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Abstract. A new closed form solution of the axisymmetric dynamic problem of the 

classical thermoelasticity theory is made for a rigidly fixed circular isotropic plate under 

temperature change on its front surfaces. The mathematical formulation of the problem 

under consideration includes linear equations of heat conduction and equilibrium in the 

spatial formulation on the assumption that the structures under study may neglect their 

inertia elastic characteristics. When constructing a common solution finite biorthogonal 

transformations are used. The given calculation ratios make it possible to determine the 

stress – strain state and the distribution nature of the temperature field in a rigidly fixed 

circular isotropic plate with an external temperature influence that is arbitrary in time.  

1. Introduction 

When designing structures for various purposes there is a need to study their work in conditions of 

uneven non-stationary heating [1]. This influence is accompanied by the appearance of thermal 

deformations and stresses which should be taken into account in the case of a comprehensive analysis 

of the strength characteristics of elastic systems of finite dimensions. Currently, various theories of 

thermoelasticity (CTE, GHI–GHIII, LS) [2] have been developed to solve this problem with varying 

degrees of accuracy. 

The mathematical formulation of the considered initial boundary value problems in the linear 

formulation includes the coupled non-self-adjoint differential equations of motion and thermal 

conductivity. The problem of their integration and the construction of a general solution leads, as a rule, 

in practical calculations to the study of the heat equation only without taking into account the 

deformation of the elastic system [3, 4]. Another approach is associated with analysis of thermoelasticity 

problems in uncoupled formulation [5-7]. 

 In the coupled formulation, closed dynamic problems of thermoelasticity are presented in few works. 

In particular, the study [8] was carried out using the classical (CTE) theory of thermoelasticity for an 

infinite cylinder and sphere using a generalized method of finite integral transformations, taking into 

account the given heat flux density on the surfaces of the elements (boundary conditions of the 2nd type) 

[9]. In [10, 11] with the help of the CTE theory the solutions for a finite isotropic cylinder with 

membrane fixation of its end surfaces are made. The study [12] was carried out in the framework of 

hyperbolic (GHII) theory of thermoelasticity allowing analyzing the frequency equation, as well as the 

forms of harmonic waves in an infinite cylindrical waveguide.  
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 In this paper, the object of the study is a rigidly fixed round isotropic plate in the case of non-

stationary axisymmetric temperature influence on its front surfaces (boundary conditions of the 1st 

type). The numerical results of the calculation of this problem in an unrelated formulation [13] allow us 

to conclude that the elastic inertial characteristics should be taken into account only when analyzing the 

operation of very thin structures (
01.0



b
h

), − bh , (thickness and radius of the plate). In this study, 

we consider the coupled non-self-adjoint system of equations of the classical theory of thermoelasticity. 

The system of differential equations includes the equilibrium equations under the assumption that the 

condition for the considered construction is satisfied 
0.01h

b




.  

2. Problem Statement 

Let a round rigidly fixed plate occupy in a cylindrical coordinate system ( ), ,r z 
 the area  :

 0 ,0 2 ,0r b z h  

       . On its end surfaces the temperature is set, the value of which 

depends on the radial coordinate r  and time t  at: 0=z  
),( **1 tr

, at 
= hz  

),( **2 tr
 (figure 1). 

 
Figure 1. Design scheme 

 

In general case the differential axisymmetric equations of equilibrium and thermal conductivity of 

the thermodynamics theory the initial boundary conditions for an isotropic medium in a cylindrical 

coordinate system and a dimensionless form have the form [2]: 
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  0t =    ( ), ,0 0T r z =  .      (5)  

 In equality (1) – (5) the following symbols are used: 
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, 

   * *

1 2 5 1 2, , , ,T a T   =
, 

( )*

* * *, ,U r z t
, 

( )*

* * *, ,W r z t
– 

components of the displacement vector; 0,T T − temperature change and absolute temperature of the 

initial state of the body; ,E v − elasticity modulus and Poisson's ratio of material; , ,t k L − coefficients 

of linear thermal expansion, thermal diffusivity, and thermal conductivity of the material. 

3. General solution construction  

The initial boundary value problem (1) – (5) is solved by the method of integral transformations using 

the sequential Hankel transform [14] with finite limits in the variable r  and the biorthogonal finite 

transformation [15] in the coordinate z . 

