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Abstract
In certain models of conformal gravity, the propagation of gravitational waves 
is governed by a fourth order scalar partial differential equation. We study 
the initial value problem for a generalization of this equation, and derive a 
Kirchhoff-like explicit solution in terms of the field and its first three time 
derivatives evaluated on an initial hypersurface, as well as second order spatial 
derivatives of the initial data. In the conformal gravity case, we establish 
that if the initial data is featureless on scales smaller than the length scale 
of conformal symmetry breaking, then we recover the ordinary behaviour of 
gravitational waves in general relativity. We also confirm that the effective 
weak field gravitational force exerted by a static spherical body in such 
models becomes constant on small scales; i.e. conformal gravity is effectively 
2-dimensional at high energies.

Keywords: modified gravity, gravitational waves, conformal gravity

(Some figures may appear in colour only in the online journal)

1.  Introduction

Our current best understanding of cosmology and gravitation has some well-known unde-
sirable features: Einstein’s general relativity is inconsistent with observations of galactic 
dynamics, gravitational lensing, and the expansion history of the universe without assuming 
the existence of dark matter that is virtually impossible to detect non-gravitationally. The 
observed late time acceleration of the universe is best modelled by introducing a cosmological 
constant into the gravitational action that takes on a value hundreds of orders of magnitude 
smaller than a naïve first estimate. Finally, attempts to apply straightforward techniques from 
quantum field theory to quantize gravitational fluctuations around flat space lead to incurable 
divergences in physical quantities.
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Many authors have postulated that the root of some, if not all, of these problems is that 
Einstein’s theory is not the true theory of gravitation [1, 2][reviews]. However, exchanging 
general relativity for some modified gravity model is not trivially done: General relativity is 
extremely accurate in describing astrophysical phenomena on sub-galactic scales. The theory 
passes very precise Solar System tests, accurately predicts the spin-down of binary pulsars, 
and has recently been shown to be consistent with observation of gravitational wave signals 
from binary black hole and neutron star mergers [3–7]. It is therefore imperative that any pro-
posed modified theory of gravity be tested against astrophysical observations that are entirely 
consistent with general relativity to within experimental errors [8][review].

One theoretically appealing approach to modifying gravity involves assuming there exists 
a fundamental local conformal (Weyl) symmetry that is broken at low energy [9–15]. Some of 
the diverse motivations for such an approach are outlined in [16]: but one of the most compel-
ling is that such theories are power-counting renormalizable [17]. However, there are several 
important negative features of such models. Generally, they are fourth-order theories of grav-
ity, and are hence typically plagued by perturbative ghosts. Some authors have claimed the 
ghost issue can be solved via various mechanisms [18–25]. Also, since the world that we live 
is clearly not conformally invariant, such models require a mechanism to spontaneously break 
conformal symmetry at low energies.

In this paper, we study the classical dynamics of gravitational waves model featuring a 
dynamically broken conformal symmetry [26–29]. Specifically, we are interested in the com-
plete solution of the initial value problem for vacuum gravitational waves in conformal gravity 
in a certain gauge. We will actually solve a slightly more general problem: that of a fourth 
order partial differential equation that can be interpreted as the wave equation obtained when 
two ordinary Klein–Gordan differential operators act in succession to annihilate a scalar field. 
We will obtain the generalized Kirchhoff formula solution for the scalar field in terms its 
zeroth, first, second and third time derivative on an initial hypersurface. For the conformal 
gravity case, we establish the circumstances under which we recover the ordinary propagation 
of gravitational waves in general relativity: namely, if the initial data and source are feature-
less on scales smaller than the scale of conformal symmetry breaking, then then deviations 
from general relativity are negligible.

The plan of the paper is as follows: in section 2, we review the equations of motion for 
gravitational waves in conformal gravity models. In section 3, we introduce a generalization 
of the conformal gravitational wave equation of motion and derive the associated retarded 
Green’s function. In section 4, we use this Green’s function to solve the initial value problem 
in general, and then specifically for the conformal gravity case. Section 5 is reserved for a 
discussion of our results.

