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Abstract
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How to effectively extract fault features from noisy vibration signals is a key problem to be

solved in bearing fault diagnosis. The difficulty here mainly lies in the fact that the components
of interest are almost submerged by background noise and external interference. To accurately
implement extraction of fault features, nuclear norm minimization (NNM) has been introduced
to fault feature extraction due to its powerful denoising capability. However, NNM treats all
singular values equally, which may result in components of interest with small singular values
being abandoned, especially when a bearing defect is at its incipient stage. Therefore, to
enhance the flexibility and effectiveness of NNM in handling practical problems, fault
information-oriented weighted nuclear norm minimization (FIWNNM) is proposed for
extracting bearing fault features, in which singular values are treated differently by assigning
appropriate weights according to the physical meanings. Through the proposed FIWNNM, fault
features can be drawn from a noisy signal, even when contaminated by strong noise and external
interferences. The analysis results from both simulated and real measured signals are used as the
verification of the proposed FIWNNM.

Keywords: fault information-oriented weighted nuclear norm minimization (FIWNNM), fault
feature extraction, rolling element bearings, fault diagnosis
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1. Introduction

Rolling element bearings (REBs) are important supporting
components and used extensively in rotating machinery, thus
their health is an important factor affecting the normal oper-
ation of integral rotating machines. In real applications, the
operating conditions of bearings is often not ideal and unpre-
dictable factors in the operation process will cause bearings
to fail quickly. Therefore, to guarantee the reliable opera-
tion of rotating machines, monitoring the condition of rolling
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bearings has received considerable attention in industrial and
academic fields.

With the rapid development of measurement techniques,
vibration signal analysis has been one of the most extensively
applied technologies for the fault diagnosis of REBs [1-3].
When a localized fault exists on the REB, repetitive transients
with a particular period will be generated [4, 5]. The occur-
rence of repetitive transients in vibration signals is import-
ant evidence for rolling bearing faults. However, fault-induced
transient features are always obscured by background noise
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and other irrelevant interference, especially when the bearing
defect is at its incipient stage. Therefore, various methods have
been proposed for transient feature enhancement and fault dia-
gnosis in REBs, such as spectral kurtosis (SK) [6, 7], singu-
lar value decomposition (SVD) [8, 9], time frequency analysis
(TFA) [3, 10], sparse representation (SR) [11, 12] and so on.

In addition to the methods mentioned above, nuclear norm
minimization (NNM)-based methods utilizing the low-rank
properties exhibited by fault features are increasingly invest-
igated for extraction of fault features. The core idea of NNM-
based methods is to recover the inherent low-rank matrix from
a noisy matrix. Due to the fact that NNM has been proved
to be easily solved and has a great capability of recovering
a low-rank matrix [13], it has achieved rapid development in
the fields of computer vision and image processing [14—16].

Despite the superior performance of NNM in computer vis-
ion and image processing, the use of fault feature extraction
based on the low-rank property for bearing fault diagnosis is
rare and insufficient. When the bearing has a localized defect,
there will be repetitive transients in the vibration signal, and
these repetitive transients indicate the low-rank property. Due
to its low-rank property, the intrinsic fault features of bear-
ings can be extracted from noisy signal by NNM. Recently,
Xin et al [17] established a feature extraction model exploit-
ing the low-rank property and applied it to the fault diagnosis
of bearings. However, it should be noted that NNM treats all
singular values (SVs) equally by shrinking the SVs with the
same threshold, while the physical meaning of SVs and their
related singular components are totally ignored. In practical
application, SVs should be treated differently according to
their physical meanings to preserve the data components of
interest [ 18], which illustrates that NNM is not flexible enough
to deal with many practical problems. To improve the flexibil-
ity and effectiveness of NNM, weighted NNM methods were
proposed and successfully applied in the field of image denois-
ing [18-20]. These weighted NNM methods all adopt the
weighting strategy with its weights in non-descending order,
which can effectively overcome the problem that NNM tends
to underestimate nonzero SVs. In addition, this weighting
strategy was also applied to fault feature extraction and fault
diagnosis of a generator bearing [21], in which the weight
is concretely set as the reciprocal of the SV. In the paper,
this method is referred to as the SV-based NNM method
(SVNNM). Note that the hypothesis of the SVNNM is that
the low-rank components of interest are highly related to the
large SVs of the matrix, thus a satisfactory fault extraction res-
ult can be obtained in the case where the bearing fault features
are relatively obvious. However, in practice, bearing fault fea-
tures are usually weak and submerged by other large-energy
components, thus the obtained result of the SVNNM is not
satisfactory.

