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Abstract. The solution to the problem of fully nonlinear stability analysis of web-tapered I-

shaped members is presented in the paper. In order to accelerate the analysis, an analytical-

numerical approach was applied in the solution. Nonlinear stability analysis in the elastic range 

is carried out by the use of the analytical procedure (so-called “Member” procedure) which is 

based on the combination of the results of buckling and linear analyses. The growth of the 

plastic deformations is taken into account by adding extra displacements in the “Member” 

procedure. These displacements are determined numerically in the process of incremental 

loading (so-called “Section” procedure). The proposed approach allows the calculation of all 

displacements at each load step and the estimating of the member’s overall stability capacity, 

rapidly (up to 20 times faster than using shell-FEM) and accurately enough. The overall 

stability calculation results, depending on the different variables (slenderness, load 

eccentricities and their ratios, rigidity variations) under different load cases, are given in the 

paper. The stability capacity comparison between tapered and prismatic members is presented. 

Also the comparison with existent experimental researches’ results is provided in the paper.     

1. Introduction 

Steel frames with web-tapered members are widely used nowadays. Material (stiffness) distribution 

through the length of such members corresponds with the internal forces diagram from the main load 

combination. This makes it possible to reduce the consumption of steel by an average of 15 to 30% in 

comparison with the same structures composed of prismatic members. However, frames composed of 

web-tapered members haven’t spread widely in Russia because of an absence of stability calculation 

requirements in national design codes [1]. Also it should be noted that all available investigations in 

this field do not allow us to create an engineering calculation approach in the form existing in the 

Russian codes. Therefore, an analytical-numerical approach for carrying out stability analysis is 

proposed in this paper. As completed prismatic members stability researches [2, 3] have shown, this 

approach allows the performing of the member’s overall stability analysis in the elastoplastic range 

rapidly and reasonably accurately. 

2. Member’s computational model 

Member’s computational model has traditional boundary conditions at both ends: bending about the 

major and minor-axis is free, torsion is prevented but warping is unrestrained. To perform stability 

analysis of a particular member, first of all, it needs to be detached from the frame. Detaching 

(extraction) of the member from a plane frame is conducted by its out-of-plane effective length. To 
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carry out this extraction it is necessary to perform an in-plane non-linear elastic analysis of the frame 

(without torsion) from the main load combination. The aim of this analysis is to determine second-

order bending moments Mx,0, Mx,L and compressive force N at the ends of the member at any load 

level. 

Further in the paper the lower indexes “L” or “0” will relate to the forces and geometric properties 

at the deep or at the shallow end of the member, correspondingly.   

Figure 1 represents loading case for extracted from plane frame I-shaped web-tapered member: 

compressive force is applied with eccentricities about both axes 

NMe yy 0,0, = , NMe LyLy ,, = , 20750,,0,
mid
xyefLxx ilee +== . The latter imply all the imperfections 

which could occur during the fabrication and erection processes of the frame. 
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Figure 1. (a) – computational model; (b) – deflections of the member’s cross-sections 

3. Solution approach 

The solution of the non-linear stability problem is based on the V.Z. Vlasov second-order theory of 

thin-walled members [4], extended by B.M. Broude [5] and E.A. Beilin [6] to the case when it is 

necessary to take into account the differences of the fibers’ curvatures and the slopes associated with 

the torsion. In view of this fact the three differential equation system of equilibrium [6] (after the pre-

integration of the first two) will be: 
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where 
*** ,, JJJ yx  ‒ bending and sectorial moments of inertia; *

kJ  ‒ torsional moment of inertia; 
*
h   ‒ 

the distance between flanges’ centroidal axes; all parameters marked “ * ” are variable through the 

length of the member; v, u ‒ major- and minor-axis displacements, correspondingly; θ ‒ the angle of 

torsion; E,G – Young’s and shear moduluses, correspondingly; ip  ‒ polar radius of inertia. Internal 

forces marked with index “0” are the results of the linear analysis of the member extracted from the 

plane frame. 
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There are some additional components in the third equation of the system (1) describing non-

uniform torsion of the tapered members (because of the flanges’ mutual incline). These components 

were first obtained by Cywinski and can be found in [7]. 

