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Abstract
We study the finite-temperature phase diagram of proton ordering of a quasi-two dimensional
hydrogen-bonded system, namely the squaric acid crystal (H2C4O4) using quantum Monte
Carlo. We take into account the four-spin plaquette interaction at the zeroth order followed by
next nearest neighbor Ising interaction within a plaquette, dipole–dipole interaction and an
external transverse magnetic field respectively. Using an improvised loop algorithm within the
stochastic series expansion (SSE) quantum Monte Carlo method, we find two distinct phases
as we increase the temperature and magnetic-field. One of the phase is the Πf , the phase with
long range ferroelectric order and the other being an intermediate state with strong local
correlations, i.e, a quantum liquid-like state Πql. The transition to Πf shows a very small
anomalous peak in the specific heat with strong dependence of critical temperature on the
strength of dipole–dipole interaction. The presence of the small peak is attributed to the
absence of macroscopic degeneracy in the presence of dipole–dipole interaction and
re-entrance of such degeneracy to some extent at small temperature. The work also discusses
an intricate connection of quantum fluctuation and thermal fluctuation in the presence of
competing interaction with entropic effects.
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1. Introduction

The observation of finite temperature phase transition in con-
densed matter system is a common phenomena since unknown
past. We know how various types of phase transition phe-
nomenon, for example, the metal to superconductorphase tran-
sition or solid to liquid to vapor transition or the structural and
magnetic transition are brought in due to the changes of tem-
perature. As the temperature changes, the interactions between
constituent particles are renormalized or tuned so that new
phases of matters appear. The interplay of competing inter-
actions, quantum as well as the thermal fluctuation play key
roles in such events. In this article we will be discussing the
combined effect of finite temperature, competing interactions
as well as magnetic field in a well known material known as
squaric acid, commonly represented as H2(SQ)4 where SQ

3 Author to whom any correspondence should be addressed.

generally represent a structural unit (e.g.: C4O4). This par-
ticular material had drawn the attention of condensed matter
physicists (theory and experiment alike) over more than half
a century [1–8]. The material is very intriguing, as the pri-
mary interaction is governed by the hydrogen bonds and the
associated proton dynamics. The material is a layered three
dimensional one where each two dimensional layer is made of
square lattice like structure [9] with each square containing a
unit of SQ. Each of them are held together by hydrogen bonds
which is mediated by protons. An individual proton under-
goes quantum tunneling between double well potential [1, 2]
as found from the isotope effect study of this material. The pro-
ton motion is conveniently modelled as a quantum spin (spin
1/2) model.

H2SQ is very similar to water ice system, where the local
constraint in the form of ‘ice-rules’ dictating the proton order-
ing restricts the ground state to have configurations where in
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each molecule has exactly four hydrogen-bonds with two pro-
tons being near to C4O4 unit and the other two being at far
[10, 14–16]. Apart from the proton dynamics and the interac-
tions between them, the material posses dipole–dipole inter-
actions which is evident from the fact that it undergoes a para-
electric to ferroelectric phase transition [9]. These systems
are of particular interest because not only that these systems
exhibit some of the peculiar properties: showing no signs of
phase transition, i.e, they tend to be disordered down to few
milli Kelvins, there is frustration or competition leading to
‘residual’ or ‘zero-point entropy’ [10]. In some cases, strong
fluctuations with high degree of entanglement between the ice-
rule configurations may lead to exotic phases like quantum-
spin liquid [17–21]. Long back, this ‘ice-rule’ constraint and
the movement of protons on H2SQ were mapped into suit-
able vertex model or quantum pseudo spin model [24–26] to
understand the anti-ferroelectric properties. Further, the ther-
mal motion of an SQ-unit in a squaric acid system is strongly
coupled with the proton movements. This motivated the study
of interaction of phonons with pseudo-spins [27–29]. Though
these pioneering works had successfully examined some key
features of the system, many of the theoretical methods were
mostly limited at the mean-field level without consideration of
the effect of geometrical frustration rigorously. For example,
quantum fluctuation along with the entropic effects, which is
presumably important for understanding the quantum para-
electricity under pressure has not been seriously considered
so far.

