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Abstract
Accurately measuring the direction of arrival (DOA) is one of the most important issues in
multiple sensor/antenna array monitoring scenarios. However, as a necessary parameter of
almost all state-of-the-art DOA estimation methods, the source number is normally hard to
determine using the traditional Akaike information criterion or minimum description length
methods, especially in low or very low signal-to-noise ratio (SNR) conditions. In this paper, we
propose to estimate the source number in a data-driven manner by employing a novel
multi-view meta-hierarchical classification framework. Specifically, there are two collaborative
views and two hierarchical classification layers employed for generating meta-features. Then,
the obtained meta-features are re-learned by the final meta-classification layer to estimate the
final prediction of the source number. Experimental results illustrated that the proposed method
can estimate the source number accurately and reliably even in low SNR conditions.
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1. Introduction

Direction of arrival (DOA) estimation in array signal
processing has been one of the most important issues in vari-
ous fields of location measurement applications, such as air-
space radar array [1–3], underwater sonar array [4], speech
recognition [5], wireless sensor networks [6], etc .

In order to achieve the objective of accurate DOA
estimation, many well-known high-resolution DOA estima-
tion methods have been proposed in the literature. Methods
such as singular value decomposition (SVD) to the covariance
matrix of the array outputs, estimation of signal parameters via
rotational invariance techniques [7], multiple signal classifica-
tion (MUSIC) [8] and their derived subspace-based algorithms

can really work well with known source number [9–13].
Similarly, the performances of the advanced sparse repres-
entation or sparse Bayesian learning-based methods [14–19]
are also heavily dependent on the correct estimation of the
source number. Besides these mainstream techniques, it has
been demonstrated that promising results can be achieved by
employing a hypothesis testing technique [20, 21]. In general,
all of these methods achieve success by analyzing the physical
array model in different views. Therefore, the general draw-
backs of these methods are that their performance is sensitive
to unavoidable array errors and influences from system and
random noise.

For the source number estimation problem, Akaike
information criterion (AIC) [22] and minimum description
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Figure 1. Block diagram of the proposed source number estimation method (the upper part is for offline training, and the lower part is the
source number estimation part).

length (MDL) [23] are two well-known information-based
source number estimation techniques that are commonly
used in practice. However, the corresponding performance
of these two information-based methods will drop dramat-
ically with small sample size and low signal-to-noise ratio
(SNR). In order to tackle this problem, there are mainly two
kinds of methods that exist in the literature. The first method
is designed from some new perspectives to avoid the source
number estimation problem. For example, [24] proposed a
novel MUSIC-like DOA estimation method, which is not
based on subspace decomposition, and thus can avoid estim-
ating the source number during the DOA estimation proced-
ure. The secondmethod is to adopt novel signal models for
source number estimation by introducing new technologies
that are not commonly used for traditional source number
estimation methods. For example, by employing a hypothesis
testing technique, [21] proposed a method to jointly estimate
the source number and target DOAs by solving a sequential
generalized likelihood ratio test. However, the complexity and
performance of these methods are far from expected without
directly employing knowledge about the source number, and
their performance is not always satisfactory in the low SNR
cases.

Recently, in order to address this problem, there have been
studies in the literature that employ data-driven technologies,
such as deep learning for DOA estimation [25–27] or hierarch-
ical artificial intelligent units for source number estimation
[28]. However, the performance in cases of low or very low
SNR (<−10 dB) have not been verified enough in the current
deep learning-based methods. Our previous work [28] hier-
archically employed different artificial intelligence (AI) units
to estimate the SNR and source number simultaneously. Prom-
ising results can be achieved compared to the well-known
AIC or MDL methods, especially at low SNR and from more
than four sources. However, because the hierarchical AI units
were performed iteratively in an interactive verification man-
ner, the corresponding network structure is relatively complex.
Furthermore, the information obtained by each sub-machine
employed was integrated in a simple empirical hypothesis-test
manner. Therefore, the corresponding source number estima-
tion accuracy is also relatively low in the case of low SNR,
especially for cases with more than three sources. There-
fore, in order to improve the performance of the state-of-
the-art methods, a novel data-driven-based source number
estimation method is proposed. Specifically, in order to
achieve an optimal feature representation for revealing the
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relationship between array outputs and the corresponding
source number, the source number estimation problem is
tackled with a novel two-view meta-hierarchical classifica-
tion/pattern recognition framework in this paper, which is
illustrated in figure 1.

The rest of this paper is organized as follows. In section 2,
the problem formulation section of the task in this paper
is given. The proposed source number estimation method is
presented in detail in section 3. Simulation experiments were
conducted, and the corresponding experimental results are dis-
cussed in section 4. Finally, some remarkable conclusions
from this paper are drawn in section 5.