In this paper, to reliably mine the components of
interest from noisy vibration signal, an adaptive weighted
NNM method called fault information-oriented weighted
nuclear norm minimization (FIWNNM) is proposed. In the
proposed FIWNNM, the low-dimensional intrinsic subspace
of the bearing fault features is extracted through solving a
weighted NNM problem. Specifically, in the optimization
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Figure 1. Time domain waveform of repetitive defect impulses.

problem of the proposed FIWNNM, all SVs are treated
differently by assigning appropriate weights according to
the amount of fault information contained in the correspond-
ing singular components, therefore the components of interest
rather than the components with large SVs are preserved. With
the adaptive weighting strategy, the fault features of interest
can be extracted from vibration signal even when disturbed by
heavy noise and harmonic components. Meanwhile, the cor-
related kurtosis (CK) is selected as an indicator to measure the
fault information of each singular component in this paper. To
solve the non-convex optimization problem of the proposed
FIWNNM, an iterative algorithm is derived and described
in detail. Finally, the simulated and experimental signals are
processed by the proposed FIWNNM to validate its effect-
ivenessin fault feature extraction, while traditional NNM and
SVNNM are used as comparison methods.
The main contributions are summarized as follows.

(a) The low-rank property of fault features is explored in
detail. Based on this, fault information-oriented weighted
nuclear norm minimization (FIWNNM) is proposed for
fault feature extraction, in which all SVs are treated dif-
ferently through an adaptive weighting strategy.

(b) An iterative optimization algorithm is derived to solve
the non-convex optimization problem of the proposed
FIWNNM.

The paper is organized as follows. Low-rank prior know-
ledge and the principle of NNM are briefly introduced in
section 2. Section 3 proposes FIWNNM for the fault feature
extraction and fault diagnosis of rolling bearings. Section 4
presents the rudimentary validation of FIWNNM by utilizing
a simulated signal. Subsequently, vibration signals acquired
from an experimental rig are used to further verify the per-
formance of the proposed FIWNNM in section 5. In section 6,
the conclusions are summarized.

2. Low-rank prior knowledge and nuclear norm
minimization

2.1. Low-rank prior knowledge

When a localized defect occurs on a rolling bearing, repet-
itive impulses with fixed period are produced, as shown in
figure 1. However, fault information—namely, fault-induced
repetitive impulses—are usually disturbed by other compon-
ents in the real vibration signal. Concretely, besides the fault
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Figure 2. Time—frequency diagram of repetitive impulses.
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Figure 3. Singular value distribution of the simulated signal.

features induced by bearing fault, harmonic components pro-
duced by other components in rotating machines and back-
ground noise are also usually found in vibration signals, which
undoubtedly increases the signal analysis complexity.

Figure 2 demonstrates the time—frequency diagrams of fault
feature components obtained by short-time Fourier transform
(STFT). It can be found the fault information in the time—
frequency domain is mainly concentrated around the reson-
ance frequency and the STFT coefficients between different
frequencies within the resonance frequency band exhibit high
similarity. The above phenomenon illustrates the low-rank
property of fault features in the time—frequency diagram. To
give an intuitive representation of the low-rank property of
fault features, the SV distributions of the STFT coefficient
matrix of the fault features are illustrated in figure 3. It can be
found that most of the energy of the fault feature component is
concentrated in a few large singular subspaces, which means
there is no significant information loss if those small singu-
lar components are ignored [21]. This result further intuit-
ively provides an explanation of the low-rank property of fault
features. Moreover, the SV distributions of the STFT coeffi-
cients of the harmonic components and noise are also given in
figure 3, from which it can be found that harmonic compon-
ents also exhibit a low-rank property while the Gaussian white
noise does not.

