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Equation (53) of [1], stating the leading order signal strength between a uniformly accelerated
sender and a receiver in 3 + 1D Minkowski spacetime, is not correct. The correct expression
for (53) is derived, and figure 5 of [1] is replaced.

Section 5.4 of [1] considers signaling from a uniformly accelerated sender to a resting
receiver. The result for 3 + 1D Minkowski spacetime will be corrected in the following. The
wordline of the accelerated sender is given by

tA(τA) =
1
a

sinh(aτA), x1
A =

1
a

cosh(aτA) (1)

while x2
A = x3

A = 0, where τA is the sender’s proper time and a their proper acceleration. The
receiver is at rest at x1

B = x2
B = x3

B = 0. Both detectors are coupled to the field at all times, i.e.,
the switching functions are constant ηD(τD) ≡ 1 for D = A, B. We use that the commutator has
support only on the light cone, and use the sender’s proper time as integration variable for the
calculation of C2 (see equation (9) of [1]).
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Figure 1. Leading order signal strength
(
|C2|+ |D2|

)
/ (λAλB) across the acceleration

horizon in 3 + 1D Minkowski spacetime as a function of the ratio between detector
energy gaps ΩA,ΩB and proper acceleration a. This figure replaces figure 5 of [1].
Figure 1(b) shows non-trivial behavior of the total signal strength for low ΩB/a not
resolved in figure 1(a).

Here, as in [1], 1F2(a1; b1, b2; z) =
∑∞

k=0
(a1)kzk

(b1)k(b2)kk! is the generalized hypergeometric

function1, and x = ΩB/a and y = ΩA/a are the ratio of detector frequencies and the proper
acceleration. This expression for C2 replaces equation (53) of [1], which cited an incorrect
result of [2]. (Note that as discussed in [1], the corresponding expression for D2 can always
be obtained from C2 by inverting the sign of ΩB in C2 and the overall sign of the resulting
expression).

The resulting leading order signal strength |C2|+ |D2| between accelerated sender and rest-
ing receiver is plotted in figure 1, which replaces figure 5 in [1]. Both the limit limy→0C2 and
limx→0C2 of (2) exist, i.e., there exist closed expressions for zero-gap detectors. The former is
an expression in terms of hypergeometric functions, while the latter takes the simple form

lim
x→0

C2 =
i
4

sech
(
πy/2

)
. (3)

This means that both in the limit of infinite acceleration a →∞, or equivalently when
ΩA,ΩB → 0, the leading order signal strength approaches

|C2|+ |D2| →
λAλB

2
.

The leading order signal strength |C2|+ |D2| exhibits non-trivial features for low ΩB/a which
appear on a smaller scale then resolved by figure 1a, but are shown in figure 1b.
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Abstract
The quantum channel between two particle detectors provides a prototype 
framework for the study of wireless quantum communication via relativistic 
quantum fields. In this article we calculate the classical channel capacity between 
two Unruh–DeWitt detectors arising from couplings within the perturbative 
regime. To this end, we identify the detector states which achieve maximal signal 
strength. We use these results to investigate the impact of relativistic effects on 
signaling between detectors in inertial and uniformly accelerated motion which 
communicate via a massless field in Minkowski spacetime.

Keywords: relativistic quantum communication, Unruh–DeWitt 
particle detector, information propagation in relativistic quantum fields, 
communication across acceleration horizon

(Some figures may appear in colour only in the online journal)

1.  Introduction

Our ability to process information and transmit it across spacetime is impacted both by space-
time curvature and by quantum effects. This interplay of general relativity, quantum theory 
and information theory has important implications from various points of view. On the one 
hand, from a technological perspective, it determines ultimate limits on information technol-
ogy that arise from the fundamental laws of nature. Furthermore, the combination of hitherto 
unexplored phenomena can lead the way to novel methods of information processing. On the 
other hand, the information theoretic approach has added a very fruitful perspective, and a 
deeper understanding of the fundamental interplay between gravity and quantum theory. This 
is illustrated by the continuing vibrant research activity around, e.g. the black hole informa-
tion paradox or the holographic principle.
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Recent examples, that are of particular relevance to this article, include an ultimate limit on 
the capacity of quantum communication channels that arises from entropy bounds on quantum 
fields [1]. Also, it has been shown that the spacetime curvature induced by the energy neces-
sary to operate a quantum measurement device, limits the very precision with which space-
time geometry can be measured [2]. Relativistic (quantum) bit commitment and summoning 
[3–5] are examples of an information processing task whose implementation relies both on the 
laws of relativity and quantum theory.

This article addresses the question how communication via relativistic quantum fields is 
impacted by relativistic motion of the signaling devices. To obtain a prototype framework 
which allows to study the combination of relativistic and quantum effects, we model the sign-
aling devices as basic, first-quantized quantum systems. We assume that the devices move 
through spacetime along the classical wordlines which describe the sender’s and receiver’s 
motion. Along these wordlines the devices ccouple to the quantum field to emit and receive 
signals.

To model the interaction between signaling device and quantum field we employ the 
renown Unruh–DeWitt particle detector model, which provides a simple model for the inter-
action between an atom and a background quantum field. The Unruh–DeWitt particle detector 
was introduced in the study of quantum field theory in curved spacetimes [6, 7]. In curved 
spacetimes two observers, in general, do not agree on the particle content, or even the presence 
of particles, in a given state of a quantum field. In the particle detector model the excitation 
of the model atom through the interaction with the quantum field, is interpreted as the detec-
tion of a particle with respect to an observer moving along the atom’s worldline. In this way, 
the particle detector model offers an operational approach to the phenomena that spacetime 
curvature causes in quantum fields, such as the Unruh effect, Hawking radiation, or particle 
creation in expanding universes [6, 8].

Consequently, particle detector models have become an important tool in relativistic 
quantum information to explore the quantum information theoretical properties and poten-
tial of relativistic quantum fields. Here an influential result was, e.g. the rediscovery [9] of 
the fact that entanglement present in the vacuum state of a field can be used to entangle 
detectors, even if they are spacelike separated [10, 11]. Subsequent works analyzed how this 
effect is impacted by spacetime geometry and relativistic motion [12–15]. Another fascinating 
phenomenon that uses the entanglement present in the field, combined with classical commu-
nication, is quantum energy teleportation. Here one party performs a measurement on the field 
and sends the outcome to another party, which then uses this information to extract energy 
from the quantum fluctuations of the field [16–19].

In this article we aim to study wireless quantum communication on a fundamental level. 
Therefore, we use the Unruh–DeWitt particle detector as a prototype model for the interaction 
of relativistic observers with quantum fields. For this, we equip the sender and receiver with 
particle detectors, as basic quantum devices, which they use to transmit signals between each 
other through a relativistic quantum field. The influence of the sender’s initial detector state 
on the receiver’s final state constitutes, in quantum information theoretical terms, a quantum 
channel [20]. Therefore, studying communication in this framework, all methods and results 
on quantum channels from quantum information theory can be employed to study the com-
bined impact of relativistic and quantum effects. In fact, they can be quantified in terms of 
their effects on the channel capacity. This approach was first proposed in [21]. It has since 
been used to highlight interesting, and potentially rather counter-intuitive, features of infor-
mation propagation in massless fields. Whereas signals in massless fields often are thought 
of as being carried by field quanta that propagate strictly at the speed of light, and which 
carry energy from the sender to the receiver, it was shown that signals in massless fields can 
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propagate slower than light, and can transmit information without carrying any energy from 
the sender to the receiver [22, 23].

Only in spacetimes where Huygens’ principle applies do timelike signals not occur. This 
is the case in 3  +  1-dimensional Minkowski spacetime. However, in lower dimensions, and 
in general curved spacetimes, Huygens’ principle generally does not apply [24]. For example, 
timelike signals in massless fields occur in expanding universes and could be of interest for 
obtaining information about early universe cosmology [25–27].

1.1.  Results and structure of article

In this article we study the impact of inertial and accelerated motion on the signal strength 
between detectors in Minkowski spacetime, and we identify a characteristic difference 
between null and timelike signals in massless fields.

For null signals, we find that the signal strength is maximized if the sender’s detector and 
the receiver’s detector are resonant, as one would intuitively expect. If the two parties are in 
relative intertial motion to each other, the detector energy gaps need to be detuned so as to 
account for the relativistic Doppler shift (section 5.3.).

However, if one of the parties is uniformly accelerated, the Doppler shift grows infinitely 
at early and late times. This results in a bound on the signal strength between an inertial and 
an accelerated observer that are separated by the acceleration horizon. (section 5.4.) Even if 
they have an infinite amount of time to interact with the field to send and receive the signal, 
the signal strength does not grow above a certain limit.

Timelike signals are set apart from null signals by a particular property: they do not require 
resonance or synchronization between the sender and receiver to maximize the signal strength. 
(section 5.5.) The receiver’s optimal choice of coupling parameters and coupling times is inde-
pendent of the sender’s coupling parameters or worldline. The receiver can just individually 
and locally optimize their own coupling parameters in order to optimally detect any signal that 
a sender may have emitted into their future lightcone. However, similar to the signal strength 
across the acceleration horizon, the signal strength of timelike signals is bounded. It cannot be 
increased by allowing the sender and receiver interact with the field for longer times.