2.  Gravitational waves in conformal gravity

Our starting point is the effective field equations of conformal gravity as presented in [27–29]1:

εGαβ + Λgαβ + 2M−2
� Bαβ = M−2

Pl Tαβ ,� (2.1)

where M� is a mass scale above which exotic physics effects become important; 
MPl = (8πG)−1/2 is the reduced Planck mass; Gαβ and Tαβ are the Einstein and stress-energy 
tensors as usual; ε = ±1; and Bαβ is the conformally invariant Bach tensor defined by:

1 Note that we follow the Misner–Thorne–Wheeler sign conventions, so (2.1) differs from the field equations pre-
sented in [28, 29] by the sign of the Einstein tensor.
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Bµν = −∇α∇αSµν +∇α∇µSαν + CµανβSαβ ,� (2.2a)

Sαβ =
1
2
(Rαβ − 1

6
Rgαβ),� (2.2b)

where Cαβγδ is the Weyl tensor.
The field equation (2.1) can be derived [11, 28, 29] from a conformally invariant action of 

the form

S = −M2
Pl

M2
�

∫
d4x

√
−g C2 + SΨ + Sm,� (2.3)

where SΨ is the action of a conformally coupled scalar field Ψ, where C2 = CαβγδCαβγδ, 
and Sm is the matter action. The vacuum expectation value of this scalar field is Ψ = Ψ0 = 
constant. This solution spontaneously breaks conformal symmetry, and when it is substituted 
back into the action we obtain

S =
M2

Pl

2

∫
d4x

√
−g

(
εR − 2Λ− 2

M2
�

C2
)
+ Sm,� (2.4)

where the parameter ε = ±1 depends on the details of the conformal symmetry breaking 
mechanism; in the original work of [11], the choice ε = −1 was made.

The main motivation to study actions of the form (2.4) is that at high energies the C2 term 
(which involves four derivatives of the metric) will dominate over the Einstein–Hilbert term 
(which has two derivatives). This results in a model which is conformally invariant at high 
energy and potentially renormalizable, but reduces to ordinary general relativity at low energy. 
The mass scale M� controls the energy scale of the transition between these two behaviours. 
Note that in order to recover general relativity at low energy, one need to choose ε = +1, 
which is the opposite of the original choice of [11]. Despite this problem with the ε = −1 
case, we include it in our work below for completeness.

We will neglect the cosmological constant Λ below (the dynamics of gravitational waves 
including finite Λ effects were considered in [27]). Note that the Bach tensor involves fourth 
order derivatives of the metric, hence this is a higher derivative theory of gravity.

If (2.1) is linearized about flat space such that gαβ = ηαβ + hαβ , the equation of motion for 
metric perturbations hαβ in the so-called Teyssandier gauge [30] is [27–29]:

M−2
� (�− εM2

�)�hαβ = 2M−2
Pl T̃αβ ,� (2.5a)

T̃αβ = Tαβ − 1
2
ηαβT +

1
6
εM−2

� ηαβ�T .� (2.5b)

Here, � = −∂2
t +∇2 and Tαβ is the stress-energy tensor of matter, which is assumed to be 

the same order as hαβ. We see that if M� → ∞, we recover the ordinary equation of motion 
for gravitational waves in general relativity if ε = +1.

Because the differential operator has a trivial index structure, the initial value problem 
associated with (2.5) is formally equivalent to solving

(�− m2)�φ(x) = αF(x),� (2.6)

for the unknown function φ : H1,3 → R representing the components of hαβ
2. Here, m2 = εM2

� 
is a possibly imaginary mass parameter, F : H1,3 → R is a given source function representing 

2 H1,3 refers to 4-dimensional Minkowski space.
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the components of Tαβ, and α = 2M2
�/M2

Pl is a coupling constant. Therefore, in the subse-
quent sections we will concentrate on a generalization of this type of scalar field equation.

3.  Green’s functions for the generalized fourth order wave equation

In this section, we develop the Green’s function for equations like (2.6). Because it takes very 
little additional effort, we will work with a slight generalization of (2.6):

(�− m2
1)(�− m2

2)φ(x) = αF(x), x = (t, x) ∈ H1,3.� (3.1)
The two masses m1 and m2 may be equal to one another. We will be concerned with the ini-
tial value (Cauchy) problem for φ. Therefore, we specify initial data on a t  =  t0  =  constant 
hypersurface:

φ
∣∣
t=t0

= Φ0(x), ∂tφ
∣∣
t=t0

= Φ1(x), ∂2
t φ

∣∣
t=t0

= Φ2(x), ∂3
t φ

∣∣
t=t0

= Φ3(x).
�

(3.2)

