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Abstract
In this short note we shall demonstrate that given a smooth solution γ  to 
the linearised Einstein equations on Schwarzschild which is supported on the 
l � 2 spherical harmonics and expressed relative to a transverse and traceless 
gauge then one can construct from it a smooth solution to the sourced 
Maxwell equations expressed relative to a generalised Lorenz gauge. Here the 
Maxwell current is constructed from those gauge-invariant combinations of 
the components of γ  which are determined by solutions to the Regge–Wheeler 
and Zerilli equations. The result thus provides an elegant link between the 
spin 1 and spin 2 equations on Schwarzschild. We in addition outline how 
one can apply this result to establish a decay statement for solutions to the 
linearised Einstein equations on Schwarzschild that are in a transverse and 
traceless gauge.

Keywords: Maxwell and linearised Einstein equations on Schwarzschild, 
linear stability of Schwarzschild, linearised Einstein equations in transverse 
traceless gauge on Schwarzschild

1.  Introduction

The remarkable similarity (see e.g. [1]) between the linearised Einstein equations in a trans-
verse traceless gauge and the Maxwell equations in a Lorentz gauge is a celebrated feature of 
the theory of linearised gravity (see e.g. [2]). The purpose of this note is to give a more precise 
version of this correspondence on the Schwarzschild spacetime. That is to say, we will show 
that one can in fact construct a solution to the latter from a solution to the former.

This note is organised as follows. A rough version of the result is given in section 2 with 
the proof then the content of section 3. In addition appendix B of the appendix contains further 
remarks regarding particular analytical consequences of the result, as well as consequences 
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relating to the study of linearised gravity on Schwarzschild. Said remarks are discussed in 
appendices B.1 and B.2.

2.  Overview

Let (S , gM) denote the Schwarzschild spacetime of mass M  >  0. Then1 γ ∈ Γ(S2T∗S) is said 
(see [1]) to be a smooth solution to the linearised Einstein equations in the transverse traceless 
gauge on (S , gM) if the following system of equations hold true:

�gM
γ − 2RiemgM

· γ�� = 0,
divgM

γ = 0,
trgM

γ = 0.
� (1)

Here �gM
, divgM

 and trgM
 are respectively the wave, divergence and trace operator associ-

ated to gM  whilst RiemgM
 is the Riemann tensor of gM  and we have defined the contraction 

(RiemgM
· γ��)αβ := (RiemgM

)γαβδγ
γδ with indices raised as standard by gM . Then the result 

is the following:

Proposition 2.1.  Let γ  be as above. Assume moreover that γ  is supported on the l � 2 
spherical harmonics. Then there exist smooth 1-forms A = A(γ) and j = j(γ) along with a 
smooth function L = L(γ) such that

�gM
A = −j − dL,

divgM
A = −L,

divgM
j = 0.

Moreover the quantities j  and L are decoupled from A in that they are determined by two 
scalars Φ = Φ(γ) and Ψ = Ψ(γ) each of which respectively satisfy the (decoupled) Regge–
Wheeler and Zerilli equations.

In particular, A is a smooth solution to the sourced Maxwell equations when expressed in 
a generalised Lorentz gauge.

We emphasize that the notation A = A(γ) etc is to denote that the relevant quantities are 
constructed (explicitly) from γ . See section 3 for the precise relations. See there also for what 
it means for a tensor to be supported on the l � 2 spherical harmonics. This restriction on the 
angular frequencies is to avoid complications provided by linearised Kerr solutions to (1) (see 
e.g. [3]). We also note that it is necessary to introduce the gauge function L so that the continu-
ity equation holds for j .

3.  Proof of result

We now prove proposition 2.1. We shall focus in the proof on the derivation only on the 
Schwarzschild exterior.

Now the proof will require decomposing the system (1) relative to the spherical topology 
of Schwarzschild as this allows the structure of the tensorial system to be better understood. 

1 Here Γ(S2T∗S) denotes the space of smooth, symmetric, 2-covariant tensors on S .
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Whilst there are many ways of doing this let us fix for definiteness the Schwarzschild-star 
foliation of the exterior by 2-spheres as in [3]. Then in the exterior patch

Se ∼= R2
t∗,r × S2

which then allows the operation of projection of spacetime tensors, objects, operators etc onto 
their parts ‘tangent’ and ‘non-tangent’ to the spheres. This formalism is developed concretely 
in section 3 and appendix A of [3] and we shall employ in freely in this note for the sake of 
brevity. In particular, we treat these sections of [3] as a companion piece to this note2.

