ .
∫ Tδ

0

(t − s)
− 1

α− 2
αp s

− 2(α−1)
α + 2

αp ds

. t
− 1

α− 2
αp

∫ Tδ

0

s
−1+

p(2−α)+2
αp ds

= ct
− α−1

α − p(2−α)+2
αp .

This proves the second limit in (34). Finally, we deal with lim|x|→∞ supt>0

∣∣∣t α−1
α Rθ(t, x)

∣∣∣ = 0.

By (28) and (14), for every ε ∈ (0, 1) there exists rε such that sups>0 |s
α−1
α θ(s, y)| < ε for |y| >

rε. Then, by (26),

∣∣∣∣
∫ t

0

∫

B(0,rε)c
Ri∇pα(t − s, x− y) · R⊥θ(s, y)θ(s, y)dy ds

∣∣∣∣ ≤ εct−
α−1
α .

Furthermore, by (17),

|Ri∇pα(t − s, x− y)| ≤ c(t− s)−
1
α |x− y|−2 < εr−2

ε (t − s)−
1
α

for y ∈ B(0, rε) and |x| suf�ciently large. Hence, by (22) and (27), we get
∣∣∣∣
∫ t

0

∫

B(0,rε)

Ri∇pα(t− s, x− y) · R⊥θ(s, y)θ(s, y)dy ds

∣∣∣∣ ≤ εr−2
ε

∫ t

0

∫

B(0,rε)

(t − s)−
1
α s−

2α−2
α dy ds

≤ c εt−
α−1
α ,

which ends the proof. �

Proof of Theorem 1.2. First, observe that by (28) and semigroup property of pα(t, x),

∣∣∣∣
∫ t

0

∫

R2

∇pα(t− s, x− y) · R⊥θ(s, y)θ(s, y)dy ds

∣∣∣∣

.

∫ t

0

(t− s)−
1
α ‖Rθ(s, ·)‖∞

∫

R2

pα(t − s, x− y)Psθ0(y)dy ds

= Ptθ0(x)

∫ t

0

(t− s)−
1
α ‖Rθ(s, ·)‖∞ ds. (36)
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By virtue of proposition 3.5, for every ε > 0 there are tε > 0 and Tε such that ‖R⊥θ(t, ·)‖∞
≤ εt−(α−1)/α for t < tε or t > Tε. Hence, by (36), for t < tε, we have

∣∣∣∣
∫ t

0

∫

R2

∇pα(t− s, x− y) · R⊥θ(s, y)θ(s, y)dy ds

∣∣∣∣ ≤ εPtθ0(x)

∫ t

0

(t− s)−
1
α s−

α−1
α ds

= εPtθ0(x)B
(
α−1
α
, 1
α

)
.

Thus, (2) gives us

∣∣∣∣
θ(t, x)

Ptθ0(x)
− 1

∣∣∣∣ . ε,

which proves the �rst limit in (5). Similarly, we get for t > 2Tε,

∣∣∣∣
∫ t

0

∫

R2

∇pα(t− s, x− y) · Rθs(y)θ(s, y)dy ds
∣∣∣∣

≤ Ptθ0(x)

(
c

∫ Tε

0

(t − s)−
1
α s−

α−1
α ds+ ε

∫ t

Tε

(t− s)−
1
α s−

α−1
α ds

)

. Ptθ0(x)

(
ct−

1
α T

1
α
ε + εB

(
α− 1

α
,
1

α

))
,

which is less than 2εB
(
α−1
α , 1

α

)
Ptθ0(x) for t large enough. Hence, we obtain the second limit

in (5). In particular, it allows us to prove the last limit, i.e. lim|x|→∞ supt>0

∣∣∣ θ(t,x)
Ptθ0(x)

− 1

∣∣∣ = 0, by

showing that

lim
|x|→∞

sup
0<t<T

∣∣∣∣
θ(t, x)

Ptθ0(x)
− 1

∣∣∣∣ = 0

holds for any T > 0. By (34), for every ε > 0 there isM > 0 such that |t α−1
α R⊥θ(t, x)| < ε for

|x| > M. Hence, by (9) and (28), we obtain

∣∣∣∣
∫ t

0

∫

|y|>M
∇pα(t − s, x− y) · Rθ(s, y)θ(s, y)dy ds

∣∣∣∣

. ε

∫ t

0

(t − s)−
1
α s−

α−1
α

∫

R2

pα(t − s, x− y)Psθ0(y)dy ds = εB
(
α−1
α
, 1
α

)
Ptθ0(x).