We also demonstrate that the decoupling of information transmission from energy trans-
mission, that was demonstrated for timelike signals [22, 23], is a general property of signals 
encoded into the amplitude of massless fields. When the distance between sender and receiver 
is increased the signal strength decays with a lower power of the distance than the energy 
content the signal carries from the sender to the receiever. This holds both for timelike and 
null signals. (section 5.2.)

We use time-dependent perturbation theory to describe the interaction of the detectors with 
the field, which is the most common approach in the literature. While this puts no restrictions 
on the detectors’ worldlines and parameters, it means that overall the interaction is considered 
to be perturbatively small.

We analyze which classical channel capacity, as captured by different capacity measures, 
arises from the leading order signaling effects (in section 4). And we identify the initial states 
in which sender and receiver need to prepare their detectors to achieve the optimal signal 
strength. (Section 3.)

The key result here is that the leading order signal strength is captured by a comparatively 
simple expression. It should be feasible to evaluate this expression in many relativistic com-
munication scenarios of interest, beyond the scenarios in Minkowski spacetime treated in this 
article.
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This result was anticipated in [28], but now in section 3.2, we show that the expression for 
the leading order signal strength is indeed general and optimal for all possible initial states of 
the detectors. In view of this result, sections 4 and 5 give a self-contained discussion of results 
which were first derived in [28]. The interested reader may find more details, e.g. on calcul
ations there.

Throughout the article we use natural units � = c = 1.

2.  A prototype model of wireless quantum communication

In the following we introduce the Unruh–DeWitt interaction Hamiltonian, and discuss the 
structure of the qubit quantum channel between two detectors. Before entering into technical 
detail, we review the general idea of the framework.

Our aim is to study the fundamentals of wireless quantum communication via quantum 
fields between relativistic observers. To this end, the sender, called Alice, and the receiver, 
called Bob, are equipped with simple (first-quantized) quantum systems as communication 
devices. Here we will just use two-level sytems, i.e. qubits. The communication devices can 
interact with the quantum field locally. We assume that Alice and Bob can control the inter-
action by switching the coupling on and off. The quantum field serves as the medium which 
carries the signals from Alice to Bob.

If Alice is to send a message to Bob she encodes the message into the initial state of her 
qubit, before her qubit and the quantum field interact. Then, to emit the signal, she couples 
her qubit to the field for some time. The interaction between Alice’s qubit and the field cause 
disturbances to the field amplitude that propagate through spacetime and reach Bob.

To record Alice’s message, Bob couples his device to the field such that Alice’s signal 
modulates the interaction between the field and Bob’s device. We assume that Alice and Bob 
can control the coupling between their device and the field. However, we assume that they can 
perform measurements only on their signaling devices. Therefore, Bob has to infer Alice’s 
message from a measurement only on the final state of his device, after decoupling his device 
from the field.

How much information Alice can transmit to Bob depends on how much influence Alice’s 
choice of initial state has on Bob’s final state. Both relativistic and quantum effects will impact 
this influence of Alice on Bob. And the size of their combined impact can be quantified in 
terms of the information-theoretical channel capacity that arises from Alice’s influence on 
Bob. For this a wide range of results and methods from quantum information theory are avail-
able, because the map from Alice’s initial state to Bob’s final state is a quantum channel map 
[20].

2.1.  Unruh–DeWitt particle detector model

To model the communication devices and their interaction with the quantum field we use the 
Unruh–DeWitt particle model [6, 7]. An Unruh–DeWitt particle detector consists of a two-
level system whose energy eigenstates we denote by |ed〉 , |gd〉. The energy gap of the detector 
is Ωd, i.e. the Hamiltonian of the free, uncoupled detector reads Hd = Ωd |e〉〈e|. The detector 
moves through spacetime along a classical wordline xd(τd), which can be parametrized by the 
detector’s proper time τd .

Along its wordline the detector interacts with a scalar real Klein–Gordon field φ(x). In the 
Dirac interaction picture the interaction Hamiltonian reads

R H Jonsson﻿J. Phys. A: Math. Theor. 50 (2017) 355401
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HI, d(τd) = λd ηd(τd)
(
eiΩdτd |ed〉〈gd|+ e−iΩdτd |gd〉〈ed|

)
⊗ φ(xd(τd)).� (1)

Here ηd(τd) ∈ [0, 1] is a real-valued switching function which determines at what time the 
detector and the field are interacting.

The coupling constant λd sets the strength of the interaction between the detector and the 
field. We use the coupling constant as the perturbative parameter in the perturbative treatment 
of the time evolution, as is commonplace in the literature. However, it is worth noting that 
λd generally is dimensionful. It is dimensionless only in 3  +  1-dimensional spacetimes. In 
n + 1-dimensional spacetime it has mass dimension [λd] = (3 − n)/2. For example, in 1  +  1 
dimensions [λd] = 1, i.e. it corresponds to a mass or energy. In order for the perturbative analy-
sis to be valid, λd then needs to be small with respect to some energy scale, which can be set 
by the detector energy gap Ωd (see section 5.3) or the detector’s acceleration (see section 5.4).

As sketched in figure 1, we are interested in scenarios where Alice and Bob move inde-
pendently through spacetime. This means that their individual proper times can evolve very 
differently. In such scenarios it can be more convenient to express the interaction Hamiltonian 
as HI(t) = dτ

dt HI(τ), where t is a global time coordinate. It then generates time translations 
with respect to the coordinate time, rather than with respect to the detector proper time. (For 
a detailed discussion of this aspect see, e.g. [29].) The total interaction Hamiltonian for a sce-
nario as in figure 1 then reads

HI(t) =
∑

d=A,B

λd ηd(τd(t))
dτd(t)

dt

(
eiΩdτd(t) |ed〉〈gd|+ e−iΩdτd(t) |gd〉〈ed|

)
⊗ φ(xd(t)).

�

(2)

Now, the detectors’ worldlines are parametrized by t, the coordinate time. The choice of switch-
ing function determines when Alice and Bob interact with the field along their worldlines.

2.2. The quantum channel between two detectors

We assume that the detectors and the field start out in a product state, before Alice and Bob 
interact with the field. We assume that the field begins in the vacuum state (generalisations to 
other states diagonal in the Fock basis are straightforward) and denote the initial state of the 
total system by

ρ0 = ρ0,A ⊗ ρB,0 ⊗ |0〉〈0| =
(

θ γ

γ∗ β

)
⊗

(
ϕ δ

δ∗ κ

)
⊗ |0〉〈0| .� (3)

Under the interaction between the detectors and the field, the system evolves unitarily into a 
final state ρ = Uρ0U† in which generally the field and detectors are entangled. To obtain ρB, 
the final state of Bob’s detector, i.e. the state from which Bob tries to retrieve Alice’s message, 
we take the partial trace over the field and Alice’s detector.

ρB = trA,Fρ = trA,FUρ0U†.� (4)

We are interested in how much information Alice is able to transmit to Bob by means of 
their interaction with the quantum field. This is determined by how Bob’s final state depends 
on Alice’s choice of input state. This dependency is given by the quantum channel map ξ from 
Alice’s initial state to Bob’s final state

ξ : ρA,0 �→ ρB = trA,FUρ0U†.� (5)

R H Jonsson﻿J. Phys. A: Math. Theor. 50 (2017) 355401
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Therefore, the amount of information that Alice is able to transmit to Bob can be quantified 
in terms of the information theoretical capacity of ξ. As we will show in this paper, within 
the perturbative regime the leading order contributions to the signal strength and the classical 
channel capacity take a particularly simple form.

The general structure of Bob’s final state, resulting from Alice’s and Bob’s interaction with 
the field, as derived and detailed in [21, 30], is

ρB =

(
ϕ δ

δ∗ κ

)
+

(
κP + ϕQ δR + δ∗S∗

δ∗R∗ + δS −κP − ϕQ

)

+ γ

(
δI + δ∗J κC + ϕG
κD + ϕH −δI − δ∗J

)
+ γ∗

(
δJ∗ + δ∗I∗ κD∗ + ϕH∗

κC∗ + ϕG∗ −δJ∗ − δ∗I∗

)

+ θ

(
κA + ϕE δK + δ∗L∗

δL + δ∗K∗ −κA − ϕE

)
+ β

(
κB + ϕF δM + δ∗N∗

δN + δ∗M∗ −κB − ϕF

)
,

�

(6)

where capital Latin letters indicate coefficients that are determined by all the physical param
eters of the scenario, i.e. detector energy gaps, switching functions and detector wordlines.

The contribution to Bob’s final state in the first line is independent of Alice’s presence. 
In fact, it is the sum of Bob’s initial state and a term arising solely from the interaction of 
Bob’s detector with the field. The contributions in the second and third line modulate Bob’s 
final state depending on Alice’s choice of initial state and, thus, are relevant for information 
transmission from Alice to Bob.

