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Abstract

Luminescent oligo(p-phenylene ethynylene) (OPE) and spin-crossover (SCO) active Fe(II)-
2,6-di(pyrazol-1-yl) pyridine (BPP) systems are prominent examples proposed to develop
functional materials such as molecular wires/memories. A marriage between OPE and
Fe(II)-BPP systems is a strategy to obtain supramolecular luminescent ligands capable of
metal coordination useful to produce novel spin-switchable hybrids with synergistic coupling
between spin-state of Fe(Il) and a physical property associated with the OPE skeleton, for
example, electronic conductivity or luminescence. To begin in this direction, two novel
ditopic ligands, namely L' and L?, featuring OPE-type backbone end-capped with metal
coordinating BPP were designed and synthetized. The ligand L? tailored with 2-ethylhexyloxy
chains at the 2 and 5 positions of the OPE skeleton shows modulated optical properties and
improved solubility in common organic solvents relative to the parent ligand L!. Solution
phase complexation of L' and L? with Fe(BF4),-6H,0 resulted in the formation of insoluble
materials of the composition [Fe(LY],(BFy4),, and [Fe(L?)],(BF4),, as inferred from elemental
analyses. Complex [Fe(L"],(BF4),, underwent thermal SCO centred at T, = 275K as well
as photoinduced low-spin to high-spin transition with the existence of the metastable high-spin
state up to 52 K. On the other hand, complex [Fe(L?)],(BFE4)a,, tethered with 2-ethylhexyloxy
groups, showed gradual and half-complete SCO with 50% of the Fe(II)-centres permanently
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blocked in the high-spin state due to intermolecular steric interactions. The small angle x-ray
scattering (SAXS) pattern of the as-prepared solid complex [Fe(L")],.(BF4),, revealed the
presence of nm-sized crystallites implying a possible methodology towards the template-free

synthesis of functional-SCO nanostructures.

Keywords: molecular magnetism, spin-crossover, functional materials
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(Some figures may appear in colour only in the online journal)

1. Introduction

Functional molecular/polymeric materials are at the forefront
of materials chemistry research due to their diverse applica-
bility, especially in nanotechnology [1-15]. Spin-crossover
(SCO) complexes showing cooperative/bi-stable SCO
behaviour are proposed candidates to obtain molecule-based
switching and memory elements due to their reversible inter-
conversion between low-spin (LS) and high-spin (HS) states
effected by external stimuli [16-24]. Fe(I) complexes based
on 2,6-di(pyrazol-1-yl)pyridine (BPP) ligands are a well-
studied class of SCO complexes due to their facile propensity
to undergo SCO around room temperature (RT) [25-29]. On
the other hand, oligo(p-phenylene ethynylene) (OPE) deriva-
tives feature alluring electronic and optical properties. A range
of OPE-based ligands composed of bipyridine (bpy) or ter-
pyridine (tpy) metal-binding motifs have been reported, and
the utility of the resultant metal-OPE complexes as molec-
ular wires and light-responsive supramolecular gel-forming
materials have been demonstrated [30—44]. In this context,
designing OPE-BPP hybrid ligands and their complexation
with Fe(Il) is a strategy to obtain novel SCO-molecular wire-
like hybrids with possible synergetic coupling between spin-
state and electrical conductance [45-53]. To start exploring
towards realizing switchable molecular-wire like hybrids, two
novel OPE-BPP- based ditopic ligands—L' and L?>—were
designed and synthesized as depicted in chart 1.

The ligand L? was designed, by appending branched
2-ethylhexyloxy side chains at the 2 and 5 positions of the
parent ditopic OPE-BPP ligand skeleton. The introduction of
the 2-ethylhexyloxy side chains is expected to improve the
solubility, modulate the optoelectronic characteristics, and
tune the spin-state switching behaviour of the corresponding
Fe(IT) complex—[Fe(L?)],(BF4)1,. The ditopic nature of the
OPE-BPP ligands discussed in this study is appealing to
construct M**-BPP (M = Fe, Ru, etc) systems [54, 55] with
materials application potential—a rather unexplored area, as
recently reviewed by Attwood and Turner [56]. In the fol-
lowing sections, the structure-property relationships asso-
ciated with ligands L' and L? and the corresponding Fe(IT)

complexes—[Fe(L™)],(BF4)2,, m =1 or 2—are discussed.
The lateral organization of the complex entities in their powder
forms was investigated by performing small angle x-ray scat-
tering (SAXS) measurements. A combination of SAXS and
tunnelling electron microscopy (TEM) experiments were
used to probe the nanostructured nature of the deposits of
[Fe(L")]4(BF4)2.

