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Abstract. It is shown that the extended one-dimensional dimer Bose–Hubbard
model with multi-body interactions can be solved exactly by using the algebraic
Bethe ansatz mainly due to the site-permutation S2 symmetry. The solution for
the model with up to three-particle hopping and three-body on-site interaction
is explicitly shown. As an example of the application, lower part of the excita-
tion energy levels and the ground-state entanglement measure of the standard
Bose–Hubbard Hamiltonian with the attractive two-body on-site interaction plus
the three-body on-site interaction for 100 bosons with variation of the control
parameter are calculated by using the exact solution. It is shown that the attrac-
tive three-body on-site interaction reinforces the critical point entanglement of
the system, which may be helpful for design of an optical lattice for ultracold
atoms or a tuneable superconducting quantum interference device with maximal
entanglement.
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1. Introduction

The behavior of interacting bosonic many-body systems has been of great interests since
they capture a wide variety of physical problems [1, 2]. The standard Bose–Hubbard
model is the simplest theory that can be used to model the main features in these
strongly interacting bosonic systems [3]. Up till now, the scope of the Bose–Hubbard
model has been extended to include the effects of excited bands, long-range interac-
tions and density-induced tunnelings [4]. Much progress in the extended Bose–Hubbard
model (EBHM) with up to two-particle hopping and two-body on-site interaction has
been made both theoretically and experimentally [5]. Moreover, it has been shown that
the EBHM with effective multi-body interactions may be more appropriate in some
cases, and can give rise to novel quantum phases with intriguing properties [6–10].
For example, polar molecules in optical lattices driven by microwave fields give nat-
urally rise to Hubbard models with strong nearest-neighbor three-body interactions
[7]. It is shown in [8] that the two-band BH Hamiltonian over a wide range of lattice
parameters is equivalent to an effective single-band Hamiltonian with strong three-
body interactions. Three-body loss of atoms in an optical lattice can also give rise
to effective hard-core three-body interactions. In [10–12], the phase diagram of the
extended Bose–Hubbard model with two- and three-body on-site interactions was
studied by directly diagonalizing the matrix of the Hamiltonian in the Fock sub-
space, the mean-field approximation, and the density matrix renormalization group
method.

On the other hand, small systems with a few sites are also of interests since they are
extremely relevant to bond excitations in small molecules [13] and BECs in optical traps
with a few wells [14], which can be realized experimentally with microtrap technology
[15]. The two-site (dimer) system, which can be used to describe the Josephson effect in
superconducting qubits [16, 17], nonlinear self-trapping of Bose–Einstein condensates
[18], and fermionic mixtures [19], has been analyzed thoroughly from both the semi-
classical [20] and purely quantum viewpoint [16, 21, 22]. Recently, it has been shown in
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[9] that an effective two-mode model with the three-body interaction and a three-body
interaction-induced tunneling term can be used to describe the low-energy physics of
bosons in a double-well potential with a high barrier between the wells and sufficiently
weak atom–atom interactions. Moreover, it has been shown that the Bose–Hubbard
model and the EBHM with up to two-body interactions for dimer case can be solved
exactly by using the algebraic Bethe ansatz [23], which are equivalent to special cases
of the LMG model after the SU(2) realization whose exact solution was provided in
[24]. As shown in the previous work [25], the roots of the Bethe ansatz equations of
the dimer Bose–Hubbard model are zeros of the one-variable extended Heine–Stieltjes
polynomials, which can be determined more easily than directly solving the BAEs with
a set of variables. Since there are only two degrees of freedom in both particle-number
conserving bipartite fermion and boson systems, the dimer Bose–Hubbard model and
other similar particle-number conserving bipartite quantum systems with multi-body
interactions should always be exactly solvable due to the fact that there are two con-
stants of motion of the system, namely the Hamiltonian itself and the total number of
particles. However, a rigorous and explicit proof of its exact solvability is lacking.

In this work, it is shown that the one-dimensional EBHM with multi-body interac-
tions for dimer case can be solved exactly due to the site-permutation S2 symmetry,
though, in the following, the procedure is demonstrated for the model with up to
three-particle hopping and three-body on-site interaction only.

