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Abstract

The field of solar magnetoseismology (SMS) is heavily reliant upon our understanding of magnetohydrodynamic
(MHD) waves that occur in many solar features. Building on previous studies of propagating MHD waves in a
magnetic slab embedded in a nonmagnetic asymmetric environment, in this study we assume a line-tying boundary
condition and use analytical techniques to derive the dispersion relation for linear standing MHD oscillations. The
slab is first assumed thin, with arbitrary asymmetry, in order to derive the frequencies of the standing harmonic
modes for both slow quasi-sausage and slow quasi-kink waves. Besides this, the asymmetry is assumed to be weak
in order to determine the frequency dependence on the width of the slab and the asymmetry of the system, to
leading order. For both the quasi-sausage and quasi-kink modes, the derived eigenfrequencies show that the
dependence on the asymmetry in the system is much weaker than the dependence on the width of the slab. Using
the eigenfrequencies, other observable quantities are derived (such as, e.g., the frequency ratio) providing an
opportunity to use SMS to infer background diagnostics of the system.

Unified Astronomy Thesaurus concepts: The Sun (1693); Magnetic fields (994); Magnetohydrodynamics (1964);
Solar physics (1476); Solar magnetic fields (1503); Solar oscillations (1515); Solar atmosphere (1477); Solar
prominences (1519)

Supporting material: animations

1. Introduction

Observations by high-resolution space-borne satellites and
ground-based telescopes enabled the detection of waves and
oscillations at multiple wavelengths in a wide range of solar
magnetic structures in the Sun’s atmosphere, e.g., at large
scales including coronal loops (Aschwanden et al. 1999;
Wang 2004; Banerjee et al. 2007; de Moortel 2009), plumes
(Ofman et al. 1997; DeForest & Gurman 1998; Nakariakov
2006), prominences (Arregui et al. 2012), or small scales,
including spicules (Zaqarashvili & Erdélyi 2009; Tsiropoula
et al. 2012), pores (Keys et al. 2018), sunspot light bridges
(Yuan et al. 2014; Yang et al. 2016, 2017), or magnetic bright
points (MBPs; Liu et al. 2018). Magnetohydrodynamic (MHD)
waves and oscillations provide us with a tool to diagnose these
structures, a method known as solar magnetoseismology (SMS;
see reviews by Nakariakov & Verwichte 2005; Erdélyi
2006a, 2006b; Andries et al. 2009; Ruderman & Erdélyi 2009).
High-resolution observations of waves and oscillations in
magnetic structures, combined with theoretical MHD wave
modeling, enable us to determine solar atmospheric parameters
that are difficult to measure directly, such as the magnetic field
strength (Nakariakov & Ofman 2001; Erdélyi & Taroyan 2008).
The principles of SMS were first suggested by Uchida (1970),
Zajtsev & Stepanov (1975), and Roberts et al. (1984) in the
coronal context, and by Tandberg-Hanssen (1995) for promi-
nence application.

The study of systems similar to the one we will consider here
first began with wave propagation at a single interface, with
one side embedded within a magnetic field, where there is a
discontinuity in quantities such as density and temperature at

this interface (Roberts 1981a). Next, two interfaces were
considered, modeled by the “magnetic slab,” where the external
quantities to the waveguide are the same on the two sides. This
highly popular and applicable configuration was investigated in
both a nonmagnetic (Roberts 1981b) and a magnetic (Edwin &
Roberts 1982) external environment. More recent work has
been carried out considering the magnetic slab model, but now
the equilibrium quantities on one side of the slab are different
from those on the other side of the slab forming an asymmetric
ambient plasma environment. This, of course, affects the waves
that propagate, as, e.g., we see the different densities of the
external environments directly affects the amplitudes of the
perturbations, with the effect being dependent on which type of
wave is propagating. This asymmetric waveguide system was
studied with a nonmagnetic external region (Allcock &
Erdélyi 2017) and with a magnetic external region (Zsámberger
et al. 2018). Considering asymmetry is important when
examining waveguides that have local inhomogeneity in their
equilibrium quantities such as, e.g., the density. A few solar
applications of the asymmetric magnetic slab configuration
have been explored in, e.g., Allcock et al. (2019), where
observations of waves in chromospheric fibrils, modeled as
asymmetric slabs, are used to obtain estimates of the chromo-
spheric Alfvén speed. A further example where density,
magnetic, and flow asymmetry may be considered important
is that of MBP’s, as discussed in Zsámberger et al. (2018) and
Allcock et al. (2019).
The purpose of the current investigation is to build on

previous work on the magnetic slab embedded in an
asymmetric nonmagnetic environment (Allcock & Erdélyi
2017), by considering now standing waves. To do this, a
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line-tying boundary condition will be imposed, so that quantities
such as the component of the velocity perturbation that is
perpendicular to the slab walls, and the total pressure perturbation,
are zero at the end points of the slab. In doing this, we expect
reflection of the propagating waves from the ends of the slab
to cause interference, which leads to the formation of standing
waves. We also assume the thin slab and weak asymmetry
approximations in order to make analytical progress. In this
case, it will then be possible to analyze how the asymmetry and
the properties of the slab (e.g., the thin width compared to the
wavelength) affect both the eigenfrequencies and amplitudes of
the standing waves.

