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Abstract

®
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We study two coupled 3D lattices, one of them featuring uncorrelated on-site disorder and the
other one being fully ordered, and analyze how the interlattice hopping affects the
localization—delocalization transition of the former and how the latter responds to it. We find
that moderate hopping pushes down the critical disorder strength for the disordered channel
throughout the entire spectrum compared to the usual phase diagram for the 3D Anderson
model. In that case, the ordered channel begins to feature an effective disorder also leading to
the emergence of mobility edges but with higher associated critical disorder values. Both
channels become pretty much alike as their hopping strength is further increased, as expected.
We also consider the case of two disordered components and show that in the presence of
certain correlations among the parameters of both lattices, one obtains a disorder-free channel

decoupled from the rest of the system.
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1. Introduction

Put forward many decades ago and named after its discov-
erer, Anderson localization is one of the most groundbreaking
outcomes in condensed matter physics [1, 2], having been cov-
ered in a wide context in recent years [3]. In a nutshell, it
implies that the wavefunction of noninteracting quantum par-
ticles becomes trapped around a finite region of 1D and 2D
lattices given any amount of randomness in the on-site energy
distribution [4], what dramatically affects the transport prop-
erties of the system. In 3D (and higher-dimensional) lattices,
there is a localization—delocalization transition for critical val-
ues of the disorder strength, with well defined mobility edges
[4, 5]. Many experiments performed on ultracold atoms have
characterized such transition [6—8].

Things get even more involved when disorder happens to
feature embedded positional correlations. Early works showed
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that short-range correlations are capable of inducing extended
states in 1D [9, 10], while long-range-correlated disorder was
found to support a continuous band of extended states in the
middle of the band, featuring an Anderson-type transition with
sharp mobility edges [11, 12]. An extended phase was also
reported in a 2D disordered model featuring correlated impu-
rities [13]. Coexistence between localized and extended states
has also been addressed for a tight-binding model involving
electron-mass position dependence [14].

Another class of low-dimensional disordered models that
has been enjoying a great deal of attention is that of ladderlike
(laterally-coupled) disordered chains [15-36], traditionally
used for studying electronic transport in double-stranded DNA
molecules (see, e.g., [19-21]). In [22] it was reported that a
ladder made of two coupled Aubry—André chains displays a
metal-insulator at multiple Fermi-energy levels. Shortly after,
it was shown in reference [23] (see also [24]) that two-leg
random ladders may exhibit a band of Bloch-type extended
states provided the on-site potentials and interchain coupling

© 2020 IOP Publishing Ltd  Printed in the UK
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strengths obey a set of correlations. The emergence of such
disorder-free subspaces was generalized to many-leg ladders
in [27, 31], the latter for a random binary layer model, and
may find applications in quantum information processing as
well [36].

Coupled lattices also emerge, in an effective way, when
spin—orbit coupling is taken into account in the Anderson
model [37]. In such, electron transport is affected by its intrin-
sic angular momentum as spin-up and spin-down channels are
now coupled, what adds another dimension to the problem.
Interest in this class of models (featuring broken SU(2) sym-
metry [3]) burst with the findings that inclusion of spin—orbit
coupling allows for an Anderson transition in 2D [38].
This have been investigated numerically on various settings
[37, 39-42], including noninteracting particles with higher
spins [43]. An accurate estimate of the critical exponent v asso-
ciated to the localization-length divergence can be found in
[37] for the symplectic university class. Physical implementa-
tions in optical lattices have also been discussed [42, 44] as sig-
nificant progress has been made in tuning synthetic spin—orbit
coupling for cold atoms [45].

Some interest has also been directed toward ladder models
featuring channels with different degrees and/or types of dis-
order [25, 26, 30, 31]. For instance, Zhang et al [25] addressed
the case of an ordered chain coupled to a disordered one and
reported that every eigenstate of the system becomes out-
right localized given the disorder is uncorrelated, even though
particle transport is enhanced (suppressed) in the disordered
(ordered) component. They also investigated the case of long-
range correlated disorder and described a quantum phase tran-
sition taking place at a critical interchain coupling strength.
Two-channel models also find support in the context of polari-
tons, e.g. mixed particles of light and matter, where each com-
ponent may come with different degrees of disorder due to
their very nature [28].

