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Abstract. We investigate the effect of dissipation from a thermal environment
on topological pumping in the periodically-driven Rice–Mele model. We report
that dissipation can improve the robustness of pumping quantisation in a regime
of finite driving frequencies. Specifically, in this regime, low-temperature dissipa-
tive dynamics can lead to a pumped charge that is much closer to the Thouless
quantised value, compared to a coherent evolution. We understand this effect in
the Floquet framework: dissipation increases the population of a Floquet band
which shows a topological winding, where pumping is essentially quantised. This
finding is a step towards understanding a potentially very useful resource to
exploit in experiments, where dissipation effects are unavoidable. We consider
small couplings with the environment and we use a Bloch–Redfield quantummas-
ter equation approach for our numerics: comparing these results with an exact
MPS numerical treatment we find that the quantum master equation works very
well also at low temperature, a quite remarkable fact.
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1. Introduction

Quantised adiabatic transport in insulators, discovered by Thouless [1] in 1983, is a
topic of current interest in the field of topological insulators, recently fostered by the
experimental realization of a Thouless pump with ultra-cold atoms [2, 3].

The strict quantisation of the pumped charge requires the quantum dynamics to
be, in principle, adiabatic and unitary. However, in concrete experimental realizations
these two requirements cannot be perfectly fulfilled. The study of non-adiabatic effects
on a specific example of Thouless pump, the so-called Rice–Mele model [4], showed
the emergence of quadratic corrections in the driving frequency whenever the system
is initially prepared in the initial Hamiltonian ground state [5]. Similar non-adiabatic
effects have been discussed in the context of the quantisation of the Hall conductivity in
the Harper–Hofstadter model [6]. The effect of disorder on the topological pumping of
the Rice–Mele model has been recently discussed in reference [7]. An important point
is also the effect of interactions, which make the system non integrable and leads the
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system to heat up T = ∞ in the long-time limit. In this case, adiabatic pumping is
asymptotically washed out and can occur only as a transient condition [8].

Dissipative effects may also disrupt pumping quantisation. However, the impact and
role of dissipation in the performance of a Thouless pump remains an open question.
Some studies have taken into account thermal effects by using a thermal initial state,
instead of the Hamiltonian ground state [5, 9], followed by a unitary dynamics. Within
such a framework, it was found [9] that charge quantisation is robust against non-zero
temperatures in the initial state when a single pumping cycle is considered. Moreover,
in the limit of an infinite number of pumping cycles [5], thermal corrections were found
to be exponentially small for low enough temperatures but increasingly relevant when
the temperature approached the insulating gap. Concerning papers where a genuine
dissipative dynamics is considered, we mention a study [10] of the Qi–Wu–Zhang model
through a Lindblad Markovian quantum master equation, where it is found that the
pumped charge, starting from the quantisation value, decreases monotonically to zero
with increasing noise.

In this work, we aim at understanding how topological quantum pumping is affected
by the interaction with a bosonic thermal bath. To do so, we study the time evolution
of the Rice–Mele Hamiltonian [4] and analyse how charge pumping is affected both
by dissipation and by non-adiabatic effects. The remarkable finding of our study is
that—in appropriate conditions, i.e. if the temperature of the bath is low enough, and
in the limit of infinite cycles—a dissipative dynamics may be beneficial to a Thouless
pump, fighting against non-adiabatic effects, and leading to a pumped charge which is
closer to the quantised value.

We rationalise our findings by analysing the dissipative results in terms of the Flo-
quet states of the unitary dynamics. Interestingly, we find that the charge pumped at
stationarity is still expressed, exactly as in the unitary case, only in terms of the popula-
tions of the Floquet bands, with no role for the quantum coherences. Quantised pumping
is essentially related to the perfect occupation of what one might call the ‘lowest-energy
Floquet band’, i.e. the Floquet band constructed by choosing, for each momentum, the
Floquet mode with (period-averaged) lowest-energy expectation: this is the quasi-energy
band ‘closest’ to the instantaneous ground state, that shows the correct winding [11]
across the Brillouin zone (BZ) and leads to a quantised charge transport, up to non-
adiabatic corrections which are exponentially small in the driving period, see references
[5, 12]. The dissipation-induced improved pumping is found to be strictly related to
the fact that dissipation brings to a higher population for such a lowest-energy Floquet
band. We might regard it as a dissipative preparation of a topological Thouless pump,
somewhat similar in spirit to the results of reference [13], which however deals with a
two-dimensional non-driven system with a specifically engineered dissipation. It is also
worth to mention reference [14], dealing with non-topological pumping in superconduct-
ing nanocircuits. The authors show that a zero-temperature bath can make the pumped
charge at finite frequency closer to its coherent adiabatic counterpart. This phenomenon
occurs also in our case.

The paper is organised as follows: in section 2 we introduce our dissipative version
of the Rice–Mele model. In section 3 we define the pumped charge, i.e. the observable
displaying quantisation in the non-dissipative adiabatic limit, and we describe it within
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the Floquet theory. In section 4 we illustrate how we compute the dissipative time
evolution of the system. In particular, we benchmark the reliability of the Bloch–Redfield
quantum master equation against a non-perturbative approach, which exploits a unitary
chain-mapping transformation in order to carry out time evolution with matrix product
states. We find a very good agreement, especially at T = 0 where the quantum master
equation was not expected to work [15].

In section 5 we present our numerical results for the pumped charge and discuss the
pumping enhancement due to a low-temperature bath. We deepen the understanding of
this effect in the Floquet framework, which provides insights in terms of populations of
the Floquet bands. Finally, in section 6 we summarize the main results and draw our
conclusions.

2. The model

We study here a dissipative version of the Rice–Mele model, where the non-unitary
dynamics comes from coupling the system to a bosonic bath at thermal equilibrium.
The Hamiltonian is

Ĥ tot(t) = ĤS(t) + ĤSB + ĤB (1)

where the three terms on the rhs are the system, system–bath interaction and bath
Hamiltonians, respectively.