The waves supported by a magnetic slab embedded in an
asymmetric environment can be categorized into two types
based on the motion that is observed. The “quasi-sausage”
wave exhibits velocity perturbations at each interface in
opposite directions. The “quasi-kink” wave exhibits velocity
perturbations at each interface in the same direction. The quasi-
sausage and quasi-kink waves are analogous to the sausage
and kink waves introduced in the symmetric slab in Roberts
(1981b), with some altered properties due to the asymmetry
in the equilibrium parameters. The waves can be further
categorized into two types based on the spatial distribution of
the perturbation amplitudes. The term “surface modes” refers to
the oscillations where the maximum amplitude of oscillation
occurs on the boundaries of the slab, whereas the term “body
modes” refers to the oscillations where the maximum amplitude
of oscillation occurs somewhere inside the slab. This study will
focus on surface modes, and the study of body modes is not
included. The main reason for this is that our work is concerned
with how the asymmetry affects the standing waves, and body
modes are generally less sensitive to changes in the external
environment (Allcock & Erdélyi 2017). In Roberts (1981b),
the various propagating waves permitted in a magnetic slab are
further categorized into slow and fast modes. However, only the
slow modes can exist in the system we are considering, as
the two types of fast modes that may appear in the symmetric
slab of arbitrary size do not exist under the assumptions made
here. More precisely, the fast sausage surface wave that exists in
the symmetric system degenerates due to the external sound
speeds being different on the two sides of the slab, in the case of
the thin slab approximation (Allcock & Erdélyi 2017), and so a
fast quasi-sausage mode does not need to be considered. In
addition, the fast kink surface wave that can exist in the
symmetric study does not exist in the thin slab limit, as it
changes its nature from a surface mode to a body mode as we
reduce the size of the slab when compared to the wavelength
(Edwin & Roberts 1982). Introducing asymmetry will not enable
the appearance of the fast quasi-kink mode in this limit, and
therefore a fast quasi-kink mode does not need to be considered.

Joarder & Roberts (1992) conducted a study that included
standing waves due to periodic boundary conditions in the
context of prominences. However, the boundary conditions
used in this study were not consistent, as their Equations (26)
and (27) did not satisfy the assumption (Equation (25)) for
certain values of n, m. Additionally, there is limited analytical
detail provided regarding the standing waves. Our work
provides a much more detailed analysis of standing MHD
waves.

In what follows, first, we present the equilibrium of
the system along with the appropriate line-tying boundary

conditions in Section 2. Then, the equations governing the
disturbances inside the slab, along with the dispersion relation,
are derived in Section 3.1. This dispersion relation is formally
identical to the one derived in Allcock & Erdélyi (2017). The
thin slab and weak asymmetry assumptions are then applied to
simplify the dispersion relation in Section 3.2. Section 4 is
devoted to examining the eigenfrequencies of the standing
harmonic modes, by deriving an analytic expression for the
frequency and using this to investigate quantities that highlight
how the width of the slab and the asymmetry affect the
oscillations. A similar procedure is used in Section 5 to
examine the amplitudes of the standing harmonic modes.
Numerical solutions to the full dispersion relation are given in
Section 6, followed by a discussion of the results in Section 7.

2. The Equilibrium Magnetic Slab

Consider a three-dimensional, inviscid, static, ideal plasma
split into three regions in the x-direction. This equilibrium
configuration is shown in Figure 1. The middle region (or the
“slab”) has a width in the x-direction of 2x0, and a finite length
of L in the z-direction (and is unbounded in the y-direction).
There is also an equilibrium magnetic field given by eB x z( ) ˆ ,
where

= B x B x xif , 10 0( ) ∣ ∣ ( )

= >B x x x0 if , 20( ) ∣ ∣ ( )

where B0 is constant. The equilibrium kinetic plasma pressure,
temperature, and density are denoted pi, Ti, and ri, respectively,
for i=0 inside the slab, i=1 on the left of the slab, and i=2
on the right of the slab. Throughout this work, the effects of
gravity are ignored. As this work aims to analyze the effect of
asymmetry on standing waves, and we do not wish to examine
magnetoacoustic gravity waves, this simplification is justified.

2.1. Boundary Conditions

There are boundary conditions that must be applied at the
interfaces, x=±x0, and at the end points of the slab, z=0, L.
We must have pressure balance across the interfaces at

x=±x0 in order for the equilibrium to be stable:

m
= + =p p

B
p

2
, 31 0

0
2

0
2 ( )

Figure 1. Equilibrium state inside ( x x0∣ ∣ ) and outside of the magnetic slab
(x < −x0 and x > x0). The red lines indicate the magnetic field. The slab is
bounded by four dashed lines at x=−x0, x=x0, z=0, and z=L.
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where μ0 is the permeability of free space. Sound speeds are

denoted by
g
r

=c
p

i
i

i

for i=0, 1, 2, where γ is the adiabatic

index, which is taken to be constant across the entire system,
under the assumption that the plasma composition is the same
throughout. We will denote the Alfvén speed inside the slab by

r m
=v

B
A

0

0 0

. Equation (3) gives a useful relationship between

the external sound speeds and densities:

r r=c c . 41
2

1 2
2

2 ( )

The assumption of line-tying gives us boundary conditions
that we must apply at z=0, L. The conditions that are relevant
to our study are that the x-component of the velocity
perturbation, vx, and the z-component of the magnetic field
perturbation, bz, are zero at z=0, L. Additionally, by defining
the total pressure perturbation pT to be the sum of the kinetic
plasma pressure perturbation and the magnetic pressure
perturbation, we can impose that the total pressure perturbation
is also zero at z=0, L. Mathematically, these conditions
correspond to

= = = = = = = =
´ = = = =
v z v z L b z b z L

p z p z L
0 0, 0 0,

0 0.

5

x x z z

T T

( ) ( ) ( ) ( )
( ) ( )

( )

3. Derivation of the Dispersion Relation

In order to analytically examine both the frequencies and
amplitudes of eigenoscillations in the slab system given in
Figure 1, the linear governing equations for disturbances must
be derived. This, along with the boundary conditions
determined above (see Equation (5)), will then be used to
derive the dispersion relation, and then simplifications will be
made using the thin slab and weak asymmetry assumptions.

3.1. The General Dispersion Relation

In this section, the dispersion relation governing the linear
waves in a magnetic slab will be derived, before any additional
simplifications are made. A similar derivation is given to that in
Allcock & Erdélyi (2017); however, there are some important
differences due to the line-tying boundary condition.

3.1.1. The Ideal MHD Equations

To derive the linear governing equation for the disturbances
inside the slab, we must start with the ideal MHD equations:

r
m

 = - - ´ ´
v

B B
D

Dt
p

1
, 6

0

( ) ( )

r
r¶

¶
+ =v

t
. 0, 7( ) ( )

r
=

g

D

Dt

p
0, 8( )

⎛
⎝⎜

⎞
⎠⎟

 ¶
¶

= ´ ´ =
B

v B B
t

along with the constraint . 0 ,

9

( )[ ]

( )

where ρ, p, B, and v are the density, pressure, magnetic field,
and velocity, respectively.

