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Abstract. We present a stochastic model for programmed ribosomal −1
frameshift, triggered by a slippery sequence and a following pseudoknot on the
mRNA template, that allows for the exact derivation of the stationary distribu-
tion of ribosome positions and for exact analytical calculations of the stationary
rate of frameshift, its efficiency and other quantities of interest. We also present
the stationary phase diagram as a function of the initiation rate and the density
ribosomes that the pseudoknot can support. These observations provide mathe-
matically rigorous evidence for the notion that the density of molecular motors is
an important control parameter for the elongation rate in the presence of slippery
sequences both in transcription of RNA and translation of proteins.
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1. Introduction

A protein is a linear heteropolymer where neighbouring amino acids are linked by a
peptide bond. The particular sequence of amino acids is encoded in mRNA molecules
through the sequence of codons, which are triplet of nucleotides (nt’s). The synthesis of
a protein in a living cell, as directed by an mRNA template, is carried out by ribosomes
which can be regarded as molecular machines [1–4] that move along the mRNA and
the process of ‘reading’ the template step by step for the synthesis by the ribosome is
referred to as translation. This process is broadly divided into three stages: initiation,
elongation and termination. After the initiation of translation, when a ribosome attaches
to the start codon, the elongation of the protein by the ribosome takes place such
that the addition of each amino acid monomer to the growing protein is accompanied
by a forward stepping (translocation) of the ribosome on its mRNA template by one
codon. After termination, the fully assembled protein is released from the ribosome
which detaches from the mRNA.

During elongation, the ‘reading frame’ of the ribosome decodes a triplet of nucleotides
on the mRNA template and then slides to the next triplet. This reading frame must be
maintained faithfully during the course of normal elongation of the protein. However, on
many template mRNA strands occurring in nature there are some ‘slippery’ sequences
of nucleotides where a ribosome can lose its grip on its track, resulting in a shift of its
reading frame either backward or forward by one or more nucleotides. These processes,
which have important biological functions, are referred to as ribosomal frameshift [5, 6].
After suffering a frameshift, the ribosome resumes its operation but decodes the template
using the shifted reading frame, thus leading to a context-dependent alteration of the
readout of mRNA.

A different kind of slippage may occur in the synthesis of RNA. The RNA is synthe-
sized through transcription by a RNA polymerase (RNAP) which is another molecular
machine that reads the genetic message encoded in a template DNA, in a process which
follows a roughly similar pattern of initiation, elongation and termination where the
addition of a monomeric subunit to the nascent RNA chain is also accompanied by a
step-wise movement of the RNAP motor along the template DNA [2–4, 7]. In this pro-
cess, slippage is not known to occur by a shift of reading frame, but experiments have
revealed that there are specific stretches of DNA sequence where the nascent RNA may
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undergo multiple slips with respect to the RNAP [6, 8], thus leading to an alteration of
the readout of DNA.

What both processes have in common, apart from the step-wise movement of the
molecular motor, is the existence of a special slippery sequences on the template molecule
(mRNA or DNA resp.) that leads to a faulty read-out and is accompanied by an irreg-
ularity of the motion of the molecular motor responsible for the synthesis (ribosome
or RNAP resp.) Also in common is the simultaneous action of many motors along the
same template which thus leads to interaction between neighbouring motors when they
are close to each other on the template. This phenomenon is often referred as traffic flow
of molecular motors [2, 3]. Understanding the principles followed by nature for encod-
ing and decoding the genetic message would be incomplete without getting insight into
the mechanisms that arise through slippage from the interaction between motors that
govern this traffic flow.

Pursuing this line of research, it has been shown [9, 10] that the effect on the traffic
of an ensemble of RNAP is similar to the effect of ribosomal slippage on the traffic of an
ensemble of ribosomes: in both cases, the slippery sequence on the template molecule
acts like a static defect that slows down the motion of a motor compared to its free
motion away from the slippery sequence and in the absence of other motors. On the
other hand, also in both cases, the interaction with other motors slows down the motion
of individual motors, be it either through pure steric hard-core interaction [11, 12] or
also in the presence of further short-range interaction [13, 14].

It is the purpose of the present work to study the interplay of these two very different
mechanisms (of slowing-down by a slippery sequence on the one hand and mutual inter-
actions on the other hand) by introducing an idealized but analytically tractable model
which captures both the stochastic nature of the step-by-step movement and the hard-
core repulsion of the motors through steric exclusion. In this way we are able to establish
mathematically rigorously the notion that the motor density is a generally an impor-
tant control parameter for the outcome of the synthesis of the product molecule under
slippage conditions, both in translation through mRNA and in transcription through
RNAP, and also to further illuminate the role of ‘traffic jams’ of molecular motors caused
by a template inhomogeneity.

2. Model

To be concrete, we consider ribosomal frameshift. The most common of this mode of
non-conventional translation [15] is a ‘programmed’ frameshift at a specific location on
the mRNA track, thereby producing a ‘fusion’ protein. The programmed shift of the
reading frame backward by a single nucleotide on the mRNA track, often referred to
as −1 frameshift, is the main focus of this work. The classic example of such a fusion
product of −1 frame shift is the gag–pol fusion protein of the human immunodeficiency
virus (HIV) [5, 6]. We ignore position-independent random frame shifts whose rate has
been found to be negligibly small.

Programmed −1 frameshift requires two key ingredients: (a) a slippery sequence
(usually about seven nucleotides long) on the mRNA, and (b) a downstream secondary
structure of the mRNA [16] which is usually a pseudoknot [17, 18] located a few
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nucleotides downstream from the slippery sequence. In order to enter the segment of
the mRNA template that forms the pseudoknot, a ribosome has to unwind the sec-
ondary structure. Consequently, the pseudoknot acts as a roadblock against the forward
movement of the ribosome, leading to a slow-down of translation and allowing for a
programmed frameshift at the beginning of the slippery sequence1.

Not every ribosome suffers a frameshift at a given slippery sequence. It is evident
that the frequency of such a programmed frameshift is determined by many details that
vary from mRNA to mRNA, such as the specific sequence of codons in the slippery
segment, by its distance from the downstream pseudoknot, the kinetics of its unfolding
and refolding, and other factors that alter the normal free energy landscape of the ribo-
some, thereby affecting the stability of various intermediate states as well as the kinetics
of transitions [5, 6]. Models that have been developed to account for the mechanisms
of stimulation, regulation, and control of frameshift, differ, on the one hand, in their
hypotheses regarding the sub-step of the mechano-chemical cycle of the ribosome in
which the frameshift is assumed to occur, and, on the other hand, in their assumptions
on the assumed structural, energetic and kinetic cause of the slippage [20].

