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Abstract – I show how flexoelectricity results in a fluctuating surface electric potential when
elastic solids with random roughness are squeezed into contact. The flexoelectric potential may
induce surface charge distributions and hence contribute to triboelectricity. Using the developed
theory I analyze the Kelvin Force Microscopy data of Baytekin et al. for the electric potential above
a polydimethylsiloxane (PDMS) surface after it was peeled away from another PDMS surface.
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Introduction. – When two solids in adhesive contact
are pulled apart they are often left charged. More gen-
erally, fluctuating charge distributions (both positive and
negative charge distributions on both solids) are left on the
surfaces after sliding contact or pull-off [1]. This triboelec-
tric effect has been known for more than 25 centuries and
has important practical implications. However, the origin
of the charge separation is not well understood [2].

In a recent paper Mizzi et al. [3] have proposed that tri-
boelectricity often results from flexoelectricity. The flexo-
electric effect consists of the linear coupling between strain
gradient and electric polarization [4,5]. When two solids
are squeezed into contact very large strain gradients will
occur in the asperity contact regions, and Mizzi et al. have
shown that this may result in large flexoelectric potential
differences at the nanoscale. If free charges exist (in the
solids or in the atmosphere) they may move or rearrange
in such a way as to screen the flexoelectric potential field,
and one may end up with charge distributions at, or close
to, the solid surfaces which follow the spatial variation of
the flexoelectric potential field.

Mizzi et al. studied how the flexoelectric surface poten-
tial depends on the normal force when a sphere is squeezed
against an elastic half-space. For this they used the well-
known results for the strain at Hertz (or JKR) sphere-flat
type of contact [6]. However, the contact between two
randomly rough surfaces cannot be described by a model
assuming independent Hertzian contact regions since the
long-ranged elastic coupling between the contact regions
strongly affects the nature of the contact [7,8]. In this pa-
per I show how the flexoelectric potential can be calculated

for the contact between elastic solids with randomly rough
surfaces.

Theory. – Mizzi et al. (see ref. [3]) have shown that
the normal component of the electric field induced by a
flexoelectric coupling in an isotropic nonpiezoelectric half-
space is given (approximately) by

Ez = −f (εii,z + 2εzi,i) , (1)

where εij,k = ∂εij/∂xk, where

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(2)

is the strain tensor. Here ui are the components of the
displacement field u(x, t). In (1) summation over repeated
indices is implicitly understood. The flexocoupling voltage
f can be both positive or negative, and for polymers |f |
is typically in the range 5–300 V (see table S2 in ref. [3]).
Substituting (2) in (1) gives

Ez = −f

(
∇2uz + 2

∂

∂z
∇ · u

)
. (3)

Assuming a solid with homogeneous and isotropic elastic
properties, from the theory of elasticity the displacement
field u satisfies

ρ
∂2u
∂t2

= μ∇2u + (μ + λ)∇∇ · u, (4)

where ρ is the mass density, and where the Lame constants
λ and μ can be related to the Young’s elastic modulus E
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and the Poisson ratio ν via

λ =
νE

(1 + ν)(1 − 2ν)
, μ =

E

2(1 + ν)
. (5)

In principle the equation determining the deformation field
u should be influenced by the flexoelectric field, and the
charge rearrangement which may occur as a result of it,
but this effect will be assumed small in what follows. We
neglect the time dependency so that from (4)

∇2u = −
(

1 +
λ

μ

)
∇∇ · u. (6)

Using (3) and (6) gives

Ez = −
(

1 − λ

μ

)
f

∂

∂z
∇ · u. (7)

The electric potential φ at the surface (z = 0) relative to
far inside the solid (z = ∞) is equal to

φ = −
∫ ∞

0
dz Ez = −

(
1 − λ

μ

)
f∇ · u, (8)

where ∇ · u is evaluated for z = 0.
For randomly rough surfaces the electric potential φ(x)

will vary in a complex way with the coordinate x = (x, y)
on the surface z = 0. Here we consider first the mean
square of the (fluctuating) electric potential, 〈φ2(x)〉, and
then the electric potential power spectrum, which contains
more information about the fluctuating electric potential.

