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Abstract
The stopping of baryons in heavy ion collisions at beam momenta of
plab=20–160AGeV is lacking a quantitative description within theoretical
calculations. Heavy ion reactions at these energies are experimentally explored
at the Super Proton Synchrotron (SPS) and the Relativistic Heavy Ion Collider
(RHIC) and will be studied at future facilities such as FAIR and NICA. Since
the net baryon density is determined by the amount of stopping, this is the pre-
requisite for any investigation of other observables related to structures in the
QCD phase diagram such as a first-order phase transition or a critical endpoint.
In this work we employ a string model for treating hadron–hadron interactions
within a hadronic transport approach (SMASH, Simulating Many Accelerated
Strongly-interacting Hadrons). Free parameters of the string excitation and
decay are tuned to match experimental measurements in elementary proton–
proton collisions, where some mismatch in the xF distribution of protons is still
present. Afterwards, the model is applied to heavy ion collisions, where the
experimentally observed change of the shape of the proton rapidity spectrum
from a single peak structure to a double peak structure with increasing beam
energy is reproduced. Heavy ion collisions provide the opportunity to study
the formation process of string fragments in terms of formation times and
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reduced interaction cross-sections for pre-formed hadrons. A good agreement
with the measured rapidity spectra of protons and pions is achieved while
insights on the fragmentation process are obtained. In the future, the presented
approach can be used to create event-by-event initial conditions for hybrid
calculations.

Keywords: heavy-ion collisions, baryon stopping, string fragmentation

(Some figures may appear in colour only in the online journal)

1. Introduction

Understanding the properties of strongly interacting matter has been a long standing problem
that can be addressed by studying the QCD phase diagram. In the case of high temperature
and vanishing baryonic chemical potential, it was demonstrated that there can be a crossover
phase transition instead of a first-order one, depending on the number of quark flavors and
their masses [1]. More recent lattice QCD computations [2, 3] show that there is a crossover
transition between a hadronic gas and a quark-gluon plasma phase, if one goes to higher
temperature (T) keeping the net baryon chemical potential (μB) near zero. On the other hand,
the QCD phase transition at T=0 and finite-μB has been studied based on effective models,
such as the NJL model [4] and the composite-operator formalism [5]. It was demonstrated that
the phase transition in this regime is first-order. The existence of a critical endpoint (CEP) is
justified by the fact that the QCD matter exhibits different types of phase transition in two
limiting cases [6]. Many theoretical and experimental studies in heavy ion physics have been
aiming to find where the CEP is located in the T-μB plane. On the experimental side, heavy
ion collisions at various collision energies and several system sizes are carried out in order to
probe a wide range in both temperature and baryon chemical potential. Those include the
beam energy scan performed at RHIC [7–9] and the CERN-SPS [10–12]. In the future, this
region will be studied further by CBM at FAIR and at NICA.

To connect the final state observables on particle yields and spectra with the properties of
hot and dense QCD matter, sophisticated dynamical approaches are indespensable. The bulk
observables in ultra-relativistic heavy ion collisions at RHIC and the LHC are successfully
described by solving the hydrodynamic equations [13, 14]. Hybrid approaches, which
separate the non-equilibrium dynamics in the early stages from a hydrodynamic evolution of
the thermalized medium, have proven to give a realistic description of heavy ion collisions
also at lower beam energies [15, 16]. The dynamical initialization of hybrid approaches is
explored as well in [17–19].

In particular, the dynamics of baryon stopping has received some attention more recently,
since it has been realized that the mean of the proton distribution should be understood before
investigating higher order cumulants that are associated with a critical endpoint [7]. The
experimentally observed stopping of baryons [12] is still lacking a quantitative description
within theoretical models. In principle, there are three different options:

(i) Push the gluon saturation picture down in energy and extend it to three dimensions as
explored in [20].

(ii) Study the source terms of projectile and target into the fireball fluid in a 3-fluid
hydrodynamics approach [21, 22].

(iii) Investigate the details of a string hadron transport approach for the initial non-
equilibrium evolution [23–25].
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Here, we follow the last point and apply the hadronic transport model SMASH to understand
the stopping of baryons in the SPS energy range. This approach can be employed for the
description of the early stages of a heavy ion collision, since microscopic transport is
applicable to non-equilibrium circumstances. In this work, SMASH is employed to simulate
the full evolution of a heavy ion collision. In the relevant energy range for this work, it is
extremely important to have three-dimensional initial conditions for starting a hydrodynamic
evolution, since the system cannot be assumed to be boost invariant and the colliding nuclei
are too slow to reasonably neglect their longitudinal extent because of length contraction.

The paper is structured as follows: Details of the transport model with a focus on the
implementation of cross sections and the particle production at intermediate energies are
given in section 2. Section 3 continues with calculations for proton–proton collisions, where
the influence of varying the free parameters is investigated and the best possible set of
parameters is determined. In section 4 we advance to heavy ion collisions, where one has the
opportunity to study the interactions of string fragments and their formation process. Finally
we provide calculations for the time of the collision where the colliding nuclei just passed
through each other in section 5 which can serve as event-by-event initial state profiles for
hydrodynamic calculations.

2. Model description

In this work, we investigate baryon stopping within the transport model SMASH [26]. The
code is publicly available on Github, see https://smash-transport.github.io/. The degrees of
freedom within the calculation are hadronic. The properties of the hadrons are adopted from
the Particle Data Group 2018 [27], where the more established resonances up to a mass of
m≈ 2 GeV are included. SMASH has been tested against an analytic solution of the Boltz-
mann equation [28] and strangeness as well as dilepton production has been confronted with
experimental data at GSI-SIS energies [29, 30].

The inelastic scatterings between hadrons at low energies are described via resonance
formations and decays. Since there are no resonances with masses larger than m≈2 GeV in
the calculation, the cross section for resonance formations fades out when the center of mass
energy of the interacting hadrons grows larger. This can be seen as an example for the proton-
pion cross section shown in figure 1.

Let us start with an overview of the general setup of our approach while more details are
presented in the following sub-sections. In order to investigate baryon stopping at higher
incident energies, in this work, a string model is employed, where colliding hadrons are
excited to strings which then fragment producing new particles. In the transition region
between resonances and string processes, the respective cross-sections are weighted with a
linear function to achieve a smooth interpolation between both regimes. This is important to
avoid artificial high mass resonances that are suppressed in this way.

The transition region is chosen such that it starts at a large enough energy to still include
the resonant structures in the cross section and ends at a small enough energy so that the cross
section from resonances does not fade out in the transition region. For most combinations of
particle species, the transition region starts at the sum of the masses of the colliding hadrons
plus 0.9 GeV and has a width of 1 GeV. For two very important special cases, the transition
region is individually specified. The first one is nucleon-pion collisions, where the transition
from resonances to strings takes place between 1.9 and 2.2 GeV. In this case, the transition
region is shorter, because the contribution from resonances is too small above =s 2.2 GeV.
The second special case is in collisions between two nucleons. Here, the transition region

J. Phys. G: Nucl. Part. Phys. 47 (2020) 065101 J Mohs et al

3

https://smash-transport.github.io/


spans from 4 to 5 GeV. Compared to the default, the transition region is shifted to higher s
because up to 4 GeV, the total cross section from resonances reproduces the measurement and
the exclusive cross sections from resonances are more realistic at low energies.

The calculation for the string excitation is split into hard and soft processes. The hard
string processes are relevant for very high energetic binary interactions as can be seen in
figure 1, where perturbative QCD is applicable. For the description of the pQCD scatterings,
the string excitation and the string fragmentation, PYTHIA 8.235 [31, 32] is used. The hard
string routine is described in more detail in section 2.2. The hard string process, where pQCD
interactions are involved, is based on the pT-ordered multiparton interaction (MPI) framework
with initial and final state radiations [33]. Given that pQCD is not applicable at low
momentum scale, the lower pT threshold of those partonic interactions is chosen to be
1.5 GeV and the pQCD cross section is computed accordingly.

In the transition region where the energy is too large to have cross sections via reso-
nances but too low to apply pQCD, a phenomenological model for the excitation of strings is
implemented. In single diffractive, double diffractive and non-diffractive processes, strings
are excited in hadronic interactions. Using the calculated mass and momentum of the string as
well as the flavor of the leading quarks, PYTHIA is employed only for the fragmentation of the
string. Details of the string excitation at intermediate energies can be found in section 2.3.

Figure 1 also shows the contribution of elastic scatterings to the total cross section.
Elastic collisions play an important role at all beam energies, since in heavy ion collisions, a
large amount of nucleons will scatter elastically. Especially for baryon stopping, the angular
distribution of the final state particles in elastic scatterings plays an important role as shown in
section 4.

Figure 1. Cross section of a proton interacting with a negatively charged pion as a
function of the center of mass energy of the colliding hadrons within SMASH. The
total cross section is split into contributions from elastic collisions, resonance
formations, soft string excitations and hard string excitations via PYTHIA.
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2.1. Cross sections for string processes

The total cross section for each pair of hadrons is required within SMASH to determine, if
two particles will scatter. Subsequently, the actual process is decided randomly according to
the underlying partial cross-sections for the different channels.