Linearization about the basic state ρ0, p0, =B eB z0 0( ), and
=v 00 ( ), where ρ0, p0, B0, are constant, gives equations for the

perturbations ρ′, p′, =b b b b, ,x y z( ), and =v v v v, ,x y z( ), of the
density, pressure, magnetic field, and velocity, respectively. We
also assume vy=0, and all quantities are independent of y,
giving two coupled equations in vx and vz:

 ¶
¶

=
¶
¶

+v
v

t
c

x
v v. , 10x

A x

2

2 0
2 2 2( ) ( )

¶
¶

=
¶
¶

v
v

t
c

z
. . 11z

2

2 0
2 ( ) ( )

Equations (10) and (11) govern the disturbances inside the
slab, and to proceed further we must apply the boundary
conditions.

3.1.2. Boundary Conditions

To satisfy the line-tying boundary condition given by
Equation (5), we assume

= =
=

w w

w

- -

-

v v x e kz v v x e f z

p p x e kz

sin , ,

sin , 12
x x

i t
z z

i t

T T
i t

ˆ ( ) ( ) ˆ ( ) ( )
ˆ ( ) ( ) ( )

where f is an arbitrary function to be determined. When the line-
tying boundary conditions are imposed, meaning vx(z= 0)=
vx(z= L)=0, we obtain a condition on k:

p
= Î +k

n

L
n, , 13( )

where k=0 is excluded to ensure we consider nontrivial
solutions. Using Equations (10)–(12), we obtain that f (z)=
Q cos(kz), for an arbitrary constant Q. The constant Q can be
absorbed into, say, v xẑ ( ), meaning we can take f (z)=cos(kz).

3.1.3. The Governing Equations

Substituting the expressions for vx and vz given by
Equation (12) into Equations (10) and (11) gives

w w
w

- =

=
- -
- +

=
+

d v

dx
m v m

k c k v

k c c v
c

c v

c v

0, where

, . 14

x
x

A

T A
T

A

A

2

2 0
2

0
2

2
0
2 2 2 2 2

2 2 2
0
2 2

2 0
2 2

0
2 2

ˆ ˆ

( )( )
( )( )

( )

This governing ordinary differential equation is the same as
Equation (11) in Allcock & Erdélyi (2017), and Equation (22)
in Roberts (1981a), with l=0.
Equation (14) is valid inside the slab, whereas we see that

outside the slab we have

w
- = = -

=

d v

dx
m v m k

c
i

0, where ,

for 1, 2. 15

x
i x i

i

2

2
2 2 2

2

2

ˆ ˆ

( )

3.1.4. The Dispersion Relation

Using Equations (14) and (15) it is straightforward to write
down the solution for vx̂ for all x. Using this, it is possible to
calculate the total pressure, pT, and apply the continuity of pT
and vx across both x=±x0. In doing so, it is possible to derive
the dispersion relation for waves in an asymmetric slab
embedded in a nonmagnetic environment (with the details
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given in Allcock & Erdélyi 2017):

w
r
r

r
r

w

w w
r
r

r
r

+ -

- - +

´ + =

m m m k v

m k v m m

m x m x

1

2

tanh coth 0. 16

A

A

4
0
2 0

1
1

0

2
2

2 2 2 2

0
2 2 2 2 0

1
1

0

2
2

0 0 0 0

( )

( )

( ( ) ( ) ( )

⎛
⎝⎜

⎞
⎠⎟

If the asymmetry is removed (taking r r=1 2), after some
algebra, it is possible to recover Equation (10) in Roberts
(1981b), the dispersion relation for MHD waves in the magnetic
slab embedded in a nonmagnetic symmetric environment.

3.2. Reduction in the Case of Weak Asymmetry and Thin Slab
Approximations

This section will be focused on simplifying the dispersion
relation using the thin slab and weak asymmetry assumptions.
In the following, we will take >m 00

2 , to examine the surface
modes of the system. We introduce the notation

e r r d

d
r r

r

= = +

=
-

>

x

L
, and 1 ,

where 0, 17

0
2 1

2 1

1

( )

( )

meaning we have taken ρ1<ρ2 (without loss of generality).

3.2.1. The Weak Asymmetry Approximation

The weak asymmetry assumption corresponds to δ=1, and
we can use this to simplify Equation (16). The dispersion
relation to leading order in δ is then

w
r
r

r
r

w- + »k v m m m m x2 tanh
coth

, 18A
2 2 2 0

1
1

0

2
2

2
0 0 0( )( ) ( ) ( )

⎛
⎝⎜

⎞
⎠⎟

where δ is not explicitly written; however, it is included within
both ρ2 and m2. Explicitly using δ (recall Equations (4) and
(15)) gives

w
r
r

d
w

w

w

- - +
-

»

k v m
k c

m m x

2 1
2

2 tanh
coth

. 19

A
2 2 2 0

1
1

2

2
1
2 2

2
0 0 0( )

( )
( )

( ) ( )

⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟

Equation (18) is the same as that given in Equation (22) in
Allcock & Erdélyi (2017). If we again compare Equation (18)
to its counterpart for the slab in the symmetric environment, we
see that the “tanh” term would correspond to sausage modes
and the “coth” term would correspond to kink modes
(Roberts 1981b). The terminology introduced in Allcock &
Erdélyi (2017) will be employed here. More precisely, in
Equation (18) the “tanh” term corresponds to quasi-sausage
and the “coth” term to quasi-kink modes. The quasi-sausage
and quasi-kink modes exhibit similar behavior to the usual
sausage and kink modes; however, there will be important
differences that enable us to carry out solar magnetoseismology
diagnostics of an asymmetric waveguide system. This includes
the amplitudes of oscillation, which will be different on each
side of the slab (more of these differences are discussed in
Allcock & Erdélyi 2017). Although this approach allows us to

isolate the quasi-sausage and quasi-kink modes, not much
analytical progress can be made without further simplification.