Initially, the relations (1) – (5) are given to the standard form allowing carrying out the procedure of 

separation of variables by radial coordinate. To do this, the second equality (2) is replaced by the 

condition of no shear stresses:  

( )1
0,

2 1
rz r

E W U

v r z


=

  
= + = 

+   
     (6)  

and based on the theorem of superposition of solutions, a new function is introduced 
( ), ,w r z t

, 

connected with ( ), ,W r z t  ratio: 

   
( ) ( ) ( )1, , , ,W r z t W t w r z t= +

,    (7) 

where ( )1W t −  unknown function determined in the process of the problem solving from the 

condition of absence of vertical displacements of the middle surface of the plate at 1r = , thus the 

condition ( )1, , 0W z t =  is performed only at one point in the height of the plate. 

As a result of substitution (7) in (1)–(5), (6) we obtain a new boundary value problem with respect 

to functions ,U w . In this case the boundary conditions on the cylindrical surface take the form: 

1r =     
( )1, , 0,U z t =

 | 1

0
r

w

r =


=

  , 
1

0
r

T

r =


=


.     (8)  

To the boundary value problem with respect to ,U w  we apply the Hankel transform with finite 

limits on the variable r , using the following transformers: 

      ( ) ( ) ( )
1

1

0

, , , ,H nu n z t U r z t rJ j r dr=  ,    (9) 

    ( ) ( )  ( ) ( )  ( )
1

0

0

, , , , , , , , , ,H H nw n z t n z t w r z t T r z t rJ j r dr =  , 

and circulation formulas: 
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where nj −  positive zeros of the function 
( )1 nJ j

 
( )00, ; 0n j=  =

. 

As a result, we obtain an initial–boundary value problem with respect to the Hankel transform:  
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   ( ) 1,0,H Hn t = , 2( , , )H Hn h t = ;  

  0t =  ( ), ,0 0H n z = ; (13) 

where     ( )
1

1 2 1 2 0

0

, ,H H nrJ j r dr   =  . 

At the next solution stage the procedure of giving the inhomogeneous boundary conditions (12) to 

homogeneous ones by introducing new functions , ,H H HU W L , connected with , ,H H Hu w   ratios: 

  1( , , ) ( , , ) ( , , )H Hu n z t H n z t U n z t= + , 2( , , ) ( , , ) ( , , )H Hw n z t H n z t W n z t= + ,   (12)  

     3( , , ) ( , , ) ( , , )H Hn z t H n z t L n z t = + ; 

where     ( )   ( )1 2 3 1 2 3 1 4 5 6 2, , ( ), ( ), ( ) ( ), ( ), ( )H HH H H f z f z f z t f z f z f z t = + .  

 Substitution of (14) in (11) – (13) under conditions: 
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allows to obtain the initial boundary value problem with respect to functions , ,H H HU W L  with 

homogeneous boundary conditions on the variable z . The right parts of the differential equations (11) 

and the initial conditions (13) with respect to the function 0HL  are as follows: 
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Initial boundary value problem (11)–(13) with respect to , ,H H HU W L  should be solved using a 

structural algorithm of biorthogonal finite integral transformation. To do this, enter the segment [0, h] 

control measuring device with unknown components of the eigenvector–functions of the nuclei 

conversions 
( ) ( )1 3, ... , ,in inK z K z  ( ) ( )1 3, ... ,in inN z N z 

:  

 ( ) ( )
( )

( ) ( )3 3 3

0

, ,
, , , , , , ,

h

H

in n H H in

W n z t
G n t a j U n z t a L n z t K z dz

z
 

 
= + + 

 
 ,   (15)  

( ) ( ) ( ) 

( ) ( ) ( ) ( ) 
2

1 2 3

1

, , , , , , , ,

, , , , , , ,

H H H

in in in in in

i

U n z t W n z t L n z t

G n t N z N z N z K   


−

=

=

= 
,    (16)  

    ( ) ( )
2

3 3

0

, ,

h

in in inK K z N z dz =  ,  

where ,in in  −  eigenvalues of the corresponding homogeneous linear boundary value problems 

with respect to conjugate ( ),k inK z  and invariant ( ),k inN z  component vector–functions of the 

nuclei conversions 1, 2,3k = ). 

