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Abstract. The paper considers a physically linear mathematical model of an isotropic circular 

plate-membrane with a non-deformable central disk, concentrated load and zero bending 

stiffness with the account for finite displacements. On this basis, the extreme problem of 

determining the rational geometric parameters of an elastic element from the condition of the 

target sensitivity function maximum with the equation of constraint in the form of the Huber-

Hencky-Mises strength energy hypothesis is solved. The analytical study of the influence of 

the Poisson’s ratio on the basic optimal dimensionless characteristic of the membrane, which is 

the ratio of radii, in comparison with the known calculation by the formulas of the classical 

linear theory of transverse bending of rigid plates is presented. The results of the work can be 

used in the process of design of high-precision capacitive, inductive and strain gauges of 

membrane type, widely used in mechanical engineering, aviation, instrument engineering and 

construction when designing pressure tanks with controlled overpressure of gas or liquid. 

1. Introduction 

Complication, refinement and improvement of design schemes of modern technological equipment, 

machine parts and devices have caused intensive development of optimal design methods in recent 

decades [1-4]. This relatively new direction, which lies at the junction of the mechanics of deformable 

solids and the theory of optimal control, can significantly reduce the material consumption of 

structures, while maintaining their high reliability and functional characteristics [1]. 

Annular membrane plates with absolutely rigid central disk are widely used in various branches of 

mechanical and civil engineering [5, 6]. Elastic elements of this type are used similarly to corrugated 

boxes (bellows) in cases where it is desirable to convert the pressure drop into a corresponding change 

in mechanical force, for example, in sensors and actuators of regulators [6]. Flat round plates-

membranes are used as sensitive parts of force-measuring and manometric instruments of high 

accuracy grades. With the help of membrane-type devices, one can measure pressure from hundreds of 

atmospheres to several millimetres of water column. In addition, the membranes can be used as 

separators of two media, as well as in special pumps and as flexible seals to transfer displacements 

from the pressure or vacuum area to the scale of measurement instruments [5]. In this case, in a thin 

membrane, as the main structural part of measuring devices, very large operational deflections are 

possible, as a result of which the tensile stresses will be much greater than the flexural ones, that is, the 

membrane system itself can have almost zero flexural stiffness [5, 6]. 

Operational characteristics of any elastic elements depend, as is known, not only on technological, 

but also on rational design parameters [1, 2, 6], since the qualitative work of instruments and devices 
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of the membrane type is laid already at the stage of mathematical modelling, theoretic academic 

assumptions and calculation. 

 

2. Results and discussion   

The paper considers a geometrically nonlinear [7] mechanical-mathematical model of an isotropic 

annular axisymmetric membrane taking into account its absolute flexibility in the presence of a rigid 

centre and a concentrated static load Р. The extreme problem of selecting rational geometric 

parameters of a membrane device from the condition of the maximum of the target sensitivity function 

δ [1, 4, 5] is solved (Figure 1): 
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Figure 1 shows the meridian section of the calculated model of the membrane 1, which has an axis 

of symmetry 5, constant thickness h = const and a rigid pinching along the inner and outer perimeters 

by radii RB and RH, respectively. The structural layout of the plate includes a completely non-

deformable central disk 3, to which a concentrated load 2 is applied. Under the action of the force P, 

the initial median plane of the membrane takes the form 4 with a maximum displacement ω0 in the 

direction of the Z axis. 

 

 

Figure 1. Structural layout of a membrane 

 

For membrane structures that perform measurement functions in devices, the most important 

quality criterion is high accuracy which the measured parameter is converted into displacement with. 

Accuracy increases with the increase of sensitivity δ, that is, with the increase of the absolute 

deformation ω0. 

The solution of the problem is based on the known system of two nonlinear differential equations 

in relation to the dimensionless stress function ψ = ψ(ρ) and vertical displacement ω = ω(ρ), 

characterizing the deformed state of the plate-membrane [5] within Hooke’s law [5, 6]: 
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where ρ = 
HR

r
 - relative coordinate of an arbitrary point of the median surface Х1 ≤ ρ ≤ 1; 

Е – elasticity modulus of a construction material. 

The approximating function ω(ρ) is accepted in the assumption (confirmed by the authors 

experimentally on thin plastic films) that when the plate is loaded with a concentrated force P, its 

elastic surface will be close to conical [5], i.e. 

 constC
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where C – sought-for coefficient. 

Having inserted expression (4) in (3) we get 
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After repeated integrating (5) we have  
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where A1, A2 – arbitrary constants, which are determined from the following boundary conditions on 

the outer and inner contours of the plate: 
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where μ – Poison’s ratio of a membrane. 

The system of algebraic equations (7) with respect to A1 and A2, is in its physical sense the 

kinematic boundary conditions of the problem of the equality to zero of the radial displacement 

function u = u(ρ) at ρ = X1 and ρ = 1 (Figure 1) [5]. 

