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Abstract

By using a characterization of the Morse index and the degeneracy in terms

of a singular one dimensional eigenvalue problem given in Amadori A L and

Gladiali F (2018 arXiv:1805.04321),we give a lower bound for theMorse index

of radial solutions to Hénon type problems

{
−∆u = |x|α f (u) in Ω,

u = 0 on∂Ω,
where

Ω is a bounded radially symmetric domain ofRN (N > 2),α > 0 and f is a real

function. From this estimate we get that the Morse index of nodal radial solu-

tions to this problemgoes to∞ asα→∞. Concerning the real Hénon problem,

f (u) = |u|p−1u, we prove radial nondegeneracy, we show that the radial Morse

index is equal to the number of nodal zones and we get that a least energy nodal

solution is not radial.
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1. Introduction

In this paper we estimate the Morse index of radial solutions to

{
−∆u = |x|α f (u) inΩ,

u = 0 on ∂Ω,
(1.1)

whereΩ is a bounded radially symmetric domain ofRN , with N > 2, α > 0 is a real parameter

and f is a real function. We will consider weak and classical solutions. When α = 0 problem

(1.1) becomes autonomous

{
−∆u = f (u) inΩ,

u = 0 on ∂Ω,
(1.2)

and we recover, from a different point of view, an already known estimate on the Morse index

of radial solutions to (1.2); see [2–4]. Equation (1.1) has important applications in physics. It

has been derived in the study of a cluster of stars with a huge collapsed object in the origin,

see [5], but it models also steady-state distributions in some diffusion processes, see [6] for

a more detailed explanation of these examples. In the particular case of f (s) = (1− s)−2

in dimension N = 2 equation (1.1) arises in the study of a simple Micro-Electromedical-

Systems Mems device with a power-law permittivity pro�le, see [7] for a description of the

mathematical model.

Since this paper is based on the Morse index of a solution we recall its de�nition and its

relevance in the study of PDEs. Taken a weak solution u ∈ H1
0 (Ω) to (1.1) we introduce the

associated linearized operator

Lu(ψ) := −∆ψ − |x|α f ′(u)ψ (1.3)

and the associated quadratic form

Qu(ψ) :=

∫

Ω

(
|∇ψ|2 − |x|α f ′(u)ψ2

)
dx. (1.4)

In order to give sense to Lu and Qu we will consider weak solutions u ∈ H1
0(Ω) to (1.1)

under the hypotheses

(H.1) f ∈ W1,1
loc(R),

(H.2) f ′(u) ∈ L∞(Ω).

Assumptions (H.1) and (H.2) are needed to give a sense to f ′(s) and to the weak formulation

to (1.1) and (1.3) andQu(ψ) and to recover compactness of the linear operator Lu, so to use the

eigenvalue theory for compact operators. It is easily seen that if f ∈ C1(R) and u is a classical

solution then both assumptions hold. Besides assumption (H.2) is satis�ed by every radialweak

solution if f full�lls some stricter condition, like for instance

(H.1′) f ∈ W1,∞
loc (R) and | f (s)| 6 C

(
1+ |s|p

)
when s is large, for some constant C and

p ∈
(
1, N+2+2α

2+α

)
, or p> 1 if N = 2.

See remark 4.3. The hypothesis (H.1′) has been introduced by Ni [8], together with some

other ones, to prove existence of radial solutions to (1.1) and in particular to the real Hénon

problem. In some results we will also assume that f satis�es

(H.3) f ′(s) > f (s)/s, s 6= 0.

2542



Nonlinearity 33 (2020) 2541 A L Amadori and F Gladiali

Given aweak solution u theMorse index of u, that we denote bym(u), is themaximal dimen-

sion of a subspace ofH1
0(Ω) in which the quadratic formQu is negative de�ned, or equivalently,

since Lu is a linear compact operator, is the number of the negative eigenvalues of Lu inH
1
0 (Ω),

counted with multiplicity and when u is a radial solution the radial Morse index of u, called

mrad(u), is the number of the negative eigenvalues of Lu in H
1
0,rad(Ω) (the subspace of H

1
0(Ω)

given by radial functions). The knowledge of the Morse index of a solution u has important

applications. Let us recall that a change in the Morse index, gives existence of other solutions

that can be obtained by bifurcation and can give rise to the so called symmetry breaking phe-

nomenon, that in the contest of theHénon problemhas been highlightedby [9] for a least energy

solution. In the variational setting, indeed, there is a direct link between the second derivative

of the functional associated to (1.1) and the quadratic form Qu related to its linearization, and

a change in the Morse index immediately produces a change in the critical groups, giving exis-

tence of bifurcating solutions; we refer to [10] for the de�nition of critical groups, and their

relation with the Morse index. But also when the problem does not have a variational struc-

ture, as for instance when f is supercritical, a change in the Morse index implies a bifurcation

result, via the Leray Schauder degree; see [11]. An application of this type can be found in

[12], dealing with positive solutions of the Hénon problem in the ball. The knowledge of the

Morse index also allows one to produce nonradial solutions by minimization, as done in [13],

dealing with the Lane–Emden problem in the disk and in [14, 15] in the case of the Hénon

problem.

The study of the Morse index of nodal radial solutions has been tackled for the �rst time by

Aftalion and Pacella, in [2], dealing with autonomous problem of the type (1.2) with f ∈ C1.

They proved that the linearized operator Lu has at least N negative eigenvalues whose corre-

sponding eigenfunctions are non radial and odd with respect to xi. Adding the �rst eigenvalue,

which is associated to a radial, positive eigenfunction, one gets m(u) > N + 1. Next denoting

by m the number of the nodal zones, namely the connected components of {x ∈ Ω: u(x) 6= 0},
it is proved in [3] that m(u) > (m− 1)(N + 1). In this case f is absolutely continuous, but a

restriction on its growth is imposed so that (1.2) has a variational structure. After [4] established

the following lower bound

Theorem (Theorem 2.1 in [4]). Let f ∈ C1(R), and u be a classical radial solution to (1.2)

with m nodal zones. Then

mrad(u) > m− 1, m(u) > (m− 1)(1+ N).

If in addition f ful�lls (H.3), then

mrad(u) > m, m(u) > m+ (m− 1)N.

All the mentioned estimates are achieved using the directional derivatives of the solu-

tion u, namely ∂u
∂xi

, to obtain information on the eigenfunctions and eigenvalues of Lu, since

Lu

(
∂u
∂xi

)
= 0 and cannot be adapted to deal with nonautonomous nonlinearities.

