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Abstract. The paper deals with the problem of current assessment of emergency conditions
and diagnostics of emergency pipelines location in water supply and distribution systems
(WSDS) in conditions that allow maintaining the quality of water supply network functioning
at a certain target level. The diagnostic process here consists of the following three stages:
detection of the fact of the accident, assessment of the quality level of the system operation and
search of the emergency area. To solve the problem, the researchers resort to the method of
discriminative analysis. This method makes it possible to use information about the values of
such controlled parameters as pressure at the network certain points and discharge in the
network sections thus assessing if the technical condition under diagnosis belongs to one of the
emergency subsets. The method also involves the decision procedure constructed in the
multidimensional space of the observed indicators proving the emergency conditions.

1. Introduction

The problem of current assessment of emergency conditions and diagnostics of emergency pipelines
location in water supply and distribution systems (WSDS) is crucial in choosing control actions that
allow maintaining the quality of water supply network functioning at a certain target level [1]. To
fulfil the requirement of efficiency in the management of large and complex systems is only possible
when automating the process of detection and localization of damaged elements, which require
specially developed methods and algorithms for diagnosis [2-4].

2. Problem specification

The authors consider WSDS to be complex technical systems. Thus, generally accepted terminology
introduced in Papers [5, 6] is used in this paper also when classifying these systems technical
conditions. According to the Papers mentioned, any complex technical system can be in good working
condition; in poor working condition; in operable condition; in non-operable condition.

These terms cover main technical WSDS conditions, which are characterized by a set of parameter
values describing these conditions [7]. The transition of the system from one technical state to another
usually occurs as a result of damage (shutdown) or recovery (inclusion) of its individual elements. A
system in which all elements function properly is considered to be in good working condition, but in
case of damage to one or more elements, the system becomes non-operable. At the same time, a
system in poor working condition can be fully operable, i.e. perform its main functions to provide
consumers with water at the required level of quality of functioning (RLQ). Thus, WSDS —can be

¢ in full operable condition with RLQ being not lower than the required design level;
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¢ in half-operable condition with RLQ being lower than the required design level but above the
maximum permissible RLQ reduction;

e in non-operable condition with RLQ below the maximum permissible level. In this case the
system fails.

3. Discussion

There is usually a transition period between two technical conditions, which is determined by the
duration of the emergency element shutdown. During this period, RLQ might drop below the
maximum permissible level. The duration of WSDS operation in this state is determined by regulatory
requirements. Figure 1 shows the general scheme of WSDS technical conditions.
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Figure 1. General scheme of WSDS technical conditions: 1 — failure, in which normal level of the
system functioning quality is maintained ; 2 — failure, leading to decline in the level of functioning
quality which is still above the minimum allowable; 3 — failure, leading to reduction in the system
functioning quality below normal; 4 — failure recovery.

WSDS condition can be fully characterized by Z(t) vector, which is a mathematical model of its
functioning, that is

2(1) = {x1(1), x2(1), ... xn(1), y1(1), y2(1), ...ym(1)}, (1)

where n is the number of parameters describing the mode of WSDS operation, m is the number of
WSDS elements.

Xi (t) parameters describing the mode of WSDS operation (i=1, ..., n) take values of physical
quantities measured or obtained as a result of the following calculation: pressure at certain particular
points of the network, discharge in certain areas, water levels in basins, etc.

The state of each j'» WSDS element (j=1, ..., m) is described by the function:

1, if the ™ element is operable;

yitY) =
0 if the ™ element fails.
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The number of elements yj(t) and parameters xj(t) is determined at the development stage of the
diagnostic system and depends on the complexity and dimension of the system. The points of space
between which the vector Z(t) moves form the conditions motion trajectory

In the process of WSDS functioning all sets of the system conditions can be divided into a number
of subsets, characterized by some common feature. When solving the problem of diagnostics of
emergency states, it is proposed to use a three-stage diagnostic process. At the first stage it is
necessary to detect the fact of the accident which causes RLQ deviation. At the second stage it is
assessed if WSDS is operable or non-operable. Then the network emergency site is located. In this
three-step approach, all states of the system are divided into three subsets:

e H subset corresponding to WSDS fully operable state;

o C subset corresponding to WSDS damage that reduces the RLQ to the level which is not
below the minimum permissible (the state is not fully operable);

e A subset corresponding to WSDS damage that reduces the RLQ below the maximum
permissible level (non-operable state).