2.2. Nuclear norm minimization

The nuclear norm minimization problem is a fundamental
problem constructed based on the low-rank property to

approximate a low-rank matrix X from its noisy observa-
tion Y [22-25]. The corresponding optimization problem is
defined as

X = prox,,_(¥) = argming||¥ — X| + A|X], (1)

where Y is the noisy matrix and X is the approximated low-
rank matrix, A is the regularization parameter. Optimization
problem equation (1) is convex and its global minimum can
be directly obtained utilizing the soft-thresholding function.
To be concrete, the solution X can be expressed as

X=US\(Z)V" (2)

where Y = USVT is the SVD of matrix ¥ and S)(X), =
max (X; — A,0) is the soft-thresholding function [26] applied
to the diagonal matrix 3. Therefore, this method of solv-
ing optimization problem equation (1) is also known as the
SV thresholding method [27].

It can be found from equation (2) that NNM equally shrinks
the SVs with the same threshold and the estimation of the low-
rank matrix from its noisy observation is realized by retain-
ing a few larger singular components. Due to the low-rank
property of bearing fault features, NNM is very suitable for
extracting potential fault features from noisy vibration signal
when fault features have relatively large amplitude. However,
the desirable result may be degenerated when harmonic com-
ponents that also exhibit the low-rank property are prominent
in the vibration signal. To overcome this limitation of NNM
in bearing fault feature extraction, fault information oriented
weighted nuclear norm minimization (FIWNNM) is proposed
and its detailed description is given in section 3.

3. Using the proposed FIWNNM to extractbearing
fault features

In this section, the optimization problem of the proposed
FIWNNM is described in detail so that the proposed
FIWNNM can be used to mine the fault features from noisy
vibration signal submerged by harmonic components and
other interference components. Moreover, the optimization
algorithm is derived to solve the established optimization
problem.

3.1. The optimization problem of the proposed FIWNNM

The bearing vibration signal is a one-dimensional discrete
sequence, therefore it should be firstly constructed into a
two-dimensional matrix before performing low-rank matrix
estimation. There are two generic methods used to construct
a two-dimensional matrix namely time—frequency transform
[28] and Hankel matrix conversion [29]. In this paper, STFT
operator A” is utilized to convert the one-dimensional raw
vibration signal y in time domain into two-dimension time—
frequency coefficient Y, and this process can be mathemat-
ically expressed as ¥ = A”y. For detailed information about
parameter selection of STFT, one can refer to [28].
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As described above, NNM treats all SVs equally without
consideration of signal itself, which may result in undesirable
components being contained in the estimated low-rank mat-
rix X, especially in complex vibration signals. Therefore, to
tackle the inherent limitation of NNM and improve its flexibil-
ity in analyzing vibration signal, FFIWNNM that introduces an
adaptive weighting strategy to NNM is proposed, which can
effectively extract fault features even in the presence of har-
monic interferences. The optimization problem of FIWNNM
is defined as

X=argm§n|\Y—X||12v+||XHW,* 3

where w is the weight vector, || X]|,, , is the weighted nuclear
norm of matrix X and can be explicitly expressed as

11, =D wioi (X) (4)

where w; represents the weight of the ith SV ¢;(X) and X,Y €
CMixM> are the STFT coefficients. In this paper, we define
weight vector w as w = [wy, wo, ..., w,] with n = min(M,
M>). The purpose of applying the weighted nuclear norm is to
more effectively restore the low-rank matrix X composed of
fault feature components while eliminating other interference.
To assign suitable weights that are beneficial to the extrac-
tion of bearing fault features, an adaptive weighting strategy
based on fault information is proposed in this paper. In the pro-
posed weighting strategy, to effectively preserve the singular
components with the abundant fault features, a small weight
is applied to the corresponding SV. Conversely, SVs related
to the singular components with almost no fault information
are assigned a large weight, which means the SVs are severely
shrunk and interference components are reduced.

In the paper, the amount of fault information contained in
a singular component is measured by the correlated kurtosis
(CK) indicator, which is defined as

N 2
>imt IRy sizur)
M1
N
(Zizl 512>

where s is the signal to be measured with length of N, T rep-
resents the point number of interested period and M denotes
the shift number.

