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1.  Introduction

Weyl semimetals represent an emerging class of topological 
materials which have drawn much attention in condensed 
matter physics and related fields. In a Weyl semimetal (WSM) 
the conduction and valence bands cross at discrete points 
within the Brillouin zone (BZ) [1]. And around each band-
crossing point there appears Weyl-cone-like band structure, 
hence these points are called Weyl nodes. These Weyl nodes 
always appear in pairs of opposite chirality, which can be 
understood as monopoles and antimonopoles of Berry flux in 
momentum space. Weyl semimetals are uaually further clas-
sified into either time-reversal symmetry-breaking WSMs or 
inversion symmetry-breaking WSMs. In addition, WSMs can 
also be classified in terms of the degree of Weyl cone tilt which 

is allowed in realistic materials. Type-I WSMs have untilted or 
weakly tilted Weyl cone [2–4] with a point-like Fermi surface 
when it crosses the Weyl node. By contrast, type-II WSMs 
have over tilted and the Fermi surface appears as electron and 
hole pockets [5]. So far, experimentally verified WSM mat
erials are exemplified by TaAs [6, 7], NbAs [8], TaP [9], and 
NbP [10]. Further promising candidates for WSMs include 
pyrochlore iridate [11], Heuslers [12–14], Mn3Sn [15–17], 
Cd3As2 [18, 19], and so on.

Electronic transport properties in a WSM in the presence of 
a magnetic field are highly peculiar, owing to its topological 
nature of band structure. For recent theoretical studies, see, 
e.g. [11, 20–26] and references therein. The relevant theor
etical anticipations include linear transversal magnetoresist
ance (LTMR) and negative longitudinal magnetoresistance 
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(NLMR) [27]. And the later is tightly associated with the chiral 
anomaly [22] of Weyl Fermions (Herein the terms ‘transversal’ 
and ‘longitudinal’ means that the electronic transport direc-
tions are perpendicular and parallel to the exerted magnetic 
field respectively). Both of LTMR and NLMR have thus far 
experimentally observed in realistic WSM materials [28–31]. 
In particular, some recent experimental articles have demon-
strated them in the same materials [10, 18, 19, 29, 32–34]. 
Although electronic magneto-transport in WSMs has cur
rently been a widely studied topic, to our knowledge, a com-
prehensive understanding on some key issues is still lacking, 
for example, the roles of inter-valley scattering and Weyl cone 
tilt. Some previous theoretical work employed a single-valley 
(one Weyl cone) model for simplicity. Inter-valley scattering is 
natively excluded in such a toy model, though, it captures the 
main characteristic of a Weyl Fermion. In realistic materials, 
inter-valley scattering (between Weyl cones) is inevitable. 
Thus, it is necessary to study the scattering between two dif-
ferent valleys. In addition, although Kubo formula provides an 
appropriate theoretical framework, and has thus far frequently 
employed to study the magneto-transport of WSM, the approx
imation is often restricted to lowest-order Feynman diagram 
which seems reasonable only in the weak scattering limit [35–
37]. The higher-order-diagram contributions are thus ignored.

In the present work, we systematically study the transversal 
and longitudinal conductivities of WSM subject to a magnetic 
field, by using the Kubo formula within self-consistent Born 
approximation (SCBA) [21, 38, 39]. We find that the contrib
utions of high-order Feynman diagrams to the transversal 
magneto-conductivity play the distinct roles between the cases 
of intra- and inter-valley scatterings. The former suppresses 
the transversal conductivity whereas the latter enhances it. For 
the longitudinal transport, the high-order Feynman diagrams 
play the nontrivial role on the longitudinal conductivity even 
in the weak scattering limit where the self-energy correction 
to the eigen-energy spectrum due to impurity scattering is 
far smaller than the Landau level spacing. In addition, inter-
valley scattering contributes only trivial magnetoresistance. 
In contrast, intra-valley scattering is invalid for longitudinal 
magneto-transport which indicates a very large NLMR.

The paper is organized as follows. Section  2 is firstly 
devoted to an introduction to the Hamiltonian model of a type-I 
WSM. Then, starting from the theoretical framework of Kubo 
formula with SCBA, we derive the expressions of density of 
states (DOS) and conductivity of a WSM subject to intra- and 
inter-valley scattering respectively. In section  3, numerical 
results about the electronic magneto-transport are presented 
and discussed. Finally, we summarize our main findings in 
section 4.

2. Theory

We begin with a minimal Hamiltonian model which describes 
the low-energy electronic state in a WSM composed of a pair 
of Weyl node of opposite chirality. It is written as

Ĥ = vfp̂ · σ̂ ⊗ τ̂z + tvfp̂zσ0 ⊗ τ̂z + U(r)σ0 ⊗ τ̂0 + W(r)σ0 ⊗ τ̂x
� (1)

where vf  is the fermi velocity of the Weyl-fermion-like con-
duction electron in the WSM; The parameter t denotes the 
degree of Weyl cone tilt in z direction. σi and τi with i = x, y, 
and z are pauli matrixes in spin and valley (two Weyl cones) 
spaces respectively; and σ0 = τ0 is 2 × 2 identity matrix. In 
this Hamiltonian, we consider two opposite-tilted Weyl cones 
with the Weyl nodes located at (0, 0,±Q) respectively; they 
are hence called the ±Q valleys hereafter. Obviously, in 
the right hand side of the above Hamiltonian, the first term 
describes two Weyl valleys without tilt, and the second is the 
tilt term. The third and last terms stand for, respectively, the 
intra-valley and inter-valley scattering potential. For conve-
nience of theoretical treatment we assume the spatial parts of 
both the intra- and inter-valley scattering equally in a form of 
Dirac δ-function [38, 39], namely

U(r) = W(r) =
∑
λ

ui
λδ(r − ri

λ)� (2)

where ui
λ is the amplitude of the scattering potential cre-

ated by an impurity at ri
λ. Such a simple scattering potential 

model captures most physical properties of quantum trans-
port, though it looks unrealistic. And it has been extensively 
employed for theoretical studies of electronic transport prop-
erty in solids with various typical band structures. To explore 
the magneto-transport property of a WSM, we introduce 
a magnetic field with strength B in z direction, i.e. parallel 
to the connecting line between the two nodes, which enters 
the above Hamiltonian simply via the peierls substituation: 
p̂ ⇒ p̂ + eA/c, with the vector potential A(r) = (−By, 0, 0).