When the interaction between the detectors and the field is treated perturbatively, the time 
evolution operator is expanded using the Dyson series

U = T exp (−iHI) = I− i
∫

dt1 HI(t1)−
∫

dt2

∫ t2
dt1 HI(t2)HI(t1) + ... .

�

(7)

This results in a perturbative expansion of the channel coefficients and accordingly of Bob’s 
final state (6) [30]. The leading order contributions in the expansion of Bob’s final state are

Figure 1.  Spacetime diagram of a signaling scenario. Alice and Bob move through 
spacetime along independent worldlines. They couple their communication devices 
(Unruh–DeWitt particle detectors) to the field during finite time windows which are 
determined by the detector switching functions ηd(τd) in (1). The dotted lines indicate 
lightrays emanating from Alice.
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ρB =

(
ϕ δ

δ∗ κ

)
+

(
κP2 + ϕQ2 δR2 + δ∗S∗

2

δ∗R∗
2 + δS2 −κP2 − ϕQ2

)

+

[
γ

(
δD2 + δ∗C2 (κ− ϕ)C2

(κ− ϕ)D2 −δD2 − δ∗C2

)
+ H.c.

]
+O(λ4),

�

(8)

where, in particular,

C2 = λAλB

∫
dt1

∫ t1
dt2 χA(t2)χB(t1)ei(ΩBτB(t1)−ΩAτA(t2)) [φ(xA(t2)),φ(xB(t1))]

�

(9)

D2 = −λAλB

∫
dt1

∫ t1
dt2 χA(t2)χB(t1)e−i(ΩBτB(t1)+ΩAτA(t2)) [φ(xA(t2)),φ(xB(t1))] ,

�

(10)

and we absorbed the switching function and the time derivative of the detector proper time 

into χd(t) = ηd(τd(t))
dτd(t)

dt . We use the symbol O(λ4) to denote terms that are proportional 
to the fourth or higher powers of the coupling constants, i.e. to terms that contain a factor of, 
e.g. λ4

B or λ2
Aλ

2
B. (The terms P2, Q2, R2, S2 are given in appendix.) The terms C2, D2 etc, are 

dimensionless quantities, which is clear from their appearance in Bob’s final density matrix 
above. They represent only perturbative corrections to Bob’s state and, therefore, ought have 
small absolute value (|C2| � 1). Larger values, e.g. due to large coupling constants or long 
interaction times, would cease to lie within the regime of perturbation theory.

As discussed already in [30], the expansion of ρB indicates that Alice’s optimal choice of 
signaling states, within the perturbative regime, need to be equal weighted superpositions of 
energy eigenstates. This is because they maximize |γ|, the size of the off-diagonal entries of 
Alice’s initial density matrix ρA,0, which are the only entries of ρA,0 affecting ρB at leading 
order O(λ2). If Alice prepares her detector in an energy eigenstate she only affects Bob’s final 
state at next-to-leading order O(λ4).

In the following we show that the sum of absolute values of the leading order signaling 
contributions, |C2|+ |D2| can be used to measure the leading order signal strength that a spe-
cific communication scenario allows for.

3.  Bloch sphere representation and optimal initial states

In this section we determine which initial states Alice and Bob need to prepare their detectors 
in, in order to maximize the leading order signal strength. For this we use the Bloch sphere 
representation of the channel which also gives an intuitive picture of the general structure of 
the quantum channel at hand.

We find that the Alice’s optimal choice of signaling states, which are determined by the 
channel coefficients C2 and D2, are a pair of equal-weighted superpositions of energy eigen-
states. Bob can choose his initial state from a one-parameter family of states including the 
detector’s energy eigenstates.

The Bloch sphere representation uses that any qubit density matrix ρ can be represented as 
a real, three-dimensional vector ρ = (ρX , ρY , ρZ) through [20]

ρ =
1
2
(I+ ρ · σ) = 1

2
(I+ ρXσX + ρYσY + ρXσX) =

1
2

(
1 + ρZ ρX − iρY

ρX + iρY 1 − ρZ

)

�

(11)
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with the standard Pauli matrices σX ,σY ,σZ. The Bloch vector of a pure qubit state has norm 
‖ρ‖ =

√
ρ2

X + ρ2
Y + ρ2

Z = 1, whereas for mixed states ‖ρ‖ < 1. In this representation, a 
quantum channel ξ : ρi �→ ρo between qubits is represented by an affine map [20],

ρi �→ ρo = Mρi + v,� (12)

with a real-valued 3 × 3-matrix M  and a constant vector v.

3.1.  Bob initialized in ground state

We first apply this representation to the channel between two particle detectors in the special 
case where Bob initializes his detector in the ground state, i.e. the entries of his density matrix 
in (3) are κ = 1 and ϕ = δ = 0. Then, from (6), we find that in the Bloch representation the 
channel maps Alice’s initial state ρA,0 to

ρB = MρA,0 + v

=




Re(C + D) Im(C + D) 0
Im(−C + D) Re(C − D) 0

0 0 A − B


ρA,0 +




0
0

2P + A + B − 1


 .

�

(13)

The action of the channel is most clearly seen from the singular value decomposition 
of the channel matrix. Before obtaining it, we rewrite the complex channel coefficients as 
C = |C|eiφC  and D = |D|eiφD. (Note that the coefficients A and B are real-valued [30].) Then 
we can decompose M  as

M = UODOt� (14)

with

U =




cosφC sinφC 0
− sinφC cosφC 0

0 0 1


 , O =



cos φC+φD

2 − sin φC+φD
2 0

sin φC+φD
2 cos φC+φD

2 0
0 0 1




�

(15)

and the diagonal matrix

D =



|C|+ |D| 0 0

0 |C| − |D| 0
0 0 A − B


 .� (16)

Therefore, as sketched in figure 2, the action of the channel is the following: the three-vector 
ρA,0 of Alice’s initial state is first rotated in the X − Y -plane by the angle (φC + φD)/2 clock-
wise around the Z-axis. Then the multiplication by M  reduces the length of the vector by 
different factors along the three axes. Consequently, the multiplication by UO corresponds to 
another rotation in the X − Y -plane by the angle (φC − φD)/2 clockwise around the Z-axis. 
Finally, the vector obtained from these operations is added to the constant vector v which lies 
close to the ground state in which Bob was initialized.

Which initial states should Alice use in order to be able to most efficiently transmit classi-
cal information to Bob? As we discuss in the subsequent section in more detail, Alice needs 
to find a pair of initial states, ρ1 and ρ2, which yield output states ξ(ρ1) and ξ(ρ2) that Bob is 
able to distinguish as well as possible. For this, the trace distance D(ξ(ρ1), ξ(ρ2)) between the 
output states needs to be maximized [20].
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In the Bloch sphere picture the trace distance between two qubit states is equal to half the 
Euclidean distance between the states’ three-vectors:

D(ρ1,ρ2) =
‖ρ1 − ρ2‖

2
.� (17)

Therefore, Alice needs to choose a pair of orthogonal pure qubit states because the Bloch vec-
tors of orthogonal states point in opposite directions, i.e. ρ1 = −ρ2. Furthermore, she needs 
to choose the states such that they get multiplied by the largest of the elements of the diagonal 
matrix D.

The largest element of D is always |C|+ |D|, in the perturbative regime. This is because the 
first two entries are of leading order in perturbation theory |C| ± |D| ∼ |C2| ± |D2|+O(λ4) 
whereas the third element is of next-to-leading order A − B ∼ A4 − B4 +O(λ6) only [30]. 
Alice’s optimal choice of signaling states, therefore, are

ρ1,2 = ±



cos φC+φD

2

sin φC+φD
2

0


� (18)

which is equivalent to the density matrix elements θ = β = 1/2 and γ = ±e−i(φC+φD)/2/2 of 
Alice’s initial state in (3), i.e. the two pure states 

(
|eA〉 ± ei(φC+φD)/2 |gA〉

)
/
√

2.
For this choice of initial state the trace distance between Bob’s final states is maximal. Its 

leading order expansion is given by the sum of the absolute value of the leading order contrib
utions to the channel coefficients:

D (ξ(ρ1), ξ(ρ2)) = |C|+ |D| ∼ |C2|+ |D2|+O(λ4).� (19)

Figure 2.  Sketch of possible final states of Bob, when he initializes his detector in the 
ground state |gB〉 before the interaction. The Bloch sphere of Alice’s initial states is 
contracted to an ellipsoid close to the receiver’s ground state. The ellipsoid’s diameter 
in the X − Y -plane is determined by the absolute values of the channel coefficients C 
and D from equation (6). The ellipsoid’s diameter along the Z-axis is determined by the 
coefficients A and B. (Figure reproduced from [28].)
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3.2.  General optimal initial states

In the following we show that this leading order perturbative behaviour of the trace distance 
is optimal for all possible choices of initial states of Bob. It can be achieved by a one-dimen-
sional family of input states for Bob which form a circle on the Bloch sphere which includes 
the ground state |gB〉 and the excited state |eB〉 of Bob’s detector. Alice’s choice of signaling 
states is independent of Bob’s initial state.