Mean square fluctuation of the electric potential. Con-
sider 〈φ2〉, where 〈..〉 stands for ensemble average. The
ensemble average of φ2(x) is assumed to be independent
of x so that

〈φ2〉 =
1

A0

∫
d2x 〈φ2(x)〉, (9)

where A0 is the surface area. We write

φ(x) =
∫

d2q φ(q)eiq·x. (10)

From (9) and (10) we get

〈φ2〉 =
(2π)2

A0

∫
d2q 〈φ(−q)φ(q)〉. (11)

We can calculate ∇·u using the formalism presented in
appendix A in ref. [9]. Assume that a stress σi(x, t) acts
on the surface of an elastic half-space. We write

σi(x, t) =
∫

d2qdω σi(q, ω)ei(q·x−ωt). (12)

We note here that although we have assumed above that
the time dependency of the flexoelectric field can be ne-
glected, it is in the present approach necessary to include
it in the calculation of ∇·u, and only at the end let ω → 0
corresponding to a time-independent problem.

The displacement field in the solid for z > 0 is written
as (see appendix A in ref. [9])

u = pA + KB + p × KC, (13)

where p = −i∇ and where K = n × p, where n is a unit
vector normal to the surface pointing along the z-axis.
Thus we get

∇ · u = ip · u = ip2A = −i∇2A. (14)

The scalar potential A satisfies the wave equation (see
(A4) in ref. [9]), which with the Fourier-transformed time
variable takes the form

∇2A +
ω2

c2
L

A = 0.

Using this in (14) we get

∇ · u = i
ω2

c2
L

A. (15)

Using (A19) in ref. [9] we get for z = 0, with the Fourier-
transformed x and t dependency,

i
ω2

c2
L

A =
ω2

c2
L

1
μS

[
2pTq +

(
ω2

c2
T

− 2q2
)

n
]

· σ, (16)

where

S =
(

ω2

c2
T

− 2q2
)2

+ 4q2pTpL, (17)

where

pT =
(

ω2

c2
T

− q2 + i0+
)1/2

, pL =
(

ω2

c2
L

− q2 + i0+
)1/2

,

where 0+ is an infinitesimal small positive number and
where cT and cL are the transverse and longitudinal sound
velocities, respectively. Using (16) and (17) for ω → 0
we get

i
ω2

c2
L

A =
1

λ + μ
(−iq̂ + n) · σ, (18)

where q̂ = q/q. If we denote e = −iq̂ + n we get
from (8), (11), (15) and (18)

〈φ2〉 =
(

κf

E

)2 (2π)2

A0

∫
d2q e∗

i ej〈σi(−q)σj(q)〉, (19)

where

κ =
(λ − μ)E
μ(μ + λ)

= 2(4ν − 1)(1 + ν). (20)

For rubber-like materials ν ≈ 0.5 giving κ ≈ 3.
We now consider the simplest case of pull-off without

sliding. In this case the stress will be approximately nor-
mal to the surface and (19) reduces to

〈φ2〉 =
(

κf

E

)2 (2π)2

A0

∫
d2q 〈σ(−q)σ(q)〉, (21)
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where σ(q) now denotes the normal stress component.
Now, since∫

d2q 〈σ(−q)σ(q)〉 =
A0

(2π)2
〈σ2(x)〉, (22)

we can write

〈φ2〉 =
(

κf

E

)2

〈σ2〉. (23)

If P (σ, p0) is the probability distribution of stresses at the
interface, which depends on the applied stress p0, then

〈σ2〉 =
∫ ∞

−∞
dσ σ2P (σ, p0). (24)

