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Abstract. The electrical response of an electrolytic cell to an external ac exci-
tation is analysed by solving the equations of the Poisson—Nernst—Planck (PNP)
continuum model for two ions (ambipolar) and one mobile ion diffusive systems.
The theoretical predictions of the ambipolar system, formed by positive ions of
mobility s, and negative ions of mobility u.,, are investigated in the limit in
which one of the mobilities goes to zero. The analysis reveals that these predic-
tions correspond to the ones arising from the one mobile ion diffusive system
only in the frequency range w > wppm/typ, in which wp is the Debye’s frequency.
For very low frequencies, it shows that the physical system formed by two mobile
ions, one of which has a very low mobility, is clearly distinct from the physical
system in which just one of the ions is mobile. We argue that apparent devi-
ations of the experimental spectra from the predictions of the PNP model in
the low frequency region, usually interpreted as an interfacial property, may be
connected with the difference in the diffusion coefficients of cations and anions.
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1. Introduction

The role of the mobile ions in the electrical impedance response of liquid materials
deserved many experimental and theoretical approaches in the last decades [1-5]. The
natural experimental framework to analyse it is the impedance spectroscopy technique,
which is based on the linear response of the material when it is submitted to an ac
voltage of small amplitude, say Vj, and a variable frequency, f= w/27r, where w is the
angular frequency [6]. The response may be immediately connected with the impedance,
Z(w), by varying the frequency of the applied voltage in a wide interval. The ion influ-
ence is expected to be more pronounced in the low frequency part of the impedance
spectrum, in view of the high mobility of these charges [7]. It is also expected that the
whole response of the cell strongly depends on the role played by the electrodes limiting
it [8—10]. Thus, in order to account for the influence of the ions on the impedance spec-
troscopy response, it is necessary to investigate the problem by considering appropriate
boundary conditions. A successful model to describe the dynamical behaviour of the ions
is the so-called Poisson—Nernst—Planck (PNP) continuous model [1], whose fundamental
equations are the continuity equations, for the positive and negative ions, coupled to
the equation of Poisson, for the actual electric potential across the sample. The mod-
els proposed to interpret the low frequency region of the real and imaginary parts of
the spectra are mainly based on the assumption that the electric current is of diffusion
origin, and responsible for a Warburg-like impedance [11, 12]. These models have been
recently criticised, since in their framework the electrical current is position dependent,
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and hence the usual definition of electric impedance of the cell cannot be used [13].
Some deviations of the experimental spectra frequency dependencies, from the theo-
retical predictions of the PNP model, have been observed mainly in the low frequency
region. They are particularly significant when one insists in interpreting experimental
data of a system having very different mobilities by means of a simplified version of
PNP model that assumes equal mobilities. In this case, those apparent deviations of
the spectra in the low frequency region could be a consequence of this difference in the
diffusion coefficients of the ions, and not due to a particular weakness of the model.

The case in which only one type of ion is mobile is of some practical interest
[14, 15]. It has been considered theoretically, as a limiting case, by Franceschetti and
Ross Macdonald some years ago [16]. Deviations from the theoretical predictions may
also be found when one interprets experimental data of systems with very differ-
ent mobilities in the framework of the one ion mobile diffusive systems. Indeed, the
applicability of this kind of approach becomes meaningful only for a certain part of
the frequency spectra concerning high values, as we propose to analyse hereafter in
detail.

The first step of our analysis is to obtain the exact solutions of the PNP equations
for the system formed by positive ions of mobility p, and negative ions of mobility
fm, which we call hereafter as ‘ambipolar’ system, such that p, # pun, # 0 [17-19].
Then, we also obtain the solutions for the PNP equations of the one mobile ion dif-
fusive system (u, # 0 and p,, = 0). For simplicity, we restrict the subsequent analysis
to the case of blocking electrodes boundary conditions, but an immediate generalisa-
tion of our approach allows us to take into account the non-ideal blocking character of
the electrodes by changing the boundary conditions on the surface density of currents
9, 10]. Our goal here is to compare the theoretical predictions of both the ambipolar
and the one mobile ion diffusive systems in the limit in which one of the mobilities goes
to zero. Specifically, if we put p, = yu,, with y € [0, 1], a rough perturbative analysis
starting from the equations of the ambipolar system reveals the apparent existence of a
singular point at y = 0 in the limit of very low frequency. If true, this singularity would
forbid the solutions to satisfy the required boundary conditions, even in the simplest
case of blocking electrodes. A more rigorous mathematical analysis of the solutions per-
mits us to conclude instead that, in the limit y — 0, the impedance response of both
models shows a good agreement in the ‘high’ frequency region, but a strong disagree-
ment in the ultra low frequency region of the spectrum, indicating that the limits y — 0
and w — 0 may not commute. In this low frequency region, the physical system formed
by two mobile ions, one of which has a very low mobility, is shown to be clearly distinct
from the physical system in which just one of the ions is mobile. Thus, the predictions
of the one mobile ion diffusive system should always be taken with care when applied
to the whole frequency range covered by the experimentally data. Otherwise, unreal
deviations between the theoretical predictions and the experimental data, interpreted
as being due to interfacial effects, arise compromising a true interpretation of real bulk
properties.