Concerning the Morse index of nodal least energy solutions we quote [16, 17], dealing with

variational problems. Coming to nonautonomous problems of Hénon type (1.1) we quote a

recent paper by dos Santos and Pacella [18] which proved that any nodal radial solution in a

radially symmetric planar domain satis�es m(u) > 3 for any α > 0 and m(u) > 3+ α when

α is an even integer. Under the additional assumption (H.3), also the paper [18] furnishes an

improved estimate claiming that m(u) > m+ 2 for any α > 0 and m(u) > m+ 2+ α when

α is an even integer. The proof relies on a suitable transformation which relates solutions to

(1.1) to solutions of an autonomous problem of type (1.2), to which ([4], theorem 2.1) can be

applied.
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Here we improve the results in [18] in two different directions: from one side we provide a

higher lower bound in the planar case, from the other we include the case of higher dimensions.

Letting
[
α
2

]
= max

{
n ∈ Z : n 6 α

2

}
stand for the integer part of α

2
, and N j =

(N+2 j−2)(N+ j−3)!
(N−2)! j!

for the multiplicity of the jth eigenvalue of the Laplace–Beltrami operator, our estimates state

as follows:

Theorem 1.1. Assume that α > 0 and f satis�es (H.1), and take u a radial weak solution to

(1.1) with m nodal zones satisfying (H.2). Then

mrad(u) > m− 1, (1.5)

m(u) > mrad(u)+ (m− 1)

[

2+α
2

]

∑

j=1

N j > (m− 1)

[

2+α
2

]

∑

j=0

N j

=





(m− 1)(1+ N) if 0 6 α < 2, or

(m− 1)


1+ N +

[ α2 ]∑

j=1

N j+1


 if α > 2.

(1.6)

If in addition f ful�lls (H.3), then

mrad(u) > m, (1.7)

m(u) > mrad + (m− 1)

[

2+α
2

]

∑

j=1

N j > m+ (m− 1)

[

2+α
2

]

∑

j=1

N j

=





m+ (m− 1)N if 0 < α < 2, or

m+ (m− 1)


N +

[ α2 ]∑

j=1

N j+1


 if α > 2.

(1.8)

The proof of theorem 1.1 relies on a transformation of the radial variable which, like the one

in [18], brings radial solutions to problem (1.1) into solutions of a suitable autonomous ODE

[see ([1], section 4.1)]. The main difference in our approach is that we compute the Morse

index starting from a singular eigenvalue problem studied in the preceding paper [1]. In that

way the core of the proof stands in an estimate of the singular eigenvalues given in proposition

3.3. Such estimate, together with ([1], corollary 4.11), allows us to obtain information also on

the Morse index in symmetric spaces and has interesting implications on the multiplicity of

solutions, as discussed with more details at the end of section 4.

Let us remark by now an immediate but interesting consequence of estimate (1.6).

Corollary 1.2. Assume that α > 0 and f satis�es (H.1), and take u a radial weak solution

to (1.1) with m > 2 nodal zones satisfying (H.2). Then the Morse index of u goes to in�nity as

α→+∞.

This result holds only for sign-changing solutions and indeed cannot be true in the case of

positive ones, as shown in [12] where the positive solution hasMorse index one for every value

of α > 0, for some particular choice of the function f .

After this paper was �nished we came to know that corollary 1.2 was previously presented

in the paper [19] for p-homogeneous nonlinearities. Their result generalizes also to the case of
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systems. Following an idea of [17] they transformproblem (1.1) into an equivalent one and they

perform a blow-up analysis as α→∞. A Liouville theorem for the limiting problem, included

in the paper, then implies the result. Let us observe that the strategy of [19] is complementary

to ours. Indeed our result does not relies on an asymptotic analysis and produces information

for every �xed value of α.
We conclude our paper by dealing with the particular case of power-type nonlinearity, i.e.

with the Hénon problem

{
−∆u = |x|α|u|p−1u inΩ,

u = 0 on ∂Ω,
(1.9)

that has been introduced by Hénon in [5] to study stellar clusters. Attention to this problem has

been brought by the existence result in [8] and by the break of symmetry of the ground state

solution in [9]. After that the Hénon problem attracted the attention of many authors, and the

interested reader can see among others the following ones [12, 15, 17, 20–28]. We recall that a

solution u is called radially degenerate if the linearized equation Lu(ψ) = 0 admits a nontrivial

radial solution in H1
0(Ω). By investigating the singular radial eigenvalues related to (1.9), we

are able to show that

Theorem 1.3. Letα > 0, p> 1 and u ∈ H1
0(Ω) a radial solution to (1.9)with m nodal zones.

Then u has radial Morse index m and is radially non-degenerate.

Theorem 1.3 includes also the Lane–Emden problem (α = 0). For that problem both the

radial non-degeneracyand the value of the radialMorse index had already been obtained in [29]

with a completely different approach. Their proof adapts to deal with some non-autonomous

problems, but their assumptions do not include the Hénon problem and they only handle

variational problems (i.e. subcrictical exponents).

Beside for the Hénon problem an easy corollary follows from the Morse index estimate in

theorem 1.1

Corollary 1.4. Let α > 0 and 1 < p< N+2
N−2

if N > 3, or 1 < p in dimension N = 2. A least

energy nodal solution to (1.9) is not radial.

This result follows easily by Morse index considerations and was previously known only

for small values of α in [30]. It generalizes previous results for autonomous problem in [2,

3] and can be proved for more general nonlinearities when problem (1.1) admits a variational

structure (see as an example assumptions f 1, f 2, f 3, f 4 in [17]), by relying on theorem 1.1. On

the other hand the same symmetry breaking phenomenon was already proved for the ground

state solution to (1.9) in [9], by estimating the energy of the positive radial solution, but it holds

only for large values of α.
Finally we mention that, starting from the Morse index formula in ([1], proposition 1.4),

theorem 1.3 and the estimates of the singular eigenvalues obtained in proposition 3.3, we are

able to compute the Morse index of radial solutions to (1.9) when the parameter p goes to the

end of the existence range, by means of a careful investigation of the asymptotic behaviour of

the solution as well of the singular radial eigenvalues and eigenfunctions; see [15, 20]. The

investigation of problem (1.9) gives some insight about the optimality of the estimate (1.8).

For positive solutions (m = 1) the bound is optimal because the Morse index is equal to 1

when the exponent p approaches the value 1; see [12]. For sign-changing solutions in dimen-

sion N > 3, in the case of Lane–Emden problem (α = 0) the estimate (1.8) is attained for

p near the critical exponent p∗ = N+2
N−2

; see [4]. This is not the case anymore for the Hénon
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problem (α > 0), because the exact value obtained in [20], for p near the critical Hénon expo-

nent pα :=
N+2+2α
N−2

, overpasses the estimate from below presented here. But [20] also shows

that the estimates of the radial singular eigenvalues obtained here in proposition 3.3 are sharp:

actually the �rst m− 1 eigenvalues reach their upper bound for p near pα, giving the minimal

contribution to the Morse index. The contribution coming from the last eigenvalue is constant

for the Lane–Emden problem, but it varies for the Hénon problem, precisely it is maximal

when p is near pα, minimal when p is near 1. Dimension N = 2 is quite special: the Morse

index for large values of p is greater than the one for p near to 1 and the estimate (1.8) is not

optimal even for the Lane–Emden problem; see [13–15, 31]. Another estimate of the Morse

index in the plane has been recently provided in [32].