Opening the system (7), we find: 
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where K1, K2 – the constants, depending on μ and X1: 
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After substituting A1 and A2 into formula (6), the stress function ψ takes the following form  
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
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The value of the constant C is determined from the approximate solution of equation (2) by the 

Bubnov Galerkin method, after substituting (4), (10) and multiplying the corresponding integrals by – 

1 [1, 7]. As a result we will have 
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from which 
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In accordance with the regulatory and technical recommendations, in order to ensure reliable 

operation of the membrane as an elastic element, we shall use the fourth or Beltrami theory of failure, 

according to which the equivalent stress σIV is determined by the following dependence [5, 6]: 

 σIV = 
  rr −+ 22 , (14) 

where σr, σθ – radial and circumferential normal stresses, accordingly, [5]:  
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Substituing (15) in (14) with regard to (10), (12), we get the sought-for function σIV (ρ): 
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where Kσ – constant coefficient 
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The investigation of the derived formula (16) showed that the most dangerous cylindrical section, 

where σIV = max, is located at the interface of the hard disk of the plate with its annular part at ρ = Х1 

(Figure 1). 

In the set optimization problem for a conditional extremum, the coupling equation can be written in 

a universal and generalized form [1, 4, 5] 

 S =   0
max

=− nv



  , (18) 

where σmax – maximal equivalent stress σIV = max; 

 n  - minimally permissible factor of assurance; 

σℓv – the physical and mechanical constant of a material at which an elastic element reaches a limit 

state that is unacceptable for its normal operation [5], for example, the yield strength σy. 

To determine the objective function (1), we find the displacement of ωо by solving the differential 

equation (4) with respect to the dependence ω = ω (ρ) with the boundary condition ω (1) = 0, taking 

into account the formulas (12), (13) and replacing the designation of the membrane thickness h with 

the desired parameter X2, i.e.: 

 ω = С(1 – ρ), ω0 = С(1 – Х1), (19) 
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Having substituted σmax = σIV in (18) at ρ = Х1, we express the variable Х2 = h in the following way: 
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Having excluded the argument Х2 from (20) with the help of (21), we come to the final form of the 

sensitivity function  
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where Кδ – coefficient that does not affect the nature of the dependence δ (Х1). 

The numerical solution of the problem is performed on a PC at six permissible values of the 

coefficient  μ = 0; 0.1; 0.2; 0.3; 0.4; 0.5. Figure 2 shows a dependency graph ( )





К

Х

К

1=  for a steel 

membrane (μ = 0.3), having optimal thickness ХО2 and maximal sensibility δmax, which are determined 

by functional correlations (21), (22): Х2 = Х2(Х1), δ = δ (Х1). 

 

Figure 2. General character of the objective function variance (22) 

 

3. Conclusion 

A comprehensive analysis of the computational and theoretical studies allows drawing the following 

conclusions:  

1) A new approximate solution of the system of geometrically nonlinear differential equations (2)-

(3) [5] is obtained within the physical linearity of the material using the integral procedure (11) of the 

Bubnov-Galerkin variational method [5, 7]. It describes the stress-strain state of an absolutely flexible 

annular membrane with a rigid central disk under the action of a concentrated load (Figure 1). On this 

basis, the optimal geometric characteristics 𝑋01= 
𝑅𝐵

𝑅𝐻
, 𝑋02=ℎ0 of the membrane system and its 

maximum sensitivity 𝛿𝑚𝑎𝑥 (Figures 1,2) are determined, which significantly increases the accuracy of 

transformation of a measured parameter in the displacement [1]. 

2) The proposed innovative mechanical and mathematical model is reduced to simple functional 

dependencies (9), (13), (21), (22) tested by a numerical case (Figure 2), and constants 𝐶, 𝐾𝜎 , 𝐾𝛿 

approximated by formulas (12), (17), (22).  

3) A comparative evaluation of the influence of the Poisson ratio μ on the main optimized 

parameter  𝑋1= 𝑋1(𝜇) in comparison with the known solution of the problem for a rigid plate 

according to the linear classical theory of transverse bending of axisymmetric plates of average 
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thickness [8] was carried out. These calculations showed that in the case of 0 ≤ 𝜇 ≤ 0.5, the value of 

the optimal geometric characteristic 𝑋01 decreases, respectively, in the range 0.1289 ≤ 𝑋01 ≤ 

0.0971with an increase in the degree of plasticity of the material, that is, with an increase in the 

physico-mechanical constant μ. At the same time, the analogous parameter 𝑋01
∗ = 0.326 = const >> 𝑋01 

for the plate-membrane of small deflection  𝜔0 does not depend on μ, according to the solution given 

in the source [8]. 

4) The developed technique is supposed to be modified in relation to the original fundamental-

applied optimal design problem, in which the maximized characteristic is the amount of space between 

the initial plane of the membrane and its deformed surface in the form of a truncated cone (Figure 1). 

The solution of this problem is especially relevant for those cases when the elastic element – 

membrane is used as a separator of two media in pumps [5,6] and hermetically closed pressure tanks 

with membrane-type sensors that allow measuring internal pressure. 

5) To conclude this research work, we would like to note the obvious fact of reduced material 

capacity of an absolutely flexible membrane due to its small thickness [5], in comparison with a rigid 

plate [5, 6, 8]. In addition, the qualitative performance indicators associated with increased 

measurement accuracy are improved, by reason of greater deformability 𝜔0 and sensitivity 𝛿𝑚𝑎𝑥 of 

the thin membrane support structure. 
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