To solve the system (1) we use an analytical-numerical approach. By this approach the overall 

solution of the system (1) in elastic range can be presented as a combination of terms which can be 

obtained by executing separate analyses or calculations (so-called “Member” procedure) [8]: 

                                       .;; ablablabl uuuuvvvv  ++=++=++=                                         (2) 

The first terms in (2): lll uv ,,
 
– the linear deflections obtained by executing separate linear 

analyses of the member (when the influence of internal forces on the deflections is neglected) when 

only the “active” forces [9] are applied to the member: 
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The solution of the equations (3) can be presented as:  

                                                ),();();( zzUuzVv lllllllll  ===                                               (4) 

where lll  ,,  – shapes of the deformed member; lll UV ,,  – displacements’ amplitudes which are 

linearly dependent of  the “active” forces. 

The second terms in (2): bbb uv ,,  – the buckled shape functions obtained by executing the 

buckling analyses when only the “parametric” forces [9] are applied to the member. Equations for 

buckling analyses can be derived from the system (1): 

                                                           
;00* =+ bbx vNvEJ
                                                                       

(5)
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As one can see from (5) and (6), the system (1) has been divided into the buckling analysis of the 

centrally loaded member with the results of it represented in the similar way: 

                                                              ),(zVv bbb =                                                                            (7) 

and the two equation system (6) of the lateral-torsional buckling of thin-walled member. After the 

execution of the latter we can obtain the lateral-torsional buckled shape functions:  

                                                ).();( zzUu bbbbbb  ==                                                          (8) 

In (7) and (8) bbb UV ,,
 
– some unknown constants having dimensions corresponding to v, u, θ 

(buckling analyses are executing with precision up to these constants); bbb  ,, – buckled shapes. 

The third terms in (2): aaa uv ,,  – the additional displacements about axes and the angle of torsion 

which can be caused by the spreading of the plastic deformations or possible local buckling or 

damages which reduce the cross-sections.  Initial geometric imperfections can be applied in the 

solution by using these terms as well. They are approximated by algebraic or trigonometric 

polynomials and can be defined during incremental loading by determination of the equilibrium state 

for each cross section at each increment. It can be executed using so-called “Section” procedure [8] in 
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conjunction, for example, with the collocation method. According to the approach [8] after 

substituting (2) in the main system (1) the following can be obtained: 
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From (9) it can be seen that they formally represent equations of equilibrium for a tapered member 

with initial geometric imperfections alalal uuvv  +++ ,,
 

and which has received additional 

displacements caused by the action of the “parametric” forces [9]. 

Solve the system (9) by using energy stability criterion (Galerkin method): 
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                                  (10) 

As a result we get the system of three algebraic equations for the unknown constants bbb UV ,,   of 

the buckled shape functions. After the solution of algebraic system, we will have all terms in (2)           

( aaa uv ,,  – assumed to be defined, because they are determined using the “Section” procedure by 

achieving equilibrium states in all cross-sections at incremental loading process [8]). By using (2) we 

can obtain second-order internal forces: 
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and stresses of any fiber of the cross-sections. At the same time the ultimate (failure) load ( ultN ) for 

the “extracted” member is defined by the failure of its stable deformed state. 

Returning to the general solution of (2), it should be noted that the complicated non-linear stability 

analysis was reduced to the buckling analysis. The latter could be executed numerically for each 

loading case. 
The approach for determining the spatial displacements (u, v, θ) and the overall stability in 

elastoplastic range using the “Member” and the “Section” procedures is well described for prismatic 

members (for example [2, 3]) and here it was used the same. So let us pay attention on some results of 

the tapered members’ stability analysis. 

4. Stability analysis results 

For the practical purposes, the results of the stability analyses are presented in the form of the stability 

factor midy
ult

exy ARN=  depending on: taper angle β1, loading case, mid-length slenderness 

( ) ERil y
mid
xyefy ,=  and non-dimensional eccentricity Lxm ,  of compressive force N applied at the 

deep end.  By then the stability check can be made in accordance with traditional formula existed in 

the Russian steel design codes [1]: 

                                                           ,1
midycexy AR

N


                                                           (12) 
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where mid
xmid iA ,

 
‒ mid-length cross-sectional area and radius of inertia, correspondingly; yR  – design 

yielding stress; с  – service factor. 

