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Abstract
In a previous paper we discussed corrections to Hawking radiation from a 
collapsing shell due to quantum fluctuations of the shell and the resulting 
horizon. For the computation of the quantum corrections we used several 
approximations. In this paper we take into account effects that were neglected 
in the previous one. We find important corrections including non-thermal 
contributions to the radiation at high frequencies and a frequency dependent 
time scale at which the emission of thermal radiation of frequency ω  cuts off. 
Such scale tends to infinity in the limit of a classical shell. The fact that one 
has almost from the outset non-thermal radiation has significant implications 
for the information paradox. In particular the amount of non-thermality is 
considerably larger than what we had estimated before. A naive estimate of 
the evaporation time suggests a faster evaporation than in the usual Hawking 
analysis.

Keywords: shells, Hawking radiation, non thermal, black holes

1.  Introduction

Hawking radiation has been studied for a collapsing shell going all the way back to Boulware 
in 1976 [1]. Most studies have treated the shell as a classical collapsing object. In a previous 
paper [2] we have studied the Hawking radiation produced by a collapsing quantum shell. We 
did it in the geometric optics approximation. In it, one considers ingoing and outgoing light 
rays and how they relate to each other via the parameters of the shell, namely its ADM mass 
and the position at past infinity from which the shell is launched. When the ADM mass and the 
position are turned into quantum operators acting on a Hilbert space for the geometry created 

R Eyheralde et al

Quantum fluctuating geometries and the information paradox II

Printed in the UK

065001

CQGRDG

© 2020 IOP Publishing Ltd

37

Class. Quantum Grav.

CQG

1361-6382

10.1088/1361-6382/ab6e89

Paper

6

1

20

Classical and Quantum Gravity

IOP

2020

3 Author to whom any correspondence should be addressed.

1361-6382/ 20 /065001+20$33.00  © 2020 IOP Publishing Ltd  Printed in the UK

Class. Quantum Grav. 37 (2020) 065001 (20pp) https://doi.org/10.1088/1361-6382/ab6e89

https://orcid.org/0000-0001-7851-3162
https://orcid.org/0000-0001-8248-603X
mailto:pullin@lsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6382/ab6e89&domain=pdf&date_stamp=2020-02-18
publisher-id
doi
https://doi.org/10.1088/1361-6382/ab6e89


2

by the shell, so do the relations between ingoing and outgoing rays. In the standard geomet-
ric optic treatment of Hawking radiation, the relations are used to construct the Bogoliubov 
coefficients. In our case the latter become quantum operators acting on the Hilbert space of 
the geometry. We found that the profile of the Hawking radiation as a function of time con-
tains information about the initial state of the collapsing quantum shell. In particular, certain 
correlations of the Hawking radiation that vanish in the classical case, are non-vanishing in 
the quantum one. Since the Hawking radiation for a large black hole occurs entirely in a low-
curvature region of space-time, our calculation shows that non-trivial quantum effects can 
occur in such types of regions. Our calculations involved several approximations, which we 
study in greater detail in the current paper. We find important corrections. The main message 
is that, even at rather short times, the radiation becomes non-thermal. The emission of the total 
mass of the black hole is faster than in the case of traditional Hawking radiation. In section 2 
we summarize the previous results, showing that they correspond to a naive semi-classical 
limit that omits certain important quantum effects. Section  3 carries out the full quantum 
calculation which we characterize in terms of effective c-number Bogoliubov coefficients. In 
section 4 we compute the number of particles emitted, showing the non-thermal nature of their 
spectrum and bounds for the total the total thermal energy emitted. We end with a discussion.

2.  General framework

2.1.  Summary of previous results

The computation of Hawking radiation using the geometric optics approximation has a long 
history going back all the way to Hawking’s original 1975 calculation [3]. Boulware was the 
first to consider the radiation of a collapsing null shell [1]. The metric of a collapsing shell is 
given by,

ds2 = −
(

1 − 2Mθ(v − vs)

r

)
dv2 + 2dvdr + r2dΩ2,

�

(1)

where vs represents the position of the shell (in ingoing Eddington–Finkelstein coordinates) 
and M its mass. We are using units where G  =  c  =  1 Its associated Penrose diagram is given 
in figure 1.

To use the geometric optics approximation one considers light rays that leave I− with coor-
dinate v less than v0 = vs − 4M  and escape to I+ with the rest trapped in the black hole that 
forms. They reach I+ with a coordinate,

u(v) = v − 4M ln

(
v0 − v
4M0

)
,� (2)

where M0 is an arbitrary parameter that is usually chosen as M0  =  M. In our case, since we 
are considering a quantum black hole we will take M0 to be the mean value of the mass. M0 is 
related with the definition of the tortoise coordinate u, which involves a constant of integra-
tion. One uses this identity to relate the ‘in’ modes of the scalar field at I−,

ψlmω′(r, v, θ,φ) =
e−iω′v

4πr
√
ω′

Ylm(θ,φ),

with the ‘out’ modes at I+ ,
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χlmω(r, u, θ,φ) =
e−iωu

4πr
√
ω

Ylm(θ,φ),

to compute the Bogoliubov coefficients,

αωω′ = 〈χlmω ,ψlmω′〉 ,

βωω′ = −〈χlmω ,ψ∗
lmω′〉 .