A bilayered graph, in general, may be spanned intrinsically
(such as in the presence of spin—orbit coupling) or not. As
far as Anderson localization is concerned though, what mat-
ter the most are the system dimensionality and its underlying
symmetries given the phenomena is primarily driven by inter-
ference. In this work, we aim to address the interplay between
an Anderson Hamiltonian and an integrable one. More specif-
ically, we investigate the localization properties arising from
coupling two 3D simple-cubic lattices (see figure 1), one being
an ordered channel and the other one featuring on-site uncor-
related disorder. Note that our system can simply be seen
as a 3D Anderson model featuring a two-level system per
site.

The main goal here is to find out, from each channel’s
point of view, how the coupling affects the localiza-
tion—delocalization phase diagram of the disordered channel
as well as how this transition takes place in the (hitherto)
ordered channel. We do that by evaluating the participation
ratio properly defined for each channel. We find out that mod-
erate interchannel hopping strength, while decreasing the crit-
ical disorder strengths associated to the disordered channel
only, does not necessarily lead the full (bilayered) lattice to
a localized phase as one is able to find delocalized states in
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Figure 1. Two-channel 3D Anderson lattice (with L = 3). An
ordered system is coupled to a fully disordered one via U (dashed
edges). The latter features on-site potentials ¢; falling randomly
within [—W/2, W/2] [say, red (dark) vertices]. Here, we set the
intra-lattice couplings (solid edges) to t = 1. Note that the full
Hilbert space is 2N-dimensional, with N = L.

the middle of the spectrum band which is mostly dominated
by eigenstates overlapping with the ordered channel. Further-
more, we deal with two disordered channels with correlated
parameters in order to span a disorder-free channel thereby
extending the framework made for the 1D ladder framework
[23] to 3D.

Our findings open up venues for manipulation of extended
states [13, 27] in higher dimensional disordered lattices and
may be implemented in physical plataforms able to simu-
late tight-binding Hamiltonians with high capability of local
addressing of parameters, such as ultracold atoms in optical
lattices [8, 46], circuit QED [47], and photonic waveguide
arrays [48]. Other potential candidates are based on hybrid
light—matter devices, such as cavity-based networks [49, 50],
where interchannel coupling would be encoded in trapped
two-level systems (qubits).

This work is organized as follows. In section 2 we intro-
duce the Hamiltonian model for the 3D bilayered lattice. Then
in section 3 we evaluate the localization properties of the sys-
tem via exact numerical diagonalization and analyze its phase
diagrams. Following that we work out analytically the require-
ments for generating an uncoupled ordered channel out of two
coupled 3D disordered channels in section 4. Conclusions are
drawn in section 5.

2. Model

The Hamiltonian describing a single particle (e.g. an electron)
hopping through a 3D bilayered lattice, with N = L? sites each,
reads H = H, + H, + H;, where

=Y el e +1> (e},,.ag, i+ H.c.) (1)
i <

i.j)
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is the local tight-binding Hamiltonian for each layer (¢ = 1, 2),
with ¢ and €/, being, respectively, the intra-hopping strength
and the on-site potential, and ¢;; (ézi) denoting the fermionic
annihilation (creation) operator at site i of the ¢-th layer. The
sum in the second term of equation (1) runs over nearest-
neighbors sites of a simple cubic lattice. The coupling between
both channels is accounted by

Hy =Y Ui (e]62 + Hee), 2)

where U, is the inter-layer hopping strength.