We will find in useful to re-write (3.1) in terms of differential operators:

L̂0φ(x) = αF(x),� (3.3)

L̂0 = L̂1L̂2, L̂1 = �− m2
1, L̂2 = �− m2

2.� (3.4)

We note that the two second order operators obviously commute [L̂1, L̂2] = 0 and satisfy

L̂1 − L̂2 = (m2
2 − m2

1)ˆ.� (3.5)

The identity ˆ is defined by

ˆf (x) =
∫

d4x δ(4)(x − x′) f (x′) = f (x),� (3.6)

where here and below f : H1,3 → R  is an arbitrary test function, and δ(4)(x − x′) is the 
4-dimensional Dirac δ-function (distribution).

Associated with any given nth order differential operator L̂ : C4(H1,3) → C4−n(H1,3) with 
n � 4, one can define a right inverse operator L̂−1 : C4−n(H1,3) → C4(H1,3) such that

L̂L̂−1 = ˆ.� (3.7)

As usual, we take the action of L̂−1 on a test function to be a convolution with a Green’s func-
tion G:

L̂−1f (x) =
∫

d4x′ G(x − x′) f (x′), L̂G(x − x′) = δ(4)(x − x′).� (3.8)

Note that it is not true that L̂−1L̂f = f  unless f  vanishes at infinity.
In general, L̂−1 is not uniquely defined unless one imposes boundary conditions on G. In 

this work, we will concentrate exclusively on retarded boundary conditions, which state that 
G(x − x′) = 0 if x /∈ J+(x′), where J+(x′) is the causal future x′:

J+(x′) =
{

x = (t, x) ∈ H1,3 | (t − t′)2 � |x − x′|2, t > t′
}

.� (3.9)

We will denote the inverse of the L̂i operators defined in (3.4) by L̂−1
i  and the associated 

Green’s functions by Gi.
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Now, since L̂0 = L̂1L̂2 = L̂2L̂1, it follows that

L̂−1
0 = L̂−1

2 L̂−1
1 = L̂−1

1 L̂−1
2

⇒ G0(x − x′) =
∫

d4x′′G2(x − x′′)G1(x′′ − x′) =
∫

d4x′′G1(x − x′′)G2(x′′ − x′).

� (3.10)
These imply the identities

L̂1G0(x − x′) = G2(x − x′), L̂2G0(x − x′) = G1(x − x′).� (3.11)
Note that the retarded G1 and G2 Green’s functions are known explicitly [31]

Gi(x − x′) =
Θ(t − t′)

4π

[
−δ(σ) +

Θ(−σ)miJ1(mi
√
−2σ)√

−2σ

]
, i = 1, 2,� (3.12)

where Θ is the Heaviside function, J1 is the Bessel function of the first kind of order 1, and

σ = σ(x − x′) = − (t − t′)2 − |x − x′|2

2
� (3.13)

is Synge’s world function, which is a Lorentz invariant.
We now derive a formula for the Green’s function G0 satisfying L̂0G0(x − x′) = δ(4)(x − x′) 

with retarded boundary conditions when m1 �= m2:

G0(x − x′) =
Θ(t − t′)Θ(−σ)

4π
√
−2σ

[
m1J1(m1

√
−2σ)− m2J1(m2

√
−2σ)

m2
1 − m2

2

]
.� (3.14)

To show this, consider

L̂0[(m2
1 − m2

2)
−1(L̂−1

1 − L̂−1
2 )] = (m2

1 − m2
2)

−1(L̂2L̂1L̂−1
1 − L̂1L̂2L̂−1

2 )

= (m2
1 − m2

2)
−1(L̂2 − L̂1)

= ˆ;

�

(3.15)

i.e. L̂−1
0 = (m2

1 − m2
2)

−1(L̂−1
1 − L̂−1

2 ). From this, it follows that
∫

d4x
{
L̂0

[
G1(x − x′)− G2(x − x′)

m2
1 − m2

2

]
− δ(4)(x − x′)

}
f (x′) = 0,� (3.16)

where f  is an arbitrary test function, and G1.2 are Green’s functions of L̂1,2. Since f  is arbitrary, 
the quantity in curly brackets must be zero. That is,