For a perfect WSM, i.e. in the absence of any impurity 
scattering, the two Weyl valleys are decoupled. Then, the 
above Hamiltonian in the presence of the magnetic field have 
analytical eigensolutions. The eigen-energy exhibits the one-
dimensional subbands and the Landau level (LL) spectrum, 
respectively, in the directions parallel and perpendicular to the 
magnetic field. It has an analytical expression as [27]

E(α, n, pz) =

{
αvf

(
tpz +

n
|n|

1
lB

√
2|n|+ l2Bp2

z

)
|n| > 0

αvfpz(t − 1) n = 0
� (3)

with lB = (eB/c�)− 1
2 is the magnetic length. Here α  and 

n are the indexes of the valley parity and Landau level 
respectively, α = ± for ±Q valleys. What is special is 
that the n  =  0 LL has a unidirectional and constant band 
velocity in either valley which reflects the chiral anomaly. 
Corresponding to the above eigen-energy, the eigenstate 
takes a form of four-component spinor which can be written 
in a compact form as

|α, n, px, pz〉 =




θ(αQ)un(ζ)φ|n|−1(ξ)

θ(αQ)dn(ζ)φ|n|(ξ)

θ(−αQ)un(ζ)φ|n|−1(ξ)

θ(−αQ)dn(ζ)φ|n|(ξ)


 |px〉|pz〉.� (4)

In the above expression the function θ(x) = 1 for x  >  0 
and θ(x) = 0 otherwise. φ|n|(ξ) with ξ = l−1

B y − lBpx/� is 
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the normalized eigenfunctions of 1D harmonic oscillator. 

Besides, un(ζ) = θ(npz) cos( ζ2 ) + θ(−npz) sin( ζ2 ) and dn(ζ) =  
θ(−npz) cos( ζ2 )− θ(npz) sin( ζ2 ) + (1 − θ(|n|)) with ζ =  
arctan[

√
2|n|/(lBpz/�)].

To study the magneto-transport of electrons in a WSM 
within the theoretical framework of quantum transport, we 
employ the Kubo-Bastin formula [40, 41] which expresses 
the diagonal conductivity in terms of Green functions. At zero 
temperature it is given by

σxx(zz)(ε) =
e2�
πV

〈
Tr[v̂x(z)ImĜ(ε+)v̂x(z)ImĜ(ε+)]

〉
� (5)

where V  denotes the volume of the system and v̂x(z) is the 
component of velocity operator. For the WSM described by 
the above Hamiltonian, we have ̂vx(z) = vσx(z) ⊗ τz . The oper-
ators of retarded and advanced Green functions are defined as 
Ĝ(ε±) = [ε− Ĥ ± iη]−1 with ε and η being the Fermi energy 
and a positive infinitesimal respectively. And finally 〈· · · 〉 in 
equation (5) stands for an averaging over impurity configura-
tions. For the theoretical model of WSM under our consider-
ation, σxx and σzz  are called the transversal and longitudinal 

conductivity, since they are perpendicular and parallel to the 
magnetic field direction respectively.

Prior to explore the effect of impurity scattering, we would 
like to work out the transversal and longitudinal conductivities 
of the perfect WSM (in the absence of any scattering poten-
tial) in terms of the eigensolution given above. Considering 
that the Green functions are diagonal in the eigen representa-
tion of a perfect WSM, after a straightforward derivation we 
have

σxx =
e2�

4π3l2B
vf

2
∑
α,n,n′

∫
dpz[un′

2(ζ)dn
2(ζ)δ|n|,|n′|−1 + un

2(ζ)dn′
2(ζ)δ|n|,|n′|+1]

× η

[ε− E(α, n, pz)]2 + η2

η

[ε− E(α, n′, pz)]2 + η2

�
(6)

and

σzz =
e2�

4π3l2B
vf

2
∑
α,n

∫
{[u2

n(1 + t) + d2
n(−1 + t)]

η

[ε− E(α, n, pz)]2 + η2 }
2dpz.

�

(7)

Figure 1.  (a) Feynman diagram of electronic self-energy in SCBA. The double lines with arrow denotes the dressed Green function, 
and the dashed lines denote the impurity potential. The notation ⊗ means the procedure of impurity configuration average. (b) Feynman 
diagram of the quantity J(ε, ε′) in the presence of intra-valley scattering. Except the first one, the remaining bubble diagrams are called 
the vertex corrections. (c) Feynman diagram of the quantity J(ε, ε′) in the presence of inter-valley scattering. Noting the even-numbered 
bubble diagrams have the opposite sign to the odd-numbered ones. (d) and (e) Dispersions of low energy Landau subbands for (d) untilted 
(t  =  0.0) and (e) tilted WSMs (t  =  0.5) which consists of a pair of Weyl nodes with opposite chirality and tilt vector located at (0, 0, ± Q) 
respectively.
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In addition, the corresponding DOS of the perfect WSM can 
be expressed as

ρ(ε) = − 1
πV

TrImG(ε+ iη)

=
1

4π3l2B

∑
α,n

∫
η

[ε− E(α, n, pz)]2 + η2 dpz.

�

(8)

It will be seen below that these expressions are helpful for us 
to understand the numerical result of the conductivity spec-
trum in the presence of impurity scattering, in particular, in 
the case of relatively weak scattering.

Now let us deal with impurity scattering. The presence of 
impurity scattering complicates the theoretical treatment of 
the magneto-conductivity since it brings about the nontrivial 
self-energy to Green function and the vertex correction to the 
conductivity. We adopt the SCBA to incorporate the impurity 
scattering into the formula of the diagonal conductivity of a 
WSM which can provide us with a reasonable result in the 
case of weak scattering. Within the SCBA the self-energy 
operator satisfies