4. Solution
The following three tasks are solved in the development of the algorithm for diagnostics and control of
WSDS in emergency states:

1) recognition of the states characterized by damages of network sites as regard to their belonging
to subsets A or C;

2) detection of damaged area;

3) determination of the composition of shut-off and control devices and the order of remedial
actions.

Thus, at the first stage of diagnosis, the whole set of states is divided into H and (A U C) subsets,
at the second stage is divided into A and C subsets and at the third stage, the site where the accident
occurred is located.

After the detection of the damaged section it is necessary to choose such control actions that
minimize the damage and prevent WSDS from falling out of subset C. In case WSDS condition is
beyond the permissible level transfer system it is important to transfer the system in C or H area using
the best trajectory.

According to Papers [8, 9], one of the best methods to determine which of the selected subsets (A
or C) belongs to the recognized state is the method of discriminative analysis.

Its application assumes that the decision whether the diagnosed condition is within one or the other
subsets is made directly and is based on the information of the controlled parameters values, that is
pressure at the network certain points and discharge in the network sections. The method also involves
the decision procedure constructed in the multidimensional space of the observed indicators proving
the emergency conditions. Each state in this n-dimensional space W corresponds to a point with
coordinates determined by the values of the parameters x = {X1, X2, «.., Xn}.

There is a very simple geometric vector representation showing if the condition under investigation
is within one of the subsets described above. In fact, if the representatives of subsets A and C are
known and the corresponding regions Wx and W, are allocated in space, it is only necessary to find
out to which of these regions the condition belongs. If the specified areas are defined in space, it is
enough to check whether the investigated state satisfies the conditions that define these areas and then
identify which of the conditions corresponds to the emergency state. To describe the area, it is possible
build a function that in the case of belonging to the recognized emergency state of the corresponding
area takes the maximum value compared to the functions for other areas. Such functions are called
discriminative and are formed from the condition that for all states of the components of A and C
subsets the following inequality is satisfied:

FA(x)>FC(x). (2)
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A specific type of discriminative functions Fa(x) and Fc(x) is calculated on the basis of a priori
information which is a training sample obtained by modeling WSDS emergency states or observing
them in real systems, and allowing dividing all states into two subsets, A and C. At the same time, in
the process of forming discriminative functions, it is possible to consider all of them in order to
determine the most suitable, i.e. having the best recognition abilities.

Standard programs can be used to calculate discriminative functions describing W4 and Wc
regions and characterizing the states of subsets A and C. As a result of these calculations, the
discriminative equation is calculated for each subset of A and C states,

F(x)=C0+XCixi, 3)

where Cy is an absolute term of an equation; and C; is the coefficient for feature x;i=1, ..., n.

The following sequence is observed when calculating discriminative functions:

1. A training sample is formed by modeling accidents at individual sites, later they are divided into
two subsets, that is A and C.

2. Discriminative functions are calculated.

3. There performed a recognition of emergency states of the training sample with the assessment of
the quality of the decision rule.

As a result of classification according to the value of RLQ, all states are divided into two subsets, A
and C. Each set forms the corresponding tables of features, e.g. piezometric heads in WSDS units.
Each row of the table corresponds to a specific state that characterizes the damage on one of the
network sections. The values of the controlled parameters are arranged in columns, and each
parameter has its own column.

When calculating discriminative functions, it is necessary to take into account that the quality of
recognition of emergency states largely depends on the composition and number of characteristics
which are taken into account. The most useful are those that are insensitive to changes in the
conditions of functioning within each of the subsets and change dramatically in the transition from one
subset to another. Since the number of possible combinations of features is enormous, the search for a
combination that allows more efficient and reliable carrying out the process of recognition of
emergency states can be performed by successive changes in the initially selected combination, known
as the "basic" option. It is also important to take into account measuring devices which are already
parts of WSDS and consider them also as the "basic" option.

Figure 2. Design model of water supply network.



CAEST 2019 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 775 (2020) 012107 doi:10.1088/1757-899X/775/1/012107

In order to analyze the effectiveness of recognition of emergency states with the help of the
obtained discriminative functions, it is necessary to perform control recognition of emergency states of
the examination sample also obtained by modeling. As a result of this control recognition, all variants
of combinations of features are evaluated and the most effective combination is selected.

To illustrate the method described, let us consider the water supply network shown in Figure 2. All
the initial information necessary for the formation of the training sample is obtained by means of
accidents mathematical modeling by data processing machine. Table 1 shows the value of piezometric
heads only for five units of the water supply network. In the process of preliminary analysis these five
units were the most informative in terms of the process of diagnosing emergency conditions. As a
result of classification, all states are divided into two subsets A and C according to their RLQ. Each
row of the table corresponds to a certain state that characterizes the damage on one of the network
sections. The values of the controlled parameters are arranged in columns, and each parameter has its
own column.