Next, by (9), for |x| > 2M and t < T, we get

∣∣∣∣
∫ t

0

∫

|y|≤M
∇pα(t − s, x− y) · Rθ(s, y)θ(s, y)dy ds

∣∣∣∣

.

∣∣∣∣∣

∫ t

0

s−(α−1)/α

∫

|y|≤M

1

|x| 1α
pα(t − s, x− y)Psθ0(y)dy ds

∣∣∣∣∣ ≤
αT

1
α

|x| 1α
Ptθ0(x).

This ends the proof. �
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Proof of Theorem 1.1. The upper bound follows from lemma 3.4. To prove the lower one,

note that theorem 1.2 implies that θ(t, x) & Ptθ0(x) whenever t ∈ (0, t0) ∪ (T ,∞) or |x| > R

for some t0, T ,R > 0. Since both: θ(t, x) and Ptθ0(x) are continuous, they are comparable on

[t0, T]× B(0,R) as well. �

In the last part of this section, we consider the case θ0 ∈ Lp with p> 2
α−1

. As a result, we

obtain the local in time analogue of theorem 1.1. Note that by remark 3.3 in [4], for p> 2
α−1

,

we have

‖θ(t, ·)‖q . t
− 2

α

(

1
p− 1

q

)

, p ≤ q ≤ ∞.

Proposition 3.6. For nonnegative θ0 ∈ Lp(R2), p > 2
1−α

and T > 0 there are constants C1

and C2 (depending on T and θ0) such that

C1Ptθ0(x) ≤ θ(t, x) ≤ C2Ptθ0(x), x ∈ R
2, 0 < t ≤ T.

Proof. Let T > 0. Let us consider the equation

{
∂tu = ∆

α/2u+ b · ∇u,
u(0, x) = θ0(x),

where b = b(t, x) = (R⊥θ)(t, x). Of course u(t, x) = θ(t, x) is a solution to the above equation.

Furthermore, the continuity of the Riesz transform (15) gives us

‖b(t, ·)‖p ≤ c‖θ(t, ·)‖p ≤ c‖θ0‖p, 1 < p < ∞.

By Hölder inequality, we get

∫ t

s

∫

R2

pα(u− s, z− x)

(u− s)1/α
|b(u, z)|dzdu ≤

∫ t

s

1

(u− s)1/α
‖pα(u− s, ·)‖ p

p−1
‖b(u, ·)‖pdu

≤ c

∫ t

s

1

(u− s)1/α
(u− s)

2
α

(

p−1
p −1

)

du = c

∫ t

s

(u− s)
− 2

αp− 1
α du = c1(t − s)

1− 2+p
αp .

In the same way, one may obtain

∫ t

s

∫

R2

pα(t− u, z− x)

(t − u)1/α
|b(u, z)|dzdu ≤ c1(t− s)

1− 2+p
αp .

Note that 2+p
αp

< 1, and consequently c(t− s)1−
2+q
αq ≤ η + β(t − s) for arbitrary small η and

some β > 0. Hence, we may apply ([14], theorems 2 and 3) and conclude that the fundamental

solution of the equation ∂ tu = ∆α/2u+ b · ∇u is locally in time comparable with pα(t, x) and

we get the assertion of the proposition. �

4. Gradient estimates

In this section we derive the pointwise estimates for ∇kθ. Recall that for a multi-index

k = (k1, k2) ∈ N2 we put |k| = k1 + k2. Note that
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∇k( fg) =
∑

m+n=k

cm,n∇m f ∇ng, (37)

where the sum is taken over all multi-indicesm, n ∈ N2 such thatm+ n = k.

As a �rst step, we provide initial estimates with bound depending only on the time variable.