The total σtot and the elastic σel cross section, which is shown for the example of p-p-

collisions in figure 1, is parameterized to fit the experimental data. The inelastic cross section
σinel is the difference between the two

( )s s s= - . 1inel tot el

The parametrizations for the total and elastic cross sections are taken from [34] and [35, 36],
respectively. For the process selection, cross sections for both the single σSD and double
diffractive σDD processes are necessary. They are estimated in [37] and implemented in
PYTHIA. From σSD and σDD the non-diffractive cross section σND is derived

( )s s s s= - - . 2ND inel SD DD

The non-diffractive cross section includes the hard and soft non-diffractive processes. The
cross section for hard non-diffractive processes is based on the pQCD cross section σhard from
partonic interactions. It is given by

( ) ( ) ∣ ( )ˆò òås s= x x f x f xd d , 3
i j k

i j i j
k

phard
, ,

1 2 1 2 , T ,min

where ∣ ˆsi j
k

p, T ,min
is the cross section for a subprocess k between two partonic flavors i and j with

minimum transverse momentum transfer p̂T ,min, which is chosen to be 1.5 GeV. The parton
distribution function fi(x) provides the average number of flavor i carrying the momentum
fraction x of the incoming hadron. The NNPDF 2.3 parton distribution function with QED
correction [38] is used in this work. The sum takes each possible combination of partons from
each ingoing hadron into account.

This pQCD cross section can therefore be larger than σND, incorporating the information
of multiparton scattering. We take the multi-parton interaction (MPI) picture [39] and
interpret the ratio s shard ND to be the number of partonic interactions involved in a hadronic
interaction, rather than the probability to have a hard non-diffractive interaction. In addition,
the number of parton interactions is assumed to follow a Poissonian distribution, where the
average is given by s shard ND. The probability of having no hard interaction is calculated
according to the Poissonian distribution as

⎛
⎝⎜

⎞
⎠⎟( ) ( )s

s
= -P 0 exp . 4hard

ND

In this case, the process is assumed to be soft non-diffractive, leading to a soft non-diffractive
cross section sND,soft of

⎛
⎝⎜

⎞
⎠⎟ ( )s s

s
s

= -exp . 5ND,soft ND
hard

ND

Finally, the cross section sND,hard for the hard string process follows as

( )s s s= - . 6ND,hard ND ND,soft

Since the pQCD cross sections can only be applied at sufficiently large energies, there is no
contribution from hard non-diffractive processes below collision energies of 10 GeV. If the
energy is smaller, all non-diffractive processes will be soft.
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Due to the fact that PYTHIA 8 accepts only (anti-)nucleons and pions as the incoming
hadrons, it is necessary to extrapolate these processes to handle arbitrary pairs of incoming
hadrons. This is done by mapping hadronic species onto pions and nucleons and then
rescaling cross sections based on the additive quark model. If a baryon has positive electric
charge, it is mapped onto a proton. Otherwise it is mapped onto a neutron. Similarly, if a
meson has positive or vanishing electric charge, it is mapped onto p+. Otherwise it is mapped
onto p-. The additive quark model [40] is implemented in a similar manner as in the UrQMD
model [41, 42]. The total, elastic, diffractive and pQCD cross sections are multiplied by a
constant factor, which depends on the valence quark/antiquark contents of the incoming
hadrons.

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )¯

¯

¯

¯
s s= - - ¢ ¢

n

n

n

n
1 0.4 1 0.4 , 7h h

s s

q q

s s

q q
h h

,1

,1

,2

,2
1 2 1 2

where ¯nq q is the number of quark/antiquark constituents, while ¯ns s is the number of strange
quark/antiquark constituents. h and ¢h stand for the incoming and mapped hadronic species,
respectively.

2.2. Hard string routine

Hard non-diffractive string excitations dominate the hadronic cross section at large center of
mass energies. As mentioned in section 2.1, PYTHIA 8 accepts only a limited number of
species as incoming hadrons, and it is necessary to extrapolate hard non-diffractive scattering
handled by PYTHIA 8 to all other hadronic species. This is particularly crucial in high-energy
heavy ion collisions, where plenty of hadrons other than (anti-)nucleons and pions are pro-
duced by primary nucleon–nucleon collisions. To do this extrapolation, we rely on the
assumption that the structure functions (or parton distribution functions) of all mesons and
(anti-)baryons look similar to, respectively, those of pions and (anti-)nucleons once we swap
the valence quark flavors.

Technically, this is achieved by mapping different hadron species to (anti-)nucleons and
pions, where the quantum numbers of the original and mapped particle are as similar as
possible. This is done in the same way as the mapping for the cross sections, which is
described in section 2.1. Before the produced strings are fragmented within the PYTHIA

calculation, light (anti-)quarks are exchanged with quarks of the original flavor. The momenta
of all particles are rescaled in order to conserve the energy of the system, since the constituent
masses are affected by the flavor exchange. Due to annihilation processes, it is not always
possible to find a quark with the flavor of the mapped quark. In this case, a gluon is split into a
quark-antiquark pair with the flavor of the mapped quark or anti-quark.

2.3. Soft string routine

The soft string excitations are the most abundant processes in the intermediate energy range
as can be seen in figure 1. As in UrQMD [41, 42], the excitation of a soft string can be
performed according to one of three subprocesses, the single diffractive (see section 2.3.1),
the double diffractive (see section 2.3.2) and the non-diffractive case (see section 2.3.3),
which is the most common case. All soft string processes rely on PYTHIA for the fragmen-
tation of the strings into final-state hadrons.

2.3.1. Single diffractive. The single diffractive process describes the interaction between two
hadrons, where exactly one of the two colliding hadrons A and B is excited to form a string X

J. Phys. G: Nucl. Part. Phys. 47 (2020) 065101 J Mohs et al

6



( )+  + +  +A B A X A B X Bor . 8

The excited string X has a larger mass than the incoming hadron. The differential cross
section, as a function of the string mass MX from diffractive excitation, is given by [43]

( )s
µ

M M

d

d

1
. 9

X X

SD
2 2

Once the string mass is sampled, the three-momentum pCM of the string in the center-of-mass
frame can be evaluated by solving

( ) ( ) ( )= + + +s p M p m , 10X HCM
2 2 1 2

CM
2 2 1 2

where mH is the mass of the incoming hadron, which remains intact. Following the UrQMD
approach [41], the transverse momentum transfer p̂ between the incoming hadrons is
assumed to follow a Gaussian distribution

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )s

s
µ -

^

p̂

p
d

d
exp , 11

T

SD
2

2

2

where σT is a free parameter that is constrained by observables in proton–proton collisions in
section 3.3. To completely determine kinematics of the string-hadron system, we sample the
transverse momentum transfer p̂ with a maximum of =p̂ p,max CM. The string has a

longitudinal momentum ( ) = - ^p p pCM
2 2 1 2, which is parallel to the collision axis.

Knowing the mass and the momenta of the reaction products, one can calculate the velocity of
the string in order to boost into its rest frame, where the fragmentation machinery from
PYTHIA is employed to obtain the particles in the final state of the interaction.

2.3.2. Double diffractive. The double diffractive subprocess is a collision in which the two
incoming hadrons A and B are both excited to strings

( )+  +A B X X. 12

The dynamics of the interaction is determined in the center of mass frame of the incoming
hadrons, where the collision axis is set to be the longitudinal direction. Kinematics of the
double-diffractive excitation is modeled via pomeron exchange between gluons from two
incoming hadrons. Those gluons exchange transverse and lightcone momenta, such that they
remain on-shell after the momentum exchange [41, 42]. The light cone momentum fraction x
of each gluon is sampled from the parton distribution function for gluons, which is assumed
to be of the form

( ) ( )µ - b+

x
xPDF

1
1 , 131

where β is set to be 0.5. The light cone momenta p of the hadrons are given by

( )
=


p

E p

2
, 14

where E is the energy of the hadron and pP is the projection of the momentum on the collision
axis of the colliding hadrons. The light cone momenta of the exchanged gluons are calculated
as =  p x pg . The distribution for the transverse momentum transfer p̂ between gluons is
taken to be Gaussian, whose width is the same as in the single-diffractive case (see
equation (11)). The lightcone momenta -qA and +qB , which are gained by the gluons from
hadrons A and B, are given by
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( ) ( )- =+ + -
^x p q p2 0, 15A A A
2

( ) ( )- =- - +
^x p q p2 0. 16B B B
2

Note that the collision axis is defined as the direction in which the hadron A is moving. The
lightcone momentum Q transferred from the hadron B to A is given by

( )= - = -+ + ^
- -Q q
p

x p2
, 17B

B B

2

( )= =- - ^
+ +Q q
p

x p2
, 18A

A A

2

and it leads to evaluation of the energy ΔE and longitudinal momentum ΔpP transferred from
B to A as

( )D =
+

D =
-+ - + -

E
Q Q

p
Q Q

2
,

2
. 19

The mass of both excited strings can be calculated individually using the energy-momentum
relation. Each string is then fragmented in the rest frame of that string using the
implementation of the fragmentation within PYTHIA.

2.3.3. Non-diffractive. The non-diffractive string excitation is the most probable soft process,
and therefore has the largest impact on the dynamics of the produced particles in the SPS
energy region. During the interaction, each hadron emits one valence quark, which is adopted
by the other hadron. The exchanged valence quark carries a fraction of the longitudinal
momentum of the hadron it is emitted from. The light cone momentum fraction carried by the
exchanged quark is sampled according to the parton distribution function for quarks, which is
assumed to have the following functional form:

( ) ( )µ -a b- -x xPDF 1 , 201 1

where α and β are in general free parameters. In section 3.1, the dependence of the particle
production on the PDF is studied in detail and the parameters are adjusted such that the
measured dynamics is reproduced as well as possible while supporting the physical picture of
a valence quark exchange.

The momentum transfer in the transverse direction is sampled according to the same
Gaussian as in the single diffractive and double diffractive case, using equation (11). With the
light cone momentum fraction each exchanged quark carries and the transferred transverse
momentum, the light cone momentum transfer is written as [41, 42]

( )= - ++ + +
- -Q x p
p

x p2
, 21A A

T

B B

2

( )= -- - -
+ +Q x p
p

x p2
, 22B B

T

A A

2

where xA and xB are the light cone momentum fractions for the exchanged quarks, pA and pB
are the light cone momenta of the colliding hadrons before the collision and pT is the
transferred transverse momentum. The exchanged energy and longitudinal momentum can be
calculated using equation (19). The masses of the strings are obtained using the relativistic
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energy-momentum relation and each string is fragmented individually in the rest frame of the
string using PYTHIA.