To show this, we look at the leading order of the Bloch sphere representation of the channel 
for an arbitrary initial state of Bob. From (8) it follows that, for an arbitrary input state ρB,0 of 
Bob in (3), the Bloch vector of Bob’s final state is to leading order

ρB = v +




(κ− ϕ)Re(C2 + D2) (κ− ϕ)Im(C2 + D2) 0
(κ− ϕ)Im(−C2 + D2) (κ− ϕ)Re(C2 − D2) 0

2Re(δ(C∗
2 + D2)) 2Im(δ∗(C2 − D∗

2)) 0




︸ ︷︷ ︸
=:M2∼O(λ2)

ρA,0 +O(λ4).

�

(20)

In order to achieve a maximal trace distance, Alice’s initial states ρ1 and ρ2 = −ρ1 need 
to maximize the norm ‖M2ρ1‖ (which is equal to ‖M2ρ2‖). For this ρ1,2 need to lie in the 
X − Y -plane of the Bloch sphere and, accordingly, have a vanishing Z-component, because 
the third column of M2 vanishes. This illustrates once more that Alice’s optimal choice are 
equal-weighted superpositions of energy eigenstates, as mentioned above.

The remaining question is in which direction the Bloch vectors of the optimal signaling 
states are directed. To answer this we denote Alice’s initial state by ρ1,2 = ±(cosα, sinα, 0). 
The norm ‖M2ρ1‖ can be separated into contributions from its first two components and its 
Z-component

‖M2ρ1‖
2
=(κ− ϕ)2

∥∥∥∥
(

Re(C2 + D2) Im(C2 + D2)

Im(−C2 + D2) Re(C2 − D2)

) (
cosα

sinα

)∥∥∥∥
2

+ 4 [cosαRe (δ(C∗
2 + D2)) + sinαIm (δ∗(C2 − D∗

2))]
2 .

�
(21)

The first term originating from the 2x2-matrix is identical to the upper diagonal block of the 
channel matrix we analyzed before in (13). Just as there, it is maximal when α = (φC2 + φD2)/2, 
for C2 = |C2| eiφC2 (and D2 analogously), and then yields

(κ− ϕ)2

∥∥∥∥∥
(

Re(C2 + D2) Im(C2 + D2)

Im(−C2 + D2) Re(C2 − D2)

) (
cos

φC2+φD2
2

sin
φC2+φD2

2

)∥∥∥∥∥
2

= (κ− ϕ)2 (|C2|+ |D2|)2 .
�

(22)
The Z-component can be rewritten as

[cosαRe (δ(C∗
2 + D2)) + sinαIm (δ∗(C2 − D∗

2))]
2

= |δ|2
[
Re

(
|C2|ei(α+arg δ−φC2 ) + |D2|ei(α−arg δ−φD2 )

)]2
.

� (23)

where we used δ = |δ|ei arg δ. To maximize this, the arguments of the imaginary exponents 
need to vanish. This is achieved by

α =
φC2 + φD2

2
, arg δ =

φC2 − φD2

2
,� (24)
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which is the same condition for α as derived before. (Alternatively, here and also for 
the X − Y -component, we obtain a second solution by replacing α → α+ π  and 
arg δ → arg δ + π. However, this just corresponds to multiplying ρ1 by −1.)

This shows that Alice’s optimal choice of initial states is independent of Bob’s initial state 
and given by (18). In order to ensure a maximal leading order signal strength, as quantified 
by the trace distance between output states, Bob needs to initialize his detector in a pure state 
with off-diagonal density matrix element δ = |δ|ei(φC2−φD2 )/2. The Bloch vector of such an 
optimal initial state for Bob is then

ρB,0 =




2|δ| cos φC2−φD2
2

−2|δ| sin φC2−φD2
2

ϕ− κ


 .� (25)

This is a pure state of the form 
√
ϕ |eB〉+

√
κe−i(φC2−φD2 )/2. With these optimal choices of α 

and arg δ  we obtain

‖M2ρi‖
2
=

(
(κ− ϕ)2 + 4|δ|2

)
(|C2|+ |D2|)2

= (|C2|+ |D2|)2
� (26)

where we used that |δ| = √
κϕ  for pure initial states of Bob.

Therefore, if Bob initializes his detector in an optimal state, then the trace distance between 
the final states resulting from Alice’s optimal input states is

D (ξ(ρ1), ξ(ρ2)) ∼ |C2|+ |D2|+O(λ4).� (27)

It is interesting to note that Bob, in order to distinguish the two final states of his detector, 
has to perform the measurement on his detector state with respect to a basis that is mutually 
unbiased with respect to a basis containing his initial state. Because the final states of his 
detector have Bloch vectors

M2ρ1,2 = ± (|C2|+ |D2|)




(κ− ϕ) cos
φC2−φD2

2

−(κ− ϕ) sin
φC2−φD2

2
2|δ|


� (28)

which are orthogonal to the Bloch vector ρB,0 of his initial state.

4.  Classical channel capacity from leading order signaling

In this section we review which classical channel capacity arises from the optimal use of lead-
ing order signals that we found in the previous section. We consider different measures for the 
classical capacity: first, the probability for the successful transmission of one bit in a single 
use of the channel, and then capacities arising from the repeated use as a classical channel and 
the Holevo capacity of the channel.

We find that the perturbative expansion of all these capacity measures is, to leading order, 
determined by (different powers of) |C2|+ |D2| which in the previous section we found to be 
the optimal leading order trace distance between Bob’s two possible output states. This sug-
gests that |C2|+ |D2| is well suited as a general measure for the signal strength between two 
particle detectors, within the regime of perturbative interactions.
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4.1.  Success probability of transmitting one bit in a single use

This first measure for the channel’s classical capacity can be motivated by a communication 
task or game where Alice needs to transmit a random bit to Bob: First, Alice is given a ran-
dom bit, which with equal probability 1/2 is ‘0’ or ‘1’. To communicate the bit to Bob, Alice 
may use the quantum channel one time. In the end, for Alice and Bob to win the game, Bob 
has to tell the correct value of the bit which was given to Alice. When can Alice and Bob win 
the game with a probability higher than 1/2, the success probability when Bob just makes a 
random guess? 

If Alice is able to alter the probability of Bob to find a particular measurement outcome 
from one probability p to another value q �= p, then Bob and Alice can use this influence to 
win the game with a probability of [22, 28]

Pbit =
1
2
+

| p − q|
2

.� (29)

This means that any influence of Alice on Bob allows them to improve the success probability 
above 1/2. By using the optimal initial states and measurements identified in the previous sec-
tion, Alice and Bob can maximize the difference for the measurement outcome to

Pbit =
1
2
+

1
2

D(ξ(ρ1), ξ(ρ2)) =
1
2
+ |C2|+ |D2|+O(λ4).� (30)

The success probability for the transmission of one bit in a single channel has been used as 
a measure of signal strength in [22, 25–27]. There, however, Alice’s and Bob’s initial states 
were not optimized. The optimal achievable leading order contribution presented here may 
thus be able to increase the estimates in these works.

4.2.  Repeated use as classical channel

Single-shot capacity measures, which only consider a single use of the channel, are, argu-
ably, best suited to analyze the channel between two particle detectors communicating via a 
quantum field. This is because measures like the Shannon capacity or the Holevo capacity are 
defined as asymptotically achievable transmission rates in the limit of many identical channel 
uses.

Having Alice and Bob repeatedly communicate via the quantum field does not constitute 
many uses of an identical channel. Instead, due to timelike signaling propagation and due 
to the vacuum entanglement of the field, there may arise correlations between the different 
interactions of Alice and Bob with the field. Therefore, the quantum channel map arising from 
Alice’s and Bob’s first coupling to the field is not strictly identical to the channel arising from 
their second, or any subsequent coupling to the field. However, allowing for enough time to 
pass between the different couplings should, generally speaking, decrease these correlations 
far enough to become irrelevant. A detailed investigation of this question should be an inter-
esting question for future research.

Whereas the applicability of asymptotic capacity measures to the channel at hand may be 
limited, it is still interesting to evaluate them if only for comparisons with other qubit chan-
nels. As an example of two of such measures, we review results on the leading order contrib
utions to the Shannon capacity in the following, and to the Holevo capacity in the subsequent 
section.

The Shannon capacity that arises from a repeated use of the channel as a classical, binary 
asymmetric channel was already considered in [22]. Here Alice and Bob are allowed to use the 
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channel for a large number of times, however Bob has to perform separate measurements on 
each of the individual channel outputs. (In contrast to the Holevo capacity which we consider 
below.) Therefore, each channel use corresponds to the use of a classical, binary asymmetric 
channel [31]. The Shannon capacity then gives the information measured in bits per channel 
use that can be reliably transmitted from Alice to Bob in the limit of large numbers of channel 
uses [20]. Using known results on the binary asymmetric channel [31], a perturbative expan-
sion for the Shannon capacity for the channel between particle detectors was given in [22] 
which, however, did not yet include the optimization of the detectors’ initial states. Using the 
optimal initial states yields the expansion

CShannon ∼ 2
ln 2

(|C2|+ |D2|)2
+O(λ6).� (31)

for the Shannon capacity which, to leading order in perturbation theory, is proportional to 
(|C2|+ |D2|)2.

