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1.  Introduction

The phenomenon of traveling waves is widely known in phase 
transformations existing in liquids and solids or chemical 
reactions and biological systems [1–4]. One of the well-estab-
lished examples is represented by crystalline fronts invading 
liquid phases [5], in which, as a particular case, the emis-
sion of long-wavelength traveling waves has been detected 

in directional solidification of a ternary eutectic alloy [6]. In 
this respect, a big number of investigations were devoted to 
the theoretical study of traveling waves [7–10], particularly, 
related to equations of the phase-field theory [11–13].

The first traveling wave solutions in phase-field theory 
were obtained by Kobayashi [14], Wheeler et  al [15] and 
Danilov [16] based on analytical solutions of Montroll [17] 
and Harrowell and Oxtoby [18]. Further advancements of 
these solutions in the form of the hyperbolic tangent function 
and sinus-function were made for various field potentials [19] 
and for fast phase fields [20, 21].
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In the present work, we advance the concept of traveling 
waves further for the fast crystalline fronts invading meta-
stable liquid under the high driving force of phase transforma-
tion [5]. The motion of such traveling waves can be so fast that 
the local bulks of the system under transformation do not reach 
thermodynamical and/or mechanical equilibrium with the 
ergodicity breaking [22]. In such a case, a set of independent 
slow thermodynamic variables (chemical potential, inner 
energy, phase-field) is extended by the space of independent 
fast variables which are represented by the kinetic functions 
such as fluxes and gradient flows [23, 24]. This extension 
leads to the hyperbolic or parabolic equations  having non-
local terms in time and in space which represent relaxation to 
equilibrium in local bulks (temporal relaxation) and/or spatial 
correlation among these local bulks (spatial non-locality).

To describe the fast crystalline waves propagating into a 
metastable liquid, we consider a class of hyperbolic equa-
tions of the phase-field theory which describes the time delay 
due to relaxation to thermodynamic equilibrium within the 
local bulks. This occurs due to the introducing of the gradient 
flow as a fast thermodynamic variable the relaxation of which 
describes local temporal relaxation to the thermodynamic 
equilibrium. The resulting phase-field equation is found from 
the kinetic energy and extended mobility approaches [25–
27] summarized in the present work using double-well and 
double-obstacle potentials which thermodynamically divide 
liquid and solid states by the energetic barrier between these 
states. After an averaging procedure, the hyperbolic phase-
field equation is reduced to the hodograph equation which is 
considered as a generalized Gibbs–Thomson equation  real-
izing a connection of the interface acceleration and velocity 
with the interface curvature and driving force [28].

The main goal of the present work is to directly compare 
the hodograph equations derived from the kinetic energy and 
extended effective mobility approaches which include dif-
ferent thermodynamic potentials energetically dividing liquid 
and solid phases. After the comparison, the prediction of the 
hodograph equation relatively the data of atomistic computer 
simulation will be analyzed. The atomistic data were obtained 
by Tang and Harrowell [29] using the method of molecular 
dynamics applied to the problem of fast crystalline interfaces. 
As a quantitative result, the solution of the hodograph equa-
tion will be tested against the atomistic data of modeling for 
the interface moving with the constant velocity into under-
cooled congruently melting alloy.

2.  Basic definitions

Consider an isothermal solidification of a binary alloy con-
sisting of A-atoms (solvent) together with B-atoms (solute) 
under constant temperature T and constant pressure in a closed 
system. The overall solute concentration C is described by

C = p(φ)CS + p(1 − φ)CL,� (1)

where the interpolation functions, p(φ) = p(φS) and 
p(1 − φ) = p(φL), for solid (S) and liquid (L) phases, 

respectively, are chosen to ensure a minimum of free energy 
density at φ = 0 and φ = 1 with p(φ) + p(1 − φ) = 1 [30], Ci 
(i = S, L) is the solute concentration in solid and liquid, and φ 
is the phase-field variable. In addition to the mixture of con-
centration in phases (1), the second kind constraint exists at 
any point in the bulk phases: φS + φL = 1 or ∇φS +∇φL = 0 
or ∂φS/∂t + ∂φL/∂t = 0.

In the subsequent theoretical investigations, we will 
evaluate the spatial and temporal derivatives of the phase-
field variable, φ, via interface thickness, velocity, and accel-
eration which are driven by the average force, ∆G, and the 
interface curvature [28]. With this aim, we use the averaging 
method widely known in the mechanics of continuous media 
[31, 32] and in solidification processes [33, 34]. Particularly, 
Beckermann et al [35] used the volume or ensemble averaging 
methods that have been used to derive conservation equa-
tions  for other multiphase systems [32, 36, 37]. Indeed, the 
φ-variable can be formally related to the volume or ensemble 
average of an existence function χk for kth phase, which is 
unity in the solid and zero otherwise [32]