Compared with indicators that only measure impulsive-
ness or periodicity, including kurtosis [30], Gini [31] and
harmonic-to-noise ratio [32], CK has powerful capability of
simultaneously emphasizing impulsiveness and periodicity
[33], and is conducive to measuring the amount of fault
information contained in signal s. There are two parameters in
the calculation formula of CK, i.e. T and M. Parameter T can
be easily calculated based on formula T = f; x P, where f; and
P represent sampling frequency and fault period, respectively.
As regards shift number M, higher M can much emphasize the
periodicity of fault impulses. However, higher M requires the
more accurate estimation of fault period and increases com-
putational complexity [33]. Therefore, M is recommended to
be 2-5 and M = 2 is adopted in this paper.

CK(M,T) =

&)

As described above, to effectively mine the fault features
from noisy signal, the SVs associated with fault features are
assigned small weights and the SVs related to interference
components are assigned large weights. In the paper, the
weight w; is inversely proportional to the value of CK, and the
calculation formula of the weight w; is explicitly expressed as

1
CK;

where CK; represents the CK of ith singular component and A
is the regularization parameter.

Regarding the regularization parameter ), it has a great
impact on the final result of FIWNNM and must be appro-
priately selected according to the signal itself. Since the pur-
pose of FIWNNM is to extract fault features from noisy signal
and CK is an excellent criterion to indicate the amount of fault
information, the parameter A that corresponds to the maximum
CK of extracted fault features is regarded as the optimal value.
After obtaining the optimal A, the desired fault features can
be efficiently extracted and the potential bearing fault can be
detected.

3.2. Optimization algorithm of the proposed FIWNNM

In the proposed weighting strategy of FIWNNM, the weight
w; is determined based on the fault information of the singu-
lar component rather than SV, which leads to the issue that
the weights in the weight vector w are in an arbitrary order.
Correspondingly, optimization problem equation (3) is non-
convex and is difficult to be directly solved like NNM. In this
section, an iterative optimization algorithm is derived and the
detailed procedure is as follows.

Theorem 1. VY € R"*" Y =UXV! is the SVD of matrix
Y [18]. Then the solution X of optimization problem equa-
tion (3) with non-negative weight vector w can be written as

X=UBV" (7

where B is the solution of the following optimization problem:

B =argming ||X — B|[;.+ ||B|,,.. (8)

To get the solution of equation (8), we first denote B =
PAQT as the SVD of B. The problem in equation (8) can be
transformed into the following optimization problem:

P,A,0) = arg min ||PAQT — X||.+ |PAQT
(P, A, Q) =arg min |PAQ" = B[+ [PAQ"ll,.. o
st.PTP=1,07Q=1

where I is the identity matrix. The solution of problem equation
(9) can be obtained by iteratively performing the following two
steps composed of sorting the diagonal elements and shrinking
the SVs:

(P(Tk+1)v¢7Q1{+1> =SVD (Agr))
A(k+1) = P(Tk-i-l)Sw (Z) Q(k+1)-

(10)
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Algorithm 1: Iterative optimization algorithm for solving the optimization problem equation (3) in the proposed FIWNNM.

Require: convert one-dimensionalraw vibration signal y into two-dimensional time —frequency coefficients ¥ using STFT operator A”,

set maximum iteration number K.
1. Input: Y

2. Initialization: X, P, O, A
3.for k € [1, K]

4. Calculate weight w; of each singular component of matrix X through the expression w; = )\CLK and further construct weight vector

w = [wi, wa, ..., wal.

5. (P",®,0") =SVD(A)

6. A=P'S,(2)Q

7.X = UP'S,, () QV"

8. end

9. Output: low-rank matrix X and fault features x = AX.

where S,,(X); = max (X; —w;,0) is the soft-thresholding
function applied to the diagonal matrix 3.

By combining the above steps in equations (7)—(10), the
final solution of optimization problem equation (3) in the pro-
posed FIWNNM can be obtained by

X=UP's,, () 0V (11)

After the optimal solution X is obtained, the estimated fault
features x can be obtained by x = AX, where A represents
the inverse STFT operator. According to the above descrip-
tion, the detailed procedures for solving optimization problem
equation (3) in the proposed method FIWNNM is summarized
in Algorithm 1.