4.3.  Holevo capacity

The rate of classical information transmission can be improved upon by allowing Bob to 
perform joint measurements on all the outputs obtained from multiple, parallel channel uses. 
(Alice is still required to prepare separable states over the different channel inputs.) The rate 
of bits per channel use that can be reliable transmitted under these conditions is captured by 
the Holevo capacity of the channel. Denoting the channel byξ it reads [20],

CHolevo = max
pj,ρj

S


ξ


∑

j

pjρj





 −

∑
j

pjS (ξ (ρj))� (32)

where the choice of Alice’s ensemble of initial states ρi  and their relative frequencies pi need 
to be optimized.

Applying results from [32], it is possible to show that the Holevo capacity is maximized by 
an ensemble of signaling states containing only two states, and that the Holevo capacity can 
be expanded as [28]

CHolevo ∼ − ln(P2)
(|C2|+ |D2|)2

4 ln 2
+O(λ6),� (33)

where it is assumed that Bob initializes his detector in the ground state. This result on the 
Holevo capacity of the channel completes early results in [21] which are restricted to energy 
eigenstates as initial states of Alice.

In the leading order of the Holevo capacity the channel coefficient P2 appears, besides the 
quantity |C2|+ |D2|. This coefficient is the leading order contribution to the probability of 
Bob’s detector to get excited, from its ground to its excited state, by the interaction with the 
field vacuum. It is independent of Alice’s presence.

Since the coefficient is of order P2 ∼ O(λ2) itself, its first effect is that the leading order 
contribution of the Holevo capacity is of higher order than the previous Shannon capacity, 
which is only of order (|C2|+ |D2|)2 ∼ O(λ4).

On the other hand, it makes the Holevo capacity sensitive to the effects that arise from 
Bob’s interaction with the field alone, which are captured also in the channel coefficients 
Q, R, S besides P in (6), and could be considered as noise contributions to the channel. On 
first sight it may even look as if when P2 decreases, arbitrary high leading order contributions 
to the Holevo capacity can be achieved. However, decreasing P2 typically requires the use 
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of switching functions that only change slowly. These, in turn, tend to decrease the value of 
|C2|+ |D2| which would counter the increase of the ln(P2) factor.

5.  Relativistic motion in Minkowski spacetime

In this section  we discuss how inertial and accelerated motion impacts signaling between 
particle detectors in Minkowski spacetime. We find that the leading order signal strength is 
dominated by the classically expected relativistic effects. To maximize the signal strength 
between inertially moving detectors, the detectors have to be detuned such as to correct for the 
relativistic Doppler effect. When either party is uniformly accelerated, the acceleration hori-
zon and the infinite Doppler shift at early and late times limit the leading order signal strength.

In particular, we will here study signaling in a massless Klein–Gordon field. (The previous 
sections made no assumptions on the mass of the field.) The propagation behaviour of signals 
in massless fields in (3  +  1)-dimensional Minkowski spacetime is generally familiar. It is 
captured by the field commutator

[φ(x, t),φ(x′, t′)] =
i

4π
1

|x − x′|
(δ (t′ − t − |x − x′|)− δ (t′ − t + |x − x′|))

�
(34)

which has support only on the boundary of the lighcone. Therefore, in (3  +  1) dimensions 
signals propagate strictly at the speed of light.

However, in (1  +  1)-dimensional and in (2  +  1)-dimensional Minkowski spacetime signal-
ing between timelike separated spacetime points is possible [22, 23]. This is the case because 
the commutator in (1  +  1)-dimensional Minkowski spacetime,

[φ(x, t),φ(x′, t′)] =
i
2

sgn(t′ − t)θ
(
(t − t′)2 − (x − x′)2) ,� (35)

and in (2  +  1)-dimensional Minkowski spacetime,

[φ(x, t),φ(x′, t′)] =
i

4π2

sgn(t′ − t)√
(t′ − t)2 − |x − x′|2

θ
(
(t′ − t)2 − |x − x′|2

)
,

�

(36)

have support inside the lightcone. (Detailed calculations of the commutator in Minkowski 
spacetime are found, e.g. in [28, 33].)

We show that there is a characteristic difference between null and timelike signals: for null 
signals it is important that the detectors are resonant in order to maximize the signal strength. 
In fact, if receiver and sender are resonant the leading order signal strenght can always be 
increased by increasing the interaction time for which the detectors couple to the field. In 
contrast, the leading order signal strength of timelike signals is bounded, and sender and 
receiver do not need to synchronize their detectors either. Instead, they only need to individu-
ally optimize their switching times with respect to their own detector energy gaps.

We also show that in general the transmission of information via the amplitude of a mass-
less field does not rely on the transmission of a minimum amount of energy from the sender to 
the receiver. Because the leading order signal strength decays slower than the energy density 
of the signal when the distance between sender and receiver is increased. We show that this 
property, which was shown for timelike signals in [22], is also shared by null signals in all 
dimensions.
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5.1.  Simplification and time-mirror symmetry of leading order signaling

In this section we discuss some properties of the integral terms of the channel coefficients 
C2 and D2 which simplify the subsequent evaluation of the signal strength. We show that the 
integration boundaries in the original definition of the coefficients can be simplified, that the 
signal strength is preserved under time-inversion, and that the use of sudden switching func-
tion does not introduce divergences.

To begin with we note that a solution of D2, as defined in (10), can always be obtained from 
a solution for C2, as defined in (9), from D2(ΩA,ΩB) = −C2(ΩA,−ΩB), i.e. by changing the 
overall sign and ΩB → −ΩB the sign of Bob’s detector energy gap. Therefore, in the follow-
ing, we focus our discussion on C2 only.

In the integral in C2 in (9), the outer (coordinate) time variable t1 sets the upper integra-
tion boundary for the inner time variable t1. This dependency arises directly from the Dyson 
series expansion used for the time evolution operator (see (7)). However, the boundary for the 
t2-integral is actually always lower because the commutator of the field vanishes at spacelike 
separations. We furthermore assume that Alice couples to the field only during the finite time 
window 0 � t2 � TA, and Bob only during T1 � t1 � T2. Therefore, we can tighten the inte-
gration boundaries to

C2 = λAλB

∫ T2

T1

dt1

∫ min(TA ,̃t(t1),t1)

0
dt2 χA(t2)χB(t1)ei(ΩBτB(t1)−ΩAτA(t2)) [φ(xA(t2)),φ(xB(t1))] ,

� (37)
where t̃(t1) is the coordinate time at which the lightray that reaches Bob at coordinate time t1 
emanated from Alice.

In particular, the integration boundaries of t1 and t2 are interdependent, only if the Alice 
and Bob are in null contact. When Bob is located inside the future lightcone of Alice the t2 
integral always is performed over 0 � t2 � TA. Below we will see that this is the reason why 
for lighlike signals the resonance between Alice’s and Bob’s detector frequencies increase the 
signal, whereas it is irrelevant for timelike signals.

The integral expressions for C2 and D2 have another property which halves the number of 
scenarios with moving detectors that we need to investigate, which is a time-mirror symmetry: 
the leading order signal strength |C2|+ |D2| of a given scenario is the same as in the scenario 
we obtain by ‘running the movie backwards’, i.e. when time is inverted such that the detectors 
move backwards and Bob now is the sender instead of being the receiver. For example, this 
means, that the signal strength from a resting sender to a receiver accelerating away, is the 
same as from a sender with opposite acceleration to a resting receiver.

To show this we assume, without loss of generality, that τA(t = 0) = τB(t = 0) = 0. The 
wordlines of the time mirrored-scenario are then given by x′

d(t) = xd(−t) such that the detector 
proper times are τ ′d(t) = −τd(−t), and the mirrored switching functions are χ′

d(t) = χd(−t). 
Using this, it is straightforward to show that the leading order signaling coefficients in the 
mirrored scenario are [28]

C′
2 = C2, D′

2 = −D∗
2 ,� (38)

such that the optimal signal strength is the same for the original and the mirrored scenario

|C′
2|+ |D′

2| = |C2|+ |D2|.� (39)

The signaling coefficients C2 and D2 are less prone to divergences than the coefficients 
P2, Q2, R2, S2, which describe the local effects of Bob’s detector interacting with the vacuum 
of the field alone. This allows us to use sudden switching functions in our study of the leading 

R H Jonsson﻿J. Phys. A: Math. Theor. 50 (2017) 355401



16

order signal strength, i.e. functions that abruptly jump from 0 to 1 inside the time interval dur-
ing which the detector is interacting with the field.