Lemma 4.1. For θ0 ∈ L
2

α−1 (R2), we have

‖∇kRiθ(t, ·)‖∞ . t−
|k|+α−1

α , i = 1, 2. (38)

Proof. Let us rewrite (2) as follows,

θ(t, x) =

∫

R2

pα(t, x− y)θ0(y)dy+

∫ t/2

0

∫

R2

∇pα(t − s, x− y) · R⊥θ(s, y)θ(s, y)dy ds

+

∫ t

t/2

∫

R2

∇pα(t− s, y) · R⊥θ(s, x− y)θ(s, x− y)dy ds. (39)

Since the Riesz transform commutes with derivatives, by (39) and (37), we get

∇kRiθ(t, x) =

∫

R2

Ri∇kpα(t, x− y)θ0(y)dy

+

∫ t/2

0

∫

R2

Ri
(
∇k∇pα(t − s, x− y)

)
· R⊥θ(s, y)θ(s, y)dy ds

+
∑

k1+k2=k

ck1,k2

∫ t

t/2

∫

R2

Ri (∇pα(t − s, y)) · R⊥ (∇k1θ(s, x− y)
)

×∇k2θ(s, x− y)dy ds, (40)

where k1, k2 ∈ N2. Hence, by Hölder inequality, (22), (10), (15) and (21), for p > 2
α−1

, we

obtain

‖∇kRiθ(t, ·)‖∞ . ‖∇kpα(t, ·)‖ 2
3−α

‖θ0‖ 2
α−1

+

∫ t/2

0

s−
α−1
α ‖∇k∇pα(t − s, ·)‖ 2

3−α
‖θ(s, ·)‖ 2

α−1
ds

+
∑

k1+k2=k

ck1,k2

∫ t

t/2

‖∇pα(t − s, ·)‖ p
p−1

‖
(
R⊥∇k1θ(s, ·)‖p ‖∇k2θ(s, ·)‖∞ ds

. t−
|k|+α−1

α +

∫ t/2

0

s−
α−1
α t−

|k|+1+α
α ds

+
∑

k1+k2=k

ck1,k2

∫ t

t/2

(t − s)
− 1

α− 2
αp t

− |k1 |
α − α−1

α + 2
αp t−

|k2 |+α−1
α ds

. t−
|k|+α−1

α ,

as required. �
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Next, we present a series of auxiliary lemmas that are used in the proof of theorem 1.3.

Lemma 4.2. Let θ0 ∈ L
2

α−1 (R2). Let 0 < t1 < t2 < ∞. There exists a constant C depending

on t1, t2,R and θ0 such that for x ∈ R2, we have

∫

Dt

∫

B(0,R)

(t − s)−1/αpα(t − s, x− y)s−(α−1)/α|∇kθ(s, y)|dy ds ≤ Ct−|k|/αPt|θ0|(x),

where Dt = (t1, t2) ∩ (t/2, t).

Proof. Let us observe that Dt = ∅ for t /∈ (t1, 2t2), hence, it suf�ces to consider only

t1 < t < 2t2. By (21),

∫

Dt

∫

B(0,R)

(t − s)−
1
α pα(t− s, x− y)s−(α−1)/α|∇kθ(s, y)|dy ds

≤ c

∫

Dt

∫

B(0,R)

(t − s)−
1
α pα(t − s, x− y)s−

α−1
α − α−1

α − |k|
α dy ds

≤ ct
− 2(α−1)

α
1

(
t
2

)− |k|
α

∫

Dt

(t − s)−
1
αPt−s1B(0,R)(x) ds =: f (t, x).

Note that pα(s, y) ≥ 1
c1

> 0 for (s, y) ∈ (t1, t2)× B(0,R). Thus,

Pt−s1B(0,R)(x) ≤ c1

∫

R2

pα(t − s, x− y)pα(s, y) dy = c1pα(t, x) ≤
c2

(1+ |x|)2+α
,

Consequently, by lemma 2.2,

f (t, x) ≤ c3t
− |k|

α

∫ t

t1

(t − s)−
1
α

1

(1+ |x|)2+α
ds ≤ c4t

− |k|
α Pt|θ0|(x).

This ends the proof. �

Lemma 4.3. Let β > 0 be �xed. For any v ∈ (0, 1), we have

∫ 1

v

r−β(1− rα)−1/α(rα − vα)−1/αdr ≈ v−β(1− v)1−2/α

with comparability constants depending only on α and β.