2. Preliminaries

In this section we give all the notation we need in the sequel, we introduce the singular eigen-

value problems that have been the subject of [1] and we recall their relation with the Morse

index of a solution u to (1.1) that we need to prove themain results. Since this paper is the sequel

of [1] we suggest to read the �rst part where some properties of the singular eigenvalues and

eigenfunctions are proved.

Henceforward Ω denotes a bounded radially symmetric domain of RN , while B = {x ∈
R
N : |x| < 1} is the unit ball. In the end of this section we will focus on the case when

Ω = B since the case of the annulus is easier and can be deduced from this one. We shall

make use of the following functional spaces: C1
0(Ω) := {v:Ω→ R : v differentiable, ∇v

continuous and the support of v is a compact subset of Ω}; for any p> 1 we let Lp(Ω)

be the usual Lebesgue spaces; while H1(Ω) and H1
0 (Ω) are the Sobolev spaces, namely

H1(Ω) :=
{
v ∈ L2(Ω) : v has �rst order weak derivatives∂iv in L

2(Ω) for i = 1, . . . , N
}
;

H1
0(Ω) :=

{
v ∈ H1(Ω) : v(x) = 0 if x ∈ ∂Ω

}
; and H1

rad(Ω) and H1
0,rad(Ω) are the subspaces

given by radial functions, namely H1
rad(Ω) := {v ∈ H1(Ω) : v is radial}; H1

0,rad(Ω) :=H1
0(Ω) ∩

H1
rad(Ω).

Following [1] we use some singular eigenvalues associated to the linearized operator Lu to

characterize the Morse index of a solution u to (1.1). To de�ne them we need some weighted

Lebesgue and Sobolev spaces that we denote by

L :=

{
ψ:Ω→ R :ψmeasurable and s.t

∫

Ω

|x|−2ψ2dx <∞

}
,

H :=H1(Ω) ∩ L, H0 :=H1
0 (Ω) ∩ L, H0,rad :=H ∩ H1

0,rad(Ω),

L is a Hilbert space with the scalar product
∫
Ω|x|

−2ηϕdx, so that

η⊥ϕ ⇐⇒

∫

Ω

|x|−2ηϕdx = 0 for η,ϕ ∈ L. (2.1)

Next we introduce the singular eigenvalues that have been studied in ([1], section 3) and we

let

Λ̂1 := inf

{
Qu(ψ)∫

Ω
|x|−2ψ2(x)dx

:ψ ∈ H0\{0},

}
(2.2)

where Qu(ψ) is as de�ned in (1.4). This �rst singular eigenvalue Λ̂1 is attained, when Λ̂1 <(
N−2
2

)2
at a function ϕ1 ∈ H0. Iterating, when Λ̂i−1 <

(
N−2
2

)2
and it is attained at a function

ϕi−1 ∈ H0, we can then de�ne the subsequent eigenvalue
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Λ̂i := inf

{
Qu(ψ)∫

Ω
|x|−2ψ2(x)dx

:ψ ∈ H0\{0},w⊥ϕ1, . . . , ϕi−1

}
, (2.3)

where the orthogonality stands for the orthogonality in L. Again Λ̂i is attained as far as it

satis�es Λ̂i <
(
N−2
2

)2
. Every eigenfunction ϕi ∈ H0 associated with Λ̂i is a weak solution to

the singular eigenvalue problem




−∆ϕi − |x|α f ′(u)ϕi =

Λ̂i

|x|2
ϕi inΩ,

ϕi = 0 on ∂Ω,

(2.4)

meaning that it satis�es

∫

Ω

∇ϕi∇φ− |x|α f ′(u)ϕiφdx = Λ̂i

∫

Ω

|x|−2ϕiφdx

for every φ ∈ H0. We need also the radial version of the singular eigenvalues and so we let

Λ̂
rad
1 := inf

{
Qu(ψ)∫

Ω
|x|−2ψ2(x)dx

:ψ ∈ H0,rad\{0}

}
(2.5)

which is attained when Λ̂rad
1 <

(
N−2
2

)2
at a function ϕrad

1 ∈ H0,rad and, as before, whenever

Λ̂rad
i−1 <

(
N−2
2

)2
and it is attained at a function ϕrad

i−1 ∈ H0,rad, we can then de�ne the subsequent

eigenvalue

Λ̂
rad
i := inf

{
Qu(ψ)∫

Ω
|x|−2ψ2(x)dx

:ψ ∈ H0,rad\{0},ψ⊥ϕ
rad
1 , . . . , ϕrad

i−1

}
. (2.6)

The interest in the singular eigenvalues stands in the fact that, even for semilinear problems

more general than (1.1), the Morse index of any solution u can be computed by counting, with

multiplicity, the singular eigenvalues Λ̂, while the radial Morse index of a radial solution u is

the number of negative singular radial eigenvalue Λ̂rad; see ([1], proposition 1.1). Further, when

u is radial, they have a good property, namely a decomposition along radial and angular part

holds. We collect here into one statement [adapted to the particular case (1.1)] the main results

in [1] about this topic recalling that λ j are the eigenvalues of the Laplace Beltrami operator on

the sphere SN−1, namely −∆SN−1Y j = λ jY j for

λ j = j(N − 2+ j)

and whose multiplicity is

N j :=
(N + 2 j− 2)(N + j− 3)!

(N − 2)! j!

and Y j = Y j(θ) are the eigenfunctions of −∆SN−1 associated with λ j and they are known as

Spherical Harmonics.

Proposition 2.1. Assume that α > 0 and f satis�es (H.1) and take u a radial weak solution
to (1.1) satisfying (H.2). Then its radialMorse index mrad is the number of negative eigenvalues

Λ̂rad
i according to (2.6), and its Morse index is given by
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m(u) =

mrad∑

i=1

⌈Ji−1⌉∑

j=0

N j where

Ji =

√(
N − 2

2

)2

− Λ̂rad
i −

N − 2

2

(2.7)

and ⌈t⌉ = min{k ∈ Z: k > t} stands for the ceiling function. In addition the negative singular

eigenvalues are Λ̂ = Λ̂rad
i + λ j and the related eigenfunctions are, in spherical coordinates

ψ(x) = ψ̂rad
i (r)Y j(θ), (2.8)

where ψ̂rad
i is an eigenfunction related to Λ̂rad

i .