2. Classical physical model

Without loss of generality, assume that K narrowband
far-field equal-powered signals from distinct directions θ =
{θ1,θ2, · · ·, θK} impinge onto an array with M (M> K) omni-
directional sensors. The output of this array withNs snapshots,
which is corrupted by additive circular complex Gaussian
white noise, can be modeled as

y(t) =
K∑
i=1

a(θi)sk (t)+ n(t) , t= 1,2, · · ·, Ns, (1)

where y(t) = [y1 (t) ,y2 (t) , · · ·, yM (t)]T is the array output,
s(t) = [s1 (t) ,s2 (t) , · · ·, sK (t)]T is the impinging signals, n(t)
is the corresponding independent unit Gaussian noise with
zero mean and variance matrix σ2I, where σ2 can be used
to define the SNR value with the normalized source power
(e.g. 1) as below:

SNR= 10 · log10

(
1
σ2

)
. (2)

a(θi) is the steering vector for the ith DOA and the given array
geometry, which can be formulated as

a(θi) =
[
ejωcτi,1 ,ejωcτi,2 , · · ·, ejωcτi,M

]T
, (3)

where ω0 is the center angular frequency of the impinging sig-
nals. τi,j (j= 1,2, . . .,M) is the time delay associated with the
jth senor and the ith impinging signal.

With the above definitions, let

A(θ) = [a(θ1) ,a(θ2) , · · ·, a(θK)] . (4)

The signal model (1) can therefore be formulated in the fol-
lowing matrix form:

Y= A(θ)S+N, (5)

where Y= [y(t1) , · · ·, y(tN)]T, S= [s(t1), · · ·, s(tN)]T, and
N= [n(t1) , · · ·, n(tN)]T. Then, the array covariance matrix
is given by

R= E
{
y(t)yH (t)

}
= A(θ)PAH (θ)+Q, (6)

where E{·} is the statistical expectation operator. {·}H
denotes the Hermitian transpose operator. K×K matrix
P= diag

{
λ2

1,λ
2
2, · · ·, λ2

K

}
is the diagonal covariance matrix of

the impinge signals. M×M matrix Q= σ2I is the covariance
matrix of Gaussian white noises for the given array.

By performing SVD to the array covariance
matrix R, the corresponding eigenvalues will be
{λ2

1 +σ2, · · ·, λ2
K+σ2,σ2, · · ·, σ2︸ ︷︷ ︸

M−K

}. Therefore, subspace for

the first K largest eigenvalues can be seen as signal subspace.
And subspace for the rest of the small eigenvalues can be
seen as the noise one. Obviously, the sorted eigenvalues have
important mathematical and physical implications for provid-
ing information about the source number as well as the SNR
conditions.

In practice, the array covariance matrix can be estimated as
below:

R̂=
1
N

N∑
i=1

y(i)yH (i). (7)

Obviously, if the SNR value for a given array output is not
very low, then the difference between signal and noise sub-
spaces can be found relatively easily. However, in contrast,
if the SNR is very low, it will be difficult to distinguish the
signal subspace from the noise subspace by analyzing the sor-
ted eigenvalues. In other words, it is difficult to determine the
source number in low SNR cases. More seriously, the SNR
value and corresponding source number are two inter-acting
factors. Therefore, estimating one of these factors separately
without considering the other one will become very difficult
and implausible.

Theoretically, with the obtained sorted eigenvalues x as
input, and the objective source number K as output, the rela-
tionship between them can be formulated as below:

K=

{
ff (x,SNR) , KnownSNR
fc (x) , UnKnown SNR

, (8)

where ff (x,SNR) and fc (x) are fine-scale (with known SNR)
and coarse-scale (with unknown SNR) mapping functions
from the sorted eigenvalues to the source number K.

Similarly, from another view, the relationship between the
sorted eigenvalues x and SNR value will be

SNR=

{
gf (x,K) , KnownK
gc (x) , UnKnown K

, (9)

where gf (x,SNR) and gc (x) are fine-scale (with knownK) and
coarse-scale (with unknown K) mapping functions from the
sorted eigenvalues to the SNR value.

3. Source number estimation method

3.1. Multi-view meta-hierarchical classification framework

From equations (8) and (9), it can be seen that the source num-
berK and SNR value can be seen as two different views related
to the given sorted eigenvalues x, and these two views are

3



Meas. Sci. Technol. 31 (2020) 065017 W Yun et al

affected by each other. Obviously, if we can accurately reveal
the veils of fc (x) and gc (x) only with the sorted eigenvalues
x, then K and SNR will be perfectly solved simultaneously.
However, in practice, the dynamic ranges of K and SNR are
both very large, therefore, the corresponding fluctuations of x
with different K and SNR are very serious. Obviously, faced
with this problem, it is impossible to derive the exactly explicit
physical model for fc (x) and gc (x). And this is why so many
AI-based methods have been proposed to solve this prob-
lem with promising performance exhibited. In other words,
in order to derive the non-linear mappings fc (x) and gc (x),
it can be seen as a pattern recognition problem, which can be
addressed in a data-driven manner by employing the power of
machine learning techniques. Specifically, the patterns for the
source number estimation problem are of course all possible
solutions of K, for example, seven patterns for eight elements
ULA. Therefore, it is a multi-class classification problem.