G0(x − x′) =
G1(x − x′)− G2(x − x′)

m2
1 − m2

2
� (3.17)

is a solution of L̂0G0(x − x′) = δ(4)(x − x′). Furthermore, if we take G1,2 to be the retarded 
Green’s functions given in (3.12), G0 satisfies retarded boundary conditions and we obtain 
(3.14). In appendix, we provide an alternate derivation of (3.14). Note that for the conformal 
gravity case, we can take m2

1 = 0 and m2
2 = εM2

�, which leads to

G0(x − x′) =
G2(x − x′)− G1(x − x′)

εM2
�

.� (3.18)

To obtain a guess for the Green’s function in the degenerate m1 = m2 = m case, we set

m1 = m, m2 = m + ε,� (3.19)
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in (3.14) and take the limit ε → 0. We obtain:

G0(x − x′) =
Θ(t − t′)Θ(−σ)J0(m

√
−2σ)

8π
.� (3.20)

We confirm this formula in appendix by solving L̂0G0(x − x′) = δ(4)(x − x′) directly. Finally, 
the m → 0 limit of (3.21) yields

G0(x − x′) =
Θ(t − t′)Θ(−σ)

8π
.� (3.21)

This is the retarded Green’s function of the ‘box-squared’ operator �2 = (−∂2
t +∇2)2. It has 

been previously calculated by [26].
Before moving on, we comment that the derivation (3.15) holds for equally well for any 

two differential operators that differ by a constant; i.e. that satisfy (3.5). So, we could write

L̂1 = Q̂ − m2
1, L̂2 = Q̂ − m2

2,� (3.22)

where Q̂ is a nth order differential operator. Then, (3.18) will hold with G1 and G2 being the 
Green’s functions of the operators in equation (3.22)3.

4.  Initial value problem for the generalized fourth order wave equation

4.1.  Generalized Kirchhoff’s formula

We now turn our attention to the initial value problem for the PDE (3.1) with initial data given 
by (3.2). Consider an arbitrary region of spacetime Ω with boundary ∂Ω. Also, let nα be a 
normal vector to ∂Ω that is outward pointing when ∂Ω is timelike and inward pointing when 
∂Ω is spacelike. Using the divergence theorem, we have this modified version of Green’s 
second identity:

∫

Ω

d4x L̂iψ =

∫

Ω

d4xψL̂iφ+

∫

∂Ω

dS nα(φ
←→
∂αψ), i = 1, 2,� (4.1)

where ψ and φ can be taken to be either scalar functions or distributions (such that the int
egrals appearing above are well-defined). Also, dSα = nαdS is the directed surface element 
on ∂Ω. If we take i  =  1, φ to be a solution of (3.3), and ψ = L̂′

2G0(x − x′) with x ∈ Ω, we get

φ(x) =
∫

x′∈Ω

d4x [L̂′
1φ(x

′)][L̂′
2G0(x − x′)] +

∫

x′∈∂Ω

dS nα[φ(x′)
←→
∂′
α L̂′

2G0(x − x′)].

� (4.2)
Here, the prime on the differential operators is meant to indicate differentiation with respect to 
x′. Applying Green’s identity again to the first integral on the righthand side, we get

φ(x) =
∫

x′∈Ω

d4x G0(x − x′)αF(x′) +
∫

x′∈∂Ω

dS nα[φ(x′)
←→
∂′
αG1(x − x′) + (L̂′

1φ(x
′))

←→
∂′
αG0(x − x′)],

� (4.3)

where we have made use of the fact that L̂′
2G0(x − x′) = G1(x − x′). Note that we can derive 

an equivalent formula by repeating this derivation with ψ = L̂′
1G0(x − x′):

3 Note that if L̂1,2 are nth order operators, then L̂0 : C2n(H1,3) → C0(H1,3). Also, in this case m1 and m2 do not 
necessarily have dimensions of mass.
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φ(x) =
∫

x′∈Ω

d4x G0(x − x′)αF(x′) +
∫

x′∈∂Ω

dS nα[φ(x′)
←→
∂′
αG2(x − x′) + (L̂′

2φ(x
′))

←→
∂′
αG0(x − x′)].