Σ̂(ε± iη) = 〈ÛĜ(ε± iη)Û〉�
(9)

and the Green function operator can be expressed in a form as

Ĝ(ε± iη) = [ε± iη − Ĥ0 − Σ̂(ε± iη)]−1
� (10)

where Ĥ0 is the Hamiltonian of the perfect WSM, i.e. the 
Hamiltonian given by equation (1) with the impurity scattering 
part excluded. Equations (9) and (10) form a closed relation-
ship between the Green function and self-energy. However, 
they should be recasted into matrix forms in a given repre-
sentation in order to perform numerical calculations. Instead 
of the aforementioned eigen representation, it proves to be 
convenient to use the LL representation [38, 39] for relevant 
formulations. The LL basis is denoted as |α s, m px pz〉 with 
m bing the index of conventional LL state and s =↑ or ↓ the 
index of pseudospin. For example, in Q-valley there are two 
such basis states: |+ ↑, m px pz〉 = (φm(ξ), 0, 0, 0)T |px〉|pz〉 
and |+ ↓, m px pz〉 = (0,φm(ξ), 0, 0)T |px〉|pz〉. The aver-
aging over impurity configuration restores the transla-
tional symmetry. Accordingly, the Green function and 
self-energy become diagonal with respect to momentum 
eigenvalues p x and p z. Moreover, it is not difficult to find 
that within the SCBA the Green function and self-energy 
are both α-diagonal. In particular, in LL representation 
the matrix element of self-energy is independent of m, p x  
and p z. And the matrix element of Green function is inde-
pendent of p x. In such a context, we introduce the short-
hands Σα

s (ε
±) = 〈α, s, m, px, pz|Σ̂(ε± iη)|α, s, m, px, pz〉 and 

Gα
ms,m′s′(ε

±, pz) = 〈α, s, m, px, pz|Ĝ(ε± iη)|α, s′, m′, px, pz〉. 
As a result, the self-energy equation given by equation (9) is 
recasted into a form as

Σα
s (ε

±) =
Ai�2v2

f

16π3l2Bq0

∑
m

∫
Gα′

ms,ms(ε
±, pz)dpz.� (11)

Such an expression is also illustrated by the Fenyman dia-
gram given by figure 1(a). Note that in equation (11) the valley 
index of Green function α′ = α for intra-valley scattering 
but α′ = −α for inter-valley scattering. To measure the scat-
tering strength, we have introduced a dimensionless parameter 
Ai = 4πniū2

i q0/(�2v2
f ) with ni the impurity concentration and 

ū2
i  the squared average of impurity potential strength. Note that 

here we introduce the reference electronic wavevector q0 for con-
venience. Furthermore, we find that the Green function matrix in 
LL representation is block-diagonal which takes a form as

[
Gα

m−1↑,m−1↑(ε
±, pz) Gα

m−1↑,m↓(ε
±, pz)

Gα
m↓,m−1↑(ε

±, pz) Gα
m↓,m↓(ε

±, pz)

]

=

[
ε± − α(1 + t)vfpz − Σα

↑ (ε
±) αvf

lB

√
2m

αvf
lB

√
2m ε± − α(−1 + t)vfpz − Σα

↓ (ε
±)

]−1

.

� (12)
We have thus established the iterative equations, i.e. equa-
tions  (11) and (12), for solving self-consistently the Green 
function and self-energy.

Within the SCBA, the DOS of the WSM in the presence of 
impurity scattering can be written as

Figure 2.  DOS of WSM for the cases with different cone tilts and 
scattering strengths. (a) and (b) Show the cases of intra- and inter-
valley scattering respectively.
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ρ(ε) = − 1
πV

TrImG(ε+ iη) = − 1
πniū2

i

∑
αs

ImΣα
s (ε).� (13)

We now turn to treat magneto-conductivity of a WSM within 
SCBA. Firstly, starting form equation  (5), we derive out an 
expression about the transversal conductivity subject to intra- 
or inter-valley scattering which is given by

σxx =
e2�
4πV

[J(ε+, ε−) + J(ε−, ε+)− J(ε+, ε+)− J(ε−, ε−)].
� (14)

In the above expression the quantity J(ε, ε′) represents a 
summation over a series of bubble diagrams, as shown in fig-
ures 1(b) and (c) for the cases of intra-valley and inter-valley 
scattering respectively. For the case of intra-valley scattering 
we have

J(ε, ε′) =
4πq0V
Ai�2

∑
α

[
φα(ε, ε′)

1 − φα(ε, ε′)
+

φα(ε′, ε)
1 − φα(ε′, ε)

]� (15)

with

φα(ε, ε′) =
Ai�2v2

f

16π3l2Bq0

∑
n

∫
Gα

n+,n+(ε, pz)Gα
n−,n−(ε

′, pz)dpz.

� (16)
For the case of inter-valley scattering we have

J(ε, ε′) =
4πq0V
Ai�2

∑
α

{
φα(ε, ε′)[1 − φᾱ(ε, ε′)]
1 − φα(ε, ε′)φᾱ(ε, ε′)

+
φα(ε′, ε)[1 − φᾱ(ε′, ε)]
1 − φα(ε′, ε)φᾱ(ε′, ε)

}

� (17)

where φα(ᾱ)(ε, ε′) obeys formally the same definition as the 
case of intra-valley scattering, but the Green functions therein 
must be replaced with the ones corresponding to inter-valley 

scattering. In equation (17) the shorthand ᾱ = −α has been 
used for compactness. In comparison with the case of intra-
valley scattering we find that the bubble diagrams corre
sponding to the inter-valley scattering consist of two kinds, as 
shown in figure 1(c). The diagrams of the first kind describe 
the scattering processes with the initial and final states 
belonging to the same valley, though another valley takes part 
into the scattering as intermediate states. In contrast, the dia-
grams of second kind refer to the scattering processes between 
the opposite valleys.

The formulas of the longitudinal conductivity follow 
the analogous form as the transversal conductivity. But the 
quantity J(ε, ε′) should be redefined. For intra-valley scat-
tering, J(ε, ε′) occurring in σzz  is given by

J(ε, ε′) =
4πq0V
Ai�2

∑
α

(vαz ){[Mα]−1 − [I]}−1(vαz )
T

� (18)

with I  is the 2 × 2 identity matrix, and velocity vector is 
defined as

(vαz ) = (α(1 + t)vf, α(−1 + t)vf)� (19)

and

[Mα] =

[
φα

11(ε, ε′) φα
12(ε, ε′)

φα
21(ε, ε′) φα

22(ε, ε′)

]
� (20)

with

φα
11(ε, ε′) =

Ai�2v2
f

16π3l2Bq0

∑
m

∫
Gα

m↑,m↑(ε, pz)Gα
m↑,m↑(ε

′, pz)dpz

� (21)

φα
12(ε, ε′) = φα

21(ε
′, ε) =

Ai�2v2
f

16π3l2Bq0

∑
m∫

Gα
m+1↓,m↑(ε, pz)Gα

m↑,m+1↓(ε
′, pz)dpz

�

(22)

φα
22(ε, ε′) =

Ai�2v2
f

16π3l2Bq0

∑
m

∫
Gα

m↓,m↓(ε, pz)Gα
m↓,m↓(ε

′, pz)dpz.