2. Results and discussion

2.1. Synthesis of the ligands and complexes

Ligands L' and L? were synthesised by performing classical
Sonogashira coupling reaction [57] between the precursor
diethynyl-benzene derivatives (1.1 or 1.2, scheme 1) [58] and
4-lodo-2,6-di-pyrazol-1-yl-pyridine (1.3, scheme 1) [54].

The target 1D-complexes were prepared by treating one
equivalent of Fe(BF,),-6H,O with one equivalent of L'/1.2
dissolved in the dichloromethane solvent. Based on our pre-
vious observation [55] and elemental analyses, we assume
the structure of the resulting Fe(Il) complexes as oligomeric/
polymeric 1D-architectures with the probable molecular
formula [Fe(L"™)],(BF4)2,, m = 1 or 2.

The complexes are insoluble in common organic solvents,
caused by contrasting solubility behaviour arising from the
combination polar Fe(Il) core and non-polar/hydrophobic
branched alkyl chains and OPE backbone. The possible pres-
ence of solvent end-capped Fe(Il) coordination sites could be
another factor rendering the complexes insoluble.

2.2. Photophysical properties of the ligands and complexes

Electronic absorption spectroscopic (UV-vis) studies of the
ligands L' and L? in dichloromethane solvent revealed pre-
dominantly OPE-based electronic transitions in the 250-
400nm spectral region in line with the literature reports
detailing absorption characteristics of OPE-type ditopic-
chelating ligands [37, 59, 60]. Ligand L? showed features
attributable to the electronic properties induced by the bis-
alkoxy substitution of the central aromatic ring [61]. As far
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Chart 1. The ditopic OPE-BPP ligands—L! and L.>—used to
prepare SCO complexes reported in this study.

as ligand L' is concerned, its absorption spectrum displays
an intense (¢ = ~1.2 x 10° M~! cm™") band at 327 nm that
is ascribed to the ' — 7* transition extending over the ligand
scaffold. Two main bands characterize the corresponding
absorption spectrum for ligand L? instead. At higher energy, a
Iw — 7 transition similar to L! is present at \yps max = 326 nm,
although with much lower intensity (¢ =~3.2 x 10* M~!
cm™!) when compared with L!. At lower energy, a feature-
less band is present with similar intensity (Aabsmax = 389 nm,
e =~1.9 x 10*M~!' cm™") suggesting an intramolecular elec-
tronic transition with partial charge transfer (CT) character.
As a result, an overall reduced optical band gap is observed
for L? compared with L!. Going from solution to solid-state,
bathochromic shift of the absorption maxima is observed for
the ligands attributable to the establishment of intermolecular
m — 7 interactions in the condensed phase (figure S1).

Photo-irradiation of CH,Cl, solutions of the ligands at
their respective lower energy absorption maxima resulted in
bright luminescence (figure 1(a)) With Aem.max = 376nm (L)
and 443nm (L?). Ligand L' displays emission features that
mirror the lowest-energy absorption band; the emission could
be ascribed to a radiative transition from a '7 — 7* localized
excited state (LE). Instead, L2 shows a structured and broader
profile most likely due to partial CT state admixed with the LE
state. Moreover, 2-ethylhexyloxy substitution at the OPE skel-
eton enhanced photoluminescence quantum yield (PLQY) of
L2 compared with L!, see table 1. Excitation spectra trace out
the corresponding absorption profile (figure S2). The insol-
uble nature of the Fe(II) complexes prohibited photophysical
studies in solution.

Solid-state photoluminescence studies of the ligands, upon
excitation at their respective lower energy solid-state absorp-
tion maxima (figure S1), revealed broader emission bands
(figure 1(b)) in comparison with the solution state features

of the ligands. The Fe(II) complexes are also emissive in the
solid-state; a probable origin of emission is the uncoordinated
ligand end groups.

2.3. Spin-crossover behaviour of the complexes

At 400K, a xT value of ~3.25cm® mol~! K (figure 2(a), black
circles) was obtained for [Fe(L")],(BF4)2,, indicating the exis-
tence of pure HS-state of the Fe(Il) centre at that temperature.
Upon cooling, a gradual decrease of the x7 product function
was observed. At 5K, a x7T value of ~0.5cm? mol~! K was
obtained, thus indicating a predominantly LS-state of the
complex (see figure S3 also). The residual magnetic moment
could be attributed either to the HS-state of the end-capped
Fe(Il) coordination sites in line with our previous report
detailing similar 1D-SCO system [55] and/or to the residual
HS-fraction (=~18%). Overall, a gradual thermal SCO with
Ty, = 275K is observed for [Fe(L")],(BF4)2,.