The probability distribution P (σ, p0) can be calculated for
randomly rough surfaces, both with and without the adhe-
sion, using the Persson contact mechanics theory [10], or
using numerically (exact) methods such as the boundary
element method [8,11]. Here we consider first the non-
adhesive contact between an elastic half-space and a rigid
countersurface, where the roughness is characterized by
the surface roughness power spectrum Chh(q). For non-
adhesive contact P (σ, p0) = 0 for σ < 0 and for σ > 0 (see
ref. [12]):

P =
1

s(2π)1/2

[
e−(σ−p0)2/(2s2) − e−(σ+p0)2/(2s2)

]
, (25)

where s = E∗h′/2, where E∗ = E/(1 − ν2) and h′ =
〈(∇h)2〉1/2 is the rms slope of the rough surface with the
surface profile z = h(x). For p0/E∗ � 1 the probability
distribution reduces to

P ≈
(

2
π

)1/2
σp0

s3 exp
(

− σ2

2s2

)
. (26)

In this limit we get from (24) and (26)

〈σ2〉 = 2
(

2
π

)1/2

sp0, (27)

so that

〈φ2〉 =
(

κf

E

)2

2
(

2
π

)1/2

sp0 (28)

or

〈φ2〉 =

[(
32
π

)1/2 1 + ν

1 − ν
(1 − 4ν)2

]
f2h′ p0

E
. (29)

In the limit when A/A0 � 1, and when the surface
roughness power spectrum has a wide roll-off region, the
contact regions will consist of a low concentration of small
contact patches as indicated in fig. 1. If the number of
contact patches is denoted by N and if the average area of
a contact patch is A1 then A = NA1. If the mean square
value of the voltage at the surface of a contact region is
φ2

1 then
〈φ2〉A0 = Nφ2

1A1

φa

area Aa

φb

φcφd

Fig. 1: Contact patches between two elastic solids with random
roughness. The electric potential in the contact regions fluctu-
ates between positive and negative values. The average contact
patch area is denoted by A1 and the rms electric potential in
a contact patch by φ1.

or
φ2

1 = 〈φ2〉A0

A
. (30)

From (26) we get the relative contact area (valid for
A/A0 � 1) (see also ref. [10])

A

A0
=

∫ ∞

0
dσP ≈ p0

s
=

(
8
π

)1/2
p0

h′E∗ . (31)

From (29)–(31) we get

φ1 ≈ ξ|f |h′, (32)

where

ξ =
√

2
|1 − 4ν|
1 − ν

. (33)

The derivation of (32) is strictly valid only if all the con-
tact spots have the same area. In reality, this is not the
case, and there will be a (probability) distribution PA of
contact sizes. In fact, for self-affine fractal surfaces nu-
merical studies have shown a power-law size distribution
(see, e.g., ref. [13,14]). However, in this case (32) is still
valid if we define

φ2
1 =

∫
dA PAAφ̄2(A)∫

dA PAA
,

where φ̄2(A) is the mean square voltage in a contact spot
with the area A, where the average (indicated by the
overbar) is over the shape of all contact regions with the
area A.

Another interesting limiting case is contact with adhe-
sion when the adhesion is so strong as to pull the solids
into complete contact. This limit is easy to study: First
note that complete contact prevails as p0 → ∞ and in this
limit we can neglect the second term in (25). This gives a
Gaussian-like probability distribution centered at σ = p0.
However, with adhesion we consider the case without an
applied pressure i.e., p0 = 0. Thus for adhesion and as-
suming complete contact with p0 = 0 we have the (exact)
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stress probability distribution

P =
1

s(2π)1/2 e−σ2/(2s2), (34)

which is valid for all σ (both positive and negative). Us-
ing (34) we get

〈σ2〉 =
1

s(2π)1/2

∫ ∞

−∞
dσ σ2e−σ2/(2s2) = s2. (35)

Substituting (35) in (23) gives

〈φ2〉 =
(

κfh′

2(1 − ν2)

)2

(36)

or
〈φ2〉1/2 = ξ′|f |h′, (37)

where
ξ′ =

4ν − 1
1 − ν

(38)

For rubber-like materials ν ≈ 0.5 giving ξ ≈ 2.8 and
ξ′ ≈ 2.0. As an example, for natural rubber |f | ≈ 20 V
and if we assume the rms slope h′ ≈ 0.1 we get the average
electric potential in the asperity contact regions φ1 ≈ 5 V,
and for complete contact the rms surface electric potential
〈φ2〉1/2 ≈ 4 V.