For the multi-class classification problem, traditional
ensemble methods of one-vs-rest or one-vs-one using
thresholding decision strategies are computationally com-
plex, and the corresponding manner in which the inform-
ation/knowledge is represented is too simple to match the
human decision-making process [29]. To address these prob-
lems, hierarchical classification methods or meta-learning
methods have been successfully employed in many applica-
tions [30–35]. Specifically, the principle of hierarchical clas-
sification is to divide a multi-class classification problem into
many sub-fine-scale classification problems organized in a
top-down or coarse-to-fine manner. In this way, a complex
problem with a large dynamic range can be reduced to a much
simpler sub-problem with stable dynamic range, and this
strategy matches the multi-scale nature of the human percep-
tion process. From another aspect, meta-learning is viewed as
an understanding and adaptation of learning itself on a higher
level than merely acquiring subject knowledge. In order to
follow the human decision-making process, the principle of
this kind of ensemble learning method is to learn from learned
knowledge (achieved by base classifiers).

Obviously, from equations (8) and (9) it can be seen that
both these interacted views can be addressed by employing a
hierarchical classification technique. This means that coarse-
level base knowledge about fc (x) and gc (x) can be learned at
first. Then, the corresponding fine-level base knowledge about
ff (x,SNR) and gf (x,K) can be learned. Obviously, with all of
this base knowledge, the meta-classification technique, which
can be used to accurately make a decision for the target pattern
from the learned knowledge, is an ideal tool here. Therefore,
the representation of high-level meta-samples can be construc-
ted by encoding the obtained base knowledge. The final pre-
diction of the source number can be achieved by using a meta-
classifier.

In general, in this paper, as illustrated in figure 1, the
proposed source number estimation task is addressed by a
multi-view meta-hierarchical (MVMH) classification method.
Next, in the MVMH method, there are two basic problems
that should be well tackled: (1) selecting machine learning
methods for both the base classifiers and meta-classifier, and
(2) how to generate the representation of meta-samples.

3.2. Machine learning methods

From figure 1, it can be seen that there are many different clas-
sifiers employed in the proposed framework. (1) T_SNum and
T_SNR are two coarse-level base classifiers for estimating the
initial values (i.e. coarse-level base knowledge) of the source
number and the SNR. (2) SNum2Sri,(i= 1,2, · · ·,M− 1) and
Sr2SNumj,(j= 1,2, · · ·, N− 1) are fine-scale base classifiers
for estimating the SNR and source number (i.e. fine-scale base
knowledge) with the initial estimated results from the coarse
layer. (3) FT_SNum is the final meta-classifier for determining
the final estimated value of the source number. In order to sim-
plify the final structure of the proposed framework with reas-
onable performance, well-known shallow machines: artificial
neural network (ANN) and support vector machine (SVM),
simple ensemble machines random forest (RF), and fully con-
nected deep neural network (DNN) are considered for realiz-
ing one or more of the classifiers mentioned above.

3.2.1. Artificial neural network and deep neural network.
ANN [36–39] is an information processing paradigm that is
inspired by biological nervous systems. It is composed of a
large number of highly interconnected processing elements
called neurons. Normally, for the classical ANN architecture
illustrated in figure 2(a), there are always three layers com-
posed of a different number of neurons: input layer, hidden
layer and output layer. Each neuron in ANN receives a num-
ber of inputs, and an activation function is applied to these
inputs, which results in the activation level of the neuron
(output value of the neuron). The mathematical model of the
neuron is shown in figure 2(b). Obviously, the classical ANN
is a shallow machine for a given task (classification or regres-
sion). The optimal configuration of parameters in the ANN can
be obtained by performing the back-propagation optimization
technique, for example, back-propagation neural network. By
adding more than one additional hidden layer, the deep ver-
sion of ANN and DNN [40–42] can be constructed, as shown
in figure 2(c). In DNN, all layers are also composed of cell
neurons. Specifically, the jth neuron at the lth layer is a linear
combination of all the neurons of the former layer:

νlj =

nl−1∑
i=1

ωljixl−1,i+ blj, (10)

where ωlji is the weight value for xl−1,i to νlj and blj is the cor-
responding bias value for νlj. For the entire DNN networks, let
W=

⋃L−1
l=1

⋃nl
j=1

⋃nl−1

i=1 ωlji be the collection of weight values

and B=
⋃L−1
l=1

⋃nl
j=1 blj be the collection of biases. Therefore,

the output of the DNN can be fully determined by these
two collections. Then, with a given training data set dt, the
objective of DNN training is to minimize some loss function
L(dt|W,B).