φ = φS = 1 − φL =
1

∆v0

∫

∆v0

χSdv0 = 〈χS〉 ,� (2)

where the symbol 〈...〉 stands for an average over the volume 
∆v0, which is macroscopically small [33, 37]. The average 
interfacial area, ∆Ai, between the solid and liquid per unit 
volume is given by

∆Ai

∆v0
= 〈|∇χS|〉 = |∇φ| .� (3)

Note that χk is dealt with as a generalized function, in par
ticular, with regard to its differentiation such as

∇χk = nk
∂χk

∂n
,� (4)

where nk is the unit normal vector exterior to the k-th phase 
and ∂χk/∂n is a scalar valued generalized function [32]. We 
assume, further, that the unit normal vector exterior to the 
solid phase nS = n and the exterior unit normal vector to  
the liquid phase nL = −nS = −n with the curvature takes the 
negative sign for the convex interfaces, κ < 0.

The definitions (2)–(4) yield the expression of the module 
of a phase-field gradient |∇φ| = ∂φ/∂n and will be used to 
obtain the temporal and spatial derivatives of phase-field vari-
able where the average unit normal vector exterior to the solid 
phase, n, and the curvature, κ, of the solid-liquid interface are 
defined by (see [35] and references therein)

n = − ∇χ

|∇χ|
= − ∇φ

|∇φ|
,κ = ∇ · n = − 1

|∇φ|

[
∇2φ− (∇φ ·∇) |∇φ|

|∇φ|

]
,

� (5)
with

(∇φ ·∇) |∇φ|
|∇φ|

=
∂2φ

∂n2 .� (6)

Otherwise, the normal interface velocity V = vi · nL = −vi · n 
with the velocity of the interface vi is given by
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vi ·∇χk = −∂χk

∂t
,� (7)

yields the first and second time derivative of φ, respectively, as

∂φ

∂t
= −V |∇φ| ,

∂2φ

∂t2 = −A |∇φ| − V
∂ (|∇φ|)

∂t
,

� (8)
where A = ∂V/∂t stands for the interface acceleration (see 
[28] for more details of spatial and time derivatives of φ).

It should be pointed out here that close to equilibrium, 
however, the model parameters can be related to physically 
measurable quantities like interfacial energy σ, interfacial 
mobility, deviation from thermodynamic equilibrium and the 
equilibrium interfacial width δ [19, 38]. These relations were 
derived from the one-dimensional steady-state solution of a 
traveling wave solution of the phase-field equation for three 
forms of the potential function: the so-called double-well, 
double-obstacle, and top-hat potentials (see appendix in [19]). 
Note that the notation of total free energy in the following 
theoretical background is chosen as in [19] to underline that 
the diffuse interface is treated as a volume with excess energy 
density σ/δ.

3.  Effective mobility approach to fast interfaces

The total free energy G  in the entire volume Ω is

G = Ge + Gne =

∫

Ω

(
Ge

intf + Ge
bulk + Gne

intf + Gad) dΩ,� (9)

where the equilibrium contributions from the interface Ge
intf  

and bulk phases Ge
bulk, non-equilibrium contribution from the 

interface Gne
intf , and additional constraint Gad are related to (1). 

The superscripts and the subscripts ‘e’, ‘ne’, ‘intf’, and ‘bulk’ 
denote the equilibrium, the non-equilibrium, the interface, and 
the bulk contributions, respectively.

3.1. The hodograph equation and traveling waves with the 
double-obstacle potential

In this case, the interpolation function takes the following 
form,

p(φ) =
φ2

φ2 + (1 − φ)2 , p(1 − φ) =
(1 − φ)2

φ2 + (1 − φ)2 ,

� (10)

the double-obstacle function, g(φ), is written as

g(φ) = φ(1 − φ),� (11)

and all contributions to the total free energy G  are expressed 
as

Ge
intf =

4σδ
π2 (∇φ)2 +

4σ
δ

g(φ),� (12)

Ge
bulk =

1
υm

( p(φ)GS + p(1 − φ)GL)

=
1
υm

[
p(φ)(CSµ

S
A + (1 − CS)µ

S
B) + p(1 − φ)(CLµ

L
A + (1 − CL)µ

L
B)
]

,

� (13)

Gne
intf =

2σδ
π2(VB

φ)
2

(
∂φ

∂t

)2

,� (14)

Gad = λ( p(φ)CS + p(1 − φ)CL − C).� (15)

Here σ is the interface energy, Ge
intf  is defined as the double-

obstacle potential [19] such that the interfacial width remains 
finite during solidification. Ge

bulk is assumed to be a mixture 
of the molar Gibbs free energy GS and GL with µi

j the chem-
ical potential (i = S, L; j = A; B) and, Gad with the associated 
Lagrange multiplier λ included into the total free energy G  
such that the solute conservation is ensured to describe the 
additional constraint (1) thermodynamically consistent. υm 
is the same assumed partial molar volume of solvent A and 
solute B, µ̃i is the solute diffusion potential, Ci is the concen-
tration (i = S, L), Vi

D is the maximum solute diffusion speed in 

the bulk phases, VB
φ  is the maximum phase-field propagation 

speed in bulk phases and t is the time. The non-equilibrium 
contribution from interface Gne

intf  is introduced due to exten-
sion of the set of ‘slow’ variables {CS, CL,φ} by the ‘fast’ 
variable, i.e. the gradient flow ∂φ/∂t (the rate of change of the 
phase-field φ) giving the full space of thermodynamic vari-
ables as {CS, CL,φ, ∂φ/∂t}.