The paper is organised as follows. In section 2, we solve the basic bulk equations
of the ambipolar and one mobile ion diffusive systems, obtaining analytical expressions
for the electrical impedance of the cell in both systems. The apparent absence of a
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continuous mapping from one model to the other is faced analytically in section 3,
using a rough version of the small parameter method. In the same section, a more
rigorous mathematical analysis is performed, indicating that, for a given frequency,
the predictions of both models coincide in the limit y — 0, for a fixed frequency. In
section 4, we promote a direct comparison between the predictions of the ambipolar
and the one mobile ion diffusive systems, using data from a real sample, in the limit
in which one of the mobilities is decreasingly small. Some conclusions are presented in
section 5.

2. The mathematical problems

To formulate the mathematical problem, we assume that the charge carriers form a
continuum of positive and negative charge densities in a system in the shape of a slab
of thickness d. The surfaces are electrodes placed at the positions z = +d/2, where z is
the Cartesian coordinate perpendicular to the surfaces, such that all quantities depend
only on the coordinate z and the time ¢. In the absence of an external field, the sample
is locally and globally neutral, and the potentials of the electrodes coincide with that
of the bulk. In what follows, we consider that the sample is subjected to an external
electrical difference of potential given by

V(d/2,t) — V(=d/2,t) = Voe', (1)

in which, as mentioned before, Vj is the amplitude, which has to be small enough to
keep the linear approximation valid, and f=w/(27) is the frequency. Before apply-
ing this external potential, we assume that the bulk density of positive and negative
ions, denoted, respectively, as N, and Ny, are such that N,(V, =0) = N,,(Vy = 0) = ny,
where ng is the bulk density of ions in the thermodynamic equilibrium.

2.1. Ambipolar diffusion

We first tackle the case in which in the presence of a V, # 0 both ions move in the
sample, producing currents that are partially due to the diffusion and partially due to
the drift. These currents are:

. ON, qN, oV
o= [ 0z i kgT 3,21 ’
. ON, qN, oV
Jm = _Dm |: 82 - l{fBT 82} ) (2)

where p stands for the sign (+) and m for the sign (—) of the charges of the ions, whose
absolute value is the elementary charge, ¢. In equation (2), kg T is the thermal energy
and V= V(zt) is the actual electrical potential. The basic equations of the problem
are the equations of continuity for the two types of ions, and the equation of Poisson,
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namely:

ONpw  Ojpm 2V
pTan L

=2 (N = N, 3)

in which e is the dielectric constant of the liquid containing the ions, assumed as
non-dispersive in the frequency range analysed here. A simple inspection of the set
of equations (2) and (3) shows that the equations of continuity are nonlinear because
of the drift terms. Since we are working in the small ac voltage limit, it is possible to
assume that N, = ng + n, as well as N,, = ng + n.y, such that n, < ny and n, <K ng,
i.e., the resulting system will behave as linear if we always restrict the analysis to
the case Vy < vp = kgT/q~ 0.025 V. This linear regime, which is required in order to
keep the concept of impedance as meaningful, permits us to modify the drift term in
equation (2) as

NV mdV o,
vr 0z wvp 0z Oz’

for a = p, m, (4)

in which u, = V/vr. Now, using this approximation, the set of equation (3), combined
with the resulting equations from (2), produces the following equations of the PNP
model:

du,, D {82% 82%1
p )

ot 022 022
aum a2um 82uv
&S_Dm{azg_aﬁ]’
0%u, 1
gz~ Tz (T ) (5)

in which, for simplicity, we have introduced the reduced quantities u, = (n, — ng)/no,
for a = p, m, as above, and

ekgT €v
I — B — = [2°T (6)
noq noq
is the Debye screening length. In the presence of an applied potential, such that at the
electrodes it assumes the form

d Vo
1% (ii,t> = igem, (7)

the currents of positive and negative ions towards the electrodes are unequal and have
to satisfy proper boundary conditions. To simplify the mathematical analysis, we limit
ourselves to consider the so-called blocking electrodes (i.e., ideally polarisable electrodes
[20]) boundary conditions, i.e.,
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Jo (ig,t) =0 and ju (ig,t) = 0. (8)

At this point, the mathematical problem is stated in terms of well-defined boundary
conditions.