Avoiding these largely open problems, we capture the effects of the slippery sequence
and the downstream pseudoknot by a physically motivated alteration of the kinetic rates
in a reduced minimal stochastic model of the elongation kinetics, following some of the
arguments put forward in [10]. The main purpose of this approach is demonstrate how
the frequency of ribosomal frameshift in vivo depends (a) on the slowing down of the
translation due to the unwinding of the pseudoknot and (b) on the hitherto largely
neglected collective effect of ribosomes translating along the same mRNA segment in
terms of the average separation between ribosomes (or equivalently the mean num-
ber density of the ribosomes) on the downstream mRNA track. Experimental studies
of frameshift in vivo [21] as well as in experiments with synthetic mRNA secondary
structures in vitro [22] have provided indications for the interplay of the inter-ribosome
separation and the kinetics of unwinding of the pseudoknot.

Our reduced model generalizes the totally asymmetric simple exclusion process
(TASEP) [23], whose biologically motivated extensions have proved useful in describing
key characteristics of the collective motion of molecular motors [24, 25]. In contrast to
earlier TASEP-based models for molecular motors [24–35], we follow [10] in so far as we
consider individual nucleotides, rather than triplets of nucleotides (codons), as the basic
unit of the mRNA track. However, since we have at the back of our mind the generic
influence of a slippery sequence on the motion of molecular motors, we disregard all
details of the structure and mechano-chemical cycle of the ribosome. As novelty from
the modeling perspective, we describe the mRNA track by two interacting TASEPs
on parallel lanes, where each lane represents one of the two relevant reading frames.
A frameshift thus corresponds to a jump on the adjacent lane. As shown below, this
approach allows for an exact analytical treatment of the stationary kinetics of translation
with programmed frameshift. Moreover, we go beyond the results of [10] by deriving the
phase diagram of frameshift-induced phase segregation as a function of the rates of
initiation and termination.

1 This slowing down of the molecular motor associated with the slippery sequence, to be investigated below, is what ribosomal
frameshift and slippage of the nascent RNA in RNA synthesis have in common, even though via entirely different mechanisms that
we do not capture in our idealized model. We also remark that not all types of road blocks on an mRNA can induce frameshift [19].
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Figure 1. Representation of successive codons k and their three nucleotides on
three lanes (α, k) with α ∈ {1, 2, 3}. The normal reading frame of the ribosome
is represented by lane two, corresponding to jumps from (2, k)→ (2, k+ 1) (left).
At the special site k∗ both normal reading (2, k∗)→ (2, k∗ + 1) and frameshift
(2, k∗)→ (1, k∗) can occur, with subsequent reading in the shifted frame α = 1
(right). Up to site k∗ − 1 only lane 2 is required in our model, from site k∗ onwards
only lanes 1 and 2.

We consider an mRNA in which L successive codons—forming a sequence of 3L
nucleotides (nt’s)—represent the genetic information for a specific amino acid. We label
the nt’s such that the second (i.e. central) nt in a codon corresponds to the position of
the normal reading frame of the ribosome [6]. Each codon (from the start codon 1 to
the terminal codon L) is represented as a site k in a linear lattice of three distinct lanes,
which represent the sequence of the first, second or third nucleotide in the successive
codons respectively. In other words, the (3(k− 1) + α)th nucleotide of the mRNA that
we shall denote by the pair (α, k) is represented by site k in lane α. The total length of
the lattice is thus 3L in the units of nucleotide length. Since we consider only the −1
frameshift, only the lanes 1 and 2 are relevant for our model (figure 1).

The ribosomes are treated as exclusion particles [25], i.e. each site k can be occupied
by at most one particle, thus accounting for the fact that due to steric hindrance a ribo-
some in its normal reading frame cannot spatially coexist with a ribosome in the shifted
reading frame of the same codon. Normal protein synthesis thus proceeds by jumps
from positions (2, k) to (2, k+ 1). The special codon where the ribosomal frameshift is
assumed to take place is denoted by k∗.

The next 2–3 nucleotides correspond to the spacer region between the slippery
sequence and the pseudoknot while the following nucleotides, corresponding to codons
k∗ < k < L′ with some site L′ < L, represent the stretch of the mRNA template that is
folded in the form of the pseudoknot. A typical value for the length of the length of
the mRNA in the pseudoknot is around 40 nt [18]. Since in our model we consider only
programmed −1 frameshift at the special site k∗, the first segment of the lattice from
site 1 to site k∗ − 1 has only lane 2, while the remaining lattice from sites k∗ up to the
terminal site L has two lanes, denoted 2 and 1 respectively. After frameshift, a fusion
protein is synthesized by jumps from (1, k) to (1, k+ 1) for k � k∗.

During the elongation stage a ribosome moves forward by three nucleotides upon
successful completion of each elongation cycle. The rate of this translocation in the
original (unshifted) frame, i.e., in lane 2, outside the pseudoknot region is captured
by an effective rate W of ‘hopping’ of a ribosome from site k to k+ 1. In principle,
the effective rate W ≈ 83 s−1 [10] can be expressed in terms of the actual rates of the
individual transitions among the five distinct mechano-chemical states in the elongation
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Figure 2. Transitions at the slippery site k∗: normal reading (2, k∗ − 1)→ (2, k∗)
with rate W∗ ; reading with frameshift (2, k∗ − 1)→ (1, k∗) with rate W ∗

fs (such that
W∗ +W ∗

fs = W is the normal translocation rate for k < k∗); pure frameshift (2, k∗)→
(1, k∗) with rate Wfs; premature termination at k∗ with rate Wt. Inside the
pseudoknot region k � k∗ translocation take place with rate Ws < W on both lanes.

stage (for details, see the supplementary information given in arXiv:1605.03434). Here
we treat it as a single parameter that sets the time scale of the process (figure 2).

Inside the pseudoknot segment from site k∗ to some site L′ < L we represent the
effective hopping rate in the form.

ws :=Ws/W = exp(−ΔG̃eff) (2.1)

where the dimensionless parameter ΔG̃eff = bΔG/(kBT ) involves the temperature T, the
free energy barrier ΔG that accounts for the necessary unwinding of the pseudoknot by
the ribosome, and an effective parameter b that captures the effects of its structural
complexity [10]. The phenomenological form (2.1) of the translocation rate has the

expected limits Ws →W when no unwinding is necessary (ΔG̃ = 0) and Ws → 0 for an

extremely stiff pseudoknot where ΔG̃ is large. We shall not make explicit use of (2.1)
but treat ws as a variable parameter in the range 0 � ws � 1.