In the radial setting problem (1.1) is related to an autonomous one by means of the

transformation

t = r
2+α
2 , w(t) = u(r), (2.9)

which maps any radial solution u of (1.1) into a solution w of

−
(
t M−1w′

)′
=

(
2

2+ α

)2

t M−1 f (w), 0 < t < 1, (2.10)

where

M = M(N,α) :=
2(N + α)

2+ α
∈ [2,N] (2.11)

with some boundary conditions that depends on the case when Ω is a ball and when Ω

is an annulus. The transformation (2.9) has been introduced in [33] in the study of the

Brezis–Nirenberg problem for quasilinear elliptic equations with weight and, subsequently, it

has been used in [7] dealing with minimal solutions to (1.1) when f (u) = λ(1− u2)−1. Next,

in [34] it has been applied to the Hénon critical problem in RN , N > 3. As explained in [1] the

Morse index of u can be computed in terms of some singular eigenvalues associated with the

linearization to (2.10) at w, if u and w are related by (2.9). Since the topic is slightly different

whenΩ is a ball or an annulus, we focus here on the case whenΩ is the unit ball since the case

of the annulus can be easily deduced from this one.

In this case the function w satis�es the boundary conditions

w′(0) = 0, w(1) = 0 (2.12)

and to deal with the singular eigenvalues for anyM > 2, we de�ne

L2M :=

{
v : (0, 1)→ R : vmeasurable and s.t.

∫ 1

0

t M−1v2dt < +∞

}
,

H1
M := {v ∈ L2M: v has a �rst orderweak derivative v

′ inL2M},

H1
0,M :=

{
v ∈ H1

M: v(1) = 0
}
.
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The Lebesgue space L2M is a Hilbert space endowed with the scalar product 〈v,w〉M
=
∫ 1

0
tM−1vwdt, which yields the orthogonality condition

v⊥M w ⇐⇒

∫ 1

0

tM−1vwdt = 0.

The spacesH1
M andH1

0,M can be seen as generalizations of the spaces of radial functionsH1
rad(B)

and H1
0,rad(B) because when M is an integer then H1

M is actually equal to H1
rad(B) by ([35],

theorem 2.2). Next we say that w ∈ H1
0,M is a weak solution to (2.10) and (2.12) if

∫ 1

0

t M−1w′ϕ′dt =

(
2

2+ α

)2∫ 1

0

t M−1 f (w)ϕdt (2.13)

for every ϕ ∈ H1
0,M .

In the spaces H1
0,M we generalize the classical radial eigenvalues of Lu considering the

Sturm–Liouville eigenvalue problem associated with the linearization of (2.10), namely, if

w is a solution to (2.10) we consider




−
(
t M−1ψ′

i

)′
− t M−1

(
2

2+ α

)2

f ′(w)ψi = t M−1νiψi for t ∈ (0, 1)

ψ′
i(0) = 0, ψi(1) = 0.

(2.14)

By weak solution to (2.14) we mean a ψi ∈ H1
0,M such that

∫ 1

0

t M−1

(
ψ′
iϕ

′ −

(
2

2+ α

)2

f ′(w)ψiϕ

)
dt = νi

∫ 1

0

t M−1ψiϕdt. (2.15)

for every ϕ ∈ H1
0,M . Under assumptions (H.1) and (H.2) letting

Qw:H
1
0,M → R, Qw(ψ) =

∫ 1

0

tM−1

(
|ψ′|2 −

(
2

2+ α

)2

f ′(w)ψ2

)
dt (2.16)

these eigenvalues ν i can be de�ned using their min–max characterization,

ν1 := min
ψ∈H1

0,M
ψ 6=0

Qw(ψ)∫ 1

0
tM−1ψ2(t)dt

,

and for i > 2

νi := min
ψ∈H1

0,M

ψ 6=0
ψ⊥M{ψ1,..., ψi−1}

Qw(ψ)∫ 1

0
tM−1ψ2(t)dt

= min
W⊂H1

0,M
dimW=i

max
ψ∈W
ψ 6=0

Qw(ψ)∫ 1

0
tM−1ψ2(t), dt

. (2.17)

where ψ j is an eigenfunction corresponding to ν j for j = 1, . . . , i− 1.

Finally, for anyM > 2 we de�ne the weighted Lebesgue and Sobolev spaces

LM :=

{
v : (0, 1)→ R : vmeasurable and s.t

∫ 1

0

t M−3w2dt <∞

}
,

HM :=H1
M ∩ LM , H0,M :=H1

0,M ∩ LM.
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LM is an Hilbert space with the scalar product
∫ 1

0
tM−3ηϕdt, so that

η⊥Mϕ ⇐⇒

∫ 1

0

t M−3ηϕdt = 0 for η,ϕ ∈ LM. (2.18)

Using these spaces we generalize the radial singular eigenvalues Λ̂rad
i looking at the singular

Sturm–Liouville problem




−
(
t M−1ψ′

)′
− t M−1

(
2

2+ α

)2

f ′(w)ψ = t M−3ν̂ iψ for t ∈ (0, 1)

ψ ∈ H0,M

(2.19)

with ν̂ i ∈ R. A weak solution to (2.19) is ψ ∈ H0,M such that

∫ 1

0

t M−1

(
ψ′
iϕ

′ −

(
2

2+ α

)2

f ′(w)ψiϕ

)
dt = ν̂ i

∫ 1

0

t M−3ψiϕdt (2.20)

for any ϕ ∈ H0,M . We say that ν̂ i is a singular eigenvalue if there exists ψi ∈ H0,M\{0} that

satis�es (2.20). Such ψi will be called singular eigenfunction. If M is an integer then H0,M

= H0,rad and ν̂ i = Λ̂rad
i are the radial singular eigenvalues according to the previous de�nition.

The eigenvalues ν̂ i can be de�ned as follows. Set

ν̂1 := inf
ψ∈H0,M ψ 6=0

Qw(ψ)∫ 1

0
tM−3ψ2dt

.

This �rst eigenvalue ν̂1 is attained when ν̂1 <
(
M−2
2

)2
at a functionψ1 ∈ H0,M which is a weak

solution to (2.19). Iterating, when ν̂ i−1 <
(
M−2
2

)2
and it is attained at a function ψi−1 ∈ H0,M

we can de�ne

ν̂ i := inf
ψ∈H0,M ψ 6=0

ψ⊥M{ψ1,..., ψi−1}

Qw(ψ)∫ 1

0
tM−3w2dt

(2.21)

where the orthogonality stands for the orthogonality in LM . Again ν̂ i is attained as far as ν̂ i <(
M−2
2

)2
. The de�nitions, the properties of the eigenfunctions ψi their behaviour at t = 0 and

many other facts that we need hereafter have been tackled in [1]. Here we report only some

properties of particular interest. The �rst one is called property 5 in [1] and we recall it in a

form that can be adapted both to the singular and the classical eigenvalues.

Property 5. Each singular eigenvalue ν̂ i (each eigenvalue ν i) is simple and any ith

eigenfunction has exactly i nodal domains.

Proposition 2.2 (Proposition 3.11 in [1]). The number of negative eigenvalues ν i de�ned
in (2.17) coincides with the number of negative eigenvalues ν̂ i de�ned in (2.21).