� (4.4)
Subtracting the two expressions yields:

0 =

∫

x′∈∂Ω

dS nα[φ(x′)
←→
∂′
α [G1(x − x′)− G2(x − x′)− (m2

1 − m2
2)G0(x − x′)].

� (4.5)
Since this holds for arbitrary regions Ω, we can conclude that the quantity in square brackets 
is zero, reproducing equation (3.18).

We can now specialize to the geometry depicted in figure 1. Making note of the fact that 
nα∂′

α = ∂t′ and that all Green’s functions depend on τ = t − t′, we obtain

φ(x) = φF(x) + φ1(x) + φ2(x),� (4.6)

where

φF(x) =
∫

x′∈Ω

d4x G0(x − x′)αF(x′),� (4.7a)

φ1(x) =− ∂

∂τ

∫

x′∈∂Ω

dS G1(x − x′)φ(x′)−
∫

x′∈∂Ω

dS G1(x − x′)∂t′φ(x′)

=− ∂

∂τ

∫

x′∈∂Ω

dS G1(x − x′)Φ0(x′)−
∫

x′∈∂Ω

dS G1(x − x′)Φ1(x′),

� (4.7b)

φ2(x) =− ∂

∂τ

∫

x′∈∂Ω

dS G0(x − x′)L̂′
1φ(x

′)−
∫

x′∈∂Ω

dS G0(x − x′)L̂′
1∂t′φ(x′)

=− ∂

∂τ

∫

x′∈∂Ω

dS G0(x − x′)[−Φ2(x′) + (∇2
x′ − m2

1)Φ0(x′)]

� (4.7c)

−
∫

x′∈∂Ω

dS G0(x − x′)[−Φ3(x′) + (∇2
x′ − m2

1)Φ1(x′)].� (4.7d)

These formulae give the explicit solution of the initial value problem (3.1) and (3.2) in terms 
of the Green’s functions derived in section 3. From these, the existence and uniqueness of 
solutions of (3.1) and (3.2) is easily established.

Figure 1.  Spacetime geometry.
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4.2.  Specialization to the conformal gravity case

We now apply the general results of section 4 to the conformal gravity scenario. Specifically, 
we set

m1 = 0, m2 =

{
M�, ε = +1,
iM�, ε = −1,

α = 2M2
�/M2

Pl,� (4.8)

which yields the Green’s functions

G0(x − x′) =
Θ(τ)Θ(τ − R)

4πM�

√
τ 2 − R2

{
J1(M�

√
τ 2 − R2), ε = +1,

I1(M�

√
τ 2 − R2), ε = −1,

� (4.9)

G1(x − x′) = −Θ(τ)δ(τ − R)
4πτ

.� (4.10)

Here, I1 is a modified Bessel function of the first kind.
Plugging these expressions into (4.7) above, we obtain the following explicit expression for 

the solution of the initial value problem when ε = 1:

φ(x) = φF(x) + φ1(x) + φ2(x),� (4.11a)

φF(x) =
M�

2πM2
Pl

∫ τ

0
dτ ′

∫ τ ′

0
dR

∫∫
sin θ dθ dϕ

R2J1(M�

√
τ ′2 − R2)√

τ ′2 − R2
F(R, θ,ϕ),

� (4.11b)

φ1(x) =
1

4π
∂

∂τ

(
1
τ

∫∫

∂B
sin θ dθ dϕΦ0

)
+

1
4πτ

∫∫

∂B
sin θ dθ dϕΦ1,� (4.11c)

φ2(x) =− 1
4πM�

∂

∂τ

∫ τ

0
dR

∫∫
sin θ dθ dϕ

R2J1(M�

√
τ 2 − R2)√

τ 2 − R2
(−Φ2 +∇2Φ0)

− 1
4πM�

∫ τ

0
dR

∫∫
sin θ dθ dϕ

R2J1(M�

√
τ 2 − R2)√

τ 2 − R2
(−Φ3 +∇2Φ1).

� (4.11d)
The corresponding equations for the ε = −1 case are found by exchanging J1 for I1.

We now comment on the various parts of this solution: First, we note that (4.11c) is just the 
ordinary Kirchhoff formula for the solution of �φ = 0 [32]. It’s presence in the full solution 
of (2.6) indicates the existence of a massless mode.