With this in mind, to state the result precisely we first must project γ  onto the mixture of 

Q-tensors and S-tensors ̂̃γ, tr̃gM γ̃, γ, /̂γ  and /tr/γ as defined in [3]. We then introduce the derived 
quantities

τ̃ = ̂̃γ +
1
2

g̃Mtr̃gM γ̃ − ∇̃ � ζ̃

η̃ = γo − r2d̃
(

r−2
/̂γo

)

σ = /tr/γ − 2 /∆/̂γe
− 4

r
ζ̃P̃

with

ζ̃ = γe − r2∇̃
(

r−2
/̂γe

)
.

Here γo, /̂γe
 and /̂γo

 and the components appearing in the Hodge-type decomposition of γ  and 

/̂γ  of section 3.3 in [3]. They are unique and well defined since γ  is supported on the l � 2 
spherical harmonics.

Proposition 3.1.  Let γ  be as in proposition 2.1 and define the smooth 1-forms

A = ζ̃ + /D�
1(/̂γe

, /̂γo
),

j =
2
r
τ̃P̃ − 1

2
∇̃σ − 1

r
∇̃r σ − 1

2
/D�

1(rσ,−4η̃P̃)

along with the smooth function

L =
1
2
σ.

Then the following system of equations hold true:

�gM
A = −j − dL,

divgM
A = −L,

divgM
j = 0.

Proof.  It follows from proposition A.1 of [3] that the projected quantities associated to γ  
satisfy the system

2 It is there also that one will find what it means for the tensor γ  to be supported on the l � 2 spherical harmonics.
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�̃̂̃γ + /∆̂̃γ +
2
r
∇̃P̃

̂̃γ − 2
r
∇̃r ̂̃� /divγ − 2

r2 ∇̃r ̂̃�̂̃γP̃ − 2µ
r2

̂̃γ − 1
r2 ∇̃r ̂̃�∇̃r

(
tr̃gM γ̃ − /tr/γ

)
= 0,

�̃tr̃gM γ̃ + /∆tr̃gM γ̃ +
2
r
∇̃P̃tr̃gM γ̃ − 4

r
/divγP̃ +

4
r2 γ̃P̃P̃ − 2

r2 (1 − 2µ)
(
tr̃gM γ̃ − /tr/γ

)
= 0,

�̃γ + /∆γ +
2
r
∇̃P̃γ +

2
r
/∇� γ̃P̃ − 2

r
∇̃r � /div/γ − 3

r2 ∇̃r � γP̃ − 1
r2 (1 − 2µ)γ = 0,

�̃/̂γ + /∆/̂γ +
2
r
∇̃P̃ /̂γ +

2
r
/∇�̂γP̃ − 2

r2 (1 + µ)/̂γ = 0,

�̃/tr/γ + /∆/tr/γ +
2
r
∇̃P̃/tr/γ +

4
r
/divγP̃ +

4
r2
̂̃γP̃P̃ +

2
r2 (1 − 2µ)

(
tr̃gM γ̃ − /tr/γ

)
= 0,

−δ̃̂̃γ +
1
2
∇̃tr̃gM γ̃ + /divγ +

2
r
̂̃γP̃ +

1
r
∇̃r

(
tr̃gM γ̃ − /tr/γ

)
= 0,

−δ̃γ + /div/̂γ +
1
2
/∇/tr/γ +

3
r
γP̃ = 0,

tr̃gM γ̃ + /tr/γ = 0.

From this we then derive

�̃ζ̃ + /∆ζ̃ +
2
r
∇̃P̃ζ̃ −

2
r2 ∇̃r ζ̃p̃ =

2
r
∇̃r /∆/̂γe

− 2
r
τ̃p̃ +

1
r

d̃r σ,

�̃/̂γe
+ /∆/̂γe

= −2
r
ζ̃p̃,

�̃/̂γo
+ /∆/̂γo

= −2
r
η̃P̃,

δ̃ζ̃ − /∆/̂γe
− 2

r
ζ̃P = L.

