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Abstract. The solution to the problem of fully nonlinear stability analysis of web-tapered I-
shaped members is presented in the paper. In order to accelerate the analysis, an analytical-
numerical approach was applied in the solution. Nonlinear stability analysis in the elastic range
is carried out by the use of the analytical procedure (so-called “Member” procedure) which is
based on the combination of the results of buckling and linear analyses. The growth of the
plastic deformations is taken into account by adding extra displacements in the “Member”
procedure. These displacements are determined numerically in the process of incremental
loading (so-called “Section” procedure). The proposed approach allows the calculation of all
displacements at each load step and the estimating of the member’s overall stability capacity,
rapidly (up to 20 times faster than using shell-FEM) and accurately enough. The overall
stability calculation results, depending on the different variables (slenderness, load
eccentricities and their ratios, rigidity variations) under different load cases, are given in the
paper. The stability capacity comparison between tapered and prismatic members is presented.
Also the comparison with existent experimental researches’ results is provided in the paper.

1. Introduction

Steel frames with web-tapered members are widely used nowadays. Material (stiffness) distribution
through the length of such members corresponds with the internal forces diagram from the main load
combination. This makes it possible to reduce the consumption of steel by an average of 15 to 30% in
comparison with the same structures composed of prismatic members. However, frames composed of
web-tapered members haven’t spread widely in Russia because of an absence of stability calculation
requirements in national design codes [1]. Also it should be noted that all available investigations in
this field do not allow us to create an engineering calculation approach in the form existing in the
Russian codes. Therefore, an analytical-numerical approach for carrying out stability analysis is
proposed in this paper. As completed prismatic members stability researches [2, 3] have shown, this
approach allows the performing of the member’s overall stability analysis in the elastoplastic range
rapidly and reasonably accurately.

2. Member’s computational model

Member’s computational model has traditional boundary conditions at both ends: bending about the
major and minor-axis is free, torsion is prevented but warping is unrestrained. To perform stability
analysis of a particular member, first of all, it needs to be detached from the frame. Detaching
(extraction) of the member from a plane frame is conducted by its out-of-plane effective length. To
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carry out this extraction it is necessary to perform an in-plane non-linear elastic analysis of the frame
(without torsion) from the main load combination. The aim of this analysis is to determine second-
order bending moments Myo, My and compressive force N at the ends of the member at any load
level.

Further in the paper the lower indexes “L” or “0” will relate to the forces and geometric properties
at the deep or at the shallow end of the member, correspondingly.

Figure 1 represents loading case for extracted from plane frame I-shaped web-tapered member:
compressive force is applied with eccentricities about both axes

&o=M,o/N,e, =M, /N ,e,=¢, = Ief’y/750+i)’(“id/20. The latter imply all the imperfections
which could occur during the fabrication and erection processes of the frame.

Figure 1. (a) — computational model; (b) — deflections of the member’s cross-sections

3. Solution approach

The solution of the non-linear stability problem is based on the V.Z. Vlasov second-order theory of
thin-walled members [4], extended by B.M. Broude [5] and E.A. Beilin [6] to the case when it is
necessary to take into account the differences of the fibers’ curvatures and the slopes associated with
the torsion. In view of this fact the three differential equation system of equilibrium [6] (after the pre-
integration of the first two)(will be:

EJV'+NV-MJ0+ MU' =-M]
EJu"+N°u+M20-MV =-M/ (1)

”
’
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where J;, J;, J’ —bending and sectorial moments of inertia; J; — torsional moment of inertia; h, —

the distance between flanges’ centroidal axes; all parameters marked “ * ” are variable through the
length of the member; v, u — major- and minor-axis displacements, correspondingly; 6 — the angle of
torsion; E,G — Young’s and shear moduluses, correspondingly; i, — polar radius of inertia. Internal
forces marked with index “0” are the results of the linear analysis of the member extracted from the
plane frame.
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There are some additional components in the third equation of the system (1) describing non-
uniform torsion of the tapered members (because of the flanges’ mutual incline). These components
were first obtained by Cywinski and can be found in [7].