� (23)
For inter-valley scattering, J(ε, ε′) is redefined as

J(ε, ε′) =
4πq0V
Ai�2v2

f

[ (
v+z v−z

){[
M+

M−

]−1

−
[

M−

M+

]}−1 (
v+z
v−z

)

+
(
v+z v−z

)
{[

M+

M−

]−1

−
[

M−

M+

]}−1 [
M−

M+

]−1 (v−z
v+z

)]

�

(24)

where [vαz ] and [Mα] obey the same definition as given by equa-
tions (19) and (20)–(23).

3.  Numerical results and discussions

With the above theoretical treatment of the conductivity within 
the SCBA, we are now ready to perform numerical calculations 
about the transversal and longitudinal conductivity, by which 
we can study the influence of intra- and inter-valley scattering 
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on the quantum magneto-transport of electrons in WSM. 
Before to proceed, we set the units � = e = vf = q0 = 1 for 
convenience of numerical calculations. Note that we have 
introduced the reference electronic wavevector q0. And 
|Q|  =  q0  =  1 is implied unless declared otherwise. In addition, 
we specify the size of the BZ as −50q0 < px(z) < 50q0  which 
is used when calculating the integration over the electronic 
momentum p x and p z. We also need to truncate the summation 
over the LL index within a maximal but finite cutoff value 
Nm. We find that a cutoff Nm  =  300 is enough to guarantee 
the convergence of the calculated spectrum of conductivity 
in the low energy region around the nodal energy of WSM. 
Last but not least, we have to emphasize that in this work we 
only consider the magneto-transport of type-I WSM. This is 
because that the type-II WSM, i.e. the case of |t| > 1 in our 
Hamiltonian, has unclosed fermi surface. When neither the 
electronic or hole pocket meets the fictitious BZ boundary, 
the numerical result of the conductivity becomes unreliable.

First of all, the numerical results of the DOS spectrum are 
shown in figure 2 for typical cases with different Weyl cone 
tilts and impurity scattering strengths. We can see that as the 
impurity scattering is very weak, e.g. the cases of Ai  =  0.5 in 

figures 2(a) and (b), the DOS spectra exhibit clearly a series of 
peaks, regardless of intra- or inter-valley scattering. And these 
peaks occur whenever the energy passes through the minima 
of n �= 0 subbands. The central flat bottom but with a nonzero 
value is contributed by chiral n  =  0 subbands. According to 
the eigen energy spectrum, the width of the flat bottom is pro-
portional to the magnetic field strength. The multiple peak 
profile of these DOS spectra reflects the 1D subband structure 
of WSM induced by a magnetic field. However, these DOS 
peaks disappear in the case of strong impurity scattering, as 
shown in figure 2 for the case of Ai  =  5.0. This is owing to 
the smearing effect caused by the imaginary part of the non-
trivial self-energy of strong scattering. All these features of 
DOS spectrum of a WSM in the presence of a magnetic field is 
previously reported in some theoretical study [42, 43]. But the 
impurity scattering considered therein is restricted in the intra-
valley scattering. And no cone tilt was involved. Therefore, 
our calculation indicates that the inter-valley scattering has a 
very similar effect as the intra-valley scattering on the DOS 
spectrum of WSM. In addition, as the Weyl cone gets tilted, 
the DOS spectrum has an appreciable rise, in comparison with 
the counterpart of untilted WSM. From figures 1(d) and (e) 

Figure 3.  Transversal conductivity of a WSM for typical cases. (a) Weak intra-valley scattering (Ai  =  0.5) with different cone tilts of 
t  =  0.0, 0.3 and 0.5. (b) Same as (a) but for the case of inter-valley scattering. (c) A comparison of σxx spectra between strong and weak 
intra-valley scattering (Ai  =  0.5 and 5.0), without and with cone tilt (t  =  0 and 0.5). (d) Same as (c) but for the case of inter-valley 
scattering.
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one can see that the low-lying subbands look also tilted for the 
tilted WSM. As a result, both of the electronic band velocity 
and the subband spacings diminish, which can well account 
for the enhancement of the DOS as the cone gets tilted.

The spectra of transversal conductivity, i.e. σxx versus 
εf , for different cases are shown in figure  3. In the case of 
weak impurity scattering, e.g. the case of Ai  =  0.5 as shown 
in figures  3(a) and (b), the σxx spectra subject to intra- and 
inter-valley scattering have similar features. First, all these 
conductivity spectrum present a series of peaks which are 
aligned in energy with the peaks of corresponding DOS 
spectra shown in figure 2. Then, σxx increases with the Weyl 
cone tilt, bearing an analogy with the DOS spectra shown in 
figure 2. The expression of σxx for a clear WSM, i.e. equa-
tion  (6) is instructive for us to understand these observed 
features of conductivity. In weak scattering limit, the impu-
rity scattering self-energy is much smaller than the subband 
spacings. In this context, it is reasonable to consider equa-
tion (6) as an approximation of σxx. We can see that the imagi-
nary part of Green function appears in equation (6), similar to 
the expression of DOS as given by equation  (8). Therefore, 
it is not surprising that both of the spectra of DOS and σxx 

exhibits the same features as mentioned above. In figures 3(c) 
and (d) we compare σxx spectrum between the cases of weak 
and strong scattering. A general feature, regardless of neither 
the cone tilt or intra- and inter-valley scattering, is that σxx 
increases with the scattering strength in the low energy region. 
This is a reasonable result since the impurity scattering shifts 
the mobility edge, making the region of extended state around 
each LL broadening which brings about the increase of trans-
versal conductivity.

By comparing the conductivity spectra as shown in fig-
ures 3(c) and (d), it can be seen that with the same scattering 
strength σxx in the case of inter-valley scattering is larger than 
that in the case of intra-valley scattering. By a detailed analyse, 
we find that this result arises from the distinct contributions of 
high-order bubble diagrams between the intra- and inter-valley 
scattering. If we take only account of the contribution of the 
zero-order bubble diagram to the transversal conductivity, as 
shown in figure 4(a), the conductivity does not show appre-
ciable difference between the cases of intra- and inter-valley 
scattering. However, as shown in figure 4(b), the first-order 
diagram, namely, the bubble diagram with one impurity line as 
illustrated in figures 1(b) and (c), give a negative contribution 

Figure 4.  (a) A comparison of the contributions of the zero-order bubble diagrams to transverse conductivity spectra between the cases 
of intra- and inter-valley scattering. (b) Is similar to (a) but herein the contribution of the first-order bubble diagrams to transversal 
conductivity are compared. (c) σxx and the contribution of the zero-order bubble diagram to it (σ0

xx) are compared for the cases with and 
without cone tilts, subject to strong intra-valley scattering. (d) Is similar to (c) but for the case of inter-valley scattering.