According to the thermodynamic extremal principle (TEP) 
[39, 40], the total free energy dissipation can be given as

Q =

∫

Ω

[
1

Mφ

(
∂φ

∂t

)2

+

(
1

MSeff
c

JS2
B +

1
MLeff

c
JL2

B

)]
dΩ,

� (16)
with the phase-field propagation mobility, Mφ, and effective 
mobilities for solute diffusion, MSeff

c  and MLeff
c , have respec-

tively the following form [41],

Mφ =
πM

√
φ (1 − φ)

δ(∂p/∂φ)
,� (17)

Mieff
c = Mi

c

(
1 +

υm

(Vi
D)

2

1
∇Ci

∂Ji
B

∂t

)
, i = S, L� (18)

where M is the mobility of interface migration and Mi
c is the 

mobility for equilibrium solute diffusion [41]. Therefore the 
evolution of the system follows from

δ

{
dG
dt

+
Q
2

}

JS
B,JL

B, ∂φ
∂t

= 0,� (19)

where G  is given by (9).
Eliminating the associated Lagrange multiplier λ in (19) 

yields equations  of the phase-field model for fast and slow 
dynamics,




∂φ
∂t

JS
B

JL
B




=




Lφφ LφCS LφCL

LCSφ LCSCS LCSCL

LCLφ LCLCS LCLCL






δG
δφ

υm∇ δG
δCS

υm∇ δG
δCL




,� (20)

where

δG
δφ

= −8σδ
π2 ∇2φ+

4σ
δ

∂g(φ)
∂φ

+
8σδ

π2(VB
φ)

2

∂2φ

∂t2 +
(GS − GL)

υm

∂p(φ)
∂φ

,

� (21)
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δG
δCS

=
p(φ)(µS

B − µS
A)

υm
=

p(φ)µ̃S

υm
,� (22)

δG
δCL

=
p(1 − φ)(µL

B − µL
A)

υm
=

p(1 − φ)µ̃L

υm
,� (23)

and the detailed expressions of the kinetic coefficients, Lm1m2 
(m1, m2 = φ, CS, CL), are given in [27]. Then, the evolution 
equation follows from (20) as

1
Mφ

∂φ

∂t
= −δG

δφ
+

1
2

1
υm

∂p
∂φ

(CS − CL)

∇p

×
(

JS
B

MSeff
c

− JL
B

MLeff
c

+ υm∇
δG
δCS

− υm∇
δG
δCL

)
,

� (24)
with

JS
B

MSeff
c

+
JL

B

MLeff
c

+ υm∇
δG
δCS

+ υm∇
δG
δCL

= 0,� (25)

JS
B − JL

B = − 1
υm

(CS − CL)

∇φ

∂φ

∂t
.� (26)

Taking into account (21) with (11), one can obtain from (24) 
the following equation for the phase-field φ:

τφ
∂2φ

∂t2 +
∂φ

∂t
= Mφ

(
8σδ
π2 ∇2φ− 4σ

δ
(1 − 2φ)−∆G

∂p
∂φ

)
,

� (27)
with

∆G = ∆Ge +∆Gne,� (28)

∆Ge =
GS − GL

υm
,� (29)

∆Gne = −1
2

1
υm

(CS − CL)

∇p

(
JS

B

MSeff
c

− JL
B

MLeff
c

+ υm∇
δG
δCS

− υm∇
δG
δCL

)
,

� (30)

τφ =
8Mσ

π(VB
φ)

2

√
φ(1 − φ)

(∂p/∂φ)
,� (31)

where ∆G stands for the total driving free energy from the 
bulk contribution reformulated into the molar driving free 
energy, ∆Ge, the equilibrium and the non-equilibrium bulk 
contributions, ∆Gne, and τφ is the relaxation time of the gra-
dient flow.