To go on further, let us now sketch the search for solutions using the elementary pro-
cedure of separation of variables. For simplicity, we introduce a more compact notation
by defining the quantities:

L? L? D
D Qm:wD—, wp and = 9)

— _ p
Qp—w ) _§7 L’

where, for future purposes, we also have introduced the Debye frequency, wp. Thus, the
solutions we are looking for, in the presence of a harmonic excitation, may be cast in
the form:

up(z,t) = p(x)e”,
U (2, 1) = m(x)e™,
uy(z,t) = v(x)e™. (10)
Using (9) and (10), the system formed by equation (5) reduces to:
iQ,p(z) = p'(z) + 0" (2),
iQum(x) =m"(z) — 0" (x),

v'(x) = m(z) — p(x). (11)

We consider now the ‘symmetric problem’, i.e., u(—z) = —u(z), p(—z) = —p(zx), and
m(—z) = —m(x). The (odd) solutions for the system (11) are easily found as

p(x) = ¢y sinh \jx 4+ ¢osinh \yz and

m(x) = ¢ (1 +1iQ, — )\12) sinh \jz + ¢ (1 +iQ, — /\22) sinh A\, (12)
in which \;, with ¢ = 1,2, are the two positive solutions of the eigenvalues equation

N — (2419, + i) N + [(1+19,) (1 +iQ,) — 1] =0, (13)

because replacing A; with —\; does not alter the solutions (12), in the sense that just the
coefficients change sign. For what concerns the equation of Poisson, from equations (11)
and using (12), we obtain:
iQ2,, _ i .
v(r) =¢ < /\%I - 1> sinh A\jz + ¢ ()\—%p - 1) sinh Aoz + c3z. (14)

The integration constants c;, ¢z, and ¢3 may be determined by the boundary conditions.
The total electric current is
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oF

T = iy~ dm) + 5, (15)

where the last term is the displacement current. Since no charge injection occurs at the
electrodes, J is position independent, and has the simple form:

EVT

J="7 (D), + Dy, + iwL?] . (16)
Finally, the impedance of the cell, defined as Z = AV/I, may be obtained as
LS
Z(w) 5 (17)

" eS[Dy + D + 1wl c5’

in which uy = Vj/vr and S'is the area of the electrodes. We notice that the expression of
the impedance depends only on the integration constant, c3, connected with the linear
part of the electric potential. To find it, we recall that the blocking electrodes boundary
conditions stated in (8) become:

p(E£xg) + ' (£xy) =0, m'(Fmx) — ' (£x0) = 0, (18)

together with v(+ay) = £y /2, in which zy = d/2L. These equations are enough to deter-
mine the integration constants of the solutions sketched above. At this point the problem
is formally solved and an analytical expression for the electrical impedance of the cell in
the ambipolar regime is found for the situation of blocking electrodes. Similar calcula-
tions may be done for the case of one mobile ion diffusive system, and will be addressed
now.

2.2. One mobile ion diffusive system

We shall consider the case in which one type of the ions (e.g., the negative ones) has zero
mobility, u, = 0. From the Einstein—Smoluchowsky relation, this implies that D,, = 0.
Thus, the set of equations of the PNP model reduces to only two of them:

du,, D {82% 82%1
p

ot 022 0z2
0%u, 1
822 = —ﬁup. (19)

Proceeding as before, in the presence of a harmonic excitation, the solutions of the
spatial part of the equations above are:

p(z) = ¢ sinh Ax  and v(x) = ¢ sinh Az + 4z, (20)

where ¢, = —c|/\°, with \> =1+i€Q,. The integration constants ¢, and ¢ can be
determined by imposing the boundary conditions (18), for blocking electrodes, which,
in the case of one mobile ion diffusive system, become:

Uo

p(xo) +v'(zg) =0 and v (zp) = 5 (21)
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Substitution of equations (20) into (21) yields:

C/ _ L’LLQ)\2
' Ad (A — 1) cosh (Ad/2L) + 2L sinh (\d/2L)’
L 21
g A (A" = 1) (22)

