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Abstract
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Reciprocating compressors are widely used in the petroleum industry and because of their
complex and nonlinear signals, it is difficult to extract fault features. Recently, deep learning has
been used in intelligent mechanical fault diagnosis and achieved great success. In the deep
learning model, the recursive neural network (RNN) can capture global features, but it is difficult
to parallelize and not good at dealing with long sequences. The convolutional neural network
(CNN) can capture local features, but its receptive field is limited by the number of layers of the
network and the size of the sliding window, resulting in the model not capturing sufficient
features. In this paper, we propose a deep learning model without any RNN or CNN structures,
called the group self-attention network (GSAN), for fault diagnosis of multisource signals in
reciprocating compressors. The GSAN model mainly includes intra-group self-attention,
inter-group self-attention and a fusion gate. Among them, intra-group self-attention is used to
capture local features within a group, inter-group self-attention is used to capture global features
between groups, and the fusion gate finally integrates these features. Experimental results show
that compared with other models based on the RNN or the CNNs, the GSAN proposed in this
paper not only has higher prediction accuracy, but also better anti-noise performance. In
addition, the effectiveness of each part of the model is verified by ablation experiment.
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1. Introduction

Due to some parts of reciprocating compressors running at
high temperature, high pressure and other adverse factors,
once a fault occurs, not only will production be interrupted,
but also injuries may be caused. Therefore, fault diagnosis
of reciprocating compressors is of great significance. There
are many rotating parts and vibration sources in reciprocat-
ing compressors, so the fault signal usually presents com-
plex nonlinearity [1,2]. The methods used in other types of
machinery are often not applicable to reciprocating com-
pressors. In addition, because the faults in reciprocating com-
pressors are affected by a variety of parameters, in most
cases, one signal does not reflect the potential fault [3,4].
The collected signals usually include vibration, temperature,
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pressure and other parameters. The relationship between these
parameters is very complex and they affect each other, so it
is necessary to conduct comprehensive fault identification of
multi-source signal data.

Early fault diagnosis methods for reciprocating com-
pressor depended on traditional signal processing methods.
Yang et al [5] used discrete wavelet transform to extract the
four orders of statistical features, and used an artificial neural
network and a support vector machine to identify the faults
in a small reciprocating compressor. Tang et al [6] used
adaptive peak decomposition to extract the features of vibra-
tion signals in a reciprocating compressor in four states.
Qi et al [7] proposed the sparse code for the operation data
of areciprocating compressor and then used a support vec-
tor machine to identify faults. However, traditional feature

© 2020 IOP Publishing Ltd  Printed in the UK


https://doi.org/10.1088/1361-6501/ab7280
https://orcid.org/0000-0002-8579-4019
https://orcid.org/0000-0002-9776-3615
mailto:zhang40941@126.com
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6501/ab7280&domain=pdf&date_stamp=2020-04-02

Meas. Sci. Technol. 31 (2020) 065014

G Bao et al

extraction methods need a lot of domain knowledge and prior
knowledge. In addition, the accuracy of classification results
largely depends on the extracted features.

In recent years, deep learning has gained widespread atten-
tion and success in many fields, such as computer vision
and natural language processing [8—11] . It is an end-to-end
recognition method, which can eliminate feature extraction
steps and it has employed in mechanical fault diagnosis. For
example, Jiang et al proposed an improved convolutional deep
belief network [12] that combined feature learning with fault
diagnosis of compressed sensing, and proposed the deep wave-
let auto-encoder (DWAE) [13] based on an extreme learning
machine. Mao et al [14] integrated an automatic encoder and
a multi-layer extreme learning machine for fault diagnosis.
Shao et al [15] put forward a continuous deep belief net-
work with locally linear embedding that can accurately pre-
dict mechanical performance trends. Many experiments show
that the deep learning model performs better than traditional
algorithms in terms of accuracy and generalization [16-20].
As can be seen from previous literatures, the deep learning
model is gradually becoming the mainstream algorithm for
fault diagnosis.