Equation (4.11b) represents the direct response of φ to the source F. This equation was 
studied in some detail in [27], where it was pointed out that the fact that the Green’s func-
tion is finite and has support away from the past light cone means that gravitational signals 
tend to be blurry in conformal gravity. Let us now consider the limit when M� is large. In 
this case, the argument of the integral will be sharply peaked in neighbourhood of R = τ ′. If 
we assume that the source does not vary very much in this neighbourhood, then we can take 
F(R,Ω) ≈ F(τ ′,Ω), which yields:

S S Seahra﻿Class. Quantum Grav. 37 (2020) 065003
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φF(x) ≈
1

2πM2
Pl

∫ τ

0
dτ ′

∫∫
sin θ dθ dϕF(τ ′, θ,ϕ)

∫ τ ′

0
dR

M�R2J1(M�

√
τ ′2 − R2)√

τ ′2 − R2

=
1

2πM2
Pl

∫ τ

0
dτ ′

∫∫
sin θ dθ dϕF(τ ′, θ,ϕ)

(
τ ′ − sinM�τ

′

M�

)

≈ 1
2πM2

Pl

∫ τ

0
dτ ′τ ′

∫∫
sin θ dθ dϕF(τ ′, θ,ϕ),

�

(4.12)

where in the last line, we have assumed that the source only has support on the portion of the 
lightcone with M�τ

′ � 1; i.e. the source in not located within a distance of 1/M� of the obser-
vation point. Equation (4.12) is the usual formula for the solution of �φ = −2M−2

Pl F  with ‘no 
incoming radiation’ boundary conditions.

It is also interesting to examine (4.11b) for the case of a static and eternal point source 
located a spatial distance of R0 from the observer:

F(R, θ,ϕ) = κ
δ(R − R0)δ(θ − θ0)δ(ϕ− ϕ0)

R2 sinΘ
.� (4.13)

Taking the τ → ∞ limit and making use of integral 6.645 in [33], we obtain

φF =
κ(1 − e−M�R0)

2πR0M2
Pl

.� (4.14)

As usual, we can interpret φF = −2UG , where UG is the effective weak field gravitational 
potential outside a static and spherically symmetric body. Selecting the constant κ to match 
the Newtonian result at large distances, we get

UG = −GM(1 − e−M�R0)

R0
.� (4.15)

From this, we can calculate the gravitational force FG = −∂UG/∂R0 exerted by the source on 
small scales:

FG = −GMM2
�

2

[
1 − 2

3
M�R0 +O(M2

�R2
0)

]
.� (4.16)

We see a strong deviation from the standard inverse square law on scales � M−1
� . Interestingly, 

the gravitational force becomes constant on very small scales, which is what one would expect 
in a (1 + 1)-dimensional theory of gravity. The effective dimensional reduction of conformal 
gravity to 2 dimensions [34] on small scales has been previously noted in [27]. Since laboratory 
tests have confirmed Newton’s law on scales � 10−8 m  [35], this constrains M−1

� � 10−8 m.
Equation (4.11d) gives the dependance of the waveform on higher order time derivative 

initial data; i.e. Φ2 = (∂2φ/∂t2)t=t0 and Φ3 = (∂3φ/∂t3)t=t0. It is interesting to re-express this 
contribution as follows:

φ2(x) = − ∂

∂β

∫ β

0
dx

∫∫
sin θ dθ dϕ

4π
x2J1(

√
β2 − x2)√

β2 − x2

(
�φ

M2
�

) ∣∣∣∣
t=t0

−
∫ β

0
dx

∫∫
sin θ dθ dϕ

4π
x2J1(

√
β2 − x2)√

β2 − x2

(
∂t�φ

M3
�

) ∣∣∣∣
t=t0

.

� (4.17)

S S Seahra﻿Class. Quantum Grav. 37 (2020) 065003



10

Where β = M�t . Now, if we consider plane wave like initial data:

Φ0 = eik·x, Φ1 = (iω)eik·x, Φ2 = (iω)2eik·x, Φ3 = (iω)3eik·x,� (4.18)

then we see that φ2 will be negligible compared to φ1 if

k · k � M2
�, |ω| � M�.� (4.19)

In other words, if the initial data does not involve wavenumbers or frequencies � M�, then the 
contribution of the second and third time derivatives of the initial data to the total waveform 
will be suppressed:

φ(x) � φF(x) + φ1(x).� (4.20)

Furthermore, if the source does not vary much over scales � 1/M�, the φF  will be given by 
(4.12), which means that (4.20) reproduces the Kirchhoff formula for �φ = F .