At this point, we are to make a few assumptions toward the
parameters of the system. First, note that ¢ is constant for both
layers, and we set it as our energy unit (r = 1). For now, we
also set U; = U uniform and assume that one of the layers fea-
tures no disorder at all, with €; ; = O whereas ¢, ; is taken out of
a box distribution within [—W/2, W/2], W being the disorder
strength. This configuration is depicted in figure 1.

For U = 0, both layers are decoupled. The ordered one
features extended wave functions over the whole the energy
spectrum. On the other hand, layer 2 itself is a 3D Anderson
model for which a transition between extended and localized
states takes place for a given critical value of disorder strength
W, that depends on the energy level and lattice topology. For
instance, W, = 0 for 1D and 2D at any energy level, meaning
that every eigenstate of the system is exponentially localized
even in the presence of the tiniest amount of disorder [4]. For
higher dimensions, say, in a simple cubic lattice, the transition
is found for W, /t ~ 16.53 at the middle of the band (E = 0)
[5, 51]. The mobility edge, that is the critical energy above
which the particles are free to move has been estimated using
ultracold atoms in optical lattices [8].

3. Localization properties

Hereafter we are interested in the case U # 0. Were both layers
ordered (say, setting e, ; = 0 as well), things would be straight-
forward to deal with. In this particular scenario, the Hamilto-
nian can be handled out analytically in Fourier space, that is
H Ve, = Eg,lr,) where the eigenvalues are

_ 1 ik-(R;i—R)
E;, =oU+ NZ e 7, (3)

’ I

o= =1, I_é,- is the position vector of the ith vertice in the lattice,
and k is the reciprocal lattice vector satisfying k - R; = 27n,
where 7 is an integer. The eigenvectors are

1 O~ &k
) = oS R (o] 1 odl ) 0, @)
X, 2N; ( 1, 2,)

with |} being the vacuum state and |i), = &;,\@ denoting a
single particle located at the ith site of the ¢-th channel. Given
equation (4) it is readily seen that for any eigenstate the prob-
ability of finding the particle at a given location is 1/2N, due
to the extended character of the Bloch wavefunctions.

Basically, when linking up two identical ordered systems
like discussed above, one gets two effective uncoupled lattices,
with local energies +U and —U, respectively, and featuring
the same dispersion profile [see equation (3)]. The states that
form those effective structures are even symmetric and anti-
symmetric combinations of |i); and |i),, and then there are two
bands of propagating modes at our disposal. At the end of this
paper, we show that a band of extended states can be activated
even when we couple two disordered lattices, as long as their
parameters obey a certain class of correlations.

Our main goal now is to see about how the cou-
pling between the ordered (e;; = 0) and disordered (e;; €
[—W/2, W/2]) lattices affects the localization—delocalization
transition of the full system. At a first glance, we are led to
think that the channels may push each other out, meaning
that transport in the ordered (disordered) lattice is suppressed
(enhanced). At least, that is the outcome for a 1D ladder chain
in the case of uncorrelated disorder [25]. Here, however, things
should get more involved as the 3D Anderson model features
mobility edges. To get into further details regarding our bilay-
ered 3D model, we will resort to exact numerical diagonal-
ization of the Hamiltonian in order to obtain the quantities of
interest.

Let [¢) = S0, (axili)1 + brili)2) be the eigenstate asso-
ciated to level E;. Thus, the probability to find the particle in
lattice 1 (lattice 2), that is the ordered (disordered) channel, for
a given energy level, is given by P (Ey) = >, |axi|* (P2(Ey) =
> |bril?). Observe that Py(Ey) + P2(Ey) = 1. The degree of
localization can be characterized through the participation
ratio, here defined as

P(Ey)
R(E) = ————, 5
S S et ®
Py(Ey)
RyE) = ————. 6
SRS S T ©

Alocalized eigenstate is characterized by R/(E;)/N — 0 in the
limit N — oo and the ratio converges to a finite value if the the
state happens to be extended. In what follows, the energy band
is divided into twenty intervals, (max{E;} — min{E;})/20, so
that the quantities P¢(E) and R/(E) are averages taken over the
states allocated within a small window around E. We further
average them out over m independent samples for each chosen
values of L, U, and W.