2.4. String fragmentation

Once the mass of the excited string and the flavor of the quarks spanning the string is
determined, the string is fragmented into hadrons by employing PYTHIA. Within PYTHIA, the
species of the fragmented hadron follows from the flavor of the quark-antiquark or diquark-
antidiquark pair that is produced. While the light quarks have the same probability to be
produced, there are empirical suppression factors for producing heavier quarks and diquarks.

The transverse momentum of each string fragment is sampled from a Gaussian dis-
tribution with a width of sT ,string which is a free parameter that is tuned to experimental data in
section 3.3. The longitudinal momentum of each string fragment is determined using the
fragmentation function. PYTHIA is based on the symmetric Lund fragmentation function [31],
which has the following shape

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )µ - -f z

z
z b

m

z

1
1 exp . 23a T

2

mT is the transverse mass of the string fragment while a and b are free model parameters. For
the fragmentation of leading baryons produced in soft non-diffractive processes, the
parameters a and b are chosen differently from PYTHIA. The consequences of this treatment
are discussed in more detail in section 3.2. Note that both the different string excitation in the
soft case and the mentioned modification to the string fragmentation necessitate retuning the
parameters for the fragmentation and the available tunes for PYTHIA are not necessarily
compatible. The process of finding a new tune is described in section 3.

2.5. Particle formation

A string fragments into hadrons by producing quark-antiquark pairs. In a dynamical picture,
the pair production does not happen simultaneously but at different points in time. Figure 2
illustrates how a string fragments in coordinate space within the yoyo model. The straight

Figure 2. Sketch of a string fragmenting within the yoyo model.
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lines indicate the trajectories of (anti)quarks or (anti)diquarks. While the pair production
occurs at different points in coordinate time, the time when they recombine to hadrons
fluctuates around a constant proper time. In principle, the formation time and position of all
string fragments can be calculated using the yoyo model and the momenta of the fragments
obtained from PYTHIA. For simplicity, the fluctuations in the formation time are neglected so
that all string fragments form at a constant proper time in SMASH. The effect of changing the
formation time is investigated in section 4.

In practice, all particles in SMASH are immediately produced once the colliding hadrons
reach their point of closest approach. Until the formation time has passed, the cross section of
the string fragments are multiplied by a cross section scaling factor fσ. For most string
fragments, this factor is initially 0. However, since the leading string fragments contain
quarks that do not originate from a pair production but from the initially colliding hadrons, the
initial cross section scaling factor is not zero for leading string fragments. The initial cross
section scaling factor for each string fragment is set to be the number of quarks from the
initially colliding hadrons contained in the fragment divided by the total number of quarks of
that fragment. For example, a leading baryon that contains a diquark from the initially
colliding hadrons is assigned a scaling factor of fσ=2/3 and a meson at the other end of the
string that contains another quark from the initially colliding hadrons is assigned a scaling
factor of fσ=1/2.

Instead of having a constant cross section scaling factor until the time of formation,
where the particle suddenly is allowed to interact, it is possible to mimic a continuous
formation process by increasing the cross section scaling factor with time. Timely increasing
cross sections have been studied in a similar fashion within the GiBUU model [44]. To realize
a continuous formation, the cross section scaling factor becomes a function of time

( )=s sf f t . This function needs to have the initially assigned scaling factor f0 as described
above at the time tprod when the particle is produced and ( ) =sf t 1form at the formation time
tform. Between the two points, the cross section scaling factor grows with a given power α in
order to have a simple but flexible functional shape. Using the three conditions, the function
fσ(t) is written as follows

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )= -

-

-
+s

a

f t f
t t

t t
f1 . 240

prod

form prod
0

This function is only used for < <t t tprod form, since it has no meaning before the particle is
produced and the scaling factor is fσ(t)=1 for t>tform, when the particle is fully formed.
The cross section scaling factor as a function of time for different values of α is shown in
figure 3. The initial cross section scaling factor is set to f0=0 in this figure. In the limit of α
going to infinity, one recovers a step function, while for small positive values of α, the
particles form immediately. In section 4, the effect of the details of the particle formation on
particle spectra in heavy ion collisions is investigated.

2.6. Elastic collisions

Elastic collisions play an important role in describing heavy ion collisions, since the
contribution of elastic collisions to the total hadronic cross sections is at all energies sig-
nificant as can be seen for example for proton-p- collisions in figure 1. In SMASH, all
hadrons have a finite cross section to interact elastically. The most important elastic cross
sections are parametrizations of the experimental data, if available. If the elastic cross section
is not measured for a pair of particle species, the additive quark model is applied to obtain a
cross section for that pair of particles [41] as shown in equation (7).
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While the angular distributions are close to being isotropic at low collision energies, they
are more forward–backward peaked at larger collision energies [45]. Especially going to
higher collision energies, including anisotropic angular distributions for elastic collisions is,
therefore, of major importance for describing the dynamics of heavy ion collisions. This is
shown in a comparison between calculations with isotropic and anisotropic angular dis-
tributions provided in section 4.

For the elastic collisions of nucleons at relatively low collision energies, parametrizations
for the angular distributions have been proposed in [46]. Since there is few experimental data
for elastic collisions of hadronic pairs other than nucleon–nucleon ones, we implement the
Cugnon parametrizations [46] for nucleon–nucleon elastic collisions and extrapolate them to
all other hadronic pairs. Given that the Cugnon parametrization is a function of plab of fixed-
target experiments, there is an ambiguity for incoming particles with different masses. To
circumvent this, we first compute the center-of-mass momentum pcm of the collision. Then a
new lab-frame momentum plab

* is evaluated from a new Mandelstam variable s*, which yields
the original center-of-mass momentum when the nucleon mass is assumed

( )= +s p m4 25Ncm
2 2*

( ) ( )= -p
m

s s m
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2
4 . 26
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Lastly, the differential cross section of elastic proton–proton collisions is extrapolated to all
hadronic pairs such that
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s

s
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s
q
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d
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d
, 27
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el

el
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where θ is the scattering angle. In addition, these angular distributions are extrapolated to
arbitrary collision energies in order to obtain forward–backward peaked angular distributions
for elastic collisions at large collision energies.

Figure 3. Cross section scaling factor fσ as a function of time for different powers α
with which the cross section grows in time. In this example, the initial cross section
scaling factor is set to be fσ(tprod)=0.
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3. Proton–proton collisions

In a heavy ion collision, the stopping of baryons is mostly determined by the first interactions
of the participants. Therefore, experimental data for elementary proton–proton collisions is
used to adjust the parameters of the string approach. Even though most of the parameters
influence multiple observables, this section introduces the most important parameters and
demonstrates their effect on the particle production of (anti)protons, pions and kaons to give
some insight on how the value of each parameter is chosen.

Within this section, each parameter is varied separately, while all others are kept con-
stant. A lot of additional parameter combinations have been tried to account for potential
correlations and here we only present a subset to indicate the reasoning for our final choices.
If not further specified, the value of each parameter can be found in table 1. We mainly
concentrate on the highest SPS energy, since the experimental data set is the largest at that
energy and in the end of the section show results for all other beam energies as well.

3.1. Parton distribution function

In the SPS energy range, the soft non-diffractive string processes are the dominant interac-
tions in proton–proton collisions. As described in section 2.3.3, the amount of exchanged
longitudinal momentum is determined by the momentum fraction x the exchanged valence
quark carries. This does not only affect the dynamics of the string before the fragmentation,
but also the mass of the string and therefore the energy available for producing string
fragments. The PDFs used for the calculations are shown in figure 4 (left). Figure 4 (right)
shows the dependence of the longitudinal momentum of protons in proton–proton collisions
on the value of the parameter β of the parton distribution function as defined in equation (20).
The longitudinal momentum distribution of protons is clearly the most relevant quantity to
understand baryon stopping in heavy-ion collisions.

Table 1. Default set of parameters of SMASH-1.6 tuned to reproduce the experimental
data for proton–proton collisions at SPS energies with brief description.

Name Meaning Default value

βquark Parameter β in PDF for quarks as defined in equation (20) 7.0
aleading Parameter a in fragmentation function for leading baryons as defined

in equation (23)
0.2

bleading Parameter b in fragmentation function for leading baryons as defined
in equation (23)

-2.0 GeV 2

astring Parameter a in fragmentation function for remaining hadrons as
defined in equation (23)

2.0

bstring Parameter b in fragmentation function for remaining hadrons as
defined in equation (23)

-0.55 GeV 2

σT Width of the Gaussian used to sample transverse momentum transfer
between colliding hadrons in soft string routine as defined in
equation (11)

0.42 GeV

sT ,string Width of the Gaussian used to sample the transverse momentum of
string fragments

0.5 GeV

λs Strangeness suppression factor as defined in equation (28) 0.16
λdiquark Diquark suppression factor as defined in equation (29) 0.036
Popcorn rate Probability for popcorn processes as described in section 3.6 0.15
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The larger momentum transfer in the longitudinal direction is reflected in the
=x p pF z z,beam distribution of protons as they are shifted to higher xF for larger values of

bquark. With a softer PDF, there is more energy available for the production of new particles.
This reflects in the proton yield at low xF, which increases by a factor of 2 when using a very
soft PDF. Even though the proton xF distribution is not reproduced quantitatively, the best
possible agreement is found for b = 7quark .