As already mentioned, hydrogen-bonded (HB) crystals are
also known for their ferroelectric polarizability due to certain
proton ordering (e.g.: KH2PO4, H2SQ). There have been ample
studies regarding the electronic polarization emerging from
certain ordering of proton configurations in the system with
emphasis on both the fundamental physics and the applica-
tion to electronic devices [22, 23]. Apart from these, one of
the interesting feature of H2SQ is that, in general, the exter-
nal pressure increases the tunneling rate of protons between
the two potential minima, which reduces local polarizations,
and consequently, suppresses the ferro-electricity. Indeed, in
H2SQ, Tc is suppressed with increasing pressure. A peculiar
intermediate state, however, appears before the polarization
is lost in each molecule: the macroscopic polarization van-
ishes while the polarization in each molecule is retained [11].
Consequently, a quantum para-electric state is realized in the
low-temperature limit. Thus the material presents an unique
test bed where the effect of external pressure as well as tem-
perature could be investigated on the proton dynamics so that
a number of interesting and competing aspect can be observed
in a single study. The model Hamiltonian we consider here is
given in (2.1). The model Hamiltonian at zeroth order con-
sists of a four-spin plaquette interaction with a strength J0.
When the Hamiltonian is studied in the presence of a magnetic
field characterized by the parameter K, the system shows a
confinement–deconfinement phase transition. The model also
includes a next-nearest-neighbor Ising-like interaction with
a strength J1 and a dipole–dipole interaction J2 < J1. Usu-
ally, the presence of J2 causes the ferro-electricity of these

materials. The model was shown to exhibit both confine-
ment–deconfinement transition (CDT) and ferroelectric quan-
tum phase transition (FT) for an appropriate set of parameters
of the model Hamiltonian. However, in the present paper we
study the finite temperature (incorporated with magnetic-field)
properties of each of these phases. In the presence of intra-
molecular coupling term J1, we identify a smooth crossover to
para-electric phase from a globally disordered dipole phase. In
the presence of J2, the system gets ferro-electrically ordered at
low temperatures and with the increase of field strength K, the
ferroelectric phase undergoes to a para-electric phase which
also undergoes a finite temperature second order phase transi-
tion to a conventional para-electric phase. We then numerically
chart out the phase diagram in the T–K plane. In particular
to this model Hamiltonian we treat the effect of geometrical
frustration rigorously unlike the earlier studies, which were
limited at the mean-field level. We use an unbiased stochastic
series expansion (SSE) quantum Monte Carlo (QMC) tech-
nique to take into account the quantum fluctuation under the
entropic effects (arising from the ice-rules), which is presum-
ably important for understanding the quantum para-electricity
under pressure. Our study is also important in a way that
for such an interacting four-spin Hamiltonian, we have been
able to obtain the phase diagram successfully with appropriate
quantum Monte Carlo scheme.

The organization of this paper is as follows. In section 2,
we introduce the effective model Hamiltonian and methods
to analysis it. After introducing the pseudo-spin model in
section 3, we briefly discuss the implementation of SSE QMC
method used for our Hamiltonian. We then explain the order
parameter that has been calculated in our analysis. The results
obtained from our SSE QMC simulation have been presented
in detail in section 4. In section 5, we discuss our results in
a broader perspective including a qualitative comparison with
the relevant earlier experimental and theoretical studies.