3.2.2. The Thin Slab Approximation

The thin slab approximation corresponds to ε=1, and we
can use this to simplify the dispersion relation Equation (16),
by keeping only the leading terms in ε. Due to the line-tying
boundary condition and Equation (13), kx0=nπε, meaning
that kx0 is also a small quantity, and can be treated in the same
way as ε. The dispersion relation then becomes

w e e
r
r

r
r

w

w w
r
r

r
r

+ -

- - + »

m L m L m m k v

m k v m m
1

2
0. 20

A

A

4
0
3

0
0

1
1

0

2
2

2 2 2 2

0
2 2 2 2 0

1
1

0

2
2

( )

( ) ( )
⎛
⎝⎜

⎞
⎠⎟

Numerical solutions given in Allcock & Erdélyi (2017)
suggest that there is a slow quasi-sausage surface wave
such that w » k cT

2 2 2, and so by assuming the form w »2

ae-k c 1T
2 2 ( ), we see that, the angular frequency of the
standing wave harmonics to leading order in ε is

w
p

e
p r

r

d
d d

» -
+

´
+

+ - + - +

n c

L

n c c

c v

c c c c

1
2

1

1 1
, 21

n
T

A

T T

2
2 2 2

2
0
4

1 1

0 0
2 2 2

1
2 2

1
2 21

2
1
2

( )

( )( ) ( ( )
( )

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

where we have used
p

=k
n

L
.

Numerical solutions given in Allcock & Erdélyi (2017) also
suggest that there is a slow quasi-kink surface wave such that
w  02 , as e  0, and so by assuming the form w be»2 , we
see that, the angular frequency of the standing wave harmonics
to leading order in ε is

w e
r p
r d

»
+

n v

L 1 2
, 22n

A2 0
3 3 2

2
1( )

( )

where again we have used
p

=k
n

L
.

Plots of the phase speed (ωn/k) of the fundamental mode and
the first harmonic, for both a range of ε and a range of δ, are
given in Figures 2–5. The values for the parameters used in
these plots (e.g., the sound speed) are chosen simply to
illustrate the dependence on ε and δ. The values used would be
different in the context of a prominence. In particular, the
external sound speeds would be higher than the internal sound
speed, and the internal density would be at least 10 times
higher than the external densities (Priest 2014, p.57). However,
these changes do not have a dominant effect on the general
behavior of slow surface modes, which is what we focus on.
While the corresponding pairs of wavenumber and phase speed
values would be altered under the conditions frequently found
in prominences, the existence of the slow surface modes is
unchanged. Moreover, the general shape of their dispersion
curves remains qualitatively the same, too: in the long
wavelength limit, that the phase speed of the slow surface
quasi-sausage mode still approaches the tube speed, while that
of the quasi-kink mode still tends to zero. In the short
wavelength (large ε) limit, the exact solutions for the two
modes still tend to two distinct phase speed values due to the
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presence of asymmetry, while the approximate solutions still
intersect one another (which will be further discussed later).

In these plots, we have the restriction that ε be small (by
assumption), but we have taken a large range of δ. Some
combinations of ε and δ produce an expression with ω2<0 ,
resulting in cutoffs in the plots for those values. Numerical
solutions in Allcock & Erdélyi (2017) show that the
eigenfrequencies, when plotted against the width of the slab,
should not intersect. However, Figure 4 shows an intersection
between ε=0.05 and ε=0.1 (for δ= 1), suggesting that
there is a restriction on the size of ε (valid ranges of ε and δ,

under certain limits, will be discussed in Section 6). In
accordance with Equation (21), Figure 4 also shows that, for a
fixed value of δ, the phase speeds of the quasi-sausage modes
decrease when the slab width is increased; while that of quasi-
kink modes increases (as expected from Equation (22)). An
interesting consequence of the form of these equations is,
however, that due to the cubic dependence on the harmonic
mode number (n), the phase speeds of the first harmonic of
both kinds of modes change faster than those of the
fundamental modes, resulting in the intersection occurring at
thinner slab widths.
Similarly, Figure 5 illustrates the behavior of the eigenmodes

for a fixed slab width. It is clear from this diagram that the
phase speeds of the quasi-kink modes are less sensitive to
differences in the asymmetry parameter than that of the quasi-
sausage modes. This is especially noticeable for the first
harmonic of the quasi-sausage mode, whose phase speed drops
down to zero within the small range of δ plotted here. Lastly,
Figures 2 and 3 provide a generalization of the phase speeds for
various combinations of ε and δ.
The increased sensitivity of the first harmonics to changes in

the measure of asymmetry or the width of the slab, compared to
the fundamental modes, is confirmed for all these possible
choices of parameters.

3.2.3. Ordering of ε and δ

In order to proceed further analytically, it will be assumed
that we have both the thin slab and weak asymmetry
approximations in place. Mathematically, this corresponds to
ε=1 and δ=1. This will mean that the leading order terms
in both ε and δ can be identified. Let us also assume that the

Figure 2. Phase speed for the fundamental mode (n = 1) as a function of ε
ranging from 0 to 0.4, and δ ranging from 0 to 2. The blue surface is the quasi-
sausage wave (given by Equation (21)), while the red surface is the quasi-kink
waves (given by Equation (22)). The purple plane represents the value of cT,
and the green line illustrates the maximum plotted value, ω1/k≈2.89, by
joining it to the vertical axis. The relevant values used for this plot are
c0=5.00, vA=3.16, cT=2.67, c1=4.71, and ρ1/ρ0=1.50. Rotating
animations of the 3D plot are available online.

(An animation of this figure is available.)

Figure 3. Same as in Figure 2 but for the first harmonic (n=2), and the
maximum plotted value is ω2/k≈4.09.

(An animation of this figure is available.)

Figure 4. Phase speed for the fundamental mode (n = 1) and the first harmonic
(n = 2) of the quasi-sausage waves (given by Equation (21)) and the quasi-kink
waves (given by Equation (22)), as a function of ε ranging from 0 to 0.4, with
δ=1 fixed. The other relevant quantities are given in the figure. The horizontal
blue line represents the value of cT.

Figure 5. Same as in Figure 4, but the phase speed is plotted as a function of δ
ranging from 0 to 2, with ε=0.1 fixed.
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higher the order in the small quantities ε and δ is, the smaller
the size of the term becomes. More precisely, take e d, 
e ed d, ,2 2. In the following, we use Equation (18) to derive the
frequencies and amplitudes of the standing modes analytically.
In the derivation of Equation (18) we have ignored terms
that contain a factor of δ2, and are considered negligible.
All subsequent calculations that use Equation (18) must therefore
not include terms that would be affected by keeping these small
terms. After the desired expressions are calculated, the additional
ordering d e will be taken simply to order the terms by size,
and some visualization will then be presented showing our results
for a range of ε and δ. Note that in the plots, some regions better
approximate the solutions to the full dispersion relation than
others, due to the relative sizes chosen for ε and δ.