J. Phys.: Condens. Matter 32 (2020) 205502



L Feng et al

8

to σxx in the case of intra-valley scattering. On the contrary, 
the contribution of first-order bubble diagram of inter-valley 
scattering is positive. Hence it further enhances the value of 
σxx from the zero-order bubble diagram. In view of very weak 
scattering for the cases shown in figures  4(a) and (b), the 
contribution of the first-order bubble diagram to σxx is smaller 
than the contribution of zero-order bubble diagram by about 
one order of magnitude, though, they have opposite modifica-
tions to σxx for the intra- and inter-valley scattering. However, 
with the increase of scattering strength, the contributions 
beyond zero-order diagram is expected to become important. 
In figures 4(c) and (d), the whole σxx and the contribution to 
it of the zero-order bubble diagram are compared for the case 
of relatively strong scattering. We can see that the high-order 
bubble diagrams have nontrivial contributions indeed, no 
matter whether the cone tilts or not. And the high-order bubble 
diagrams have just the opposite contributions to σxx between 
the cases of intra- and inter-valley scattering. The former 
suppresses the transversal conductivity whereas the latter 
enhances it. Our results show that for transversal conductivity, 
the inter-valley scattering does not show distinct effect from 
intra-valley scattering, though the former results in a relative 
weak conductivity than the latter does if both have the same 

strength. This result agrees with the anticipation given in [42] 
where the inter-valley scattering was excluded. However, it 
will be seen below that the inter-valley scattering plays the 
distinct role on the longitudinal magnetotransport. It provides 
the system with finite resistivity while the intra-valley scat-
tering become invalid to affect the electronic transport.

We now calculate the transversal conductivity as a func-
tion of magnetic field strength (proportional to l−2

B ) at zero 
energy(εf = 0). The numerical results are shown in figure 5 
for various cases. In the case of weak scattering, whether it is 
intra-valley or inter-valley scattering, as shown in figures 5(a) 
and (b) respectively, the conductivity depends linearly on 
magnetic field strength. This result can be understood from 
equation (6). At εf = 0, the n  =  0 Landau level dominates the 
term after summation over n and n′ which is thereby almost 
independent of magnetic field strength. Consequently, σxx 
has a linear dependence on l−2

B . Moreover, as observed in 
figures 5(a) and (b), σxx tends to zero as the magnetic field 
gets weak. Such a feature was also pointed out in previous 
theoretical study [42]. However, the Hall conductivity takes a 
nonzero value even in the absence of a magnetic field because 
of the anomalous Hall effect in WSM. Therefore, when the 
magnetic field becomes weak enough, we have σxx � σxy, 

Figure 5.  σxx versus l−2
B  (proportional to magnetic field strength) at zero energy (εf = 0.0). (a) Weak intra-valley scattering of Ai  =  0.5 

for the cases of cone tilt t  =  0.0 and 0.3 and 0.5. (b) Same as (a) but for the cases of weak inter-valley scattering. (c) A comparison of σxx 
versus l−2

B  between the cases of weak and strong intra-valley scattering. (d) Same as (c) but for the cases of inter-valley scattering.
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which we refer to as the weak magnetic field limit. In such a 

situation, we have ρxx =
σxx

σ2
xx+σ2

xy
≈ σxx

σ2
xy

. Namely, the diagonal 
resistivity is proportional to the diagonal conductivity. As a 
result, the linear σxx ∼ l−2

B  relation shown in figures  5(a) 
and (b) implies the LTMR in the weak magnetic field limit. 
Besides, we can see that, with the increasing of the cone tilt, 
the conductivity increases rapidly. This indicates that the 
tilted WSM has larger LTMR. More importantly, we can see 
in figures 5(c) and (d) that the increase of scattering strength 
destroys the linear σxx ∼ l−2

B  relation notably, meanwhile, 
with a significant enhancement of σxx, regardless of intra- and 
inter-valley scattering. We notice that similar results were pre-
viously obtained, e.g. in [44] where the transversal conduc-
tivity calculated by scattering matrix approach decreases with 
the increase of magnetic field strength at the strong disorder 
limit.

In figure 6 we compare σxx spectra by altering the value 
of Q (2Q is the interval between two Weyl nodes in kz direc-
tion of the BZ). Comparing with figures 6(a) and (b), we can 
see that the variation of conductivity with Q is very similar in 
both intra-valley scattering and inter-valley scattering. When 

the Weyl cone is not tilted (t  =  0), Q  =  1 and Q  =  15 of the 
conductivity curves are the same, however, when the tilt is 
not 0 (t �= 0), they are obviously different. We can see that 
it is easy to distinguish the conductivity of large Q from that 
of small Q if the Weyl cone is tilted. By comparing the sub-
band strutures as shown in figures 1(d) and (e), we can find 
that the cone tilt makes the Landau subbands of two valleys 
declined toward the BZ center. As a result, the eigen ener-
gies of the states near the BZ boundary move up. And these 
states are truncated at the BZ boundary center. Due to impu-
rity scattering, these states play an important role to modify 
the eigen energy near the Fermi level. In particular, for the 
case of large Q, the states at Fermi level get closer to the BZ 
boundary. Based on a second-order perturbation analysis, it 
is not difficult to find that the eigen energy near Fermi level 
for the case of large Q have a negative and nontrivial shift in 
the case of tilted Weyl cone. Such an argument can be fur-
ther verified by observing the real-part of self-energy which 
gives just the modification to the eigen energy spectrum by the 
impurity scattering. The numerical results are shown in fig-
ures 6(c) and (d), where only the case of inra-valley scattering 
is shown since the inter-valley scattering has the analogous 

Figure 6.  A comparison of σxx or energy spectrum between Q  =  1 and Q  =  15 (2Q is the interval between two Weyl nodes in kz direction 
of the BZ). (a) and (b) Shows σxx versus εf  in the cases of intra- and inter-valley scattering respectively without and with cone tilt (t  =  0 and 
0.5). (c) and (d) Shows the modification to the eigen energy spectrum by the impurity scattering in the case of intra-valley scattering with 
t  =  0 and 0.5 respectively.
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effect. Indeed, as shown in figures 6(c) and (d), only when the 
Weyl cone get tilted, impurity scattering results in an appreci-
able negative modification on the Landau subbands.