2. Model and method

2.1. Pseudo-spin model

In this section we introduce the full Hamiltonian that we con-
sider. The terms that we include have already been considered
before as well [12, 13] and is given below

H = −J0

∑
〈i jkl〉

A� + J1

∑
〈i j〉

B� − J2

∑
〈AB〉

�PA · �PB − K
∑

i

σx
i

(2.1)

where A� = σz
1σ

z
2σ

z
3σ

z
4, the indices i, j, k, l represent the four

spins on the edges of a plaquette, B� = (σz
1σ

z
3 + σz

2σ
z
4), the

indices i, j here represent spins opposite to each other on a
plaquette of the square lattice, and Px

A,B = ± 1
4 (σz

1 + σz
2 − σz

3

− σz
4), Py

A,B = ± 1
4 (σz

1 + σz
4 − σz

2 − σz
3) are the dipole-moment

vectors for A, B sub-plaquettes as illustrated in figure 1.
The parameter space of the Hamiltonian H is three dimen-

sional with J0 being the largest followed by K, J1, and J2

in magnitude. J0 (>0) gives rise to Z2 gauge invariance
and the intra-molecular coupling term J1 gives rise to the
restricted ice rules implying that only those states with ice rules
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Figure 1. (a) Squaric acid network system, the blue dots represent
the hydrogen atoms and the small pink circles represent the oxygen
atoms of the molecule H2SQ forming a quasi-two dimension
configuration of hydrogen-bonded network, here SQ being the C4O4
unit is shown. The dashed brown lines show the physical lattice and
the solid cyan lines form the lattice on which the model is built on.
The indices shown represent the corresponding spins as shown in in
equation (2.1). (b) We present one of the configuration of the
ferroelectric ordering, the yellow arrow indicate the polarization
axis. The dotted color lines are drawn to indicate bonds/plaquette for
each interaction of the Hamiltonian, J0 (black), J0 (red), J2 (blue).

having finite dipole moment are allowed. The presence of four-
spin interactions signified by the coupling J0 stems from the
fact that for a real H2SQ molecule, the energy of a given
molecule does depend on the relative position of the four
hydrogen ions it shares with neighboring molecules [3]. This
is particularly important because though at zeroth order the
hydrogen ions are assumed to be tunneling in a quantum dou-
ble well potential and thus an Ising-like two-spin interaction
could also be a possible candidate for dynamics at zeroth
order. However, as the height of the potential well is not sig-
nificantly large, a more general four-spin interaction is more
suitable [1]. The second term of the Hamiltonian appears nat-
urally from an approximated, possible two-spin interaction
for a plaquette. Remember that for a plaquette there can be
four nearest-neighbor Ising-like interactions and two Ising-
like interactions across the diagonal links. The energy scale
of these two types are different and the previous four types
of Ising exchange interactions are an approximate represen-
tation of the general four-spin interaction represented by J0.
Since the ground states results in finite dipole moment in
each square plaquette, a more general Hamiltonian would
also have a dipole–dipole interaction term J2. The presence
of dipole–dipole interactions is also inevitable from the fact
that without their presence the observed ferroelectric transition
would not be possible as argued in reference [1]. The physical
origin of dipole–dipole interactions arises naturally when the
local ground-state or zeroth-order electrostatic energy is dis-
turbed by the vibrational modes of the ‘SQ’ molecules thus
giving rise to nearest-neighbor dipole–dipole interactions.

2.2. Stochastic series expansion quantum Monte Carlo
method

With the rapidly emerging focus of quantum Monte Carlo
methods (QMC) for an unbiased calculations the hunt for
an efficient cluster algorithms is on as far as stochas-
tic series expansion (SSE) QMC method is concerned.
The last few decades has very limited success in develop-
ing efficient algorithms at finite temperature especially for
systems with frustration or for systems with macroscopic
degeneracy. Earlier methods relied on constructing the clus-
ters based on a ‘link-decomposition’ of Hamiltonian found