Therefore

�̃Ã + /∆Ã +
2
r
∇̃P̃Ã − 2

r2 ∇̃r ÃP̃ − 2
r
∇̃r /div/A = −̃j − ∇̃L,� (2)

�̃/A + /∆/A +
2
r
∇̃P̃ /A +

2
r
/∇ÃP̃ − 1

r2 ∇̃r · ∇̃r/A = −/j − /∇L,� (3)

δ̃Ã − /div/A − 2
r

ÃP̃ = L.� (4)

This yields the first two equations on A. Finally for the divergence equation on j  we observe 
from (57)–(59) on page 49 of [3] that the quantities τ̃ , η̃  and σ must satisfy

δ̃τ̃ +
1
2
∇̃σ = tr̃gM τ̃ = δ̃η̃ = 0

from which the proposition follows.� □ 

Here in the last step of the proof we have invoked the fact that τ̃ , η̃  and σ are actually 
gauge-invariant quantities. Therefore the identities (57)-(59) must hold on these quantities 
when derived from any solution to the linearised Einstein equations on Schwarzschild and 
therefore in particular γ .
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Finally to complete the proof of the main result we must show that j  and L can be expressed 
as claimed in proposition 2.1 in terms of two scalars satisfying the Regge–Wheeler and Zerilli 
equations respectively. Indeed, in view of the previous comment regarding gauge-invariance 
of τ̃ , η̃  and σ this statement on j  and L then follows immediately from section 6 of [3]. In 
particular we have:

Proposition 3.2.  Let γ  be as in proposition 3.1. Then the derived quantities τ̃ , η̃  and σ 
can be expressed as

τ̃ = ∇̃�̂d̃
(

rΨ
)
+ 6µd̃r ̂̃� /∆

−1
Z d̃Ψ,

η̃ = −�̃d̃
(

rΦ
)

,

σ = −2r /∆Ψ+ 4∇̃P̃Ψ+ 12µr−1(1 − µ) /∆
−1
Z Ψ

where the smooth scalars Φ and Ψ satisfy the Regge–Wheeler and Zerilli equations respec-
tively:

�̃Φ+ /∆Φ = − 6
r2

M
r
Φ

and

�̃Ψ+ /∆Ψ = − 6
r2

M
r
Ψ+

24
r5

M
r
(r − 3M) /∆

−1
Z Ψ+

72
r7

M
r

M
r
(r − 2M) /∆

−2
Z Ψ.

Here /∆
−p
Z  is in the inverse of the operator /∆+ 2

r2 (1 − 3M
r ) applied p -times.
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Appendix A.  An effective scalarisation of (1)

In this first section of the appendix we show how one can effectively scalarise (1) using propo-
sition 3.1.

Proposition A.1.  Let γ  be as in proposition 3.1 and define the smooth functions3

ρ = r2�̃d̃Ã,

and

ω = r3 /∆/Ae, ω = r2 /∆/Ao.

Then the following system of equations hold true4:

3 Remark that ρ = 0 if A = dχ.
4 Remark that r�gM

(r−1f ) = �̃f + /∆f  on smooth functions.

Class. Quantum Grav. 37 (2020) 067001
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�̃ρ+ /∆ρ = −�̃d̃
(

r2̃j
)

and

�̃ω + /∆ω =
µ

r2 ω − 2�̃∇̃ρ+ 2r2̃j, �̃ω + /∆ω = −2r /∆η̃P.

Proof.  The equation on ω  follows from (3). To derive the equation for ρ  we first introduce 
the quantity ξ̃ = Ã − ∇̃/Ae and then derive from (2)–(4) the equation

− 1
r2 δ̃

(
r2d̃ξ̃

)
+ /∆ξ̃ = −̃j� (A.1)

which yields the desired equation on ρ = r2�̃d̃Ã = r2�̃d̃ξ̃ .

For the last equation we derive from (3)

�̃(r−1ω) + /∆(r−1ω) =
2
r
∇̃P̃(r

−1ω)− 2r /∆ξ̃p̃

and then use (A.1).� □ 

Now as promised we achieve the scalarisation of γ  in that one can express angular deriva-
tives of γ  in terms of derivatives of the scalars ρ,ω and ω  of the above proposition and the 
invariant quantities Φ and Ψ which determine τ̃ , η̃  and σ (see proposition 3.2). Estimates on 
this scalar hierarchy then translate easily to estimates on γ  after appealing to elliptic estimates 
on spheres.

Proposition A.2.  Let γ  be as in proposition A.1 and define the quantity

Z̃ := −2r2̃j + �̃∇̃ρ+ ∇̃
(

r−1ω
)

.