3.2.2. Support vector machine. The SVM is one of the most
well-known non-linear mapping machines in the machine
learning society [43–46]. The structure of the SVM is illus-
trated in figure 3. Normally, the SVM is used as a powerful
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Figure 2. Illustration of the architecture of ANN and DNN: (a) ANN architecture, (b) neuron model, (c) DNN architecture.

Figure 3. Illustration of the mechanism of the SVM.

two-class classifier. Specifically, for a given labelled training
data set: {(x1,y1) ,(x2,y2) , · · ·, (xn,yn)} with yi ∈ {−1,1}, it
is used to find a hyperplane that provides the smallest classi-
fication risk for novel unlabeled data. In order to achieve this
objective, based on the principle of structured risk minimiza-
tion, input (feature) data is always mapped into an unknown
high-dimensional feature space. Then, the optimal classifica-
tion hyperplane in high-dimensional space can be found by
solving the following quadratic programming problem:

max W(α) =−1
2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj)+
n∑
i=1

αi

s.t.


n∑
i=1

αiyi = 0, i= 1,2, · · ·, n

0 ⩽ αi ⩽ C
,

(11)

where K(gg) is an inner product kernel function satisfying
Mercer’s theorem; constant parameterC> 0 is used to determ-
ine the trade-off between the training risk and model robust-
ness. Target parameters αi, i= 1,2, · · ·, n are used to construct
the optimal hyperplane in the mapped high-dimensional space.
By solving equation (11) using optimization techniques, the
final decision function with obtained support vectors SV
will be

f(x) = sgn{ω · x+ b}= sgn

{∑
xi∈SV

αiyiK(x,xi)+ b

}
. (12)

3.2.3. Random forest. RF is an ensemble machine learning
technique that integrates multiple decision trees, which are
constructed following the classification and regression trees
model [47–52]. The main structure of the RF algorithm is
shown in figure 4. Specifically, for a given labelled train-
ing data set: D= {(x1,y1) ,(x2,y2) , · · ·, (xn,yn)} with yi ∈
{1,2, ,R}, where R is the number of class. ntree data sets
with the same number of the original data set are randomly
generated from D using the bootstrap resampling technique.
Then, with these bootstrap data sets, ntree regression decision
trees are learned. For each bootstrap data set, approxim-
ately one-third of the samples, which are called out-of-bag
(OOB) data, are not selected for the corresponding decision
tree training. Actually, the OOB data is used to evaluate
the performance of the decision tree. Obviously, this built-in
cross-validation process ensures that the RAF can achieve an
unbiased estimation of the generalization error without using
external data. Therefore, for a certain decision tree, the cor-
responding prediction error can be obtained using the OOB
data:

E=

NOOB∑
i=1

(ŷi− yi)

NOOB
, (13)

where NOOB is the number of samples of the OOB data.
Finally, with the OOB error equation (13) as the optimization
target, the RAF model can be learned by gradually increasing
the depth of the RAF. In general, (1) the random bootstrap
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Figure 4. Structural diagram of RFss.

sampling strategy reduces the similarity of trees grown from
different bootstrap samples, and therefore the RAF cannot
easily be affected by noise and outliers; (2) with OOB samples,
the final ensemble result by bagging of the ones from each
tree is practical for mitigating both underfitting and overfitting
[51, 52].

3.3. Detailed configurations for the employed machines

As mentioned above, there are two-channel and three hier-
archical layers in the proposed MVMH-based source number
estimation method. The first layer (coarse-level base layer) is
used to roughly estimate the source number and SNR. And by
dividing both the source number and SNR into sub-regions,
there are two parallel channels in the second layer (fine-level
base layer) constructed to accurately estimate the source num-
ber and SNR, respectively. Finally, by encoding the estim-
ated results from both the first layer and second layer, meta-
samples can be generated, and then the last layer (meta-layer)
is employed to perform the final pattern decision task.

3.3.1. Coarse-level base layer. In this layer, there is no prior
information about the source number or SNR that can be
used. Therefore, the corresponding AI machines (T_SNum and
T_SNR) employed here should be learned with large-scale
training data covering all the possible values/patterns. Spe-
cifically, the inputs of these machines are the sorted eigen-
values x ∈ R1×M, and the outputs of these two machines are
the corresponding sub-regions of the source number or SNR.
For T_SNum, the outputs are all possible source numbers, e.g.
YT_SNum = k ∈ [1,2, · · ·,M− 1]. For T_SNR, the outputs are all
possible SNR sub-regions defined below:

YT_SNR=



1, SNR≥ 15dB
2, 10dB≤ SNR< 15dB
3, 5dB≤ SNR< 10dB
4, 0dB≤ SNR< 5dB
5, −5dB≤ SNR< 0dB
6, −10dB≤ SNR<−5dB
7, SNR<−10dB

. (14)

Figure 5. Illustration of the structure of classification of the
confusion matrix.