The system Hamiltonian consists of a bipartite lattice on which spinless fermions
hop on nearest-neighbour sites, according to the Rice–Mele Hamiltonian [4]:

ĤS(t) = −
N∑
j=1

(
J1(t)ĉ

†
j,Bĉj,A + J2(t)ĉ

†
j+1,Aĉj,B + H.c.

)
+Δ(t)

N∑
j=1

(
ĉ†j,Aĉj,A − ĉ†j,Bĉj,B

)
(2)

where N is the number of diatomic cells, ĉ†j,A(B) creates a fermion on site A(B) of the

jth cell, J1(t) and J2(t) are respectively intra-cell and inter-cell hopping terms and Δ(t)
modulates the on-site energies. We assume periodic boundary conditions (PBC), so that
translational invariance allows us to Fourier transform the fermionic operators for the
A and B sites separately, ĉj,A(B) =

∑
ke

ikajĉk,A(B)/
√
N , where the sum over the discrete

wave-vectors k = 2πn/(Na), with n = 0, 1, . . . ,N− 1 and a the cell length, runs inside
the first BZ. By applying this transformation to equation (2), we block-diagonalise the
Hamiltonian in sectors of different k:

ĤS(t) =

BZ∑
k

[
ĉ†k,A ĉ†k,B

]
Ĥk

S(t)

[
ĉk,A
ĉk,B

]
=

BZ∑
k

[
ĉ†k,B ĉ

†
k,B

]
R(k, t) · σ̂

[
ĉk,A
ĉk,B

]
(3)

where Ĥk
S(t) = R(k, t) · σ̂ is a two-dimensional operator, conveniently parameterised,

using the Bloch-vector notation, with the vector of Pauli matrices σ̂ and an effective
magnetic field R(k, t)

R(k, t) = (−J1(t)− J2(t) cos(ka),−J2(t) sin(ka),Δ(t))T. (4)
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The energy bands E±(k, t) = ±|R(k, t)| of Ĥk
S(t) never ‘touch’ except at a single

‘metallic’ point with Δ = 0 and J1 = J2, where R = 0 (for k = π/a). We completely
fill the lowest band with N particles—the half-filling condition—and realise a quantised
adiabatic pumping by driving the band insulator around the metallic point with a sched-
ule J1(t) = J0 + δ0cos ωt, J2(t) = J0 − δ0cos ωt and Δ(t) = Δ0sin ωt. Here ω = 2π/τ is

the driving frequency, associated to a period τ , so that ĤS(t+ τ) = ĤS(t).
To account for dissipation in the simplest and most practical way, we choose to

include identical but independent harmonic baths for each k-subsector, coupled in the
usual Caldeira–Leggett spin-boson [16] fashion

Ĥ tot(t) =
BZ∑
k

[
ĉ†k,Aĉ

†
k,B

]
Ĥk(t)

[
ĉk,A
ĉk,B

]
(5)

Ĥk(t)= R(k, t) · σ̂ + (n · σ̂)⊗ X̂k +
∑
l

�ωlb̂
†
k,lb̂k,l

where n specifies a unit vector for the bath coupling, X̂k =
∑

lλl(b̂
†
k,l + b̂k,l), λl are cou-

pling constants, and [b̂k,l, b̂
†
k′,l′ ] = δk,k′δl,l′ . In terms of the original fermions, a σ̂z-bath

coupling, given by n = (001), would correspond to a term (ĉ†k,Aĉk,A − ĉ†k,Bĉk,B)⊗ X̂k. This
will be our standard choice unless otherwise specified. Our dissipative Rice–Mele model
can then be effectively regarded as a collection of N independent dissipative two-level
systems, one for each momentum k in the BZ, with a system–bath coupling effectively
acting on σ̂z. The interaction between system and environment is encoded in the bath
spectral function J (ω) =

∑
lλ

2
l δ(ω − ωl). We will consider a standard Ohmic dissipation

[16], modelled in the frequency continuum limit as J (ω) = 2α�2ωFcutoff(ω,ωc), where α is
the (dimensionless) coupling strength, and Fcutoff(ω,ωc) implements a suitable frequency
cutoff ωc. In the following we will adopt either the exponential form Fcutoff = exp(−ω/ωc)
or the hard-cutoff Fcutoff = Θ(ωc − ω).

3. The pumped charge

The current density operator Ĵ(t) is obtained as a derivative of the system Hamilto-
nian with respect to an external flux Φ passing through the hole of the PBC ring,

Ĵ = ∂ĤS(Φ)
∂Φ

∣∣∣
Φ=0

. In the present case, the current density operator can be expressed as

Ĵ(t) =
1

L

BZ∑
k

[
ĉ†k,A ĉ†k,B

]
Ĵ k(t)

[
ĉk,A
ĉk,B

]
(6)

where L = Na is the system length,

Ĵ k(t) =
ea

2�
(J2(t) sin(ka)σ̂

x + (J1(t)− J2(t) cos(ka)) σ̂
y) , (7)

and e is the charge of the electron. Given the density matrix ρ̂kS(t), the pumped charge
during the mth driving period, Qm, is thus given by integrating the current density over
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the period. In the thermodynamic limit L→∞ we can write

Qm =

∫ π
a

− π
a

dk

2π

∫ mτ

(m−1)τ

dtTr
(
Ĵ k(t)ρ̂

k
S(t)

)
. (8)

After a sufficiently large number of cycles, the average pumped charge is expected to
converge to an asymptotic value

Qm
m→∞−−−−→Q ≡ lim

M→∞

1

M

M∑
m=1

Qm. (9)

In the next section we are going to use Floquet theory to study in detail how this
convergence occurs.