2. Solution of the model

The Hamiltonian of the one-dimensional dimer EBHM with multi-body interactions
may be expressed as [5–10]

Ĥ = tN̂ − tĤ1 +
∑
q�2

UqĤq,1 +
∑
q�2

tqĤq,2, (1)

where N̂ = n̂1 + n̂2, Ĥ1 = (a†1 + a†2)(a1 + a2), Ĥq,1 =
∑2

i=1 n̂
q
i , Ĥq,2 = a†q1 a

q
2 + a†q2 a

q
1, t, tq

are the effective single-, q-particle hopping parameters, respectively, and Uq are the

effective q-body on-site interaction parameters, in which ai (a
†
i) are boson annihilation

(creation) operators obeying the canonical commutation relations [ai, a
†
j] = δij, and n̂i =

a†iai is the boson number operator at site i. It is obvious that the Hamiltonian of the
standard dimer Bose–Hubbard model [3] or the dimer EBHM with up to two-body
interactions [5] is a special case of (1).

The Hamiltonian (1) clearly commutes with the total number of bosons N̂ in the
system. Therefore, for a given number of bosons, N, the Hamiltonian (1) can be diagonal-

ized in the Fock subspace VN spanned by {a†N−n
1 a†n2 |0〉} with n = 0, 1, 2, . . . ,N, where

|0〉 is the boson vacuum state, of which the dimension is just equal to that of the
symmetric irrep [N, 0] of U(2) with dim(VN) = N+ 1. Furthermore, the Hamiltonian
(1) is invariant under the S2 site-permutation. Hence, the Hamiltonian (1) under the
Fock subspace VN can be block diagonalized according to two different types of irre-
ducible representations of S2, of which the subspaces are denoted as VS and VA for the
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symmetric and anti-symmetric one, respectively. In general, according to the theory of
symmetric functions [26], basis vectors of the symmetric subspace VS may be expanded
in terms of products of powers of the elementary symmetric polynomials of the boson
creation operators. For the dimer case, there are only two independent symmetric poly-
nomials, the collective boson operator S†

1 = a†1 + a†2 and boson-pair operator S†
2 = a†1a

†
2,

and one elementary antisymmetric operator A† = a†1 − a†2. Therefore, VS is spanned by

{S†N−2r
1 S†r

2 |0〉}, while VA is spanned by {S†N−2r
1 S†r

2 A†|0〉} with r = 0, 1, 2, · · · [N/2], where
[x] denotes the integer part of x, because any homogeneous two-variable antisymmetric
polynomial can always be expressed as product of a homogeneous symmetric polynomial
times the elementary antisymmetric binomial A†.

Using the bosonic commutation relations among {ai, a†i}, we have [S1,S
†
1] = 2,

[S2,S
†
2] = N̂ + 1, [S1,S

†
2] = S†

1, [S1,A
†] = 0, [S2,A

†] = −A, and [A,A†] = 2. One can eas-

ily check that the commutator [H1, S
†] with S† = S†

1 or S†
2 results in monomials of S†

1.

Though the commutator [Ĥq,p, S
†] results in new operators related to the local boson

number operators, the direct operation of [Ĥq,p, S
†] to the vacuum state always results

in a polynomial of S†
1 and S†

2. Similarly, the direct operation of μ-time commutator

[· · · [Hq,p,S
†], · · ·],S†] to the vacuum state also results in a polynomial of S†

1 and S†
2,

which may be nonzero only when μ � q. As the consequence, the operation of the Hamil-
tonian (1) to G1(S

†
1,S

†
2)|0〉, where G1(S

†
1,S

†
2) is a homogeneous polynomial in S†

1 and S†
2

on complex field, results in G2(S
†
1,S

†
2)|0〉, where G2(S

†
1,S

†
2) is also a homogeneous poly-

nomial in S†
1 and S†

2 of the same degree on complex field. Therefore, the operation of the

Hamiltonian (1) to {Gμ(S
†
1,S

†
2)|0〉}, where {Gμ(S

†
1,S

†
2)} is the homogeneous polynomial

ring, is algebraically closed. Similarly, the operation of the Hamiltonian (1) to any state
vector in VA is also within VA. Furthermore, any two-variable homogeneous polynomials
in S†2