That was the summary of the calculation of Hawking radiation on the background of a clas-
sical collapsing shell in the geometric optics approximation. To consider the case of quantum 
collapsing shells we recall that the ADM mass M and the position at I− from which the shell is 
sent in are a complete set of Dirac observables and canonically conjugate to each other [2, 4].  
One can promote them to quantum operators with commutators,

[
M̂, v̂s

]
= i�̂I,� (3)

with Î  the identity operator. It is actually more convenient to use v0 = vs − 4M  instead of vs. 
In terms of the quantum operators one can write a quantum operatorial relationship between 
the operator associated with the ingoing position in I− of a light ray and the outgoing position 
at I+ ,

Figure 1.  The Penrose diagram of collapsing shell. vs is the position at I− from which 
the shell is sent in. Light rays sent in to the left of v0 make it to I+ , and rays sent in to 
the right of v0 get trapped in the black hole.
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û
(

v, v̂0, M̂
)
= v̂I − 2

[
M̂ ln

(
v̂0 − v̂I

4M0

)
+ ln

(
v̂0 − v̂I

4M0

)
M̂

]
.� (4)

The operators act on states of the quantum geometry, which in the mass representation are 
given by ϕ(M). With the above operators one can now promote the Bogoliubov coefficients to 
operators acting on the states of the quantum geometry,

β̂ωω′ = − 1
2π

√
ω′

ω
lim
δ→0

∫ +∞

−∞
dvθ

(
v̂0 − v̂I

)
exp (−iωûδ(v)− iω′v) θ

(
v̂0 − v̂I

)
.

� (5)
The above computation requires the extension of the operator û to include all the range of rays 
that start at I− including those that would fall into the black hole. Details can be seen in our 
previous paper [2]. The result is the operator ûδ. We need to solve its eigenvalue problem. It 
turns out that the spectrum of ûδ is degenerate with degeneracy two. This leads us to choose 
two independent eigenstates of û,

ψ1
u(x) =




1√
8π�|ln(δ)|

exp
(

iM0
� (u − v) x−δ

ln(δ)

)
, x < δ

1√
8π�|ln(x)|

exp
( iM0

� (u − v) [li (x)− li (δ)]
)

, δ � x < 1

0, x � 1

� (6)

ψ2
u(x) =

{
0, x � 1

1√
8π�|ln(x)|

exp
( iM0

� (u − v) [li (x)− li (δ)]
)

, x > 1� (7)

where x = (v0 − v)/(4M0) and we have chosen them as orthonormal. We adopt the notation 
|u, J〉δ with J = 1, 2 for these states.

With this we can compute the expectation values of the Bogoliubov coefficients for differ-
ent states of the quantum geometry,

〈
β̂
〉
ωω′

= − 1
2π

√
ω′

ω
lim
δ→0

〈Φ|
∫ +∞

−∞
dv
∫ +∞

−∞
dv0 |v0〉 〈v0| θ

(
v̂0 − v̂I

)
e−iωûδ(v)−iω′v

×
∑

J=1,2

∫ +∞

−∞
du |u, J〉δ 〈u, J|δ

∫ +∞

−∞
dv′0 |v′0〉 〈v′0| θ

(
v̂0 − v̂I

)
|Φ〉 .

We also found an expression for the expectation value of the density matrix of a scalar field 
on the background of a quantum shell,

〈
ρQS
ω1ω2

〉
≡ 〈Φ| 〈0in| â†

ω1
(M̂, v̂0)âω2(M̂, v̂0) |0in〉 |Φ〉 =

∫ ∞

0
dω′

〈
β̂ω1ω′ β̂∗

ω2ω′

〉
,

where |Φ〉 is the quantum state of the shell centered in given values M̄, v̄0 of the ADM mass 
and the position along I− of the last light ray that escapes to I+ (as we mentioned, it is equiva-
lent to use this quantity in lieu of the position of the shell at I−). In the above expression â, â† 
are the annihilation and creation operators of the quantum field of the Hawking radiation (we 
take it to be a scalar field for simplicity) and |0in〉 is the vacuum of the Hawking radiation.

We take a state for the shell that in the v0 representation can be written as,
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ψ (v0) ≡ 〈v0| ϕ〉 =
1√
2π�

∫
dMϕ (M) exp

(
−i

M [v0 − v̄0]

�

)
� (8)

with ϕ(M) a complex function centered in M̄ that satisfies 
∫

dM |ϕ (M)|2 = 1.
The result found in our previous paper [2] (equation above (39)) for the expectation value 

density matrix of the Hawking radiation for a quantum shell is,

〈
ρQS
ω1ω2

〉
=

(2M0)
2

π2

∫ ∞

0
dω′ ω′

√
ω1ω2

∫ +∞

0
dxdx′ exp (−i4M0 [ω

′ + ω2] x′) exp (i4M0 [ω
′ + ω1] x)

× exp (i4M0 [ω
′ + ω̄] ∆ω1ω2(x, x′))

√
|ln(x̄ω1(x))| |ln(x̄ω2(x′))|

|ln(x)| |ln(x′)|

×
∫ +∞

−∞
dsei∆ωsψ∗(s − 2M0∆ω1ω2(x, x′))ψ(s + 2M0∆ω1ω2(x, x′)),

where ∆ω1ω2(x, x′) = ∆ω2(x
′)−∆ω1(x), ∆ω(x) = x − x̄ω(x) = x − li−1 (li(x)− δω), 

x̄ωi(x) = li−1 [li(x)− ωi�/M0], li is the logarithmic integral, δω = �ω
M0

, ∆ω = ω2 − ω1 and 
ω̄ = ω1+ω2

2 .
This can be rewritten as,

〈
ρQS
ω1ω2

〉
=

∫
dMϕ∗

(
M − ∆ω�

2

)
ϕ

(
M +

∆ω�
2

)∫ ∞

0
dω′βQS

ω1ω′(M, ω̄)
[
βQS
ω2ω′(M, ω̄)