3.1. Floquet analysis for the pumped charge

We introduce here some important notions of Floquet theory applied to charge pumping,
extending the coherent evolution treatment presented in reference [5]. Since the driving is

periodic, i.e. ĤS(t) = ĤS(t+ τ), from Floquet theory [17–19] we know that the solutions
to the time-dependent Schrödinger equation for the closed system have the following
form

|ψn(t)〉 = e−iεnt/�|un(t)〉 (10)

where n labels the possible solutions, |ψn(t)〉 are called Floquet states , |un(t)〉 are called
Floquet modes and are τ−periodic, and εn are the quasi-energies . In the present case,
using k as a quantum number and n = ± for two Floquet states |ψk

n(t)〉 at each k, we
can rewrite the density matrix ρ̂kS(t) in the coherent Floquet basis

ρ̂kS(t) =
∑
n,n′

ρknn′(t)|ψk
n(t)〉〈ψk

n′(t)| (11)

where ρknn′(t) = 〈ψk
n(t)|ρ̂kS(t)|ψk

n′(t)〉.
In this framework, the infinite-time average pumped charge, equation (9), can be

written as

Q = lim
M→∞

1

M

∑
n,n′

∫ π
a

− π
a

dk

2π

∫ Mτ

0

dt e−
i
�
(εkn−εk

n′ )tF k
nn′(t) (12)

where

Fk
nn′(t) = ρknn′(t)Jkn′n(t) (13)

and

J
k
n′n(t) = 〈uk

n′(t)|Ĵ k(t)|uk
n(t)〉 (14)

https://doi.org/10.1088/1742-5468/ab7a25 6
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is the matrix element of the current operator between Floquet modes, hence an explicitly
periodic quantity. In the coherent evolution case [5], the density matrix ρknn′(t) turns out
to be time-independent and related to the initial state |ψk(0)〉 as

ρk,cohnn′ = 〈uk
n(0)|ψk(0)〉〈ψk(0)|uk

n′(0)〉. (15)

In turn, if the quasi-energies are non degenerate, when n 
= n′, the k-integral will vanish

in the limit t→∞, since the oscillating phase factors e−i(εkn−εk
n′ )t/� will lead to destructive

interference cancellations. More formally, this is a consequence of the Riemann–Lebesgue
lemma applied to the k-integration, as explained in detail in references [20, 21].

Using this result in equation (12), and exploiting the infinite-time integration, it
follows that only the populations ρk,cohnn = |〈uk

n(0)|ψk(0)〉|2 of the Floquet bands come
into play, and one arrives at the so-called Floquet diagonal ensemble [20]

Q = Qcoh
d =

∫ π
a

− π
a

dk

2π

∑
n

ρk,cohnn

∫ τ

0

dt Jknn(t). (16)

With a very similar application of the Riemann–Lebesgue lemma it is also possible to see
that, in the thermodynamic limit,Qm defined in equation (8) tends toQcoh

d whenm→∞.
In the dissipative case, ρknn′(t) is generally time dependent. What we find—and

explicitly discuss in section 5 and figure 4—is that after a certain transient, because
of dissipative effects, ρknn′(t) becomes τ -periodic. Hence, we can again apply the Rie-
mann–Lebesgue lemma as done in reference [21] and show that only the diagonal terms
contribute, arriving at the dissipative version of the Floquet diagonal ensemble formula
for the average pumped charge

Qm
m→∞→ Q = Qdiss

d =

∫ π
a

− π
a

dk

2π

∑
n

∫ τ

0

dt ρknn(t) J
k
nn(t). (17)

As in reference [5], the asymptotic pumped charge can be related to the properties
of the Floquet quasienergies. In order to do that, a result coming from our numerics is
crucial: if we approximate ρknn(t) at stationarity with its average value on one period ρknn,
we get corrections to the pumped charge of the order ∼ 10−6. So, a very good approxi-
mation 6 consists in replacing ρknn(t) with its time-average ρknn. With this approximation,
using arguments similar to those of reference [5], we find that the asymptotic pumped
charge can be written in the form

Qdiss
d =

1

�ω

∫ π
a

− π
a

dk
∑
n

ρknn∂kε
k
n, (18)

which looks very similar to equation (4) in reference [5], obtained for a coherent dynam-
ics. Because the derivative with respect to k can be recast as the derivative with respect
to an external flux [5], this equation is also strictly analogous to equation (19) of reference
[22], where pumping in a dissipative superconducting nanocircuit was considered.

6 The error is of the same order of the one coming from the discretization of k in the numerical evaluation of equation (17). If we
use the RWA with respect to the quasienergies, as clarified in section appendix B, ρkαα(t) is time-independent and equation (18) is
exact in the framework of this RWA.
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4. Numerical methods

In this section we introduce and compare two different methods for computing the
dissipative dynamics of our model. The first method discussed in section 4.1 is the
standard Bloch–Redfield quantum master equation (QME) [23, 24] for a two-level
system, which is fast, but valid only within the weak-coupling Born–Markov approxi-
mation. The second method, described in section 4.2, is based on a unitary mapping
of the harmonic bath into a bosonic chain interacting with the system [25–28]. The
full system-plus-bath time evolution is then obtained by using matrix product states
(MPS) and the two-site time-dependent variational principle [29–31]. To the best of
our knowledge, we present here the very first results obtained by this method in a
non-equilibrium scenario, i.e. in a system with explicit time-dependence. This second
method is reliable at any coupling strength and accounts for non-Markovian effects,
at the expense of a higher computational complexity. We therefore used it here just
to benchmark the QME results in some specific regimes. We remark that the reli-
ability of a QME was thoroughly tested in reference [32] against the numerically-
exact quasi-adiabatic path integral (QUAPI) method [33, 34] for the dissipative Lan-
dau–Zener model. We perform here a similar check with the present driving scheme, see
section 4.3.