Eventually we go back to problem (1.1): if u is a radial solution andw is de�ned as in (2.9),

we can compute the Morse index of u in terms of the singular eigenvalues ν̂ i of (2.19) withM
given by (2.11).

Proposition 2.3 (Proposition 1.4 in [1]). Assume that α > 0 and f satis�es (H.1) and take
u a radial weak solution to (1.1) satisfying (H.2). Then its radialMorse indexmrad is the number
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of negative eigenvalues of (2.19), and its Morse index is given by

m(u) =

mrad∑

i=1

⌈Ji−1⌉∑

j=0

N j, where

Ji =
2+ α

2



√(

M − 2

2

)2

− ν̂ i −
M − 2

2


 .

(2.22)

Furthermore the negative singular eigenvalues are Λ̂ =
(
2+α
2

)2
ν̂ i + λ j and the related eigen-

functions are, in spherical coordinates,

ψ(x) = φi

(
r
2+α
2

)
Y j(θ), (2.23)

where φi is an eigenfunction for (2.21) related to ν̂ i.

To characterize degeneracy, and in particular radial degeneracy, also the classical eigenval-

ues ν i of (2.19), again withM given by (2.11), are needed.

Proposition 2.4 (Proposition 1.5 in [1]). Assume that α > 0 and f satis�es (H.1) and take
u a radial weak solution to (1.1) satisfying (H.2). When N > 3 then u is radially degenerate if

and only if ν̂k = νk = 0 for some k > 1, and degenerate if and only if, in addition,

ν̂k = −

(
2

2+ α

)2

j(N − 2+ j) for some k, j > 1. (2.24)

Otherwise, if N = 2, then u is radially degenerate if and only if νk = 0 for some k > 1, and

degenerate if and only if, in addition, (2.24) holds. Furthermore, in any dimension N > 2, any

nonradial function in the kernel of Lu has the form (2.23).

3. Morse index of radial solutions

In this section we address the Morse index of radial solutions to the semilinear problem (1.1)

when Ω is the unit ball, namely

{
−∆u = |x|α f (u) inB,

u = 0 on ∂B,
(3.1)

where α > 0 is a real parameter and f satis�es (H.1). The case of α = 0 gives back the

autonomous problem (1.2) in B and will be treated together with the general case.

As recalled in section 2 any radial solution u to (3.1) is linked by the transformation (2.9)

to a solution w to (2.10) and (2.12) with M > 2 given by (2.11).

To prove theorem 1.1 we need some qualitative properties of solutions to the semilinear

ODE (2.10). Let us denote by 0 < t1 < · · · < tm = 1 the zeros of w in [0, 1], so that w(ti) = 0

and, assuming w(0) > 0 we let

M0 = sup{w(t) : 0 < t < t1},

Mi = max{|w(t)|: ti 6 r 6 ti+1},
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for i = 1, . . . ,m− 1. Then we have:

Lemma 3.1. Assume that α > 0 and f satis�es (H.1) and let w be a weak solution to (2.10)

with m nodal zones which is positive in the �rst one (starting from 0) satisfying (H.2). If in

addition f satis�es f (s)/s > 0 for s 6= 0, then w is strictly decreasing in its �rst nodal zone so

that

w(0) = M0.

Moreover, it has a unique critical point si in the nodal set (ti, ti+1) for i = 1, . . .m− 1 with

M0 >M2 > . . .

M1 >M3 > . . . .

In particular 0 is the global maximum point and s1 is the global minimum point. If, in addition,

f is odd, then

M0 >M1 > · · · Mm−1.

Proof. Under assumptions (H.1) and (H.2) a weak solution to (2.10) and (2.12) is classical

by ([1], corollary 4.8). Then integrating (2.10) and recalling that w > 0 in (0, t1) gives

w′(t) = −

(
2

2+ α

)2

t1−M
∫ t

0

sM−1 f (w)

w
wds < 0

for any t ∈ (0, t1). Thenw is strictly decreasing in the �rst nodal zone, so thatM0 = w(0). We

multiply −w′′ − M−1
t
w′ =

(
2

2+α

)2
f (w) by w′ and integrate to compute

1

2

(
w′(t)

)2
+ (M − 1)

∫ t

0

(
w′(s)

)2

s
ds =

(
2

2+ α

)2

(F(w(0))− F(w(t))) (3.2)

where F(s) =
∫
s f (t)dt is a primitive of f . Since the lhs is strictly positive, it follows that

F(w(0)) > F(w(r)) for any t ∈ (0, 1], meaning thatw(0) 6= w(t) for any t ∈ (0, 1]. This implies

that M0 = w(0) > w(t) for any t ∈ (0, 1] so that 0 is the global maximum point of w. The
very same computation (integrating between si and t) shows that |w| is strictly increasing

in any nodal region until it reaches a critical point si, and then it is strictly decreasing.

At any critical point si, we have w(si) 6= 0 by the unique continuation principle and w′′(si)

= −
(

2
2+α

)2
f (w(si)) 6= 0 has the reverse sign ofw(si) because f (s)/s > 0, so that w can have

only one strict maximum point (resp. minimum) in each nodal set where it is positive (resp.

negative). Further, the previous argument also shows that M0 >M2 > . . . and that M1 >
M3 > . . . . If, in addition, f is odd, then F is even and (3.2) shows that F(w(0)) > F(|w(t)|)
for any t ∈ (0, 1] from which it follows thatM0 >M1 > . . .Mm−1. �

Next we show an estimate on u′ and w′ that will be useful hereafter.

Lemma 3.2. Assume that α > 0 and f satis�es (H.1), take u a radial weak solution to (3.1)

satisfying (H.2) and w as in (2.9). Then u′ ∈ HN and w
′ ∈ HM .

Proof. We prove that u′ ∈ HN . The fact thatw
′ ∈ HM then follows by lemma 4.4 and (4.21)

in [1]. By ([1], lemma 4.6) it is known that any weak solution u ∈ C2[0, 1] and solves (2.10)
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in classical sense. In particular u′′ ∈ C[0, 1] so that
∫ 1

0
rN−1|u′′|2dr <∞. Moreover, for every

γ < 1+ α de L’Hopital theorem gives

lim
r→0

u′(r)

rγ
= lim

r→0

r N−1u′(r)

rN−1+γ
= lim

r→0

−r1+α−γ f (u(r))

N − 1+ γ
= 0

which shows that
∫ 1

0
r N−3|u′|2 dr <∞ and concludes the proof. �

The transformation (2.9) is useful also in computing the Morse index of radial solutions u

to (3.1) via proposition 2.3. In that case we look at the singular eigenvalues ν̂ i de�ned in (2.19)
in section 2. Next Proposition establishes some bounds for these singular eigenvalues ν̂ i which
are essential to prove theorem 1.1.