4. Frequencies of the Standing Harmonic Modes

The focus in this section is to derive the eigenfrequencies of
the system analytically, and use this to determine quantities that
highlight how the asymmetry will affect the oscillations. We
study the frequency as it is a popular quantity to measure, and
we aim to identify how sensitive the eigenfrequencies are to
changes in the external environment.

Equation (18) (the simplified dispersion relation) will be
examined separately for the quasi-sausage and quasi-kink
modes. As well as calculating the eigenfrequencies, we will
determine the ratio of the first harmonic to the fundamental
mode, and the relative frequency difference due to the
asymmetry. All three of these quantities can be compared with
the corresponding counterpart where the system is symmetric,
and this will highlight how asymmetry affects the oscillation.
In particular, the frequency ratio is a measurable quantity so it
would be suggested to compare the theory developed here with
observational data once the required resolution is available. The
relative difference due to asymmetry must be a small quantity,
as this quantity would reduce to zero in the case of symmetry.

Another reason for calculating the relative frequency
difference, is to compare the result we arrive at to the result
for the relative amplitude difference due to asymmetry (in
Section 5). By considering asymmetry as a perturbation to the
symmetric slab model, we would expect to see that the relative
frequency difference due to asymmetry (eigenfrequencies) has
a higher order sensitivity to the perturbation than the relative
amplitude difference due to asymmetry (eigenfunctions; see the
Appendix).

4.1. Quasi-sausage Modes

4.1.1. Eigenfrequencies in the Thin Slab and Weak Asymmetry
Approximations

Using Equation (18) along with the limit ε=1, the
dispersion relation for the quasi-sausage modes becomes

w
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The most simple solution of Equation (23) is ω=kvA, but
we will ignore this case. This solution would mean =m 00

2 ,
and using this in Equation (14) along with the requirement that
the solution is evanescent, would give a trivial solution. Using

Equation (14), canceling a factor of w-k vA
2 2 2( ) and substitut-

ing in e =
x

L
0 leads to
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If we introduce the notation

r

r
P =

- +
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c c c v
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then there is a solution of Equation (24) given by the following

(where we recall
p

=k
n

L
due to the line-tying condition

(Equation (13))):
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Equation (26) gives the frequency of the slow quasi-sausage
mode in the case of the thin slab and weak asymmetry. This
expression gives the eigenfrequency as approximately k cT

2 2 as
expected, with terms due to the approximations. The leading
correction term is of order ε, and there is no factor of δ until
second order in the small quantities.
An illustration of both the fundamental mode and the first

harmonic for the standing quasi-sausage wave solution is given
in Figures 6 and 7. A diagram of the phase speed of the
fundamental mode and the first harmonic, for both a range of ε
and a range of δ, are given in Figures 8 and 9. The quasi-
sausage and quasi-kink modes are plotted in the same figure.
Figure 8 shows the quadratic dependence of the phase speed

on the parameter ε. It is also evident that as ε is taken smaller
and smaller, the quasi-sausage and quasi-kink solutions are
tending toward roughly the tube speed and zero respectively.
As expected, Figure 9 shows that the phase speed does not
change much as δ is changed. This is a consequence of the
ranges chosen, but also a consequence of δ not appearing until
second order in the small quantities.

Figure 6. Illustration of a fundamental standing quasi-sausage mode oscillation
in the asymmetric magnetic slab.
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4.1.2. Frequency Ratio of the First Harmonic to the
Fundamental Mode

We can use Equation (26) to write the frequency ratio of the
first harmonic to the fundamental mode as
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Plots of the frequency ratio of the first harmonic to the
fundamental mode, for both a range of ε and a range of δ, are

given in Figures 10 and 11. The quasi-sausage and quasi-kink
modes are plotted in the same figure. Figure 10 shows that
within this range of ε, the quasi-kink frequency ratio has a
more sensitive dependence on ε than the quasi-sausage
frequency ratio. Figure 11 illustrates that the quasi-kink mode
has no dependence on δ up to the order of terms we have
included, whereas the quasi-sausage mode has a linear
relationship with δ.

4.1.3. Relative Frequency Difference Due To Asymmetry

We introduce ωn,a and ωn,s which correspond to the
eigenfrequencies of the mode n in the asymmetric and
symmetric cases, respectively. Using Equation (26) gives us
wn a,

2 directly, and substituting in δ=0 gives wn s,
2 . Using Taylor

expansions, we arrive at an equation for the relative change in
frequency due to the asymmetry, which, for the quasi-sausage
waves, is denoted wd S, :

w w
w
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A plot of the frequency difference due to asymmetry, for
both a range of ε and a range of δ, is given in Figures 12 and
13. The quasi-sausage and quasi-kink modes are plotted in the
same figure. Figure 12 shows that the frequency difference for
the quasi-kink modes does not depend on ε, whereas the quasi-
sausage modes show a linear dependence on ε, with an increase
in the slope as we move up through the modes (increasing n).
Figure 13 shows that both the quasi-sausage and quasi-kink
modes have a linear dependence on δ. For the quasi-sausage
modes, we again see that as we move up through the modes,

Figure 7. Same as Figure 6 but for the first harmonic.

Figure 8. Phase speed for the fundamental mode (n = 1) and the first harmonic
(n = 2) of the quasi-sausage waves (given by Equation (26)) and the quasi-kink
waves (given by Equation (31)), as a function of ε ranging from 0.05 to 0.15,
with δ=0.03 fixed. The other relevant quantities are given in the figure, and
the horizontal blue line represents the value of cT.

Figure 9. Same as in Figure 8, but the phase speed is plotted as a function of δ
ranging from 0.015 to 0.1, with ε=0.12 fixed.

Figure 10. Ratio of the frequencies of the first harmonic to the fundamental
mode of the quasi-sausage waves (given by Equation (27)) and the quasi-kink
waves (given by Equation (32)), as a function of ε ranging from 0.05 to 0.15,
with δ=0.03 fixed. The other relevant quantities are given in the figure.