to be inefficient, despite being tried in various forms by
constructing the clusters along τ -dimension (imaginary-time).
Nevertheless, here we use a variant of an recently developed
micro-canonical cluster algorithm (quantum cluster update)
where it uses the plaquette decomposition of the Hamiltonian
within the framework of stochastic series expansion (SSE)
pioneered by Sandvik and others [30–38]. Clusters are con-
structed based on a plaquette percolation process with the
notion of ‘premarked motifs’ which act as a flag in determining
the way in which it connects the legs of all diagonal plaquette
operators ‘living on’ various planes of imaginary-time direc-
tion. Once all clusters are constructed, each can be indepen-
dently flipped with probability 1/2 within a Swendsen–Wang
type implementation. Here in the present study, we have
employed and improvised an algorithm within the stochas-
tic series expansion Monte Carlo method [37]. Readers inter-
ested in the details regarding the efficiency and performance
of the algorithm compared to percolation based algorithm can
find here [37] for an ‘odd’ Ising gauge Hamiltonian with anti-
ferromagnetic Ising exchange term. The major difference in
the design of the algorithm is that the choice of premarked
motifs differ for each systems with complicated interactions or
frustration, where an intuition or little prior knowledge of the
equilibrium ensemble is a bonus for improving the algorithm
further, this is also where we had implemented our idea to
investigate the Hamiltonian we considered.

Since there are three distinct regions corresponding to three
different parameters J0, J1, J2, we thus identify different pre-
marked motifs choice as shown in figure 2. In figure 2(a), we
provide the cartoon picture of pre-marked motif for a gen-
eral plaquette four body interaction signified by finite J0 and
J1,2 = 0. In the figure 2(a), we show a privileged single site pre-
marked motifs. It is easy to find that there are four such choices
corresponding to four sites in a given plaquette. In figures 2(b)
and (c), we represent in pink shaded region, the sites whose
spins are to be flipped. They all corresponds to the single site
premarked motif described in figures 2(a) and (d), we repre-
sents the choice having two sites as the preferred premarked
motifs. There are two such choices.

For J1 �= 0, J2 = 0, the only choice of premarked motifs are
shown in figure 2(d) where two frustrated bonds (only those
with one parallel to other) are required to be on each plaquette
which corresponds to eigenvalue 4J0 + 4J1, while configura-
tions with four or zero frustrated bonds have eigen-value zero
and hence corresponding plaquette operators do not appear in
the operator string. Our choice of motif in the J2 �= 0 case also
consists of two privileged diagonal sites among the four that
make up a spatial plaquette as in figure 2(d). Thus each spa-
tial plaquette has two distinct possible motifs. The motif on a
given spatial plaquette determines the cluster decomposition
of plaquette operators at that location in the following way: if
only one frustrated bond touches the two privileged site, the
four legs corresponding to these two sites are assigned to a
priori different cluster, and the other four legs make up the
other cluster. If the privileged site is touched by two or zero
frustrated bonds, then the four legs corresponding to the priv-
ileged site and its diagonally opposite site are assigned to one
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Figure 2. Various choices of cluster decomposition rule for
premarked motifs are shown in (a)–(d). In (e) and (f) we show the
distributions of parallel and anti-parallel bonds corresponding to the
above choices. The zigzag lines indicate the bonds consisting pair of
anti-parallel spins, the frustrated bonds and unfrustrated bonds
correspond to solid lines.

cluster, and the other four legs are assigned to a different clus-
ter (which could in principle merge with the other cluster at a
future step in the cluster construction).

We observe that in the case of J1 �= 0 there is no appar-
ent spin-freezing thus making the algorithm much more effi-
cient in this regime. However, despite improvising the sophis-
ticated algorithm to work in the case J1 �= 0, we see some
apparent spin freezing at low temperatures and hence to
avoid that we also invoke the replica exchange method with
temperatures ranging from 0.05 to 1.0. We use system sizes
varying from L = 24 to 32 (N = 2L2) with a standard 1 × 107

iterations for equilibration and 1 × 107 for measurements.
Results are divided into six bins to estimate statistical errors
by the variance among the bins.