At the beginning of the slippery sequence around site k∗ both frameshift and prema-
ture termination can occur. The translocation kinetics depends, as pointed out above, on
various structural details of the mRNA. The specific nucleotide (2, k∗) denotes the sec-
ond nucleotide of the slippery sequence from where the ribosomal frameshift is assumed
to take place, corresponding to a translocation of a ribosome to nucleotide (1, k∗), from
either from nucleotide (2, k∗) or (2, k∗ − 1), the latter process being an effective +2
frameshift that leads to the same fusion protein. Thus, in this model the full length of
a regular protein (synthesized using the non-shifted frame) and that of a fusion protein
consists of the same number of amino acids. We capture this dynamics parametrically
by an effective translocation rate W∗ from (2, k∗ − 1) to (2, k∗) (no frameshift) and W ∗

fs

from (2, k∗ − 1) to (1, k∗) (with frameshift), and by a pure frameshift rateWfs from (2, k∗)
to (1, k∗) (figure 2).

To fix these rates, we note that since site k∗ − 1 is not yet part of the slippery
sequence, the mean residence time τ ∗ = 1/(W∗ +W ∗

fs) on the nucleotide (2, k∗ − 1) is
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taken to be equal to the regular mean residence time τ = 1/W which impliesW∗ +W ∗
fs =

W . The rateWfs of the −1 frameshift event from (2, k∗) to (1, k∗) depends on the strength
of the pseudoknot and on the frequency of breaking the bonds between tRNA and
codons. This rate is normally much less thanW, so that wfs :=Wfs/W � 1. However, the

frameshift rate is expected to increase with ΔG̃, i.e., with the stiffness of the pseudoknot.
Thus for smaller normalized translocation rate ws in the slippery sequence we assume
a larger normalized frameshift rate wfs. In the discussion in section 4 these features are
taken into account by the linearized form wfs = w∗

fs = 1− ws of the normalized rates.
The detachment (premature termination) rate Wt of a ribosome from the special

site k∗ is assumed to be of the form

wt :=Wt/W = wt0 exp(−ΔG̃′
eff) (2.2)

which is motivated by the postulates [10] that (a) in the absence of the pseudoknot

(i.e., in the limit ΔG̃′
eff → 0 both the forward hopping and premature detachment at the

slippery site occur on similar time scales (the ratio being the factor wt0 < 1), and that

(b) for very stiff pseudoknots (i.e., ΔG̃′
eff →∞ a ribosome practically stalls (no forward

movement because Ws → 0) so that there is no possibility of premature detachment. We

make no specific assumption on wt0 and ΔG̃′
eff, but treat wt as variable parameter in the

range 0 � wt � 1− ws.
We note that we make the simplifying assumption that the free energy barrier is

independent of the number of ribosomes present in pseudoknot region, even though, as
pointed out by an anonymous referee, the presence of ribosomes in that region could
reduce this energy barrier.

Translation initiation is captured by the attachment of a ribosome at site k = 1 with
a rate (i.e., probability per time unit) α. Similarly, termination of translation occurs at
site L, both from lane 2 for normal translation and from lane 1 in case of the frameshifted
formation of a fusion protein. Since in this work we focus on the effect of the slippery site
on ribosome in its environment, i.e., the pseudoknot region k∗, . . . ,L′ and the incoming
mRNA strand k < k∗ and since beyond the pseudoknot ribosome move away with the
faster rate W > Ws, we ignore ribosome traffic beyond L′ in our description. We thus
describe leaving the pseudoknot region at L′ with an effective rate β.

Denoting by η a configuration of ribosomes on the lattice and by P(η, t) the proba-
bility of finding η at time t under the Markovian stochastic dynamics described above,
the temporal evolution of the probability is given by the master equation

Ṗ (η, t) = −
∑
ζ

HηζP (ζ, t) (2.3)

where the dot marks the derivative w.r.t. time and H is the negative intensity matrix
whose off-diagonal elements Hηζ are the negative transition rates wηζ from configuration
ζ to η and Hηη =

∑
ζ 	=ηwζη. Writing the probability distribution as a vector |P(t)〉, the

master equation reads |Ṗ(t)〉 = −H|P(t)〉. The distribution |π〉 satisfying H|π〉 = 0 is the
stationary distribution of the process from which stationary averages of interest can be
calculated. It is convenient to define a configuration η by the two sets of occupation
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numbers nk ∈ {0, 1}, 1 � k � L′ of ribosomes on lane 2 and mk ∈ {0, 1}, k∗ � k � L′ of
frameshifted ribosomes on lane 1.

We focus on the effect of the pseudoknot on the upstream translation elongation
kinetics at and around the slippery sequence. According to the different processes that
occur during translation elongation, the negative bulk intensity matrix H0 is of the form

H0 = H I +H∗ +H fs∗ +H fs +Ht +H II (2.4)

with the following assignments: H I: translocation in the mRNA segment I before the
pseudo knot (1 � k < k∗), H∗: translocation from k∗ − 1 to k∗ without frameshift, H fs∗:
translocation from k∗ − 1 to k∗ with frameshift, H fs: −1 frameshift at site k∗, H t: pre-
mature termination at site k∗, H II: translocation in the mRNA segment II inside the
pseudoknot (k∗ � k � L′). Initiation at site 1 and normal termination (both from lane 1
and lane 2) at site L are given by negative intensity matrices HL and HR resp., so that
H = H0 + HL +HR for the full process.

Following the so-called ‘quantum Hamiltonian approach’ [23] the negative intensity
matrices read

−HL = α
[
σ−
1 − (1− n̂1)

]

−H I = W

k∗−2∑
k=1

[
σ+
k σ

−
k+1 − n̂k(1− n̂k+1)

]

−H∗ = W∗
[
σ+
k∗−1σ

−
k∗ − n̂k∗−1(1− n̂k∗)

]
(1− m̂k∗)

−H fs∗ = W ∗
fs

[
σ+
k∗−1τ

−
k∗ − n̂k∗−1(1− m̂k∗)

]
(1− n̂k∗)

−H fs = Wfs(1− n̂k∗−1)
[
σ+
k∗τ

−
k∗ − n̂k∗(1− m̂k∗)

]
−H t = Wt

[
(σ+

k∗ − n̂k∗)(1− m̂k∗) + (τ+
k∗ − m̂k∗)(1− n̂k∗)

]

−H II = Ws

L′−1∑
k=k∗

[
σ+
k σ

−
k+1 − n̂k(1− n̂k+1)

]
(1− m̂k+1)

+Ws

L′−1∑
k=k∗

[
τ+
k τ

−
k+1 − m̂k(1− m̂k+1)

]
(1− n̂k+1) (2.5)

−HR = β
[
σ+
L′ − n̂L′

]
+ β

[
τ+
L′ − m̂L′

]
. (2.6)

Here σ+
k (τ+

k ) annihilates a ribosome at site k of lane 2 (lane 1), while σ−
k (τ−

k )
creates a ribosome at site k of lane 2 (lane 1). The diagonal matrix n̂k (m̂k) projects on
a ribosome at site k of lane 2 (lane 1).