]∗
,� (9)

in terms of the c-number quantity,

βQS
ωω′(M, ω̄) = −2M0e−i[ω+ω′ ]̄v0

π

√
ω′

ω

× lim
ε→0

∫ +∞

0
dx exp (−εx) exp (i4M0 [ω

′ + ω] x)

√
|ln(x̄ω(x))|
|ln(x)|

exp

(
i4ωm(ω′, ω̄)

∆ω(x)
δω

)
,

� (10)
that plays the role of an effective Bogoliubov coefficient, with m(ω′, ω̄) = M − (ω′ + ω̄) � . 
The regulator ε is introduced in order to make the integral convergent since we are in a basis 
of plane waves.

2.2.  Semiclassical approximation: naive version of corrections to the limit � → 0

Expression (9) has the complete information of the geometric optics approximation for 
Hawking radiation on the background of a quantum shell and should therefore include the 
usual results for Hawking radiation from a classical collapsing shell when � → 0 (the shell 
variables become classical but the radiation is kept quantum, otherwise it vanishes). To take 
such a limit is to set � → 0 in the integrand of (10).One gets

βQS
ωω′(M, ω̄) → βCS

ωω′(M) = −2M0e−i[ω+ω′ ]̄v0

π

√
ω′

ω
lim
ε→0

∫ +∞

0
dxe−εx exp (i4M0 (ω

′ + ω) x) exp (i4Mω ln(x))

that agrees with the standard result for Hawking radiation for classical shells (CS).
In our previous paper [2] we considered an approximation in which we kept the states of 

the quantum geometry but took the limit � → 0 in the Bogoliubov coefficients in the manner 
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discussed. We will call this approximation the ‘naive limit’. We did this in the expectation that 
the corrections this approximation neglected were small. We will see in this paper that they 
are not.

To evaluate the expectation value of the density matrix in the naive limit, we start with the 
change of variable y = ln(x). The above expression becomes

βCS
ωω′(M) = −2M0e−i[ω+ω′ ]̄v0

π

√
ω′

ω
lim
ε→0

∫ +∞

−∞
dy exp (− [ε− i4M0 (ω

′ + ω)] ey) exp ((1 + i4Mω)y)

= −2M0e−i[ω+ω′ ]̄v0

π

√
ω′

ω
lim
ε→0

[∫ +∞

0
dy exp

(
− [ε− i4M0 (ω

′ + ω)] e−y) exp (−(1 + i4Mω)y)

+

∫ +∞

0
dy exp (− [ε− i4M0 (ω

′ + ω)] ey) exp ((1 + i4Mω)y)
]

.

�

(11)

Using the identities for the upper and lower incomplete Gamma functions,

Γ(a, z) = za
∫ +∞

0
exp (at − zet) dt, Re(z) > 0,� (12)

γ(a, z) = za
∫ +∞

0
exp

(
−at − ze−t) dt, Re(a) > 0,� (13)

Γ(a) = γ(a, z) + Γ(a, z)

we get

βCS
ωω′(M) = −2M0e−i[ω+ω′ ]̄v0

π

√
ω′

ω
lim
ε→0

exp (−(1 + i4Mω) ln [ε− i4M0 (ω
′ + ω)]))

× [γ (1 + i4Mω, ε− i4M0 [ω
′ + ω]) + Γ (1 + i4Mω, ε− i4M0 [ω

′ + ω])]

=
−i exp (−i [ω + ω′] v̄0) e−2Mωπ

2π
√
ω

ω′

ω′ + ω

exp (−i4Mω ln (4M0 [ω
′ + ω]))√

ω′
Γ (1 + i4Mω) .

� (14)
This is the expression of the Bogoliubov coefficient β that we obtained in the previous paper 
and that includes Hawking radiation in the long time limit but includes non-thermal correc-
tions for early times, as one expects for the radiation of a collapsing shell. Substituting in (9) 
we get

〈
ρQS
ω1ω2

〉
Naive limit =

∫
dMϕ∗

(
M − ∆ω�

2

)
ϕ

(
M +

∆ω�
2

)
8M2√ω1ω2 exp (i∆ωv̄0)

πe4Mω̄π
Γ (i4Mω1) Γ (−i4Mω2)

× 1
2π

∫ +∞

0

dω′

ω′
(ω′)2

(ω′ + ω1)(ω′ + ω2)
exp (i4M [ω2 ln (4M0 [ω

′ + ω2])− ω1 ln (4M0 [ω
′ + ω1])]) .

� (15)
Notice that we have taken βωω′ to be classical but kept the � dependence in the quantum 
states. This was the approximation we used in our previous paper and only partially captures 
the departures from thermality of the distribution of radiated energies. In this paper we will 
develop a better approximation and we will see significantly different behavior.

2.3.  Computation of the radiated energy in the naive limit

In order to compare with the result we will obtain in this paper we need an expression for the 
amount of energy radiated as Hawking radiation in this naive limit. The radiated energy can 
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be obtained from the diagonal terms of (15), that is, the number of particles per unit frequency. 
From there, the time of evaporation of the black hole, assuming the radiation maintains the 
same form (i.e. ignoring backreaction) can be estimated.