Proposition 3.3. Assume that α > 0 and f satis�es (H.1) and take u a radial weak solution

to (3.1) with m nodal zones satisfying (H.2). Then

ν̂ i < −(M − 1) for i = 1, . . . m− 1. (3.3)

If, in addition, f (s)/s > 0 when s 6= 0 and the radial Morse index of u is mrad(u) > m then

0 > ν̂ i > −(M − 1) for i = m, . . . mrad(u). (3.4)

Proof. Let w be as in (2.9) and ζ = w′ ∈ C1[0, 1] ∩HM by lemma 3.2. Since w ∈ C2[0, 1]

and satis�es (2.10) pointwise, a trivial computation shows that

∫ 1

0

r M−1ζ ′ϕ′dr =

(
2

2+ α

)2∫ 1

0

r M−1 f ′(w)ζϕdr − (M − 1)

∫ 1

0

r M−3ζϕdr

(3.5)

for anyϕ ∈ C1
0(0, 1).Moreover, the computations in ([1], lemma 2.4) can be repeated obtaining

that

(
r M−1

(
ψ′
iζ − ψiζ

′
))′

= −(M − 1+ ν̂ i)r
M−3ψiζ for r ∈ (0, 1), (3.6)

whenever ψi is an eigenfunction for (2.19) related to ν̂ i <
(
M−2
2

)2
.

It is clear that ζ has at least m zeros in [0, 1], indeed since u has m nodal domains the same

is true for w so that ζ has at least one zero in each nodal domain of w. Let 0 6 t0 < t1 · · · <
tm−1 6 1 be such that ζ(ti) = 0. Because w is a nontrivial solution to (2.10) and (2.12) we can

take t0 = 0, and certainly tm−1 < 1 by the unique continuation principle. For k = 1, . . .m− 1,

let ζk be the function that coincides with ζ on [tk−1, tk] and is null elsewhere. Certainly ζk ∈
H0,N ⊂ H1

0,N , and can be used as test function in (3.5) giving

∫ 1

0

tM−1

(
(ζ ′k)

2 −

(
2

2+ α

)2

f ′(w)ζ2k

)
dt = −(M − 1)

∫ 1

0

tM−3ζ2k dt < 0.

(3.7)
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Recalling that ζk have contiguous supports and so they are orthogonal in L2M (see section 2

for the de�nition of the space), (3.7) implies in the �rst instance that the quadratic formQw in

(2.16) is negative de�ned in them− 1-dimensional space spanned by ζ1, . . . , ζm−1 showing, by

(2.17), that the eigenvalue problem (2.14) has at leastm− 1 negative eigenvalues ν1, . . . , νm−1.

Proposition 2.2 then implies that also the singular eigenvalue problem (2.19) has at least

m− 1 negative eigenvalues ν̂1, . . . , ν̂m−1. Let us check that actually ν̂ i < −(M − 1). First

ν̂ i 6= −(M − 1), otherwise (3.6) should imply that ψi and ζ are proportional, which is not pos-
sible as ψi(1) = 0 6= ζ(1). Next, taking advantage from the identity (3.6), we can repeat the

same arguments used to prove the last part of property 5 in subsection 3.1 in [1] to show that,

if ν̂ i > −(M − 1), then ψi must have at least one zero between any two consecutive zeros of

ξ meaning that ψi must have at least m− 1 internal zeros, contradicting property 5 recalled in

section 2. This concludes the proof of (3.3).

Further, when f (s)/s > 0 for s 6= 0, then w has only one critical point in any nodal region

by lemma 3.1. This means that the function ζ has exactly m zeros, and only m− 1 internal

zeros. Besides, since we are assuming mrad(u) > m, also ν̂m < 0 thanks to proposition 2.3 and

the related eigenfunction ψm has m nodal zones by the property 5 recalled in section 2. The

inequality (3.4) is obtained by comparing ζ and ψm. As before, certainly ν̂m 6= −(M − 1), and

if ν̂m < −(M − 1) then ζ must have at least m internal zeros, obtaining a contradiction. �

The previous inequalities will play a role in the proof of some asymptotic results on the

Morse index of radial solutions to (3.1) in [15, 20]. Now the statement of theorem 1.1 follows

by combining the estimate (3.3) with the general formula (2.22).

Proof of theorem 1.1. By (3.3), via proposition 2.3, it is clear that the radial Morse index

of u is at least m− 1, i.e. (1.5) holds. Next putting the estimate (3.3) inside (2.22) gives (1.6).

Moreover, under assumption (H.3) it is easy to see that the radial Morse index of u is at least

equal to the number of nodal zones. First we show that, letting w as in (2.9), the eigenvalue

problem (2.14) has at least m negative eigenvalues i.e., by the variational characterization

(2.17), that the quadratic formQw in (2.16) is negative de�ned in an m-dimensional subspace

of H1
0,M . Let 0 < t1 < t2 < · · · tm = 1 be the zeros of w in [0, 1], I1 = (0, t1), Ii = (ti−1, ti) for

i = 2, . . . ,m its nodal domains, and zi be the function that coincides with w in Ii and is zero

elsewhere. Using zi as a test function in (2.13) gives

∫ 1

0

tM−1

(
|z′i|

2 −

(
2

2+ α

)2

f ′(w)z2i

)
dt =

(
2

2+ α

)2∫

Ii

tM−1

(
f (w)

w
− f ′(w)

)
w2dt < 0

by (H.3). So this part of the proof is concluded, because zi ∈ H1
0,M are linearly independent, hav-

ing contiguous supports. Proposition 2.2 then implies that also the singular eigenvalue problem

(2.19) has at leastm negative eigenvalues and proposition 2.3 yields that the radialMorse index

of u is at least m, i.e. (1.7) holds. Eventually (1.8) follows inserting (1.7) into (1.6). �

Theorem1.1 extends some previous results on the autonomous case, namely (3.1) forα = 0,

to the case of positive values of α. The proof above is nevertheless a new proof also for the

autonomous case, based upon the singular eigenvalue problem associated with the linearized

operatorLu. Indeedwhenα = 0 the eigenvalues ν̂ i coincidewith the radial singular eigenvalues
Λ̂rad
i de�ned in (2.6) and (3.3) and (3.4) become

Λ̂
rad
i < −(N − 1) for i = 1, . . . m− 1 (3.8)

0 > Λ̂
rad
i > −(N − 1) for i = m, . . . mrad(u) (3.9)
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Some comments on estimates (3.8) and (3.9), which are important in providing the bound (1.6)

on theMorse index of u in the case ofα = 0. Indeed they imply that the parameters Ji appearing

in (2.7) satisfy Ji > 1 for i = 1, . . . ,m− 1 and Ji < 1 for i = m, . . . ,mrad(u). It means that

the eigenvalues Λ̂rad
i for i = m, . . . ,mrad(u) give only the radial contribution (corresponding to

j = 0) to theMorse index of u, while the eigenvalues Λ̂rad
i for i = 1, . . . ,m− 1 give always also

the contribution corresponding to j = 1. In the general case α > 0 the estimate (3.3) implies

that Ji >
2+α
2

for i = 1, . . . ,m− 1, highlighting the role of α and proving that theMorse index

of any nodal radial solution goes to +∞ as α→∞.