In figure  7(a) the longitudinal conductivity spectra in the 
presence of intra-valley scattering, i.e. σzz as a function of εf , is 
plotted. But these numerical results are obtained by only taking 
into account the zero-order bubble diagram. If we include all 
bubble diagrams due to the intra-valley scattering to calculate 
σzz the numerical result tends to infinite. This just reflects the 
chiral anomaly characterized by the unidirectional propagation 
of the n  =  0 subband. When a magnetic field is applied, the 
elastic intra-valley scattering is invalid, hence the resistivity van-
ishes. This implies an negative and very large magnetoresistance 
which is viewed as the signature of chiral anomaly in WSMs. 
Recently, there are more and more experimental observation 
of NLMR in realistic WSM materials [19, 22, 26, 29, 45]. Our 
numerical calculation indicates that the high-order scattering 
processes always play the essential role for the longitudinal 
conductivity even in the weak intra-valley scattering limit. We 

now turn to study the influence of the inter-valley scattering on 
the longitudinal conductivity. The numerical results are shown 
in figures 7(b)–(d). Unlike σxx, as shown in figures 7(b) and (c), 
σzz decreases with the increase of the cone tilt and inter-valley 
scattering strength. This is because that the longitudinal elec-
tronic transport behaves just like a 1D system with the subband 
structure as shown in figure 1(e). In this context, the impurity of 
inter-valley scattering plays a role of impeding electronic trans-
port. Besides, the cone tilt makes electronic velocity in the chiral 
subband (n  =  0) to descend. Therefore, σzz decreases with the 
increase of cone tilt and scattering strength. In order to clarify the 
role of high-order bubble diagrams on longitudinal conductivity, 
we calculate the contributions of zero- and first-order bubble dia-
gram, denoted as σ(0)

zz  and σ(1)
zz  respectively, And then, we make a 

comparison between the two results with the calculated σzz within 
SCBA, namely, taking into account all the bubble diagrams as 
shown in figure 1(c). Such a comparison is shown in figure 7(d). 
We find that the zero-order contribution σ(0)

zz  deviates obviously 
from the whole longitudinal conductivity, in particular, in the flat 

Figure 7.  Longitudinal conductivity of a WSM for typical cases. (a) The contribution of the zero-order bubble diagram σzz  are plotted for 
the cases with and without cone tilt, subject to weak and strong intra-valley scattering (Ai  =  0.5 and 5.0). (b) Weak inter-valley scattering 
(Ai  =  0.5) with different cone tilts of t  =  0.0, 0.3 and 0.5. (c) A comparison of σzz  spectra between strong and weak inter-valley scattering 
(Ai  =  0.5 and 5.0), without and with cone tilt (t  =  0 and 0.5). (d) The contributions to longitudinal conductivity of zero-order bubble 
diagram, denoted as σ(0)

zz , and first-order bubble diagrams, denoted as σ(1)
zz , are compared with σzz  obtained within SCBA subject to weak 

inter-valley scattering.
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region around zero energy, even though the inter-valley scattering 
(Ai  =  0.5) is so weak that the Landau level peaks are still distin-
guishable. More interestingly, the first-order contribution σ(1)

zz  is 
negative, just opposite to the effect of inter-valley scattering on 
the transversal conductivity as mentioned above. When the cone 
tilt occurs, such a feature remains, it weakens though. From the 
result shown in figure 7(d) we can conclude that the high-order 
contributions of inter-valley scattering still play the essential role 
even in the weak scattering limit. In short, from the numerical 
results as shown in figure 7 we can conclude that the inter-valley 
scattering brings about a finite resistivity for the longitudinal elec-
tronic transport which is immune to the intra-valley scattering. 
And the high order bubble diagrams have the nontrivial effect on 
the longitudinal conductivity. To our knowledge, the influence of 
inter-valley scattering on the magnetoresistance of WSM begins 
to draw attention [46]. But the contribution of hight order terms 
must be treated carefully.

We make a comparison of the spectra between σxx and σzz  in 
figures 8(a) and (b) for untiled and tilted WSMs respectively. 

What is interesting observed from figure 8 is that the peaks 
of transversal conductivity always correspond to the valleys 
of the longitudinal conductivity. As discussed above, the 
peaks of transversal conductivity and DOS spectra just coin-
cide with each other. They occurs at the minima of subbands. 
However, the longitudinal conductivity can be viewed as a 
result of quantum transport of a 1D system with the Landau 
subbands. At the minima of subbands, the electronic velocity 
along z direction vanishes. Therefore, it is not surprising that 
σzz  presents valleys at subband minima.

Finally, we turn to study the dependence of σzz  on magnetic 
field strength subject to inter-valley scattering. The numerical 
result of σzz  versus l−2

B  is shown in figure 9. One can see that 
at relatively weak scattering, as shown in figure  9(a), σzz  

Figure 8.  A comparison of σxx and σzz  of (a) untilted (t  =  0.0) and 
(b) tilted (t  =  0.5) WSM under the weak inter-valley scattering.

Figure 9.  σzz  versus l−2
B  (proportional to magnetic field strength) 

at zero energy (εf = 0.0). (a) Weak inter-valley scattering of 
Ai  =  0.5 for the cases of cone tilt t  =  0.0 and 0.3 and 0.5. In order 
to see the linear relationship clearly, we shifted the conductivity 
corresponding to t  =  0.3 and t  =  0.5 by  +2.01 and  +3, respectively. 
(b) A comparison of σzz  versus l−2

B  as a function l−2
B  between the 

cases of weak and strong inter-valley scattering, without and with 
cone tilt (t  =  0 and 0.5).
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depends on l−2
B  linearly but very weakly. This implies that 

the inter-valley scattering only contributes the trivial part of 
longitudinal magnetoresistance, in contrast to the intra-valley 
scattering. Meanwhile, when the impurity scattering becomes 
strong, such a linear dependence is obviously destroyed. It 
is similar to the case of transversal conductivity as shown in 
figure 5. However, unlike the case of transversal conductivity, 
with the increase of scattering strength, σzz  decreases.