To compute the integral, we start by rewriting the Gamma function,

Γ(ix) =
√

π

x sinh(πx)
eiφ(x),� (16)

with φ(x) = Im [ln (Γ(ix))] and carry out the change of variable,

t =
4M
∆ω

[ω2 ln (4M0 [ω
′ + ω2])− ω1 ln (4M0 [ω

′ + ω1])] ,� (17)

and recalling that x = 4Mω1 or x = −4Mω2, this leads to,

〈
ρQS
ω1ω2

〉
Naive limit =

∫
dMϕ∗

(
M − ∆ω�

2

)
ϕ

(
M +

∆ω�
2

)
ei[φ(4Mω1)−φ(4Mω2)]ei∆ωv̄0

√
e8Mω1π − 1

√
e8Mω2π − 1

1
2π

∫ +∞

t0
dteit∆ω ,

� (18)

with t0 = 4M
[

ω̄
∆ω ln

(
ω2
ω1

)
+ ln

(
4M0

√
ω1ω2

)]
. This density matrix is a distribution in 

ω1 − ω2 whose diagonal yields a divergent term proportional to the number of particles. The 
divergence stems from assuming a basis of waves of definite frequency for the scalar field. As 
we will see later, the result can be made finite considering wavepackets with a finite spread in 
frequency and time. Computing the diagonal terms we have,

〈
NQS
ω

〉
Naive limit =

〈
ρQS
ω,ω

〉
Naive limit =

∫
dM |ϕ (M)|2 1

e8Mωπ − 1
1

2π

∫ +∞

t̂0
dt,

� (19)
with ̂t0 = 4M [1 + ln (4M0ω)]. The divergence in ω1 = ω2 = ω appears because we have com-
puted the Bogoliubov coefficients for a continuous basis of plane waves at I+ ,

{
φω(u) =

1√
2πω

, e−iuω ,ω > 0
}

,

and therefore we have considered emission for all time. Formally, from here we can compute 
the total energy emitted as

ENaive limit =

∫ ∞

0
dω�ω

〈
NQS
ω

〉
Naive limit ,� (20)

and of course this will give an infinite result. We should compare this limit, where we con-
sider fluctuations in the quantum states, with the ordinary Hawking radiation calculation, 
where only the energies of the particles emitted are quantized. Alternatively we can compute 
a bounded density matrix using a discrete basis of wavepackets,

{
Φωj(un) =

1√
ε

∫ ( j+1)ε

jε
dωφω(u)eiunω , j ∈ N, n ∈ Z

}
,

centered around time (un = n 2π
ε ) and frequency (ωj = [ j + 1/2] ε), with ε << ωj a narrow 

frequency window. With this, the density matrix for the wavepackets becomes,

〈
ρQS
ωj,ωk

〉
Naive limit

(un) =
1
ε

∫ ( j+1)ε

jε

∫ (k+1)ε

kε
dω1dω2e−iun∆ω

〈
ρQS
ω1ω2

〉
Naive limit

� (21)

R Eyheralde et alClass. Quantum Grav. 37 (2020) 065001
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and the rate of emission of particles is,
〈

NQS
ωj

〉
Naive limit

(un) =
〈
ρQS
ωj,ωj

〉
Naive limit

(un).

Finally this leads to ENaive limit(un), the power emitted at time un, through integral (20). This 
way of computing the energy allows us to deal with finite quantities and also shows us the 
role of the frequency ω′ which appears in the calculation of the Bogoliubov coefficients and 
determines their evolution in terms of the physical time (un) at I.

To do the explicit calculation we need an expression for (18) that we can handle when 
ω1 ∼ ω2 . Approximating the integrand to the lowest order in ∆ω/ω̄ both in amplitude and in 
phase in all the factors involved, we get [5],

〈
ρQS
ω1ω2

〉
Naive limit ∼

∫
dM |ϕ(M)|2 eiσ′(M)∆ω� e−i4M∆ω�[ψ(0)(i4Mω̄)]ei∆ωv̄0

e8Mω̄π − 1
1

2π

∫ +∞

t̃0
dteit∆ω ,� (22)

where the change of variable variable (17) from ω′ to t becomes

t = 4M [1 + ln (4M0 [ω
′ + ω̄])]� (23)

and therefore t̃0 = 4M [1 + ln (4M0ω̄)] .
In the previous expression we have expanded the phase of the function Γ of equation (16) 

as,

φ(x) =
∞∑

n=0

φ(n)(x0)
(x − x0)

n

n!
,

where φ(n) = �
[
inψ(n−1)(ix)

]
 and ψ(n) is the polygamma function of order n. We have also 

assumed that the wavefunction in the mass representation takes the form,

ϕ(M) = |ϕ(M)| eiσ(M),

with σ a smooth function and we have expanded ϕ assuming that M >> �∆ω. It is conve-
nient to reorder the expression (22) in the following way,

〈
ρQS
ω1ω2

〉
Naive limit ∼

∫
dM

|ϕ(M)|2

e8Mω̄π − 1
1

2π

∫ +∞

T0(ω̄)

dtei∆ωt,

absorbing the phase in t such that,

t → t + σ′(M)�− 4M�
[
ψ(0)(i4Mω̄)