37 A (A2 — 1) + 2L tanh (Ad/2L)’
The current of charged particles is now simply given by J = gj, + €¢0E/0t, which, in this
case, becomes

EVT
ya
i.e., it is constant across the cell, as for the ambipolar diffusion system, and is just
equation (16), for D,, = 0. Likewise, the electrical impedance may be determined as

J = — [Dy +iwL?| ", (23)

UOL3

Z(w) = eS D, +iwL?) dy’

(24)

which would be the case D,, = 0 of equation (17), if ¢; — ¢;. This permits us to suppose
that there exists a limiting procedure by means of which the final impedance expression
obtained in the ambipolar system, equation (17), should tend to the expression obtained
for the case of one mobile ion diffusive system, equation (24), in a continuous manner,
and this is indeed the case. However, this limiting procedure has to be taken with some
care in the low frequency region, as we discuss in detail in the next section by first using
rough perturbative arguments.

3. The small parameter method

To perform a perturbative analysis, in order to investigate the possibility of continuously
passing from the description of the ambipolar diffusive to the description provided by
the one mobile ion diffusive system, we put D, = D and redefine the rescaled quantities
of equation (9) as follows:

L? Q D
D, =yD, Qp:sz—:i Qn=—, wp

D wp’ Y £k (25)

where y € [0, 1]. In terms of these quantities, the equations of the PNP model, given by
the system (11), may be rewritten as:

iQp(x) = p"(x) +v"(2),
iQm(z) =y [m"(z) —v"(z)],
V(@) = —p(x) + m(z). (26)
The boundary conditions relevant for the blocking electrodes are now:

p(£x0) + V' (£x0) =0y [m' (o) — v'(Fx0)] =0, (27)

https://doi.org/10.1088/1742-5468 /ab7a23 8
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in addition to v(£mzy) = £uy/2.

To clarify the meaning of the limiting behaviour y — 0, a simple analysis may be
carried as follows. If we use the third of equation (26) in the other two equations, we
easily obtain two coupled equations for m(z) and p(z) in the form:

ym (z) — (y +iQ)m(x) + yp(z)
p'(x) — (1 +iQ)p(x) + m(x)

0
0. (28)

From the first equation one deduces that for y — 0, m — 0, as expected. Further-
more, from the same equation we derive that y compares with 2. Consequently, small
or large values of y means y < Q or y> (), respectively. This corresponds to the
frequency range w > ywp or w K yYwp, i.e., there is a reference frequency w* = ywp
that defines the meaning of high or small frequencies, as we discuss in detail in
section 4.

3.1. Arbitrary frequency

To explore the limit y — 0, when the frequency is free to vary from very low to very high
values, we first look for solutions of (26) in the form of a small parameter expansion of
the type [21]:
p(z) = po(x) + ypi(x) + ypa(x) + - - -+ y"pul()+
m(z) & mo(x) + ym (x) + y*ma(z) + - -+ y"my (2)+
v(x) = vo(z) + yoi(z) + y oa(x) + - 4y vu(2)+ (29)

Using (29) into equation (26), to the zeroth order, we obtain:

iQpo(x) = py(x) + vg (),
iQmy(z) =0, and

vy (x) = —po(x) + mo (). (30)

The general solutions for py(z) and vo(z) are, simply, the same as for p(z) and v(z) of
the one mobile ion diffusive system, namely:

po(x) = ¢ sinh Az,

mo(x) =0,
/

vo(z) = —% sinh Az + cjx, (31)

where, now, A?> =1 +iQ. The procedure is hereafter straightforward and the method
may be continued to yield the solutions up to the successive orders.

Before proceeding further, it is instructive to test the applicability of the method
at its lowest order, taking into account the boundary conditions to obtain ¢| and cj.

https://doi.org/10.1088/1742-5468 /ab7a23 9
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In the case of blocking electrodes, the currents j, and j,, defined in equation (2) and
rewritten in terms of the rescaled quantities introduced in (25), become:

Un D

Jolw) = =" [0/ (@) o/ (@)
) = ="y () — /()] (32)

and have to satisfy the following conditions:
Jp(zo,t) =0 and  ju(zo,t) = 0. (33)

Since from equation (30), my(z) = 0, to the zeroth order the boundary conditions (27)
yield v)(zy) = 0 and

vy(xo) = —py(x0) = —Ad] cosh [Azg] # 0, (34)

which is evidently impossible. As pointed out before, the iterative procedure could con-
tinue to obtain higher order solutions, but it is not necessary. The simple analysis
sketched above, even if restricted to the zeroth order, apparently indicates that the
solutions of the ambipolar problem cannot be expanded in power series of y near to
y =0 in order to continuously reach the behaviour predicted for the one mobile ion
diffusive system.