Figure 11. Same as in Figure 10, but the ratio is plotted as a function of δ
ranging from 0.015 to 0.1, with ε=0.12 fixed.
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the slope of the curves is increased. Conversely, the frequency
difference for the quasi-kink modes shows the same linear
dependence on δ, regardless of which standing harmonic
we take.

4.2. Quasi-kink Modes

4.2.1. Eigenfrequencies in the Thin Slab and Weak Asymmetry
Approximations

Using Equation (18) along with the limit ε=1, the
dispersion relation for the quasi-kink modes is

w
r
r
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r
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Substituting in e =
x

L
0 and rearranging we arrive at
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There is a solution to Equation (30) given by (where we recall
p

=k
n

L
due to the line-tying condition (Equation (13))):
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Equation (31) gives the frequency of the slow quasi-kink
mode in the limit of the thin slab and weak asymmetry. This
eigenfrequency tends toward zero as the slab becomes more
thin, as the entire expression contains a factor of ε. Note that

there is no factor of δ up to second order in the small quantities.
An illustration of both the fundamental mode and the first
harmonic for the standing quasi-kink wave is given in
Figures 14 and 15. Plots of the phase speeds corresponding
to the frequencies given in Equation (31) are provided in
Figures 8 and 9, with a small discussion provided where they
were introduced in Section 4.1

4.2.2. Frequency Ratio of the First Harmonic to the
Fundamental Mode

We can use Equation (31) to write the frequency ratio of the
first harmonic to the fundamental mode as

w
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Only first order small terms have been included, as to keep
second order small terms here, we would have to keep higher
order terms in wn

2. Plots of the frequency ratio are given in
Figures 10 and 11, with a small discussion provided where they
were introduced in Section 4.1

4.2.3. Relative Frequency Difference Due To Asymmetry

Again, we introduce ωn,a and ωn,s which correspond to the
frequency in the asymmetric and symmetric cases, respectively.
Using Equation (31) gives us wn a,

2 directly, and substituting in
δ=0 gives wn s,

2 . Using Taylor expansions, we arrive at an
equation highlighting the relative change in frequency due to

Figure 12. Frequency difference due to asymmetry of the fundamental mode
(n = 1) and the first harmonic (n = 2) quasi-sausage waves (given by
Equation (28)) and the quasi-kink waves (given by Equation (33)), as a
function of ε ranging from 0.05 to 0.15, with δ=0.03 fixed. The other relevant
quantities are given in the figure. The frequency difference due to asymmetry
for the quasi-kink modes does not depend on n, giving only one curve, whereas
n=1, 2 is plotted for the quasi-sausage modes.

Figure 13. Same as in Figure 12, but the frequency difference is plotted as a
function of δ ranging from 0.015 to 0.1, with ε=0.12 fixed.

Figure 14. Illustration of a fundamental standing quasi-kink mode oscillation
in the asymmetric magnetic slab.

Figure 15. Same as Figure 14 but for the first harmonic.
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the asymmetry, which, for the quasi-kink waves, is denoted
wd K, :

w w
w

d
=

-
»wd

4
. 33K

n a n s

n s
,

, ,

,
( )

We only keep the first order small terms here for the same
reasons as applied to Equation (32). Plots of the frequency
difference due to asymmetry are given in Figures 12 and 13,
with a small discussion provided where they were introduced in
Section 4.1

5. Amplitudes of the Standing Harmonic Modes

The amplitude of the eigenoscillations can be examined to
give useful information about the standing harmonic modes,
and how the asymmetry and the small width of the slab affect
them. The following quantities will be considered. First, the
relative difference in amplitude between the two sides of the
slab will be calculated by taking the difference in amplitude
between one side of the slab and the other, and then dividing
this by the amplitude on one side in order to give us a
dimensionless quantity. We denote this quantity by RS,1 for the
quasi-sausage and RK,1 for the quasi-kink modes. We introduce
these quantities as they are expected to reduce to zero in the
case of a symmetric slab, so it will be useful to examine how
they depend on δ. In addition to this, the amplitudes of the
oscillations are measurable in theory, so the possibility of using
SMS techniques to infer background quantities gives us
motivation to study them. Second, the relative amplitude
difference compared to the symmetric slab will be calculated
by taking the difference between the maximum amplitude of
the oscillation in the asymmetric case and the symmetric case,
then dividing by the symmetric case. We denote this quantity
by RS,2 for the quasi-sausage and RK,2 for the quasi-kink
modes, respectively. This second quantity is introduced for a
similar reason as the first quantity was. In addition to this, it can
be used to compare with the relative frequency difference due
to asymmetry as described in the introduction to Section 4. In
this section, the relevant quantities are calculated to leading
order in the small quantities ε and δ.

We introduce the notation vx a,ˆ for the velocity perturbation in
the asymmetric case, and vx s,ˆ for the velocity perturbation in the
symmetric case. We will use x w=x iv xx x

ˆ ( ) ˆ ( ) , which gives the

amplitude of displacement perturbation when we have a static
background equilibrium, and we define xx a,

ˆ and xx s,
ˆ analo-

gously to the velocity perturbations.

5.1. Quasi-sausage Modes

5.1.1. Relative Amplitude Difference between the Two Sides of
the Slab

For the quasi-sausage modes, v xx 0ˆ ( ) and -v xx 0ˆ ( ) (as well as
x xx 0
ˆ ( ) and x -xx 0

ˆ ( )) will have opposite signs, so the quantity
we are interested in is
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It is then possible to derive the following expression:
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Using Taylor expansions and the eigenfrequency given by

Equation (26), we find
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The relative amplitude difference between the two sides of
the slab is shown as a function of ε and δ in Figures 16 and 17.
The quasi-sausage and quasi-kink modes are plotted in the
same figure. Figure 16 shows that the quasi-sausage amplitude
difference between the two sides of the slab does not depend on
ε, while the quasi-kink amplitude difference between the two
sides of the slab displays a quadratic curve. On the other hand,
Figure 17 shows that for both the quasi-sausage and quasi-kink
modes, the amplitude difference between the two sides of the
slab has a linear relationship with δ
Rearranging Equation (36), we can obtain an approximation

for the Alfvén speed inside the slab as

d
d d
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Expression (37) is useful, as the Alfvén speed is directly
related to the magnetic field strength through the relation

r m
=v

B
A

0

0 0

, and if we are able to obtain observed values of

the quantity RS,1, this result can then be used to determine an
approximate value of the magnetic field strength B0.