All the results presented in section 5 have been obtained using the QME, since this
allows us to check the thermodynamic limit (N→∞), in a reasonable computational
time.

4.1. Bloch–Redfield equation

According to the Hamiltonian in equation (5) and under the assumptions of weak sys-
tem–bath coupling and Born–Markov approximation [23, 24, 32, 35–37], we can write
a QME to describe the reduced density matrix ρ̂kS(t) for the system for each k-vector.
There are many slightly different ways of writing down the relevant QME, depending,
for instance, on whether or not one adopts a rotating wave approximation (RWA). The
approach used below makes use of an RWA and is essentially equivalent to the ‘double-
sided adiabatic QME’ in Lindblad form explained in reference [38]. Observe that this
treats the dissipative dynamics assuming an adiabatic driving, but we will also apply it
in regimes where this condition is slightly violated.

Writing the system density matrix in the Bloch-vector notation ρ̂kS(t) =
(𝟙+ rk(t) · σ̂)/2, the equations to solve for the dynamics in Schrödinger representation
read

ṙ =
2

�
R× r− Adiss · r− b. (19)

where we dropped the k and t labels from r and related quantities. From the Lindblad
form derived using the rotating-wave-approximation (RWA) [38], we can express the rel-
evant ingredients appearing in Adiss and b in terms of pure-dephasing γϕ and relaxation
γR rates [39]

https://doi.org/10.1088/1742-5468/ab7a25 8
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γϕ =
(n ·R)2

E2

SX(0)

�2
(20a)

γR =

(
1− (n ·R)2

E2

)
SX(2E/�)

�2
(20b)

where SX(ω) = γ(ω) + γ(−ω) is the symmetrised Fourier transform of the free thermal
bath correlation function

γ(ω) =

∫ +∞

−∞
dt eiωt〈X̂(t)X̂(0)〉0. (21)

For the case of Ohmic dissipation with exponential cutoff, J (ω) = 2α�2ωe−ω/ωc ,
we find that SX(0) = 8π�α/β and SX(2E/�) = 2πJ (2E/�) coth(βE), with E = |R|,
β = (kBT )

−1 and kB the Boltzmann constant. In terms of these quantities, the dissipation
matrix Adiss and the vector b have the form

Adiss =

⎛
⎜⎜⎜⎝
γD,x γxy γxz

γxy γD,y γyz

γxz γyz γD,z

⎞
⎟⎟⎟⎠ (22a)

b =
R

E
γR tanh(βE), (22b)

where

γD,i =
(γR
2

+ γϕ

)
+

R2
i

E2

(γR
2

− γϕ

)
(23a)

γij =
RiRj

E2

(γR
2

− γϕ

)
. (23b)

These equations agree with those discussed in reference [39], obtained, with similar
approximations, from a perturbative diagrammatic approach. As one can easily verify,
if R is time independent, the final steady state value of r(t→∞) correctly describes
the thermal density matrix for each momentum k. To compute the system’s dynamics,
we solved equation (19) through a standard fourth-order Runge–Kutta method.

4.2. Chain mapping based time evolution using matrix product states

In order to benchmark the QME we employ a numerically exact technique using
MPS, recently introduced by Tamascelli et al [28]. The method is essentially based
on two key ideas. First, a more efficient representation of the finite temperature bath
is obtained by modifying the spectral density. In particular, the thermal state will be
represented by the vacuum state of a transformed bosonic environment, which allows us
to write the state of system-plus-bath as a pure state rather than a density matrix.
Second, the spin-boson (star-like) Hamiltonian is transformed to a chain geometry,
using orthogonal polynomials. This chain Hamiltonian can be simulated efficiently
using MPS. For our benchmarks we use the Ohmic spectral density with hard cutoff:
J (ω) = 2α�2ωΘ(ωc − ω).
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Let us now discuss the method in more detail. We start from the continuum version
of the Hamiltonian in equation (5) for a given wave vector k. Parameterizing the modes
by the dimensionless variable x we have [26, 27]

Ĥk(t) = R(k, t) · σ̂ + (n · σ̂)⊗
∫ 1

0

dxλ(x)(b̂†k(x) + b̂k(x)) +

∫ 1

0

dx�ω(x)b̂†k(x)b̂k(x) (24)

where now the bosonic operators have a (frequency) continuum normalisation in

terms of Dirac delta: [b̂k(x), b̂
†
k′(x

′)] = δk,k′δ(x− x′). Here, the functions λ(x) and
ω(x) define the interaction and dispersion, respectively, and are connected to the
spectral density through the relation λ2(x) = ω′(x)J (ω(x)) [25, 27]. The freedom
in choosing those functions is exploited by setting ω(x) = ωcx, which is useful in
the algebra of orthogonal polynomials performed below. At this point the bath is
described by the density matrix corresponding to the thermal state, requiring large
local dimensions at high temperatures. Now the new insight of reference [28]—see
also reference [26] for an alternative route through a thermal Bogoliubov trans-
formation—is that the thermal state can be represented by the bosonic vacuum,
if the spectral density J (ω) is replaced by the temperature-dependent spectral
density

Jβ(ω) =
sgn(ω)J (|ω|)

2
(1 + coth(βω/2)) , (25)

extending its support to negative frequencies. As a consequence, the integrals in
equation (24) have an extended domain [−1, 1], and λ(x) has to be replaced by λβ(x),
which is defined through the thermal spectral density: λ2

β(x) = ωcJβ(ω(x)).
Next, following references [25, 27, 40], we perform a mapping from the star-like spin-

boson geometry to a chain geometry. We do that by defining the unitary transformation

â†k,j =

∫ 1

−1

dxUj(x)b̂
†
k(x) with Uj(x) = λβ(x)pj(x) (26)

and inverse transformation b̂†k(x) =
∑∞

j=0Uj(x)â
†
k,j. The (real) polynomials pj(x) of

degree j are orthonormal with respect to the inner product

〈pj, pj′ 〉 =
∫ 1

−1

dxλ2
β(x)pj(x)pj′(x) = δj,j′ . (27)