Note that the description of the longitudinal momentum of protons in proton–proton
collisions proves to be very challenging within theoretical models [48]. Modifications to
improve the agreement between a different model and the data have been suggested [49]. One
of the suggestions from [49] is to modify how a proton is split into a quark and a diquark. An
option to specify the probability to split a proton into uu+d rather than ud+u is imple-
mented in SMASH but does not improve the overall agreement with the measurement. Setting
βquark=7 and αquark=2, the mean value of the PDF is 2/9, which is close to the expec-
tation of 1/3 which is assuming that there are three valence quarks sharing the full momentum
of the proton.

3.2. Fragmentation function

The longitudinal momentum of each string fragment is determined by the shape of the
fragmentation function. Starting at the forward and backward ends of the string, the fraction
of the remaining lightcone momentum is sampled from the fragmentation function. PYTHIA
employs the symmetric Lund fragmentation function defined in equation (23).

Figure 5 (left) shows the Lund fragmentation function for two different values of the
parameter b. On the right panel, the distribution of xF for protons is plotted for two different
settings. The curve labeled Lund fragmentation refers to a calculation where the softer
fragmentation from the left part of the figure is used consistently throughout the fragmen-
tation. Comparing to the experimental data shows that protons obtain too little longitudinal
momentum that way. Therefore, the protons require a different fragmentation mechanism. To
increase the longitudinal momentum of protons without producing harder light mesons than
before, the harder fragmentation function shown in the left panel is used for leading baryons
in soft non-diffractive string processes. The other curve on the right panel of figure 5 shows

Figure 4. Left: The parton distribution function that is used for the different
calculations. Right: Proton xF distribution in proton–proton collisions at

=s 17.27 GeV for different values of the parameter β of the parton distribution
function compared to experimental data [47].
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the result of the calculation after that adjustment. A drastic improvement of the agreement
with the experimental data is observed.

Even though the fragmentation function for non-leading hadrons is considered as an
intrinsic property of a string which does not depend on what happens outside, the leading
diquark holds information on the initial state kinematics. That legitimates having a separate
fragmentation function to determine lightcone momenta of leading baryons.

The influence of using a separate fragmentation function for leading baryons on the
transverse momentum is shown in figure 6, where the mean transverse momentum as a

Figure 5. Left: fragmentation function f (z) according to equation (23) for protons. The
harder fragmentation function is used for leading baryons, while the soft fragmentation
function is employed to fragment all other particles. The transverse momentum is set to
pT=0.5 GeV. Right: xF distribution of protons in proton–proton collisions at

=s 17.27 GeV compared to experimental data [47]. The curve labeled Lund
fragmentation is calculated using the soft fragmentation function from the left panel
consistently. The other curve shows results employing the harder fragmentation
function from the left panel for leading baryons from soft non-diffractive string
processes.

Figure 6. Mean transverse momentum of protons (left) and positively charged pions
(right) as a function of xF in proton–proton collisions at =s 17.27 GeV compared to
experimental data [47, 50]. The curve labeled Lund fragmentation is obtained using the
standard PYTHIA fragmentation mechanism employing the same fragmentation
function for each string fragment, while for the other curve, a separate harder
fragmentation function is used for leading baryons from soft non-diffractive string
processes.
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function of xF is shown for protons and pions. The shape of the transverse momentum of
protons as a function of the longitudinal momentum fraction is better reproduced with the
unmodified Lund fragmentation function. The curve employing a separate fragmentation
function reflects the expected change that has been observed in figure 5. To understand the
stopping in heavy-ion collisions, the match of the transverse momentum at midrapidity
corresponding to low values of xF is most important for our present work. Please refer to
section 3.3 for a more detailed discussion of transverse momenta.

Let us now demonstrate in detail how the parameters for the fragmentation function for
leading baryons from soft non-diffractive processes (a b,leading leading) and for all other particles
(astring, and bstring) have been determined. Figure 7 shows the longitudinal momentum dis-
tribution for protons and pions in pp collisions at the highest SPS energy for different values
of bleading. In general higher values of bleading are preferred by the proton xF distribution, but
there needs to be enough energy for particle production as well. Therefore,

= -b 2.0 GeVleading
2 provides the best compromise to generate hard enough protons, while

still producing a reasonable amount of pions. In addition, higher values of bleading lead to a
double-peak structure in the xF distribution that is not supported by the experimental data.

The effect on the longitudinal momentum distribution of protons and pions of changing
the value of aleading in the fragmentation function for the leading baryons from soft non-
diffractive string processes is shown in figure 8. The main difference in the xF distribution of
protons is observed in the height of the bump at »x 0.3F . For larger aleading, the peak is more
pronounced, since small values of aleading correspond to harder fragmentation functions. The
similarity between the curves with the hardest fragmentation function is caused by the fact,
that the string fragmentation fails numerically, if there is not enough energy left to produce
new particles. Therefore, very high momentum fractions are rejected more often and there-
fore, the difference in the fragmentation function is not visible anymore in the observable. As
a compromise between data comparison and computational effort to determine the kine-
matics, the value of aleading is set to 0.2.

The fragmentation function that is used for all other particles has a strong effect on the
production of light mesons. The value of the parameter b, which will be referred to as bstring in
the following, is varied in figure 9. The rapidity spectra of positively and negatively charged
pions are sensitive to small changes in the parameter bstring. A softer fragmentation function

Figure 7. Left: xF distribution of protons in proton–proton collisions at
=s 17.27 GeV for different values of bleading compared to experimental data [47].

Right: Rapidity spectra of negatively charged pions in proton–proton collisions at
=s 17.27 GeV for different values of bleading compared to experimental data [51].
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will lead to more low-energetic pions, while a harder fragmentation function produces pions
with larger momenta.

While the mid-rapidity yield of positively charged pions is overestimated for all three
values of bstring, the production of negatively charged pions is well described. At lower beam
energies, the pion multiplicity is slightly lower compared to the data as can be seen in
figure 19. Therefore, the overall best agreement is obtained with = -b 0.55 GeVstring

2.
The final parameter a of the fragmentation function used for particles that are not leading

baryons is called astring in the following. It is varied in figure 10 which shows the xF
distribution of protons and positively charged pions. Higher astring corresponds to a harder
fragmentation function which is reflected in the soft proton sector and the pion xF distribution.
Overall, the best agreement, considering both distributions, is found with astring=2.0.

For completeness, figure 11 shows the fragmentation function used for all string frag-
ments apart from leading baryons in soft non-diffractive processes. For the other string
fragments, softer fragmentation functions are applied, where the difference between the
particle species originates exclusively from the mT dependence in equation (23).

Figure 8. xF distribution of protons in proton–proton collisions at =s 17 GeV for
different values of aleading compared to experimental data [47] (left) and the
fragmentation functions for protons with a transverse momentum of pT = 0.5 GeV
used for the respective calculations (right).

Figure 9. Rapidity spectra of positively (left) and negatively (right) charged pions in
proton–proton collisions at =s 17.27 GeV for different values of bstring compared to
experimental data [51].
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3.3. Transverse momentum production

Transverse momentum is produced in two steps in proton–proton collisions: first in the
excitation process adjusted by σT and afterwards during the fragmentation tuned by changing
sT ,string. The initial transverse momentum transfer between the interacting hadrons is sampled
according to a Gaussian with a width of σT as described in section 2.3. Figure 12 shows the
dependence of the mean transverse momentum of protons and pions as a function of xF on the
value of σT.

The mean transverse momentum of pions shows only a weak dependence on the value of
σT. At low xF, the protons are fragmented from a string. Therefore they show the same
behavior as pions. Most large xF protons in proton–proton collisions are however not frag-
mented from a string, but only took part in a singe diffractive process. Their transverse
momentum is directly sampled from the Gaussian with a width of σT, which explains the

Figure 10. xF distributions of protons (left) and positively charged pions (right) in
proton–proton collisions at =s 17.27 GeV compared to experimental data [47, 50].

Figure 11. Fragmentation function f (z) according to equation (23) for pions. The
transverse momentum is set to pT=0.5 GeV, which is approximately the average
transverse momentum produced during the fragmentation.
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strong dependence on σT. σT=0.42 GeV is therefore fixed to match the mean transverse
momentum at large xF.

The production of transverse momentum during the fragmentation of a string is regulated
by sT ,string. In PYTHIA, a Gaussian with a width of sT ,string is used to sample the transverse
momentum of each individual string fragment. The influence of changing sT ,string on the mean
transverse momentum of pions and protons is shown in figure 13. The transverse momentum
distribution for the fragmentation is much more important for particle production than the one
in the string excitation process.

In the case of pions, the transverse momentum is scaled up for all bins of xF. For protons,
the opposite behavior to what is seen when varying σT is observed. At small xF, where the
protons originate from a string fragmentation, the proton ⟨ ⟩pT is strongly dependent on
sT ,string, while at »x 1F all curves lie on top of each other. The value of sT ,string therefore
needs to be tuned to multiple particle species simultaneously. The best agreement is found for
s = 0.5 GeVT ,string , where for protons too little transverse momentum is produced, while the
pions at low xF obtain too much pT.

Figure 12. Mean transverse momentum of positively charged pions (left) and protons
(right) as a function of xF in proton–proton collisions at =s 17.27 GeV compared to
experimental data [47, 50], note that the zero is suppressed to zoom in to the region of
interest.

Figure 13. Mean transverse momentum of positively charged pions (left) and protons
(right) as a function of xF in proton–proton collisions at =s 17.27 GeV compared to
experimental data [47, 50].
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Since the NA61 collaboration recently measured the transverse mass of protons at mid-
rapidity as a function of collision energy, calculations from SMASH are compared with the
data and other transport approaches in figure 14. Please note that the rapidity ranges do not
match exactly, since the HSD and UrQMD calculations were performed before the experi-
ment was carried out, therefore the comparison is not fully quantitative. The UrQMD calc-
ulation overshoots the data at low s due to the transition from resonances to strings which is
located at higher energies for the binary collisions than in HSD and SMASH. The shape of
the HSD curve and the SMASH calculation qualitatively follow the trend of experimental
data, while both underpredict the mean transverse momentum slightly.

