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Abstract
The first calculation of the frequency spectrum of gravitational wave mass 
quadrupole radiation for binaries on hyperbolic orbits was performed in De 
Vittori et  al (2012 Phys. Rev. D 86 044017). Some shortcomings of their 
derivation were pointed out, but there are still inaccuracies and supplements 
that we believe are worthwhile to communicate. In this note we provide a 
consistent and straightforward exposition of the frequency spectrum in the 
case of hyperbolic encounters and explicitly determine the parabolic limit, 
which was not possible with the previous treatments.

Keywords: gravitational wave energy spectrum, hyperbolic encounters, 
parabolic encounters, gravitational waves

1.  Introduction

The first detection of a gravitational wave signal was accomplished by LIGO in 2015 and 
resulted from a binary black hole merger [2]. Ten detections of binary black hole mergers and 
one from a merger of two neutron stars were observed in the first and second observing runs 
of Advanced LIGO and Advanced Virgo [3]. Relevant for the interpretation of these signals 
are physical quantities such as the energy spectra for binary systems on Keplerian orbits. 
In case of binary systems on circular and elliptical orbits the resulting energy spectra have 
already been well studied [4]. It is also possible that black holes will not end up in bound sys-
tems, but instead produce single scattering events. Such unbound interacting compact binaries 
can produce gravitational wave burst with emitted frequencies falling in the Advanced LIGO 
and LISA sensitivity range [5]. Several studies have estimated the event detection rate of 
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Advanced LIGO and LISA, that can be expected from such encounters, to lie in the order of 
a few events/year/Gpc3 [6–8].

A first detailed calculation of the energy spectrum for hyperbolic orbits was performed 
in [1]. Some shortcomings in the Fourier transformations occurred and were subsequently 
corrected by [5]. Nevertheless, throughout the treatments of [1] and [5], a mistaken defini-

tion of the Hankel function H(1)
α (z) is used. Although this mathematical imprecision does not 

affect the final energy spectrum formula in [5], we believe that in view of the rapid develop-
ment of gravitational wave astronomy it is important to emphasize the mathematical aspects. 
Therefore this comment contains an improved and more precise exposition of the material of 
the paper [1]. As the parabolic limit of the hyperbolic result was not undertaken in neither [1] 
nor [5], we present this derivation also here. The parabolic energy spectrum has been inferred 
from the elliptic energy spectrum in [9]. However, in [9] the domain of validity of some 
intervening Bessel functions is not correctly used. Therefore we will in this note also revisit 
this derivation and highlight thereby the similarities between the elliptic and hyperbolic case.

2.  Energy spectrum for binaries on hyperbolic orbits

The energy spectrum of gravitational wave mass quadrupole radiation for binaries on an ellip-
tic Keplerian orbit was first calculated in [4]. By an analytic continuation argument the struc-
ture of the hyperbolic frequency spectrum can be inferred from the elliptic one. However, it is 
more instructive to present a detailed outline of the calculation first. We will come back to the 
algebraic similarities between the two cases when taking the respective parabolic limits. We 
will use the notations and conventions of the multipole decomposition formalism in linearized 
general relativity as given by [10] (in particular G  =  c  =  1).

The coordinates on an hyperbolic orbit can be parametrized as

x = a(cosh u − e),� (1)

y = b sinh u = −a(e2 − 1)
1
2 sinh u,� (2)

where the hyperbolic anomaly u satisfies the hyperbolic Kepler equation

e sinh(u)− u = Ωt ≡ ω

ν
t.� (3)

Recall that for hyperbolic orbits the semi-major axis a is strictly negative and therefore the 

angular frequency is taken as Ω =
√

M
−a3 =

(
M(e−1)3

r3
p

)
1/2. The second mass moments have 

accordingly the forms

G11 = µa2(e2 − 2e cosh u +
1
2
cosh(2u) +

1
2
),

G12 = G21 = −µab(e sinh u − 1
2
sinh(2u)),

G22 = µ

(
b2

2
cosh(2u)− b2

2

)
.

�

(4)

We can decompose the total radiated energy in the frequency domain as follows4

4 Note that other authors, e.g. [5], define P(ω) through E ≡ 1
π

∫∞
0 dω P(ω).
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E =
8π
75

∫ ∞

−∞
dt

2∑
m=−2

∣∣∣(3)Ga1a2

(
Y2m

a1a2

)∗∣∣∣
2

� (5)

=
1

2π
8π
75

∫ ∞

−∞
dω

2∑
m=−2

∣∣∣∣
̂[

(3)Ga1a2

(
Y2m

a1a2

)∗]∣∣∣∣
2

� (6)

≡ 1
2

∫ ∞

−∞
dω P(ω) =

∫ ∞

0
dω P(ω),� (7)

where the second equality follows from Plancherel theorem and the hat represents the Fourier 
transform. We carry out the derivative

P(ω) =
8
75

ω6
2∑

m=−2

∣∣∣(Y2m
a1a2

)∗ Ĝa1a2

∣∣∣
2

,� (8)

and then it remains to calculate the Fourier transform of Ga1a2, that is

Ĝa1a2 =

∫ ∞

−∞
du

dt(u)
du

e−iωt(u) Ga1a2

= − 1
iω

∫ ∞

−∞
du

d
du

(
e−iωt(u)

)
Ga1a2 .