4. Simulation analysis

In this section, the performance of the proposed FIWNNM
is preliminarily verified using simulated signals. Meanwhile,
two other methods including NNM and spectral kurtosis (SK)
are selected for comparison to further demonstrate the superi-
ority of the proposed FIWNNM.

To establish a realistic simulated signal, four frequent sig-
nal components are contained in this simulation analysis. Con-
cretely, the expression of simulated signal y is as follows:

y(1) ZZDiSd(t —iTy—1) + ZA,, cos (27fyt + avy)

+ZR,~S,~(:—T,-)+n(t) (12)

S(1) = e~ sin (27f,1). (13)

In equation (12), the first item represents the repetitive
fault features caused by a localized bearing defect, where D;
is amplitude of the ith impulse, T, represents the time inter-
val between two transient impulses, 7; represents the random
slip and is usually set to 1%—2% of the fault period, «, and
f; are the damping ratio and the resonance frequency of the
impulse response, respectively. The second item represents the
harmonic component caused by the shaft or rotor, where A,

and f, are the amplitude and the frequency of nth harmonic
component, o, stands for initial phase. The third item repres-
ents the random shocks caused by random impulses or electro-
magnetic interference during data acquisition, where the amp-
litude and the corresponding occurrence time of the ith random
impulse are represented by R; and 7;. Moreover, the last item
n(t) is Gaussian white noise.

The sampling frequency is 20000 Hz and time length of
the simulated signal is 1 s. In this section, the vibration signal
with an outer race fault is simulated, and figure 4 displays the
waveform diagrams of four signal components. Meanwhile,
the parameters of simulated signal are shown in table 1.

In the first case, the harmonic components are not included
in the simulated signal and the synthetic signal is presented in
figure 5(a). Then the synthetic signal is process by NNM and
the proposed method FIWNNM, and the results are displayed
in figures 5(b) and (c), respectively. Note that for the STFT,
the window size R = 64 with 50% window overlapping and
the length of Fourier transform L = 256 are used in simula-
tion analysis. Both NNM and FIWNNM successfully extract
the fault feature components from the noisy signal, which
illustrates the ability of these two methods in low-rank mat-
rix approximation and fault feature extraction. Meanwhile,
FIWNNM can better preserve the magnitude of fault-related
fault features than NNM, which is attributed to the adaptive
weighting strategy introduced by FIWNNM. In addition, root
mean square error (RMSE) between extracted and simulated
fault features is selected to quantitatively assess the perform-
ance of the FIWNNM and NNM methods. As displayed in
figure 5, the RMSE value of FIWNNM and NNM are 0.1285
and 0.1711, respectively. These results further demonstrate
that FIWNNM has better fault feature extraction ability than
traditional NNM.

In the second case, the harmonic components are included
in the simulated signal, which is closer to the real indus-
trial environment. The robustness of NNM and FIWNNM to
harmonic components is tested in this case. Figure 6(a) shows
the synthetic signal, in which fault features are completely sub-
merged by noise and interference. In addition, as displayed
in figure 6(b), the frequency related to the harmonic compon-
ent is very significant, while ball pass frequency outer race
(BPFO) and its harmonics are disturbed by other interference
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Figure 4. Four components of the simulated signal. (a) Defect impulses, (b) harmonic components, (c) random shocks, (d) Gaussian white

noise.

Table 1. The parameters of the simulated signal.

Defect impulses Rotor and shaft Random shocks

D Tqs fr oar f1 fo At A2 a1 o fr o
1 1/39 1500 300 12 24 0.7 0.3 =#/3 w/6 6000 1000