In the single-detector coefficients such sudden switching functions lead to UV-divergences. 
Instead the coupling needs to be switched through smooth coupling functions [34, 35]. Also, 
the signaling coefficients are not affected by the IR-divergence arising from the zero mode of 
the massless field in (1  +  1)-dimensional Minkowski spacetime [36].

5.2.  Detectors at rest

In this section we show that the signal strength of null signals decays slower than the energy 
content of the signal when the distance between sender and receiver is increased. This was 
already shown to be the case for timelike signals in [22]. To this end we study the leading 
order signal strength in the simple scenario where Alice and Bob both are at rest in Minkowski 
spacetime at a fixed distance L from each other.

We want to compare Minkowski spacetime from 1  +  1 to 3  +  1 dimensions. Since in 3  +  1 
dimensions signals propagate only between null separated points we choose Bob’s coupling 
to be null separated from Alice’s coupling. (We discuss the timelike signals which appear in 
lower dimensions later, in section 5.5.) This means that Bob couples to the field only in the 
time interval during which the lightrays reach Bob which emanate from Alice while she is cou-
pling to the field. So Alice couples to the field for 0 � t1 � TA, and Bob for L � t2 � TA + L.

With these coupling times there are analytical solutions to the integrals of the leading order 
signaling contributions [28]. In 1  +  1 dimensions we obtain

C2 = λAλB
ieiΩBL

2ΩAΩB(ΩA − ΩB)

(
(ΩB − ΩA)

(
1 − eiΩBTA

)
+ΩB

(
ei(ΩB−ΩA)TA − 1

))
,

�

(40)

and in 3  +  1 dimensions we obtain

C2 = λAλB
eiΩBL

(
1 − ei(ΩB−ΩA)TA

)
4πL(ΩA − ΩB)

.� (41)

As shown in figure 3, the signal strength is maximal for resonant detectors with equal detector 
gaps ΩA = ΩB. The reason for this is that one of the terms resulting from the upper integra-
tion boundary t2 � t1 − L becomes non-oscillatory when ΩA = ΩB = Ω. With such identical 
detectors the leading order signaling coefficients are in 1  +  1 dimensions

C2 = −λAλB
eiΩL

(
i
(
eiΩTA − 1

)
+ΩTA

)
2Ω2 , D2 = λAλB

ie−i(ΩL+2ΩTA)
(
eiΩTA − 1

)2

4Ω2 ,
�

(42)

and in 3  +  1 dimensions

C2 = λAλB
ieiΩLTA

4πL
, D2 = −λAλB

e−iΩ(L+2TA)
(
ei2ΩTA − 1

)
8πΩL

.� (43)

The leading order signal strength is maximized in the limit of vanishing detector frequency 
Ω → 0, i.e. for a zero-gap detector. The detector Hamiltonian of such a detector vanishes (or 
is proportional to the identity operator). This means that the detector has no distinguished 
energy eigenstates and ceases to have a free time evolution of its own. The latter is also the 
reason why zero-gap detectors maximize the signal strength. With the rotation from a non-
zero energy gap in place, Alice’s initial state is rotated around the Z-axis of the Bloch sphere 
while coupling to the field. This diminishes the signal strength because it leads to an averaging 
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effect over each detector period. However, when the detector gap is zero, Alice can prepare 
an eigenstate of the interaction Hamiltonian in her detector which remains unchanged and, 
thus, yields a stronger signal. Zero-gap detectors are also interesting because they allow for a 
comparison of the perturbative analysis to the non-perturbative solutions of [37].

If Alice and Bob both use a zero-gap detector the signal strength is in 1  +  1 dimensions

|C2|+ |D2| = λAλB
T2

A

2
,� (44)

and in 3  +  1 dimensions

|C2|+ |D2| = λAλB
TA

2πL
.� (45)

For zero-gap detectors there is also an analytic solution in 2  +  1 dimensions1:

|C2|+ |D2| =
λAλB

π

(
(TA + L) ln

(
1 +

TA +
√

2LTA + T2
A

L

)
−

√
2LTA + T2

A

)
.

�

(46)

The scenario of two detectors at rest allows us to analyze how the signal strength depends 
on the distance between Alice and Bob. In 1  +  1 dimensions the signal strength is independ-
ent of the distance: this is what one would expect because the surface of the propagating wave 
front does not expand since there is only a single spacelike dimension.

In higher dimensions one might intuitively expect that the signal strength would decay 
proportional to the expanding surface of the propagating wavefront, i.e. as ∼1/L in 2  +  1 
dimensions, and as  ∼1/L2 in 3  +  1 dimensions. This is the rate at which the energy density of 
the signal has to decay as the total energy of the signal is dispersed over the increasing spheri-
cal wavefront surface.

Figure 3.  Leading order signal strength |C2|+ |D2| (in multiples of λAλB) from (41), 
for two detectors at rest in 3  +  1D Minkowski space at distance L from each other, with 
energy gaps ΩA and ΩB. The signal strength is maximal for resonant detectors, along 
the diagonal ΩA = ΩB. The peak becomes more distinct for larger interaction times TA. 
Here, the interaction time is TA = 7.5L. (Figure adapted from [28]).

1 We note that the corresponding formula in [28] contains a typo. It should, as in (46), contain the difference of the 
logarithm and the square root term, but not their sum.
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However, we find that the signal strength only decays as  ∼1/L in 3  +  1 dimensions, and 
is  ∼1/

√
L in 2  +  1 dimensions (both in the analytical solution for zero-gap detectors above, as 

well as in numerical solutions for gapped detectors). In fact, this behaviour is to be anticipated 
already from the dependency of the field commutator on the spatial distance between the field 
operators. The ratio of signal strength to energy density of the signal thus grows unbounded 
as L is increased.

This shows that the flow of information carried by the amplitude of a massless field should 
in general not be thought of as being tied to a certain, minimum flow of energy, both for time-
like and for null separations between sender and receiver. In order to store information into the 
field the sender always has to invest a certain amount of energy, as dictated, e.g. by the results 
of [38]. However, as we observe here, the propagation of information can decouple from the 
propagation of energy inside the massless field. The most distinct occurrence of this phenom
enon is represented by timelike signals in 1  +  1 dimensions which carry information without 
carrying any energy from the sender to the receiver [22, 23].

5.3.  Detectors in inertial motion

Signaling between two detectors which are moving inertially with respect to each other in 
Minkowski spacetime, is the first scenario in which we observe the impact of a relativis-
tic effect. When the detectors are in inertial motion the leading order signal strength is not 
maximal for detectors with identical energy gaps anymore, which it was for detectors at rest. 
Instead the detectors have to be detuned so as to account for the relativistic Doppler effect.

If the detector energy gaps are tuned to correct for the Doppler shift between sender and 
receiver, then the leading order signal strength grows with longer interaction times TA, as 
for detectors at rest. This resonance effect arises from the same mechanism as above due 
to the nested integral structure. When the detector frequencies are optimally chosen one of 
the terms arising from the upper integration boundary of the inner t2-integration becomes 
non-oscillatory.

To illustrate this, we look at a scenario where Alice and Bob move apart from each other. 
We choose Bob’s rest frame as coordinate system, i.e. Bob remains at rest at xB = 0. Alice is 
moving away from Bob at constant speed 0 � v < 1. She couples to the field for her proper 
time interval 0 � τA � TA. Without loss of generality, we choose t(τA = 0) = 0 and we denote 
the distance between Alice and Bob at time t = 0 by L.

As above, we restrict Bob to only couple to the field during the time interval for which he 
is null separated from Alice. The first of Alice’s lightrays reaches Bob at t = L. The last of 
Alice’s lightray, taking into account Alice’s motion and relativistic time dilation, reaches Bob 
at t = TA(1 + v)/

√
1 − v2 = ζTA, where

ζ =

√
1 + v
1 − v

� (47)

is the relativistic Doppler factor. Therefore, we couple Bob to the field during L � t � L + ζTA.
In 3  +  1 dimensions this results in [28]

C2 = λAλB
i
√

1 − v2

4πv
e

iL
(
ΩB+

√
1−v2
v (ΩA−ζΩB)

)

×

(
Γ

(
0,

iL
√

1 − v2

v
(ΩA − ζΩB)

)
− Γ

(
0,

i(TAv + L
√

1 − v2)

v
(ΩA − ζΩB)

))

� (48)
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with the incomplete Gamma function Γ(a, x) =
∫ ∞

x dt ta−1e−t . Figure 4 shows that the signal 
strength is maximal when Bob exactly accounts for the Doppler red-shift of Alice’s detector 
that lowers his detector energy gap to ΩB = ΩA/ζ. Then we obtain

C2 = λAλB
ieiΩBL

4π

√
1 − v2

v
ln

(
1 +

vTA

L
√

1 − v2

)
.� (49)

This correctly reproduces the result (43) for resting detectors in the limit v → 0. However, for 
v > 0, the signal strength for resonant moving detectors remains lower than for resonant rest-
ing detectors because the field commutator (34) decays as the distance between the detector 
increases with time.

