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Abstract. The article discusses the methods of modeling two-dimensional in terms of turbulent 

flows. Their difference and advantages are described. The equations of flow motion in the 

plane of the hodograph are given, as well as the velocity and depth of the flow in the entire 

region of its flow. Next, a new method is proposed, the purpose of which is to solve a system 

of differential equations. Using a differential equation connecting the physical cavity of the 

flow stream and the plane of the travel time curve, a simple model of the flow of a steady, 

vortex-free water flow in a wide horizontal, smooth outlet channel is proposed. The flow 

model in the vicinity of the outlet from the pressureless pipe uses the fact that the resistance 

forces of the flow to the bottom of the outlet channel are small compared with the forces of 

inertia. The obtained solutions allow us to calculate the flow parameters with an accuracy 

sufficient for the design of hydraulic structures of the drainage system from the upper pool to 

the lower one under roads and railways. This model allows you to identify the basis of the laws 

of the real spreading of the flow and on its basis there is an opportunity for further building 

models taking into account the resistance forces in order to increase the correspondence of the 

mathematical model to the real flow. 

1. Introduction 

I.A. Sherenkov’s models [6] based on the free spreading universal diagram obtained by him, as well as 

the analytical model using the motion hodograph plane [1, 2, 3] have been used in the hydraulic 

structures design up to now. 

However, the results of this work show a significant increase in the model’s correlation coefficient 

to the real flow parameters. 

The method in work makes it possible to solve the boundary problem of spreading a stormy stream 

using slightly different methods (compared to previously known ones), but using the intermediate 

plane of the motion hodograph similar to the method used by S.A. Chaplygin and analogical [7] in the 

study of the perfect gas motion. 

A more detailed justification of the possibility of practical use of two-dimensional model in terms 

of vortex-free flow is given in the literature [5, 8, 9-21]. 
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2. The initial equations 

Initial assumptions in the model:  are as follows: the flow is two-dimensional in plan, stationary, on 

average potential, and flows from a free-flow pipe into a wide outlet channel.  

The flow parameters at its outlet from the pipe are taken as follows: Q is a volumetric flow rate; h0 

is the depth of flow; b is the water supply pipe width (figure 1). 

 

       
a     b 

Figure 1.  Flow spreading pattern: a - plan view, b - the cross section of the pipe and flow at the 

outlet is a wide outlet channel. 

 

The equations of flow motion in the velocity hodograph plane are similar to those given in [1, 2, 3] 

and look as follows 
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where ( , )   =  is a potential function; 

( , )   =  is a current function; 

 is an angle characterizing the velocity vector slope to the longitudinal axis of the flow symmetry; 
2

02

V

gH
 = is the speed dependent parameter; 

g is the gravity acceleration; 

V is the local flow rate; 
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0 is the value of the  parameter at the stream from the pipe outlet; 
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= + is constant for the entire flow; 
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= + = is the Bernoulli integral; 

h defines the local flow depth. 

In the entire area of the flow "G" the flow speed and depth are determined by the formulas [1]: 
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Differential relationship between the physical cavity of the flow stream ( , )x y  and the motion 

hodograph plane ( , )G    has a view [1-4]: 

0

0
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( ) ih

dz dx idy d i d e
H V

 = + = +       (3) 

where i is a complex unit; 

d defines differentials from , , ,x y   ; 

e determines the natural logarithm base. 

The article considers a simple but interesting model of a steady, irrotational water flow in a wide 

horizontal, smooth outlet channel. 

The results of this model can be used in the real flow outlet vicinity from the free-flow pipe, since 

in this region the flow resistance forces against the outlet channel bottom are small compared to the 

inertia forces at Froude numbers F> 1, therefore, the model has not only a purely theoretical, but also a 

definite practical value [4, 5]. 

The results of the work are relevant, since they allow calculating the flow parameters with an 

accuracy sufficient for the hydraulic structures (HS) design of the road drainage from the upper pool to 

the lower one under roads and railways. This model allows identifying the basis of the flow real 

spreading laws and there is an opportunity for further models’ construction on its basis taking into 

account the resistance forces in order to increase the correspondence of the mathematical model to the 

real flow. 

3. The problem solution in the motion hodograph plane  

Let us multiply the first equation of the system (1) by d , the second by d  and add. 

As a result, we get: 
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Assuming that along the extreme streamline 0( , ) co
2

V b
nst   = =  and simplifying (4) we obtain 

the equation: 
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From the self-similarity condition ( ), ( ),


      


= = =  [4] from (5) the ordinary differential 

equation along the streamline follows: 
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Under the boundary condition 00;  = =  integrating (6) we obtain: 
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From the system solution (1) of a self-similar form in the particular case for 0

1

3
 = , i.е. the critical 

flow spreading at the outlet of the pipe the well-known b [4] solution follows: 

t =  (8) 
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where t is a self-similar variable. 

It follows from (8) that 

1
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at t=3; 

In solution (7), a self-similar variable , and it also follows that at 0 0

1
, 1

3
  =    the limiting 

flow spreading angle along the extreme streamline lim.  is also determined by the formula (9). 

Therefore, the result in the work is indirectly confirmed. 

From (7) it also follows that there is a particular solution to system (1) ,const const = = , 

determining the uniform movement of water, which coincides with previously known facts [4]. 

It is possible to choose a variable   as a self-similar variable in another form, for example:
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From the condition of constant specific flow rate along the extreme streamline 0

2

V b
 = , the 

equation of the extreme streamline in the motion hodograph plane can be written as:
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Thus, in the motion hodograph plane for the extreme streamline the equation (11) is obtained, 

while the relationship between the parameters ,   is defined by the equation (7). 

4. Obtaining the extreme streamline equation in the physical plane of the flow 

Using the connection formula (3) between the planes ( , )F x y and ( , )G    and putting in it 0d = , 

separating the real and imaginary parts we get the differential formulas:  
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In (12) ( )  = is determined from the equation (7); and d  - from the system (1). Omitting 

simple transformations, we get: ( )d F dt =       
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Then by integration from (12) we obtain formulas for determining the coordinates ( ), ( )x y  : 
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The equalities (14) determine the parametric dependences along the extreme streamline,  -is the 

parameter; 0 1    

However, from the free spreading analysis of the real flows and experimental observations [5, 6], it 

is known that there is a vertical front DX  along the extreme streamline and there is a sharp abrupt 

change in the angle  from 0 to K  after it. 

In [9], a formula for determining DX   is derived (Figure 1); 
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V=  – is the Froude number at the outlet of the flow from the pipe, 

max = – is a maximum flow spreading angle. 

Angle K  is determined from the system: 
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The second equation in (16) is derived from the condition of changing the flow stream (potential, 

two-dimensional in plan) direction by a finite angle K  [1,2,3]. 

The integrals in (14) were determined numerically using the software package: “Mathcad”. 

The coordinate results ( ); ( )X Y  , as well as depths and speeds ( ), ( )h V   along the extreme 

streamline were printed in the form of tables and analyzed by the comparison with experimental ones. 

The parameter   is changed from 0  to 1 = ; 

5. Conclusion 

1) The model can be used in the design of the road drainage system HS and can be expanded to 

the model taking into account the flow resistance forces. 

2) Mismatch in the flow width between the model and experimental data before expansion 

7
B

b
 = =  does not exceed 10%, which is significantly more accurate than more than 20% errors 

by the methods in previously known models of free flow spreading [1, 2, 3, 5, 6]. 
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