As a result of using the algorithm of control measuring device [15] we obtain a countable set of 

Cauchy problems for the transformant ( ), ,inG n t , the solution of which has the form: 

0

0

exp( ) ( )exp ( )

t

in H in H inG G t F t d    = − + − , ( )1 1 2 2 3 3

0

h

H H H HF F K F K F K dz= − + + ,  (17)  

as well as two systems of differential equations and boundary conditions with respect to unknown 

transformation nuclei. Their solution allows us to obtain resolving equations of the 6th order with respect 

to functions ( )1 , ,inK z ( )1 ,inN z . In general expressions for ( )1 , ,inK z ( )1 ,inN z  are put as 

follows: 
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where 1 2,in inb b −  physical constants, 1 6...in inD D − the constant of integration. 

Final expressions for functions ( ), , ,U r z t ( ), ,W r z t , ( ), ,T r z t  get applying sequentially to 

transformance (18) formulas for the treatment of (17), (10). As a result, we have:  
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 The final stage of the study is ( ) ( )1 3, , ... , ,H n z t H n z t , 
1( )W t . 

Functions 
1 3...H H  are calculated from the condition of simplifications of the right parts of 

differential equations (14). Their solutions at satisfying the boundary conditions (13) determine 1 3...H H

. 

 Function 
1( )W t  is determined from the condition ( )1, 2, 0W h t = : 

  ( ) ( )
21

1 0 2 2

0 1

( ) 2 ( ) , , , , ( , )
2 2n in in in

n i

h hW t J j H n t G n t N K 
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−−

= =

 
= − + 

 
  .  

4. Conclusion 

As an example, a rigidly fixed round reinforced concrete plate is considered ( 1b = m, 0.1h =  m, 
102 10E =  Pа, 0.2v = , 

2000 =
 kg/м3 , 1.75L =  Vt/(m 0С), 

51.2 10t −= 
 1/0C, 

60.76 10k −=   m2 /s ) in case of action on the upper surface ( 0z = ) of the temperature loading in 

the form of: ( ) ( ) ( ) ( )1 max max max

max

, 1 sin
2

r t r T t H t t H t t
t


  

     

  
= − − + −  

  
, ( )2 , 0r t

  = , 

where ( )H t −  the single function of Heaviside ( ( ) 1H t = at 0t  , ( ) 0H t =  at 0t  ), 

max max 0T T T= − , max max,T t  −  the maximum value of the external temperature influence and the 

corresponding time in the dimensional form (
0

max 100T С = ,
0

0 20T С=  , max 100t = s). 

 Figures 2-4 present numerical results of the calculation on the basis of which the following 

conclusions can be drawn:  

1) When the maximum temperature change function is reached ( maxT ) its median surface at 0r =  

is warmed up to 
017 С  (fig.2, graph 1). Further on, at a constant value maxT T = , even heating of the 

entire plate is observed at max50t t

 =  (fig. 2, graph 3). 

2)  During the temperature field change, the structure is deformed and the growth of the 

components of the displacement vector is observed (fig.3, graphs 1-3). At the steady-state mode 

max50t t

 =  neutral surface ( 0rr = ) located on its bottom ( z h

 = ) front surface. 

3)  In case of achievement of non-stationary temperature loading of the maximum value maxt t

 =  

the greatest mechanical stresses are observed rr  (figure 4, graph 1). Further, at a constant temperature 

exposure, as a result of the entire plate heating the displacement increases and the voltage drops (figure 

4, graph 2). 
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Figure 2. Graphs of changes ( )

 tzT ,,0  in the height of the plate at different times  

(1 –
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 ,  2 – max10t t

 =
, 3 – max50t t

 =
). 

 

 

Figure 3. Graphs of changes ( )0.5, ,U z t

 
in the height of the plate at different times  

(1 –


 = maxtt
 ,  2 – max10t t

 =
, 3 – max50t t

 =
). 

 

 

Figure 4. Graphs of changes ( ),0,rr r t  
 in the height of the plate at different times  

(1 –


 = maxtt
 , 2 – max10t t

 =
, 3 – max50t t

 =
). 
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