In the deep learning model, the convolution neural net-
work (CNN) is designed to handle image or time series
data [21-25]. Jing et al [26] proposed a CNN to learn fea-
tures from the original data and directly diagnosed the ori-
ginal vibration signal. Zhang et al [19] proposed a one-
dimensional deep convolutional neural network (1d-DCNN)
that displayed good real-time and generalization perform-
ance. The recurrent neural network (RNN) and its associated
variants, included long-short-term memory (LSTM) [27] and
gated recursive units (GRUs) [28], can capture information on
a time series. Pan et al [29] proposed the LSTM-CNN com-
bined one-dimensional CNN with LSTM that has the classi-
fication ability of the CNN and the temporal coherence rep-
resentation ability of LSTM. With the development of deep
learning, the limitations of RNNs and CNNs began to appear.
The RNN model is difficult to parallelize, and it is difficult to
capture remote dependencies when the input sequence is too
long. The receptive field of the CNN is limited by the number
of network layers and the size of sliding window, so the model
cannot capture enough features.

The attention mechanism has been used as an aid to help
improve the RNN and the CNN, rather than as a single layer
of the network. Recently, Vaswani et al [30] proposed the first
completely attention-based model for machine translation and
achieved the best performance. Compared to the CNN and
the RNN, the attention-based model is flexible in extracting
both remote and local correlations. It turns out that without
the CNN or the RNN, the attention-based model hasa powerful
ability in feature extraction and performs well in some tasks.
However, as far as we know, few attention-based models for
fault diagnosis methods have been proposed.

The contributions of our work are briefly outlined as
follows:

(a) We propose the group self-attention network (GSAN), a
completely attention-based model, for fault diagnosis in

reciprocating compressors. In the design of the model,
we used the grouping strategy to extract eatures within
and between groups step by step. First, intra-group self-
attention is used to capture local features within a group.
Then, inter-group self-attention is used to capture global
features between groups.

(b) We designed a fusion gate to fuse the local and global fea-
ture vectors toimprove the anti-noise ability and robust-
ness of the model.

(c) The GSAN model abandons the classical network RNN
and CNN, and processes the multi-source signal of recip-
rocating compressor based on a self-attention network,
providing a new solution for some fields of fault dia-
gnosis. Experimental results show that the GSAN has
higher accuracy and antinoise ability than the CNN and
RNN models for fault diagnosis in a reciprocating com-
pressor.

2. Background

2.1. Attention mechanism

The attention mechanism is essentially a means to calcu-
late the alignment score between elements in sequences.
Given a sequence x = {x|, xa, ..., x,} and a query vector g,
the attention mechanism measures the degree of correlation
between x; and ¢ by the compatibility function f(x;,q).

The compatibility function f(x;,q) can be calculated in a
variety of ways, the most commonly used of which is additive
attention [31,32], as shown in the following equation:

f(xi,q) = Wtanh (W'x; + W2g +b") "

a=[f(x,q9)]", 2)

where x; € R%, g € R% are the vectors of input, W, W!, W? ¢
Ré%><d pl ¢ R% are the parameters, ac R"*" is the alignment
score.

Then the softmax function normalizes all attention values
of x and converts the alignment score [ f(x;,¢)]"_, into a prob-
ability distribution p (z =ilx,q). The output s is the weighted
sum of each element x;, as shown below:

exp (f(x,9))

=ilx,q) = sofi = .
p(z=ilx,q) = softmax (a) S exp(f(xi,q)) @
s = ZP(Z = ilx,q) x; @

i—1

where s € R% can be used as the attention vector correspond-
ing to x;.

2.2. Self-attention

Self-attention is a special case of the above-described attention
mechanism, as shown in figure 1. The only difference between
self-attention and other attention mechanisms is its compat-
ibility function. It replaces the query vector ¢ with the input
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Figure 1. Diagram of self-attention.

sequence itself. Through calculating the attention weight
between each pair of elements x; and x;, self-attention can cor-
relate information about different positions in a sequence. So,
the compatibility function can be described as the following:

f(xi,x;) = W tanh (W'x; + Wy, +b') 6))

where x; € R%, x; € R% are the input elements at different pos-
itions.