lines in the envelope spectrum. Therefore, the traditional NNM
and the proposed FIWNNM are applied to the simulated sig-
nal to extract fault features. Figure 7 gives the result obtained
by NNM. In figure 7, harmonic components are dominant in
the waveform and the frequency associated with harmonic
components is also clearly detected in the envelope spectrum.
However, BPFO and its harmonics are totally invisible, which
illustrates that NNM is very sensitive to harmonic components.
The reasons for above phenomenon are that the approximation
of the low-rank matrix of NNM is implemented by retaining
large singular components and the harmonic components with
large energy are represented by the first several large singular
components. The results obtained by the proposed FIWNNM
are described in figure 8. The proposed FIWNNM can success-
fully extract the periodical fault impulses from the noisy sig-
nal, and BPFO and its harmonics are obvious in the envelope
spectrum. Based on the above analysis, it can be reasonably
concluded that NNM is very sensitive to harmonic compon-
ents and is not suitable for extracting fault feature extraction
from complex signals. On the contrary, FIWNNM has strong
robustness to harmonic components and powerful ability in
fault feature extraction from the noisy vibration signal.
Moreover, the spectral kurtosis (SK), a widely used fault
feature extraction method and a benchmark method for vibra-
tion signal analysis, is also applied as comparison method
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Figure 5. Simulated vibration signal without harmonic components.
(a) Raw signal, (b) the result obtained by FIWNNM, (c) the result
obtained by NNM.

to further highlight the superiority of the FIWNNM method.
Figure 9(a) gives the kurtogram, from which the frequency
band with maximum kurtosis is identified whose center fre-
quency and bandwidth are 6042 Hz and 417 Hz. Based on this
information, the corresponding band-pass filter is designed
and the filtered signal is obtained. Figure 9 displays the filtered
signal and its envelope spectrum, from which random shocks
rather than repetitive impulses are detected. The result clearly
illustrates that SK fails to extract the fault features since SK
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Figure 8. The results obtained by the FIWNNM. (a) Time domain waveform, (b) envelope spectrum.

is sensitive to a single impact and mistakenly locates the
frequency band. Therefore, through the above comparative
analysis, the effectiveness of the proposed FIWNNM is ini-
tially proved using simulated signals.

5. Experiment validation

In this section, experimental research is conducted to fur-
ther verify the fault feature extraction ability of the pro-
posed FIWNNM. The actual installation diagram and schem-
atic view of the locomotive bearing test rig are demonstrated
in figure 10. Meanwhile, it should be pointed out that the bear-
ing outer race is driven by a hydraulic motor, while the bearing
inner race is fixed on this test rig. Therefore, there is an amp-
litude modulation phenomenon for bearing outer race fault and
sidebands are expected to be found in the envelope spectrum.
Conversely, there is no amplitude modulation phenomenon

for the bearing inner race fault. In the experiments, the vibra-
tion signals are collected by an accelerometer with sampling
frequency 76 800 Hz and time length is 1 s. Meanwhile, rotat-
ing speed signal is also obtained by a tachometer. The struc-
tural parameters of the tested bearings are listed in table 2.
With rotating speed signal and the structural parameters, the
theoretical fault characteristic frequencies (FCFs) can be cal-
culated.

5.1 Experiment 1: the bearing with defect on inner race

In experiment 1, the signal acquired from locomotive bear-
ing with inner race defect is analyzed. The traditional NNM,
SVNNM and the proposed FIWNNM are all applied to the
acquired signal. According to the bearing structural para-
meters and the rotating speed information, the fault char-
acteristic frequencies are calculated and listed in table 3. It
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Figure 10. The locomotive bearing test rig. (a) Experiment setup, (b) schematic view.

Table 2. The parameters of the locomotive bearings.

Number of Pitch diameter  Roller diameter Contact angle
rollers (mm) (mm) (degree)
20 180 23.775 9

Table 3. Bearing characteristic frequencies.

fr BPFO BPFI BSF

4.44 Hz

38.64 Hz 50.24 Hz 16.53 Hz

can be found that the rotating frequency of bearing outer
race is 4.44 Hz and ball pass frequency inner race (BPFI) is
50.24 Hz.

Figure 11 plots the collected raw signal, in which the fault
features are severely disturbed by noise. In order to provide
more useful diagnostic information for fault detection, NNM
and SVNNM are first employed to process the raw signal. As
mentioned above, both NNM and SVNNM extract low-rank
components by retaining large SVs. In particular, SVNNM
further emphasizes large singular components due to the non-
decreasing weighting strategy. The results obtained by NNM
and SVNNM are given in figures 12 and 13. It can be detected
that NNM and SVNNM fail to extract fault features from
noisy signal. Moreover, in the envelope spectrum, BPFI and its
harmonics are totally indistinct, while the rotating frequency
and its multiples are obvious. The above results further imply
that NNM and SVNNM are easily affected by the harmonic
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Figure 11. Raw vibration signal.
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Figure 12. The results obtained by NNM. (a) Time domain waveform, (b) envelope spectrum.
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Figure 14. The results obtained by the proposed FIWNNM. (a) Time domain waveform, (b) envelope spectrum.