3.4. Strangeness production

The production of strange quarks heavily relies on the probability of producing an ¯ss pair
compared to the probability of producing a light ¯qq pair during the string fragmentation. To
suppress the production of strange quark pairs according to their higher mass, the strangeness
suppression factor λs is introduced:

( ¯)
( ¯)

( ¯)
( ¯)

( )l = =
P ss

P uu

P ss

P dd
, 28s

where ( ¯) ( ¯)P uu P dd, and ( ¯)P ss denote the probabilities to produce a up-antiup, down-
antidown and a strange-antistrange quark pair, respectively. The impact of varying this
parameter on the kaon rapidity spectra is shown in figure 15. Without affecting the dynamics
of the system much, the strangeness suppression factor regulates the multiplicity of strange
hadrons. Since the rapidity distribution in our calculation is slightly steeper than the measured
one, the strangeness suppression factor is set to λs=0.16 in order to obtain a good agreement
for the total kaon multiplicity. For tuning λs, only the positively charged kaons are
considered, since the energy dependence of the negatively charged kaons is not as well
understood as can be seen in the bottom right panel of figure 19.

Figure 14. Difference between mean transverse mass of protons at mid-rapidity and the
proton mass in proton–proton collisions as a function of the center of mass energy s
of the collision compared to experimental data and other hadronic transport calculations
[41, 42, 52–54].

J. Phys. G: Nucl. Part. Phys. 47 (2020) 065101 J Mohs et al

19



3.5. Diquark production

Similar to the description for the production of strange quarks, a diquark suppression factor
λdiquark is introduced to quantify the likelihood of producing diquarks:

( ¯ ¯)
( ¯)

( )l =
P qqqq

P qq
. 29diquark

A diquark and an antidiquark always combine to a baryon and an antibaryon, since a
meson cannot contain two (anti)quarks but only one quark and one antiquark. Since diquarks
are present in a much larger fraction than the newly produced pairs as valence quarks in the
excited baryons, the antiproton production constrains the diquark suppression factor much
more directly. The comparison of the rapidity spectrum of antiprotons for different values of
λdiquark is shown in figure 16. The antiproton multiplicity is very low, resulting in a small
diquark suppression factor and a value of λdiquark=0.036 yields the best agreement with the
measured antiproton rapidity spectrum. Even though the data point at mid-rapidity suggests a
larger λdiquark, all other points are reproduced very well and at lower energies a higher
antiproton production contradicts the measurement as shown in figure 19.

3.6. Popcorn rate

When a diquark-antidiquark pair is produced, they will recombine with surrounding quarks
and antiquarks, forming new baryons. Since the diquark and the antidiquark are produced in a
pair production, they are connected via their color charge. This will in many cases lead to the
two fragmented baryons to be produced next to each other in phase space. It is however also
possible to create another quark-antiquark pair in the color field spanned by the diquark and
the antidiquark. This leads to the production of a meson between the two baryons [55]. In the
case of a baryonic string, it is, within a popcorn process, possible to fragment a meson at the
diquark end of the string. Given that a diquark-antidiquark pair is created, the probability of
such a process is given by the popcorn rate, which is a PYTHIA parameter that can be varied in
order to reproduce the experimental data. The effect of changing the popcorn rate on the

Figure 15. Rapidity spectra of positively charged kaons in proton–proton collisions at
=s 17.27 GeV for different values of λs compared to experimental data [51].
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dynamics of protons is investigated in figure 17. Increasing the popcorn rate leads to protons
being shifted to low xF. In the transverse direction, the proton ⟨ ⟩pT increases with a growing
popcorn rate. While a large popcorn rate results in a better agreement for the transverse
momentum, the shape of the xF distribution is not compatible with the data. Because the xF
distribution is, like the data, flat in the low xF region in the experimental data and a fair
agreement in the transverse momentum can be obtained, the popcorn rate is set to 0.15.
Compared to the effect on the proton dynamics, the other particle species are only slightly
affected by changing the popcorn rate.

3.7. Tuning of parameters

In this section, we describe in more detail how the tuning of parameters is performed. As
already mentioned in the beginning of section 3, even though only single parameters are
varied in the plots throughout section 3, the interplay of the parameters was investigated by

Figure 16. Rapidity spectra of antiprotons in proton–proton collisions at
=s 17.27 GeV for different values of λdiquark compared to experimental data [51].

Figure 17. xF distribution (left) and mean transverse mass (right) of protons in proton–
proton collisions at =s 17.27 GeV for different popcorn rates compared to
experimental data [47].
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changing their values simultaneously when the final set of parameters as quoted in table 1 was
determined.

The exercise of tuning parameters often is solved by minimizing the χ2 of a specific
observable. In this work we refrain from fixing the parameter values in that way because, as
one can see in the previous sections, there is not one specific plot that is most important to
describe but compromises need to be made between different quantities. In the following, we
show one example where the difficulties of minimizing a χ2 are evident. Figure 18 shows the
difficulties when tuning sT ,string in terms of the χ2 obtained from the two plots in figure 13
which show the mean transverse momentum of protons and pions, respectively.

χ2 is calculated according to

(⟨ ⟩( ) ⟨ ⟩ ( ))
( )åc

s
=

-p x p x
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i

2 exp
2

2

where xFi are the bins in xF and σi is the uncertainty of that bin. For the uncertainty, the
experimental error and the statistical uncertainty of the calculation are added in quadrature.
The calculated values of χ2 are very large due to tiny experimental uncertainties in the proton
and pion ⟨ ⟩pT .

Figure 18 reflects the tension between the two observables since for the proton ⟨ ⟩pT a
relatively large value of sT ,string is preferred by the experimental data while the χ2 can only be
minimized with a small sT ,string for pions. Since there is more data for different particle species
and other observables available, it is not clear how one would incorporate the knowledge
about which data points are most important to describe (such as pions being more important
to describe than kaons) without arbitrarily choosing weights in a χ2 analysis. In order to get
reasonable parameter values, we therefore stick to tuning the parameters by eye after studying
the influence of each parameter on each plot.

As mentioned earlier, some of the parameters are correlated. This complicates the process
of finding a good parameter set. We briefly describe how a parameter set is found and where
one has to be especially careful in taking the correlations into account. The available energy
for the string excitation is determined by the parton distribution function. Therefore the first
parameter to look at is βquark. The value of σT is both important for determining the right
amount of available energy for the collision and easy to fix to the ⟨ ⟩pT of protons at large xF.

Figure 18. χ2 for the comparison between the model and experimental data shown in
figure 13 as a function of the value for the parameter sT ,string. The plot on the left shows
the χ2 for the proton ⟨ ⟩pT while the plot on the right shows the ⟨ ⟩pT of positively
charged pions.
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sT ,string can be determined from the mean transverse momentum of protons and pions once σT
is fixed. More difficult to determine are the parameters of the fragmentation functions. The
parameters of the fragmentation function for leading baryons aleading and bleading are
responsible for the longitudinal momentum of leading protons. They can in principle be tuned
to give a good description of protons at relatively large (∼0.5) xF but one has to take into
account that the momentum taken by the leading baryons is not available for the non-leading
string fragments. If the fragmentation function for leading baryons is very hard, one would
need a soft fragmentation function for the other particles to maintain the correct multiplicities.
Therefore, there is a correlation between the parameters of the fragmentation function. The
popcorn rate also affects the longitudinal dynamics of protons a lot. As a result, the frag-
mentation function was tuned for different popcorn rates to see what yields the best agreement
with the data. λs and λdiquark are afterwards independently fixed since they only affect the
kaon and antiquark multiplicities.

It is clear that tuning the parameters by eye results in a reasonable set of parameters but
better parameter sets exist. This introduces a systematic uncertainty on the following results
that could be estimated by varying the parameters in a range in which a reasonable agreement
is found in proton–proton collisions. We avoid calculating this systematic uncertainty because
there are more sources for systematic uncertainties that cannot be estimated in a simple way,
such as the many assumptions made in a hadronic transport approach.

3.8. Proton+Proton results overview

The investigation of the free parameters in the previous sections resulted in the set of default
parameters shown in table 1. Using this set of parameters, we present the full set of final
results for proton–proton collisions including mean transverse momentum as a function of xF
and rapidity spectra for protons, antiprotons, positively and negatively charged pions and
kaons in this section. This serves to benchmark the whole calculation in elementary collisions
and provides the baseline for heavy ion calculations. Figure 19 shows the rapidity distribution
for the mentioned particle species for different collision energies. A good agreement over the
entire SPS energy range is achieved for pions, positively charged kaons and antiprotons. The
energy dependence of the negatively charged kaon multiplicity is too strong inside the string
model compared to the measurement. The rapidity spectrum is therefore only well reproduced
at plab=80 GeV, while the calculation overshoots at larger and undershoots at lower col-
lision energies. The proton rapidity spectrum follows the shape of the data roughly, but the
longitudinal momentum of protons in proton–proton collisions in terms of xF proves to be
quite challenging to describe within the string model as we expected regarding the difficulties
to obtain a reasonable xF distribution.