Self-attention is good at capturing both local and remote
features in a sequence. Compared with the RNN, self-attention
has faster computing speed and fewer parameters. Com-
pared with the CNN, it has a better ability to extract global
features. Recently, we have witnessed its success in some
natural language processing tasks, such as neural machine
translation (Vaswani et al [30]) and reading comprehension
(Hu et al [33)).

2.3. Two variants of self-attention

In this article, our model will use two variations of self-
attention. The first one is masked self-attention [30], as shown
in figure 2. When the original self-attention calculates the
attention weight of the x; and x;, it ignores the sequential rela-
tionship between them because the attention weight of x; to
x; is the same as the attention weight of x; to x;. However,
the sequence information is very important for vibration sig-
nals in fault diagnosis. So, by adding a forward mask and a
backward mask to the original attention matrix, masked self-
attention can calculate the attention weight from the sequence
information in the forward and backward directions.
These two masks are defined as:

fw _ 07 l <j
My = { —o0, otherwise ©)
0 i>
bw __ )
My" = { —o00, otherwise ° )

Figure 2. Diagram of self-attention with a forward mask.

In the forward attention calculation, the attention matrix is
added with the forward mask and only the information before
this position is considered, as shown in figure 2. Because in
the forward mask matrix the value of the upper right triangle is
—0o0, that means the weighted probability value after logarithm
calculation is 0. The backward mask matrix in the backward
attention calculation is just the opposite.

The compatibility function after adding the mask to self-
attention is as follows:

f(xi,x) = Whanh (W'x; + W2x; +b') + M. (8)

Another variant of self-attention is multi-dimensional self-
attention [34], which captures the relationship between x;
and the whole sequence x. Compared with the original self-
attention, it calculates the function of attention weight in a dif-
ferent way. The query vector ¢ is deleted from equation (1), so
the compatibility function can be shown as below:

f(x;) =W'tanh (W'x; + ') +b. )

In this paper, the two types of self-attention play completely
different roles. Masked self-attention can calculate the rela-
tionship between the positions of a sequence in the forward
and backward directions. Multi-dimensional self-attention can
compress a multi-dimensional vector into a one-dimensional
vector representation.

3. Proposed GSAN model

3.1. Overall architecture

In this paper, the group self-attention network (GSAN) for
fault diagnosis in reciprocating compressors is based on self-
attention, as shown in figure 3. The GSAN mainly consists
of three core parts: intra-group self-attention, inter-group self-
attention and the fusion gate. We will introduce our network
model layer by layer, starting with the input of the model.
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Figure 3. The architecture of the group self-attention network model.

3.2. Dense layer

Since there are eight channels in the multi-source signal of
a reciprocating compressor, the data size is n x 8. The dense
layer merges information from these channels and transforms
the size of the dataton n X d,. In a dense layer, every position
in the sequence has the same fully connected calculation and
the rectified linear unit (ReLU) activation function. The output
can be calculated as the following:

D (x;) = max (0,x; W+ b) (10)
where x; € R'*8 represents the value of the eight channels at
ith time and W € R8%¢ b € R% are the parameters to train.

3.3. Intra-group self-attention

After the dense layer, the sequence x is equally divided into m
parts {g', g%, ..., ¢"}, where g' = {x1,x2, ..., x,}, &% = {xp41.
Xr42s - Xor} and g™ = {X, 41, Xn-r42, ---» Xy }. Each group in
the intra-group attention layer has a masked self-attention of
shared parameters.