Figure 16. Amplitude difference between the two sides of the slab for
the quasi-sausage waves (given by Equation (36)) and both the fundamental
mode (n = 1) and the first harmonic (n = 2) quasi-kink waves (given by
Equation (42)), as a function of ε ranging from 0.05 to 0.15, with δ=0.03
fixed. The other relevant quantities are given in the figure. The amplitude
difference between the two sides of the slab for the quasi-sausage modes does
not depend on n, giving only one curve, whereas n=1,2 is plotted for the
quasi-kink modes.

Figure 17. Same as in Figure 16, but the amplitude difference is plotted as a
function of δ ranging from 0.015 to 0.1, with ε=0.12 fixed.
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5.1.2. Relative Amplitude Difference Compared to the Symmetric Slab

The maximum amplitude for the quasi-sausage mode occurs
on the side of the slab with smaller external density (Allcock &
Erdélyi 2017), and as ρ1<ρ2, this is at x=−x0 (as shown in
Figures 6 and 7). We can then write down an equation for RS,2:
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=
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It is then possible to derive the following expression:
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A plot of the relative amplitude difference compared to the
symmetric slab is not given, since, for both the quasi-sausage and
quasi-kink, these are qualitatively the same as the relative
amplitude difference between the two sides of the slab, with the
only difference being a factor of two.

5.2. Quasi-kink Modes

5.2.1. Relative Amplitude Difference between the Two Sides of
the Slab

For the quasi-kink modes, v xx 0ˆ ( ) and -v xx 0ˆ ( ) (as well as
x xx 0
ˆ ( ) and x -xx 0

ˆ ( )) will have the same sign, so the quantity we
are interested in is
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It is then possible to derive the following expression:
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Using Taylor expansions, recalling
p

=k
n

L
and e =

x

L
0 and

using the frequency given by Equation (31), we find

de p»R n . 42K,1
2 2 2 ( )

Plots of the relative amplitude difference between the two
sides of the slab are given in Figures 16 and 17, with a small
discussion provided where they were introduced in Section 5.1

5.2.2. Relative Amplitude Difference Compared to the Symmetric Slab

The maximum amplitude for the quasi-kink mode occurs on
the side of the slab with larger external density (Allcock &
Erdélyi 2017), and as ρ1<ρ2, this is at x=x0 (as shown in
Figures 14 and 15). We can then write down an equation for
RK,2:
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It is then possible to derive the following expression:
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A plot of the relative amplitude difference compared to the
symmetric slab is not given due to the similarities with
Figures 16 and 17, as explained in Section 5.1.

6. Numerical Solutions of the Dispersion Relation

In this section, numerical methods are used to solve the full
dispersion relation for standing waves in an asymmetric
magnetic slab, given by Equation (16). These numerical
solutions are then plotted on the same axes as plots created
using the analytical solutions to the approximate dispersion
relation for a thin slab, given by Equation (20). It will then be
possible to demonstrate what values of the small parameter ε
can be considered small enough for the analytical solutions to
give accurate results, and the ranges of ε and δ used to illustrate
results in Section 4 will be justified.
The phase speeds of the quasi-sausage and quasi-kink

fundamental modes are plotted in Figures 18 and 19,
respectively. For the quasi-sausage mode, the decreasing of
either δ or ε decreases the size of the gap between the two
surfaces. Consequently, if we take δ to be small, we are
justified in taking larger ε values than if we take δ large. More
precisely, if we aim to satisfy δ=ε (as we used for the
illustrations in Section 4), we are justified in taking a
combination of ε and δ where 0.01<δ<0.1 and ε is as
large as ε≈0.19, as then the maximum percentage difference
between the values of the two surfaces is approximately 20%
(to calculate this, we take the difference between the values on
the two surfaces, and divide by the value on the larger surface).
For the quasi-kink mode, we see that decreasing δ increases the
size of the gap between the two surfaces, whereas decreasing ε
decreases the size of the gap between the two surfaces. If we
again aim to satisfy δ=ε, then taking the combination of ε
and δ where 0.01<δ<0.1 and ε as large as ε≈0.19 is
justified, as then the maximum percentage difference between
the values of the two surfaces is approximately 20%. Therefore
taking the ranges of ε and δ used in Section 4 for the
illustrations (0.01< δ< 0.1 with ε= 0.12 and 0.05< ε< 0.15
with δ= 0.03) are justified, and our analytical results provide

Figure 18. Phase speed for the fundamental mode (n = 1) of the quasi-sausage
waves as a function of ε ranging from 0 to 0.4, and δ ranging from 0 to 2. The
lighter blue colored (bottom) surface is plotted by using Equation (21), while
the darker blue colored (top) surface is for using numerical methods to solve
the asymmetric dispersion relation given by Equation (16). The relevant values
used for this plot are c0=5.00, vA=3.16, cT=2.67, c1=4.71, and ρ1/
ρ0=1.50.

(An animation of this figure is available.)
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good accuracy for these ranges. It should be noted that this
calculation is only an example using the fundamental mode
(n= 1). If the first harmonic (n= 2) were to be analyzed in a
similar way, the percentage difference would be larger.

7. Discussion

Building on the symmetric slab model introduced by Roberts
(1981b), along with the asymmetric slab model described by
Allcock & Erdélyi (2017), standing modes in the asymmetric
slab model have been studied, and their properties analyzed, in
order to understand how the asymmetry affects both the
amplitudes and the frequencies. In addition to this, by taking
the thin slab approximation, it was possible to analyze how the
width of the slab affects the standing harmonic modes. The
results derived, first in the general case of a thin slab, with
arbitrary asymmetry, suggest the frequency has a complex
dependence on δ (given by Equations (21) and (22)).

In addition to this, from Figures 2 and 3, we see that the
qualitative nature of the phase speed is very similar for each
fixed ε, and each fixed δ.