1 and S†
2 on complex field can always be expressed as products of binomials. Hence,

similar to the Bethe ansatz used for solving the standard Bose–Hubbard model and the
EBHM with up to two-body interactions, up to a normalization constant, eigen-states
of (1) within the symmetric subspace VS can be expressed as

|N , ζ〉S =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k∏
ρ=1

S†(x(ζ)
ρ )|0〉 for N = 2k,

k∏
ρ=1

S†(x(ζ)
ρ )S†

1|0〉 for N = 2k + 1,

(2)

where S†(x) = xS†
2 + S†2

1 is a binomial of S†2
1 and S†

2, in which x is a complex parameter
to be determined, and ζ labels the ζ-th eigen-vector of (1). Similarly, eigen-states of (1)
within the antisymmetric subspace VA may be expressed as

|N , ζ〉A =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k∏
ρ=1

S†(x(ζ)
ρ )S†

1A
†|0〉 for N = 2k + 2,

k∏
ρ=1

S†(x(ζ)
ρ )A†|0〉 for N = 2k + 1.

(3)
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It is obvious that there are k+ 1 independent terms when (2) and (3) are expanded

in terms of S†2
1 and S†

2 for either N = 2k or N = 2k+ 1 case. Therefore, the number of
independent eigenvectors shown in (2) and (3) for any N equals exactly to dim(VN).
It should be stated that (2) and (3) is of the Bethe vector form similar to that used
for the standard Bose–Hubbard model case [27], which is useful in the planar N = 4
super Yang–Mills theory [28] in the context of the integrability under the AdS/CFT
correspondence [29].

In order to prove that the Bethe vector states shown in (2) and (3) are indeed the
eigen-states of (1), the commutation relations of each term in (1) with S †(xi), S

†, and
A† are useful. It is obvious that only the single-commutators need to be calculated for

the one-body term Ĥ1, because [Ĥ1, Ô
†
], where O† may be taken as S †(xi), S

†, or A†, is
commutative with any other operator involved in (2) or (3). Similarly, only the μ-time

commutators [· · · [Ĥq,p, Ô
†
], · · ·], Ô†]

for μ = 1, . . . , q need to be calculated. Once these

commutators are obtained, the vacuum valued polynomialG(S†
1,S

†
2) in S†

1 and S†
2 defined

asG(S†
1,S

†
2)|0〉 ≡ [· · · [Ĥq,p, Ô

†
], · · ·], Ô†] |0〉 are needed, where [· · · [Ĥq,p, Ô

†
], · · ·], Ô†]

is

the μ-time commutator with μ � q. As an example of the exact solution, the vacuum val-
ued nonzero commutators useful for the Hamiltonian with up to three-body interactions
(q � 3) are shown in tables 1–3, in which

F
(e)
2,1 (x1 ;x2) =

4x1 + 16

x1 − x2
,

F
(e)
2,2 (x1 ;x2) =

2(x1 + 4)(x1x2 + 2x1 + 2x2 + 2)

x1 − x2
,

F
(e)
3,1 (x1 ;x2) =

6(3x1(x1 + 6)− (x1 + 2)x2)

x1(x1 − x2)
,

F
(e)
3,2 (x1 ;x2) =

6(x3
1 + 8x2

1 + 14x1 + (x2
1 + 4x1 + 2)x2)

x1(x1 − x2)
,

V
(e)
3,1 (x1 ;x2, x3) =

12(x1 + 4)(2x1 − x2 − x3)

(x1 − x2)(x1 − x3)
,

V
(e)
3,2 (x1 ;x2, x3) = 6(x1 + 4)

4x1(x1 + 2)+ 2(x2
1 + 3x1 + 1)(x2 + x3) + (x1 + 1)(x1 + 3)x2x3

(x1 − x2)(x1 − x3)
,

F
(o)
3,1 (x1 ;x2) =

6(x1 − 2x2)(4 + x2)

(x1 − x2)x2

,

F
(o)
3,2 (x1 ;x2) =

6(x1 + 4)(2x1(x1 + 2) + (x2
1 + 3x1 + 1)x2)

x1(x1 − x2)
,

F
(A)
3,1 (x1 ;x2) =

6(x1 − 2(x2 + 2))

x1 − x2
,

F
(A)
3,2 (x1 ;x2) = −6(2x2

1 + 8x1 + 4 + (x2
1 + 5x1 + 5)x2)

x1 − x2
. (4)

https://doi.org/10.1088/1742-5468/ab7a21 5

https://doi.org/10.1088/1742-5468/ab7a21


J.S
tat.