Then, like other attention mechanism, we calculate the
compatibility function f(x;,x;) € R%*". The output of masked
self-attention is as follows:

h = Zsoftmax(f(xi,xj)) Ox; (I

i=1

where h; represents the vector of the jth position of output A,
and ® denotes element-wise multiplication. The output is
h=1[h;, hy, ..., h,] € Reexn,

Given a sequence x, by self-attention with a forward mask
and a backward mask, two feature vectors h/", h? can be
obtained and concatenated as h = [/ h?"] € R2%*" which is
the final output of masked self-attention, as shown in figure 4.
This idea of bi-direction is similar to Bi-LSTM [35], which
also has a bi-direction structure.

With masked self-attention, the correlation of the sequence
information in each intra-group is captured and the new vector
representation containing local features is output. Meanwhile,
dividing the data into groups can reduce the space complexity
and memory occupation of the algorithm and make the model
lighter.
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3.4. Inter-group self-attention

In inter-group self-attention part, we used both multi-
dimensional self-attention and masked self-attention. First,
multi-dimensional self-attention is applied in each group
respectively and it outputs a vector v for each group. According
to the compatible function of multi-dimensional self-attention
and input A, the output v is calculated as below:

v = Esoftmax( f(h)Oh; (12)
i=1

13)

n
V= E Vj
=1

where v is the self-attention output of the sequence in one
group.

Multi-dimensional self-attention compresses a piece of
sequence in each group into a vector. Then, the masked self-
attention calculates the attention weight of vectors of differ-
ent groups and output global feature vector e = [ey, e3,..., €,]
€ R%*™ Then we duplicate e; for r times to get [e;, e;, ..., €;]
to represent the vector for each group.

3.5. Fusion gate

After intra-group self-attention and inter-group attention, the
network can capture local and global feature information.
However, due to the complex work environment of reciproc-
ating compressors, vibration signals in the running process
often encounter serious noise, so the input sequence may con-
tain a large amount of useless information. While extracting
global or local features in the network, some valuable inform-
ation may be ignored and irrelevant noise may be amplified.
Therefore, it is necessary to design an effective fusion gate to
fuse the output from different layers and retain more valuable
information with less noise. The structure of the update gate
in a GRU [28] can effectively fuse information between the
current input a, and the output of the previous step y;_;. Thus,
the update gate can be regarded as a filter that removes noise
and retains valuable feature information. As shown in figure 5,
the update gate has two main parts: the sigmoid part determ-
ines which value should be updated, and the tanh part creates

Vi1 f

a;

Figure 5. Diagram of a cell of the GRU. The red part is the update
gate.

a new candidate vector y,. The fusion gate in our model has a
similar structure to the update gate, which can fuse informa-
tion about three kinds of feature vectors.

Based on the structure of an update gate, we designed a
fusion gate. The fusion gate differs from the update gate in that
it has three inputs, including the original input sequence x, the
local feature vector & and global feature vector e, as shown
below:

F = tanh (W/'[x; h;e] 4+ b/1) (14)
G =0 (W [x;h;e] +b7) (15)
u=GOF+(1-G)Oh (16)

where o is the sigmoid activation function, G is a value
between 0 and 1, ® denotes element-wise multiplication, and
u = [ur, uy, ..., u,] € R%*" is the output of the fusion gate,
consisting of attention representations of n elements.

3.6. K-max-pooling

After the sequence has been subjected to local and global
attention calculations, we can get a new vector representation
u of the sequence. Then k-max-pooling layer compresses the
sequence u and retains the important information. The k-max-
pooling is extended form max-pooling, which extracts the ele-
ments of the top k largest value in the dimension of time and
outputs a one-dimensional vector. The k-max-pooling retains
more important information than max-pooling and reduces
information loss. Finally, the sequence enters the output layer
with a dense layer and the softmax function.

4. Experiment

4.1. Data description

Multisource signal data with eight channels was collected
from the No. 1 working unit of the south district compressor
station of the Daqing Natural Gas Company. Thus, how to
fully integrate the information from these channels is very
important and is somthing that our model GSAN is good at.
In order to collect experimental data under different work-
ing conditions, the second cylinder of No. 1 working unit of
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Figure 6. Structure schematic diagram of reciprocating compressor and measuring point layout of first valve, secondary valve.