We will outline the remaining calculation for the sinh(nu) terms

̂sinh(nu) = − 1
iω

∫ ∞

−∞
du

d
du

(
e−iωt(u)

)
sinh(nu)

=
n
iω

∫ ∞

−∞
du e−iωt(u) cosh(nu)

=
n

2iω

∫ ∞

−∞
du

(
e−iνe sinh u+(iν+n)u + e−iνe sinh u+(iν−n)u

)
;

the second equality follows from partial integration and the vanishing of the boundary terms. 
This result can be expressed in terms of modified Bessel functions of the second kind Kα(x). 
One possible integral representation of Kα(x) has the form (see e.g. page 182 in the Bessel 
function treatise [11])

Kα(x) =
1
2

e
1
2 απi

∫ ∞

−∞
dt e−ix sinh t+αt.� (9)

This formula is valid for positive x. In [5] a slightly incorrect definition of the Hankel func-
tions of the first kind is used for rewriting the Fourier integrals. A correct integral representa-
tion of the Hankel functions of the first kind is

H(1)
ν (z) =

1
πi

∫

C
dt ez sinh(t)−νt,� (10)

which is valid for |arg(z)| < π
2  and where the contour C consists of the three line segments 

(−∞, 0] ∪ [0, iπ] ∪ [iπ, iπ +∞). In [5] the contour of integration is instead taken as (−∞,∞). 
Only in the limit of purely imaginary argument and with positive x, the defining contour of 
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the Hankel functions H(1)
α (ix) can be deformed to the one of the modified Bessel functions of 

the second kind. Fortunately enough, this is precisely the limit needed for the above Fourier 
integrals, so eventually the final formulae in [5] conform with our final formulae.

Using the integral representation (9) for Kα(x) we can write for the Fourier transforms5

̂sinh(nu) =
n
iω

e
1
2 νπe−

1
2 nπi [Kiν+n (νe) + eiπn Kiν−n (νe)

]
.

A similar calculation gives

̂cosh(nu) =
n
iω

e
1
2 νπe−

1
2 nπi [Kiν+n (νe)− eiπn Kiν−n (νe)

]
.

By the use of the recurrence relations

Kα(x) = − x
2α

[Kα−1(x)− Kα+1(x)],

K′
α(x) = −1

2
[Kα−1(x) + Kα+1(x)],

� (11)

we can express the Fourier coefficients entirely in terms of K′
α(x) and its derivative. Combining 

the above we obtain for the relevant terms for Ĝ

̂sinh(u) = − 2i
ωe

e
1
2 νπ Kiν (νe) ,

̂sinh(2u) = − 2
iω

e
1
2 νπ

[(
−4
e2 + 2

)
Kiν (νe)− 4

νe
K′

iν (νe)
]

,

̂cosh(u) =
2
ω

e
1
2 νπ K′

iν (νe) ,

̂cosh(2u) =
8

eω
e

1
2 νπ

[
K′

iν (νe)− 1
νe

Kiν (νe)
]

.

�

(12)

By plugging in the explicit expressions of the Fourier transforms (12) into equation (8) for 
the radiated power in the frequency domain we find

P(ω) =
8

15π
ω4 µ2

(
rp

1 − e

)4

eνπ Π,� (13)

where

Π =

∣∣∣∣
1
ν

Kiν (νe)
∣∣∣∣
2

+ 3
∣∣∣∣2K′

iν
1 − e2

e
− 2 − e2

νe2 Kiν (νe)
∣∣∣∣
2

+ 12

∣∣∣∣∣
(e2 − 1)

3
2

e2 Kiν (νe)− (e2 − 1)
1
2

νe
K′

iν (νe)

∣∣∣∣∣
2

.