4.  Summary and discussion

Within the theoretical framework of Kubo formula and SCBA, 
we have studied the transversal and longitudinal magneto-
conductivity of WSM described by a two-node Hamiltonian 
model. We focus mainly on the peculiar role of inter-valley 
scattering on LTMR and NLMR of type-I WSMs without and 
with cone tilt, in comparison with that of intra-valley scat-
tering. We now summarize our main findings. At first, we 
find that the contributions of high-order Feynman diagrams 
to σxx play the distinct roles between the cases of intra- and 
inter-valley scatterings. The former suppresses the trans-
versal conductivity whereas the latter enhances it. Then, with 
the increase of scattering strength, the LTMR is destroyed, 
accompanying a sizable increase of conductivity. Thirdly, for 
longitudinal electronic transport, the intra-valley scattering 
becomes invalid if all the Feynman diagrams within SCBA 
are taken into account. As a result, the longitudinal resistivity 
vanishes, which implies a very large NLMR. In addition, 
inter-valley scattering contributes only trivial magnetoresist
ance. More importantly, we find that the high-order Feynman 
diagrams always play the nontrivial role on the longitudinal 
conductivity even in the weak scattering limit where the self-
energy arising from impurity scattering is far smaller than the 
Landau level spacing. Finally, we make a comparison between 
σxx and σzz  spectra. It is found that the peaks of transversal 
conductivity always correspond to the valleys of the longitu-
dinal conductivity.

Before ending this work, we would like to point out that 
all the calculations performed by us are restricted in the 
case of zero temperature. An extension of this work to finite 
temperature is straightforward within the theoretical frame-
work of original Kubo formula. We have noticed that the 
magneto-transport properties of type-I Weyl semimetals at 
finite temperature subject to intra-valley scattering have been 
studied previously [39]. However, the effect of inter-valley 
scattering remains thus far intact, which is a topic left for 
future study.

Acknowledgments

This work was financially supported by the National Natural 
Science Foundation of China (Grant No. 11474122 and 
11774123) and the National Science Foundation for Young 
Scientists of China (Grant No. 11404132, No. 11504125 and 
No. 11504319). We thank the High Performance Computing 
Center of Jilin University for their calculation resource.

ORCID iDs

Yisong Zheng  https://orcid.org/0000-0003-2532-9171

References

	 [1]	 Yang K Y, Lu Y M and Ran Y 2011 Phys. Rev. B 84 075129
	 [2]	 Wang Z, Gresch D, Soluyanov A A, Xie W, Kushwaha S, 

Dai X, Troyer M, Cava R J and Bernevig B A 2016 Phys. 
Rev. Lett. 117 056805

	 [3]	 Autès G, Gresch D, Troyer M, Soluyanov A A and 
Yazyev O V 2016 Phys. Rev. Lett. 117 066402

	 [4]	 Soluyanov A A 2015 Nature 527 495
	 [5]	 Hu J, Xu S Y, Ni N and Mao Z 2019 Annu. Rev. Mater. Res. 

49 207
	 [6]	 Lv B Q et al 2015 Phys. Rev. X 5 031013
	 [7]	 Xu S Y et al 2015 Science 349 613
	 [8]	 Xu S Y, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang T R, 

Hao Z, Strocov V N, Sanchez D S and Chang G 2015 Nat. 
Phys. 11 748

	 [9]	 Xu S Y et al 2015 Sci. Adv. 1 40
	[10]	 Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, 

Leermakers I, Zeitler U, Skourski Y, Wosnitza J and Liu Z 
2015 Nat. Phys. 11 645

	[11]	 Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 
Phys. Rev. B 83 205101

	[12]	 Ikhlas M, Tomita T, Koretsune T, Suzuki M T, 
Nishiohamane D, Arita R, Otani Y and Nakatsuji S 2017 
Nat. Phys. 13 1085–90 

	[13]	 Satoru N, Naoki K and Tomoya H 2015 Nature 527 212
	[14]	 Yang H, Sun Y, Zhang Y, Shi W J, Parkin S S P and Yan B 

2017 New J. Phys. 19 015008
	[15]	 Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, 

Goswami P, Ochi M, Ikhlas M, Nakayama M and Akebi S 
2017 Nat. Mater. 16 1090

	[16]	 Nakajima Y et al 2015 Sci. Adv. 1 e1500242
	[17]	 Hirschberger M, Kushwaha S, Wang Z, Gibson Q, Liang S, 

Belvin C A, Bernevig B A, Cava R J and Ong N P 2016 
Nat. Mater. 15 1161–65 

	[18]	 Tian L, Quinn G and Ali M N 2015 Nat. Mater. 14 280
	[19]	 Li C Z, Wang L X, Liu H, Wang J, Liao Z M and Yu D P 2015 

Nat. Commun. 6 10137
	[20]	 Burkov A A 2015 J. Phys.: Condens. Matter 27 113201
	[21]	 Ominato Y and Koshino M 2014 Phys. Rev. B 89 054202
	[22]	 Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412
	[23]	 Altland A and Bagrets D 2015 Phys. Rev. Lett. 114 257201
	[24]	 Burkov A A 2015 Phys. Rev. B 91 245157
	[25]	 Syzranov S V, Radzihovsky L and Gurarie V 2015 Phys. Rev. 

Lett. 114 166601
	[26]	 Zyuzin V A 2017 Phys. Rev. B 95 245128
	[27]	 Abrikosov A A 1998 Phys. Rev. B 58 2788
	[28]	 Juyal A, Agarwal A and Mukhopadhyay S 2018 Phys. Rev. 