]
+ v̄0,� (24)

and therefore,

T0(ω̄) = σ′(M)�− 4M�
[
ψ(0)(i4Mω̄)

]
+ v̄0 + 4M + 4M ln (4M0ω̄) .� (25)

We are now in position to incorporate the wavepackets by computing,

〈NQS
ωj
〉Naive limit(un) =

1
ε

∫ ∫ ( j+1)ε

jε
dω1dω2e−un∆ωi 〈ρQS

ω1ω2

〉
Naive limit

∼
∫

dM
|ϕ(M)|2

e8Mωjπ − 1
1

2πε

∫ ε

−ε

d (∆ω)

∫ ωj+
ε−|∆ω|

2

ωj− ε−|∆ω|
2

∫ +∞

T0(ω̄)

dte−(un−t)∆ωidω̄

R Eyheralde et alClass. Quantum Grav. 37 (2020) 065001
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∼
∫

dM
|ϕ(M)|2

e8Mωjπ − 1
1

2π

∫ +∞

T0(ωj)

dt
∫ ε

−ε

d (∆ω)
ε− |∆ω|

ε
e−(un−t)∆ωi

=

∫
dM

|ϕ(M)|2

e8Mωjπ − 1
ε

2π

∫ +∞

T0(ωj)

dt sinc2
[ ε

2
(un − t)

]
≡

∫
dM

|ϕ(M)|2

e8Mωjπ − 1
S [un − T0(ωj)] ,� (26)

where sinc(x) = sin(x)/x is the cardinal sine function and integrates to a function S which 
is a smooth version of the Heaviside function. This expression represents a superposition of 
thermal radiation that starts at time un = T0(ωj) and continues to be emitted for later times. 
The expression for the emitted power is

ENaive limit(un) ∼
∫

dM |ϕ(M)|2
∫ ∞

0
dω

�ω
e8Mωπ − 1

S [un − T0(ω)] .� (27)

Although this is a computation for a quantum shell, by choosing a state with small uncertainty 
in the mass (and taking the naive limit � → 0 in the Bogoliubov coefficients), we are effec-
tively obtaining the classical limit and therefore the final result coincides with the usual one 
quoted for ordinary Hawking radiation for a classical collapsing shell.

3.  Corrections to the Bogoliubov coefficients

To develop a better approximation, we will evaluate βQS
ωω′ without taking the limit � → 0 in 

the integral (10). The latter expression depends on � through ∆ω(x), δω and m(ω′, ω̄). We 
will show that the approximation described in the previous section fails to capture important 
properties of the radiation, in particular its non-thermal aspects. To see this, it is convenient to 
examine the region x  =  0 of the integral making the change of variable y = ln(x). Given that 
the dependence in � is in the function x̄ω(x) we redefine,

ln [x̄ω(x)] = ln
(
li−1(li(x)− δω)

)
= Ei−1 (Ei(y)− δω) ≡ yω(y),� (28)

with Ei the exponential integral. In figure 2 we show this function and the approximations to 
it we will later use. Notice that yω[y] → y for large values of y . The function yω(y) involves 
the exponential integral and is not straightforward to integrate. This will require the use of 

approximations.
The effective Bogoliubov coefficients (10) of the quantum shell can be rewritten in terms 

of y  as,

βQS
ωω′(M, ω̄) = −2M0e−i[ω+ω′ ]̄v0

π

√
ω′

ω
lim
ε→0

∫ +∞

−∞
dy exp (y − εey) exp (i4M0 [ω

′ + ω] ey)

×

√
|yω(y)|
|y|

exp

(
i4ωm(ω′, ω̄)

exp(y)− exp(yω(y))
δω

)
.

�
(29)

As we see in figure 2(a) there exists a region of the integral where it is incorrect to take the 
limit δω → 0 (which is equivalent to yω = y) in order to approximate yω(y) for small values 
of x, which corresponds to negative values of y . In particular for large negative values yω(y) 
becomes constant. As figure 2(a) shows, such constant

ȳω ≡ yω(−∞) = Ei−1(−δω),

is a good indicator of the value of y  where such departure takes place.
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Figure 2.  Approximations to the function yω(y) and derived functions including 
the regions at both sides of y = ȳω. Plots correspond to δω = 10−2 in order to have 
visible departures from the exact functions. (a) Function yω(y) and its asymptotes.  
(b) Approximation for exp (yω(y)) (dotted line) and the exact value. (c) Approximation 

for 

√∣∣∣ yω(y)
y

∣∣∣ (dotted line) and the exact value.
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3.1.  Asymptotic approximation

To take into account these two zones in the calculation of the integral we can approximate the 
function (28) using its asymptotic forms for y � ȳω and y � ȳω. When y > ȳω we have that 
|Ei(y)| > δω so we consider the approximations,

exp [yω(y > ȳω)] ≈ exp[y]− yδω ,� (30)

√
|yω(y > ȳω)|

|y|
≈ 1,� (31)

and we will explain why we keep an order less in the square root shortly. This can be obtained 
expanding (28) around Ei(y). Analogously, when y < ȳω, |Ei(y)| < δω and we approximate,

exp [yω(y < ȳω)] ≈ exp[ȳω] + ȳωEi(y),� (32)

√
|yω(y < ȳω)|

|y|
≈

√
|ȳω|
|y|

.� (33)

As we show in figure 2, the two approximations considered coincide when y = ȳω.
These approximations will be used to represent the phase and modulus in the integral (29). 