3. Results

We are interested in the stationary properties of the translation elongation around the
slippery sequence.
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3.1. Stationary distribution

The first result is the exact stationary distribution of the process defined by the negative
intensity matrix H with W∗ +W ∗

fs = W . With the parameters

z =
1− ws − wt

wt
(3.1)

ys =
wfs + w∗

fs

1 + wfs
z (3.2)

zs =
1− w∗

fs

1 + wfs
z (3.3)

and rates of initiation at site 1 and departure at site L′ chosen to be

α = W
z

1 + z
(3.4)

β = Ws
1

1 + zs + ys
(3.5)

this is the product distribution

π(η) =
1

(1 + z)k∗−1(1 + ys + zs)L+1−k∗

k∗−1∏
k=1

znk

L∏
k=k∗

znk
s ymk

s (1− nkmk). (3.6)

Notice that the parameters (3.1)–(3.3) play the role fugacities. The factor (1− nkmk) in
the probability distribution ensures exclusion of ribosomes at the same site of lanes 1
and 2 due to mutual sterical hindrance.

We stress that no further constraints on the rates of the model (other than the
choice (3.4) and (3.5) of the boundary rates) is required for (3.6) to be stationary. The
relation α = (β +Wt)(ys + zs) that follows from (3.4) and (3.5) is reminiscent of the
constraint α+ β = 1 where the standard TASEP with hopping rate 1, injection rate α
and detachment rate β has a factorized stationary distribution [36, 37]. We also remark
that the factorization property of (3.6) implies that a simple mean field approximation
of the model that treats observables at different sites as independent is actually exact,
like in the case if the TASEP along the line α+ β = 1. Notice, however, that the two
ribosome densities on the same site of lane 1 and 2 resp. in the pseudoknot region (see
below) are not independent but highly correlated since 〈nkmk〉 = 0 in the stationary
distribution.

The stationarity is proved by explicitly verifying H|π〉 = 0. In the pseudoknot
segment k � k∗ one has

σ+
k |π〉 = zs(1− n̂k − m̂k)|π〉 (3.7)

σ−
k (1− m̂k)|π〉 = z−1

s n̂k|π〉 (3.8)

τ+
k |π〉 = ys(1− m̂k − n̂k)|π〉 (3.9)

τ−
k (1− n̂k)|π〉 = y−1

s m̂k|π〉 (3.10)
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σ+
k τ

−
k |π〉 = m̂k|π〉 (3.11)

n̂km̂k|π〉 = 0. (3.12)

Inserting these properties into H|π〉 and using the local divergence condition (A.3)
proved in the appendix yields

−HL|π〉 =
[
−α + α(1 + z−1)n̂1

]
|π〉

−H I|π〉 = (−Wn̂1 +Wn̂k∗−1) |π〉, (3.13)

−H∗|π〉 =
[
−W∗n̂k∗−1 +W∗

z

zs
n̂k∗

]
|π〉

+

[
W∗

(
1− z

zs

)
n̂k∗−1n̂k∗ +W∗n̂k∗−1m̂k∗

]
|π〉, (3.14)

−H fs∗|π〉 =
[
W ∗

fs

z

ys
m̂k∗ −W ∗

fsn̂k∗−1

]
|π〉

+

[
W ∗

fsn̂k∗−1n̂k∗ +W ∗
fs

(
1− z

ys

)
n̂k∗−1m̂k∗)

]
|π〉

−H fs|π〉 = [−Wfsn̂k∗ +Wfsn̂k∗−1n̂k∗] |π〉, (3.15)

−Ht|π〉 = [Wt(ys + zs)−Wt(1 + ys + zs)m̂k∗ −Wt(1 + ys + zs)n̂k∗] |π〉,
(3.16)

−H II|π〉 = Ws [n̂L′ + m̂L′ − n̂k∗ − m̂k∗ − n̂k∗m̂k∗)] |π〉, (3.17)

−HR|π〉 = β(zs + ys)|π〉
− [β(1 + zs + ys)n̂L + β(1 + ys + zs)m̂L] |π〉. (3.18)

In the stationary state all terms proportional to the various occupation numbers
must cancel so that H|π〉 = 0 which one verifies by lengthy but straightforward algebra,
using (3.4) and (3.5).

3.2. Ribosome density

The fugacities (3.2) and (3.1) parametrize the average ribosomal density, which is the
expected ribosome occupation number per codon, as follows. In the upstream segment
one has density

ρ =
z

1 + z
(3.19)

on lane 2. In terms of the normalized rates w• = W•/W one obtains from (3.1)

ρ = 1− wt

1− ws
(3.20)
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In the pseudoknot following the slippery segment the density on lane 2 is given by

ρs =
zs

1 + ys + zs
=

1− w∗
fs

1 + wfs

ρ (3.21)

and the density of ribosomes that have suffered frameshift, i.e., the density on lane 1
reads

σs =
ys

1 + ys + zs
=

wfs + w∗
fs

1 + wfs
ρ. (3.22)

The mean interribosomal distance in units of 3nt in each segment is the inverse density.

3.3. Fluxes and related quantities

In this work we are interested in exact quantitative results for the stationary rate
of translation, both normal and after frameshift, and related quantities such as the
stationary rate of frameshift and premature termination.

The upstream flux J of ribosomes, which is defined as the average number of ribo-
somes that pass from codon to the next per unit time, is given by the stationary
expectation of the instantaneous translocation current Wnk(1− nk) for k < k∗. From
the stationary distribution (3.6) of the process one obtains

Jup = Wρ(1− ρ) (3.23)

with the upstream ribosome density ρ. Because of the factorization of the station-
ary distribution this exact result is the same as one would obtain in a simple mean
field theory that neglects all correlations. The steric hindrance that prevents a ribo-
some to step forward to a still occupied codon leads to the existence of a maximal
current (as function of the density) which is in the present model is attained at
density 1/2.