Then, by training these two machines, the corresponding
confusion matrixes CT_SNum and CT_SNR can be acquired. The
structure of the confusion matrix is illustrated in figure 5(a).
In figure 5(a), Nij indicates the number of samples predicted
as the ith class, which is actually the jth target class. From the
obtained confusion matrix, the weighting matrix shown in fig-
ure 5(b) of the predicted results of the corresponding machine
can be calculated as below:

Pij =
Nij∑
k

Nik
. (15)

3.3.2. Fine-level base layer. With the outputs of the first
layer as prior information, the machines in the second layer
can be used to predict the fine-scale source number and SNR
in parallel. Specifically, the machines {SNum2Sri}i=1,2,···,M−1
are used to accurately estimate the SNR sub-region with a
known source number. That is, these machines are learned
with training data having the same number of sources and
labeled by different SNR sub-regions. On the other hand,
the machines {Sr2SNumi}i=1,2,···,7 are used to estimate the
source number with a known SNR sub-region. Namely, these
machines are learned with training data having the same SNR
sub-region and labeled by different source number.

Obviously, by employing more information in this layer,
the predicted results are more reliable and more accurate than
the ones from the first coarse layer. However, because the out-
puts of the first layer are not accurate enough, especially in the
low SNR case, it is always difficult to determine the real source
number by the outputs of the second layer directly. Neverthe-
less, they are also clues or evidence for finding out the answer
of the real source number. Therefore, an additional layer, for
example, the last meta-classification layer, is added to perform
the final pattern recognition task.

3.3.3. Meta-classification layer. In order to make better use
of the information obtained by the first two layers, a specified
representation of the meta-sample is designed, as illustrated in
figure 6.

From figure 6, it can be seen that there are three sections
in the proposed representation of the meta-sample. The first
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Figure 6. Structure of the proposed representation of the meta-sample.

section has two values: predicted results of the coarse source
number YT_SNum and the coarse SNR sub-region YT_SNR. The
second section contains M – 1 components to record the vot-
ing results of the predicted fine-scale source number. The last

section contains components to record the voting results of the
predicted fine-scale SNR sub-regions. Specifically, the recor-
ded voting results for each component of the last two sections
can be acquired by performing the following procedure:

Meta-sample Extraction

Inputs: Testing data x, first layer machines: T_SNum and T_SNR, first layer weight matrixes: WT_SNum and WT_SNR, second layer machines:
{SNum2Sri}i=1,2,···,M−1 and {Sr2SNumi}i=1,2,···,7, second layer weight matrixes: {WSNum2Sri}i=1,2,···,M−1 and {WSr2SNumi}i=1,2,···,7

Step 1: Initializing the meta-sample as HF= 0(M+8)×1;
Step 2: Obtaining the two components of the first section of the meta-sample:
1: YT_SNum = predict(T_SNum,x);
2: YT_SNR = predict(T_SNR,x).
3: Updating the high-order feature: HF(1) = YT_SNum, HF(2) = YT_SNR

Step 3: Obtaining the weight vectors from the first layer:
1: tWT_SNum =WT_SNum(YT_SNum, :);

2: a(θi) = [ejωcτi,1 ,ejωcτi,2 , · · ·, ejωcτi,M ]
T
,.

Step 4: Obtaining the second section of the meta-sample:
For k= 1 to M−1
1: Letting the current machine is SNum2Srk;
2: Getting the outputs of the current machine: YSNum2Sr_k = predict(SNum2Srk,x);
3: Getting the current weighting vector corresponding to YSNum2Sr_k: tWSNum2Sr_k =WSNum2Srk (YSNum2Sr_k, :);
4: Updating the second section of the high-order feature:

HF(3 :M+ 1) =HF(3 :M+ 1)+ tWSNum2Sr_k · tWT_SNum(k) (16)

End
Step 5: Obtaining the last section of the meta-sample:
Fork= 1 to 7
1: Letting the current machine is Sr2SNumk;
2: Getting the outputs of the current machine: YSr2SNum_k = predict(Sr2SNumk,x);
3: Getting the current weighting vector corresponding to YSr2SNum_k: tWSr2SNum_k =WSr2SNumk (YSr2SNum_k, :);
4: Updating the second section of the meta-sample:

HF(M+ 2 : end) =HF(M+ 2 : end)+ tWSr2SNum_k · tWT_SNR(k) (17)

End
Step 6: Outputting the meta-sample HF.

Note: predict(machine,x) referred to predict the output pattern of the input x using the given machine.

Finally, with the obtained meta-sample as input, the final
meta-classification machine is constructed to give the final out-
put of the predicted source number.

4. Experimental results

In order to evaluate the performance of the proposed MVMH
method for source number estimation, several experiments
were conducted with two simulated data sets generated by the
well-known DOA tools downloaded from https://github.com/
morriswmz/doa-tools [53] provided by Dr Wang Mianzhi,
Washington University, and by the phased array system

toolbox of MATLAB (e.g. phased.ULA + sensorsig func-
tions). In the following sections, these two data sets are called
DOA-tools data set and MATLAB data set, respectively.