Also in (1  +  1)-dimensional Minkowski spacetime the leading order signaling coefficients 
are analytically solvable [28],

C2 = −λAλB
eiΩBL

2ΩA

(
R +

i
ΩB

(
eiΩBζTA − 1

))
,� (50)

where

R =

{
ζTA if ΩB = ΩA/ζ

2i
ΩB−ΩA/ζ

ei(ΩBζ−ΩA)
TA
2 sin

(
(ΩBζ − ΩA)

TA
2

)
else

.� (51)

We have considered a scenario where Alice and Bob move apart and have to correct for 
the red-shift of their detector energy gaps. It is interesting to note that, due to the time-mirror 
symmetry of the signal strenght, this analysis also covers the scenario of Alice and Bob mov-
ing towards each other, despite that there is a blue-shift occuring when Alice and Bob move 
towards each other. In the time-mirrored scenario Bob is the sender. Therefore, the lowering 

Figure 4.  Leading order signal strength |C2|+ |D2| (in multiples of λAλB) between two 
detectors moving apart inertially with speed v. The relativistic Doppler effect requires 
Bob to detune his detector energy gap to ΩB = ΩA/ζ in order to correct for the red-
shift of Alice’s detector gap which is set to ΩA = 2.5. The initial distance between 
the detectors is L. Alice is coupled to the field for a proper time of TA = 7.5L. (Figure 
adapted from [28].
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of his detector energy gap ΩB = ΩA/ζ with respect to Alice’s gap, chosen to account for the 
red-shift in the original scenario, now exactly corrects for the blue-shift when moving towards 
Alice.

5.4.  Signaling across an acceleration horizon

When Alice and Bob are in inertial motion, as in the previous sections, the integrals appearing 
in the leading order signal contribution can grow arbitrarily large if the detectors couple to the 
field for an unlimited time. This ceases to be the case if either Alice or Bob are in uniformly 
accelerated motion. Here, the leading order signal strength across the acceleration horizon is 
bounded even if Alice and Bob can couple to the field for an infinite time. We show this by 
calculating analytical solutions to the leading order signaling contributions in (1  +  1)-dimen-
sional and (3  +  1)-dimensional Minkowski space.

Studying quantum communication with uniformly accelerated observer is of particular 
interest because they experience the Unruh effect [6]. And the question has therefore also 
been addressed in earlier works such as [39, 40]. The Unruh effect impacts the quantum chan-
nel from Alice to Bob through the coefficients P, Q, R, S that appear in Bob’s final state (6). 
In contrast, the effects that limit the leading order signal strength |C2|+ |D2| arise from the 
classical relativistic Doppler shift of the accelerated party which is infinitely large at early and 
late times.

The worldline of a uniformly accelerated observer in n  +  1 dimensional Minkowski spa-
cetime can be parametrized as

t(τ) =
1
a
sinh(aτ), x1 =

1
a
cosh(aτ)� (52)

and x2 = ... = xn = 0, where τ is the observer’s propertime. In this choice of coordinates the 
accelerated observer can receive signals from the past lighcone of the origin of the coordinate 
system at x0 = x1 = ... = xn = 0, but cannot send any signals there. Conversely, the acceler-
ated observer can send signals into the future lightcone of xµ = 0 but cannot receive any 
signals from there.

We here study the leading order signal strength between an accelerated observer and an 
observer that sits right behind the acceleration horizon. This means that signals can only travel 
across the acceleration horizon from the sender to the receiver but not back in the opposite 
direction, i.e. the sender influences the receiver’s final state, but the receiver’s presence has no 
influence on the sender’s final state.

In particular, we will put Alice, the sender, on the accelerated worldline above, and put 
Bob at rest at the origin of the coordinate system. Alice couples to the field along her entire 
worldline, whereas Bob only couples to the field for t > 0. This means we set the switching 
function of Alice in (37) constantly to ηA(τA) = 1, whereas Bob, whose proper time coincides 
with the coordinate time, is switched by the Heaviside function χB(t) = θ(t).

Due to the mirror symmetry of the leading order signal strength, the signal strength of this 
scenario is the same as in the mirrored scenario. There Alice would be at rest at the origin and 
couple to the field for t < 0 whereas Bob would be accelerated and coupling to the field all 
along his worldline.

In (3  +  1)-dimensional Minkowski spacetime the leading order signal strength depends 
only on the ratios x = ΩB/a and y = ΩA/a between the detector energy gaps and Alice’s 
proper acceleration. This is because the coupling constant λ is dimensionless, such that the 
detector gaps and the acceleration are the only physical scales that enter the problem. Figure 5 
shows a plot of this leading order signal strength, which is [28]
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|C2|+ |D2| =
λAλB

4π

∣∣∣∣2ie−
πy
2 Γ(−iy) 1F2

(
1;

iy
2
+

1
2

,
iy
2
+ 1;

x2

4

)
xiy

+2π cosh

(
1
2
(πy − 2x)

)
csch(πy)

∣∣∣∣

+
λAλB

4π

∣∣∣∣2ie
πy
2 Γ(−iy) 1F2

(
1;

iy
2
+

1
2

,
iy
2
+ 1;

x2

4

)
xiy

+2π cosh

(
1
2
(2x + πy)

)
csch(πy)

∣∣∣∣

�

(53)

with the generalized hypergeometric function2 1F2(a1; b1, b2; z) =
∑∞

k=0
(a1)kzk

(b1)k(b2)kk!. The limit-

ing case of y = 0, i.e. when Alice uses a zero gap detector, has an exact solution that can be 
expressed in terms of Meijer G-functions [28]. As x → 0, the signal strength remains bounded. 
However, it behaves highly oscillatory such that no limit exists.

If we choose Alice’s and Bob’s detector equal, i.e. ΩA = ΩB = Ω or x = y = Ω/a, the 
signal strength diverges in the limit of Ω/a → 0. This is interesting because this limit can be 
approached in two mathematically equivalent ways which from a physical perspective appear 
rather different.

On the one hand, the limit can be achieved by Ω → 0, i.e. by diminishing the detector gap. 
Then the increase in signal strength could be explained because the free detector evolution is 
frozen out, and the sender and receiver are in resonance for a longer time around t = 0, before 
the Doppler shift comes into effect.

On the other hand, the limit can equally be achieved by a → ∞, i.e. by increasing the 
acceleration. This means that the minimal distance of 1/a between Alice and Bob at t = 0 
is decreased. Therefore, the increase in signal strength could derive from the divergence of 
the field commutator (34) for coinciding spacetime points in (3  +  1)-dimensional Minkowski 

Figure 5.  The leading order signal strength |C2|+ |D2| (in multiples of the λAλB) 
across the acceleration horizon in 3  +  1D Minkowski spacetime (53) depends only on 
the ratios ΩB/a and ΩA/a between the detector energy gaps and the proper acceleration. 
The plot does not show the highly oscillatory behaviour when ΩB/a → 0. (Figure 
adapted from [28].)

2 See also: http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F2/02/
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spacetime. In (3  +  1)-dimensional Minkowski spacetime these seemingly different physical 
effects have an identical impact on the leading order signal strength.

In (1  +  1)-dimensional Minkowski spacetime the integrals in C2 and D2 are easy to solve 
due to the simple form of the commutator (35). The results are finite for arbitrary finite inter-
action times. However, the limit of infinite interaction times does not exist because of oscilla-
tory contributions from signaling between timelike separated points (which we will discuss in 
the subsequent section). To suppress these oscillatory terms we introduce switching functions 
for Alice and Bob of the form

ηd(τd) = e−|τd|/σd .� (54)
such that the integrals converge for infinite interaction times. Then, after the integration is 
performed, we take the limit σd → ∞ of infinite interaction times. Then [28]

C2 = lim
σA,σB→∞

C2(σA,σB) = −λAλB

(
− iΩB

a

)iΩA/a
Γ (−iΩA/a)

2aΩB
,� (55)

which yields

|C2|+ |D2| =
λAλB

aΩB
cosh

(
πΩA

2a

) √
aπ

ΩA sinh(πΩA/a)
.� (56)

The appearance of the overall factor λA/a in front of this contribution suggests that in this sce-
nario Alice’s proper acceleration sets the scale in comparison to which the dimensionful cou-
pling constant ought to be small in order for the perturbative analysis to be valid, i.e. λA � a.

In (1  +  1)-dimensional Minkowski spacetime the limit of infinite acceleration exists. The 
maximum leading order signal strength across an acceleration horizon in (1  +  1)-dimensional 
Minkowski spacetime, achieved in this limit, is

lim
a→∞

|C2|+ |D2| =
λAλB

ΩAΩB
.� (57)

5.5. Timelike signals

The appearance of signals propagating slower than the speed of light in massless fields may 
appear counter-intuitive, since they do not appear in (3  +  1)-dimensional Minkowski space-
time. However, this is an exception: generically, the Green function of a classical massless 
field, and thus the commutator of massless quantum fields, has support inside the future light-
cone and timelike signaling is possible [22, 24–28], as we saw above, (35) and (36), is the case 
in (1  +  1)-dimensional and (2  +  1)-dimensional Minkowski spacetime. The latter two cases 
are particularly interesting because massless Klein–Gordon fields in one spactial dimension 
are realized in waveguides of superconducting circuits, and the two-dimensional case might 
be realizable, e.g. in graphene.