The integral is more sensitive to the phase, that is why we keep an additional order of approx
imation in the exponential with respect to the one taken in the square roots.

The point where both approximations agree is also where they give their worst result so is 
crucial to place a bound on the error introduced in that region and to find conditions such that 
the error is small. Studying the phase and modulus in (29) and comparing the approximations 
with the exact values, the conditions are,

4M0

�
|m(ω′,ω)| |exp[ȳω]− ȳωδω − exp [ȳ2ω]| � 1,� (34)

√
|ȳ2ω| −

√
|ȳω|√

|ȳ2ω|
� 1,� (35)

where ȳ2ω = yω(y = ȳω) = Ei (−2δω). The first condition is imposed because the approx
imation appears in the phase of the integrand and the second because the approximation 
appears in its modulus. It is important to notice that the first condition imposes limits for the 
range of ω′ and the other one in the range of ω  for which the approximation is valid. We will 
now use these expressions to compute βQS

ωω′. Later, in section 4 we will see how (34) translates 
into a limit in the amount of time for which the approximation is valid.

3.2.  Approximate computation of the effective Bogoliubov coefficients

Considering approximations (30)–(33) we get the following expression for the effective 
Bogoliubov coefficients by breaking up the integral into the two regions involved,

βQS
ωω′(M, ω̄) ≡ β

QS(+)
ωω′ (M, ω̄) + β

QS(−)
ωω′ (M, ω̄),

R Eyheralde et alClass. Quantum Grav. 37 (2020) 065001
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with

β
QS(+)
ωω′ (M, ω̄) ∼ −2M0e−i[ω+ω′ ]̄v0

π

√
ω′

ω
lim
ε→0

∫ +∞

ȳω
dy

exp (−(ε− i4M0 [ω
′ + ω])ey) exp ([1 + i4ωm(ω′, ω̄)] y) ,

� (36)
for the region y > ȳω and,

β
QS(−)
ωω′ (M, ω̄) ∼ −2M0e−i[ω+ω′ ]̄v0

π

√
ω′

ω

∫ ȳω

−∞
dy exp (y) exp (i4M0 [ω

′ + ω] ey)

×

√
|ȳω|
|y|

exp

(
i4ωm(ω′, ω̄)

ey − eȳω − ȳωEi(y)
δω

)
,

�

(37)

for the region y < ȳω. We will now study these expressions assuming δω � 1. The latter is 
essentially the energy of the emitted particle divided by the mass of the black hole, so it is very 
well satisfied. We also need to recall that these expressions are valid only when conditions 
(34) and (35) are met.

3.2.1.  Study of β
QS(+)
ωω′ .  We start by computing βQS(+)

ωω′ . The integral in (36) can be computed 
with the change of variable t = y − ȳω. Thus,

β
QS(+)
ωω′ (M, ω̄) = −2M0 exp (−i [ω + ω′] v̄0)

π

√
ω′

ω
lim
ε→0

exp ([1 + i4ωm(ω′, ω̄)] ȳω)

×
∫ +∞

0
dt exp

(
−(ε− i4M0 [ω

′ + ω])eȳωet) exp ([1 + i4ωm(ω′, ω̄)] t) ,
�

(38)

and carrying out the integral in t,

β
QS(+)
ωω′ (M, ω̄) = − i exp (−i [ω + ω′] v̄0)

2π
exp (−2m(ω′, ω̄)ωπ)√

ω′ω

ω′

ω′ + ω
exp (−i4ωm(ω′, ω̄) ln (4M0 [ω

′ + ω]))

× Γ [1 + i4ωm(ω′, ω̄),−iξ(ω,ω′, M0)]
� (39)

where Γ (a, z) is the incomplete Gamma function and where,

ξ(ω,ω′, M0) ≡ 4M0 [ω
′ + ω] exp (ȳω) .

Expression (39) reduces to the classical expression (14) when m(ω′, ω̄) → M  and ξ → 0 
(equivalent to � → 0, which implies ȳω → −∞), but outside this regime, it has a very differ-
ent behavior as can be seen in figure 3, particularly for large values of ω′/ω0. Only ω′ frequen-
cies up to the saturation of inequality (34) are considered in figure 3 and subsequent ones. For 
larger values the approximation is not valid.

Notice that in these plots the pre-factor

− i exp (−i [ω + ω′] v̄0)

2π

√
ω′

ω

1
ω′ + ω

� (40)
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Figure 3.  Comparison between βQS(+)
ωω′  (solid line) and βCS(+)

ωω′  (dashed line). The latter 
is the integral of the ordinary Hawking calculation in the t variable starting in 

√
|ȳω|. 

The plot considers ω = ω0 (frequency of maximum emission for Hawking radiation) 
and M0  =  M and shows frequencies up to the ω′ saturating inequality (34). (a) Modulus. 
(b) Real part. (c) Imaginary part.
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is omitted and instead of ω′ the plot is made against the dimensionless variable log
(

ω′+ω
ω0

)
 

with ω0 ∼ 2.821 44/(8πMBH) the principal frequency, at which the peak of Hawking emission 
occurs. The reasons for the choice of the logarithm will be apparent in the next section.