Furthermore, estimate (3.3), togetherwith ([1], corollary 4.11), gives information also on the

Morse index of any radial solution in symmetric spaces. If G is any subgroup of the orthogonal

group O(N) we say that a function ψ(x) is G-invariant if

ψ(g(x)) = ψ(x) ∀ x ∈ Ω ∀ g ∈ G.

We denote by H1
0,G the subset of H1

0 (B) made up by G-symmetric functions and by mG(u) the

Morse index of a solution u when computed in the space H1
0,G .

Corollary 3.4. Take α > 0 and f satisfying (H.1), and let u be a radial solution to (1.1)

with m nodal zones such that (H.2) holds. Then

mG(u) > (m− 1)+ (m− 1)

[

2+α
2

]

∑

j=1

NG
j .

If also assumption (H.3) holds true, then

mG(u) > m+ (m− 1)

[

2+α
2

]

∑

j=1

NG
j .

Here NG
j stands for the multiplicity of jth eigenvalue of the Laplace–Beltrami operator in

H1
0,G .

4. Power type nonlinearity: the standard Hénon equation

We focus here on the particular case f (u) = |u|p−1uwhere p> 1 is a real parameter. Forα > 0

we have the Hénon problem

{
−∆u = |x|α|u|p−1u inB,

u = 0 on ∂B,
(4.1)

but all the subsequent discussion applies also to the case α = 0, i.e. to the Lane–Emden

problem

{
−∆u = |u|p−1u inB,

u = 0 on ∂B.
(4.2)
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To begin with we see that problem (4.1) admits classical solutions with any given number

of nodal zones under assumption (H.1′), namely when the exponent p satis�es

p ∈ (1,+∞) whenN = 2,

p ∈
(
1, pα,N

)
with pα,N =

N + 2+ 2α

N − 2
whenN > 2.

(4.3)

More precisely we show the following

Proposition 4.1. Assume that α > 0 and p satis�es (4.3). Any weak radial solution to (4.1)

is classical. For any m > 1 problem (4.1) admits a unique radial solution u which is positive

in the origin and has m nodal regions. Further u is strictly decreasing in its �rst nodal zone

and it has a unique critical point σi in any nodal zone (ri−1, ri). Moreover

u(0) > |u(σ1)| > · · · |u(σm−1)|

and 0 is the global maximum point.

Proof of proposition 4.1. The regularity part follows from propositions 5.1 and 5.2 in [35]

when N > 3. The existence and uniqueness is proved in [36] for the same dimensions. When

the dimension N = 2 the regularity and the existence can be obtained in a standard way while

the uniqueness is a consequence of [37]. The monotonicity properties of the solution u follows

by lemma 3.1. �

As in the previous section the proof relies on the transformation (2.9) that we adapt here

to the case of the power nonlinearity so to adsorb the constant. Then a minor variation on the

previous discussion shows that

Corollary 4.2. Assume that α > 0. u is a (weak or classical) radial solution to (4.1) if and

only if

v(t) =

(
2

2+ α

) 2
p−1

u(r), t = r
2+α
2 (4.4)

solves (in weak or classical sense)

{
−
(
tM−1v′

)′
= tM−1|v|p−1v, 0 < t < 1,

v′(0) = 0, v(1) = 0,
(4.5)

where M =
2(N+α)
2+α ∈ [2,N] as in (2.11).

Remark 4.3. A bootstrap argument applied to any weak solution to (4.5) shows that (H.2)

holds for any weak radial solution to (1.1), when the nonlinearity f satis�es the hypothesis

(H.1′) mentioned in the introduction.

The Morse index and the degeneracy of a solution u to (4.1) can be regarded considering

the eigenvalues and singular eigenvalues ν i and ν̂ i as in (2.14) and (2.19) which in terms of v
are given by

{
−
(
tM−1ψ′

)′
− tM−1p|v|p−1ψ = tM−1νψ for t ∈ (0, 1)

ψ′(0) = 0, ψ(1) = 0
(4.6)

and
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{
−
(
tM−1φ′

)′
− tM−1p|v|p−1φ = tM−3ν̂φ for t ∈ (0, 1)

φ ∈ H0,M.
(4.7)

Indeed, in the particular case of power nonlinearity we have p|v|p−1 =

(
2

2+α

)2
f ′(w), recalling

(2.9) and (4.4). In addition the radial solutions produced in proposition 4.1 satisfy in particular

the assumption (H.2), so that propositions 2.3 and 2.4 apply. Eventually we end up with

Corollary 4.4. Assume that α > 0 and p satis�es (4.3). The radial singular eigenvalues for

the linearized operator Lu are

Λ̂
rad
i =

(
2+ α

2

)2

ν̂ i <

(
N − 2

2

)2

(4.8)

where ν̂ i <
(
M−2
2

)2
are the eigenvalues of (4.7), and the Morse index formula (2.22) holds

corresponding to these ν̂ i. ψi ∈ H0,N is an eigenfunction related to Λ̂rad
i if and only if ψi(r)

= φi(t), where φi ∈ H0,M is an eigenfunction for problem (4.7) related to ν̂ i. For any N > 2, u

is degenerate (but not radially degenerate) if and only if

ν̂k = −

(
2+ α

2

)2

j(N − 2+ j) for some j, k > 1. (4.9)

u is radially degenerate instead if and only if ν̂ = 0 is an eigenvalue for (4.7) when N > 3 or

ν = 0 is an eigenvalue for (4.6) when N = 2. All the corresponding eigenfunctions are as in

(2.23).

Before proving theorem 1.3, we point out some useful properties of the auxiliary function

z = rv′ +
2

p− 1
v, (4.10)

which has already been used, for instance, in [38].

Lemma 4.5. Let v be a weak solution to (4.5)with m nodal zones Then the function z de�ned
in (4.10) has exactly m zeros in (0, 1).

Proof. By lemma 3.2 and ([1], corollary 4.8) the function z belongs to H1
0,M ∩ C1[0, 1], and

it is easily seen that solves

(
rM−1z′

)′
+ prM−1|v|p−1z = 0 (4.11)

in the sense of distributions. Next, since prM−1|v|p−1z is at least continuous on [0, 1], the same

reasoning of ([1], proposition 4.6) proves that z solves (4.11) pointwise. Observe that z(0)

= v(0) > 0, z(t1) = t1v
′(t1) 6 0 and similarly (−1)iz(ti) = (−1)itiv

′(ti) > 0. Actually the

unique continuation principle guarantees that (−1)iz(ti) = (−1)itiv
′(ti) > 0, i.e. z has alternat-

ing sign at the zeros of v and therefore it has at least one zero in any nodal zone of v. Note that
if it has more than one zero, then it has at least three. We conclude the proof by checking that

z can not have three or more zeros in any nodal zone.