�

(14)

We obtain after factoring out terms

5 Strictly speaking, when Re(α) ∈ Z, the function Kα(x) has to be interpreted as the limiting value limβ→α Kβ(x) 
for Re(β) ∈ R \ Z.
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P(ω) =
32

15π
ω4µ2

ν2

(
rp

e(1 − e)

)4

eνπ

×
{

K2
iν (νe)

[
3 − 3ν2 + 3e6ν2 + e4(1 − 9ν2) + e2(−3 + 9ν2)

]

+K′2
iν (νe)

[
3e2(−1 + e2)(1 + (−1 + e2)ν2)

]

+Kiν (νe)K′
iν (νe)

[
−3eν(4 − 7e2 + 3e4)

]}
.

�

(15)

The power emitted at zero frequency is non-zero for e  >  1; this effect is called gravitational 
wave memory. To see this, we expand K0 (νe) and K′

0 (νe) to first order in ν  around ν = 0. 
The result is (see e.g. formula (9.6.13) in [12])

K0 (νe) = −γ − log
( e

2

)
− log(ν) +O(ν2),

K′
0 (νe) = − 1

eν
+

eν
4

(
1 − 2γ + 2 log

(
2

eν

))
+O(ν2),

where γ  denotes Euler’s constant. Inserting the above expressions into the equations (13)–
(14) and then taking the limit towards ω = 0 gives

lim
ω→0

P(ω) =
32
5π

µ2M2(e2 − 1)
a2e4 .� (16)

The gravitational memory effect that results from hyperbolic encounters has been calcu-
lated up to 1.5 post-Newtonian accuracy in [13]. They find that only the cross polarization 
state of the radiation field contributes to the memory effect and that in the Newtonian limit this 

state behaves as |h×|2 ∝ µ2M2

a2
e2−1

e4 , which agrees with expression (16).

3.  Energy spectrum for binaries on parabolic orbits

In this section we determine the parabolic energy spectrum by taking the appropriate limit of 
the corresponding elliptic and hyperbolic result. Both approaches agree.

The total energy emitted into the n-harmonic E(n) = 2π
Ω P(n), where P(n) is the power 

emitted into the n-harmonic, during one elliptic orbit is equivalent the energy spectrum dE(ω)
dω  

multiplied by Ω,

dE(ω)
dω

∣∣∣∣
elliptic

=
2π
Ω2 P(n),� (17)

and given that the involved expressions are subject to the substitution

n �→ ω

Ω
=

r3/2
p

M1/2

ω

(1 − e)3/2 ≡ ν̃
1

(1 − e)3/2 .� (18)

We recast the elliptic energy spectrum (for the power spectrum P(n) see e.g. [4]) to the 
form

dE(ω)
dω

∣∣∣∣
elliptic

=
8π
15

µ2ω4 r4
p

(1 − e)4 Ψ,� (19)

where
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Ψ =

∣∣∣∣
(1 − e)3/2

ν̃
Jn(ne)

∣∣∣∣
2

+ 3
∣∣∣∣2J′n(ne)

1 − e2

e
− (1 − e)3/2

ν̃

2 − e2

e2 Jn(ne)
∣∣∣∣
2

+ 12

∣∣∣∣∣
(1 − e2)

3
2

e2 Jn(ne)− (1 − e2)
1
2 (1 − e)3/2

eν̃
J′n(ne)

∣∣∣∣∣
2

.

�

(20)

In the limit of e → 1, n → ∞, we need Jn(nz) and J′n(nz) as n → ∞. We have the following 
asymptotic expansion for Jn(nz) (this Bessel function expansion and the ones to follow are 
derived in [14])

Jn(nz) ∼
(

4ζ
1 − z2

)1/4
{

Ai(n2/3ζ)

n1/3

∞∑
s=0

As(ζ)

n2s +
Ai′(n2/3ζ)

n5/3

∞∑
s=0

Bs(ζ)

n2s

}
,

�

(21)

as n → ∞ and provided that |arg(z)| < π. In the above formula Ai denotes the Airy function 
of the first kind and ζ is given by

2
3
(−ζ)3/2 = (z2 − 1)1/2 − arccos

(
1
z

)
.� (22)

The coefficients As and Bs are given by

As(ζ) =

2s∑
m=0

bmζ
− 3

2 mU2s−m,

ζ
1
2 Bs(ζ) = −

2s+1∑
m=0

amζ
− 3

2 mU2s−m+1,

in which U0  =  1 and with u = (1 − z2)−
1
2

Us+1 =
1
2

u2(1 − u2)
dUs

du
+

1
8

∫ u

0
du (1 − 5u2)Us.

The remaining coefficients are recursively defined by a0 = b0 = 1 and

as =
(2s + 1)(2s + 3) · · · (6s − 1)

s! (144)s ,

bs = −6s + 1
6s − 1

as.