Electric potential power spectrum. Let us now study
the electric potential power spectrum

Cφφ(q) =
(2π)2

A0
〈|φ(q)|2〉. (39)

We can calculate Cφφ from the theory presented above.
Thus from (8), (15) and (18)

φ(q) = −
(

1 − λ

μ

)
f

1
λ + μ

e · σ. (40)

Thus we get

Cφφ(q) =
(2π)2

A0

(
μ − λ

μ(μ + λ)

)2

f2e∗
i ej〈σi(−q)σj(q)〉.

(41)
If we assume no shear forces we get

Cφφ(q) =
(2π)2

A0

(
μ − λ

μ(μ + λ)

)2

f2〈σ(−q)σ(q)〉, (42)

where σ(q) is the normal stress. In ref. [7] we have shown
that to a good approximation

〈σ(−q)σ(q)〉 ≈
(

μ

1 − ν

)2
A0

(2π)2
q2Chh(q)P (q). (43)

Here Chh(q) is the surface roughness power spectrum,

Chh(q) =
1

(2π)2

∫
d2x〈h(x)h(0)〉e−iq·x,

where z = h(x) is the surface height coordinate. In (43)
P (q) = A(q)/A0 is the relative contact area when only the
roughness components with the wavenumber smaller than
q is included when calculating A(q) (see ref. [10]).

Substituting (43) in (42) gives

Cφφ ≈
(

μ − λ

μ + λ

)2 (
f

1 − ν

)2

q2Chh(q)P (q). (44)

For rubber materials ν ≈ 0.5 and λ ≈ ∞ giving

Cφφ ≈ 4f2q2Chh(q)P (q). (45)

If we assume complete contact between the solids at the
interface then P (q) = 1 and

Cφφ ≈ 4f2q2Chh(q). (46)

Many surfaces are self-affine fractals with a roll-off re-
gion for q < q0. For such surfaces [15]:

Chh = C0, for q < q0, (47)

Chh = C0

(
q

q0

)−2(1+H)

, for q > q0, (48)

where

C0 =
1
π

H

1 + H

〈h2〉
q2
0

, (49)

where 〈h2〉 is the mean square roughness and where the
Hurst exponent H is between 0 and 1 but typically H ≈ 1
(see ref. [15]). The latter is expected for sandblasted
surfaces and, at least in some cases, for contaminated
surfaces [16], which can be considered as generated by
a process opposite to sandblasting (depositing of parti-
cles rather than removal of particles). Substituting (47)
and (48) in (46) gives an electric potential power spectrum
which scales ∼ q−2H for q > q0 and q2 for q < q0. For
q = q0

Cφφ ≈ 4f2q2
0C0, (50)

which gives

〈h2〉 =
π

4
1 + H

H
f−2Cφφ, (51)

where Cφφ is evaluated for q = q0.

Discussion. – The flexoelectric effect gives rise to an
electric field in the surface region between contacting
solids. This field will drive charges (either from the gas
phase or from the solids) to rearrange in such a way as
to screen out the electric field as completely as possible.
Following Mizzi et al. we will assume that when the solid
bodies are separated this will result in a surface distri-
bution of charges which will generate an electric poten-
tial outside of the solids. The charge distribution will of
course decay with increasing time but a short time after
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Fig. 2: The measured electric potential a distance ≈ 100 nm
above a PDMS surface [1].
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Fig. 3: The probability distribution of the electric potential
P (φ) a distance d ≈ 100 nm above a PDMS surface. The rms
voltage fluctuation from the measured data is 〈φ2〉1/2 ≈ 0.26 V.

the surface separation it may result in an electric poten-
tial distribution of similar form as that generated by the
flexoelectric effect. This electric potential can be studied
using Kelvin Force Microscopy.