It is also possible to look at this delicate problem by using a slightly different per-
spective. Instead of dealing with second order differential equations, we may use the
first and the third of the set of equation (26) to obtain

m(x) = [1+iQ] p(z) — p" (), (35)

and, from the second and the third of those equations, using the previous results, we
arrive at a fourth order equation for p(z):

yp"" () — 2y +1Q(L + )] p"(2) +1Q[(1 + y) + Q] p(z) = 0. (36)

When p(z) is determined by integrating (36), equation (35) yields m(z). Subsequently,
the third of equation (26) can be immediately integrated to obtain v(z). Now, if we
perform the limit y — 0, the fourth order term vanishes in equation (36), which reduces
to

p'(z) — (1+iQ)p(z) = 0. (37)

Substitution of (37) into equation (35), immediately yields m(z) = 0. By invoking the
boundary conditions, equation (18), we arrive again at the conflicting situation for which
v'(z0) = —p'(7) # 0 and also v'(zy) = m/(z9) = 0. Thus, the solution of (37), which is the
same as in equation (20), is apparently not able to satisfy the boundary condition of the
problem. The point y = 0 seems to represent a singular point because the differential
equation (36) changes abruptly its order, passing from fourth to second order. This
rough analysis shows that the expansion with respect to a parameter connecting the
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mobilities of both types of ions has to be applied with care to this class of problems [22].
Indeed, looking at the second of equation (26) we notice that the limit of very small y
is meaningful when we take into account also the order of magnitude of the value of the
frequency, 2. To demonstrate that the continuous limit between the two models exists,
as expected, a more rigorous mathematical analysis is needed, and has to be carried out
by keeping the values of the frequency fixed.

3.2. Fixed frequency

Let us recall the solutions of the ambipolar system, stated in equations (12) and (14),
after using the rescaled quantities defined in (25):

p(x) = ¢ sinh \jx + ¢ sinh Aoz (38)
m(z) = ¢ (1+iQ — A]) sinh Mz + ¢ (1 +iQ — AJ) sinh Aoz (39)
v(z) = ¢; (IQ/A] — 1) sinh Mz + ¢ (1Q2/A] — 1) sinh Az + c3, (40)

where the ¢;’s are the new arbitrary constants, while the \;’s are now the roots of the
biquadratic equation (13), reduced to:

iQ iQ)
M—(%HQ+1)A?+1(LHQ+Q:0
y Y

that is, after elementary computations,

2 Q \/ _ 2_4_y2
/\1—1+2y<1+y+ (1 y) R

9 i) \/ 49/?
=1+ —11 — 1—y)?2— = |.
Ay +2y( +y ( y) 0?2

Note that for small y they behave quite differently, namely

" . .
g:;+4—g+wW)mmA&4+m+g+wW%

as y — 0. Since, as pointed out before, replacing \; with —\; does not affect the structure
of (38)—(40), on taking square roots we may choose J\; in such a way that

ReAj ~ImA; ~/Q/2y and X\ — A=+V1+iQ, (41)

with Re A > 0, as y — 0. Now, the free constants ¢, ¢y, and ¢3 must be chosen in order
to match the boundary conditions (27), which leads to the linear system

https://doi.org/10.1088/1742-5468 /ab7a23 11
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i() i()
Cll— cosh /\11’0 + 021— cosh )\21’0 +c3 = 0,
A1 Ao
C1 (2 — IQ//\% —+ 12 — /\%) /\1 cosh )\11’0 + ¢ (2 - 19/)\3 + i — )\3) )\2 cosh /\2[130 — C3 = 0,
c1 (iQ/)\? — 1) sinh A\jzo + ¢ (iQ/)\g - 1) sinh gz + c329 = up/2. (42)

This system can be inverted to yield the integration constants. To save space, we report
only ¢3 for the comparative purposes with ¢'s:

U0/2

@ = o+ %tanh()\lxo) + gtanh()\gxo)’ (43)
where

A= N(Q+iA) (=20 + Q+1A)),

B = X} (—iQ + \3) (=2 —iQ2 + A}),

C = QMA(A] = A)) [-2i4+ Q+i(A] + A)] . (44)