The rate of normal elongation is given by the average number of ribosomes per
time unit that complete elongation at the terminal site L. Since in the framework
of our model there is no premature termination of elongation after passing through
the slippery sequence, one can express the rate of normal elongation by the sta-
tionary flux J s

2 of ribosomes on lane 2 inside the pseudoknot region. This yields
J s
2 = Ws〈n̂k(1− n̂k+1 − m̂k+1)〉 for k � k∗ one obtains in the stationary

distribution

J s
2 = Wsρs(1− ρ) (3.24)

Similarly, the rate of fusion protein elongation is given by the stationary
flux J s

1 of ribosomes on lane 1 inside the pseudoknot region. This yields
J s
1 = Ws〈m̂k(1− n̂k+1 − m̂k+1)〉 for k � k∗ one obtains

J s
1 = Wsσs(1− ρ). (3.25)

The stationary rate of frameshift Rfs is defined as the average number of ribosomes
that undergo frameshift per unit time. Thus, Rfs is given by

Rfs :=W ∗
fs〈n̂k∗−1(1− n̂k∗ − m̂k∗)〉+Wfs〈(1− n̂k∗−1)n̂k∗〉. (3.26)
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The stationary distribution yields

Rfs = W ∗
fsρ(1− ρ) +Wfsρs(1− ρ). (3.27)

Analogously, the stationary rate Rt of premature termination is the average number
of ribosomes that detach from site k∗ on either lane per unit time. Thus Rt = Rt

1 +Rt
2

with

Rt
2 :=Wt〈n̂k∗〉 = Wtρs (3.28)

Rt
1 :=Wt〈m̂k∗〉 = Wtσs. (3.29)

Finally, the stationary non-slip rate R∗ is defined to be the average number of
ribosomes that pass through the slippery region per unit time without suffering
frameshift or premature termination. This quantity is the stationary translocation rate
W∗〈n̂k∗−1(1− n̂k∗ − m̂k∗)〉 given by

R∗ = W∗ρ(1− ρs − σs). (3.30)

3.4. Density fluctuations

Stationary density fluctuations of the conserved particle number nM in an interval of
length M are captured by the static compressibility κ = (〈n2

M〉 − 〈nM〉2)/M and more
generally for more than one conserved particle number nα

M by the compressibility matrix

K with matrix elements καβ = (〈nα
Mnβ

M〉 − 〈nα
M〉〈nβ〉M)/M . From the invariant measure

one obtains for the upstream segment

κ = ρ(1− ρ) (3.31)

and inside the pseudoknot region

κ11 = ρs(1− ρs), κ22 = σs(1− σs), κ12 = −ρsσs. (3.32)

The suppression of the variances κ in the upstream segment and κ11 and κ22 in the
pseudoknot region for high enough densities have their origin in the steric hindrance
that we model by the exclusion constraint. The negative cross-correlation κ12 = κ21 arises
from the impossibility to accommodate a regular ribosome and frameshifted ribosome
on the same codon.

4. Discussion

As elaborated upon above, we take wt = wt0(1− ws) with 0 < wt0 < 1 throughout this
section. From (3.20) one finds relation ρ = 1− wt0 . By varying the free parameter wt0

one can study the quantities of interest as a function of the upstream density ρ.
First we note that the ribosome density ρstot in the pseudoknot segment is then,

acccording to (3.21) and (3.22), given by

ρstot = ρ (4.1)
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Figure 3. Normalized stationary frameshift rate r fs :=Rfs/W as function of the
ribosome density ρ with the choice of amplitude given by wfs = w∗

fs = 1.

despite the loss of ribosomes from premature termination at the slippery sequence. This
loss is compensated by the lower translocation rate ws in the pseudoknot region. It
follows that the pseudoknot where translocation occurs does not act as a bottleneck.

For the stationary frameshift flux we obtain from the relations (3.2) and (3.3)
and from (3.20) and (4.2) In terms of the rates and the upstream density ρ the
expression.

Rfs = Wt
w∗

fs + wfs

(1− ws)(1 + wfs)
ρ =

w∗
fs + wfs

1 + wfs

Jup = W
w∗

fs + wfs

1 + wfs

ρ(1− ρ). (4.2)

Using the last equality, we show in figure 3 the variation of the normalized stationary
frameshift rate r fs = Rfs/W with the density ρ. The increase with ρ is expected, but is
non-linear which is a consequence of the collective motion of the ribosomes. The mutual
exclusion leads to a sublinear growth that has its maximum at ρ = 1/2. For higher
densities, jamming of ribosomes leads to a decrease of the current and hence of the
frameshift rate.

As can be seen from the exact formula (4.2), Rfs depends mainly on two factors, (a)
the parameters wfs and w∗

fs which reflect the complexity of the pseudoknot and (b) the
upstream density which indicates the availability ribosomes for frameshift. With decreas-
ing the pseudoknot strength ΔG̃eff the parameter ws increases while wt = wt0(1− ws)
(which determines the density) and wfs,w

∗
fs decrease, with the net effect that Rfs

decreases. The change is monotone since the strongly decreasing product wt(w
∗
fs + wfs)

in the amplitude of Rfs overcompensates the decrease of Rfs due the factor 1− ws in
the denominator. This compensation is readily seen in the second equality where the
upstream current that does not depend on ws enters.

A further quantity of interest that characterizes programmed ribosomal frameshift
is the fraction φ of the proteins synthesized that are a fusion of two proteins ‘conjoined
at birth’. According to the definitions (3.24) and (3.25) and the results (3.2) and (3.3)
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Figure 4. Frameshift efficiency φ as function of the normalized translocation rate
ws with the choice wfs = w∗

fs = 1− ws.

this fraction is given by

φ =
J s
1

J s
1 + J s

2

=
σs

ρ
=

w∗
fs + wfs

1 + wfs

. (4.3)

It measures the efficiency of the programmed −1 frameshift. As expected, the efficiency
vanishes as ws → 1, corresponding to the absence of a pseudoknot. For decreasing ws the
actual rate J s

1 of fusion protein production also decreases. However, the normal protein
production decreases at the same rate so that the ratio saturates. This is illustrated
in figure 4 where the dependence of φ on ws is displayed with the choice wfs = w∗

fs =
(1− ws)/2.

Finally, we discuss the phase diagram as function of the initiation rate. In the dis-
cussion above it is tacitly assumed that the rates of initiation and termination match
the stationary density produced by the slippery sequence in conjunction with the pseu-
doknot that extends from sites k∗ up to a site L′. Then the termination at some site
L > L′ with rate β∗ = W(1− ρ) produces a downstream current J down = Wρ(1− ρ) in
the segment between the pseudoknot and the termination site L that matches the cur-
rent J s = J s

1 + J s
2 in the pseudoknot region, while at the start codon the initiation rate

α∗ = Wρ produces the same current that matches the stationary upstream value J up

(3.23) with J s, thus keeping the pseudoknot segment stationary with the properties
discussed above.

However, if initiation at site 1 occurs at a different rate, the situation changes. We
focus on the case where ρ > 1/2 and a rate of initiation α = WρL with ρL 	= ρ. For a full
discussion of the related problem of the TASEP with a blockage, see [38].