impulses demonstrate that FIWNNM effectively extracts fault
features from noisy signal. Meanwhile, the BPFI and its har-
monics are very obvious in the envelope spectrum, as shown
in figure 14(b), which gives solid evidence of the presence of
inner race fault. To validate this result, the tested bearing is

components and not very suitable for the real vibration signal
analysis.

Then, the proposed FIWNNM is adopted to process the
same signal. Figure 14 describes the result obtained by
FIWNNM. As displayed in figure 14(a), clear repetitive
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Figure 17. The results obtained by NNM. (a) Time domain waveform, (b) envelope spectrum.

disassembled and shown in figure 15, where the inner race
fault is clearly visible. By comparing the above results, the
excellent performance of FIWNNM in fault feature extraction
under strong harmonic component interferences is illustrated
in detail.

5.2. Experiment 2: the bearing with defect on outer race

In experiment 2, vibration signal with outer race defect of the
locomotive bearing is analyzed. Table 4 lists the fault charac-
teristic frequencies of the bearing, from which BPFO is found
to be 60.20 Hz. The waveform diagram of collected vibration
signal is shown in figure 16, in which fault information is diffi-
cult to observe. Therefore, traditional NNM, SVNNM and the
proposed FIWNNM are all adopted for fault feature extraction.

Figures 17 and 18 display the results obtained by NNM and
SVNNM, respectively. It can be found that harmonic compon-
ents are distinct in the time domain waveforms, and the rotat-
ing frequency and its multipliers are also very evident in the
corresponding envelope spectrums. However, the repetitive

Table 4. Bearing characteristic frequencies.

BPFO BPFI BSF

Ir
6.92 Hz

60.20 Hz 78.27 Hz 25.76 Hz

impulses with outer race fault period indicating the existence
of outer race fault are not extracted by NNM and SVNNM,
and BPFO and its multipliers are submerged by other inter-
ference frequencies. According to the above analysis, it can
reasonably concluded NNM and SVNNM fail to extract fault
features from the original signal that are disturbed by harmonic
components and environmental noise.

Then, the same signal is processed by the proposed
FIWNNM and the results are shown in figure 19. In the
waveform, clear defect impulses are effectively identified.
Moreover, BPFO and its harmonics are very obvious in the
envelope spectrum, and sidebands around the BPFO and its
harmonics also appear as expected. The above results provide
conclusive evidence for the presence of a localized defect on
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Figure 19. The results obtained by the proposed FIWNNM. (a) Time domain waveform, (b) envelope spectrum.

Figure 20. The bearing with a defect on the outer race.

the outer race. To verify the accuracy of the diagnosis, the
test bearing is disassembled, and a defect on the outer race
can be distinctly recognized from the photograph displayed in
figure 20. By analyzing and comparing the processed results
of the three methods, the effectiveness of FIWNNM in pro-
cessing practical signals is further verified.

6. Conclusion

Traditional NNM and SVNNM approximate the low-rank
component by keeping the large singular value, which is very
inappropriate for a vibration signal that contains harmonic
interference components. In view of this problem, this paper
proposes a FIWNNM for fault feature extraction from noisy

signal and bearing fault diagnosis. In the proposed FIWNNM,
an adaptive weighted strategy based on correlated kurtosis is
introduced, which is significant for highlighting the fault fea-
tures of interest while suppressing the interference compon-
ents. Meanwhile, an iterative optimization algorithm is estab-
lished to solve the optimization problem. From the results of
simulation analysis and experimental verification, the effect-
iveness of the proposed FIWNNM is confirmed when NNM,
SVNNM and SK are selected as the comparison methods. The
results indicate that the proposed FIWNNM has a strong fea-
ture extraction ability and great potential in industrial applic-
ations. In future work, other advanced weighting strategies
will be further investigated for enhancing the performance of
weighted NNM.
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