Finally, we comment on the ε = −1 case. In this situation, it is easy to see that G0(x − x′) 
as given in equation (4.9) diverges exponentially as 

√
τ 2 − R2 → ∞. This means that the solu-

tions to (2.6) are inherently unstable. This could have easily been guessed from the original 
wave equation, since any solution (�+ M2

�)φ = 0 is both a tachyon and also automatically a 
solution of (�+ M2

�)�φ(x) = αF(x).

5.  Discussion

In this paper, we have written down the explicit solution for a certain class of fourth order 
scalar wave equation in terms of an arbitrary source function and initial data involving time 
derivatives up to order three. For a certain choice of parameters, the fourth order equation gov-
erns the evolution of gravitational waves in conformal gravity. If the energy scale of the 
conformal symmetry breaking in such model is of order M�, we find that for initial data and 
source functions that do not vary much on scales � 1/M� our solution reduces down to the 
regular Kirchhoff formula for the solution of the ordinary massless wave equation.

Do the effects described in this paper have any observational consequences? Clearly, the 
answer depends on the characteristic size of a source or initial data compared to 1/M�. If 
M� � 10−8 m as suggested by tests of Newton’s law, it is hard to imagine many late uni-
verse astrophysical phenomena that would produce gravitational waves with behaviour appre-
ciably different from general relativity. More promising would be small scale gravitational 
waves generated in the early universe via inflation, preheating, or some other mechanism. 
Investigating the cosmological transfer function between the early and late universe in confor-
mal gravity could be an interesting exercise in the future.
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Appendix.  Direct calculation of the retarded Green’s function

Here, we present an alternate derivation of the Green’s function of L̂0 using a generalization 
of the procedure detailed in sections 12.1–12.4 of [31]. The PDE to be solved is
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L̂0G0(x − x′) = δ(4)(x − x′).� (A.1)

The first step involves making the ansatz:

G0(x, x′) = Θ(t − t′)g(σ(x, x′)),� (A.2)

where Θ is the Heaviside function, and

σ(x, x′) = − (t − t′)2 − |x − x′|2

2
� (A.3)

is Synge’s world function, which is a Lorentz invariant. From (3.11), we know that

L̂1G0(x − x′) = G2(x − x′).� (A.4)

Let us integrate this equation with respect to x over a bounded spacetime region Ω containing 
the point x′. After making use of the divergance theorem, we obtain

∫

∂Ω

∇αG0(x − x′)dΣα − m2
1

∫

Ω

G0(x − x′)d4x =

∫

Ω

G2(x − x′)d4x,� (A.5)

where ∂Ω is the boundary of Ω, dΣα is the surface element on ∂Ω. Now, let us introduce a 
coordinate system

t = t′ + w cosχ� (A.6a)

x = x′ + w sinχ sinΘ cosφ,� (A.6b)

y = y′ + w sinχ sinΘ sinφ,� (A.6c)

z = z′ + w sinχ cosΘ.� (A.6d)

In these coordinates, x′ corresponds to w  =  0 and the metric of flat space is

ds2 = − cos 2χ dw2 + 2w sin 2χ dw dχ+ w2[cos 2χ dχ2 + sin2 χ(dΘ2 + sin2 Θ dφ2)].� (A.7)

We take ∂Ω to be the surface w =
√

2ε and will ultimately take the ε → 0 limit. The only non-
vanishing component of the surface element on ∂Ω is

dΣw = w3 sin2 χ sinΘ dχ dΘ dφ.� (A.8)

In these coordinates, the ansatz (A.2) reads

G0 = Θ(w cosχ)g(σ), σ = −1
2

w2 cos 2χ.� (A.9)

Inserting this into (A.5), we obtain
∫

Ω

G2(x − x′)d4x = 4πw4
∫ π

0
sin2 χ g′(σ)Θ(w cosχ) dχ− m2

1

∫

Ω

G0(x − x′)d4x.