3 loading cases were considered in the research (Figure 2). 
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Figure 3. Overall stability analysis results: stability factors φexy at different slenderness  
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Graphs in Figure 3 represent the dependence of stability factors exy  (when = 31 and 6 ) on 

slenderness y  (
EN
y  – slenderness according [10]) at different eccentricities Lxm ,  when 

25.24 cmkNRy = . Mid-length cross-sections of all the members were taken to be the same (with the 

relationship of radiuses of inertia 4.4=mid
x

mid
y ii ) – thus the members of the same slenderness have 

equal weight. 

The solid lines correspond to the one-sided end eccentricities (loading case #1), dashed lines  ‒ 

when there is 00, =xm  
at  the smaller end (loading case #2), dash-dot lines correspond to the case 

when the eccentricities are opposite in direction at the ends (loading case #3). 

The graphs in Figure 3 reveal that when the eccentricities ( 15;5.7;5.1, =Lxm ) are equal, the load 

carrying capacity ( exy ) is considerably higher for the loading cases #2 and #3 than for case #1. 

However, with a growth of slenderness these differences become less significant. 

The graphs in Figure 4 demonstrate the dependence of stability factors exy  on the taper angle β1 at 

the different slenderness and eccentricities Lxm ,  when 25.24 cmkNRy = . It is worth remembering 

that the members of the same slenderness have equal weight. 

As can be seen from the graphs in Figure 4 the stability capacity at loading case #1 increases with 

the growth of taper angle, while at loading cases #2 and #3 the contrary occurs: it decreases and, 

moreover, in case #3 this trend is more pronounced. For members with relatively low slenderness at 

loading cases #2 and #3 when the eccentricities are high enough there can be found such a taper angle 

when the stability capacity reaches a peak (for example, for 4.3=y  at mx,L=15 and the loading case 

#3 its β1=4.5°). 

The stability capacity comparison of tapered and prismatic members of equal weight is also carried 

out. For this purpose, prismatic members were loaded with the same eccentricities as tapered ones. It 

was obtained that for the most common taper angles (from 3° to 6°) the tapered members stability 

capacity is above prismatic ones on the average of 6.5%, 18.2% and 24.8% for loading case #1, #2 and 

#3, respectively. 

5. Comparison with experimental researches 

In order to verify the proposed approach, comparisons of the results of existent experimental 

researches with tapered members were carried out. 

First comparison – with results of the experimental research made by Salter, Anderson and May 

(1980) [11], who conducted a series of tests with steel welded I-shaped tapered beam-columns. A total 

of 8 specimens were tested, including: C1 to C5 – specimens with no intermediate restraints, C6 and 

C7 – specimens which tension flange was held against lateral displacement, C8 – specimen whose 

compressed flange was restrained against lateral displacement. 

Specimen C8 was excluded from the comparison due to its mid-length restraints, but specimens C6 

and C7 were included because their restraints had no influence on the overall behavior of the members 

under load (it was pointed out by the authors [11]). 

The stages of applying loads as well as the residual stress pattern in the proposed approach 

calculations were assumed the same as in the paper [11]. 

Comparison of the failure bending moments obtained by the proposed approach (Mcalc) and in the 

experimental research (Mexp) is given in Table 1. 
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Figure 4. Overall stability analysis results: stability factors φexy at different taper angles  
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Table 1.  Comparison between results obtained by the proposed approach and experimental tests [11] 

Speci-

men 

Effective 

length 

L, mm 

Taper 

angle 

β1 

Mid-length 

slenderness 
mid
y  

Yielding 

stress y ,  

kN/cm2 

Failure 

 bending 

moments 

 

Difference 

%100
exp

exp


−

М

МM calc  
Mexp, 

kNm 

Mcalc,  

kNm 

C1 2622 4.2° 118 32.5 82.8 63.7 +23.1 

C2 2620 3.7° 115 32.5 53.0 53.4 -0.8 

С3 2619 3.1° 113 32.5 45.6 43.3 +5.0 

С4 1903 5.3° 103 31.5 44.6 42.5 +4.7 

С5 1903 3.6° 100 31.5 22.3 22.2 +0.4 

C6 2619 3.7° 114 33.5 53.9 55.0 -2.0 

C7 2619 3.1° 113 33.5 47.4 46.9 +1.1 

 