Due to (41), when y — 0 the coefficients of ¢; grow unboundedly, while those of ¢, tend
to a finite limit. If we replace ¢; with the new unknown ¢; = 01/\1{’ cosh Az, equation (42)
turns into

i{2 i{2
/0\117 + CQL cosh /\2[130 + C3 — 0

G (2/X7 =i/ HIQ/AT — 1) 4 ¢ (2= iQ/A5 +1Q — A3) Ay cosh Aazg — ¢3 = 0
81 (19/)\? — 1//\?) tanh )\1[1)0 + ¢ (2 — 1Q//\% — 1) sinh /\21’0 + c3xy = U0/2

(45)

and now, since tanh \jzy — 1 as y — 0, the coefficients matrix tends to a nonsingular
matrix, therefore, the vector (¢, cs, c3) tends to (Cy, Cy, C3), the solution of the limit
System

CQ% cosh Azg+C5=0
— Oy + Cy (2 iQ/A? + 19 — A?) A cosh Az — C5 = 0 (46)
Cg (1Q/A2 - 1) sinh A$0 + Cgl’o = UO/2

Note that the first and the third equations, which using A? =1 +iQ can be rewritten
as

i)
Cy—— cosh Azy + C5 = 0,
2°A Lo 3 (47)
—CQ/A2 sinh AI’O + Cg[L‘o = u0/2,

allow one to compute C5 and Cs, after which also 5’1 can be computed using the second
equation. Thus, summing up, we have

¢ —Cy, ¢—Cy and 3 —C3 asy—0,
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and, in particular, recalling that ¢, = ¢; A} cosh \;zg, we see that
C

~—_— ) 4
)\‘fcosh)\lxo%o’ asy — 0 (48)

&1

Now, plugging this expansion into (39), since
|sinh /\1[L‘| < e\Re)\lm\ — e\m\Re/\l < eRe/\l.z'U,

Vz € [—1, 1], while | cosh A\jxg| ~ e®BM /2 as y — 0, and since moreover \3 — 1 + i€},
we obtain that the function m(z) tends to zero uniformly over [—my, 7], when y — 0.
This is no longer true for its derivative m/(z): indeed, since A2 — 1 + i), using (39) and
(48) we see that

m/(l'o) ~ C1 (1 —+ i) — /\%) /\1 cosh )\11’0 — —61,

as y— 0. Arguing as for m(z), one can prove that m/(x) tends to zero uniformly over
any closed interval [—a, a, with @ < 2. In a similar way, from (38) and (40), one obtains
that

p(z) — po(x) = Cysinh Az,
v(x) = vo(x) = —Cy/A*sinh Az + Csa,

uniformly over [—x, 7o) (these two functions converge together with their derivatives up
to the second order). As one can easily check, py(z) and vy(x) solve the linear system

iQpo(2) = pfj(a) +f(@) and  of(x) = —po(x), (49)

coupled with the boundary conditions (27), which models the case where the negative
ions have zero mobility (note that, writing down the boundary conditions, one obtains
the linear system (47), which determines Cy and Cj, while the validity of (49) follows
from A% = 1 4i0Q).

A remark is in order here for what concerns the 2 x 2 coefficients matrix in (47). We
notice that it is always invertible (therefore, also the 3 x 3 matrix in (46) is invertible).
Indeed, letting £ = Ay, the 2 x 2 determinant vanishes when tanh & = —iQ¢ (note that
€% = zy(1 + 42), hence argé € (0,7/4) and cosh& # 0). Then, letting 26 = z + iy with
0 < y < z, we have

sin
[siny| _ y

Im(tanh &)
=L <1,
Re(tanh &) sinhz x
while
Im(—iQ¢)| =
T Y
‘Re(—iﬂﬁ)‘ v

Therefore, the equation tanh { = —iQ¢ has no solution when arg¢ € (0,7/4).
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Figure 1. Frequency behaviour of log;gR for the one mobile ion diffusive system
showing a plateau (solid black line) and for the ambipolar system: Dy, = 107'D,
(red), Dy, = 1073D,, (blue), and D,, = 107D, (green). One observes that the first
resistance plateau of the ambipolar system tends to coincide with the plateau of
the one mobile ion diffusive system as y decreases. The curves have been drawn for
D,=D~10""m?s7 !, ng~10"m3, e =10gy, S~ 10 *m? and d~ 10 m, i.e.,
L~10""m [7].