Then the following relations hold:

r2 /∆̂̃γ = r2 /∆̂̃τ + ∇̃ ̂̃�Z̃,

r2 /∆tr̃gM γ̃ = 2δ̃Z̃,

r2 /D�
1 /D1γ = /D�

1

(
Z̃, r2 /∆η̃

)
+ r2 /D�

1

(
∇̃
(
r−3ω

)
, ∇̃

(
r−2ω

))
,

r2 /D�
2 /D2 /̂γ = /D�

2 /D
�
1

(
r−1ω,ω

)
,

r2 /∆/tr/γ = r2 /∆σ +
4
r

Z̃P +
2
r
/∆ω.

Proof.  Applying the relevant angular operators to the derived quantities we find

Class. Quantum Grav. 37 (2020) 067001
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r2 /∆̂̃γ = r2 /∆̂̃τ + ∇̃ ̂̃�
(

r2 /∆ζ̃
)

,

r2 /∆tr̃gM γ̃ = 2δ̃
(

r2 /∆ζ̃
)

,

r2 /D�
1 /D1γ = /D�

1

(
r2 /∆ζ̃, r2 /∆η̃

)
+ r2 /D�

1

(
d̃
(
r−3ω

)
, d̃
(
r−2ω

))
,

r2 /D�
2 /D2 /̂γ = /D�

2 /D
�
1

(
r−1ω,ω

)
,

r2 /∆/tr/γ = r2 /∆σ + 4r /∆ζ̃P̃ +
2
r
/∆ω.

The proposition then follows after noting that Z̃ = r2 /∆ζ̃  which in turn follows from (A.1) and 
the fact that r2 /∆ζ̃ = r2 /∆ξ̃ + ∇̃(r−1ω).� □ 

Appendix B.  Further remarks

In this second section of the appendix me make certain remarks concerning analytical conse-
quences of the result.

B.1.  Further remarks I: from algebra to analysis

It is of the authors opinion that the algebraic content of the above proposition is sufficiently 
elegant to be worthy of record. However one can exploit it directly to obtain quantitative decay 
estimates on sufficiently regular solutions to the tensorial system (1)5. The reason why one 
might wish to establish such estimates is discussed in the next section.

Indeed a consequence of the result is that one can express the solution γ  in terms of five sca-
lars which collectively satisfy a hierarchical system of scalar wave equations. This system can 
then be analysed (hierarchically) using the techniques developed by Dafermos–Rodnianski 
in [4, 5] and [6] for studying the scalar wave equation on Schwarzschild. This ‘scalarisation’ 
of (1) is presented in the appendix to this note and arises from the following considerations.

The bottom level of the hierarchy are the previously mentioned decoupled scalars Φ and Ψ. 
The extraction of these quantities is motivated by their gauge-invariance ( [7, 8] and [9]). Here 
gauge refers to the infinitesimal diffeomorphism symmetry of linearised gravity. The second 
level of the hierarchy then consists of two scalars determined from the gauge-invariant part 
of the Maxwell potential A(γ). Here gauge now refers to the U(1) gauge symmetry of elec-
tromagnetism. It is well known (see e.g. [10]) that in the presence of a Maxwell current such 
quantities decouple into the inhomogeneous wave equation described by the Fackerell–Ipser 
equation with inhomogeneity determined from the current. The final level of the hierarchy 
then consists of one scalar determined now from the (remaining) gauge-dependent part of 
the Maxwell potential. That these quantities satisfy inhomogeneous (but decoupled) wave 
equations follows upon closer inspection of the Maxwell equations if one allows the invariant 
quantities to act now as source terms.

It is important to note that the techniques of [4–6] cannot be used to study the asymptot-
ics of solutions to (1) directly. Indeed a geometric treatment using covariant derivatives as 

5 We note that (1) admits a well-posed Cauchy problem with the gauge conditions propagating under evolution by 
the wave part of the equation.
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‘multipliers’ would lead at best to non-coercive energies due to the Lorentzian character of 
the associated inner product. Moreover the potential term is not positive-definite. On the other 
hand expressing (1) relative to a frame leads to a coupled system of linear equations and the 
global analysis of such systems is not particularly susceptible to energy methods. We thus 
take the point of view that the main new difficulty in estimating solutions to (1) is in gaining a 
sufficient understanding of the underlying algebraic structure so as to make current techniques 
applicable. The subsequent analysis is then left to the interested reader.