3. Physical quantities

In view of the wide scope of our model which might host dif-
ferent phases dependent on the relative magnitude of the model
parameter and temperature as well, we introduce the relevant
parameters in detail. This will help us to identify each phases
as well as to distinguish from each other without ambiguity.
At very high temperature T > Ji, one generally expects a para-
electric phase where the dipole moments associated with each
plaquettes are disordered. The para-electric to ferroelectric
phase transition (due to dipole–dipole interaction term J2) as
we lower the temperature is characterized by the order param-
eter P which is nothing but the electronic polarization and the
associated susceptibility χP. They are defined as below.

P =
1
N

[|S(0, π)|2 + |S(π, 0)|2]1/2 (3.1)

χP

N
= β

[
〈p2〉 − 〈P〉2

]
(3.2)

where S(k) is the static spin-structure factor given by

S(k) =
1
N

N∑
i, j

Sz
i S

z
j exp(−k · ri j) (3.3)

To locate the critical temperature associated with this
para-electric to ferroelectric phase transition, we use the

Figure 3. In panel (a) and (b) the red points and the blue points
show the plot for χP and P. Similarly in (c) and (d), we present ρ
and χρ by red and blue points respectively. In (e) and (f), specific
heat divided by temperature (C/T ) has been shown. Binder
parameter has been shown in panel (g) and (h). In all the plot,
various different points denotes different system size as shown. All
the results are calculated along the contour K/T = tan(θ) where
θ = π/6. For detail description of the above, we refer section 4. The
parameter values used in the figures are J0 = 1.0, J1 = 0.5 with
J2 = 0.020 for left panel and J2 = 0.024 for right panel.

Binder cumulant analysis, where the binder parameter QP is
defined as [40]

QP =

(
1 − 〈P4〉

8〈p2〉2

)
(3.4)

Apart from the presence of para-electric and ferroelectric
phases, at very low temperature and for small values of J2 (the
strength of dipole–dipole interaction), the ground state is dom-
inated by states determined by J0 and J1. In this situation, the
ground state manifold is dictated by the states which satisfy the
‘ice rule’. In true sense this is a quantum liquid states. To dis-
tinguish this state from the usual para-electric states, one needs
to define an order parameter which can successfully estab-
lish the presence of this state and differentiate it from usual
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para-electric phase and ferroelectric phase. To this end, we
define the parameter ρ which detects the ice-rule state, i.e, the
partially disordered locally-correlated liquid-like para-electric
phase,

ρ =
1
N

∑
p

I(p) (3.5)

where I(p) → 1, if the given plaquette p is in one of the
local four-fold degenerate ice-rule state and I(p) →−1/3
otherwise. To further corroborate the results of phase transi-
tion and crossover we also calculate the susceptibility corre-
sponding to ρ by calculating their fluctuations as given by,

χρ

N
= β

[
〈ρ2〉 − 〈ρ〉2

]
, (3.6)

where the crossover from the disordered but correlated dipoles
into a para-electric phase can as well be detected in the specific
heat measurements as shown in figure 3.

4. Results

We know from the earlier studies [12, 13] that presence of
dipole–dipole interaction (the J2 term in the Hamiltonian in
equation (2.1) induces a ferroelectric order. In the absence of
J2, the ground state is highly degenerate. The degeneracy for
J1 = 0 is exponential though with J1 it is proportional to the
peripheral size of the system. On the other hand the global
ferroelectric order is four fold degenerate. Thus we see that
the effect of temperature on the system might be very intri-
cate due to the energy cost for low energy excitations due
to competing interactions as well as due to degeneracy of
the ground state manifold for each parameters. This actually
necessitates to examine the order parameter P and ρ both.
Interestingly we find that they does not follow each other as we
increase the temperature. Correspondingly, the susceptibility
also shows contrasting behavior. We first discuss the temper-
ature dependence of P and ρ followed by the corresponding
susceptibility.