In ref. [1] Baytekin et al. have used Kelvin Force Mi-
croscopy in a study of the electric potential φ(x) at a
distance ≈ 100 nm above a PDMS surface, a short time
after separating it from the contact with another PDMS
surface. The PDMS surfaces was prepared by molding
the rubber against an atomically flat (silanized) silicone
wafer. However, the silicone wafer was exposed to the
normal atmosphere and may have a contamination film so
the PDMS sheets may have surface roughness, with a rms
roughness amplitude of the order of a few nanometer.

Because of the small surface roughness the two PDMS
sheets are likely to be in complete adhesive contact. Af-
ter separation the surfaces have charge distributions which
oscillate between positive and negative values (see fig. 2)
such that the net charge is small compared to the total
number of charges. This is clear from the probability dis-
tribution P (φ) of the electric potential shown in fig. 3.
Note that P (φ) is nearly a perfect Gaussian centered at
φ ≈ 0 i.e., the net charge is very small.

-18
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slope=2

slope=-2

log10 q  (1/m)

lo
g 1
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φφ
(V

2 m
2 )

PDMS/PDMS

Fig. 4: The electric potential power spectrum Cφφ as a function
of the wavenumber q (log-log scale). The red line is the power
spectrum using the measured electric potential which was ob-
tained with the Kelvin Force Microscopy tip ≈ 100 nm above
the PDMS surface. The green line is the power spectrum at
the PDMS surface assuming that the power spectrum depends
on the tip-substrate separation d as exp(−2qd) (see ref. [17]).
The blue dashed lines have the slope +2 and −2.

Figure 4 shows the electric potential power spectrum.
The data is very noisy due to the rather small number of
Kelvin Force Microscopy data points (152 × 152). We do
not show results for q > 1.6 × 107 m−1 (or log10q > 7.2)
because Cφφ for large q is influenced by the fact that the
scanning tip was located ≈100 nm above the PDMS sur-
face. The red line in fig. 4 is obtained directly from the
measured electric potential, and the green line is the power
spectrum at the PDMS surface, assuming the power spec-
trum decays like exp(−2qd) with the separation d of the
probe tip from the PDMS surface [17]. Note that for small
wavenumber q < q0 ≈ 4×106 m−1 the power spectrum in-
creases like q2 with the wavenumber, while for q > q0 it
decreases roughly as q−2; both results are expected from
the theory above if the Hurst exponent H ≈ 1 and if a
flat roll-off region occurs in the roughness power spectrum
for q < q0. Baytekin et al. also performed studies for
PDMS pulled off from a smooth polycarbonate (PC) sur-
face, but the results are very similar to those for PDMS
against PDMS. We do note however that the region for
q < q0 in fig. 4 is very uncertain due to the small number
of long-wavelength roughness components. Thus, a more
accurate study requires Kelvin Force Microscopy measure-
ments over a larger surface area.

We can use (51) to estimate the rms roughness neces-
sary in order to reproduce the magnitude of the observed
electric potential power spectrum. Thus for q = q0 from
fig. 4 we get Cφφ ≈ 8 × 10−16 V2m2 and using (51) with
H = 1 this gives 〈h2〉1/2 ≈ 6 nm if f = 6 V. This value is
very reasonable for a surface where the roughness is pro-
duced by a contamination film due to the exposure of the
wafer to the normal atmosphere. The roll-off wavelength
λ0 = 2π/q0 ≈ 1 μm also appears very reasonable.
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Summary and conclusion. – We have presented a
theory for the electric potential at a surface produced by
flexoelectricity for elastic solids with randomly rough sur-
faces. We have calculated the power spectrum of the elec-
tric potential φ(x). In the light of the theory we have
discussed the experimental contact electrification results
of Baytekin et al. and found good correlation with the
theory predictions.
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