Using the same treatment as in [28], one obtains from (2)–
(8) the spatial and time derivatives of the phase-field with the 
following traveling wave profile of the phase-field

φ(n, t) =





0 n
�(t) < −π

2

1
2

[
1 + sin

(
n

�(t)

)]
− π

2 � n
�(t) <

π
2

1 n
�(t) �

π
2 ,

� (32)

where � = �(t) stands for the time-dependent effective width 
of the interface and n is the spatial coordinate normal to the 
interface. Therefore, one gets

∇2φ = −κ

√
φ (1 − φ)

�
+

(1 − 2φ)
2�2 ,� (33)

∂φ

∂t
= −V

√
φ (1 − φ)

�
,� (34)

∂2φ

∂t2 = −
(
A− V

�

∂�

∂t

) √
φ (1 − φ)

�
+ V2 (1 − 2φ)

2�2 ,� (35)

with

V
∂ (|∇φ|)

∂t
= −V

�

∂�

∂t

√
φ (1 − φ)

�
− V2 (1 − 2φ)

2�2 .� (36)

Taking into account (17) and substituting (33)–(36) into 
(27), one finds the following nonlinear equation,

0 =

{[
τφ

(
A− V

�

∂�

∂t

)
+ V − 8σδMφ

π2 κ

]
1
�
− πM

δ
∆G

}√
φ (1 − φ)

+

[(
8σδ
π2 − τφ

Mφ
V2

)
Mφ

2�2 − 4σMφ

δ

]
(1 − 2φ) ,

� (37)
which can be solved by accepting zero values for expressions 
in the curly brackets (the first term) and the square brackets 
(the second term). Using (17) and (31), the expression for 
the interface width � follows from the second term in square 
brackets in right-hand side of (37) as

�(t) =
δ

π

√
1 − V2(t)/(VB

φ)
2, V(t) < VB

φ .� (38)

In (38) and in the following text we assume that the interface 

velocity V(t) cannot overcome the maximum speed VB
φ  of the 

phase-field propagation because the interface cannot be faster 
than the field in which this interface moves.

Using the expression for interface width (38), the expres-
sion (V/�)(∂�/∂t) from (37) takes the form

V
�

∂�

∂t
= −

A [V2(t)/(VB
φ)

2]

1 − V2(t)/(VB
φ)

2 .� (39)

The first term in curly brackets in right-hand side of (37) with 
(17) and (31) gives the following hodograph equation,

τφ A[
1 − V2(t)/(VB

φ)
2
]3/2 +

V√
1 − V2(t)/(VB

φ)
2
= M∆G +

[τφ(VB
φ)

2]κ√
1 − V2(t)/(VB

φ)
2

.

� (40)

3.2. The hodograph equation and traveling waves with the 
double-well potential

Choosing the interpolation function as

p(φ) = φ2(3 − 2φ), p(1 − φ) = (1 − φ)2(3 − 2(1 − φ)),� (41)
and using the double-well function g(φ) of the following form

g(φ) = φ2(1 − φ)2,� (42)

the equilibrium and non-equilibrium contributions from the 
interface, Ge

intf  and Gne
intf , to the total free energy G  become, 

respectively,

J. Phys.: Condens. Matter 32 (2020) 204003
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Ge
intf =

σδ

2
(∇φ)2 +

9
2
σ

δ
g(φ),� (43)

Gne
intf =

1
2

σδ

(VB
φ)

2

(
∂φ

∂t

)2

,� (44)

where the contribution from the interface energy, Ge
intf , is 

defined as the double-well potential [19] such that the interfa-
cial width remains finite upon solidification. The equilibrium 
contribution to bulk phases, Ge

bulk and additional constraint 
Gad to the total free energy G  remain unchanged (they are 
given by (13) and (15), respectively).

Based on the TEP (see (16) and (19)), the system of equa-
tion  (20) yields almost the same governing equation  of the 
phase-field (24)–(26), with

δG
δφ

= −σδ∇2φ+
9σ
2δ

∂g(φ)
∂φ

+
σδ

(VB
φ)

2

∂2φ

∂t2 +
1
2

GS − GL

υm

∂p
∂φ

,

� (45)
and the phase-field propagation mobility, Mφ, takes the fol-
lowing form

Mφ =
M∇φ

∂p/∂φ
.� (46)

Taking into account (41), (42) and (45), the governing equa-
tion of the phase-field (24) becomes

τφ
∂2φ

∂t2 +
∂φ

∂t
= Mφ

[
σδ∇2φ− 9σ

δ
φ (1 − φ) (1 − 2φ)− 3∆Gφ(1 − φ)

]
,

� (47)
where the relaxation time τφ takes the form

τφ =
σδ

(VB
φ)

2 Mφ.� (48)

Using (2)–(8) for the spatial and time derivatives of the 
phase-field one can find that the phase-field propagates as

φ (n, t) =
1
2

[
1 + tanh

(
n
�(t)

)]
,� (49)

where � = �(t) stands for the time-dependent width of the 
interface and n is the spatial coordinate normal to the inter-
face. Therefore, one gets in the case of double-well potential,

∇2φ = −κ
2φ (1 − φ)

�
+

4φ (1 − φ) (1 − 2φ)
�2 ,� (50)

∂φ

∂t
= −V

(
2φ(1 − φ)

�

)
,� (51)

∂2φ

∂t2 = −
(
A− V

�

∂�

∂t

)
2φ(1 − φ)