Daqing Natural Gas Company was equipped with valves in
four states, including normal state, valve piece fracture, spring
damage and valve piece notch. During the experiment, the sec-
ondary gas outlet pressure is 1040 kPa, the inlet pressure is
310 kPa, the outlet temperature is 104 °C, the inlet temperat-
ure is 32 °C and the gas flow is 3611 m*® h~!. The acquisition
system includes an INV306U-6660 intelligent data acquisition
processing analyzer and INV-1021 program-controlled multi-
functional signal disposal apparatus from the Beijing Oriental
Institute of Vibration and Noise Technology. The sampling
frequency is set to 20 kHz. The collected data has eight chan-
nels, including acceleration 1, acceleration 2, acceleration 3,
pressure 1, pressure 2, pressure 3, pressure 4 and key-phase. As
shown in figure 6, the three acceleration sensors are respect-
ively arranged on the secondary valve 4g, 3g and 3z, and the
four pressure sensors are respectively arranged on the first
valve 3g, 6z and the secondary valve 4z, 1g. 120 000 data
points for each channel in the normal valve state, and 80 000
data points are collected in the other three valve fault states.
Figure 7 shows the collected data for eight channels of a valve
piece fracture.

Since the GSAN model requires enough samples with
labels to train, if there are not enough training samples, it is
easy to fall into the trap of overfitting. In order to obtain a large
number of training and test samples, the data acquisition pro-
cess uses a partial overlap cutting method, as shown in figure 8.
When the length of the original signal is constant, the num-
ber of samples depends on the sliding length and the length
of each sample. If the sliding stride is too small or too large,
the information between the samples will be highly redundant
or the number of samples may not be enough. In this paper,
sliding length is set to 50 data points and each sample length
is 1024 data points; a total of 7120 samples are obtained. The
ratio of training set, verification set and test set is 70%, 20%
and 10%, respectively, as shown in the table 1.

4.2. Comparison with other models

In order to evaluate the performance of the proposed GSAN
model for fault diagnosis of reciprocating compressors, a

Table 1. Statistics of training set, validation set and test set.

Fault type Train Valid Test
Valve piece fracture 1106 316 158
Spring damage 1106 316 158
Valve piece notch 1106 316 158
Normal 1666 476 238

series of comparative experiments were carried out. All the
tested algorithms were coded in Python and executed on
a computer with an Intel Core i7-7700 CPU and 16 GB RAM.
Table 2 reports the experimental results and structural para-
meters of different models for fault diagnosis in reciprocating
COMpressors.

As is shown in table 2, all of the models have the same input
layer with size of 1024 x 8, which is the shape of fault data
for reciprocating compressors. The 1d-DCNN model is mainly
composed of multiple one-dimensional convolution and pool-
ing layers. In the all pooling layers, the size of the filter is
2 x 1, and the stride is 2. But the convolution parameters
for each layer are slightly different. For example, in the first
convolution layers, the size of the filters is 16 x 1 and stride
is 1. The LSTM-CNN model is mainly composed of convo-
lution layers and an LSTM layer with 32 cells. Our GSAN
model has fewer hyper-parameters than the other two mod-
els, and two main ones. Firstly, in group masked self-attention,
when the sequence is divided into 16 groups, the model per-
forms best. In the k-max-pooling layer, k is set to 8 in the
experiment. There are four fault types of reciprocating com-
pressors in the experiment, so the number of neurons in the
output layer of all models is four. In these models, softmax is
used to be their final activate function, the other activation is
ReLU, the dropout rate is 0.5 and the batch size is set to 32.
All models are optimized using the Adam algorithm. During
calculations using the Adam algorithm, the exponential mov-
ing means of the gradient are calculated and the decay rate
of these moving averages are controlled by hyperparameters
B1 and f3;. In these models, 51 = 0.9, B, = 0.999. The initial
learning rate is 0.001.
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Table 2. Experimental results and structural parameters of different models for fault diagnosis in reciprocating compressors.
Model 1d-DCNN LSTM-CNN GSAN
Input layer 1024 x 8 1024 x 8 1024 x 8
Convld (16 x 1, 16) Convld (32 x 1, 16) Dense (32)
Pooling (2 x 1, 2) Pooling (2 x 2, 2) Group masked self-attention (16)
Convld (3 x 1, 32) Convld (16 x 1, 32) Multi-dimensional self-attention
Pooling (2 x 1, 2) Pooling (2 x 2,2) Masked self-attention
. Convld (3 x 1, 64) LSTM (32) Fusion gate
Hidden layer Pooling (2 x 1, 2) Flatten K-max-pooling (8)
Convld (3 x 1, 64) Dense (128) Dense (128)
Pooling (2 x 1, 2)
Flatten
Dense (128)
Output layer Dense (4) + softmax Dense (4) + softmax Dense (4) + softmax
Test accuracy 0.988 0.971 0.993