M
ech.

(2020)
043102

Exact solution of the extended dimer Bose–Hubbard model with multi-body interactions

Table 1. Vacuum valued nonzero commutators
[· · · [Ĥq,p,S

†(x1)], . . . ,S
†(xk−1)],S

†(xk)
]
|0〉 for q � 3 and k � 3.

S †(x) S†2
1

[Ĥ1,S
†(x)] 0 x+ 4

[Ĥ2,1,S
†(x)] 2x−4

x
2x+4
x

[Ĥ2,2,S
†(x)] − 4

x
2x+4
x

[Ĥ3,1,S
†(x)] 2x−12

x
6x+12

x

S †(x1)S
†(x2) S†(x1)S

†2
1 S†(x2)S

†2
1

[Ĥ2,1,S
†(x1)],S

†(x2)
]

4 F
(e)
2,1 (x2 ;x1) F

(e)
2,1 (x1 ;x2)

[Ĥ2,2,S
†(x1)],S

†(x2)
]

4 F
(e)
2,2 (x2 ;x1) F

(e)
2,2 (x1 ;x2)

[Ĥ3,1,S
†(x1)],S

†(x2)
]

12− 12
x1

− 12
x2

F
(e)
3,1 (x2 ;x1) F

(e)
3,1 (x1 ;x2)

[Ĥ3,2,S
†(x1)],S

†(x2)
]

12
x1

+ 12
x2

F
(e)
3,2 (x2 ;x1) F

(e)
3,2 (x1 ;x2)

S †(x1)S
†(x2)S

†(x3) S†(x1)S
†(x2)S

†2
1 S†(x1)S

†2
1 S†(x3) S†2

1 S†(x2)S
†(x3)

[Ĥ3,1,S
†(x1)],S

†(x2)
]
,S†(x3)

]
12 V

(e)
3,1 (x3 ;x1,x2) V

(e)
3,1 (x2 ;x1,x3) V

(e)
3,1 (x1 ;x2,x3)

[Ĥ3,2,S
†(x1)],S

†(x2)
]
,S†(x3)

]
−12 V

(e)
3,2 (x3 ;x1,x2) V

(e)
3,2 (x2 ;x1,x3) V

(e)
3,2 (x1 ;x2,x3)

As shown in tables 1–3, these vacuum valued commutators involving k opera-
tors S†(xi) for i = 1, . . . , k result in k+ 1 terms, of which one is proportional to

the original operator product
∏k

i=1 S
†(xi), and other k terms are proportional to∏k

i �=j S
†(xi)S

†2
1 for j = 1, . . . , k. As the consequence, if (2) or (3) is the eigen-state of

(1), the coefficient of proportionality of (2) or (3) after the operation of (1) to (2) or

(3) gives the eigenvalue of (1) equivalent to the eigen-equation Ĥ|N , ζ〉 = E
(ζ)
N |N , ζ〉,

while the other k terms proportional to
∏k

i �=j S
†(xi)S

†2
1 for j = 1, . . . , k must be zero,

which, thus, leads to the Bethe ansatz equations in determining the k variables
{x1, . . . , xk}. Accordingly, when q � 3, the eigen-energy of (1) within the symmetric
subspace is

E
(ζ),S
N = δN ,2k+1E

(ζ),o
N + k(2U3k

2 + 2U2k − t3(k − 1)(k − 2) + 2t2(k − 1) + 2t)

+ (12(t3 − U3)k − 4t2 − 12t3 − 4U2)

k∑
i=1

1

x
(ζ)
i

, (5)
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Table 2. Vacuum valued nonzero commutators [· · · [Ĥq,p,S
†(x1)], . . . ,S

†(xk−1)],

S†
1

]
|0〉 for q � 3 and k � 3. The other three are [Ĥ1,S

†
1]|0〉 = 2S†

1|0〉, [Ĥ2,1,S
†
1]|0〉

= [Ĥ3,1,S
†
1]|0〉 = S†

1|0〉.