�
+ V2 4φ(1 − φ)(1 − 2φ)

�2 ,

� (52)
with

V
∂ (|∇φ|)

∂t
= −V

�

∂�

∂t
2φ (1 − φ)

�
− V2 4φ (1 − φ) (1 − 2φ)

�2 .
� (53)
Substituting (50)–(52) in (47) and taking into account (46), 
one finds the equation

0 =

{[
τφ

(
A− V

�

∂�

∂t

)
+ V − Mφσδκ

]
2
�
− 3∆GMφ

}
φ (1 − φ)

+

[(
Mφσδ − τφV2) 4

�2 − 9
Mφσ

δ

]
φ (1 − φ) (1 − 2φ) ,

� (54)
which can be solved by accepting zero values for expressions 
in the curly brackets (the first term) and the square brackets 
(the second term).

Taking into account (48), the expression for the velocity-
dependent interface width � follows from the second term in 
square brackets in right-hand side of (54) as

�(t) =
2
3
δ
√

1 − V2(t)/(VB
φ)

2, V(t) < VB
φ .� (55)

Now, using the interface width (55) one can derive the same 
expression as (39), which appears in the first term of right-
hand side of (54). Therefore, the first term in curly brackets 
in right-hand side of (54) with (48) gives the following hodo-
graph equation,

τφ A[
1 − V2(t)/(VB

φ)
2
]3/2 +

V√
1 − V2(t)/(VB

φ)
2

=
[τφ(VB

φ)
2]

σ
∆G +

[τφ(VB
φ)

2]κ√
1 − V2(t)/(VB

φ)
2

.

� (56)

4.  Kinetic energy approach to fast interfaces

The kinetic energy approach [25, 26] introduces the total 
free energy G  consisting of the equilibrium and the non-
equilibrium contributions using the set of ‘slow’ variables 

{CS, CL,φ} and the space of ‘fast’ variables 
{

JS
B, JL

B, ∂φ/∂t
}

. 
Here we deal with the case of the traveling wave solution with 
the double-obstacle potential for a binary alloy system con-
sisting of A-atoms (solvent) together with B-atoms (solute) 
under constant temperature T and constant pressure.

4.1. The hodograph equation and traveling waves with the 
double-obstacle potential

The total free energy G  in the entire volume Ω is written as

G = Ge + Gne =

∫

Ω

(Ge
intf + Ge

bulk + Gne
intf + Gne

bulk) dΩ.� (57)

The non-equilibrium contribution from bulk phases, Gne
bulk, 

related to the fast variables, JS
B and JL

B, is given by

Gne
bulk =

1
υm

(
p(φ)

1
2
αSJS2

B + p(1 − φ)
1
2
αLJL2

B

)
.� (58)

The expression (57) contains the same equilibrium and non-
equilibrium contributions from the interface, Ge

intf  and Gne
intf , 

and the same equilibrium contrubition from bulk phases, Ge
bulk, 

as in the effective mobility approach for the case of double-
obstacle potential, (12)–(14), where αi =

(
∂µ̃i/∂Ci

)
υ2

m/Vi2
D  

the positive kinetic coefficient independent from the solute 
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flux Ji
B [26]. The additional constraints in the modeling 

system are defined by (i) the single-phase state at any point in 
the bulk phases [27], i.e. φS + φL = 1 or ∇φS +∇φL = 0 or 
(∂φS/∂t) + (∂φL/∂t) = 0 and (ii) the mixture law (1), i.e. C 
is a mixture of CS and CL.

According to the TEP [39, 40], the total free energy dis-
sipation can be given as

Q =

∫

Ω

[
1

Mφ

(
∂φ

∂t

)2

+

(
1

MS
c

JS2
B +

1
ML

c
JL2

B

)]
dΩ,� (59)

with the phase-field propagation mobility, Mφ, and solute dif-
fusion mobilities, MS

c  and ML
c , have respectively the following 

form [41],

Mφ =
πM

√
φ(1 − φ)

δ(∂p/∂φ)
,� (60)

MS
c =

pDS

υm

(
∂µ̃S

∂CS

)−1

,� (61)

ML
c =

(1 − p)DL

υm

(
∂µ̃L

∂CL

)−1

,� (62)

where M is the mobility of interface migration and Di is the 
solute diffusion coefficient. Therefore, the evolution of the 
system follows from the variational derivative

δ

{
dG
dt

+
Q
2
+ λ

∫

Ω

[(
JS

B − JL
B

)
υm∇φ+

∂φ

∂t
(CS − CL)

]
dΩ

}

JS
B,JL

B, ∂φ
∂t

= 0,

� (63)
where λ is the associated Lagrange multiplier and the time 
derivative dG/dt should be taken from the total free energy 
(57).