Figures 9-11 show the training processes of the train-
ing and validation sets, and the confusion matrix of the test
set under the three models. It can be seen that, after about
40 training epochs, the classification accuracy of all models
almost reaches convergence and shows that the deep learning

method is very effective for fault diagnosis in reciprocating
compressors. However, compared with the 1d-DCNN and
the LSTM-CNN, the proposed GSAN model performs more
stably. The GSAN not only achieves a very high validation
accuracy, but also achieves a 99.3% accuracy rate in the test
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set. Meanwhile, the accuracy of results based on the 1d-DCNN
and the LSTM-CNN in the test set is slightly lower at 98.8%
and 97.1%.

The depth of the three models is almost the same, but
the final training results are different. That means the CNN,
the RNN and self-attention networks do not have equal feature
extraction capabilities and performances for fault diagnosis
signals. It can be seen from the above three models that the
feature extraction ability of the GSAN is the best, the CNN is
the second and the RNN is the worst. Theoretically, the CNN
is limited by its fixed sliding window, which causes it to
extract only local signal information. Generally, the range of
the receptive field of the CNN can be expanded by increas-
ing the depth of the network, but the global feature cannot be
completely extracted. The LSTM used in our experiments is
a classic RNN whose cyclic structure is capable of extract-
ing global features from sequence signals, but it does not give
good experimental results. One possible reason is that the
LSTM cannot extract long-distance dependencies and features
from long signals, although it has a gating mechanism and
a memory cell. In our model GSAN, local features of the sig-
nal are caught by the intra-group attention and global features
is caught by the inter-group attention. Then these two kinds
of feature are combined through the fusion gate. The GSAN
is more comprehensive and flexible in extracting features, and
fully integrates multisource information from the reciproc-
ating compressor, so the classification results are better than
those from the other two models.

4.3. Performance under noise

In practical applications, the working environment of the
machine is different. In order to simulate the performance of
the model under different working environments and verify the
generalization ability of the models, we added noise to the sig-
nals in the test set, tested them under different signal-to-noise
ratios (SNR)s. The definition of SNR is as follows:

Pi n
SNRlOloglO( Sig a‘). (17)

noise

In this paper, we test the noise-added signals of 2 dB, 4 dB,
6 dB and 8 dB respectively. Figure 12 shows the waveforms
of the noisy signal with original signal, noise and noise-added
signals of 4 dB.

Table 3. Result of different ablation models.

Model Accuracy
GSAN (full model) 0.993
Without intra-group self-attention 0.709
Without inter-group self-attention 0.942
Without fusion gate 0.915

Figure 13 shows the comparison results of the accuracy
of the three models for the reciprocating compressor valve
diagnosis under differing test conditions with different SNR.
It can be seen that the classification accuracy of each model
decreases significantly as SNR decreases. When SNR = 8 dB,
the accuracy of the three models is above 95%, and the dif-
ference is small. However, with the decline of SNR, the gap
between the GSAN model and the other two models becomes
larger. When the SNR value of the test set was reduced from
8 dB to 2 dB, the accuracy of the 1d-DCNN model decreased
the most, from 98.8% to 73.4%. The accuracy of the LSTM-
CNN model also dropped by 21.7%. The accuracy fluctuation
of the GSAN model is minimal, down 13.5%. On test sets with
different SNR values, the proposed GSAN model achieved the
highest classification accuracy. It shows that the GSAN has
good denoising ability and generalization ability, while the 1d-
DCNN model has large decrease in the case of high noise.