Without loss of generality, all the simulated data were
generated for 8-element ULA with element spacing 0.5λ,
and all the impinging signals are equal-powered narrow-band
ones with Gaussian white noise. Then, for each case of the
given source number or SNR sub-range (i.e. Snum = 1,
SNR ≥ 15 dB), 10 000 simulated data samples were randomly
generated. As a result, 490 000 simulated data samples in
each of the two data sets were employed for conducting the
following experiments. For all of the experiments, the key
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Table 1. Key parameters of the used machines.

Machines Parameters

ANN Hidden layer: 48, 64, 96 neurons; cost function: cross-entropy
SVM Kernel: RBF (Gaussian radial basis); gamma: 0.05; epsilon: 1 × 10−3; tenfold cross-validation; C = 1, 10, 50
RF Trees: 32, 48, 64; MinLeafSize: 1
DNN Hidden layer: three hidden layers with 32, 48, 64 neurons per hidden layer

Table 2. Comparison of the classification performance of different classifiers: MATLAB data set (%).

ANN SVM RF DNN
ANN1 ANN2 ANN3 SVM1 SVM2 SVM3 RF1 RF2 RF3 DNN1 DNN2 DNN3

T_SNR 91.2 91.6 92.7 92.4 92.2 91.7 95.3 96.2 97.4 93.1 93.1 93.5
T_SNUM 72.3 73.7 73.9 – – – 75.8 76.1 76.4 73.5 73.2 73.6
Sr2SNum1 84.1 84.3 84.4 84.4 84.6 83.9 88.4 88.8 90.3 71.9 75.6 77.1
Sr2SNum2 85.1 85.2 85.2 85.3 85.5 85.6 89.1 89.4 89.7 71.2 74.7 75.2
Sr2SNum3 84.6 84.8 84.9 85.0 85.3 85.2 87.4 88.0 88.6 70.1 71.3 71.9
Sr2SNum4 82.4 82.7 82.6 – – – 85.6 85.9 86.3 69.6 69.7 69.6
Sr2SNum5 80.3 80.8 80.9 – – – 81.8 82.0 82.6 67.1 68.2 68.7
Sr2SNum6 71.8 72.2 72.5 – – – 71.6 72.5 72.9 63.5 63.8 63.9
Sr2SNum7 41.2 42.5 42.5 – – – 38.8 40.3 41.0 36.4 37.5 37.8
SNum2Sr1 94.3 94.5 94.3 95.1 95.0 95.4 100 100 100 95.6 95.7 95.9
SNum2Sr2 94.0 94.1 94.1 94.6 94.7 94.5 100 100 100 95.4 95.6 95.5
SNum2Sr3 96.5 96.2 96.8 95.9 96.3 96.6 99.2 99.5 99.5 95.7 96.2 96.2
SNum2Sr4 95.1 95.7 95.7 96.8 96.7 96.9 98.9 99.1 99.3 96.8 97.0 97.1
SNum2Sr5 92.4 92.5 92.7 93.2 93.7 93.6 98.2 98.6 98.8 94.7 94.5 94.8
SNum2Sr6 93.9 93.8 94.0 94.1 94.1 94.0 97.3 97.2 97.5 94.1 94.3 94.5
SNum2Sr7 96.5 96.5 96.5 96.9 97.1 97.0 98.6 98.6 98.9 97.2 97.2 97.5

Note: the symbol ‘–’ denotes that the machine was trained without convergence.

Table 3. Comparison of the classification performance of different classifiers: DOA-tools data set (%).

ANN SVM RF DNN
ANN1 ANN2 ANN3 SVM1 SVM2 SVM3 RF1 RF2 RF3 DNN1 DNN2 DNN3

T_SNR 92.3 92.6 93.1 92.8 93.4 93.7 95.7 96.5 97.6 95.1 95.4 95.6
T_SNUM 78.5 78.9 79.0 – – – 79.7 80.1 80.4 78.3 78.6 78.7
Sr2SNum1 96.8 97.1 97.2 97.6 97.6 97.9 98.5 98.7 99.3 98.8 98.8 98.7
Sr2SNum2 97.1 97.2 97.2 97.6 97.5 97.7 98.6 98.8 99.2 98.7 98.8 98.8
Sr2SNum3 97.0 97.1 97.1 97.6 97.7 97.7 98.5 99.0 99.2 98.6 98.8 98.8
Sr2SNum4 96.3 96.3 96.5 97.2 97.0 97.0 98.4 98.5 98.7 98.0 98.1 98.3
Sr2SNum5 80.3 80.8 80.9 96.3 96.2 96.2 98.1 98.5 98.6 97.1 97.2 97.7
Sr2SNum6 92.6 92.7 93.1 92.4 92.1 92.0 92.9 93.2 93.3 92.0 92.4 92.6
Sr2SNum7 68.1 68.4 69.2 – – – 85.7 86.1 86.5 58.2 58.3 58.4
SNum2Sr1 94.3 94.0 94.2 95.1 95.0 95.4 100 100 100 95.1 95.2 95.5
SNum2Sr2 94.0 93.8 94.0 94.6 94.7 94.5 100 100 100 95.3 95.4 95.7
SNum2Sr3 96.5 96.6 96.8 95.9 96.3 96.6 100 100 100 96.4 96.5 96.8
SNum2Sr4 96.9 96.9 97.4 96.8 96.7 96.9 99.2 99.5 99.6 97.0 97.1 97.3
SNum2Sr5 97.0 97.2 97.8 97.2 97.7 97.6 98.2 98.4 98.8 96.6 96.7 96.9
SNum2Sr6 92.5 92.8 93.1 94.1 94.1 94.0 96.8 97.1 97.2 94.2 94.3 94.7
SNum2Sr7 96.1 96.1 96.4 96.9 97.1 97.0 98.7 98.7 98.9 97.3 97.5 97.6