S†(x)S†
1 S†3

1

[[Ĥ2,1,S
†(x)],S†

1]
2x−8
x

2x+8
x

[Ĥ2,2,S
†(x)],S†

1

]
− 6x+8

x
2(x+1)(x+4)

x

[Ĥ3,1,S
†(x)],S†

1

]
6x−42

x
12x+42

x

[Ĥ3,2,S
†(x)],S†

1

]
− 18

x
6x+18

x

S†(x1)S
†(x2)S

†
1 S†(x1)S

†3
1 S†2

1 S†(x2)S
†
1

[Ĥ3,1,S
†(x1)],S

†(x2)
]
,S†

1

]
6− 24

x1
− 24

x2
F

(o)
3,1 (x2 ;x1) F

(o)
3,1 (x1 ; x2)

[Ĥ3,2,S
†(x1)],S

†(x2)
]
,S†

1

]
30 + 24

x1
+ 24

x2
F

(o)
3,2 (x2 ;x1) F

(o)
3,2 (x1 ; x2)

Table 3. Vacuum valued nonzero commutators [[Ĥq,p,S
†(x)],A†]|0〉,

[[[Ĥq,p,S
†(x)],S†

1],A
†]|0〉, and [[[Ĥq,p,S

†(x1)],S
†(x2)],A

†]|0〉 for q � 3. The other

ones are [Ĥ2,1,A
†]|0〉 = [Ĥ3,1,A

†]|0〉 = A†|0〉, [Ĥ2,1,S
†
1],A

†
]
|0〉 = −[Ĥ2,2,S

†
1],A

†
]
|0〉

= 2S†
1A

†|0〉, and[Ĥ3,1,S
†
1],A

†
]
|0〉 = 6S†

1A
†|0〉 .

S†(x)A† S†2
1 A†

[[Ĥ2,1,S
†(x)],A†] 2 2

[[Ĥ2,2,S
†(x)],A†] 2 −(2x+ 6)

[[Ĥ3,1,S
†(x)],A†] 6x−6

x
12x+6

x

[[Ĥ3,2,S
†(x)],A†] 6

x
− 6x+6

x

S†(x)S†
1A

† S†3
1 A†

[[[Ĥ3,1,S
†(x)],S†

1],A
†] 6x−12

x
6x+12

x

[[[Ĥ3,2,S
†(x)],S†

1],A
†] 12x+12

x − 6(x2+4x+2)
x

S †(x1)S
†(x2)A

† S†(x1)S
†2
1 A† S†2

1 S†(x2)A
†

[Ĥ3,1,S
†(x1)],S

†(x2)
]
,A†

]
6 F

(A)
3,1 (x2 ;x1) F

(A)
3,1 (x1 ; x2)

[Ĥ3,2,S
†(x1)],S

†(x2)
]
,A†

]
−6 F

(A)
3,2 (x2 ;x1) F

(A)
3,2 (x1 ; x2)
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where

E
(ζ),o
N = k(3(U3 + 5t3)k + 2U2 − 15t3 − 6t2 + 3U3) + U2 + U3 − 2t

+ (24(t3 − U3)k − 8U2 − 8t2 − 18U3 − 42t3)

k∑
i=1

1

x
(ζ)
i

(6)

for N = 2k or N = 2k+ 1, in which the k variables {x(ζ)
1 , . . . , x

(ζ)
k } should satisfy

− t(x
(ζ)
i + 4) + (U2 + t2)

2x
(ζ)
i + 4

x
(ζ)
i

+ U3
2x

(ζ)
i + 12

x
(ζ)
i

+
∑
j( �=i)

3∑
q=2

(
UqF

(e)
q,1 (x

(ζ)
i

; x
(ζ)
j )