Proof. Denote the above integral by I(v). Since aγ − bγ ≈ (a− b)aγ−1 for a > b > 0 and

γ > 0 (see e.g. lemma 4 in [24]), we have 1− rα ≈ 1− r and rα − vα ≈ (r − v)rα−1. Hence,

I(v) ≈
∫ 1

v

r1/α−1−β(1− r)−1/α(r − v)−1/αdr.

For v ≥ 1/4, we estimate r1/α−1−β ≈ 1 and substitute r = 1− u(1− v), which gives us
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I(v) ≈ (1− v)1−2/α

∫ 1

0

u−1/α(1− u)−1/αdu = c(1− v)1−2/α.

In the case v < 1/4, we split the integral into
∫ 1/2

v +
∫ 1

1/2 and obtain

I(v) ≈
∫ 1/2

v

r1/α−1−β(r − v)−1/αdr +

∫ 1

1/2

(1− r)−1/αdr

= v−β

∫ 1/(2v)

1

u1/α−1−β(u− 1)−1/αdu+
α2(α−1)/α

α− 1

≈ v−β
+ 1 ≈ v−β ,

which is equivalent to the required formula under current assumptions. �

Since α > 1, we immediately obtain the following

Corollary 4.4. Let β > 0 be �xed. There is a constant Cβ such that for v ∈ (0, 1), we have

∫ 1

v

r−β(1− rα)−1/α(rα − vα)−1/αdr ≤ Cβv
−β(1− v)−1/α.

Lemma 4.5. Fix γ ∈
(
0, 1

α

)
. For any measurable function f :R× R2 → R, de�ne the

operator

Tγ f (t, x) = tγ
∫ t

0

s−γ− α−1
α (t − s)−

1
αPt−s| f |(s, x) ds. (41)

Suppose Tγ f (t, x) < ∞ and f satis�es the inequality

f (t, x) ≤ CPtθ0(x)+ ηTγ f (t, x), t > 0, x ∈ R
2, (42)

for some constants C, η > 0. If η is suf�ciently small, then there exists a constant M > 0 such

that

f (t, x) ≤ MPt|θ0|(x), t > 0, x ∈ R
2.

Proof. Applying estimate (42) of f to (41), we get

Tγ f (t, x) ≤ tγ
∫ t

0

s−γ−(α−1)/α(t − s)−1/α

∫

R2

pα(t − s, x− y)

×
(
CPs|θ0|(y)+ η

∫ s

0

u−(α−1)/α(s− u)−1/αPs−u| f |(u, y) du
)
dy ds

= CB
(
1− γ − α− 1

α
, 1− 1

α

)
Pt|θ0|(x)

+ tγη

∫ t

0

∫ s

0

s−γ(su)−(α−1)/α[(t− s)(s− u)]−1/αPt−u| f |(u, x) duds

= CB
(
1− γ − α− 1

α
, 1− 1

α

)
Pt|θ0(x)|

+ ηtγ
∫ t

0

u−(α−1)/αPt−u| f |(u, x)
∫ t

u

s−γ−(α−1)/α[(t− s)(s− u)]−1/α dsdu, (43)
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where B is the beta function. Using corollary 4.4 with β = γα and v = (u/t)1/α, we estimate

the last inner integral in (43) as follows

∫ t

u

s−γ−(α−1)/α[(t− s)(s− u)]−1/α ds = t−γ−1/α

∫ 1

u/t

s−γ−(α−1)/α
[
(1− s)

(
s− u

t

)]−1/α

ds

= t−γ−1/α

∫ 1

(u/t)1/α
r−γα

[
(1− rα)

(
rα − u

t

)]−1/α

ds

≤ cγu
−γ(t− u)−1/α.