Moreover, the corresponding monic polynomials πj(x)—obtained when dividing each
polynomial pj by the coefficient of the leading power—satisfy the three term recurrence
relation [25]

πj+1(x) = (x− αj)πj(x)− βjπj−1(x) j = 0, 1, 2, . . . (28)

with initial polynomial π−1 ≡ 0. While those polynomials are not needed explicitly,
we need to find the recurrence coefficients αj and βj. For zero temperature they are
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known for some special spectral densities [25], but in most cases we need to calculate
them numerically [41, 42]. Exploiting this recurrence relation, the transformation in
equation (26) yields the chain geometry Hamiltonian

Ĥk(t) = R(k, t) · σ̂ + (n · σ̂)⊗ κ0(â
†
k,0 + âk,0)

+
∞∑
j=1

κj(â
†
k,jâk,j−1 + H.c.) +

∞∑
j=0

�Ωjâ
†
k,jâk,j (29)

with system–bath coupling κ0 =
√∫ ωc

−ωc
dωJβ(ω), hopping amplitudes κj = �ωc

√
βj and

on-site energies Ωj = ωcαj. This infinite chain can be truncated at some finite length
Lchain, such that the excitations reflected at the border of the truncated chain do not
reach the system [27]. We then carry out the time evolution using the two-site time
dependent variational principle [29–31, 43], which has proven to combine high accuracy
and efficiency [44]. Let us now briefly discuss the sources of errors in this method. First,
we need to find the recurrence coefficients for the chain mapping, which is done numer-
ically using the package in references [41, 42]. The error, however, is under full control
and any target accuracy can be reached. Once we have our chain Hamiltonian, we carry
out time-evolution. Here, additional errors are due to the splitting of the differential
equation in the time-dependent variational principle and due to limited representa-
tion capabilities of the MPS. While the splitting error can be controlled through the
time step, the representation capabilities of the MPS are enhanced by increasing the
bond dimension and the local bosonic dimension, which has to be truncated to some
finite value. In summary, all errors are well under control and can be made arbitrarily
small.

4.3. Benchmarking the QME

We benchmark here the QME data against the numerically-exact MPS approach. Since
the latter technique is computationally heavy, we consider here a chain of N = 16
diatomic cells. Moreover, the most interesting results, in the following, will be related
to a low-temperature bath, which is also the regime were the QME is believed to be
less reliable [15]. For this reason, we fix here T = 0. The bath spectral function is again
Ohmic with hard cutoff, as described in section 4.2, with α = 0.001 and �ωc = 10J0.
The pumping is performed over M = 12 cycles and for two different driving frequencies
�ω/J0 = 0.2 and �ω/J0 = 0.4. In figure 1 we plot the total current density as a function
of time, focusing on the first and the last period, where stationarity is already attained.
We observe an excellent agreement between the QME data (orange lines) and the MPS
results (blue circles) in all regimes. The corresponding pumped charges agree within
an error of the order of the precision we use to compute the k-integrals. Indeed, for
�ω/J0 = 0.2 we obtain Q = 0.99999 from the QME and Q = 0.99998 from the MPS,
while for �ω/J0 = 0.4 we get Q = 1.00066 from the QME and Q = 1.00068 from the
MPS.
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Figure 1. Comparison of the dynamics of the total current computed through
the QME approach (lines) and the MPS technique (dots) for �ω = 0.2J0 (a) and
�ω = 0.4J0 (b). Data on the left (right) correspond to the first (last) period of
pumping. The results refer to a chain with N = 16 diatomic cells and M = 12
pumping cycles, with bath parameters T = 0, α = 0.001 and �ωc = 10J0 (for a spec-
tral function with hard cutoff, see section 4.2). We observe an excellent agreement
between the two approaches. For the MPS calculations we used a bond dimen-
sion D = 10, a local bosonic dimension d = 4 (at most 3 bosons per site), and a
bath harmonic chain of length Lchain = 1030 (for �ω = 0.2J0) or Lchain = 600 (for
�ω = 0.4J0). Convergence was observed for these parameters.

5. Dissipative pumping results

We present here how dissipation affects the pumped charge at different driving fre-
quencies. In all the following numerical analysis we will approximate the integral over
k with a discrete sum in the first BZ. All the calculations are performed with sizes N
which we have verified to be large enough to be representative of the thermodynamic
limit: in practice, N ∼ 100 is enough in the presence of dissipation. We choose the cut-
off frequency ωc in the spectral function to be much bigger than the widest spectral
gap, ωc = 1000J0/� (we comment upon different choices of ωc in appendix A). We start
considering the bath coupling strength to be α = 0.001; as we will see in section 5.2,
increasing it will have quite interesting effects on the pumping dynamics, stabilizing
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Figure 2. (a) Pumped charge over the 1st period Q1 vs driving frequency �ω/J0,
at bath temperatures T ranging from 0 to J0, compared to the coherent-evolution
results of reference [5]. Inset: zoom of the ω → 0 region, showing the convergence
to finite values depending on T. (b) Charge pumped in the mth period Qm vs
the cycle number m for the coherent case (circles) compared to two dissipative
evolutions (triangles) at different bath temperatures T. Here τ = 20�/J0, as for
the m = 1 results in the rectangle shown in (a). The three horizontal dashed lines
are the corresponding values from the Floquet diagonal ensemble, equation (16)
or equation (17). Notice that oscillations in the dissipative evolutions are damped
much more rapidly. (c) Average pumped charge in the infinite-time limit Q vs driv-
ing frequency �ω/J0, at bath temperatures T ranging from 0 to J0, compared to the
Floquet diagonal ensemble value for the coherent evolution Qcoh

d in equation (16).
The region of dissipation assisted improvement over the closed-system pumping is
highlighted by a yellow background.
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the quantised pumping against the driving for �ω > 0.4J0. On the opposite, for smaller
frequencies, results are insensitive on α.