parameters of the compared machines are given in table 1
below.

4.1. Experiment 1—machine selection for the first two layers

In this experiment, ANN, SVM, RF and DNN with different
configurations were used to act as machines in the first two

layers for comparison. Specifically, ANN1 to ANN3, SVM1

to SVM3, RF1 to RF3 and DNN1 to DNN3 refer to machines
with different configurations corresponding to the settings
shown in table 1. In order to validate the efficiency of the
methods using these machines, classification accuracy was
applied as the quantitative criterion. Detailed experimental res-
ults are given in tables 2 and 3 for the MATLAB data set and

8
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Figure 7. Bar-plot of the comparative results of classification accuracy achieved by different machines: MATLAB data set.

Figure 8. Bar-plot of the comparative results of classification accuracy achieved by different machines: DOA-tools data set.

DOA-tools data set, respectively. The corresponding bar-plots
are illustrated in figures 7 and 8, respectively.

4.2. Experiment 2—machine selection for the
meta-classification layer

In this experiment, ANN1 to ANN3, SVM1 to SVM3, RF1 to
RF3 and DNN1 to DNN3 were also employed for comparison
to validate the final pattern recognition performance. At first,
RF with 64 trees was used as all of the machines in the first two
layers to generate the representation of the meta-sample used
for training and testing the final meta-classification machine.
400 000 generated meta-samples were used to train the corres-
ponding machines, and the other 90 000 meta-samples were
used to test the performance of these machines. Experimental
results for the final source number estimation performance are
given in tables 4 and 5 for the two data sets used.

The corresponding confusion matrixes of ANN3, RF3 and
DNN3 are shown in figures 9 and 10.

4.3. Experiment 3—performance comparison with other
source number estimation methods

In this experiment, the performance of source number estima-
tion achieved by the proposed MVMH method (with RF as all
of the machines in the proposed methods) was compared with
AIC, MDL and our previous source number estimation method
HAUSSEM_V (HAU for short). Detailed experimental res-
ults are given in tables 6 and 7 for the two data sets used,
respectively. In order to obviously illustrate the performance
difference among these methods, the corresponding estima-
tion accuracy curves with different SNR and different source
numbers are shown in figures 11 and 12.

4.4. Experiment 4—performance evaluation of the effect with
preprocessing technique employed

In this section, the performance of the proposed MVMH
method with an additional denoising technique introduced

9
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Table 4. Comparative results of source number estimation with different machines: MATLAB data set (%).

ANN SVM RF DNN
ANN1 ANN2 ANN3 SVM1 SVM2 SVM3 RF1 RF2 RF3 DNN1 DNN2 DNN3

94.4 94.6 94.7 – – – 95.4 95.7 96.0 95.4 95.4 95.5

Table 5. Comparative results of source number estimation with different machines: DOA-tools data set (%).

ANN SVM RF DNN

ANN1 ANN2 ANN3 SVM1 SVM2 SVM3 RF1 RF2 RF3 DNN1 DNN2 DNN3

95.1 95.1 95.3 – – – 96.2 96.7 97.1 95.2 95.5 95.6

(a) (b) (c)

Figure 9. Illustration of the confusion matrixes achieved by different machines for final source number estimation of the MATLAB data set
using the high-order feature: (a) ANN3, (b) RF3, (c) DNN3.

(a) (b) (c)

Figure 10. Illustration of the confusion matrixes achieved by different machines for source number estimation of the DOA-tools data set
using the high-order feature: (a) ANN3, (b) RF3, (c) DNN3.

was evaluated. Without loss of generality, since the wavelet-
based denoising method [54–58] is usually used for array
signal denoising, the denoising method proposed in [55]
was employed here. Specifically, by performing a denoising
operation to the array signals before extracting their sorted
eigenvector, new MATLAB-derived data sets were generated,

including data sets with and without denoising preprocessing.
And then, using the same training and testing data sets, source
number estimation performance achieved by different meth-
ods was evaluated. The detailed experimental results are given
in table 8. In table 8, -DN denotes the corresponding results
derived from the denoised data set.