+ tqF
(e)
q,2 (x

(ζ)
i

; x
(ζ)
j )

)
+ δN ,2k+1

(
U2

2x
(ζ)
i + 8

x
(ζ)
i

+ 2t2
(x

(ζ)
i + 1)(x

(ζ)
i + 4)

x
(ζ)
i

+ U3
12x

(ζ)
i + 42

x
(ζ)
i

+ t3
6x

(ζ)
i + 18

x
(ζ)
i

)
+ δN ,2k+1

∑
j( �=i)

(
U3F

(o)
3,1 (x

(ζ)
i

;x
(ζ)
j )

+ t3F
(o)
3,2 (x

(ζ)
i

; x
(ζ)
j )

)
+

∑
j �=l( �=i)

(
U3V

(e)
3,1 (x

(ζ)
i

;x
(ζ)
j , x

(ζ)
l )

+ t3V
(e)
3,2 (x

(ζ)
i

;x
(ζ)
j , x

(ζ)
l )

)
= 0 for i = 1, 2, . . . , k, (7)

where ζ used in (5) and (7) labels the ζ-th solution of (7). While the eigen-energy of (1)
for q � 3 within the antisymmetric subspace is given by

E
(ζ),A
N = U2 + U3 + 2(U2 + t2)k + 3(U3 − t3)k(k − 1) + 6U3k

+ 6(t3 − U3)
k∑

i=1

1

x
(ζ)
i

+ δN ,2k+2

(
E

(ζ),o
N + 2(U2 − t2) + 6U3

+ 6(U3 + 2t3)k + 12(t3 − U3)
k∑

i=1

1

x
(ζ)
i

)

+ k(2U3k
2 + 2U2k − t3(k − 1)(k − 2) + 2t2(k − 1) + 2t)

+ (12(t3 − U3)k − 4t2 − 12t3 − 4U2)

k∑
i=1

1

x
(ζ)
i

for N = 2k+ 1 or N = 2k+ 2, in which the k variables {x(ζ)
1 , . . . , x

(ζ)
k } should satisfy
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− t(x
(ζ)
i + 4) + (U2 + t2)

2x
(ζ)
i + 4

x
(ζ)
i

+ U3
2x

(ζ)
i + 12

x
(ζ)
i

+
∑
j( �=i)

3∑
q=2

(
UqF

(e)
q,1 (x

(ζ)
i

;x
(ζ)
j )

+ tqF
(e)
q,2 (x

(ζ)
i

;x
(ζ)
j )

)
+ 2U2 − t2(2x

(ζ)
i + 6) + U3

12x
(ζ)
i + 6

x
(ζ)
i

− t3
6x

(ζ)
i + 6

x
(ζ)
i

+
∑
j( �=i)

(U3F
(A)
3,1 (x

(ζ)
i

;x
(ζ)
j ) + t3F

(A)
3,2 (x

(ζ)
i

; x
(ζ)
j ))

+
∑

j �=l( �=i)

(U3V
(e)
3,1 (x

(ζ)
i

;x
(ζ)
j , x

(ζ)
l ) + t3V

(e)
3,2 (x

(ζ)
i

;x
(ζ)
j , x

(ζ)
l ))

+ δN ,2k+2

(
U2

2x
(ζ)
i + 8

x
(ζ)
i

+ 2t2
(x

(ζ)
i + 1)(x

(ζ)
i + 4)

x
(ζ)
i

+ U3
12x

(ζ)
i + 42

x
(ζ)
i

+ t3
6x

(ζ)
i + 18

x
(ζ)
i

)
+ δN ,2k+2

∑
j( �=i)

(U3F
(o)
3,1 (x

(ζ)
i

;x
(ζ)
j ) + t3F

(o)
3,2 (x

(ζ)
i

; x
(ζ)
j ))

+ δN ,2k+2

(
6U3

x
(ζ)
i + 2

x
(ζ)
i

− 6t3
(x

(ζ)
i )2 + 4x

(ζ)
i + 2

x
(ζ)
i

)
= 0 for i = 1, 2, . . . , k. (8)