To solve the system (1) we use an analytical-numerical approach. By this approach the overall
solution of the system (1) in elastic range can be presented as a combination of terms which can be
obtained by executing separate analyses or calculations (so-called “Member” procedure) [8]:

V=V +V,+V,; U=U+U,+U,; =6 +6,+0,. (2)

The first terms in (2): v,,u,,6, — the linear deflections obtained by executing separate linear
analyses of the member (when the influence of internal forces on the deflections is neglected) when

only the “active” forces [9] are applied to the member:
EJV=-M{;  Edu/=-MS;
" (3)
EJ. V| L 1
{(h*)z(elhw) } h, -[cazg] =0 (8, <0)

The solution of the equations (3) can be presented as:
vi =Viw,(2); U =Up(2); 6 =0(2), 4
where w,,¢,,v, — shapes of the deformed member; V,,U,,®, — displacements’ amplitudes which are
linearly dependent of the “active” forces.

The second terms in (2): v,,u,,6, — the buckled shape functions obtained by executing the

buckling analyses when only the “parametric” forces [9] are applied to the member. Equations for
buckling analyses can be derived from the system (1):

EJvi +N%, =0; (5)
EJjup +N°u, + M6, =0

" , (6)
Eo an) | 0 -[eaar] + Mfug+[i§*N°¢9§} -0.
(n:f

As one can see from (5) and (6), the system (1) has been divided into the buckling analysis of the
centrally loaded member with the results of it represented in the similar way:

v, =V, (2), (7

and the two equation system (6) of the lateral-torsional buckling of thin-walled member. After the
execution of the latter we can obtain the lateral-torsional buckled shape functions:

Uy =Upy (2); 6, = Op1, (2). (8)

In (7) and (8) V,,U,,®, — some unknown constants having dimensions corresponding to v, u, 0
(buckling analyses are executing with precision up to these constants); v,.¢,.v,— buckled shapes.

The third terms in (2): v,,u,,0, — the additional displacements about axes and the angle of torsion
which can be caused by the spreading of the plastic deformations or possible local buckling or
damages which reduce the cross-sections. Initial geometric imperfections can be applied in the
solution by using these terms as well. They are approximated by algebraic or trigonometric

polynomials and can be defined during incremental loading by determination of the equilibrium state
for each cross section at each increment. It can be executed using so-called “Section” procedure [8] in



CAEST 2019 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 775 (2020) 012152 doi:10.1088/1757-899X/775/1/012152

conjunction, for example, with the collocation method. According to the approach [8] after
substituting (2) in the main system (1) the following can be obtained:

L, =EJv +NV=M%+M% =0;

—EIW+NU+M%O—MY =0
y“b X z (9)

L, _[(?)2 (@h:) ] S X VLAV +[i§*N°9']= 0.

From (9) it can be seen that they formally represent equations of equilibrium for a tapered member
with initial geometric imperfections v, +v,, u,+u,, 6 +6, and which has received additional

displacements caused by the action of the “parametric” forces [9].
Solve the system (9) by using energy stability criterion (Galerkin method):

L
ijl//y z)dz =0; _[Lu¢y z)dz =0; ILgvy(z)dz =0. (10)
0

As a result we get the system of three algebraic equations for the unknown constants V,,U,,®, of
the buckled shape functions. After the solution of algebraic system, we will have all terms in (2)
(v,,U,,6, — assumed to be defined, because they are determined using the “Section” procedure by

achlevmg equilibrium states in all cross-sections at incremental loading process [8]). By using (2) we
can obtain second-order internal forces:

M, =M;+N-MJo,

M, =MJ +N°u+M,6, (11)
Ba) =" Eh‘lw (Hna) )N

«

and stresses of any fiber of the cross-sections. At the same time the ultimate (failure) load (N"") for
the “extracted” member is defined by the failure of its stable deformed state.