For ρL 	= ρ the initiation attempts to produce a current JL = WρL(1− ρL), which,
however, does not match the current Jup = J s = Jdown that keeps the pseudoknot and
downstream region stationary. Then, according to the exact solution of the TASEP
with open boundaries [36, 37] and, more generally, the theory of boundary-induced
phase transition [39], the whole upstream segment k < k∗ remains stationary at den-
sity ρ as long as ρL > 1− ρ, except close to the start codon where the density along
the mRNA approaches ρ exponentially fast. At ρL = 1− ρ one has phase coexistence
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Figure 5. Phase diagram of the mRNA as function of the normalized initiation rate
ρL = α/W and upstream ribosomal density ρ in the regime ρ > 1/2. Phase HD is
the high-density phase where the bulk density in the upstream segment ρup = ρ.
Phase LD is the low-density phase with ρup = ρL, separated from phase 1 by the
line ρ = 1− ρL of phase coexistence, corresponding to a first-order non-equilibrium
phase transition.

between a low-density domain 1 � k < ks with density 1− ρ < 1/2 and a high-density
domain ks < k < k∗ with density ρ > 1/2, analogous to non-equilibrium phase separa-
tion in one space dimension [40]. As in the Zel’dovich theory of kinetics of first-order
transitions [41], the domain wall motion can be understood as diffusion of the size
of the high-density segment with a diffusion coefficient 2Ds = ρ(1− ρ)/(2ρ− 1) [42]
The high-density segment corresponds to a traffic jam of molecular motors with a fluc-
tuating position of the domain wall which marks the beginning of the jam which is
well-understood in systems of finite size [43–47] and For ρL < 1− ρ the domain wall
is located in the vicinity of the pseudoknot and the downstream region is stationary a
low-density regime with density ρL. (figure 5).

With regard to temporal fluctuations we note that the upstream current is the same
as for the totally asymmetric simple exclusion process. It follows that collective density
waves travel with a speed vc = 1− 2ρ until they hit either the left boundary or the
pseudoknot region. These density fluctuations are known to be in the universality class
of the Kardar–Parisi–Zhang (KPZ) equation [48, 49]. In particular, this implies that
the density wave broadens in time asymptotically superdiffusively with a power law t2/3.

Inside the pseudoknot region there are two conserved densities, one for each lane.
Then a richer scenario of potential dynamical universality classes arises, as worked out
from non-linear fluctuating hydrodynamics by using mode coupling theory [50, 51] for
two conservation laws and later in more detail for an arbitrary number of conservation
laws [52]. The crucial ingredients from which the dynamical universality classes are
derived are the current-density relation and the compressibility matrix K. Since there
are two conservation laws one has two collective density waves. One of the density waves
travels with velocity v1 = Ws(1− ρ), while the other has velocity v2 = Ws(1− 2ρ), where
ρ = ρs + σs. Interestingly, mode coupling theory shows that only one mode belongs to
the KPZ universality class and broadens superdiffusively. The second mode is diffusive
and broadens with the usual power law t1/2.
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5. Conclusion

Programmed ribosomal frameshift is one of the most prominent modes of recoding
of genetic information. In this paper we have introduced a stochastic model for pro-
grammed −1 frameshift for which we have computed the exact stationary solution. This
allows for exact analytical calculation of various quantities that highlight the impor-
tance of the average ribosome density and of slow translocation rate in a pseudoknot
for the rate and efficiency of the frameshift. We have reported quantitative results that
demonstrate that the density of ribosomes is an important parameter even when the
pseudoknot does not act as an effective bottleneck that would induce a ‘traffic jam’
of ribosomes [25]. By varying the ribosome density we have illustrated the non-linear
effect of the collective ribosome motion on the stationary frameshift rate which exhibits
a maximum at intermediate ribosome density ρ = 1/2 (figure 3), thus supporting the
notion [10] that the ribosome density is an important dynamical control parameter
that controls the frequency of programmed ribosomal −1 frameshift. At high densities
the suppression of −1 programmed frameshift by a trailing ribosome is similar to the
suppression of diffusive backtracking of a RNA polymerase (RNAP) motor by another
trailing very closely on a DNA track [53].

The stiffness of the pseudoknot is shown to control monotonically the efficiency of
the production of the fusion protein that is synthesized as a result of the frameshift
(figure 3) due to an interplay of the reduction of the microscopic frameshift rates and
rates of premature termination at the slippery sequence with the density. The relevance
of the density as important control parameter emerges also if at high densities ρ > 1/2
the rate of initiation attempts to generate an upstream ribosome flux that does not
match the current that the pseudoknot with given parameters can support. Then a first-
order non-equilibrium phase transition occurs between a phase of low density where the
upstream density is given by the (low) initiation rate and phase of high density given
by the density ρ that pseudoknot support under stationary conditions. In this phase
the upstream density is given by ρ. On the phase transition line both regimes coexist,
separated by a sharp diffusing domain wall.

To the best of our knowledge we have reported here the first results for the col-
lective space-time fluctuations of the ribosomal density. Under regular conditions, i.e.,
without frameshift, density waves travel with finite speed and broaden superdiffusively
in the KPZ universality class. Somewhat surprisingly, frameshift leads to second collec-
tive mode which does not belong to the generic KPZ class for one-dimensional driven
systems, but is diffusive.

In laboratory experiments, the density of the ribosomes on the mRNA can be up-
or down-regulated by several different signals and pathways, in particular, by inhibiting
initiation at the start codon, which would thus allow for testing the existence of the
predicted first-order phase transition. The stiffness of a pseudoknot can be varied artifi-
cially [22]. Using such synthetic mRNA strands our theoretical prediction can be tested
experimentally by a combination of ribosome profiling technique [54, 55] (for measuring
the ribosome density) and FRET (for the frequency of frameshift) [56].

Finally, we point out that the basic mechanisms of the highly idealized model proved
rigorously and discussed above are expected to be generic. This corroborates the insight
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from RNA transcript slippage [9] that the molecular motor density is generally an impor-
tant dynamical control parameter for the elongation rate in the presence of slippery
sequences on RNA or DNA templates.
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Appendix A. Local divergence condition for the interacting two-lane TASEP

The two-lane TASEP introduced in this paper is a special case of a more general
construction of Markovian multi-lane lattice gas model in which a so-called lattice
divergence condition plays a central role [14]. Applying this general construction to the
present case yields the following result whose proof we outline since [14] is unpublished
at the time of writing the present manuscript.

Proposition A.1. For k∗ � k < L let

−hII
k = Ws

[
σ+
k σ

−
k+1 − n̂k(1− n̂k+1)

] [
1 + ξm̂k + ξ̃m̂k+1 + εm̂km̂k+1

]

+Ws

[
τ+
k τ

−
k+1 − m̂k(1− m̂k+1)

]
[1 + χ̃n̂k + χn̂k+1 + δn̂kn̂k+1] (A.1)

be the local generator for the two-lane TASEP. For the product measure

π(η) =

L∏
i=k∗

zni
s ymi

s bnimi (A.2)

the local generator satisfies the local divergence condition

−hII
k |π〉 = Ws [n̂k+1 + m̂k+1 − n̂k − m̂k + (ξ + χ̃)(n̂k+1m̂k+1 − n̂km̂k)] |π〉. (A.3)

if and only if the parameter relations

ε = (1− b)(1 + χ̃) (A.4)

δ = (1− b)(1 + ξ) (A.5)

χ = b(1 + ξ)− 1 (A.6)

ξ̃ = b(1 + χ̃)− 1 (A.7)

https://doi.org/10.1088/1742-5468/ab7a1d 17

https://doi.org/10.1088/1742-5468/ab7a1d


J.S
tat.