4. Two and one mobile ion diffusive system: a comparison

In this section, we shall investigate the electrical impedance response of the two mod-
els analysed in the previous sections. To do this, we use the parameter values in
the experimental range of a real physical system containing ions [7]. We consider a
symmetric binary electrolyte, which can be faced as a dispersion of ions in a dielec-
tric liquid, evidencing ambipolar diffusion [23] such that the diffusion coefficients are
Dy, = yD, for y € [0, 1]. From equations (17) and (24), we form the quantities R = Re Z
and X = Im Z, respectively, for the ambipolar and for the one mobile diffusive ion
systems.

In figure 1, the behaviour of log,,R = log;, (Re Z) is shown in the case of ambipolar
diffusion for different values of y, together with the same quantity for the one mobile ion
diffusive system. The curve corresponding to the one mobile ion diffusive system shows
the existence of a single plateau in the resistance of the cell, which extends to the low
frequency region of the spectrum, whose value is

Ri(w—0) = L 3d — |6L + dtanh 4 tanh® 4
e = 9esD, i \er )| e ) -

For the case of ambipolar diffusive model, a plateau appears whose value is given by
dL? B dL?
€S(D111+Dp) - €SD(1 —|—y)

Ry = (50)

https://doi.org/10.1088/1742-5468 /ab7a23 14


https://doi.org/10.1088/1742-5468/ab7a23

Ambipolar diffusion in the low frequency impedance response of electrolytic cells

4,0

RZL
3,5+
— RZH
x
o
& 304
2
2,51
20 . ; : .
2 0 2 4 6

log,q(w/27)

Figure 2. Frequency behaviour of logigR for the ambipolar system when
D, = 10*1Dp. The first resistance plateau of the ambipolar system, Rog, is
the one given by equation (50), while the value of the second, Rap, is deter-
mined by equation (51). The curves have been drawn for a physical system for
which D, = D~ 10" m?s™!, ny ~ 10¥m 3, £ =80¢p, S~ 10~*m?, and d~ 1071
m, corresponding to L ~ 10~ %m,i.e., L < d [24].

In addition, a second plateau in the resistance appears in the low frequency region,
whose value may be analytically determined as [23]:

L2d D, — D, \° d*
_ 1— P m 2 1
Rorw = 0) 251)@5{ < Dy D ) 480% } (51)

with D, = 2D, D,,/(D, + Dy,), if L < d, as illustrated in the case depicted in figure 2,
for a different set of values of the experimental parameters.

As far as the real part of the impedance is concerned, it is worth mentioning that
both models agree in the high frequency region where the free diffusion is the domi-
nant behaviour. This is not true for the case of low frequency, as shown in figure 1,
where the ambipolar curve was depicted for a value of D,, ranging from one tenth to
one millionth of D,,, and the curves coincide only as we look at the low frequency region
of the spectrum. This coincidence occurs for decreasingly small values of y, becoming
progressively detectable as the frequency diminishes, since the high frequency resistance
plateau of the ambipolar system coincides with the one of the one mobile ion diffusive
system. Remarkable, we also notice that the second plateau is always present even for
very small values of D,,, but can be detected only at very low, probably not experi-
mentally accessible, frequencies. For the usual spectra, with frequencies ranging from
mHz to a few MHz, the highly mobile and the highly slow ions are always responsive
to low frequency stimulus and may contribute differently to the electrical impedance
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Figure 3. Frequency behaviour of log;, (—X) for the one mobile ion diffusive system
(solid black line) and for the the ambipolar system (coloured lines), for the same
values of y shown in figure 1.

as well. The different behaviour of the two systems is clearly evidenced by the resis-
tance of the cell, which is very sensitive to the different mobilities of both types of
ions.

This difference in the response of the ions is not so pronounced in the reactance of
the cell, as can be deduced from figure 3, where the imaginary part of the impedance
is depicted for the same different values of y as in figure 1, for experimentally rel-
evant frequencies. From this figure, we may conclude that the predictions of both
models are essentially the same, with a negligible disagreement in the very low fre-
quency limit. This conclusion is reinforced by looking at figure 4, depicted for the
same values of the parameters as in figure 2 for a wide interval of frequencies. This
good agreement between the predictions of both models for the imaginary part of the
impedance is expected because the mobilities in general do not influence in a conspic-
uous manner the reactive response of the cell, which is dominated by the displacement
current.