Once the ζ-th solution {x(ζ)
1 , . . . , x

(ζ)
k } of (7) or (8) are obtained, the corresponding

eigen-state (2) with N = 2k, for example, can be expressed as

|N , ζ〉S =
k∑

μ=0

S(μ)(x1, . . . , xk)S
†2k−2μ
1 S†μ

2 |0〉, (9)

where S(μ)(x1, . . . , xk) =
∑

1�i1�···�iμ<k

∏μ
q=1 xiq is the μ-th elementary symmetric poly-

nomial of the k root-components {x(ζ)
1 , . . . , x

(ζ)
k } of (7), which is helpful for calculating

matrix elements of physical quantities of the system.

3. Analysis of the model with three-body on-site interaction

To demonstrate the use of the exact solution, excited states and the corresponding
energies of a special case of the model with variation of the parameters are calculated
numerically and checked against the results obtained from the direct matrix diagonaliza-
tion, of which the Hamiltonian is the original hopping with attractive two-body on-site
interaction [22] plus a three-body on-site interaction [10–12]. This scenario is similar to
the low-energy bosons in a double well potential with high barrier between the wells
with weak atom–atom interactions described in [9], and considered in [10–12]. To study
how the three-body term affects the transitional patterns of the system, the parameters
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Figure 1. Some low-lying level energies [in unit of t0 defined in (10)] of the two-site
Bose–Hubbard model with attractive two-body on-site interaction and three-body
on-side interaction with U3 < 0, U3 = 0, and U3 > 0, respectively, as functions of x
for N = 100 bosons.

of the Hamiltonian (1) for this case is reparameterized as

t = (1− x) t0, U2 = −4xt0/(N + 1), U3 = ±4xt0/(N + 1)2, (10)

where t0 is a constant in arbitrary unit of energy and x ∈ [0, 1]. As is shown in the
original model with U3 = 0, the system is in the Fock regime when x = 1, in the Rabi
regime when x = 0, and in the Josephson regime when 0 < x < 1. Therefore, the solution
of the model with variation of the control parameter 0 < x < 1 can be used to study the
quantum phase transitional behavior of the system in presence of the three-body on-site
interaction. Figure 1 shows some low-lying level energies [in unit of t0 defined in (10)]
of the system with x ∈ [0, 1] for N = 100 bosons, where no level-crossing occurs in the
all cases concerned, especially at the ground state of the system. It is clearly shown in
figure 1 that there is a minimum in the excitation energies around x ∼ 0.25–0.35 with
the highest energy level density which corresponds to the Josephson critical region when
U3 = 0. For U3 < 0, the level pattern keeps similar to that in the U3 = 0 case, of which
the Josephson critical region is much narrower with a much deeper valley. It is obvious
that the attractive three-body on-site interaction enhances the criticality in this case.
In addition, the position of the minimum in the excitation energies shifts to a smaller x
region with x ∼ 0.12–0.18 when U3 < 0. For U3 > 0, the position with denser levels that
are lower in energy shifts to a narrow region with x ∼ 0.93–1.0. In this case, the system
almost keeps in the superfluid phase for 0 � x � xc with xc ∼ 0.92, and quickly tends to
be the Mott insulator with further increasing of x with x � xc within this narrow region,
which shows that the three-body repulsive on-site interaction in this case resists against
the system becoming the Mott insulator till the system almost reaches the Fock regime.
Moreover, one can expect that the quantum phase crossover due to finite number of
bosons in the system will be enhanced with further increasing of the number of bosons
as shown in [22].

As shown in [10] for the phase diagram of the model, the local three-body interaction
in the Bose–Hubbard model does not change the characteristic properties of the phase
transition with only the superfluid and the Mott insulator phase as emerging in the
standard Bose–Hubbard model, which is consistent to the results shown in the early
work using the mean-field approximation [11] and the later work using the density
matrix renormalization group method [12]. Specifically, the local three-body interaction
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Figure 2. The ground-state entanglement measure of the two-site Bose–Hubbard
model with attractive two-body on-site interaction and three-body on-side inter-
action with U3 < 0, U3 = 0, and U3 > 0, respectively, as function of x for N = 100
bosons.

only alters the size and boundaries of the Mott robes and the position of the critical
point [10–12], with which the result shown in this work is consistent. In addition, the
situation will certainly become complicated when the three-body tunneling terms are
considered, with which, besides the critical point shift, a phase-locking state appears
even only up to two-body tunneling included as concluded in [30].