Numerical simulations were carried out for N = 512
(L=28), N=1000 (L =10), and N = 1728 (L = 12), with
m = 40, 20, and 12, respectively. Despite the low number of
samples, especially for higher N when it becomes computa-
tionally cumbersome, we found no significant deviations in
respect to the averaged outcomes. For instance, a well-behaved
trend can be noticed in figures 2 and 3 and in figure 4(a) the
known phase diagram of the 3D Anderson model is faithfully
reproduced.

We start off discussing the overall occupation probability
for one of the lattices, say P;(E), accounting for the ordered
channel. Results are shown in figure 2 for U = 1rand U = 101,
considering two disorder strengths and different system sizes
N. From equation (4), valid for U # 0 and W = 0, we get the
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Figure 2. Probability of finding the particle at lattice 1 (ordered), P;(E), averaged over a set of eigenstates surrounding E for (a, b) U = 1¢

and (c,d) U =
N = 1000 (L = 10), and N = 1728 (L =
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Figure 3. Rescaled participation ratios (a) R;(E)/N (ordered
channel) and (b) R,(E)/N (disordered channel) averaged over a set
of eigenstates surrounding E for U = 1t and W = 40z. Once again,
results are shown for lattice sizes N = 512 (L = 8), N = 1000

(L =10), and N = 1728 (L = 12), averaged over m = 40, 20, and
12 independent realizations of disorder, respectively.

idea that in the weak disorder regime (W < U) there should
still be likely to find the particle in any of the channels with
almost equal probability. Already for W = 4¢, though, and
interchannel hopping strength U = 1¢, one starts noticing that

10z, with disorder strengths W = 4¢ and W = 40¢ in each case. Results are obtained for lattice sizes N = 512 (L = 8),
12), averaged over m = 40, 20, and 12 independent realizations of disorder, respectively.
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Figure 4. Localization—delocalization phase diagrams for (ordered)
channel 1 (blue triangles) and (disordered) channel 2 (red circles)
for U/t = 0, 1,4, and 10 evaluated via finite-size scaling analysis of
R (E) and Ry(E) for N = 512, 1000, and 1728 (averaged over

m = 40, 20, and 12 samples, respectively). Gray-shaded areas stand
for band gaps. Lines are for guiding the eye.

the outskirts of the band become slightly less involved with
the ordered channel [see figure 2(a)]. This reaches a serious
level in the presence of intense disorder [figure 2(b)] to the
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point the very center of the band is almost entirely populated
by the ordered lattice whilst the disordered counterpart dom-
inates for higher energies (in absolute values), as imposed by
W. In other words, the eigenstates tend to be no longer mixed
upon increasing W, except for those lying in between as we
depart from the middle of the band. In general, those prop-
erties above still stand for higher hopping strengths, as dis-
played in figure 2 for U = 10z. However, note in figure 2(c)
that there is an energy gap as U mixes the channels up a great
deal and pushes two subbands apart [cf equation (3)]. When
W is increased [figure 2(d)], the gap is closed as eigenstates
featuring higher overlaps with the ordered channel once again
move to the center of the band, although the probability distri-
bution over E is not so as sharp as we have seen in figure 2(b)
due to the value of U. We also mention that all those properties
are valid regardless of the system size 2N = 2L°.

The above analysis, while revealing some interesting
aspects over the population mixedness of the eigenstates in
relation to the coupling between ordered and disordered lat-
tices, does not really tell about their localization strength. To
do so, we must proceed with a finite-size scaling analysis
for the participation ratio. Considering that R/(Ey) ~ N¢, with
« € [0, 1], the state is said to be completely delocalized when
« = 1 and localized otherwise. (One should bear in mind that
it is still possible to find several localization profiles for the
wavefunctions in that region).