Figure 20 shows the mean transverse momentum of the different particle species as a
function of xF. The mean transverse momentum of protons at low and intermediate xF is
underestimated in the calculation while the data is reproduced at large xF. The opposite
behavior is observed for the other particle species, where the mean transverse momentum at
low xF is slightly overestimated while the pion mean transverse momentum undershoots the
data at large xF. The mean transverse momentum for all particle species does not deviate
much from the data so that overall a sufficient agreement with the measurement is found in
proton–proton collisions for advancing to heavy ion collisions.
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4. Heavy ion collisions

After adjusting the parameters for particle production in string processes to experimental
observations in proton–proton collisions, we present calculations for heavy ion collisions.
Going from proton–proton collisions to heavy ion collisions in SMASH is only a change in
the initialization. Instead of colliding two protons, full lead nuclei are sampled from a Woods-
Saxon distribution. All particles are explicitly propagated throughout the simulation and
hadronic interactions are determined based on the geometric interpretation of the cross
section. All subsequent interactions of original and newly produced particles are treated in the
microscopic non-equilibrium evolution [26].

Figure 19. Rapidity spectra of (anti)protons, positively and negatively charged pions
and kaons at different collision energies compared to experimental data [51].
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The evolution of the shape of the proton rapidity spectrum from a single peak structure at
low collision energies to a double peak structure at high energies is observed in central heavy
ion collisions. Since a double peak structure corresponds to less stopping than a single peak
structure, there is a trend from more stopping at low beam energies to more transparency at
high beam energies. In addition to understanding the net baryon content in the fireball, it is
possible to gain insight on the formation process of string fragments.

Since the first collisions mainly take place via string excitation and fragmentation in the
considered energy regime, let us first discuss the impact of the formation times and cross-
section scaling factors on the results. During the fragmentation process, the particles are not

Figure 20. Mean transverse momentum of (anti) protons, positively and negatively
charged pions and kaons in proton–proton collisions at =s 17.27 GeV compared to
experimental data [47, 50, 56].
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immediately fully interacting hadrons but rather some pre-formed states that interact with
lower cross-sections (see description in section 2.5).

The influence of the formation time on the particle spectra is first studied in the simplest
case, where the cross section scaling factor fσ, as introduced in section 2.5, is a step function
in time and does not increase continuously. For most string fragments, this implies that they
instantly form, when the formation time has expired. Figure 21 (left) shows the rapidity
spectrum of protons in central lead–lead collisions for different values of the formation time
τform.

While all three calculations reproduce the shape of the measured rapidity spectrum, all
curves fail to describe the number of stopped protons at mid-rapidity. This reflects the fact
that the formation times are too large for the string fragments to form while the nuclei still
overlap. If the cross sections continuously grow with time, there is a small probability for
string fragments to immediately interact. As shown in figure 21 (right), this enhances the
amount of stopped protons significantly. Figure 21 (right) shows the calculation for a fixed
formation time of τform=1 fm for different powers in which the cross section scaling factor
grows in time. Using a step function (α=−1) gives similar results as the quadratic increase.
When the cross section scaling factor grows with the square root in time, the string fragments
interact too much at early times and the protons are stopped far too much. Only for the
linearly growing cross section scaling factor, the amount of stopping can be reproduced.

A deeper understanding about how the power α translates to more stopping can be
gained by studying the interaction rate as a function of time for the different scenarios.
Figure 22 shows the rate of different interactions as a function of time.

The rates are compared between a calculation with linearly growing cross section scaling
factor (α=1) and a cross section scaling factor, that does not continuously grow in time
(α=−1). The interaction rate at early times is dominated by string processes. At later times,
the energy is not sufficiently large to excite strings and the strongest contribution to the
interaction rate stems from resonance formations and decays. For the stopping, the most
interesting period is right after the initial collisions. There one can see that if the cross section
immediately starts growing, the rate of elastic collisions and resonance formations is

Figure 21. Rapidity spectrum of protons in central lead–lead collisions at
=s 17.27 GeVNN for different formation proper times τform (left) and for different

powers α with which the cross section scaling factor fσ of string fragments grow (right)
compared to experimental data [57]. Left: The cross section scaling factor fσ is set to be
constant until it jumps to 1 at the formation time. Right: The formation proper time is
set to t = 1 fmform in all calculations. The value of α=−1 encodes a step function
rather than a continuous formation in time.

J. Phys. G: Nucl. Part. Phys. 47 (2020) 065101 J Mohs et al

26



significantly increased. These additional interactions are responsible for the higher proton
yield at mid-rapidity.

At =s 17.27 GeVNN , the formation time affects the results only slightly even when the
cross sections grow linearly in time. Going to lower collision energies, changing the for-
mation time directly reflects in the rapidity spectra as shown in figure 23. In the case of
slower, and less Lorentz contracted, nuclei the passing time is on the order or larger than the
formation time. With shorter formation times, the cross section scaling factors grow faster in
time which leads to more stopping of protons and larger pion multiplicities at mid-rapidity. A
formation time of τ=1 fm is best suited for reproducing the proton and pion rapidity
spectrum.

Figure 22. Rate of interactions in central lead–lead collisions at =s 17.27 GeVNN for
different powers α, in which the cross section scaling factor grows, as a function of
time. Shown are the different contributions from string processes, elastic scatterings,
resonance formations and resonance decays. The formation time in both calculations is
set to τform=1 fm.

Figure 23. Rapidity spectrum of protons (left) and negatively charged pions (right) in
central lead–lead collisions at =s 8.765 GeVNN for different formation times
compared to experimental data [57, 58]. The cross section scaling factor grows linearly
in time within the calculations.
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Figure 24 shows the rapidity spectrum of protons in central heavy ion collisions com-
pared to experimental data and UrQMD calculations for different collision energies for the
final set of parameters for particle formation (τ=1 fm and α=1). Over the entire SPS
energy range, a good agreement between the SMASH calculation and the experimental data is
found. Even though the proton multiplicity at low SPS energies is overestimated in the
SMASH results, the evolution of the shape of the proton rapidity spectrum from a single peak
at low energies to a double peak structure at large collision energies is well reproduced. At
low beam energies, a small fraction of protons is bound in light nuclei and should not be
counted in the proton spectra. The clustering is not taken into account in the shown SMASH
results, which might be part of the reason for the overshoot of protons at low beam energies.
Comparing figure 24 to the xF distributions shown in section 3 might give the impression that
the agreement with data in heavy ion collisions is a lot better than in proton–proton collisions,
but the rapidity spectrum in proton–proton collisions in figure 19 shows a similar agreement
as in heavy ion collisions.

To put our results into context, we compare to UrQMD calculations, where a very similar
treatment of string processes is applied. In general, the protons within the UrQMD calculation
are stopped more at mid-rapidity than the protons in the SMASH calculation. In UrQMD, the
cross section of an unformed particle is kept constant until the formation time of that particle
is reached. This corresponds to the SMASH calculation with α=−1 shown in figure 21
(right), where the least stopping is observed in the case of α=−1, so the details of the
formation process of string fragments is not the main source of the difference between
SMASH and UrQMD.

An important ingredient for understanding the shape of the proton rapidity spectrum are
the anisotropic angular distributions for elastic collisions between all hadrons as described in
section 2.6. Figure 25 shows the rapidity spectrum of net-protons in a calculation of lead–lead
collisions at =s 8.765 GeVNN at different times comparing isotropic and anisotropic
angular distributions in elastic collisions.

At t=2 fm, the nuclei are still in the process of passing through each other, explaining
why a large portion of protons are still located at beam rapidity. Up to this point, the dynamics

Figure 24. Rapidity spectra of protons in central lead–lead collisions at different beam
energies compared to experimental data [12, 57] and UrQMD calculations [59].
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of the system are dominated by primary interactions between nucleons. A significant dif-
ference is already at that time observed between the calculations with isotropic and aniso-
tropic elastic scatterings. Advancing in time, the net-proton number increases, mostly due to
resonance decays. The difference between the calculations with isotropic and anisotropic
elastic collisions is not washed out during the evolution of the system but can be observed
even after all resonances have decayed. A double peak structure only builds up when the
anisotropy of elastic scatterings is properly taken into account.

To conclude the study of particle production in heavy ion collisions, figure 26 shows the
rapidity spectrum of negatively charged pions for different collision energies. As shown in
figure 23 (right), the pion production is relatively well understood at intermediate SPS
energies. Similar to the intermediate energies, a good agreement with the data can be
observed at the lowest collision energies in the SPS range. At top SPS energies, the multi-
plicity of negatively charged pions is underestimated but still a reasonable agreement is
found. In comparison to the SMASH results, pions are more abundantly produced in the
UrQMD calculations. Compared to the data, UrQMD describes the pion production very well
at high energies while SMASH gives a better description for low collision energies.

5. Initial state calculations

In this last section, we would like to show how the results from our approach can in the future
be employed for initial conditions for hydrodynamic calculations. This has been very suc-
cessfully done in a hybrid approach based on UrQMD initial conditions [15, 61]. More
recently, a toy model for initial conditions including a 3D Glauber model with energy loss
according to a string picture is developed [18]. Further, dynamical initial states are con-
structed based on UrQMD [17]. In a similar fashion, the hadronic transport approach JAM is
combined with relativistic viscous hydrodynamics [19].

Figure 25. Rapidity spectrum of net-protons in central lead–lead collisions at
=s 8.765 GeVNN at different times. The full lines correspond to calculations with

anisotropic angular distributions for the elastic scattering, while elastic collisions in the
calculations for the dashed lines are isotropic.
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The advantage of a dynamical approach is to include event-by-event fluctuations of all
relevant quantities and having full 3D distributions for all quantum numbers available.
Figure 27 shows the energy density and the net baryon density in a single event for a slice at
z=0 at the time when the two colliding nuclei have just passed through each other.

Due to secondary interactions and the produced transverse momentum, some strings are
not aligned with the beam axis, which reflects in small lines of large energy density. Since the
baryon density of the string is located at the end, this structure cannot be observed on the right
panel of figure 27. The scale on the left hand side of figure 27 ranges up to large energy
densities, well in the regime where a quark-gluon plasma should be formed. Therefore, a
description of the dynamical evolution in the hot and dense system in terms of hydrodynamics
seems more appropriate than a pure hadronic transport approach.