3.2.2.  Study of β
QS(−)
ωω′ .  Let us now concentrate on βQS(−)

ωω′  given by (37). In this case we do 
not know how to compute the integral in closed form. However, unlike βQS(+)

ωω′  this contrib
ution is an integral that converges very fast (due to the real exponentials in the integrand). The 
change of variable t =

√
|y|  makes it very explicit,

β
QS(−)
ωω′ (M, ω̄) ∼ −2M0e−i[ω+ω′ ]̄v0

π

√
ω′

ω

∫ +∞

√
|̄yω|

2dt exp
(
−t2) exp

(
i4M0 [ω

′ + ω] e−t2
)

×
√
|ȳω| exp

(
i4ωm(ω′, ω̄)

e−t2 − eȳω − ȳωEi(−t2)

δω

)
.

�
(41)

In fact this integral converges absolutely to,
√
π|ȳω|Erfc(

√
|ȳω|),

where Erfc is the complementary error function. In this case the limit � → 0 corresponds to 
ȳω → −∞ and therefore,

β
QS(−)
ωω′ (M, ω̄) → 0,� (42)

as is expected for the classical shell. In figure 4 we see the significant departure of this expres-
sion from the corresponding contribution in the case of the Hawking radiation for the classical 
shell, particularly for large values of ω′/ω0.

3.2.3.  βQS
ωω′ versus βCS

ωω′.  Adding the two contributions previously discussed, we get an 
expression for the effective Bogoliubov coefficients βQS

ωω′ that can be compared with the result 

(14) for the classical shell. In particular, the modulus 
∣∣∣βQS

ωω′

∣∣∣, evaluated numerically, departs 

from that of the classical shell,

∣∣βCS
ωω′

∣∣ =
√

4M
2π

ω′

ω′ + ω

1
exp(8Mωπ)− 1

.� (43)

Figure 5 depicts this departure which is most apparent in figure 5(a). The oscillatory behav-
ior at the end of the plot is not to be trusted. At this point the frequencies approach the regime 
where condition (34) is violated and the numerical result is no longer valid.

In the next section we will discuss the computation of the number of particles and energy 
emitted for which the Bogoliubov coefficients β are the basic ingredient. We will use this 
numerical result to comment on the departure from the result for the classical shell.

4.  Number of particles and energy emission based on the previous 
approximations

Here we will use the expressions developed in the previous section for effective Bogoliubov 
coefficients to compute the number of radiated particles and the energy emitted. We will 
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Figure 4.  Comparison between βQS(−)
ωω′  (solid line) and βCS(−)

ωω′  (dashed line). The latter 
is the integral of the ordinary Hawking calculation in the t variable ending in 

√
|ȳω|. 

The plot considers ω = ω0 (frequency of maximum emission for Hawking radiation) 
and M0  =  M. (a) Modulus. (b) Real part. (c) Imaginary part.
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Figure 5.  Comparison between βQS
ωω′ (solid line) and βCS

ωω′ (dashed line). The plot 
considers ω = ω0 (frequency of maximum emission for Hawking radiation) and 
M0  =  M. (a) Modulus. (b) Real part. (c) Imaginary part.
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compare this result with the corresponding one that appears in the naive limit discussed in sec-
tion 2.2. In the first place we are interested in the formal integral for continuous frequencies,

〈
NQS
ω

〉
=

〈
ρQS
ω,ω

〉
=

∫
dM |ϕ (M)|2

∫ ∞

0
dω′

∣∣∣βQS
ωω′(M)

∣∣∣
2

,� (44)

and finally in the energy

E =

∫ ωP

0
dω�ω

〈
NQS
ω

〉
=

∫
dM |ϕ (M)|2

∫ ωP

0
dω�ω

∫ ∞

0
dω′

∣∣∣βQS
ωω′(M)

∣∣∣
2

.

� (45)
In this expression we have chosen to cutoff the frequency at the Planck frequency �ωP = MP  
with MP the Planck mass. Higher frequencies would lead to quantum gravity effects and our 
analysis would not be valid.

Since these are divergent integrals we can not compare them directly with (26) and (27). We 
could, for example, consider an alternative basis of modes (like the wave packets considered 
in section 2.2). However, since we lack an analytic expression for the effective Bogoliubov 
coefficients it would require a numerical evaluation that turns out to be very expensive from 
a computational point of view. Instead, we will study the integrand and compare it to the one 
already studied in the naive limit � → 0.

Assuming the wave function of the shell is highly peaked around the expectation value 
for the mass M̄, we can ignore the integration in M and focus in the double integral in ω  and 

ω′. As we did before, we choose to study these expressions as functions of log
(

ω′+ω
ω0

)
 and 

ω
ω0

 where ω0 is the principal frequency of emission. These are not only dimensionless but 

also better related to the physical variables of the problem (time and energy). Also, we need 
to fix the free parameter M0. We chose to set it to M̄ because is the usual choice for a clas-
sical shell and also because it makes the conditions �ω � M̄  (negligible back-reaction) and 

δω = �ω
M0

� 1 (semi-classical regime) coincide.