Eliminating λ in (63) yields the system of equations of the 
phase-field model for fast and slow dynamics,



∂φ
∂t

JS
B

JL
B





=




Lφφ LφcS LφcL

LcSφ LcScS LcScL

LcLφ LcLcS LcLcL







δG
δφ + ∂p(φ)

∂φ
1
υm

( 1
2αSJS2

B − 1
2αLJL2

B

)

υm∇ δG
δCS

+ p(φ)αS
υm

∂JS
B

∂t

υm∇ δG
δCL

+ p(1−φ)αL
υm

∂JL
B

∂t





,

� (64)
where Lm1m2 (m1, m2 = φ, CS, CL) are the kinetic coefficients 
given in [27]. Then, the equation of the phase-field φ follows 
from (64) as

τφ
∂2φ

∂t2 +
∂φ

∂t
= −Mφ

{
4σ
δ

[
−2δ2

π2 ∇2φ+ (1 − 2φ)
]
+∆G

∂p
∂φ

}
,

� (65)
where ∆G = ∆Ge +∆Gne  stands for the total driving free 
energy from the bulk contribution reformulated into the molar 
driving free energy, ∆Ge, the equilibrium and the non-equilib-
rium bulk contributions, ∆Gne. The relaxation time is

τφ =
8Mσ

π(VB
φ)

2

√
φ (1 − φ)

∂p/∂φ
.� (66)

Introducing now the spatial and time derivatives of the phase-
field from (33)–(36) into (65) and taking into account (60), 
one finds the equation

0 =

{(
τφ

[
A− V

�

∂�

∂t

]
+ V − 8σδMφ

π2 κ

)
1
�
− πM

δ
∆G

}√
φ (1 − φ)

+

[(
8σδ
π2 − τφ

Mφ
V2

)
Mφ

2�2 − 4σMφ

δ

]
(1 − 2φ) ,

� (67)
which can be solved by accepting zero values for expressions 
in the curly brackets (the first term) and the square brackets 
(the second term).

Taking into account (60) and (66), the expression for the 
interface width (38) follows from the second term in square 
brackets in right-hand side of (67). The hodograph equa-
tion comes from the curly brackets of (67), which has the form 
of (40).

4.2. The hodograph equation and traveling waves with the 
double-well potential

Under the assumption of constant averaged driving force, ∆G, 
a sole equation of the phase-field with the driving force, which 
is given by deviations of temperature and concentration from 
their equilibrium values within the diffuse interface, appeared 
from the equations for the hyperbolic transport and fast inter-
face dynamics (see the work [28] and references therein)

τφ
∂2φ

∂t2 +
∂φ

∂t
= ν

[
∇2φ− 9

2δ2

dg (φ)
dφ

− 1
2σδ

∆G
dp (φ)

dφ

]
,

� (68)
where the interpolation function p(φ) and the double-well 
function g(φ) are given by (41) and (42), respectively, and the 
model parameters are expressed in terms of the surface energy 
σ, the interfacial width δ, and the phase-field diffusion param
eter ν  are

Mφ =
ν

2σδ
, τφ =

ν

(VB
φ)

2 .� (69)

Substituting the spatial and time derivatives (50)–(52) into 
(68) gives the equation

0 =

[(
ν − τφV2) 4

�2 − 9
ν

δ2

]
φ (1 − φ) (1 − 2φ)

+

{
2
�

[
τφ

(
A− V

�

∂�

∂t

)
+ V − νκ

]
− 3

ν

σδ
∆G

}
φ (1 − φ) ,

� (70)
which can be solved by accepting zero values for expressions 
in the square brackets (the first term) and the curly brackets 
(the second term). Taking into account (69), the expression 
(55) for the interface width follows from the first term in 
square brackets in right-hand side of (70) as well as the hodo-
graph equation (56) is obtained from the second term in curly 
brackets [28].

5.  Summary on theoretical treatments

In summary of sections 3 and 4, effective mobility and kinetic 
energy approaches yield the same expressions of the velocity-
dependent interface width �(t) and hodograph equation with 
respect to the considered form of the phase-field profile φ (n, t) 
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in the dynamical regime. Using double-well and double-
obstacle potentials, the unified interface width takes the form,

�(t) = ηint

√
1 − V2(t)/(VB

φ)
2, V(t) < VB

φ ,� (71)

and the unified hodograph equation can be written as

τφ A[
1 − V2(t)/(VB

φ)
2
]3/2 +

V√
1 − V2(t)/(VB

φ)
2
= M∆G+

[τφ(VB
φ)

2] κ√
1 − V2(t)/(VB

φ)
2

,

� (72)
where ∆G stands for the unified driving force, ηint and M are the 
unified interfacial width and unified interface migration mobility, 
respectively. Comparison between the obtained relations for ηint 
and M as well as for the relaxation time, τφ, and phase-field 
propagation mobility, Mφ, are given in table 1 with respect to 
double-well and double-obstacle potentials with using effective 
mobility approach (EMA) and kinetic energy approach (KEA).