As an example, in figure 3 we display the one-lattice par-
ticipation ratio (divided by N), as defined in equations (5)
and (6) for U = 1 and strong disorder (W = 40), what even-
tually enforces localization for both lattices in the entire
spectrum. Therein we have checked that o < 1 as expected.
To extract some information over the degree of localization
though, we must look after the value of R/(Ey) itself. Although
lattice 1 (the ordered channel 1) is now effectively disordered,
its associated coefficients {ay,} are such that they combine to
form a set of localized states featuring a much larger localiza-
tion length than those associated to lattice 2 in the outskirts of
the band [where channel 2 dominates (cf figure 2(b))]. In that
region, we checked that the corresponding « is close to zero
for both lattices.

We then used the above criteria for the participation ratio
to construct the W — E phase diagrams shown in figure 4. In
the absence of interchannel coupling (U = 0), we recover the
standard phase diagram for the 3D Anderson model (which is
lattice 2, only) featuring a critical disorder strength W,/ of
about 16.5 at E = 0, above which the system is localized. But
then as we set U/r = 1 thereby connecting lattices 1 and 2, the
latter becomes more sensitive to disorder as the reentrant pat-
tern is gone. A localization—delocalization transition is also
induced in in channel 1 (hitherto ordered) for higher values
of W.. For intermediate values of W,, although the wavefunc-
tion components of lattice 2 suggests a localized phase, lattice
1 still holds the system in the delocalized phase, especially
for energies around the band center, filled out with eigenstates
mostly overlapping with the ordered channel. Both channels
happen to feature about the same behavior when U/t = 4 due
to the band mixing leading to low values of critical disorder

strength overall. For U/t = 10, the coupling between both lat-
tices is such that one can barely tell them apart. Each subband
[notice the gap taking place around the middle of the spectrum;
see figure 2(c)] features a transition around W, /t = 7 at its cen-
ter. In this strong-U regime each channel, on its own, is thus
able to provide valuable information over the whole lattice.

4. Disorder-free subspace

So far we have been dealing with the localization properties
of a disordered 3D lattice coupled to a ordered one. In this
last section, though, we consider both lattices to feature on-
site disorder and show analytically, following reference [23],
that certain correlations among parameters € ;, €, and U; [cf
equations (1) and (2)] can effectively decouple both channels,
thereby spanning a disorder-free subspace. In the following
procedure, the intra-lattice hopping strength t = 1, still.

Each (two-level-like) cell formed from states |i); and |i),
features the local Hamiltonian

€1, U,'
= (5 U, 0

which can be put in diagonal form via

|[+); = sin6;]i)1 + cos i), (8)
|—>,‘ = COS 9,“i>1 — sin 9,“i>2, (9)

with correponding eigenvalues

1
Ef = 5 (m + €2, + 1 /4U? + A%) , (10)
where A; = €;,; — €;; is the local energy detuning and
2U;
6; = tan~! (11)

\JAU? + AT 4 A

Rewriting the system Hamiltonian in terms of operators
ag“” = |u); (0 G=1,...,N), with u = +, we get

H :Z EFaTa® + Z J}}““a) (ag")Ta(j”’) + H.c.)

ip (i)

=30 e (al(-&-)T o + H.c.) , (12)
(i.4)
where
JS““Z‘) =t cos(f; — 0)), (13)
T = ¢ sin(0; — 0)). (14)

The above description keeps the intraconnectivity pattern of
each subsystem while establishes more interconnections per
(effective) site.