Taking the weak asymmetry approximation enables us to
examine analytically how the standing modes are affected by
asymmetry (δ) to leading order. Sections 4 and 5 provide a
mathematical description of this dependence. From both the
Equations (26) and (31) and plots (Figures 8 and 9) provided, it
is evident that under the approximations of a thin slab and weak
asymmetry, the frequencies and phase speeds of the standing
harmonic modes are much more sensitive to changes in the
width of the slab, than to changes in the asymmetry of the
system.

In the limit as the slab becomes infinitesimally small, we
expect the slab to behave like a string with fixed ends, and then
the frequency ratio should approach a value of ω2/ω1=2. This
is what we observe for the quasi-sausage mode, taking e  0
in Equation (27). For the quasi-kink mode, taking e  0 in
Equation (32), we see that w w  2 22 1 . This is a direct
consequence of the vanishing frequency for the quasi-kink
mode as the width of the slab is reduced to zero. More
precisely, as we take the limit e  0, we see w  0n , and we
have no wave and hence no meaningful frequency ratio.

The frequency difference due to asymmetry, and the amplitude
difference compared to the symmetric slab, were introduced as a
way of making a comparison between the eigenfrequencies and
the eigenfunctions of the system. By considering the asymmetry

as a perturbation to the symmetric slab model, we expect the
frequency difference due to asymmetry (eigenfrequencies) to
have a higher order sensitivity when compared with the amplitude
difference due to asymmetry (eigenfunctions; more details are
given in the Appendix). For the quasi-sausage modes, using
Equations (28) and (39) we see that this does occur as expected,
with the frequency difference due to asymmetry proportional to
εδ, and the amplitude difference due to asymmetry proportional to
δ. However, the quasi-kink mode does not seem to obey this rule,
as Equations (33) and (44) show that the frequency difference due
to asymmetry is proportional to δ, and the amplitude difference
due to asymmetry is proportional to ε2δ. This is a consequence of
the factor of ε that is present in the frequency of the standing
harmonic modes, meaning that there is no constant term and we
cannot expect this result for the quasi-kink modes.
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Appendix
The Rayleigh–Ritz Technique

Let x =i, 0, 1, 2 ,...i be the eigenvectors of the ideal linear
MHD force operator, xF i{ }, which therefore satisfy the
equation x xr w= -F i ii0

2{ } . The eigenvalues w =i, 0, 1,i
2

2 ,... are ordered such that w w w< < ...0 1 2 i.e., ω0 could be
the sausage or kink eigenfrequency of a symmetric slab MHD
waveguide.
If the eigenvector x0 is known, the corresponding eigen-

frequency can be determined from the kinetic energy, K0 and
the change in potential energy, δ W0 of the system that results
from the displacement x0 as

x x
x x
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0 0 0 0 0 0

0 0 0 0 0 0
2

0 0 0

* *

* * *

{ } ·

{ } · { } { } ( )

and * denotes the complex conjugate (see also Equations
(22.7), (22.21), and (25.12)–(25.16) in Schnack 2009).
Let us now perturb x0, by introducing a (weakly) asymmetric

environment in the slab MHD waveguide resulting in a
perturbed eigenvector x. Then, we can write that

x x dx= + , 470 ( )

where dx is caused by the linear perturbation. By definition, the
perturbation dx is orthogonal to (i.e., has no projection along)

Figure 19. Same as in Figure 18 but for the quasi-kink wave. The light red
(top) surface is created by using Equation (22), while the darker red (bottom)
surface is created using numerical methods to solve the asymmetric dispersion
relation given by Equation (16).

(An animation of this figure is available.)
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the unperturbed eigenvector x0 (it contains all the parts of x that
differ from x0), so that we can write

åx x x= +
=

¥

a , 48i
i

i0
1

( )

where i=0 has been excluded from the summation. We now
want to estimate the perturbed eigenvalue, taking into account
the energy contribution of the added asymmetry:

x dx x dx
x dx x dx

w
d

=
+ +

+ +

W

K

,

,
. 492 0 0

0 0

* *

* *

{ }
{ }

( )

We expand the new kinetic and potential energies corresp-
onding to the perturbed state as

x dx x dx x x x dx
dx x dx dx

d d d
d d
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+ +

50

W W W

W W

, , ,

, , ,
0 0 0 0 0

0

* * * *

* *

( )

{ } { } { }
{ } { }

and

x dx x dx x x x dx
dx x dx dx

+ + = +

+ +

K K K

K K

, , ,

, , .

51

0 0 0 0 0

0

* * * *

* *

{ } { } { }
{ } { }

( )
The second and third terms on the right-hand-side of

Equation (50) are equal to one another due to the self-adjoint
nature of F, and equal to zero because of the orthogonality of
the eigenvectors. Similar considerations can be made for
Equation (51). Applying the definitions from Equations (46) to
the rest of the terms, we obtain
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where, by Equations (46), K0=ρ0/2.
Substituting these results into Equation (49), the denomi-

nator can be expanded if the perturbation to the system due to
asymmetry (dx) is small (for more details of this derivation, see
Chapter 27 of Schnack 2009). Then, an estimate of the
eigenvalue ω2 as a result of linear perturbation is

åw w w w~ + -
=

¥

a , 53
i

i i
2

0
2

1

2 2
0
2∣ ∣ ( ) ( )

where w0
2 is the actual eigenvalue (i.e., sausage or kink

frequency) of the unperturbed (symmetric) system associated
with x0. Here, the summation is the contribution to the
eigenvalue of the unperturbed (symmetric) waveguide system
caused by the introduction of asymmetry. The following
properties can be observed:

(1) Even though the perturbation dx in our estimate of the
eigenvector is O(ai) (see Equation (48)), the perturbation in the

estimate of the eigenvalue is < <O a O ai i
2(∣ ∣ ) ( ). Therefore, the

perturbation in the eigenvalue caused by the introduced
asymmetry is much smaller than the perturbation in the
eigenvector. As an example, say, a 10% linear perturbation
introduced by asymmetry in the eigenvector x0 results in only a
1% perturbation in the estimate of the waveguides eigenfre-
quency ω2.
(2) It is worth noting that the introduction of the waveguide

asymmetry cannot result in an instability given that w w< i0
2 2.
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