In the analysis presented above, we have investigated the electric response of an
electrolytic cell to an external difference of potential changing with the time in a sim-
ple harmonic manner. The considered medium was assumed containing two groups of
ions, of opposite electric charge and different electric mobilities. In this case, the PNP
model allows the analytical determination of the impedance of the cell Z= R+ iX, in
series representation. From the discussion of figures 1 and 2, the spectrum of R, related
to the dissipative effects, presents two plateaus: one related to the ambipolar diffusion
coefficient, 1/D, = (1/2)(1/D, +1/D,,), in the low frequency range, and the other to
the free diffusion coefficient, Dy = (D, + D,,)/2, in the ‘high’ frequency range. The tran-
sitions from the first to the second plateau is continuous. The first plateau ends at the
circular frequency w, = 7%(D,/d?). The second plateau ends at the circular frequency
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Figure 4. Frequency behaviour of log;, (—X) for the one mobile ion diffusive system
(solid black line) and for the the ambipolar system (red line), when D, = 10"'D
for the same experimental values of the parameters in figure 2.

wi = Dy/(2L7) [23]. In terms of the parameter y, wp, and y these circular frequencies
are given by

1
= Lw—g and w; = Yy
1+yxj 2

wp. (52)

Wa

Of course, for frequencies smaller than w, it is meaningless to neglect the contribution
of the slower ions, because in this frequency region the electric response is due to both
ions present in the electrolytic solution.

We have shown in our analysis that in the case where one of the ions has a mobility
small with respect to the other ion, the approximation of one mobile ion has to be
applied with caution, in the sense that it is valid only for a frequency larger than a
defined value, that takes into account the difference between the diffusion coefficients of
ions. This circular frequency is defined by w* = ywp, large with respect to w,. Deviations
from the experimental data of the theoretical predictions for frequencies smaller than
this critical value could be due to the contribution of the slower ions to the electric
response of the cell.

In the case in which the valence of the positive ions, Z,, is different from that of the
negative ions, Z,,, the analysis can be easily generalised. In this framework, a calculation
similar to that presented above shows that the critical circular frequency depends on the
valence of the ions and it is given by w* = Z,ywp, where the slower ions are assumed
as the negative ones and wp is the Debye relaxation frequency for the positive ions in
the present case.

Another situation of some importance from the experimental point of view is the one
in which in the electrolyte are present two groups of positive and two groups of negative
ions, whose bulk density in thermodynamical equilibrium are n; and n,. In this case,
limiting the analysis to the simple situation where the positive and negative ions of the
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two groups have equal diffusion coefficients and are monovalent, D,; = D, = D, and
D5 = Dyy = D», the equivalent ambipolar and free diffusion coefficients are [25]

1 N, 1 N, 1
— 4 . (53)
Dy N, +N,D, N, +N,D,
N, N,
D, = D, + D,, 54
TN+ N, VTN N, (54)

respectively. In the event in which n, represents a contamination for the electrolyte,
and hence ny/n; < 1, a criterium is necessary to know when it is possible to neglect its
presence in the electrolyte. In this case the effective parameter y is defined in terms of
§ = Dy/ Dy by

Ny + Ny¢

y==¢ NEN, (55)

It follows that the concept of small y depends on Dy and ns. In particular for ny — 0,
y~ 1+ (ny/n1)&, and the analysis presented above has to be performed in terms of this
new parameter.

5. Concluding remarks

The frequency behaviour of the electrical impedance response of an electrolytic cell for
both, an ambipolar (two ions) and one mobile ion diffusive systems, are investigated
here in the limit in which one of the mobilities goes to zero, i.e., when D, < D,. In
this limit, the predictions of both models show a coincidence only in the frequency
range w >> Wpfhm/ftp, while the predictions for the behaviour at high frequencies are
essentially the same for the real and the imaginary parts of the impedance. To explore
this limit in order to compare the descriptions provided by these two models, we first
employ a rough perturbative method, focusing on the small parameter behaviour of the
analytical solutions of the equations of the PNP continuum model. This procedure leads
to an apparent existence of a singularity forbidding the solutions to satisfy the required
boundary conditions, even in the simplest case of blocking electrodes. A more rigorous
mathematical analysis is thus required to face the problem and shows that this limit
has to be considered with care, being meaningful only for a fixed value of the frequency.
To sum up, we show here that the predictions of the ambipolar diffusive model, when
D, — 0, coincide with the ones coming from the one mobile ion diffusive system in the
physically relevant frequency range only when this limit is performed for a fixed value of
the frequency. This strongly indicates that, in the experimentally accessible frequency
interval, the physical system formed by two mobile ions, even when one of them has a
very low mobility, is clearly distinct from the physical system in which just one of the
ions is mobile.
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