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List of corrected errors

The published work has a couple of typos, and incorrect factors of two in the EM fluxes, as
well as incorrect combinations of Newton’s constant and its effective version, G and Geg. In
particular, egs. (3.2)-(3.5) should read
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Figure 1. Total mass M = m; +ms of a binary system as a function of m; obtained from eq. (7) for

fixed Mcasured = 30M¢ and for different values of A\;. The black curve corresponds to the uncharged

case [1]. Note that when A\ A2 < 0 the total mass of the system can be significantly smaller than in
the uncharged case.

Equation (3.7) should read as
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and eq. (3.8), the most important object of the work, along with the definition of chirp mass
should read as
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where t. and ®. are the time and phase at coalescence, f is the GW frequency and M :=
Mn?/® is the chirp mass.

Because to leading order the GW phase depends on the combination
(Gegr/G)~2/3(GM)~5/3, a rescaling of Newton’s constant is degenerate with the mea-
surement of the chirp mass. Extracting the latter from the Newtonian GW phase obtained
by neglecting charge effects would yield a result that is rescaled by a factor (Geg/G)?/3
relative to the real chirp mass of the system, namely

M d
M = M/ = T/ measured 7

Accordingly, figure 2 in the published version is affected, but the correction is small.
The correct numbers are shown in figure 1.
Equation (3.10) should read as

ro — — 18774/5 9 Geft GeﬂM’ﬂ'f —4/3
VT U3 9240 G c3 ’




0.100

10 50 100 500 1000
f[HZ]

Figure 2. Ratio ry (normalized by Geg/G) between the hidden-charge-induced GW phase and the
first post-Netwonian correction [cf. eq. (8)] for the quasicircular inspiral of two charged masses with
my1 = mg = 30My and different values of the coupling ¢ as a function of the GW frequency. Note
that ¢ ~ 0.3 saturates the bound presented in eq. (11).

and is shown in figure 2 as a function of the GW frequency for a typical inspiral. The
only difference with respect to the published version is that the y-axis is now normalized

The number of cycles should read as
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and we have also expanded for fiax > fmin to simplify the final expression. In the small-
charge limit, for fiax ~ 100Hz and fimin ~ 30 Hz, we obtain

C 2
S ~ 0.01 <0_1> . (10)

Therefore, dipolar effects change the number of cycles relative to the Newtonian case by a
few percent when ¢ = 0.1 and by less than 0.01% when ¢ < 0.01. On the other hand, these
corrections become important at smaller frequencies and might produce detectable effects for
space-based interferometers such as eLISA [2].

Ref. [3] performed a detailed analysis to derive GW-based constraints on generic dipolar
emissions in compact-binary inspirals (see also ref. [4]). It is straightforward to map eq. (4)
into this generic parametrization. In our case the parameter B defined in refs. [3, 4] reads
B = 22(*. The analysis of ref. [3] shows that GW150914 sets the upper bound |B| < 2x 1072,
whereas a putative eLISA detection of a GW150914-like event with an optimal detector



configuration or a combined eLISA-aLLIGO detection set the projected bound as stringent as
|B| <3 x 1072, In our case these bounds translate into

1] 0.4 aLIGO (11)
I¢| <1074 eLISA-aLIGO (projected) (12)
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