Lett. 120 096801
	[29]	 Niemann A C et al 2017 Sci. Rep. 7 43394
	[30]	 Feng J, Pang Y, Wu D, Wang Z, Weng H, Li J, Dai X, Fang Z, 

Shi Y and Lu L 2015 Phys. Rev. B 92 081306
	[31]	 Li Y, Wang Z, Li P, Yang X, Shen Z, Sheng F, Li X, Lu Y, 

Zheng Y and Xu Z A 2017 Frontiers Phys. 12 127205
	[32]	 Du J et al 2016 Sci. China Phys. Mech. Astron. 59 657406
	[33]	 Pan X C et al 2017 Frontiers Phys. 12 127203
	[34]	 Wang Y, Chen C H, Hu D, Ulmschneider M B and 

Ulmschneider J P 2016 Nat. Commun. 7 13535 
	[35]	 Das K and Agarwal A 2019 Phys. Rev. B 99 085405
	[36]	 Xiao X, Law K T and Lee P A 2017 Phys. Rev. B 96 165101
	[37]	 Shao J and Yan L 2019 AIP Adv. 9 045319
	[38]	 Ramakrishnan N, Milletari M and Adam S 2015 Phys. Rev. B 

92 245120

J. Phys.: Condens. Matter 32 (2020) 205502

https://orcid.org/0000-0003-2532-9171
https://orcid.org/0000-0003-2532-9171
https://doi.org/10.1103/PhysRevB.84.075129
https://doi.org/10.1103/PhysRevB.84.075129
https://doi.org/10.1103/PhysRevLett.117.056805
https://doi.org/10.1103/PhysRevLett.117.056805
https://doi.org/10.1103/PhysRevLett.117.066402
https://doi.org/10.1103/PhysRevLett.117.066402
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768
https://doi.org/10.1146/annurev-matsci-070218-010023
https://doi.org/10.1146/annurev-matsci-070218-010023
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1038/nphys3437
https://doi.org/10.1038/nphys3437
https://doi.org/10.1126/sciadv.1501092
https://doi.org/10.1126/sciadv.1501092
https://doi.org/10.1038/nphys3372
https://doi.org/10.1038/nphys3372
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1038/nphys4181
https://doi.org/10.1038/nphys4181
https://doi.org/10.1038/nphys4181
https://doi.org/10.1038/nature15723
https://doi.org/10.1038/nature15723
https://doi.org/10.1088/1367-2630/aa5487
https://doi.org/10.1088/1367-2630/aa5487
https://doi.org/10.1038/nmat4987
https://doi.org/10.1038/nmat4987
https://doi.org/10.1126/sciadv.1500242
https://doi.org/10.1126/sciadv.1500242
https://doi.org/10.1038/nmat4684
https://doi.org/10.1038/nmat4684
https://doi.org/10.1038/nmat4684
https://doi.org/10.1038/nmat4143
https://doi.org/10.1038/nmat4143
https://doi.org/10.1038/ncomms10137
https://doi.org/10.1038/ncomms10137
https://doi.org/10.1088/0953-8984/27/11/113201
https://doi.org/10.1088/0953-8984/27/11/113201
https://doi.org/10.1103/PhysRevB.89.054202
https://doi.org/10.1103/PhysRevB.89.054202
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevLett.114.257201
https://doi.org/10.1103/PhysRevLett.114.257201
https://doi.org/10.1103/PhysRevB.91.245157
https://doi.org/10.1103/PhysRevB.91.245157
https://doi.org/10.1103/PhysRevLett.114.166601
https://doi.org/10.1103/PhysRevLett.114.166601
https://doi.org/10.1103/PhysRevB.95.245128
https://doi.org/10.1103/PhysRevB.95.245128
https://doi.org/10.1103/PhysRevB.58.2788
https://doi.org/10.1103/PhysRevB.58.2788
https://doi.org/10.1103/PhysRevLett.120.096801
https://doi.org/10.1103/PhysRevLett.120.096801
https://doi.org/10.1038/srep43394
https://doi.org/10.1038/srep43394
https://doi.org/10.1103/PhysRevB.92.081306
https://doi.org/10.1103/PhysRevB.92.081306
https://doi.org/10.1007/s11467-016-0636-8
https://doi.org/10.1007/s11467-016-0636-8
https://doi.org/10.1007/s11433-016-5798-4
https://doi.org/10.1007/s11433-016-5798-4
https://doi.org/10.1007/s11467-016-0629-7
https://doi.org/10.1007/s11467-016-0629-7
https://doi.org/10.1038/ncomms13535
https://doi.org/10.1038/ncomms13535
https://doi.org/10.1103/PhysRevB.99.085405
https://doi.org/10.1103/PhysRevB.99.085405
https://doi.org/10.1103/PhysRevB.96.165101
https://doi.org/10.1103/PhysRevB.96.165101
https://doi.org/10.1063/1.5091852
https://doi.org/10.1063/1.5091852
https://doi.org/10.1103/PhysRevB.92.245120
https://doi.org/10.1103/PhysRevB.92.245120


L Feng et al

13

	[39]	 Klier J, Gornyi I V and Mirlin A D 2017 Phys. Rev. B 
96 214209

	[40]	 Bastin A, Lewiner C, Betbeder-matibet O and Nozieres P 1971 
J. Phys. Chem. Solids 32 1811

	[41]	 Crépieux A and Bruno P 2001 Phys. Rev. B 64 014416
	[42]	 Klier J, Gornyi I V and Mirlin A D 2015 Phys. Rev. B 92 205113

	[43]	 Pesin D A, Mishchenko E G and Levchenko A 2015 Phys. 
Rev. B 92 174202

	[44]	 Behrends J, Kunst F K and Sbierski B 2018 Phys. Rev. B 
97 064203

	[45]	 Huang X et al 2015 Phys. Rev. X 5 031023
	[46]	 Ji X T, Lu H Z, Zhu Z G and Su G 2017 AIP Adv. 7 105003

J. Phys.: Condens. Matter 32 (2020) 205502

https://doi.org/10.1103/PhysRevB.96.214209
https://doi.org/10.1103/PhysRevB.96.214209
https://doi.org/10.1016/S0022-3697(71)80147-6
https://doi.org/10.1016/S0022-3697(71)80147-6
https://doi.org/10.1103/PhysRevB.64.014416
https://doi.org/10.1103/PhysRevB.64.014416
https://doi.org/10.1103/PhysRevB.92.205113
https://doi.org/10.1103/PhysRevB.92.205113
https://doi.org/10.1103/PhysRevB.92.174202
https://doi.org/10.1103/PhysRevB.92.174202
https://doi.org/10.1103/PhysRevB.97.064203
https://doi.org/10.1103/PhysRevB.97.064203
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1063/1.4998395
https://doi.org/10.1063/1.4998395

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Magneto-conductivity of Weyl semimetals: the roles of inter-valley scattering and high-order Feynman diagrams﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Theory
	﻿﻿3. ﻿﻿﻿Numerical results and discussions
	﻿﻿4. ﻿﻿﻿Summary and discussion
	﻿﻿﻿Acknowledgments
	﻿﻿﻿﻿﻿﻿ORCID iDs
	﻿﻿﻿References﻿﻿﻿﻿