6.  Comparison with data of atomistic simulation

Previously, the nonlinearity in the growth kinetics of a form 
of the velocity with saturation has been described for pure Ni 
[28, 42]. However, there are other type of non-linearity in the 
‘velocity–undercooling’ relationship which is presented by 
the crystal growth velocity curve having a maximum at fixed 
undercooling [29, 43, 44] typical for glass-forming metals and 
alloys. Because in situ measurements of kinetic phenomena 
at the solid-liquid interface are still experimentally inacces-
sible for metallic and semiconductor melts, the hodograph 
equation (72) is quantitatively tested in this section  in com-
parison with the data of atomistic simulation. For such com-
parison, we choose the data obtained by Tang and Harrowell 
[29] in a molecular dynamics simulation of crystallization 
of undercooled Cu50Zr50 melts. These authors studied the 
growth kinetics of crystals in the steady-state regime with 
the constant velocity V  and with the absence of accelera-
tion, A = 0. Therefore, using approximations summarized in 
[45] and taking into account that Cu50Zr50 is the congruently 
melting alloy solidifying without chemical segregation, the 
hodograph equation (72) can be rewritten as

V =
µk(∆Tk)∆Tk√

1 +
[
µk(∆Tk)∆Tk/VB

φ(∆Tk)
]2

,� (73)

where µk is the kinetic coefficient dependent on the kinetic 
undercooling ∆Tk.

As predicted from (73), the interface velocity is pro-
portional to the undercooling, V ∝ ∆Tk, giving the linear 
dependence at the small undercooling. With the increase of 
undercooling, the square root in denominator of (73) becomes 
more and more significant that leads to the nonlinearity and 
decreasing of the velocity. This denominator appears as the 
result of the relaxation of the gradient flow ∂φ/∂t [45] and 
the contribution of the square root becomes essential at the 
high undercooling. This is obvious because ∂φ/∂t has been 
introduced as the independent thermodynamic variable due to 
appearance of large driving forces on crystallization.

Substituting (73) into interfacial width (71) gives

� =
ηint√

1 +
(
M∆G/VB

φ

)2
.

� (74)

In the local equilibrium limit, VB
φ → ∞, i.e. with the instant 

relaxation of the gradient flow, τ → 0 (see expressions of Set 
1 of table 2), the interfacial width (74) takes its equilibrium 
value � = ηint. With the increasing driving force ∆G, the dif-
fuse interface shrinks and, with its largest value, ∆G → ∞, 
the diffuse interface transforms to the sharp interface having 
the zero width, � → 0.

In (73), the kinetic coefficient µk depends on the under-
cooling ∆Tk as

µk(∆Tk) =
Dφ(∆Tk)∆Hf

σTm
,� (75)

where ∆Hf  is the enthalpy of fusion. The maximum speed VB
φ  

of the phase-field propagation is defined in (73) by the diffu-
sion coefficient Dφ of the phase-field and relaxation time τφ 
of the gradient flow as

VB
φ(∆Tk) =

√
Dφ(∆Tk)/τφ,� (76)

Table 1.  Comparison of the main functions and coefficients within effective mobility approach (EMA) and kinetic energy approach (KEA).

Function/Coefficient Double-obstacle potential Double-well potential

Phase-field profile, φ(n, t)



0 n
�(t) < −π

2
1
2 [1 + sin( n

�(t) )] −π
2 � n

�(t) <
π
2

1 n
�(t) �

π
2

1
2
[1 + tanh(

n
�(t)

)]

Potential with energetic barrier, g(φ) φ(1 − φ) φ2(1 − φ)2

Interpolation function, p(φ) φ2/(φ2 + (1 − φ)2) φ2(3 − 2φ)
EMA and KEA EMA KEA

Diffuse interface width, ηint δ/π 2δ/3 2δ/3
Mobility of interface migration, M M τφ(VB

φ)
2/σ ν/σ

Mobility of φ-propagation, Mφ (
π

2
)2[τφ(VB

φ)
2/(2σδ)] τφ(VB

φ)
2/(σδ) ν/(2σδ)

Relaxation time of gradient flow, τφ
8
π

σM
(VB

φ)
2

√
φ(1 − φ)

∂p/∂φ
σM
(VB

φ)
2

δ∇φ

∂p/∂φ
ν/(VB

φ)
2
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where the relaxation time τφ is taken as an independent 
parameter from the temperature in the present analysis. The 
diffusion coefficient of phase-field in (75) and (76) is

Dφ(∆Tk) = D0
φ exp

(
− EA

Tm −∆Tk − TAB

)
,� (77)

where the diffusion factor D0
φ, the energetic barrier EA  and the 

pseudo-glass transition temperature TAB are the parameters 
of the phase-field propagation. As soon as the undercooling 
approaches its critical value in (77), the phase-field diffusion 
begins its steep decrease down to the zero value [45]. Finally, 
the kinetic equation (73) with (75)–(77) have previously been 
applied to describe the molecular simulation data on crystal-
lization of Fe [43] and Ni50Al50 [29] (see [45, 48]).