Observe that w0(x) := v(|x|) as |x| 6 t1 is the unique positive radial solution to (4.1) settled

in the ball Ω = {x ∈ R
N : |x| < t1} and therefore
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{
−
(
tM−1φ′

)′
− tM−1p|v|p−1φ = tM−1νφ for t ∈ (0, t1)

φ′(0) = φ(t1) = 0
(4.12)

has exactly one negative eigenvalue ν1.
Similarly for i = 1, . . .m− 1wi(x) := (−1)iv(|x|) as ti 6 r 6 ti+1 is the unique positive

radial solution to (4.1) settled in the annulus Ω = {x ∈ R
N : ti < |x| < ti+1}. Again it follows

that
{
−
(
tM−1φ′

)′
− tM−1p|v|p−1φ = tM−1νφ for t ∈ (ti, ti+1)

φ(ti) = φ(ti+1) = 0
(4.13)

has exactly one negative eigenvalue ν1.
Now, let us assume by contradiction that z has three or more zeros between ti and ti+1, and

let φ2, ν2 respectively the second eigenfunction and eigenvalue of (4.12) or (4.13) settled in

(ti, ti+1). We have seen that ν2 > 0, moreover φ2 has exactly one zero in (ti, ti+1). If z has three

or more zeros between ti and ti+1, then we can reason exactly as in the proof of property 5 of

subsection 3.1 of [1] and we prove that φ2 has at least two zeros in the same interval obtaining

a contradiction. To see this we suppose z(r) > 0 on (s1, s2) with z(s1) = z(s2) = 0, which also

implies z′(s1) > 0 and z′(s2) < 0. If φ2 does not vanish inside (s1, s2) we may assume without

loss of generality that φ2(r) > 0 in (s1, s2) and φ2(s1),φ2(s2) > 0. Repeating the computations

in lemma 2.4 in [1] we get that

(
rN−1

(
z′φ2 − zφ′2

))′
= ν2r

N−1zφ2 as ti < r < ti+1. (4.14)

Integrating (4.14) on (s1, s2) gives

sM−1
2 z′(s2)φ2(s2)− sM−1

1 z′i(s1)φ2(s1) = ν2

∫ s2

s1

rM−1zφ2dr.

But this is not possible because the lhs is less or equal than zero by the just made considera-

tions, while the rhs is greater or equal than zero as ν2 > 0. The only possibility is that ν2 = 0

and φ2(s1) = φ2(s2) = 0, but again this is not possible since it implies, by uniqueness of an

eigenfunction, that φ2 and z are multiples and this does not agree with φ2(ti) = 0 6= z(ti). �

We are now in the position to prove theorem1.3: u has radialMorse indexm and it is radially

non-degenerate

Proof of theorem 1.3. First (1.7) assures that mrad(v) > m which implies, in turn, that

ν i < 0 for i = 1, . . .m by propositions 2.3 and 2.2. The proof is completed if we show that

νm+1 > 0. Indeed in this case proposition2.2 forbids ν̂m+1 < 0, thus implying thatmrad(u) = m

via proposition 2.3, while proposition 2.4 ensures that u is not radially degenerate.We therefore

assume by contradiction that νm+1 6 0 and denote by ψm+1 the corresponding eigenfunction,

which, by property 5 in section 2 admitsm zeros inside the interval (0, 1) and thenm+ 1 nodal

zones. Then we want to prove that the function z introduced in (4.10) has at least one zero in

any nodal interval of ψm+1. This fact contradicts lemma 4.5, since z has m zeros in (0, 1) and

concludes the proof. Let (sk, sk+1) be a nodal zone for ψm+1 and suppose by contradiction that

z has one sign in this interval. Without loss of generality we can assume ψm+1 > 0 in (sk, sk+1),

which also implies ψ′
m+1(sk) > 0 and ψ′

m+1(sk+1) < 0. If z does not vanishes inside (sk, sk+1)

we may assume without loss of generality that z(r) > 0 in (sk, sk+1) and z(sk), z(sk+1) > 0. The

arguments in the proof of lemma 2.4 in [1] yield

(
rM−1

(
ψ′
m+1z− ψm+1z

′
))′

= −νm+1r
M−1ψm+1z, (4.15)
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and integrating on (sk, sk+1) gives

sM−1
k+1 ψ

′
m+1(sk+1)z(sk+1)− sM−1

k ψ′
m+1(sk)z(sk) = −νm+1

∫ sk+1

sk

rM−1ψm+1zdr.

Observe that the rhs is strictly positive if νm+1 < 0 and equal to zero if νm+1 = 0, while the

lhs is less or equal than zero by the assumptions on z and ψm+1. The only possibility is that

νm+1 = 0 and z(sk) = z(sk+1) = 0. So (4.15) implies that ψm+1 and z are multiples and it is not

possible since ψm+1(1) = 0 6= z(1). �

Remark 4.6. Inspecting all the arguments used in this subsection one can easily see that

they apply also to the case α = 0, i.e. to the Lane–Emden problem. In that particular case the

transformation (4.4) is the identity, and the presented proof of theorem 1.3 is an alternative

proof of ([29], proposition 2.9).

We end this section recalling that when we are in a variational setting, namely when

1 < p< N+2
N−2

, solutions to (3.1) (radial and nonradial) can be found minimizing the functional

E(u) :=

∫

B

(
|∇u|2 − |x|α|u|p+1

)
dx

(which is de�ned inH1
0(B)) under suitable constraints. In particular minimizing it on the Nehari

manifold produces a least energy solutionwhich is positive and not radial whenα is suf�ciently

large (depending on p) by the result in [9]. Next, following [39] one can minimize E(u) on the
nodal Nehari manifold to produce a nodal least energy solution which has two nodal domains

and Morse index 2, and considerations based on the Morse index imply that such solution is

not radial for α = 0, see [2, 3]. Estimate (1.6) then extends this matter also to the case α > 0,

proving corollary 1.4.

Moreover, if G is any subgroup of O(N), for 1 < p< N+2
N−2

, the minimization technique

on the nodal Nehari set can be performed also in H1
0,G , ending with a nodal solution u

which belongs to H1
0,G and has mG(u) = 2. In that way corollary 3.4 ensures that the mini-

mal energy nodal and G-symmetric solution is not radial whenever NG
1 6= 0, for every α > 0.

As α increases, the condition under which the minimal energy nodal and G-symmetric solu-
tion can be radial become more stringent, and it is expected that the multiplicity of nonradial

solutions increases. This considerations are exploited in [13], dealing with the Lane–Emden

problem in the disk, and in [14, 15], dealing with and the Hénon problem.
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