Here we show that for timelike signals, in contrast to null signals, the leading order signal 
strength does not depend on the sender and receiver being tuned into resonance. Instead, both 
the receiver and the detector only need to independently optimize their switching times with 
respect to their own detector energy gap.

The reason for this is that once the receiver is timelike separated from the sender the bound-
aries of the time integrals in C2 and D2 are not interdependent any more: the upper boundary of 
the t2-integral in (37) is always the upper bound of the support of Alice’s switching function.
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Therefore, in contrast to null signals, timelike signals behave like static remainders from 
Alice’s interaction with the field. This remainder is imprinted into the field amplitude, and 
decays if the volume of the future lightcone increases. To detect this static imprint, Bob does 
not need to tune his detector to Alice’s parameters but can just locally pick the parameters 
which allow him to best measure the field’s amplitude.

The lack of resonance effects between timelike separated detectors also means that the 
signal strength is bounded and cannot be increased by coupling the detectors to the field for 
longer times.

In (1  +  1)-dimensional Minkowski spacetime timelike separation between Alice and Bob 
even factorizes C2 and D2 into a product, because the commutator takes the constant value i/2 

inside the future lightcone. Using χd(t) = ηd(τd)
dτd
dt , we obtain

C2 = λAλB

∫
dt1

∫ t1
dt2 χA(t2)χB(t1)ei(ΩBτB(t1)−ΩAτA(t2)) i

2

=
i
2
λAλB

(∫
dτA ηA(τA)e−iΩAτA

) (∫
dτB ηB(τB)eiΩBτB

)
.

�

(58)

This shows that for strictly timelike separations of sender and receiver, C2 is just the product 
of the individual switching functions’ Fourier transforms, evaluated at the detectors’ energy 
gaps. Most interestingly, the signal strength is independent of the detectors’ motion and the 
separation between the detectors. It only depends on the switching of the interaction as a func-
tion of the detector proper times.

This form of C2 implies that the leading order signal strength is maximized by sudden 
switching functions of the general form

ηd(τ) =

{
1 if τ0 � τ � τ0 +∆τd

0 else
.� (59)

These sudden switching functions maximize the signal strength in the sense that modifying 
the switching by adding a smooth ramp-up at the beginning of the interaction, and a ramp-
down at the end, generally decreases the absolute value of the Fourier transform.

With sudden switching functions the leading order signal strength evaluates to

|C2|+ |D2| =
4λAλB

ΩAΩB
|sin (∆τAΩA/2) sin (∆τBΩB/2)| .� (60)

So if both Alice and Bob couple to the field for a proper time interval which corresponds to 
an integer and a half multiple of their own detector period, i.e. for ∆τd = (n + 1/2)2π/Ωd, 
then the maximal leading order signal strength for timelike detectors in (1  +  1)-dimensional 
Minkowski spacetime is

|C2|+ |D2| =
4λAλB

ΩAΩB
.� (61)

Also in (2  +  1)-dimensional Minkowski spacetime timelike signaling is possible because 
the commutator (36) has timelike support. However, here the strength of timelike signals 
decays with increasing timelike separation between sender and receiver because the commuta-
tor is proportional to ∝ 1/

√
∆t2 −∆x2 . Through numerical evaluations of the leading order 

signal strength we can confirm that it decays as

|C2|+ |D2| ∼
1
∆T

� (62)
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for increasing timelike delays ∆T = T1 − TA → ∞ between the switch-off of a resting sender 
and the switch-on of a resting, timelike separated receiver. This decay is slower than the decay 
of the energy content of the signal, which falls of with a higher power of ∆T , as shown in 
[23]. Therefore, the ratio of signal strength to transmitted energy of timelike signals grows 
unbounded, just as discussed for null signals above.

In particular, as shown in figure 6, also in (2  +  1)-dimensional Minkowski spacetime time-
like separated senders and receivers need not tune their detectors into resonance but instead 
only need to individually pick the right amount of coupling time with respect to their detector 
energy gap.

6.  Conclusions

The results discussed in this article complete the general analysis of signaling effects between 
two Unruh–DeWitt particle detectors when their interaction with the quantum field, through 
which they communicate, is treated within perturbation theory. We showed how the leading 
order signal strength can be maximized, and which classical channel capacity arises.

In particular, we found that the leading order signaling strength is given by the term 
|C2|+ |D2|. This term has proven to be feasible to evaluate in many relativistic scenarios, 
because it consists of a basic Fourier-type integral over the field commutator.

The leading order signal strength is not affected by the noise effects arising from the inter-
action of the receiver’s detector and the vacuum fluctuations of the field. Because the field 
commutator is given by the classical Green function of the field. Among the different measures 

Figure 6.  The leading order signal strength for timelike separated sender and receiver 
in 2  +  1D Minkowski spacetime for different energy gaps ΩA,ΩB of the detectors. 
The sender and receiver rest at the same position. The sender couples to the field for 
t = 0...2T , and the receiver for t = 2.1...4.1T , with T being a unit of time. The signal 
strength only requires the sender and receiver to individually choose optimal coupling 
parameters but, in contrast to null signals, does not benefit from resonance of the two 
detectors. Note that in 2  +  1D the coupling constant has mass dimension [λ] = 1

2, i.e. 
λ/

√
Ω plays the role of the perturbative parameter. Therefore, we plot the signaling 

strength in multiples of 
√
ΩAΩB/(λAλB). (Figure adapted from [28]).
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of classical capacity considered, at leading order, only the Holevo capacity was affected by the 
field’s vacuum fluctuations.

Here, we evaluated the leading order signal strength for detectors communicating via a 
massless field while moving relativistically through Minkowski spacetime of 1  +  1 to 3  +  1 
dimensions. Here we observed the impact of the relativistic Doppler effect. Observers in iner-
tial motion need to detune to account for the Doppler effect in order to maximize the signal 
strength. However, if either sender or receiver is uniformly accelerated the Doppler shift is 
infinitely large at early and at late times such that the signal strength across an acceleration 
horizon in Minkowski spacetime has an upper bound.

Both for null and for timelike signals, and in the different dimensional Minkowski space-
times, we found that the signal strength decays slower than the energy density of the signal 
when the distance between sender and receiver is increased. This shows that the transmission 
of information through the amplitude of a massless field is not tied to the transmission of a 
minimum amount of energy along with the information from the sender to the receiver. Instead 
the propagation of information can decouple from the propagation of energy in the field.

The simple expression |C2|+ |D2|, for the leading order signal strength, is general and 
applies also to massive fields and to curved spacetimes. A similar estimate for the signaling 
strength, which didn’t yet include the optimal choice of initial states for Alice and Bob, was 
already used to investigate timelike signals in expanding universes [25–27].

In future work, it will be interesting to study the signal strength in other curved spacetime 
scenarios, and to study information propagation in massive fields. Scenarios in Schwarzschild 
or Kerr black hole spacetimes are particularly interesting and can be treated using the results 
and methods of [41, 42].

Within the scope of this article we only discussed the transmission of classical information. 
These results could be combined with previous results about the entanglement extraction from 
the field’s vacuum state [9, 12–15] to study quantum teleportation only by means of particle 
detectors, within the perturbative regime.

For other tasks, such as the direct coherent state transfer from one detector to another, 
non-perturbative interactions between the detectors and the field are necessary. So far non-
perturbative solutions are only known for certain restricted types of couplings, such as for 
zero-gap detectors [37]. However, it is possible to achieve quantum capacity between particle 
detectors by combining these non-perturbative approaches with sequences of appropriate cou-
plings between the detectors and the field [43].
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Appendix.  Leading order single detector channel coefficients

The leading order terms for the single detector coefficients of the channel in equation  (8)  
are [30]

P2 = λ2
B

∫
dt1

∫
dt2 χB(t2)χB(t1)eiΩB(τB(t1)−τB(t2)) 〈φ(xB(t2))φ(xB(t1))〉� (A.1)
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Q2 = −λ2
B

∫
dt1

∫
dt2 χB(t2)χB(t1)e−iΩB(τB(t1)−τB(t2)) 〈φ(xB(t2))φ(xB(t1))〉

�

(A.2)

R2 = −λ2
B

∫
dt1

∫ t1
dt2 χB(t2)χB(t1)eiΩB(τB(t1)−τB(t2))2Re [〈φ(xB(t2))φ(xB(t1))〉]

�

(A.3)

S2 = λ2
B

∫
dt1

∫
dt2 χB(t2)χB(t1)e−iΩB(τB(t1)+τB(t2)) 〈φ(xB(t2))φ(xB(t1))〉 ,

�

(A.4)

where, as before, we absorbed the switching function and the time derivative of the detector 

proper time into χB(t) = ηB(τB(t))
dτB(t)

dt .
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