All present calculations have been made using material 
parameters for Cu50Zr50 from table  2, where the relaxation 

time τφ, the diffusion factor D0
φ and the energetic barrier EA  

are considered as free parameters at a fixed pseudo-glass trans
ition temperature, TAB. They can be obtained from molecular 
dynamics simulation (e.g. τφ) and from phase-field simula-

tions (e.g. D0
φ and EA). The interface width ηint has been taken 

from table 1 using KEA and double-well potential.

Figure 1 presents two bell-shaped curves given by solutions 
of (73)–(77). These solutions are plotted for the crystallization 

with the local non-equilibrium effect (τφ �= 0, VB
φ  is finite) and 

without it (τφ → 0, VB
φ → ∞). With no local non-equilibrium 

effects (τφ → 0), the predicted velocity well describes data 
of atomistic modeling only at small undercooling (see dashed 
curve obtained with the Set 1 from table  2 providing the 
better fit to data of simulations). If, however, the local non-
equilibrium effect is included (τφ �= 0), we recover perfectly 
the atomistic simulation data in the entire undercooling range 
and the growth rate (see solid curve obtained with Set 2 from 
table 2). The solidification kinetics of glass-forming alloys is 
well described by the theory which includes local non-equi-
librium effects in the form of relaxation of the gradient flow in 
the phase-field. Therefore, good comparison with molecular 
dynamics data confirms our theoretical assumption using the 
phase-field models about the predominant influence of local 
non-equilibrium effects in crystal growth under large driving 
forces.

We finally note that the kinetic data of Tang and Harrowell 
obtained in atomistic simulations (see open squares in 
figure 1) are larger approximately for one order of magnitude 

Table 2.  Material parameters of glass-forming alloy Cu50Zr50 used in calculations.

Parameter Set 1 Set 2 Source

Melting temperature, Tm (K), 1340 1340 [29]
Pseudo-glass temperature, TAB (K), 940 940 [46]
Interface energy, σ (J m−2), 0.6 0.6 [47]

Enthalpy of fusion, ∆Hf  (J m−3), 8.78 × 108 8.78 × 108 [47]
Relaxation time of gradient flow, τφ (s), → 0 2.34 × 10−8 Present work

Diffusion factor, D0
φ (m2 s-1), 1.55 × 10−9 1.55 × 10−9 Present work

Energetic barrier, EA  (K), 82.02 82.02 Present work

Figure 1.  Data of molecular dynamic simulation (�) obtained for the 〈100〉-direction of crystals growing from the undercooled glass-
forming Cu50Zr50 alloy melt [29] in comparison with predictions of equations (73)–(77) given by the phase-field model (PFM) (curves). 
Calculations are given by: ( ) without relaxation of the gradient flow, τφ → 0, VB

φ → ∞, using Set 1 from table 2; ( ) with 
relaxation, τφ �= 0, finite VB

φ  and the parameters given by Set 2 from table 2.
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from those obtained experimentally on Cu50Zr50 samples 
for the whole undercooling balance (in which not only the 
kinetic undercooling ∆Tk but also contributions from the 
thermal transport and interface curvature are taken into 
account [48]). The kinetic data of Tang and Harrowell [29] 
also do not take into account a possible transformation of 
the cluster structure in Cu50Zr50 melt, which changes from a 
mixture of single icosahedral clusters to the mixture of inter-
connected clusters, long chains and even networks of the 
clusters as the undercooling increases [49]. This transforma-
tion may lead to the sharp drop off the interface velocity and 
even to the zero crystallization kinetics approximately one 
hundred Kelvin before the formation of the glassy phase in 
the Cu50Zr50 alloy [50]. Therefore, our present comparison 
with the data given by Tang and Harrowell [29] only demon-
strates the ability to describe the bell-shaped kinetic curves, 
figure 1, characterizing the crystallization of glass-forming 
alloys.

7.  Conclusions

The phase-field equations have been derived using an effec-
tive mobility approach and kinetic energy approach. These 
equations take into account relaxation of the phase-field vari-
able φ and relaxation of the gradient flow ∂φ/∂t that leads to 
the partial differential equations of the hyperbolic type. Using 
the double-well and double-obstacle potentials, the unified 
hodograph equation is found. Having the common form, this 
equation presents acceleration and velocity-dependent Gibbs–
Thomson type of equation  for the small, intermediate and 
large driving forces on the crystallization of pure substances 
or binary mixtures.

The kinetic equation for the slow and fast interface motion 
has been obtained from the unified hodograph equation  for 
the steady-state crystal growth with constant velocity. A good 
comparison of the kinetic equation  solution with molecular 
dynamics data on crystallization kinetics of the Cu50Zr50 alloy 
melt has been found. This quantitative comparison confirms 
the idea of the predominant influence of local non-equilibrium 
effects in fast crystallization under large driving forces.
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