M
ech.

(2020)
043502

On the stationary frequency of programmed ribosomal −1 frameshift

are satisfied.

Proof. We first prove that given the parameter relations the local divergence condition
(A.3) follows. For k∗ � k � L one finds by straightforward computation along the lines
of [23]

σ+
k |π〉 = zs(1− n̂k)(1 + (b− 1)m̂k)|π〉 (A.8)

σ−
k |π〉 = z−1

s n̂k

(
1 + (b−1 − 1)m̂k

)
|π〉 (A.9)

τ+
k |π〉 = ys(1− m̂k)(1 + (b− 1)n̂k)|π〉 (A.10)

τ−
k |π〉 = y−1

s m̂k

(
1 + (b−1 − 1)n̂k

)
|π〉. (A.11)

With the notation v̂k = 1− n̂k, ûk = 1− m̂k and

f̂ k = 1 + ξm̂k + ξ̃m̂k+1 + εm̂km̂k+1 (A.12)

ĝk = 1 + χ̃n̂k + χn̂k+1 + δn̂kn̂k+1 (A.13)

and setting Ws = 1 this yields

−hII
k |π〉 =

{[
v̂kn̂k+1(ûk + bm̂k)

(
ûk+1 + b−1m̂k+1

)
− n̂kv̂k+1

]
f̂ k

+
[
ûkm̂k+1(v̂k + bn̂k)

(
v̂k+1 + b−1n̂k+1

)
− m̂kûk+1

]
ĝk

}
|π〉. (A.14)

Now we note

(
ûk+1 + b−1m̂k+1

)
(ûk + bm̂k)f̂ k

=
(
ûk+1 + b−1m̂k+1

) [
ûk + ξ̃ûkm̂k+1 + b(1 + ξ)m̂k + b(ξ̃ + ε)m̂km̂k+1

]

= ûk+1 [ûk + b(1 + ξ)m̂k]

+ b−1m̂k+1

[
ûk + ξ̃ûk + b(1 + ξ)m̂k + b(ξ̃ + ε)m̂k

]

= ûk+1 [1 + [b(1 + ξ)− 1] m̂k]

+ m̂k+1

[
b−1(1 + ξ̃) +

[
(1 + ξ̃)(1− b−1) + ξ + ε

]
m̂k

]

= 1 + [b(1 + ξ)− 1] m̂k − m̂k+1 + [1− b(1 + ξ)] m̂km̂k+1

+ b−1(1 + ξ̃)m̂k+1 +
[
(1 + ξ̃)(1− b−1) + ξ + ε

]
m̂km̂k+1

= 1 + [b(1 + ξ)− 1] m̂k +
[
b−1(1 + ξ̃)− 1

]
m̂k+1

+
[
(1 + ξ̃)(1− b−1) + (1 + ξ)(1− b) + ε

]
m̂km̂k+1. (A.15)

It follows that

−hII
k |π〉 =

{
n̂k+1 + [b(1 + ξ)− 1] n̂k+1m̂k +

[
b−1(1 + ξ̃)− 1

]
n̂k+1m̂k+1
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+
[
(1 + ξ̃)(1− b−1) + (1 + ξ)(1− b) + ε

]
n̂k+1m̂km̂k+1

− n̂k − ξn̂km̂k − ξ̃n̂km̂k+1 − εn̂km̂km̂k+1

− n̂kn̂k+1 − [b(1 + ξ)− 1] n̂kn̂k+1m̂k −
[
b−1(1 + ξ̃)− 1

]
n̂kn̂k+1m̂k+1

−
[
(1 + ξ̃)(1− b−1) + (1 + ξ)(1− b) + ε

]
n̂kn̂k+1m̂km̂k+1

+ n̂kn̂k+1 + ξn̂kn̂k+1m̂k + ξ̃n̂kn̂k+1m̂k+1 + εn̂kn̂k+1m̂km̂k+1

+ m̂k+1 + [b(1 + χ̃)− 1] m̂k+1n̂k +
[
b−1(1 + χ)− 1

]
m̂k+1n̂k+1

+
[
(1 + χ)(1− b−1) + (1 + χ̃)(1− b) + δ

]
m̂k+1n̂kn̂k+1

− m̂k − χ̃m̂kn̂k − χm̂kn̂k+1 − δm̂kn̂kn̂k+1

− m̂km̂k+1 − [b(1 + χ̃)− 1] m̂km̂k+1n̂k −
[
b−1(1 + χ) − 1

]
m̂km̂k+1n̂k+1

−
[
(1 + χ)(1− b−1) + (1 + χ̃)(1− b) + δ

]
m̂km̂k+1n̂kn̂k+1

+ m̂km̂k+1 + χ̃m̂km̂k+1n̂k + χm̂km̂k+1n̂k+1 + δm̂km̂k+1n̂kn̂k+1} |π〉

=
{
n̂k+1 + [b(1 + ξ)− 1] n̂k+1m̂k +

[
b−1(1 + ξ̃)− 1

]
n̂k+1m̂k+1

+
[
(1 + ξ̃)(1− b−1) + (1 + ξ)(1− b) + ε

]
n̂k+1m̂km̂k+1

− n̂k − ξn̂km̂k − ξ̃n̂km̂k+1 − εn̂km̂km̂k+1

− [b(1 + ξ)− 1] n̂kn̂k+1m̂k −
[
b−1(1 + ξ̃)− 1

]
n̂kn̂k+1m̂k+1

+ ξn̂kn̂k+1m̂k + ξ̃n̂kn̂k+1m̂k+1

−
[
(1 + ξ̃)(1− b−1) + (1 + ξ)(1− b)

]
n̂kn̂k+1m̂km̂k+1

+ m̂k+1 + [b(1 + χ̃)− 1] n̂km̂k+1 +
[
b−1(1 + χ)− 1

]
n̂k+1m̂k+1

+
[
(1 + χ)(1− b−1) + (1 + χ̃)(1− b) + δ

]
n̂kn̂k+1m̂k+1

− m̂k − χ̃n̂km̂k − χn̂k+1m̂k − δn̂kn̂k+1m̂k

− [b(1 + χ̃)− 1] n̂km̂km̂k+1 −
[
b−1(1 + χ)− 1

]
n̂k+1m̂km̂k+1

+ χ̃n̂km̂km̂k+1 + χn̂k+1m̂km̂k+1

−
[
(1 + χ)(1− b−1) + (1 + χ̃)(1− b)