The complex is also light induced excited spin-state trap-
ping (LIESST) active, and a red-light irradiation (A = 637 nm)
at 10K transformed it into the metastable HS state (figure
2(a), blue triangles). The photoexcitation is almost quantita-
tive, and a T(LIESST) = 52K (figure 2(a), inset) is observed.
The relaxation of metastable HS fraction of the complex upon
the increase of temperature (LIESST curve; purple squares)
showed a rather non-cooperative character in line with the
gradual shape of the thermally induced SCO curve [62].

The complex [Fe(L?)],(BEj),,, featuring branched 2-eth-
ylhexyloxy chains at the backbone showed a x7 value of
~2.9cm?® K mol~! at 400K, attributed to almost HS state
of Fe(Il)-centres (figure 2(b), red circles). Upon cooling,
the x7 product function decreased gradually and at 50K,
xT=1.7 cm? K mol~! is observed, indicating the coexistence
of almost equal proportions of LS- and residual HS Fe(II)
fractions.

2.4. Small-angle x-ray scattering (SAXS) and transmission
electron microscopy (TEM) studies of the complexes

To shed light on the lateral organisation of the complex enti-
ties in the lattice, SAXS experiments were carried out, as
depicted in figure 3.

The parent complex [Fe(L"],(BF4)2, showed broadened
reflections, evidencing a crystalline state with small crystal-
lites of about 10nm size. Introduction of ramified alkyl side-
chains strongly hampered crystallisation and the complex
[Fe(L?)],(BF4),, was found to be merely amorphous. The
SAXS pattern is indeed dominated by the intense wide-angle
scattering from lateral distances between molten alkyl chains
(heh) and liquid-like lateral distances between backbones in
amorphous domains (%), besides a few weak and broadened
reflections from rare and small-size crystallized domains
(figure 3, blue trace).
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[Fe(L")]n(BF4)z,

[Fe(L?)]1n(BF4)2q

Scheme 1. Synthesis of OPE-BPP ligands L' and L? and the corresponding 1D-Fe(II) complexes. Reagents and conditions: (a)
PdCl,(PPh3),, Cul, THF/Et;N, Ar, 60 °C, 12h and (b) Fe(BF,),-6H,0, DCM/ACN, Ar, RT, 72h. See supporting information for detailed

experimental procedures.

The nanostructure formation inferred from SAXS for
[Fe(L")],(BF4),, was probed by TEM. The TEM studies
showed a random organisation of the complex crystallites
with superimposed nanograins of sizes superior to 50nm, as
depicted in figure 4. The Z-contrast developed under the high
angular annular dark-field detection (HAADF) allowed to
unambiguously identify the presence of nano-sized and irreg-
ularly shaped architectures, which are uniformly distributed
on the surface (figure 4(b)). The mean grain size is 10nm, in
consistency with the crystallite size from SAXS.

3. Discussion

The present study is important in terms of realizing functional
SCO complexes. The model complex [Fe(L"],,(BF4)2, gave
indeed raise to a gradual but almost complete SCO. One notes
that the spin-state switching occurs without any apparent hys-
teresis and with reduced T, values compared to previous
1D-coordination polymer reported from our group [55]. On
the contrary, the 2-ethylhexyloxy substituted [Fe(L?],(BF4)2,
complex showed a hampered spin-state transformation during
the heating and cooling cycles leading to incomplete SCO. As

Table 1. Photophysical data recorded for the ligand L' and L? in
CH,Cl, solvent at room temperature.

/\max,abs (e) PLQY?
Enwy — (m, (10°M"em ™) e (um) (%)
L 270 (4.63),327 (11.96), 376 27
348°" (8.91), 380 (0.20)
L? 270 (2.28),3.16 (3.00), 443 73

326 (3.17), 389 (1.92)

sh denotes shoulder.
# Determined by relative method using 0.5 M quinine sulphate in aqueous
H,SO, as the reference standard.

verified by SAXS, the ramified alkyl chains are molten and
come down to a liquid that spaces the backbones and con-
fers them the freedom to move one with respect to each other,
explaining the overall amorphous state of [Fe(L?)],(BF4),,
complex. Hence, the transition to the ordered LS state is
delayed and ultimately never reached; this is likely the main
reason behind the incomplete SCO behavior of this complex.