Let us start considering the behaviour of the pumped charge after a single cycle.
In figure 2(a) we plot the charge pumped after a single cycle, Q1, versus the driving
frequency ω. On the one hand, at larger values of the frequency, the bath has almost no
effect, and the behaviour at all temperatures remains almost identical to the coherent
one, which coincides with that reported in reference [5]. On the other hand, at smaller
values of the frequency, the system has enough time to ‘feel’ thermal effects and in
general moves away from the ideal quantised pumping, here corresponding to Q = 1.
The charge converges to a finite value which depends on the bath temperature T, see
the inset of figure 2(a). We will further comment on this point later.

These results change remarkably when pumping over a larger number of cycles. We
find, and this is one of the main results of the paper, that the charge pumped over
the mth cycle Qm can overcome the corresponding coherent result in presence of a
thermal bath of sufficiently low temperature. This is shown in figure 2(b). Observe that
dissipation makes the convergence to the infinite-time average much faster than the
coherent case. Notice also that the infinite-time average results are precisely described
by the Floquet diagonal ensemble formulas, equations (16) and (17), shown by horizontal
dashed lines.

Figure 2(c) shows the infinite-time pumped charge Q versus the driving frequency
ω, for both coherent and dissipative evolutions at different T. The dissipative results are
obtained either from equation (9) (withM = 100) or equivalently from equation (17); the
coherent results are obtained from equation (16). Observe that at T = 0 the dissipative
results are always well above the coherent ones. We remark that dissipation at T = 0
restores a nearly quantised pumped charge Q = 1 away from the strict adiabatic limit
ω → 0. Q starts to deviate from one only for frequencies around �ω � 0.5J0, as discussed
in section 5.2. This dissipative improvement of the pumped charge persists also at finite
T, for large enough ω. We define this phenomenon dissipation assisted Thouless pumping .
This finding is supported by the benchmark done in section 4.3, where the QME and
the MPS results are found to be in excellent agreement. Our finding is also qualitatively
independent of whether one assumes in the QME some form of RWA or not, as shown
in appendix B. Notice, however, that some of the quantitative aspects of our results do
depend on the details of the QME chosen.

Interestingly, in the small frequency regime we observe that Q(ω → 0) ≡ Qm(ω → 0)
for any m � 1, i.e. the ω → 0 limit is independent of the number of driving periods. This
is because in the ω → 0 limit the dissipative transient induced by the bath occurs within
a single driving period.

Notice that previous discussions of thermal effects in the Rice–Mele model [5, 9,
45] have considered a coherent Schrödinger dynamics starting from an initial thermal
state. We compared the results obtained from such an approach with the genuinely
dissipative evolution studied in the present paper. In general, we observed completely
different results, both in the short and in the intermediate frequency ranges of study, as
illustrated in figure 3. This is definitely not surprising, but worth mentioning. Figure 3
is important also in another respect: we see that in the dissipative case, if we take
very different initial conditions, we get the same asymptotic regime. This is not at all
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Figure 3. Comparison between results from the coherent evolution starting from an
initial thermal state at T = J0 (red squares) and the dissipative dynamics induced
by a bath at T = J0, both starting from an initial ground state (blue circles) and
from the thermal state at the same bath temperature (green diamonds). Here we
have a driving period τ = 20�/J0. The dissipative and coherent results are com-
pletely different. Notice that the two dissipative evolutions converge to the same
stationary state.

surprising in a dissipative system and marks the difference with the asymptotic regime
of the coherent case [20].

Focusing again on figure 2, observe the flat ω-behaviour of Q for the dissipative
evolution at T = 0. It would be interesting to pin down if the corrections to the strict
adiabatic limit Q(ω → 0) = 1 change from power-law [5] to exponentially small in the
presence of zero-temperature dissipation. Unfortunately, this question is extremely dif-
ficult to answer numerically. Indeed, this aspect of the analysis is highly sensitive to
the type of weak-coupling approximation performed in the QME. Although the QME
results obtained with different flavours of RWA and without RWA are in good quali-
tative agreement, they are quantitatively different in that respect (see appendix B). A
similar question might be asked concerning the behaviour of Q(ω → 0,T ) as a function
of the bath coupling temperature T, a question that is once again numerically elusive
and rather sensitive to the details of the QME used. A detailed MPS analysis might help
in clarifying these points, but we suspect that the high numerical accuracy necessary to
answer some of these questions would make these issues extremely delicate.

5.1. Floquet analysis of dissipative results

It is insightful to understand the dissipative improvement shown in figure 2(c) within a
Floquet framework. Let us therefore go back to the discussion of section 3.1 and study
the dynamics of the system density matrix in the Floquet basis.

A crucial point will be to numerically show that the the populations and the coher-
ences in the Floquet basis ρknn′(mτ) converge to an asymptotic τ -periodic behaviour,
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in order to justify the application of the Riemann–Lebesgue lemma and the validity of
equation (17).

Another point will be to understand the dissipation assisted Thouless pumping in
terms of these quantities. In order to do that, we consider the lowest-energy Floquet
state. This state is the Floquet state with maximum overlap with the instantaneous
ground state. The instantaneous ground state gives rise to perfectly quantised pumping
in the full adiabatic limit ω → 0. For finite ω the lowest-energy Floquet state does the
same (up to corrections exponentially small in ω) [5, 12]. We can construct the lowest-
energy Floquet state by choosing, for each k, the Floquet state with (period-averaged)
lowest-energy expectation |ψk

−(t)〉. On the opposite, choosing for each k the Floquet
state with period-averaged highest energy expectation we construct the highest energy
Floquet state |ψk

+(t)〉.
It is interesting to understand if the dissipative improvement of the pumped charge is

induced by the environment making this special state more populated. In order to answer
to this question we will focus on the population of the highest-energy Floquet state
ρk++(mτ) and show that it is reduced by the environment in comparison to the unitary
case. This means that the population of the lowest-energy state ρk−−(mτ) = 1− ρk++(mτ)
is increased.