In figure 6 we plot the naive limit 
∣∣∣βQS

ωω′(M)Naive limit

∣∣∣
2
, 
∣∣∣βQS

ωω′(M)
∣∣∣
2
 and its two contrib

utions 
∣∣∣βQS(+)

ωω′ (M)
∣∣∣
2
 and 

∣∣∣βQS(−)
ωω′ (M)

∣∣∣
2
. As we did before we omit the prefactor,

1
(2π)2ω

ω′

(ω′ + ω)
2 .� (46)

We see that 
∣∣∣βQS

ωω′(M)
∣∣∣
2
 approaches the naive limit when ω′ → 0 and also that this behav-

ior is controlled by the 
∣∣∣βQS(+)

ωω′ (M)
∣∣∣
2
 contribution. This implies the existence of a regime in 

which the radiation is thermal and a strong departure when ω′ grows characterized by an 
increased rate of emission. The condition m(ω′,ω) = 0 sets an upper bound for region of 
thermal radiation. This is not the only (or best) bound we can find but is has the advantage of 

being frequency independent in the variable log
(

ω′+ω
ω0

)
, corresponding to the constant value 

log
(

M
�ω0

)
. From these qualitative analyses we can estimate the amount of energy radiated as 

Hawking radiation and also the time when the departure starts.
Assuming the radiation is thermal until m(ω′,ω) = 0 then the amount of thermal radiation 

is,
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Ethermal =

∫
dM |ϕ (M)|2

∫ ωP

0
dω�ω

∫ m(ω′,ω)=0

0
dω′

∣∣∣βQS
ωω′(M)�=0

∣∣∣
2

� (47)

=

∫
dM |ϕ (M)|2

∫ ωP

0
dω�ω

1
exp(8Mωπ)− 1

4M
2π

∫ m(ω′,ω)=0

0
dω′ ω′

(ω′ + ω)2

� (48)

=

∫
dM |ϕ (M)|2

∫ ωP

0
dω�ω

1
exp(8Mωπ)− 1

4M
2π

[
log

(
M
�ω

)
+

�ω
M

− 1
]

� (49)

=

∫
dM |ϕ (M)|2 M × I

(
M
MP

)
,� (50)

where

I(x) = x2
∫ MP/M

0
ds

s
exp(8πx2s)− 1

s − 1 − log(s)
2π

.� (51)

This estimate represents less that 0.1% of the mass of any black hole with a mass larger than 
the Planck mass.

Finally we can make an estimation of the amount of time thermal radiation lasts. Introducing 
the same basis of wave packets of section 2.2 and performing the same calculation, in par
ticular the change of variable (23) and the subsequent phase absorption (24), we arrive to the 
analogous expression for the rate of emitted particles

〈NQS
ωj
〉thermal(un) =

∫
dM

|ϕ(M)|2

e8Mωjπ − 1
ε

2π

∫ Tf (ωj)

T0(ωj)

dt sinc2
[ ε

2
(un − t)

]
,� (52)

Figure 6.  Comparison between the numerical calculation for 
∣∣∣βQS

ωω′

∣∣∣
2
, its (+) and (−) 

contributions and the naive limit � → 0 (corresponding to a superposition of Hawking 

radiation). The plot considers ω = ω0 and M0  =  M. The double line represents the 
bound log[ M

�ω0
] for the independent variable. In addition to the plotted squares there 

are contributions of crossed terms in the evaluation of the density matrix, not shown.
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where Tf (ωj) = T0(ωj) + 4M log
(

M
�ωj

)
. This expression represents thermal radiation lasting

∆T = 4M log

(
M
�ωj

)
,� (53)

which ranges from ∆T = 4M log(M/MP) for ωj → ωP to ∆T = +∞ for ωj → 0.

5.  Conclusions

By considering Hawking radiation on the background of a quantum collapsing null shell, we 
discovered significant deviations from the usual Hawking radiation on classical backgrounds. 
To begin with, we obtain thermal radiation that is emitted for a short time (of the order of the 
scrambling time, one millisecond for a solar mass black hole), insufficient to emit a substantial 
portion of the mass of the black hole. After that, a different type of radiation appears with a 
non-thermal profile and that can be emitted by a long enough time to evaporate the black hole. 
The details of this interval of time depend on trans-Planckian physics that our model does not 
capture. For low frequencies we get thermal radiation that cuts off after a time that depends 
on the frequency, giving way to non-thermal radiation of larger intensity. For lower frequen-
cies the longer the time of emission of thermal radiation. It always holds that the limit time of 
emission of thermal radiation is infinite in the classical limit when � → 0 whereas the emis-
sion time of the non-thermal radiation tends to zero in that limit and the radiation is always the 
usual one. It should be noted that the approximations made are only valid for relatively short 
periods of emission. They do not allow to compute correctly the emitted energy for an arbi-
trary time of emission. A naive estimate of the evaporation time with the new type of radiation 
found, leads to black holes evaporating faster that what traditional Hawking radiation predicts. 
However, one should be aware, in addition to the traditional limitations of such calculations 
that do not include back-reaction, in our case we have the additional element of considering 
only spherical fluctuations. These may not capture the dominant effects present in the case 
of full three dimensional quantum black holes. Summarizing, we see four main limitations 
in our calculations: (a) the use of geometric optics approximation; (b) the consideration of 
only spherically symmetric fluctuations; (c) the lack of back reaction in the calcuations; (d) 
the relatively short period of emission for which the calculations are valid due to the approx
imations considered. So our statements about a faster evaporation times can only be seen as 
suggestive as they are highly dependent on the assumptions listed.

The fact that one has non thermal radiation may imply that there does not exist an infor-
mation paradox, although a detailed analysis would be needed of how information could be 
retrieved, particularly for collapsing situations that are more realistic than a simple shell. A 
more complete model should incorporate other effects in addition to the one we discuss lead-
ing to deviations of thermality, for instance [6] and effects that may imply faster mass loss 
than m3, (see for instance [7] and references therein).
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