Despite the above-discussed shortcomings, the results
obtained in this study are encouraging to design novel 1D-SCO
coordination networks based on the OPE-BPP skeleton. The
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Figure 1. (a) Electronic absorption (solid traces) and
photoluminescence (dashed traces) spectra of L! (red) and L2
(black) in air-equilibrated CH,Cl, solution at a concentration

of 1.0 x 107> M at room temperature. Emission spectra were
recorded upon excitation at A, = 300 and 360nm for L' and L2,
respectively and (b) solid-state photoluminescence (PL) spectra of
L! (black), L? (blue), [Fe(LY],(BF4)2, (red) and [Fe(L?)],(BF4)2,
(magenta); see figure S1 for the corresponding absorption spectra in
the solid state.

emphasis should be on the judicious choice of spacer/solu-
bilizing groups, which should confer solution processability
without blocking SCO. This is in particular necessary for
the envisioned SCO active molecular wire-like architectures
with tuneable conductance [32, 63—-66]. Otherwise, the model
SCO complexes detailed in this study could be modified, via
synthetic ligand engineering, with suitable functional groups
to develop molecular materials with novel functions. For
example, by appending donor and acceptor groups at the sides
of the molecular wire-like oligomeric network bridged by the
SCO active sites, spin-state dependence of electron transport
could be studied by manipulating the supramolecular system
by light or temperature stimulus [67, 68]. In another scenario,
self-assembled monolayers (SAM) composed of electron
acceptor units, electron donor units, and SCO centres could
be fabricated on top of a metallic electrode by employing
layer by layer (LBL) self-assembly methods, and their elec-
tron transfer properties with respect to spin-state could be
studied [69-74]. Systematic studies in the above discussed
challenging directions may lead to interesting results of fun-
damental and applied scientific importance.
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Figure 2. Spin-crossover behaviour of the complexes. (a)
[Fe(L"],(BEy4),,; the black circles represent T versus x7 product,
blue triangles represent increase of x7 product under 637 nm
light irradiation at 10K, and purple squares represents evolution
of xT in the absence of light irradiation. The inset shows d(x7)/
dT plot indicating T(LIESST) = 52K. (b) xT versus T plot of
[Fe(L?)],(BF4)a,, the black and red circles represent cooling and
heating branches of x 7 versus 7 plot, respectively.

Intensity (arb. u.)

5 10 15 20 25 30
20 ()

Figure 3. SAXS patterns of complexes [Fe(LY],,(BF4),, (black
trace) and [Fe(L?)],,(BF4),, (blue trace) at 293 K.
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Figure 4. TEM and STEM micrographs of [Fe(L')],(BF4)2,
complex acquired under (a) bright field and (b) high angular annular
dark field (HAADF) modes.

4. Conclusions

A set of 1D-SCO complexes featuring luminescent OPE-BPP
ligand systems were designed, synthesised, and their spin-state
switching behaviour were investigated. While [Fe(LY],(BF4)a,
showed a gradual and near-complete SCO, the branched alkyl
chain tethered complex [Fe(L?)],(BF4),, showed incom-
plete switching attributed to the steric interaction mediated
blocking of the SCO. Moreover, the gradual—spanning a
large temperature window—and incomplete nature of SCO in
parent and functionalized complex, respectively, render them
unfit to study a synergistic coupling between SCO and lumi-
nescence. The insoluble nature of the complexes proved to be
a difficulty in processing them for applications; the emphasis
should be more on the judicious choice of spacer/solubilising
groups to confer suitable processability from solution. Despite
these shortcomings, the SCO of the complexes detailed in this
study could be a useful stepping-stone to develop molecular
materials with novel functions. For instance, the realisation
of soluble 1D-polymeric/oligomeric SCO complexes may

lead to the observation of spin-state dependence of electron
transport in molecular wire-like systems, which would be of
importance in molecular electronics [75-84].

The functionalization of the OPE backbone with 2-ethyl-
hexyloxy side chains resulted in about three fold increase of
the PLQY for L? when compared with L! in the solution-state.
A more detailed investigation of the photophysical properties
of the ligands in solution, such as concentration and solvent
polarity effect studies, and solid-states is necessary to under-
stand the photophysical properties of this novel OPE-BPP
ligand systems.

The observation of nano-sized architectures of
[Fe(L")],(BF,),, is interesting in view of the reports detailing
the delamination of bulk crystalline architectures into 2D nm
thick films [85-87]. A careful elucidation of size dependence of
SCO behaviour of nanosized materials obtained from delami-
nation/exfoliation of bulk SCO active crystalline materials is
the need of the hour. Such elucidations might lead to nanosized
spin-switchable systems suitable for applications [8§8—94].
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