Figure 26. Rapidity spectrum of negatively charged pions in central lead–lead
collisions at different beam energies compared to experimental data [58, 60] and
UrQMD calculations [59].

Figure 27. Energy density in the Landau rest frame including all hadrons in one heavy
ion collision at =s 17.27 GeVNN with an impact parameter of b=2.0 fm on the left
and the net baryon density in the Eckart rest frame of the same event on the right. The
energy density and the net baryon density are given at a specific time, exactly when the
two colliding nuclei have passed through each other, and for a slice at z=0 fm.
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Advancing to the longitudinal dynamics of the system, figure 28 shows on the left panel
the spacetime rapidity distribution of net baryons compared to the momentum space dis-
tribution on the right hand side in heavy ion collisions at different collision energies. Again,
the distributions are plotted at the time, when the nuclei have just passed through each other.
The momentum space distribution at =s 6.27 GeVNN shows a peak at mid-rapidity, while,
with increasing energy, a flat plateau is developed. Even though the spacetime rapidity
spectrum shows a similar behavior with increasing energy, momentum space and coordinate
space rapidity spectra differ drastically. This supports the finding, that the Bjorken assump-
tion breaks down at lower beam energies and a full three-dimensional initial state is more
realistic.

6. Summary

Baryon stopping in the SPS energy range is studied within the hadronic transport model
SMASH. Going to high collision energies, string excitations and fragmentations are the most
important processes, since the contribution from resonance excitations fades out. The string
model introduced in this work is split into soft and hard processes, where the soft processes
dominate the cross section at intermediate energies while the hard processes are most
important at very high energetic interactions. The soft string processes follow the UrQMD
approach while hard processes are handled via PYTHIA. To take the dynamics of particle
production in a string model into account, a formation time is introduced during which the
cross sections of string fragments are reduced. In order to mimic a continuous particle
formation process, a mechanism is introduced to smoothly increase the cross section of
forming particles over time.

The model has been benchmarked against experimental data from NA49 and NA61 in
elementary proton–proton collisions and all parameters and their default values are explained.
This comparison evidently shows that a distinct fragmentation function for leading baryons
from soft non-diffractive string processes needs to be employed to get a reasonable agreement
with the measured distribution of longitudinal momentum of protons. Since many of the
parameters are correlated and different observables require different values, we have pre-
sented the best possible compromise within the current approach. In the future, this multi-

Figure 28. Spacetime rapidity (left) and momentum rapidity (right) spectra of net-
baryons in central lead–lead collisions for different collision energies at the time when
the nuclei have just passed through each other.
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parameter problem might be assessed again employing Bayesian methods to allow for
quantification of systematic uncertainties.

Fixing the parameters of the string routine to proton–proton collisions, a reasonable
agreement over the entire SPS energy range is achieved considering that no existing theor-
etical model can describe all available data simultaneously in that energy range. Based on
these parameters, the baryon stopping in heavy-ion collisions is investigated. Since secondary
interactions only play an important role for the dynamics of heavy ion collisions, the for-
mation process of string fragments is studied in lead–lead collisions. Comparing to exper-
imental data, the best agreement was found for a formation time of τform=1 fm in the rest
frame of the respective string fragment and the cross section grows linearly in time during that
period. The proton and pion rapidity spectra closely follow the data but the proton multiplicity
is overestimated at lower collision energies. Further, the importance of non-isotropic elastic
collisions is shown. More forward–backward peaked angular distributions in elastic collisions
are essential for reproducing the experimentally observed double peak structure in heavy ion
collisions at top SPS energies.

Finally, SMASH is used to obtain event-by-event initial conditions for starting the
evolution of the system in terms of hydrodynamics. An energy density and net baryon density
profile at the time right after the colliding nuclei have passed through each other is provided.
These profiles indicate that realistic fluctuating initial conditions for all conserved charges can
be obtained in the future. Another avenue for further research includes to explore dynamical
initialization of hydrodynamics via source terms fed by the hadronic transport approach.

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—
Project number 315477589—TRR 211. This work was supported by the Helmholtz Inter-
national Center for the Facility for Antiproton and Ion Research (HIC for FAIR) within the
framework of the Landes-Offensive zur Entwicklung Wissenschaftlich-Oekonomischer
Exzellenz (LOEWE) program launched by the State of Hesse. Computational resources have
been provided by the Center for Scientific Computing (CSC) at the Goethe-University of
Frankfurt.

ORCID iDs

J Mohs https://orcid.org/0000-0001-8437-0946
H Elfner https://orcid.org/0000-0002-6213-3613

References

[1] Brown F R, Butler F P, Chen H, Christ N H, Dong Z H, Schaffer W, Unger L I and Vaccarino A
1990 Phys. Rev. Lett. 65 2491–4

[2] Borsanyi S, Fodor Z, Hoelbling C, Katz S D, Krieg S and Szabo K K 2014 Phys. Lett. B 730
99–104

[3] Bazavov A et al (HotQCD) 2014 Phys. Rev. D 90 094503
[4] Asakawa M and Yazaki K 1989 Nucl. Phys. A 504 668–84
[5] Barducci A, Casalbuoni R, De Curtis S, Gatto R and Pettini G 1990 Phys. Rev. D 41 1610
[6] Stephanov M A 2004 Prog. Theor. Phys. Suppl. 153 139–56

Stephanov M A 2005 Int. J. Mod. Phys. A 20 4387
[7] Adamczyk L et al (STAR) 2014 Phys. Rev. Lett. 112 032302

J. Phys. G: Nucl. Part. Phys. 47 (2020) 065101 J Mohs et al

32

https://orcid.org/0000-0001-8437-0946
https://orcid.org/0000-0001-8437-0946
https://orcid.org/0000-0001-8437-0946
https://orcid.org/0000-0002-6213-3613
https://orcid.org/0000-0002-6213-3613
https://orcid.org/0000-0002-6213-3613
https://doi.org/10.1103/PhysRevLett.65.2491
https://doi.org/10.1103/PhysRevLett.65.2491
https://doi.org/10.1103/PhysRevLett.65.2491
https://doi.org/10.1016/j.physletb.2014.01.007
https://doi.org/10.1016/j.physletb.2014.01.007
https://doi.org/10.1016/j.physletb.2014.01.007
https://doi.org/10.1016/j.physletb.2014.01.007
https://doi.org/10.1103/PhysRevD.90.094503
https://doi.org/10.1016/0375-9474(89)90002-X
https://doi.org/10.1016/0375-9474(89)90002-X
https://doi.org/10.1016/0375-9474(89)90002-X
https://doi.org/10.1103/PhysRevD.41.1610
https://doi.org/10.1143/PTPS.153.139
https://doi.org/10.1143/PTPS.153.139
https://doi.org/10.1143/PTPS.153.139
https://doi.org/10.1142/S0217751X05027965
https://doi.org/10.1103/PhysRevLett.112.032302


[8] Adamczyk L et al (STAR) 2014 Phys. Rev. Lett. 113 092301
[9] Adare A et al (PHENIX) 2016 Phys. Rev. C 93 011901
[10] Appelshauser H et al (NA49) 1999 Phys. Rev. Lett. 82 2471–5
[11] Alt C et al (NA49) 2006 Phys. Rev. C 73 044910
[12] Blume C and (Na49) 2007 J. Phys. G: Nucl. Part. Phys. 34 S951–4
[13] Gale C, Jeon S and Schenke B 2013 Int. J. Mod. Phys. A 28 1340011
[14] Derradi de Souza R, Koide T and Kodama T 2016 Prog. Part. Nucl. Phys. 86 35–85
[15] Petersen H, Steinheimer J, Burau G, Bleicher M and Stocker H 2008 Phys. Rev. C 78 044901
[16] Karpenko I A, Huovinen P, Petersen H and Bleicher M 2015 Phys. Rev. C 91 064901
[17] Du L, Heinz U and Vujanovic G 2019 Nucl. Phys. A 982 407–10
[18] Shen C and Schenke B 2018 Phys. Rev. C 97 024907
[19] Murase K, Akamatsu Y, Asakawa M, Hirano T, Kitazawa M, Morita K, Nara Y, Nonaka C and

Ohnishi A 2019 Dynamically integrated transport approach for high-energy nuclear collisions
at high baryon density 8th Int. Conf. on Quarks and Nuclear Physics (QNP2018) (13–17
November 2018) (Tsukuba, Japan(arXiv:1901.11190)

[20] McLerran L D, Schlichting S and Sen S 2019 Phys. Rev. D 99 074009
[21] Ivanov Y B, Russkikh V N and Toneev V D 2006 Phys. Rev. C 73 044904
[22] Batyuk P, Blaschke D, Bleicher M, Ivanov Y B, Karpenko I, Merts S, Nahrgang M,

Petersen H and Rogachevsky O 2016 Phys. Rev. C 94 044917
[23] Steinheimer J, Bleicher M, Petersen H, Schramm S, Stocker H and Zschiesche D 2008 Phys. Rev.