We analyze the two points raised above in figure 4. We start focusing on the point
about convergence. We show the stroboscopic dynamics of the coherences absolute val-
ues |ρk−+(mτ)| between the two Floquet bands in figure 4(a) and of the excited-band
populations ρk++(mτ) in figure 4(c). We see that both quantities converge to stationary
values for m→∞. The phases of the coherences (not shown) also converge to fixed
values. After stroboscopic stationarity is reached, the intra-period behaviour of these
quantities is illustrated in panels (b) and (d), respectively: observe a τ/2-periodicity in
both cases. This justifies the application of the Riemann–Lebesgue lemma in section 3.1
and the validity of equation (17).

Now let us focus on the point about the population of the highest-energy Floquet
state. In figure 4(d) we compare the populations of the highest-energy Floquet band
in the coherent and dissipative cases, showing that ρk++ is generally reduced by several
orders of magnitude in presence of dissipation at T = 0. Hence ρk−−, the population
of the lowest-energy Floquet state, is increased and then the topological pumping is
improved at finite frequencies. In the main figure we fix k and look at the dependence
on time, while in the inset we plot the period-averaged kth-population ρk++ versus the
momentum k. In the inset we note, incidentally, the presence of a value of k where
the coherent value shows an irregularity and the dissipative value shows a peak. That
peak corresponds to a Floquet quasi-resonance which gives rise to a non-adiabaticity
and increases the asymptotic dissipative population of the highest-energy Floquet
band [46].

We conclude that dissipation moves the system towards the lowest-energy Flo-
quet state, and that is the way in which the bath improves the topological pumping.
This asymptotic condition where the Floquet state with maximum overlap with the
instantaneous ground state is populated is very different from what happens in the
high-frequency limit where the asymptotic condition is given by the Floquet–Gibbs
states [47, 48].
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Figure 4. Left panels: stroboscopic dynamics of: (a) the coherences absolute
value |ρk−+(mτ)| and (c) the excited-Floquet band populations ρk++(mτ), for
k = {2/5, 1, 6/5}π. Here T = 0 and τ = 20�/J0. Right panels: intra-period dynam-
ics of: (b) |ρk−+(t)| and (d) ρk++(t) after stationarity is reached, for k = π. All the
other parameters are fixed as in panels (a) and (c). Observe the τ/2-periodicity. In
(d), the red horizontal dashed line shows ρk++ for the corresponding coherent evo-
lution, much higher than the dissipative result at T = 0. Inset in (d): comparison
between ρk++ for the coherent case (red squares) and the time-average ρk++ for the
dissipative case (blue circles) versus k.

5.2. Effect of the bath coupling strength

We focus here on how the stationary pumped charge Q changes as the interac-
tion α is changed over different orders of magnitude. We have used the QME to
study this behaviour and we show in figure 5 our results for T = 0 and for the
three frequencies �ω/J0 = 0.4, 0.5, 0.6. Notice that we show results up to α = 0.1 for
completeness, but we consider our QME reliable up to α � 10−2, see reference [32].
Data for �ω � 0.4J0 are almost constant in the range α ∈ [10−5, 10−2] (we just show
�ω = 0.4J0). However, at larger frequencies things get more interesting: the curves are
non monotonic and there is a maximum of Q at around α � 6× 10−3. There is there-
fore an interval of α where a stronger dissipation stabilizes the pumping against the
driving.
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Figure 5. Average pumped charge Q versus the coupling with the environment α
for three different values of ω and T = 0.

Focusing on the data in figure 5 for α = 0.001, we can furthermore notice that the
trend Q = 1 observed previously in figure 2(c) starts to deviate from the quantised value
at frequencies �ω � 0.5J0.

6. Conclusions

We analysed the role of dissipation from a somewhat idealised thermal environ-
ment—coupling independent baths to each fermionic k-mode—on Thouless pumping
in the Rice–Mele model. We found that a low temperature bath can assist against
undesired (inevitable) non-adiabatic effects. Indeed, at fixed finite driving frequency,
the pumped charge obtained from dissipative evolution can be closer to the quantised
value with respect to the one obtained from purely coherent dynamics [5]. Dissipa-
tion induces this improvement because it increases the population of the lowest-energy
Floquet band. Indeed, the pumped charge would be essentially quantised—up to expo-
nentially small terms—when this band is completely filled. This is somewhat in line, in a
non-topological context, with the finding of improved pumping in a three-site fermionic
chain [49] subject to dissipation.

Our findings are qualitatively independent of the system–bath coupling chosen as
long as we stay in a weak coupling regime, as discussed in appendix C. They are fur-
thermore validated by benchmarking against a numerically-exact method that does not
rely upon any weak-coupling nor Born–Markov approximation.

The fact that thermal effects can be beneficial is remarkable and interesting for future
experimental realizations. We stress that the effect is not related to a bath engineering ,
exploited in the literature for other topological models [13].
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A further step towards a deeper understanding would be to study more realistic
couplings to the environment, e.g. via operators acting on sites in real space, which break
the entanglement in physical space. However, this analysis requires more sophisticated
approaches [50–52], and is left to future studies.