Returning to the general solution of (2), it should be noted that the complicated non-linear stability
analysis was reduced to the buckling analysis. The latter could be executed numerically for each
loading case.

The approach for determining the spatial displacements (u, v, 8) and the overall stability in
elastoplastic range using the “Member” and the “Section” procedures is well described for prismatic
members (for example [2, 3]) and here it was used the same. So let us pay attention on some results of
the tapered members’ stability analysis.

4. Stability analysis results
For the practical purposes, the results of the stability analyses are presented in the form of the stability

factor ¢, = N““/Ry A.iq depending on: taper angle pi1, loading case, mid-length slenderness
Ay =(Iefyy/i;"id)\ R, /E and non-dimensional eccentricity m,, of compressive force N applied at the

deep end. By then the stability check can be made in accordance with traditional formula existed in
the Russian steel design codes [1]:

N

B ] (12)
¢exy7/cRyAnid
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where A, i™® — mid-length cross-sectional area and radius of inertia, correspondingly; R, — design

yielding stress; 7, — service factor.
3 loading cases were considered in the research (Figure 2).

N Loading case #1 N Loading case #2 N Loading case #3
N s
iTF jl_ey,o iTP(ﬁ iT Z?i
i A4 A K -~

Figure 2. Loading cases

Absolute eccentricities at the shallow end e, , were taken on the assumption of equal fiber stress at

both ends:
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Figure 3. Overall stability analysis results: stability factors ey at different slenderness
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Graphs in Figure 3 represent the dependence of stability factors ¢,,, (when g, =3°and 6°) on
slenderness Ay (IEN — slenderness according [10]) at different eccentricities m,, when
R, =24.5kN/ecm? . Mid-length cross-sections of all the members were taken to be the same (with the

relationship of radiuses of inertia i}’ /if"" =4.4) — thus the members of the same slenderness have

equal weight.
The solid lines correspond to the one-sided end eccentricities (loading case #1), dashed lines —
when there is m, , =0 at the smaller end (loading case #2), dash-dot lines correspond to the case

when the eccentricities are opposite in direction at the ends (loading case #3).
The graphs in Figure 3 reveal that when the eccentricities (m, | =1.5;7.5;15) are equal, the load

carrying capacity (¢, ) is considerably higher for the loading cases #2 and #3 than for case #1.

However, with a growth of slenderness these differences become less significant.
The graphs in Figure 4 demonstrate the dependence of stability factors ¢,,, on the taper angle 1 at

the different slenderness and eccentricities m,, when R, =24.5kN Jem? . It is worth remembering

that the members of the same slenderness have equal weight.

As can be seen from the graphs in Figure 4 the stability capacity at loading case #1 increases with
the growth of taper angle, while at loading cases #2 and #3 the contrary occurs: it decreases and,
moreover, in case #3 this trend is more pronounced. For members with relatively low slenderness at
loading cases #2 and #3 when the eccentricities are high enough there can be found such a taper angle
when the stability capacity reaches a peak (for example, for 2y =3.4 at m, =15 and the loading case
#3 its f1=4.5°).

The stability capacity comparison of tapered and prismatic members of equal weight is also carried
out. For this purpose, prismatic members were loaded with the same eccentricities as tapered ones. It
was obtained that for the most common taper angles (from 3° to 6°) the tapered members stability
capacity is above prismatic ones on the average of 6.5%, 18.2% and 24.8% for loading case #1, #2 and
#3, respectively.

5. Comparison with experimental researches
In order to verify the proposed approach, comparisons of the results of existent experimental
researches with tapered members were carried out.