4.1. Temperature dependence of P and ρ

The general behavior as evident from the QMC simulation
suggests that as we turn on the temperature the ferroelectric
order parameter denoted by P sharply decreases for a very
small value of temperature. However this decrease seems to
be a two steps process. We call the first phase of decrease
of P as the quantum liquid states and the higher temperature
counterpart as an usual para electric phase. The P shows a
shoulder like hump at the transition from quantum liquid like
states to para electric states. In figures 3(a) and (b), we have
shown the variation of P in blue points for J0 = 1.0, J1 = 0.5,
J2 = 0.020, 0.024. The presence of quantum liquid like states
is apparent from the temperature variation of ρ as presented
in blue points in figures 3(c) and (d). We clearly observe that
ρ is almost constant throughout this quantum liquid like state
and decreases monotonically when the system yields to para-
electric state. Thus the order parameter P and ρ suggest that as
we increase the temperature from zero, the system starts from
ferroelectric phase, moves to an intermediate quantum-liquid

Figure 4. In the upper panel we show temperature dependence of
order parameter and ice-rule parameter ρ by the orange and green
points respectively. The corresponding susceptibility have been
plotted in the lower panel with the same color convention as the
upper plane. Note that in the above 2D plot each graph denotes a
specific line in the T–K plane. Each line is represented by the
corresponding slope of the line θ. For the details of the plot kindly
refer to the text in section 4.

like state and finally reaches to a pare-electric phase. In the
upper panel of figure 4 we have shown by orange and green
points more plots for the behavior of P and ρ respectively for
various values of θ in T–K plane. It shows that for large values
of θ, P and ρ decreases more rapidly than the small values of θ.
This indicates that the pressure and temperature has opposite
effect in the system. The pressure denoted by K tends to sta-
bilize the ferromagnetic and the intermediate quantum liquid
like state.

4.2. Susceptibility χP and χρ and specific heat C/T

The susceptibility obtained due to P is shown in figures 3(a)
and (b) by red points which shows a jump at the transi-
tion from ferroelectric phase to quantum liquid-like states.
This suggests that ferro-electricity is almost destroyed at this
transition. However the susceptibility corresponding to ρ, i.e.
χρ shows a very interesting feature. Initially it is almost zero,
increases very slowly until the temperature reaches near to the
transition from quantum liquid like states to the para-electric
states. At this transition the χρ jumps at a higher value and
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remain almost constant up to a certain temperature which we
call Tρ and after this, χρ decreases monotonically. The specific
heat at very large temperature shows monotonically decreas-
ing behavior characteristic to usual para-electric phase but at
low temperature it shows two peaks of different magnitude
as denoted in figures 3(e) and (f). The largest peak appears
at the transition of quantum liquid like state and we denote
this temperature by T∗

C/T . However, the sharp nature of the
peak indicates a possible order–disorder phenomenon where
the degeneracy seems to be uplifted to some extent. Below this
temperature specific heat shows another small peak at where
the P starts to decrease from initial constant value for small
T. The peak height of this smaller one tends to decrease with
increase of system size as denoted in the inset of figure 3. In
the lower panel figure 4 we have shown the behavior of χP

and χρ respectively for various values of θ in T–K plane in
orange and green plots respectively. It shows that for large
values of θ, P and ρ has a more sharper peaks and also they
decrease more rapidly compared to the small values of θ.
It suggests that the stability of the intermediate liquid like
state is enhanced by increasing the K/T ratio. This may be
attributed to the fact that increase of K results into enhanc-
ing the bandwidth of the system resulting into decreasing the
thermal effect.