If we want one of the channels—that is the positive or the
negative branch—to be free of (diagonal) disorder, the first
step is to place all of its local energies at the same level,
say, zero for simplicity. Then, given U; = +,/€1;€;; (with



J. Phys.: Condens. Matter 32 (2020) 285504

A M C Souza et al

€15 €2 > 0) one has E = ¢;; + e, and E; = 0 for all i [see
equation (10)]. In this case, we arrive at a similar situation as
before, where a disordered lattice (positive branch) is coupled
to a ordered one (negative branch). Then, we further need to
decouple them, by arranging for Jf}mer) = 0, what implies that
0; — 0; = nm for any integer n. From equation (11) we thus see
that tan 6; = tan 0; for all i and j. As, given U; = /€1 ;€2; (with
no loss of generality), tan §; = 21/€; /€2, it is then required
that e,;/€;; = €, what makes U;/e;; = /€, with fixed e > 0
over the entire lattice [23]. This set of correlations entails
Ji(}“"a) = tand, finally, we obtain two independent effective lat-
tices, a clean one and another featuring on-site disorder with
EIJr = €1,(1 + €), for which results of Anderson localization
theory in 3D are known.

5. Conclusions

We explored the localization—delocalization transition in a
bilayered (two-channel) Anderson model in three dimensions.
First we considered one of the lattices being ordered, with the
other one featuring diagonal uncorrelated disorder, and dis-
cussed about the role of their coupling upon the mobility edges
of each channel separately, evaluated through the participa-
tion ratio. In summary, for moderate interchannel coupling the
ordered channel begins to feature effective on-site fluctuations
leading to relatively weak disorder when compared to the other
(already disordered) channel. Strong coupling leads to mixing
between both channels and they thus happen to feature almost
the same critical disorder strengths along the spectrum.

Following that, we also considered two coupled disordered
3D lattices and showed how to create an effective channel
completely free of disorder. The very coexistence between
localized and delocalized states that emerges from the above
and similar frameworks provides with the idea of engineering
extended states in a disordered background [13, 23, 27, 31,
36]. While individual chains with correlated disorder already
offers a great deal of selective transport properties—that can
be used, for instance, in entanglement distribution [52, 53] and
quantum-state transfer [54, 55] protocols—Ilaterally-coupled
channels add more possibilities, given the strength of the inter-
chain hopping as it is able to mix modes with totally different
profiles.

To some extent, this work was also motivated by the fact
that recent advances in ultracold atoms in optical lattices have
reached higher levels of local control [46], not to mention such
platforms had already had success in probing Anderson local-
ization phenomenon in 3D [6-8]. In such, disorder is gener-
ated by speckle fields [56] as a Bose—Einstein condensate is
slowly placed into it. In [8], the authors managed to measure
the mobility edge against the disorder strength by loading an
ensemble of *’K atoms adiabatically into a 3D potential they
were able to manipulate in time so as to generate controlled
excitations and further evaluate the mobility edge by measur-
ing the energy necessary to break localization. The precision
level over such experiments has improved in such a way that in
[57] evidence for a mobility edge occurring in an 1D quasiperi-
odic optical lattice has been found due to a finite disorder

correlation length, therein probing a regime featuring coex-
istence between extended and localized states. The above
findings confirm that ultracold atoms in disordered optical
potentials are good candidates to simulate several classes
of microscopic Hamiltonians with unprecedented levels of
control [46].

In general, the physical network can either possess the
bilayered geometry depicted in figure 1 or feature a regular 3D
structure with extra embedded degrees of freedom, what may
be achieved in an effective way upon, e.g., addition of synthetic
spin—orbit coupling as also explored in ultracold atoms [45] or
via two-level systems residing at each site [28], what leads us
to the domain of cavity QED networks [49, 50]. Either way,
we mention that there have been remarkable achievements on
the fabrication of circuit QED lattices [47] as well as of pho-
tonic waveguide arrays [48] aimed to simulate tight-binding
models, among other things. In [48], a continuous-time quan-
tum walk of single photons was successfully implemented on a
waveguide lattice featuring 49 x 49 nodes, thereby embodying
a significant step toward Hamiltonian engineering.

Further extensions of our work should include non-trivial
topologies, such as complex networks with small-world char-
acteristics for they display remarkable localization properties
[58—60]. It would thus be interesting to see about how con-
catenating many channels made up of those affects the dynam-
ical properties of the whole system and evaluate its robustness
against disorder and other kinds of noise.
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