This yields Tγ f (t, x) ≤ CB
(
1− γ − α−1

α , 1− 1
α

)
Pt|θ0(x)|+ ηcγTγ f (t, x). Now, for η < 1

cγ
,

we get

Tγ f (t, x) ≤
CB
(
1− γ − α−1

α
, 1− 1

α

)

1− ηcγ
Pt|θ0|(x),

which ends the proof. �

Proof of Theorem 1.3. We will use induction with respect to |k|. For |k| = 0 the asser-

tion is true due to lemma 3.4. Assume now that (6) holds for all multi-indices k′ such that

|k′| ≤ |k| − 1 for some multi-index k, |k| > 1. We use (39) and, analogously as in (40), we

obtain

∇kθ(t, x) = ∇kPtθ0(x)+

∫ t/2

0

∫

R2

(
∇k∇pα(t− s, x− y)

)
· R⊥θ(s, y)θ(s, y)dy ds

+
∑

k1+k2=k

ck1,k2

∫ t

t/2

∫

R2

(∇pα(t − s, x− y)) · R⊥ (∇k1θ(s, y)
)
∇k2θ(s, y)dy ds.

As mentioned in Introduction, (9) implies

|∇kPtθ0(x)| 6
∫

R2

|∇kpα(t, x− y)θ0(y)|dy . t−
|k|
α Pt|θ0|(x).

Next, by (9), proposition 3.3, lemma 3.4 and semigroup property, we get

∣∣∣∣∣

∫ t/2

0

∫

R2

(
∇k∇pα(t − s, x− y)

)
· R⊥θ(s, y)θ(s, y)dy ds

∣∣∣∣∣

. t−(|k|+1)/α

∫ t/2

0

s−(α−1)/α

∫

R2

pα(t− s, x− y)Ps|θ0|(y)dy ds

= ct−
|k|
α Pt|θ0|(x).

Hence, using the induction assumption for |k2| ≤ |k| − 1 together with (9), (28), (38) and

semigroup property of pα(t, x), we conclude
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|∇kθ(t, x)| . t−
|k|
α Pt|θ0|(x)+

∑

k1+k2=k

|k2|≤|k|−1

ck1,k2 t
−(|k|+α−1)/α

∫ t

t/2

(t− s)−1/α

×
∫

R2

pα(t − s, x− y)Ps|θ0|(y)dy ds

+

∫ t

t/2

∫

R2

∣∣∇pα(t − s, x− y) · R⊥θ(s, y)∇kθ(s, y)
∣∣ dy ds

. t−
|k|
α Pt|θ0|(x)+

∫ t

t/2

(t − s)−
1
α

∫

R2

pα(t− s, x− y)|R⊥θ(s, y)‖∇kθ(s, y)|dy ds.

(44)

Let ε > 0 be a constant to be �xed later. By (34), there are t1, t2,R > 0 such that

|s(α−1)/αR⊥θ(s, y)| < ε for (s, y) /∈ D = (t1, t2)× B(0,R). Thus

|∇kθ(t, x)| ≤ ct−|k|/αPt|θ0|(x)+ ε

∫ t

t/2

(t − s)−1/α

∫

R2

pα(t− s, x− y)s−(α−1)/α|∇kθ(s, y)|dy ds

+

∫ t2∧t

t1∨t/2

∫

B(0,R)

(t − s)−1/αpα(t− s, x− y)s−(α−1)/α|∇kθ(s, y)|dy ds.

By lemma 4.2, the last integral is bounded by t−|k|/αPtθ0(x). This gives us

|∇kθ(t, x)| ≤ ct−|k|/αPt|θ0|(x)+ ε

∫ t

t/2

(t− s)−1/α

∫

R2

pα(t − s, x− y)s−(α−1)/α|∇kθ(s, y)|dy ds.

Now, denote f k(t, x) = t|k|/α|∇kθ(t, x)|. Then, for any γ ∈ (0, 1/α),

fk(t, x) ≤ cPt|θ0|(x)+ ε

∫ t

t/2

(t − s)−1/α

∫

R2

pα(t− s, x− y)s−(α−1)/αt|k|/α|∇kθ(s, y)|dy ds

≤ cPt|θ0|(x)+ ε2|k|/α
∫ t

t/2

(t − s)−1/αs−(α−1)/αPt−s fk(s, x) ds

≤ cPt|θ0|(x)+ ε2|k|/αTγ fk(t, x),

where Tγ is de�ned in lemma 4.5. Since ε may be arbitrary small, by lemma 4.5,

|∇kθ(t, x)| ≤ Mt−|k|/αPt|θ0|(x).

The proof is complete. �
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