4.3. Binder cumulant and critical temperature

In the foregoing discussion we have already introduced the
two critical temperature. The largest one is the T∗

χρ
which is

signified by the step like jump from almost zero values of
χρ to a higher value. Below this temperature we observed
another critical temperature signified by the largest jump in
the specific heat at the transition to para-electric phase from the
quantum liquid-like state. This temperature is denoted by T∗

C/T .
Our analysis for the Binder cumulant as shown in the figure 3
shows that the actual phase transition is very near to the T∗C/T

and we denote this temperature as Tc. As for as our numerical
results and analysis are concerned, Tc = 0.56(47) and 0.56(03)
for J2 = 0.020 and 0.030 respectively. The corresponding T∗

C/T
is obtained as 0.060(03) and 0.61(40) respectively.

4.4. Phase diagram

The numerical results presented above suggest the presence
of three phases as we increase the temperature. The first one
is ferroelectric phase which survives for very small tempera-
ture and extends up to Tc as obtained from Binder cumulant.
We call this phase as Πf . The jump in the specific heat sig-
nified by TC/T is little higher than the Tc. Above the Tc there
is a presence of a complex quantum liquid like state which
extends up to some critical temperature T


χρ
. This phase is

very intriguing as long as the behavior of order parameter
is concerned and we call this phase as Πql. After T


χρ
, the

normal para electric phase develops with no residual quan-
tum correlation between the dipole moments. The above three
critical temperatures defined above depend the values of J’s
and the K. It is instructive to present above three phases in a
contour plot in T–K plane and this is presented in figure 5.
The results are shown for different J2 strengths in the T–K

Figure 5. Phase diagram showing the critical and crossover points,
the figures (a)–(c) correspond to the values J2 = 0.020, J2 = 0.024,
J2 = 0.028 respectively. The orange dots indicate the critical points
for ferro to liquid like transition obtained from the binder analysis,
green triangles indicate the cross over points T


C/T obtained from the
C/T curve, while the red squares indicate the T


χρ
obtained from χρ.

plane. For the case where J2 = 0 the system shows a crossover
transition from quasi macroscopic degenerate liquid-like state
to a completely disordered state, with the crossover temper-
atures shifting to higher temperatures with J1 as expected.
However even for J2 very small, the system orders ferro-
electrically (the region below Tc, orange circles), the region
between the Tc and T


χρ
belongs to the liquid-likestate.

It is interesting to note that the scaling behavior of the
critical boundary shows unique characteristics, the bound-
ary does not extend into the liquid-like region rapidly but
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rather slowly indicating that the dependence of Tc with J2 is
complex with lower dynamic exponent than the model hav-
ing only two body interactions [39]. Another aspect is that
the ratio of thermal energy (Tc) to that of J2 is also less. We
believe that the colossal enhancement of Tc with J2 is related to
the lifting of quasi macroscopic degeneracy. The above finding
could be confirmed by experiment in conjunction with a first-
principle study yielding an estimation of the parameter of the
model Hamiltonian. It is interesting to note that all the phase
transitions that we observe is not of first order but rather like
second order specially the transition from Πf to Πql. On the
other hand the transition from Πql to Πp is a smooth crossover.
The phase Πql and Πf suggests quite an interesting behavior of
ρ and C/T. Let us begin withΠf first. At T = 0, the system is in
ferroelectric state with global ground state degeneracy of four.
As we increase the temperature, the ferroelectric order param-
eter P decreases rapidly but ρ remains constant and in addition
we observe a small peak in C/T. This suggests that the global
ferroelectric order reduces into domain of ferroelectric clusters
and also includes the presence of other states not contributing
to P but consistent with ice rules. The possibility of presence of
these additional states explains the small peaks in C/T which
also decreases as we increase the system size. As far as the
phase Πql is concerned, we observe the steady decrease of the
ice rule order parameter ρ which suggests that the excitations
now includes the non-ice rule states as expected. However the
quantum correlation is not lost completely until the critical
temperature Tχρ is reached.