� (A.10)
Now, let us make an ansatz for g(σ) consistent with retarded boundary conditions:

g(σ) = Θ(−σ)V(σ) + A0δ(σ) + A1δ
′(σ) + A2δ

′′(σ) + · · ·� (A.11)

Here, V(σ) is taken to be a smooth function and the {An}∞n=0 are constants. This form imme-
diately implies that the two integrals involving δ-functions derivatives on the righthand side of 
(A.10) vanish. Changing variables from χ to σ, we are left with
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∫

Ω

G2(x − x′)d4x = 4πε
∫ 0

−ε

√
ε+ σ

ε− σ
V ′(σ)dσ − m2

1

∫

Ω

G0(x − x′)d4x − 4πεV(0)

− 4πA0 +
4πA1

ε
− 12πA2

ε2 +
36πA3

ε3 − · · ·
� (A.12)

In the ε → 0 limit, we can make use of the retarded Green’s function solutions (3.12) to show 
that the integral on the lefthand side vanishes. Also, the first integral on the righthand side 
vanishes since V  is assumed to be a smooth function. In order for the limit to exist, we require 
that the righthand side of (A.12) remains finite, which implies

A1 = A2 = · · · = 0 ⇒ g(σ) = Θ(−σ)V(σ) + A0δ(σ).� (A.13)

Putting this form of g(σ) into the volume integral of G0 over Ω in (A.12) implies that

lim
ε→0

∫

Ω

G0(x, x′)d4x = 0.� (A.14)

The only surviving term in (A.12) yields A0  =  0. Hence, we must have

g(σ) = Θ(−σ)V(σ).� (A.15)

This is demonstrates that G0 is non-singular.
To determine V , we consider the PDE (A.1) in the spacetime region with t > t′. In this 

region, x �= x′ and (A.1) become

L̂1L̂2g(σ) = 0.� (A.16)

It is not difficult to confirm that this equation reduces down to the ordinary differential equation

(2σ∂2
σ + 4∂σ − m2

1)(2σ∂
2
σ + 4∂σ − m2

2)g(σ) = 0.� (A.17)

Inserting (A.15) into this, we obtain

Θ(−σ)[(2σ∂2
σ + 4∂σ − m2

1)(2σ∂
2
σ + 4∂σ − m2

2)V(σ)] + 2δ(σ)[(m2
1 + m2

2)V(0)− 4V ′(0)] = 0,
� (A.18)

where we have made use of the distributional identities

Θ′(x) = δ(x),� (A.19a)

h(x)δ(x) = h(0)δ(x),� (A.19b)

h(x)δ′(x) = h(0)δ′(x)− h′(0)δ(x),� (A.19c)

h(x)δ′′(x) = h(0)δ′′(x)− 2h′(x)δ′(x)− h′′(0)δ(x),� (A.19d)

h(x)δ′′′(x) = h(0)δ′′′(x)− 3h′′(x)δ′(x)− 3h′(x)δ′′(x)− h′′′(0)δ(x).� (A.19e)

The coefficients of Θ(−σ) and δ(σ) in this expression must vanish individually, which leads 
to an ODE for V(σ) plus a boundary condition:

0 = (2σ∂2
σ + 4∂σ − m2

1)(2σ∂
2
σ + 4∂σ − m2

2)V(σ),� (A.20a)

0 = (m2
1 + m2

2)V(0)− 4V ′(0).� (A.20b)

When m1 �= m2, we find the general solution of (A.20a) is
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V(σ) =
aJ1(m1

√
−2σ) + bJ1(m2

√
−2σ) + cY1(m1

√
−2σ) + dY1(m2

√
−2σ)√

−2σ
.

� (A.21)
Here, J1 and Y1 are Bessel functions. Since V  is known to be non-singular at σ = 0, we set 
c  =  d  =  0. Imposition of the boundary condition (A.20b) then yields a relation between a and 
b:

m2a + m1b = 0.� (A.22)

Finally, direct substitution into (A.4) fixes a and b. We arrive at the final answer:

G0(x − x′) =
Θ(t − t′)Θ(−σ)

4π
√
−2σ

[
m1J1(m1

√
−2σ)− m2J1(m2

√
−2σ)

m2
1 − m2

2

]
.� (A.23)

In agreement with the calculation of section 3.
A very similar analysis of the degenerate m1 = m2 = m case leads to the retarded Green’s 

function

G0(x − x′) =
Θ(t − t′)Θ(−σ)J0(m

√
−2σ)

8π
.� (A.24)
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