Table 1. Emergency sited and their controlled characteristics.

The number Controlled characteristic (pressure), m Belonging to the
of Xi Xe Xo X4 Xis technical
emergency condition
site
1 11.13 27.01 28.38 35.99 37.95 C
2 11.44 27.2 28.91 36.27 38.26 C
3 15.55 26.64 28.98 36.10 38.15 C
4 14.79 26.19 27.98 35.57 37.59 C
5 17.04 24.88 28.35 3542 37.61 C
6 19.39 21.84 26.60 33.55 35.95 C
7 18.98 21.46 25.33 31.82 34.63 C
8 17.20 19.41 21.98 26.26 30.81 A
9 15.49 20.52 23.09 30.48 32.99 A
10 18.16 20.98 23.02 29.63 32.71 C
11 15.99 18.54 19.45 19.87 25.49 A
12 14.45 16.84 17.00 19.37 19.00 A
13 13.67 15.86 16.18 20.80 22.30 A
14 14.31 15.97 17.06 24.73 27.53 A
15 14.42 17.93 16.28 22.85 16.00 A
16 14.12 18.94 15.31 25.95 22.18 A
17 13.66 19.90 14.16 28.49 28.86 A
18 14.59 22.90 22.49 32.76 34.60 C
19 13.62 23.76 21.87 32.29 34.47 C
20 12.50 2491 24.93 34.07 35.94 C
21 16.44 21.29 18.74 30.25 32.11 C
22 17.22 21.48 20.27 28.35 28.99 A
23 16.58 19.43 20.15 22.81 27.56 A
24 15.31 25.52 26.43 34.78 36.73 C
25 17.54 23.14 26.08 34.10 36.27 C
26 14.77 17.22 17.53 19.36 20.08 A
27 14.94 17.53 17.69 20.50 19.94 A

Four combinations of features were considered for the presented network: S; = {Xs, X14} — baseline,
S, = {x1, X6, X14}, S3 = {X, Xo, X14} and S4 = {X¢, X14, X15}. After calculations, discriminative functions
FAxx) and FCx), were obtained for each combination of features. They are presented in Table 2.
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Table 2. Discriminative equations for different combinations.

Variants of features Discriminative equation
combination
Sy Fa(x)=-34.298 +2.231x¢ + 1.256X14
Fe(x) =-64.918 + 2.660xs + 2.092x14
S, Fa(x) =-103.908 + 6.569x; + 4.807xs+ 1.082X14
Fe(x) =-149.264 + 7.225x;+ 5.495%6 + 1.836X14
S; Fa(x)=-34.941 + 2.037x¢ + 0.425%9 + 1.136X14
Fe(x) =-66.525 + 2.354%6 + 0.673x9 + 1.838x14
S4 FA(X) =-34.942 + 2.236%x¢ + 0.877x14 + 0.416X15

Fe(x) =-66.809 + 2.668x6 + 1.387x14 + 0.712x5

The recognition results for each discriminative equation of the training sample show that Fa(x) u
Fc(x) lead to fewer errors for S, combination of features, with two states in each of the subsets. Here,
combinations S; and S3 incorrectly recognize emergency states in Sections 9 and 22, and combinations
S, and S4 incorrectly recognize emergency states in Sections 8 and 22. In order to increase the
reliability of recognition and reduce the number of errors, it is possible to use a combination of
discriminative functions obtained for Sy and S;. This will eliminate errors for Sections 8 and 9. Thus,
for the recognition of emergency conditions at the second stage of diagnosis, a combination of S; =
{x1, X6, X14} 1s accepted. Control and measuring devices (e.g. pressure sensors) should be placed in
Sections 1, 6 and 14, respectively.

5. Conclusions

The researchers recommend performing three diagnostics stages of emergency conditions in the water
supply network in centralized systems of water distribution. At the first stage, it is necessary to detect
the fact of the accident. At the second stage, this condition is referred to a subset A or C. At the third
stage, the location of the emergency site is determined.

To solve the problem of the second stage, discriminative functions are effectively used. These
functions make it possible to classify the observed emergency state quite accurately. The method
presented in the paper is based on the existence of the fact of a sharp change in pressure and discharge
in the network sections in the event of an accident, so they are recommended to be used as the main
indicators characterizing WSDS condition.
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