First comparison — with results of the experimental research made by Salter, Anderson and May
(1980) [11], who conducted a series of tests with steel welded I-shaped tapered beam-columns. A total
of 8 specimens were tested, including: C1 to C5 — specimens with no intermediate restraints, C6 and
C7 — specimens which tension flange was held against lateral displacement, C8 — specimen whose
compressed flange was restrained against lateral displacement.

Specimen C8 was excluded from the comparison due to its mid-length restraints, but specimens C6
and C7 were included because their restraints had no influence on the overall behavior of the members
under load (it was pointed out by the authors [11]).

The stages of applying loads as well as the residual stress pattern in the proposed approach
calculations were assumed the same as in the paper [11].

Comparison of the failure bending moments obtained by the proposed approach (Mcac) and in the
experimental research (Mexp) is given in Table 1.
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Table 1. Comparison between results obtained by the proposed approach and experimental tests [11]

Failure
; Mid-length Yieldin i ;
Srl:]%%i' EE?&IX ° Zﬁgg slende_rngess str:s;j csyg , ntw)gpndel:\]t% M lefgence
L, mm b1 "y kN/cm? Mog, Mo, — gy +100%
KNm  kNm P
C1 2622 4.2° 118 325 82.8 63.7 +231
C2 2620 3.7° 115 325 53.0 53.4 -0.8
C3 2619 3.1° 113 325 45.6 43.3 +5.0
C4 1903 5.3° 103 315 44.6 42.5 +4.7
C5 1903 3.6° 100 315 22.3 22.2 +0.4
C6 2619 3.7° 114 335 53.9 55.0 -2.0
C7 2619 3.1° 113 335 47.4 46.9 +1.1

It can be seen from Table 1 that the results of theoretical calculations by the proposed approach and
experimental study are in a good agreement. In 85% of cases the difference did not exceed 5%, and
only one case (specimen C1) was a 23.1% difference gotten. However, fully non-linear FEM stability
analysis of the shell model in ABAQUS (which was carried out by Kim [12]) gave an even lower
value of ultimate moment: 56.6 kNm. This fact may prove that the authors [11] could not have
provided the right or the full initial data about this specimen or could have made a mistake in the value
of the ultimate moment.

Figure 5 presents curves of major axis displacements (displacements “v’) at mid-length for
specimens C2 and C4. In addition, the curves obtained by the authors’ numerical calculations [11] are
also provided.

M, kNm M, kNm
60

C2 =

45

30

Test results [11]

Calculations of
authors [11]

— Proposed approach
calculations

15

v, cm v, cm
0 0.3 0.6 0.9 1.2 0 0.4 0.8 1.2
Figure 5. Major-axis displacements at mid-length for C2 and C4 specimens

As can be seen from the graphs in Figure 5 the curves obtained by the proposed approach are in a
good agreement with the curves obtained from experimental data and the authors’ numerical
calculations [11].



CAEST 2019 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 775 (2020) 012152 doi:10.1088/1757-899X/775/1/012152

Second comparison — with results of the experimental research made by Shiomi, Nishikawa and
Kurata (1983) [13], who conducted three series of tests with tapered I-shaped beam-columns. The
present comparison includes only the results of the OT-series test in which the specimens (19 items)
were not held against lateral displacements and whose loss of stability occurred in the overall mode
(involves two displacements v, u and the angle of torsion #). Comparison of the failure loads obtained
by the proposed approach (Ncac) and the experimental tests (Nexp) i given in Table 2 from which it can
be seen that in 63% of cases (12 specimens) the difference in ultimate (failure) loads did not exceed
5%. The highest differences +15% and -12.8% were obtained for specimens OT-1.6-1 and OT-1.6-2,
respectively. Regarding OT-1.6-1: fully non-linear FEM stability analysis of the shell model in
ABAQUS (which was carried out by Kim [12]) gave an average (for the three residual stress patterns)
difference of +14.4% what may prove that the authors [13] did not provide complete data about this
specimen initial imperfections. Regarding OT-1.6-2: when the test was conducting, the center
compressive load position was accidentally shifted to out-of-plane direction [13], which in turn,
created additional bending moments led to a failure at lower ultimate load.