]
n̂kn̂k+1m̂km̂k+1

}
|π〉

= {n̂k+1 − n̂k + m̂k+1 − m̂k

+
[
b−1(1 + ξ̃)− 1 + b−1(1 + χ)− 1

]
n̂k+1m̂k+1

− (ξ + χ̃)n̂km̂k

+ [b(1 + ξ)− 1− χ] n̂k+1m̂k
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+
[
b(1 + χ̃)− 1− ξ̃

]
n̂km̂k+1

+
[
(2 + ξ̃ + χ)(1− b−1) + (1 + ξ)(1− b) + ε

]
n̂k+1m̂km̂k+1

− [εn̂k + (b− 1)(1 + χ̃)] n̂km̂km̂k+1

− [δ + (b− 1)(1 + ξ)] n̂kn̂k+1m̂k

+
[
(2 + ξ̃ + χ)(1− b−1) + (1 + χ̃)(1− b) + δ

]
n̂kn̂k+1m̂k+1

−
[
(2 + ξ̃ + χ)(1− b−1) + (2 + ξ + χ̃)(1− b)

]
n̂kn̂k+1m̂km̂k+1

}
|π〉 (A.16)

With

ε = (1− b)(1 + χ̃) (A.17)

δ = (1− b)(1 + ξ) (A.18)

the action of hII
k on the measure reduces to

−hII
k |π〉 =Ws {n̂k+1 − n̂k + m̂k+1 − m̂k

+
[
b−1(1 + ξ̃)− 1 + b−1(1 + χ)− 1

]
n̂k+1m̂k+1

− (ξ + χ̃)n̂km̂k

+ [b(1 + ξ)− 1− χ] n̂k+1m̂k

+
[
b(1 + χ̃)− 1− ξ̃

]
n̂km̂k+1

+
[
(2 + ξ̃ + χ)(1− b−1) + (2 + ξ + χ̃)(1− b)

]
n̂k+1m̂km̂k+1

+
[
(2 + ξ̃ + χ)(1− b−1) + (2 + ξ + χ̃)(1− b)

]
n̂kn̂k+1m̂k+1

−
[
(2 + ξ̃ + χ)(1− b−1) + (2 + ξ + χ̃)(1− b)

]
n̂kn̂k+1m̂km̂k+1

}
|π〉 (A.19)

With

χ = b(1 + ξ)− 1 (A.20)

ξ̃ = b(1 + χ̃)− 1 (A.21)

the last five terms cancel and the local divergence condition (A.3) follows after re-
introducing the rate Ws. Since the relations (A.17), (A.18), (A.20), and (A.21), are
necessary and sufficient for the cancellation of the unwanted non-divergence terms, also
the reverse direction of the derivation is valid. �
Corollary A.2. With the rates

f̂ k = 1 + ξm̂k + [b(1 + χ̃)− 1]m̂k+1 + (1− b)(1 + χ̃)m̂km̂k+1

ĝk = 1 + χ̃n̂k + [b(1 + ξ)− 1]n̂k+1 + (1− b)(1 + ξ)n̂kn̂k+1 (A.22)
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the local generator hII
k satisfies the local divergence condition (A.3) for any value of the

parameters ξ, χ̃, b [57] and for

H II :=Ws

L−1∑
k=k∗

hII
k (A.23)

one has

−H II|π〉 = Ws [n̂L + m̂L − n̂k∗ − m̂k∗ + (ξ + χ̃)(n̂Lm̂L − n̂k∗m̂k∗)] |π〉. (A.24)

Corollary A.3. For b = 0 (at most one particle per site) one has ε = 1 + χ̃, δ = 1 + ξ,

χ = ξ̃ = −1 which yields

−hII
k = Ws

[
σ+
k σ

−
k+1 − n̂k(1− n̂k+1)

]
[1 + ξm̂k − m̂k+1 + (1 + χ̃)m̂km̂k+1]

+Ws

[
τ+
k τ

−
k+1 − m̂k(1− m̂k+1)

]
[1 + χ̃n̂k − n̂k+1 + (1 + ξ)n̂kn̂k+1] . (A.25)

and the local divergence condition reduces to

−hII
k |π〉 = Ws [n̂k+1 + m̂k+1 − n̂k − m̂k] |π〉. (A.26)

since n̂km̂k|π〉 = 0 if b = 0.

Remark A.4.

(a) For ξ = 0, χ̃ = −1 one obtains

−hII
k = Ws

[
σ+
k σ

−
k+1 − n̂k(1− n̂k+1)

]
(1− m̂k+1)

+Ws

[
τ+
k τ

−
k+1 − m̂k(1− m̂k+1)

]
(1− n̂k)(1 + (b− 1)n̂k+1) (A.27)

and

−H II|π〉 = Ws [n̂L + m̂L − n̂k∗ − m̂k∗ − (n̂Lm̂L − n̂k∗m̂k∗)] |π〉 (A.28)

= Ws [(1− n̂k∗)(1− m̂k∗)− (1− n̂L)(1− m̂L)] |π〉. (A.29)

(b) For b = 0 and

χ̃ = −(1 + ξ) (A.30)
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the local generator reduces to

−hII
k = Ws

[
σ+
k σ

−
k+1 − n̂k(1− n̂k+1)

]
(1 + ξm̂k)(1− m̂k+1)

+ Ws

[
τ+
k τ

−
k+1 − m̂k(1− m̂k+1)

]
(1− (1 + ξ)n̂k)(1− n̂k+1) (A.31)

with −1 � ξ � 0.

(c) For b = 1 (no exclusion between lanes) one has ε = δ = 0,χ = ξ, ξ̃ = χ̃ which yields

−hII
k = Ws

[
σ+
k σ

−
k+1 − n̂k(1− n̂k+1)

]
[1 + ξm̂k + χ̃m̂k+1]

+Ws

[
τ+
k τ

−
k+1 − m̂k(1− m̂k+1)

]
[1 + χ̃n̂k + ξn̂k+1] . (A.32)

This is the two-lane model that exhibits fluctuations in the dynamical Fibonacci-
universality classes [52]. Specifically, for χ = ξ = ξ̃ = χ̃ = 0 one has two decoupled
TASEPs which implies the well-known local divergence condition

−hI
k|π〉 = W [n̂k+1 − n̂k] |π〉. (A.33)

for the TASEP with the stationary Bernoulli product measure π with fugacity z.
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[43] Schütz G M 1997 The Heisenberg chain as a dynamical model for protein synthesis—Some theoretical and

experimental results Int. J. Mod. Phys. B 11 197–202
[44] Derrida B, Lebowitz J L and Speer E 1997 Shock profiles in the asymmetric simple exclusion process in one

dimension J. Stat. Phys. 89 135–67
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