Another interesting direction would be to study topological measures, such as the
Uhlmann phase [53] and the ensemble geometric phase (EGP) [45]. In particular,
it would be interesting to inquire if the Uhlmann phase of the asymptotic time-
periodic effective density matrix has a relation with the pumped charge, in analogy
with the Berry or the Aharonov–Anandan geometric phase in the coherent cyclic
case [1, 22].
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Appendix A. Dependence on the cutoff

Let us focus on the issue of choosing the cutoff ωc in the bath spectral function. Gen-
erally ωc is taken to be the largest energy scale of the system, so that the dynamics
becomes insensitive to the detail of this parameter. In the present case, since the system
energy gap is always of the order of J0 and we consider temperatures T � J0, we require
�ωc � J0. The behaviour of Q vs the cutoff ωc, see figure A1, shows the range of cutoff
frequencies for which we observe a convergence ofQ. We therefore selected �ωc = 1000J0.
Figure A1 is also useful to illustrate the effect of some basic dissipation mechanisms.
If ωc is much smaller than the minimum system energy gap, the probability of having
jumps between energy levels is negligible and the result tends to become again insen-
sitive to the cutoff value. Then, the only relevant dissipation mechanism comes from
pure dephasing, given by γϕ in equation (20a). Notice however that γϕ ∼ T and hence it
vanishes at T = 0. This is consistent with what we observe in figure A1: for �ωc � J0, Q
is insensitive to the cutoff; moreover, for T = 0, we recover precisely the coherent result,
pinpointed by the horizontal dashed line.

Appendix B. Different approximations in the Bloch–Redfield QME

In this appendix, starting again from the Bloch–Redfield QME, we derive and employ
two sets of equations alternative to equation (19) for the study of the steady state
pumped charge.
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Figure A1. Q vs the cutoff frequency ωc in the bath spectral function, at
τ = 20�/J0 and at bath temperatures T = 0, J0. The horizontal dashed line indi-
cates the value ofQcoh

d , the pumped charge at stationarity for the coherent dynamics,
at the same τ .

The first one simply consists in the Bloch–Redfield QME without any addi-
tional RWA. The equations have again the general form written in equation (19),
with the coherent part unchanged, while the incoherent part, for n = (001) system–bath
coupling, reads

Ãdiss =

⎛
⎝ γ̃D 0 γ̃xz

0 γ̃D γ̃yz

0 0 0

⎞
⎠ , (B.1)

where

γ̃D = γR + γϕ (B.2a)

γ̃ij =
RiRj

�2E2
(SX(2E/�)− SX(0)) (B.2b)

and the vector b is

b =
SX(2E/�)

E�2
tanh(βE) (Rx,Ry, 0) (B.3)

The second approach makes use of the Bloch–Redfield QME expanded in the coher-
ent system Floquet basis, {|ψk

n(t)〉}n=±, defined by equation (10). We will consider
here a single dissipative two-level system at fixed momentum and we will omit the
k label in all the operators for clarity. Following references [19, 22, 46, 54], it is pos-
sible to perform an RWA according to the quasi-energies (analogous to the standard
one done on the system’s energies). Eventually, one would see that the equations for
the coherences decouple from the ones for the populations. It can be shown that the
coherences go to zero after a finite time, so that the steady state is diagonal in the Flo-
quet basis. The populations ρnn(t) = 〈ψn(t)|ρ̂S(t)|ψn(t)〉 can be determined by the rate
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Figure B1. Q vs driving frequency ω for the dynamics induced by the
Bloch–Redfield equation under different approximations. For all the cases, we
still find a remarkable improvement over the coherent results if T is low
enough. Notice, in particular, the good agreement between the two different RWA
schemes.

equation [19, 22, 46, 54]

ρ̇−−(t) = W+→−ρ++(t)−W−→+ρ−−(t), (B.4)

where ρ++ = 1− ρ−− and the rates are given by

Wn′→n =
1

�2

∑
l

|An′n,l|2γ(Δn′n,l), (B.5)

where we defined An′n,l as the lth Fourier coefficient of the τ -periodic function 〈un′(t)|
(n · σ)|un(t)〉, while γ(ω) is the Fourier transform of the bath correlation function and
Δn′n,l = (εn′ − εn)/�− 2πl/τ . The steady state is then very easily determined by setting
equation (B.4) to zero, which leads to

ρ−− =
W+→−

W+→− +W−→+
. (B.6)

We employed both approaches to compute the pumped charge at stationarity Q vs
the driving frequency. These results are compared to the ones shown in the main text
in figure 2(c) for the dynamics induced by equation (19). In figure B1, we provide the
outcomes from the three approaches: in the plot, ‘RWAenergy’ refers to the RWA according
to the instantaneous system’s energies, ‘noRWA’ points to the data obtained from the
Bloch–Redfield QME without RWA, while ‘RWAFloquet’ refers to the RWA performed
on the QME written in the system’s Floquet basis. We observe that the improvement
over the coherent curve is obtained in all the three cases, giving further support to our
claims. Furthermore, the results obtained from the two versions of the RWA seem to
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Figure C1. Q vs driving frequency ω for a system coupled to the bath via the
σ̂x operator (n = (100)). We observe a qualitative agreement with the result in
figure 2(c) corresponding to a coupling along σ̂z (n = (001)).

match quite well, especially at smaller frequencies. Nevertheless, the various approached
give results which are quantitatively different. For example, at T = 0.75J0 and in the
frequency range studied, one might get or not an improvement over the coherent case
depending on the approach used. It is hard to say which version of the QME is best
approximating the true dissipative time-evolution, until a careful benchmarking against
the numerically exact MPS approach is performed for an extensive set of parameters.
This is left to a future study.

Appendix C. Dependence on the coupling operator

To test the generality of our findings, we study also system–bath coupling opera-
tors different from σ̂z. We focus here on the case in which each two-level system
is coupled to the reservoir via the σ̂x operator, which would correspond to choosing
n = (100) in equations (20a) and (20b). Figure C1 shows the result for Q vs the driv-
ing frequency. We see that there is no qualitative difference with the result shown in
figure 2(c), corresponding to a coupling via σ̂z. We tried also other coupling operators
(for generic n) and we obtained qualitatively similar results.
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