C 77 034901
[24] Bialas A, Bzdak A and Koch V 2018 Acta Phys. Polon. B 49 103
[25] Bialas A, Bzdak A and Koch V 2019 Phys. Rev. C 99 034906
[26] Weil J et al 2016 Phys. Rev. C 94 054905
[27] Olive K A et al (Particle Data Group) 2014 Chin. Phys. C 38 090001
[28] Tindall J, Torres-Rincon J M, Rose J B and Petersen H 2017 Phys. Lett. B 770 532–8
[29] Steinberg V, Staudenmaier J, Oliinychenko D, Li F, Erkiner Ö and Elfner H 2019 Phys. Rev. C 99

064908
[30] Staudenmaier J, Weil J, Steinberg V, Endres S and Petersen H 2018 Phys. Rev. C 98 054908
[31] Andersson B, Gustafson G, Ingelman G and Sjostrand T 1983 Phys. Rep. 97 31–145
[32] Sjöstrand T, Ask S, Christiansen J R, Corke R, Desai N, Ilten P, Mrenna S, Prestel S,

Rasmussen C O and Skands P Z 2015 Comput. Phys. Commun. 191 159–77
[33] Corke R and Sjostrand T 2010 J. High Energy Phys. JHEP01(2010)035
[34] Tanabashi M et al (Particle Data Group) 2018 Phys. Rev. D 98 030001
[35] Buss O, Gaitanos T, Gallmeister K, van Hees H, Kaskulov M, Lalakulich O, Larionov A B,

Leitner T, Weil J and Mosel U 2012 Phys. Rep. 512 1–124
[36] Weil J 2013 Vector mesons in medium in a transport approach PhD Thesis Giessen U. http://geb.

uni-giessen.de/geb/volltexte/2013/10253/
[37] Schuler G A and Sjostrand T 1994 Phys. Rev. D 49 2257–67
[38] Ball R D, Bertone V, Carrazza S, Del Debbio L, Forte S, Guffanti A, Hartland N P, Rojo J and

(NNPDF) 2013 Nucl. Phys. B 877 290–320
[39] Sjostrand T and van Zijl M 1987 Phys. Rev. D 36 2019
[40] Goulianos K A 1983 Phys. Rep. 101 169
[41] Bass S A et al 1998 Prog. Part. Nucl. Phys. 41 255–369
[42] Bleicher M et al 1999 J. Phys. G: Nucl. Part. Phys. 25 1859–96
[43] Ingelman G and Schlein P E 1985 Phys. Lett. B 152 256–60
[44] Gallmeister K and Mosel U 2008 Nucl. Phys. A 801 68–79
[45] Baglin C et al 1975 Nucl. Phys. B 98 365–400
[46] Cugnon J, Vandermeulen J and L’Hote D 1996 Nucl. Instrum. Methods B 111 215–20
[47] Anticic T et al (NA49) 2010 Eur. Phys. J. C 65 9–63
[48] Uzhinsky V 2014 arXiv:1404.2026
[49] Uzhinsky V and Galoyan A 2015 Phys. Rev. D 91 037501
[50] Alt C et al (NA49) 2006 Eur. Phys. J. C 45 343–81
[51] Aduszkiewicz A et al (NA61/SHINE) 2017 Eur. Phys. J. C 77 671
[52] Puławski S and (NA61) 2015 PoS CPOD2014 010
[53] Vovchenko V Y, Anchishkin D V and Gorenstein M I 2015 Nucl. Phys. A 936 1–5
[54] Bratkovskaya E L, Cassing W, Konchakovski V P and Linnyk O 2011 Nucl. Phys. A 856 162–82
[55] Andersson B, Gustafson G and Sjostrand T 1985 Phys. Scr. 32 574

J. Phys. G: Nucl. Part. Phys. 47 (2020) 065101 J Mohs et al

33

https://doi.org/10.1103/PhysRevLett.113.092301
https://doi.org/10.1103/PhysRevC.93.011901
https://doi.org/10.1103/PhysRevLett.82.2471
https://doi.org/10.1103/PhysRevLett.82.2471
https://doi.org/10.1103/PhysRevLett.82.2471
https://doi.org/10.1103/PhysRevC.73.044910
https://doi.org/10.1088/0954-3899/34/8/S133
https://doi.org/10.1088/0954-3899/34/8/S133
https://doi.org/10.1088/0954-3899/34/8/S133
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1016/j.ppnp.2015.09.002
https://doi.org/10.1016/j.ppnp.2015.09.002
https://doi.org/10.1016/j.ppnp.2015.09.002
https://doi.org/10.1103/PhysRevC.78.044901
https://doi.org/10.1103/PhysRevC.91.064901
https://doi.org/10.1016/j.nuclphysa.2018.09.015
https://doi.org/10.1016/j.nuclphysa.2018.09.015
https://doi.org/10.1016/j.nuclphysa.2018.09.015
https://doi.org/10.1103/PhysRevC.97.024907
http://arxiv.org/abs/1901.11190
https://doi.org/10.1103/PhysRevD.99.074009
https://doi.org/10.1103/PhysRevC.73.044904
https://doi.org/10.1103/PhysRevC.94.044917
https://doi.org/10.1103/PhysRevC.77.034901
https://doi.org/10.5506/APhysPolB.49.103
https://doi.org/10.1103/PhysRevC.99.034906
https://doi.org/10.1103/PhysRevC.94.054905
https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1016/j.physletb.2017.04.080
https://doi.org/10.1016/j.physletb.2017.04.080
https://doi.org/10.1016/j.physletb.2017.04.080
https://doi.org/10.1103/PhysRevC.99.064908
https://doi.org/10.1103/PhysRevC.99.064908
https://doi.org/10.1103/PhysRevC.98.054908
https://doi.org/10.1016/0370-1573(83)90080-7
https://doi.org/10.1016/0370-1573(83)90080-7
https://doi.org/10.1016/0370-1573(83)90080-7
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1007/JHEP01(2010)035
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1016/j.physrep.2011.12.001
https://doi.org/10.1016/j.physrep.2011.12.001
https://doi.org/10.1016/j.physrep.2011.12.001
http://geb.uni-giessen.de/geb/volltexte/2013/10253/
http://geb.uni-giessen.de/geb/volltexte/2013/10253/
https://doi.org/10.1103/PhysRevD.49.2257
https://doi.org/10.1103/PhysRevD.49.2257
https://doi.org/10.1103/PhysRevD.49.2257
https://doi.org/10.1016/j.nuclphysb.2013.10.010
https://doi.org/10.1016/j.nuclphysb.2013.10.010
https://doi.org/10.1016/j.nuclphysb.2013.10.010
https://doi.org/10.1103/PhysRevD.36.2019
https://doi.org/10.1016/0370-1573(83)90010-8
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1016/S0146-6410(98)00058-1
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1088/0954-3899/25/9/308
https://doi.org/10.1016/0370-2693(85)91181-5
https://doi.org/10.1016/0370-2693(85)91181-5
https://doi.org/10.1016/0370-2693(85)91181-5
https://doi.org/10.1016/j.nuclphysa.2007.12.009
https://doi.org/10.1016/j.nuclphysa.2007.12.009
https://doi.org/10.1016/j.nuclphysa.2007.12.009
https://doi.org/10.1016/0550-3213(75)90497-6
https://doi.org/10.1016/0550-3213(75)90497-6
https://doi.org/10.1016/0550-3213(75)90497-6
https://doi.org/10.1016/0168-583X(95)01384-9
https://doi.org/10.1016/0168-583X(95)01384-9
https://doi.org/10.1016/0168-583X(95)01384-9
https://doi.org/10.1140/epjc/s10052-009-1172-2
https://doi.org/10.1140/epjc/s10052-009-1172-2
https://doi.org/10.1140/epjc/s10052-009-1172-2
http://arxiv.org/abs/1404.2026
https://doi.org/10.1103/PhysRevD.91.037501
https://doi.org/10.1140/epjc/s2005-02391-9
https://doi.org/10.1140/epjc/s2005-02391-9
https://doi.org/10.1140/epjc/s2005-02391-9
https://doi.org/10.1140/epjc/s10052-017-5260-4
https://doi.org/10.22323/1.217.0010
https://doi.org/10.1016/j.nuclphysa.2015.01.006
https://doi.org/10.1016/j.nuclphysa.2015.01.006
https://doi.org/10.1016/j.nuclphysa.2015.01.006
https://doi.org/10.1016/j.nuclphysa.2011.03.003
https://doi.org/10.1016/j.nuclphysa.2011.03.003
https://doi.org/10.1016/j.nuclphysa.2011.03.003
https://doi.org/10.1088/0031-8949/32/6/003


[56] Anticic T et al (NA49) 2010 Eur. Phys. J. C 68 1–73
[57] Anticic T et al (NA49) 2011 Phys. Rev. C 83 014901
[58] Afanasiev S V et al (NA49) 2002 Phys. Rev. C 66 054902
[59] Petersen H, Bleicher M, Bass S A and Stocker H 2008 arXiv:0805.0567
[60] Alt C et al (NA49) 2008 Phys. Rev. C 77 024903
[61] Karpenko I A, Bleicher M, Huovinen P and Petersen H 2014 J. Phys.: Conf. Ser. 503 012040

J. Phys. G: Nucl. Part. Phys. 47 (2020) 065101 J Mohs et al

34

https://doi.org/10.1140/epjc/s10052-010-1328-0
https://doi.org/10.1140/epjc/s10052-010-1328-0
https://doi.org/10.1140/epjc/s10052-010-1328-0
https://doi.org/10.1103/PhysRevC.83.014901
https://doi.org/10.1103/PhysRevC.66.054902
http://arxiv.org/abs/0805.0567
https://doi.org/10.1103/PhysRevC.77.024903
https://doi.org/10.1088/1742-6596/503/1/012040

	1. Introduction
	2. Model description
	2.1. Cross sections for string processes
	2.2. Hard string routine
	2.3. Soft string routine
	2.3.1. Single diffractive
	2.3.2. Double diffractive
	2.3.3. Non-diffractive

	2.4. String fragmentation
	2.5. Particle formation
	2.6. Elastic collisions

	3. Proton–proton collisions
	3.1. Parton distribution function
	3.2. Fragmentation function
	3.3. Transverse momentum production
	3.4. Strangeness production
	3.5. Diquark production
	3.6. Popcorn rate
	3.7. Tuning of parameters
	3.8. Proton+Proton results overview

	4. Heavy ion collisions
	5. Initial state calculations
	6. Summary
	Acknowledgments
	References