Under the condition that nz  <  n, one can find the following asymptotic expansion of Jn(nz) 
(see e.g. page 249 in [11])

Jn(nz) ∼ 1
π

(
2(1 − z)

3z

) 1
2

K 1
3

(
2

3
2

3z
1
2

n(1 − z)
3
2

)
.� (23)

It is easy to verify that in the limit of z → 1, the leading order term of the expansion (21) 
coincides with (23). The disadvantage of formula (23) is that it is not possible to determine the 
exact domain of validity. In [9] formula (23) is used. However, in [9] it is also applied to the 
case when nz  >  n, where the formula strictly speaking does not hold. All asymptotic formulae 
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we use here are more general and have no restrictions on the value of z. In addition, as we 
will see, the general asymptotic formulae make it very transparent why the parabolic limit of 
both the elliptic and hyperbolic cases coincide. The Bessel function derivative J′n(ne) has the 
asymptotic expansion

J′n(nz) ∼ −2
z

(
1 − z2

4ζ

)1/4
{

Ai(n2/3ζ)

n4/3

∞∑
s=0

Cs(ζ)

n2s +
Ai′(n2/3ζ)

n2/3

∞∑
s=0

Ds(ζ)

n2s

}
,

�

(24)

where

Cs(ζ) = χ(ζ)As(ζ) + A′
s(ζ) + ζBs(ζ),

Ds(ζ) = As(ζ) + χ(ζ)Bs−1(ζ) + B′
s−1(ζ),

and

χ(ζ) =
4 − z2

(
4ζ

1−z2

)3/2

16ζ
.

Before giving the final expression for the parabolic case as derived as a limit from the elliptic 
case, we consider the corresponding limit from the hyperbolic energy spectrum. To obtain 
the parabolic energy spectrum, we need to perform in the expressions (13)–(14) the limit as 

ν = ν̃
(e−1)3/2 → ∞. The desired asymptotic expansions of the modified Bessel functions of 

the second kind are

Kiν(νe) ∼ πe−
νπ

2

(
4ζ

1 − e2

)1/4

×

{
Ai(−ν2/3ζ)

ν1/3

∞∑
s=0

(−1)s As(ζ)

ν2s +
Ai′(−ν2/3ζ)

ν5/3

∞∑
s=0

(−1)s Bs(ζ)

ν2s

}
,

�

(25)

K′
iν(νe) ∼ −πe−

νπ
2

2
e

(
1 − e2

4ζ

)1/4

×

{
Ai(−ν2/3ζ)

ν4/3

∞∑
s=0

(−1)s Cs(ζ)

ν2s − Ai′(−ν2/3ζ)

ν2/3

∞∑
s=0

(−1)s Ds(ζ)

ν2s

}
.

�

(26)

We will now specialize the above expressions to the limit of e → 1. A power counting 
argument shows that, in this limit, only the leading term in each Bessel function expansion 
evaluates to a non-zero value in the elliptic spectrum (19)–(20) and in the hyperbolic spectrum 
(13)–(14). Expanding equation (22) around z  =  1 yields the following value for ζ

ζ = 2
1
3 (1 − z).� (27)

Applying the above limit of ζ and restoring n = ν̃ 1
(1−e)3/2  and ν = ν̃

(e−1)3/2  in the respec-
tive variables we find the following expressions for the leading terms of the Bessel function 
expansions (21), (24), (25) and (26)
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Jn(ne) ∼
(

2
ν̃

)1/3

(1 − e)
1
2 Ai(2

1
3 ν̃

2
3 ),� (28)

J′n(ne) ∼ −
(

2
ν̃

)2/3 1 − e
e

Ai′(2
1
3 ν̃

2
3 ),� (29)

Kiν(νe) ∼ πe−
νπ

2

(
2
ν̃

)1/3

(e − 1)
1
2 Ai(2

1
3 ν̃

2
3 ),� (30)

K′
iν(νe) ∼ πe−

νπ
2

(
2
ν̃

)2/3 e − 1
e

Ai′(2
1
3 ν̃

2
3 ).� (31)

An inspection of the structure of the energy spectra (19)–(20) and (13)–(14) and of the 
above expansions makes it evident that the parabolic limit of the elliptic energy spectrum and 
the parabolic limit of the hyperbolic energy spectrum coincide. Indeed, both limits give the 
parabolic energy spectrum as

dE(ω)
dω

∣∣∣∣
parabolic

=
128π

5
ω4 µ2 r4

p

×

{
Ai2(2

1
3 ν̃

2
3 )

(
2
ν̃

)2/3 (
2 +

1
12ν̃2

)

+Ai′2(2
1
3 ν̃

2
3 )

(
2
ν̃

)4/3

+Ai(2
1
3 ν̃

2
3 )Ai′(2

1
3 ν̃

2
3 )

1
ν̃2

}
.

�

(32)
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