In order to further elucidate the system evolution with the variation of the control
parameter x, the von Neumann entropy defined by

η = −Tr(ρ1 logN+1 ρ1) = −Tr(ρ2 logN+1 ρ2) (11)

as the entanglement measure for the ground state of system is also calculated, where ρ1 is
the reduced density matrix obtained by taking the partial trace over the subsystem of a2-
bosons, and similarly for ρ1. Here we use the logarithm to the base N+ 1 instead of base 2
to ensure that the maximal measure is normalized to 1. Figure 2 shows the ground-state
entanglement measure of the system as a function of x for N = 100 bosons. It is obvious
that there is always a peak in the measure within the critical region when U3 � 0, which
is consistent with the so-called critical point entanglement [31]. Most noticeably, the
peak of the measure becomes shaper, and the maximum value of the measure increases
when U3 < 0. It is expected that the entanglement measure at the critical point will
approach to its maximal value with further increasing of |U3| for U3 < 0. On the contrary,
the entanglement measure gradually decreases with the increasing of x for x � xc with
xc ∼ 0.92, while it drops down rapidly with the increasing of x when x > xc. It is clear
that the critical point entanglement disappears when the three-body on-site interaction
is repulsive, and the maximum value of the measure, which is now far less than its
maximal value, is at the Rabi regime with x = 0 in this case, of which the situation
is quite similar to the case of the standard BHM with the repulsive two-body on-site
interaction.

4. Summary

In summary, it is shown the extended one-dimensional dimer Bose–Hubbard model with
multi-body interactions can be solved exactly by using the algebraic Bethe ansatz mainly

https://doi.org/10.1088/1742-5468/ab7a21 11

https://doi.org/10.1088/1742-5468/ab7a21


J.S
tat.

M
ech.

(2020)
043102

Exact solution of the extended dimer Bose–Hubbard model with multi-body interactions

due to the site-permutation S2 symmetry. The solution for the model with up to three-
particle hopping and three-body on-site interaction is explicitly provided. Though the
solution is demonstrated for the model with up to three-body interactions only, it is obvi-
ous that the one-dimensional dimer EBHM with finite order multi-body interactions,
which is equivalent to the extended LMG model with finite order multi-body interac-
tions after the SU(2) realization, is also exactly solvable due to the site-permutation S2

symmetry. Lower part of the excitation energy levels and the ground-state entanglement
measure of the standard BH Hamiltonian with the attractive two-body interaction plus
the three-body on-site interaction for 100 bosons with variation of the control parameter
are calculated by using the exact solution. It is shown that the attractive three-body
on-site interaction reinforces the critical point entanglement of the standard BH model
with the attractive two-body on-site interaction. Similar extensions of the model with
multi-body interactions to a family of fragmented multi-state cases shown in [32] should
also be possible. Since the entanglement is the most important resource for quantum
technology, the results of this work may be helpful for design of an optical lattice for
ultracold atoms [33] or a tuneable superconducting quantum interference device [34] with
maximal entanglement. For example, in a system of ultracold bosonic atoms, not only
two-body interactions can be tuned [35–37], the effective on-site three-body interaction
emerging through virtual transitions of particles from the lowest energy band to higher
energy bands may be controlled by changing the orbital’s density profile [33]. Moreover,
as shown in [34], the hopping interactions in a circuit QED device of two supercon-
ducting transmon qubits can also be tuned via a non-linear cross-Kerr interactions. It
is expected that the local three-body interaction may also be tuneable in a nonlinear
superconducting quantum interference device. On the other hand, when q-body interac-
tions with qmax � 3 are included in the standard BH model, the corresponding extended
Heine–Stieltjes polynomials in determining the solution should satisfy a qmax-th order
differential equation [25], which, together with further numerical analysis of the model,
will be studied in our future work.
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