Table 2. Comparison between results obtained by the proposed approach and experimental tests [13]

Mid- Failure

Effective . Average
Speci length sllggg?r- Taper  Eccentri- — yjo)ing load Difference
pecimen L angle city, Stress o N N N —N
) ness ﬂl ML y! expy calcs exp @l 100%
mm e kN/cm? kN kN Neare
OT-1.4-2 2000 68 1.3° 1.69 30.27 370 349 +5.7
OT-144 2500 78 1.1° 2.47 28.64 252 250 +0.8
oT-16-1 3000 172 1.7° 8.02 29.39 80 68 +15.0
OT-1.6-2 2000 76 2.0° 1.04 29.90 358 404 -12.8
OT-1.64 2500 81 1.7° 1.50 29.88 361 373 -3.3
OT-1.6-5 3000 100 1.4° 2.39 30.30 247 259 -4.9
OT-18-1 2000 75 2.5° 1.02 29.56 412 413 -0.2
OT-1.8-3 2500 87 2.1° 1.49 29.86 357 350 +2.0
OT-1.84 2500 88 2.4° 2.55 30.59 265 271 -2.3
OT-1.8-5 3000 100 1.9° 2.32 29.70 259 272 -5.0
OT-2.0-1 2000 85 2.9° 0.92 30.17 356 358 -0.6
OT-2.0-3 2500 112 2.9° 2.45 29.99 225 235 -4.4
OT-2.04 3000 100 2.3° 2.47 29.75 293 285 +2.7
OT-2.0-5 3000 100 2.4° 1.51 29.83 402 377 +6.2
0T-2.2-3 2500 89 3.2° 1.54 29.65 351 349 +0.6
0T-2.25 3000 103 2.8° 2.58 30.03 279 251 +10.0
0oT-24-1 2000 87 4.0° 0.93 30.34 406 382 +6.3
0T-2.4-3 2500 108 3.2° 1.38 30.26 287 287 0
OT-24-4 3000 102 3.3° 2.50 29.81 309 286 +7.4

Third comparison — with results of the experiment made by Cristutiu, Nunes and Dogariu (2012)
[14], who also conducted three test series with tapered I-shaped beam-columns. The comparison
includes only the results of the NR-series tests in which the specimens (2 items with the same
dimensions differentiate in web thickness: 8 and 6 mm) did not have any intermediate restraints. The
differences of 0.1% and -9.9% (Table 3) in failure bending moments were obtained for specimens
C1 8 NR and C1_6_NR, respectively. Almost 10% difference for the latter is explained by the fact
that the local buckling of the flange occurred first followed by the overall stability loss.
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Table 3. Comparison between results obtained by the proposed approach and experimental tests [14]

Sl Failure
; Yielding stress, "
Effective  Taper ~ Mid-length k,g,,cmz bending Diff
: slenderness Oy» Iference
Specimen length L,  angle » moments M, — M,
mi exp calc ‘1000/
mm P A web  flanges :l/ll\el)?;‘l 'll/kfr'; Mg ’
Cl1 8 NR 3600 5.6° 83.8 41.0 26.7 488.75 488.4 +01
C2 6 NR 3600 5.6° 79 31.9 26.7 395.75 434.8 -9.9

Presented comparisons with the results of 3 experimental researches [11, 13, 14] confirm the
validity and adequate accuracy of the proposed analytical-numerical approach for the carrying out
fully non-linear stability calculations of tapered members.

6. Summary

Thus, the use of the proposed analytical-numerical approach (where the buckling shapes are
determined numerically) affords to obtain new results of the tapered members’ stability analyses with
high speed (up to 20 times faster than carrying out the same analyses by shell-FEM) and adequate
accuracy. These results can be widely use in structural steel design.
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