It can be seen from Table 1 that the results of theoretical calculations by the proposed approach and 

experimental study are in a good agreement. In 85% of cases the difference did not exceed 5%, and 

only one case (specimen C1) was a 23.1% difference gotten. However, fully non-linear FEM stability 

analysis of the shell model in ABAQUS (which was carried out by Kim [12]) gave an even lower 

value of ultimate moment: 56.6 kNm. This fact may prove that the authors [11] could not have 

provided the right or the full initial data about this specimen or could have made a mistake in the value 

of the ultimate moment.      

Figure 5 presents curves of major axis displacements (displacements “v”) at mid-length for 

specimens C2 and C4. In addition, the curves obtained by the authors’ numerical calculations [11] are 

also provided.    
 

 
Figure 5. Major-axis displacements at mid-length for C2 and C4 specimens  

 

As can be seen from the graphs in Figure 5 the curves obtained by the proposed approach are in a 

good agreement with the curves obtained from experimental data and the authors’ numerical 

calculations [11].  
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Second comparison – with results of the experimental research made by Shiomi, Nishikawa and 

Kurata (1983) [13], who conducted three series of tests with tapered I-shaped beam-columns. The 

present comparison includes only the results of the OT-series test in which the specimens (19 items) 

were not held against lateral displacements and whose loss of stability occurred in the overall mode 

(involves two displacements v, u and the angle of torsion θ). Comparison of the failure loads obtained 

by the proposed approach (Ncalc) and the experimental tests (Nexp) is given in Table 2 from which it can 

be seen that in 63% of cases (12 specimens) the difference in ultimate (failure) loads did not exceed 

5%. The highest differences +15% and -12.8% were obtained for specimens OT-1.6-1 and OT-1.6-2, 

respectively. Regarding OT-1.6-1: fully non-linear FEM stability analysis of the shell model in 

ABAQUS (which was carried out by Kim [12]) gave an average (for the three residual stress patterns) 

difference of +14.4% what may prove that the authors [13] did not provide complete data about this 

specimen initial imperfections. Regarding OT-1.6-2: when the test was conducting, the center 

compressive load position was accidentally shifted to out-of-plane direction [13], which in turn, 

created additional bending moments led to a failure at lower ultimate load. 

 

Table 2.  Comparison between results obtained by the proposed approach and experimental tests [13] 

Specimen 

Effective 

length 

L,  

mm 

Mid-

length 

slender-

ness 
mid
y  

Taper 

angle 

β1 

Eccentri-

city, 

mx,L 

Average 

yielding 

stress y , 

kN/cm2 

Failure 

load  

Difference 

%100
exp


−

calc

calc

N

NN  Nexp, 

kN 

Ncalc, 

kN 

OT-1.4-2 2000 68 1.3° 1.69 30.27 370 349 +5.7 

OT-1.4-4 2500 78 1.1° 2.47 28.64 252 250 +0.8 

OT-1.6-1 3000 172 1.7° 8.02 29.39 80 68 +15.0 

OT-1.6-2 2000 76 2.0° 1.04 29.90 358 404 -12.8 

OT-1.6-4 2500 81 1.7° 1.50 29.88 361 373 -3.3 

OT-1.6-5 3000 100 1.4° 2.39 30.30 247 259 -4.9 

OT-1.8-1 2000 75 2.5° 1.02 29.56 412 413 -0.2 

OT-1.8-3 2500 87 2.1° 1.49 29.86 357 350 +2.0 

OT-1.8-4 2500 88 2.4° 2.55 30.59 265 271 -2.3 

OT-1.8-5 3000 100 1.9° 2.32 29.70 259 272 -5.0 

OT-2.0-1 2000 85 2.9° 0.92 30.17 356 358 -0.6 

OT-2.0-3 2500 112 2.9° 2.45 29.99 225 235 -4.4 

OT-2.0-4 3000 100 2.3° 2.47 29.75 293 285 +2.7 

OT-2.0-5 3000 100 2.4° 1.51 29.83 402 377 +6.2 

OT-2.2-3 2500 89 3.2° 1.54 29.65 351 349 +0.6 

OT-2.2-5 3000 103 2.8° 2.58 30.03 279 251 +10.0 

OT-2.4-1 2000 87 4.0° 0.93 30.34 406 382 +6.3 

OT-2.4-3 2500 108 3.2° 1.38 30.26 287 287 0 

OT-2.4-4 3000 102 3.3° 2.50 29.81 309 286 +7.4 

 