From the result, we can know that the proposed GSAN
model has a stronger ability to extract features and avoid local
false features caused by environmental noise. In order to visu-
ally understand the ability of the proposed GSAN model to
extract features, we extract the output of the last fully connec-
ted layer on the test set data of different noise-added signals
and visualize it with t-SNE [36], as shown in figures 14-17.
It can be seen that the GSAN can still extract useful feature
information in a variety of SNR signals. When SNR = 8 dB,
the feature vectors of samples extracted by the GSAN can be
clearly divided into four categories. When SNR = 4 or 6 dB,
some samples of valve piece notch will be close to the range
of normal samples, and some samples of spring damage will
be close to the range of samples of valve piece fracture, but the
count is very small. When SNR = 2 dB, the boundaries of four
samples of different categories start to become unclear, lead-
ing to a decrease in the accuracy of model fault identification.
It can be seen that the GSAN model has a good anti-noise abil-
ity in the reciprocating compressor signal with noise. When
the SNR is larger than 4 dB, it can clearly divide the boundar-
ies of various samples and achieve high accuracy.

4.4. Ablation analysis

In order to demonstrate the effectiveness of the different
components in our GSAN model, ablation experiments were
designed. Intra-group self-attention, inter-group self-attention
or the fusion gate were removed from the original model.
All models were trained for 50 epochs and tested respect-
ively. We compared the results of three ablation models and
the GSAN (full model), as shown in table 3.
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Figure 11. Training process and confusion matrix of the GSAN.

Without an intra-group self-attention layer, the fusion gate
only needs to merge the vectors x and e. The influence is sig-
nificantly large, causing the accuracy to decrease by 28.4%.
Intra-group self-attention is used to extract local features
within a group and, when this part is removed, the accuracy
becomes the lowest of the four models. This indicates that in
the fault signal of the reciprocating compressor, the local fea-
ture contains most important fault information.

Without an inter-group self-attention layer, the fusion gate
only needs to merge the vectors x and /. The inter-group self-
attention is used to capture the global features. When it is
removed, the accuracy decreases by 5.1%. This indicates that

the global features of the fault signal also contain some fault
information that affects the fault identification results of the
model.

Without a fusion gate, the vector e will replace the previous
output of fusion gate and go to the next layer of the network.
The accuracy decreased by 7.8%. This illustrates that the integ-
ration of the local feature vector #, the global feature vector e
and the original vector x by the fusion gate is essential to the
model.

Through ablation analysis, the different function of each
component in the model can be observed. In addition, it
proves that in fault signals from a reciprocating compressor,
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inter-group self-attention and intra-group self-attention extrac-
ted different fault information, which can complement each
other.

5. Conclusion

In this paper, a completely attention-based model GSAN for
fault diagnosis in a reciprocating compressor is proposed.
The GSAN uses multisource raw signals collected by several
sensors as input and adopts the grouping strategy to realize
intra-group self-attention and inter-group self-attention, which
can extract local and global features respectively, and finally
integrate them by using a fusion gate. The experiment shows
that, compared with other models, the intelligent fault dia-
gnosis method based GSAN has high accuracy and anti-noise
ability. The prediction accuracy of the GSAN can reach 99.3%
and the prediction accuracy in different noise states can reach
above 95%.

At the same time, the results of our experiments also
prove that the attention-based network has a stronger ability
to extract features than the CNN and the RNN if the structure
is reasonable. The attention-based network can also be used as
an effective intelligent fault diagnosis algorithm and not only
in the field of natural language processing. In the future work,
we will consider improving the GSAN and designing other
attention-based models for fault diagnosis.
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