B.2.  Further remarks II: on the linear stability of Schwarzschild in a harmonic gauge

The reason one might be interested in obtaining the decay estimates discussed in the previ-
ous section is due to the fact that (1) arises as the linearisation around Schwarzschild of the 
Einstein vacuum equations when expressed in a harmonic gauge (see e.g. [3]—note that the 
traceless condition comes from imposing a unimodular condition in the nonlinear theory). A 
statement of non-linear stability for Schwarzschild in this gauge thus relies fundamentally, at 
least with current techniques, on establishing sufficiently good global estimates in the linear 
theory. It is in fact in this context that the author originally discovered, during the course of 
his PhD, the main result of this note. Indeed the 1-form A was isolated precisely because it 
determines the ‘gauge-dependent’ part of γ , it being well known from the pioneering work of 
Regge–Wheeler [7] and later Zerilli [8] that the gauge-invariant part is determined by solu-
tions to the Regge–Wheeler and Zerilli equations (corresponding in proposition 2.1 to the sca-
lars Φ and Ψ). Observe then that the restriction on the angular frequencies becomes entirely 
natural in view of the fact that the l = 0, 1 modes are described completely by linearised Kerr 
solutions and infinitesimal changes in the centre of mass and linear momentum.

Unfortunately however the estimates one obtains by proceeding as described in the previ-
ous section do not appear to fall under the remit of being ‘sufficiently good’. In particular the 
decay rate obtained for a suitable energy on the radiation field rγ with r an area radius func-
tion is not integrable in ‘time’ in the wave zone. Moreover, and perhaps more fundamentally, 
this energy loses derivatives. The reason for both these losses when compared with the scalar 
wave equation is that one is estimating a hierarchical system of linear wave equations with 
the source terms exhibiting ‘bad6’ behaviour near the photon sphere and null infinity (both 
in terms of r and the derivative appearing on the source. The structure of the hierarchy in 
question also does not appear to allow these deficiencies to be overcome via means of some 
re-normalisation procedure7.

These observations suggest that harmonic gauge is perhaps not the optimal gauge in which 
to consider the nonlinear stability problem for Schwarzschild. This in turn motivated our 
search for a generalised harmonic gauge and indeed in [3] we were able to identify such a 
gauge in which both energy decay and energy boundedness holds at the desired level for the 
radiation field of sufficiently regular solutions. As it happens this choice of gauge arose as 
a modification of the generalised harmonic gauge also employed by the author in [12], the 
modification allowing estimates on the radiation field to be obtained, and the identification of 
this latter gauge can be directly related to proposition 2.1. Indeed, in this gauge the associated 

6 A model (near the photon sphere) two tier hierarchy would be �gM
φ = ∂tψ with �gM

ψ = 0, t a suitable time func-
tion, and the regularity one wants to propagate is φ being at the level of ψ.
7 Remark that the improved results of [11] for decay of the scalar wave equation are needed to even ascend the 
hierarchy so as to obtain the weak decay estimates for γ  in question.
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1-form A actually satisfies the source free Maxwell equations and can in fact be eliminated 
globally by exploiting residual gauge freedom so as to set the initial data of A to be trivial8.

Of course it is also possible that the ‘scalarisation’ outlined in the previous section is not 
the most efficient way to analyse solutions of (1). Indeed, we note the recent paper [13] which 
obtains in particular, via microlocal techniques, decay estimates for solutions to the ‘larger’ 
system

�gM
γ − 2RiemgM

· γ�� = 0,

divgM
γ − 1

2
dtrgM

γ = 0
� (B.1)

without resorting to a full ‘algebraic’ decomposition9. Yet it would appear that the algebraic 
insights of appendix B.1 could be employed even in this approach. To see this, we first observe 
that an important ingredient in [13] is obtaining a statement of mode stability for pure gauge 
solutions to (B.1). These are solutions of the form γ = LVgM  for a vector field V  solving 
�gM

V = 0. However this statement is relatively easy to establish for the system (1), which 
differs from (B.1) only by a residual gauge transformation, by exploiting the insights of the 
previous section. Indeed we first observe that pure gauge solutions to the system (1) must in 
addition satisfy divgM

V = 0 and are thus determined by solutions to the source free Maxwell 
equations expressed relative to a Lorentz gauge. Mode stability then follows from applying 
known results for the scalar wave equation on Schwarzschild combined with the argument of 
the previous section which ‘scalarises’ the now source free Maxwell system into a two tier 
hierarchy of scalar waves.
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