10
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Figure 11. Illustration of the final source number estimation accuracy of the MATLAB data set: (a) curves for accuracy with different
source number, (b) curves for accuracy with SNR sub-range.

Figure 12. Illustration of the final source number estimation accuracy of the DOA-tools data set: (a) curves for accuracy with different
source number; (b) curves for accuracy with SNR sub-range.

Table 6. Source number estimation results from the comparison of
different methods for the MATLAB data set (%).

AIC MDL HAU Proposed-MVMH

47.6 49.6 75.9 96.0

4.5. Discussions

In the above sections, several experiments were conduc-
ted to validate the performance of the proposed source num-
ber estimation method. In the first experiment, ANN, SVM,
RF and DNN were employed to implement the AI machines

Table 7. Source number estimation results from the comparison of
different methods for the DOA-tools data set (%).

AIC MDL HAU Proposed-MVMH

50.6 52.3 78.7 97.1

for the first two hierarchical layers of the proposed MVMH
method, and the corresponding experimental results were used
to select the optimal one with the highest accuracy. Specific-
ally, better results can be achieved by using RF and ANN

11
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Table 8. Source number estimation results from comparison of un-denoised and denoised data sets (%).

T_SNUM T_SNR SSr1 SSr3 SSr5 SSr7 SSn1 SSn3 SSn5 SSn7 FSnum

MVMH-DN 65.3 92.8 97.9 98.6 97.4 91.5 79.1 79.5 77.3 71.8 87.3
MVMH 75.0 96.6 99.3 99.7 99.7 97.6 89.6 88.8 85.0 80.7 93.8
HAU-DN – – – – – – – – – – 70.1
HAU – – – – – – – – – – 73.4
MDL-DN – – – – – – – – – – 43.7
MDL – – – – – – – – – – 47.4
AIC-DN – – – – – – – – – – 42.9
AIC – – – – – – – – – – 45.8
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Figure 13. Illustration of some comparisons of the distributions of eigenpower of noise space.

compared to SVM and DNN. In addition, the correspond-
ing time consumption for these machines varies greatly: both
the training and testing time of SVM or DNN are ten times
or even more than those of ANN and RF (this is the reason
time consumption data was not illustrated in the specified
experiments.). Between ANN and RF, RF with 64 trees is the
best choice with the highest accuracy and relatively less time
consumption. Obviously, because the intrinsic value of the
input feature (e.g. the sorted eigenvalues of array outputs) used
to distinguish the signal space and noise space is the magnitude
relationship among components of the input feature, this is
more consistent with the classification nature of RF composed
of several decision trees. In the second experiments, RF with
64 trees is also the final winner for the last meta-classification
layer of the proposed method. In the last experiment, source
number estimation performances among the proposed method
and some other well-known methods were given. From the
experimental results, it can be seen that the proposed MVMH
method can dramatically improve the source number estim-
ation performance of any cases with different SNR or source
numbers. In particular, the advantages of the proposed method
are more obvious in cases with more than three sources or

SNR under 0 dB. In the last experiment, the effects of adding
the denoising technique were evaluated. From the experi-
mental results, it can be seen that the performance of the
proposed method will be weakened by the introduction of
an additional denoising procedure. By directly checking the
feature space, as illustrated in figure 13, it was found that
the denoising operation made the feature space too diverse
to reflect the intrinsic information about the source number
and SNR. Obviously, in order to further improve the perform-
ance of the proposed method by using some data or feature
enhancement strategy, it is must be specifically designed by
taking the architecture of the proposed method into account.
In general, promising results were illustrated for the proposed
method.

5. Conclusion

In this paper, a novel multi-view meta-hierarchical
classification-based source number estimation method was
proposed. From the experimental results given in this paper,
there are at least two conclusions that can be made. At first,
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by employing multi-view hierarchical classification and meta-
learning techniques, more reasonable performance enhance-
ment for source number estimation can be achieved than tradi-
tional source number estimation methods. Second, for the two
simulated data sets used with 490 000 samples in this paper,
hierarchically integrating shallow machines are enough to
tackle the task of source number estimation even in low SNR
or more source number cases. Obviously, information hidden
in the eigenvalues of the covariance matrix associatedg with
the array outputs can readily be used for revealing the actual
input scenario. However, the desired effects are not achieved
by employing DNNs in this paper. There are two possible
reasons: (1) the number of samples, e.g. 490 000, is smaller
than the requirement of deep learning techniques, and (2) there
is much information loss for the deep learning method by only
employing the sorted eigenvectors as the input feature. There-
fore, in future, more powerful feature representations will be
exploited to reveal more accurately the truths between array
outputs and the corresponding source number or SNR value.
In addition, features suitable for deep learning techniques will
be studied. In general, source number or even the detailed
DOAs estimated in a data-driven manner is very promising.
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