5. Discussion

We have considered a model where at zeroth order there
is a four-spin Ising gauge like interaction of protons in the
pseudo-spin formalism. Earlier results on the model showed
that the system hosts a deconfined phase for J2 = 0 [12] at zero
temperature. We use the model here to extend the phase dia-
gram along the finite temperature axis. Our results show an
ice-rule dominated strong proton–proton correlations to be the
main physics of the system. Motivated by experiments and the
previous studies, the phase diagram in the T–K plane suggests
that the qualitative shape of the critical boundary Tc is more
closer to a linear behavior for small field strength consistent
with the experimental results [41–43], though at large pres-
sure, Tc and T
 does not behave linearly in contrast to experi-
mental results where one finds a complete linear behavior for
all ranges of applied pressure. Another aspect that we find in
our study is the difference between Tc and T
 which remains
constant through out all pressure ranges, which to our opin-
ion is a remarkable success of our study. However, our results
indicate a possible second order phase transition in contrast
to experiments. This deviation with experiments might be rec-
onciled by considering the inter layer coupling or more com-
plicated couplings to lattice distortions, which are neglected
in our model. The temperature dependence of the interaction
parameter can not be ruled out as well. The anomalous spe-
cific heat peak at low temperature in the ferroelectric phase is
due to the formation of cluster of ferroelectric domains. The
height of the peak reduces with the increase of system size

suggesting that for small system, the domain size is com-
parable to the system itself. The fact that the height of this
anomalous peak as well as the critical temperature depends
on the strength of dipole–dipole interaction which renders the
squaric acid system as an interesting system for experimental
confirmation of the same.

Another important aspect is the nature of phase diagram in
T–K plane which is linear for small and intermediate values of
K and for large values of K it becomes elliptical. We think the
distinct feature of our results shows that a four-spin interac-
tion at the zeroth order is more realistic. Also in the present
model the dependence of degeneracy of ground state mani-
fold is different from the two-spin Hamiltonian. For example,
at the zeroth order, four spin interaction includes non-ice
rule states as well (all spin up and all spin down in a given
plaquette) ice-rule states. The diagonal Ising like interaction
reduces the macroscopic ground state degeneracy to be propor-
tional linearly to the system dimension. However for the two
body case, the degeneracy is still macroscopic. We believe that
this might be the reason that the present study is more closure
to the experimental realization.

To summarize, we have studied the finite temperature phase
diagram of proton dynamics of squaric acid system. The
study offers a unique opportunity to examine the competition
between quantum fluctuation and thermal fluctuation and the
effect of intricate ground state degeneracy of such system. The
model Hamiltonian we considered involves a four-spin interac-
tion which renders the present study an interesting one in view
of the successfully solving the model as well as to qualitatively
reproduce the experimental findings.

In our endeavor to study such a Hamiltonian (2.1)
involving four-spin interaction, we used SSE quantum Monte
Carlo involving an improvised version of loop update
algorithm which efficiently overcome the problem of ergodic
sampling in some parameter regimes. Our theoretical study
successfully detected the quantum liquid-like intermediate
state before the appearance of conventional para-electric state
as we increase the temperature. The ferroelectric state which
exist before the liquid like quantum liquid-like state, is charac-
terized by its colossal dependence of Tc with respect to J2, the
dipole–dipole interaction. In the intermediate liquid-like state,
the local correlations governing the ice-rule constraints are still
valid to a large extent. While the experimental phase diagram
in T–K plane, the phase transition shows a linear behavior
for all K, we find the linear behavior for small and interme-
diate values of K. Thus though our results fall short of full
experimental confirmation, still it is quite an improvement in
regard to the earlier theoretical study so far. Also the phase
transition from the ferroelectric phase to quantum liquid like
state is more sharper which reasserts that the model which is
considered here is more practical as far as the squaric acid
system is concerned. For further improvement of our results,
a first-principle calculations would be helpful to establish the
correct Hamiltonian as well as fixing the realistic parameters.
In addition to this, the inter layer coupling should be consid-
ered to fill the gap between the theoretical and experimental
studies. This effort is beyond the scope of present study and
are kept as a future scope.
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