Third comparison – with results of the experiment made by Cristutiu, Nunes and Dogariu (2012) 

[14], who also conducted three test series with tapered I-shaped beam-columns. The comparison 

includes only the results of the NR-series tests in which the specimens (2 items with the same 

dimensions differentiate in web thickness: 8 and 6 mm) did not have any intermediate restraints. The 

differences of 0.1% and -9.9% (Table 3) in failure bending moments were obtained for specimens 

C1_8_NR and C1_6_NR, respectively. Almost 10% difference for the latter is explained by the fact 

that the local buckling of the flange occurred first followed by the overall stability loss. 
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Table 3.  Comparison between results obtained by the proposed approach and experimental tests [14] 

Specimen 

Effective 

length L,  

mm 

Taper 

angle 

β1 

Mid-length 

slenderness 
mid
y  

Yielding stress, 

y , kN/cm2 

Failure 

 bending 

moments 

 

Difference 

%100
exp

exp


−

М

МM calc  
web flanges 

Mexp, 

kNm 

Mcalc,  

kNm 

C1_8_NR 3600 5.6° 83.8 41.0 26.7 488.75 488.4 + 0.1 

C2_6_NR 3600 5.6° 79 31.9 26.7 395.75 434.8 - 9.9 

 

Presented comparisons with the results of 3 experimental researches [11, 13, 14] confirm the 

validity and adequate accuracy of the proposed analytical-numerical approach for the carrying out 

fully non-linear stability calculations of tapered members. 

6. Summary 

Thus, the use of the proposed analytical-numerical approach (where the buckling shapes are 

determined numerically) affords to obtain new results of the tapered members’ stability analyses with 

high speed (up to 20 times faster than carrying out the same analyses by shell-FEM) and adequate 

accuracy. These results can be widely use in structural steel design.    

References 

[1] Vedyakov I I et al 2017 SP16.13330.2017: Steel Structures, Revised Edition SNiP II-23-81* 

(Moscow: Standartinform) 

[2] Rodikov N N 1987 Stability of Open Section Structural Members Under Biaxial Thrust 

(Leningrad: Leningrad Civil Engineering Institute) 

[3] Sotnikov N G 1987 Strength and Stability of Angle Section Structural Members Having General 

and Local Defects and Damages (Leningrad: Leningrad Civil Engineering Institute) 

[4] Vlasov V Z 1959 Thin-Walled Elastic Beams (Moscow: Fizmatgiz) 

[5] Broude B M 1959 Research on Structural Theory 8 205-223  

[6] Beilin E A 1969 Structural Mechanics and Analysis of Constructions 5 35-41 

[7] Cywinski Z 1969 Rozprawy Inzynierskie 17 185-217 

[8] Belyy G I 1987 Spatial Behavior and Ultimate States of Metal Structural Members (Leningrad: 

Leningrad Civil Engineering Institute) 

[9] Rzhanitsin A R 1955 Elastic Systems’ Stability of Equilibrium (Moscow: Gostehizdat) 

[10] Denton S et al 2014 EN-1993-1-1:2005, Eurocode 3: Design of steel structures, Part 1-1: 

General rules and rules for buildings (Brussels: CEN) 

[11] Salter J B, Anderson D and May I M 1980 The Structural Engineer 58A(6) 189-193 

[12] Kim Y D 2010 Behavior and Design of Metal Building Frames Using General Prismatic and 

Web-tapered Steel I-section Members (Atlanta: Georgia Institute of Technology) 

[13] Shiomi K, Nishikawa S and Kurata M 1983 Memoirs of Chubu Institution of Technology 19-A 

55-66 

[14] Cristutiu I M, Nunes D L and Dogariu A I 2012 Int. J. Steel and Comp. Struct. 13(3) 225-238    

 
 

 


