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Abstract
We analytically investigate the optical response of an optomechanical system with two mechanical
driven resonators which are mutually coupled via Coulomb coupling. We report an efficient
scheme to control the optical response by appropriate adjustment of the phase and the intensity of
mechanical driving fields. Interestingly, tuning the phase and intensity of the mechanical driving
fields lead to the manipulation of the weak probe field which changes its behavior from excessive
absorption to significant amplification. In addition, we also show that by applying the driving
field to the left (right) mechanical resonator, one can generate the absorption and amplification
at the sideband windows (opacity point). Furthermore, the enhanced absorption and amplification
strongly depends on whether the phase of mechanical driving fields are in phase or out of
phase.
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1. Introduction

Cavity optomechanical system (OMS) explores the interaction
between light and mechanical modes and has attracted a
momentous interest in both the experiment and theory [1–4].
OMS plays a cruicial role in the manipulation of electro-
magnetic felds and mechanical resonators (MRs), and leads to
extensive topics, such as single-photon transport [5], cooling of
MRs [6, 7]and optomechanically induced transparency (OMIT)
[8, 9]. A typical OMS comprises a Fabry–Perot cavity with
one fixed mirror and the other movable or a mechanical
membrane oscillating between the two fixed mirror. When a
weak probe field and a strong pump field is applied to an OMS,
the cavity field is modified due to the radiation pressure force
and consequently, the phenomena of OMIT, as an analogue of
electromagnetically induced transparency, as an output at the
weak detecting field frequency can be observed [10–12].

Recently, the multimode OMSs have attracted a consider-
able research interest [13–17]. One can achieve the multimode
OMS by three ways. Firstly, by combining two optical cavities
with equal or unequal resonant frequencies to a single MR, the
various phenomena such as multiple OMIT phenomenon
[18–20], entanglement [21], normal mode splitting [22] and as
optical trimmer [23] can be observed. Secondly, a single opto-
mechanical cavity can be coupled with two or more MRs
leading to the double or multi OMIT phenomenon [24–26], the
preparation for the two-mode squeezed states [27], the hybridi-
zation between mechanical modes [28] and the Fano resonance
[29, 30]. Thirdly, an OMS comprising two optical cavities and
the two MRs. In such system, either two optical cavities, each
contain MRs, are coupled through hoping factor [22] or two
OMS are coupled through mechanical coupling [31]. The phe-
nomena of double-OMIT (DOMIT) is very much similar to the
two-photon absorption process, which is observed in 4-level
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atomic systems [32, 33]. In order to generate the DOMIT, one
can couple an additional resonator with the typical OMS as
shown by figure 1(a) [25]. This additional resonator form
additional level which is now coupled with the original three
level structure of a typical OMS to form a four-level energy
structure as shown by figures 1(b)–(c). In this way, a DOMIT
can be obtained under the quantum interference among different
paths.

In present study, we investigate the optical response of
the OMS consisting of two driven mechanical resonators
which are also mutually coupled via Coulomb force. These
mechanical elements are spatially separated by a distance r. In
previous reports, an optical response [25] and entanglement
[34] of such system was studied by tuning the mechanical
frequencies of the two mechanical resonators and observed
DOMIT. In addition, they did not use any mechanical driving
fields. In contrast, we have studied the optical response by
applying mechanical driving fields on the mechanical reso-
nators with equal frequency. Here, instead of only illustrating
the DOMIT in our system, we are especially interested in how
the optical response of an OMS with two driven mechanical
resonator changes its behavior in the presence of Coulomb
coupling. We showed that how we can switch from single to

DOMIT window in the absence of mechanical driving fields.
Once the DOMIT generated, both the phase and the intensity
of the two weak coherently mechanical driving fields can be
used to further manipulate the propagation of the output field
at the probe frequency. Since DOMIT play a key role in
double-channel quantum information processing [35], temp-
erature measurement [36], tÃ symmetry [37], optical switches
[38], high-resolution spectroscopy [25] and so on, we would
like to specifically investigate how to generate, control and
tune the optomechanically induced absorption (OMIA) and
amplification around the sideband windows or around the
opacity point when both the resonators are driven by weak
coherent field. It is shown that by appropriately adjusting the
two mechanical driving fields applied on the mechanical
resonators, the probe field can be manipulated from an
excessive absorption to a significant amplification.

It is important to mention here that different forms of
driving forces could be used. For example, if the mechanical
resonators are made-up with piezoelectric materials, one can
use piezoelectric forces to drive the mechanical resonators
[39–41]. Similarly the mechanical resonators can be driven by
Lorentz force when a current-carrying mechanical resonator is
positioned in the magnetic field [42, 43]. OMSs with coher-
ently mechanical driving fields have been investigated in
many fields, including the implementation of weak force
measurement [44], single [45–47] and double [48, 49] OMIA
and amplification. In addition, the phonon–phonon coupling
can be realized by applying the electrostatic force between the
two mechanical resonators [50–52], using a piezoelectric
transducer [53] or coupling overhang [54, 55]. Many devices
can be put into practice to utilize our scheme in
experimentation.

The paper is organized as follows. In section II, we
introduce the system and the dynamics by using the quantum
Langevin approach. We also solve the system analytically in
this section. Next, in section III, we discuss the optical
response of the system. In order to study the effect of phase
and intensity on the optical response of the system, we present
the numerical results in section IV. Finally, we conclude our
paper in section V.

2. The model and the dynamics

The system under consideration comprises a Fabry–Perot
(FP) cavity and two charged mechanical resonators MRL and
MRR. The two charged mechanical resonators, at a distance r,
are in contact with a thermal bath in equilibrium at temper-
ature T and are coupled through the long range Coulomb
interactions as shown schematically in figure 1(a). FP cavity
is driven by weak classical probe fields (frequency ωp) and a
strong pump field (frequency ωL). We describe the optical
modes by annihilation (creation) operators ( )†c c . The
momentum and position operators of the mechanical reso-
nators are represented by pk and qk where k=1,2,

Figure 1. (a) Schematic diagram of the optomechanical system in
which the two mechanical resonators MRL and MRR are coupled to
each other under the action of the Coulomb interaction. The electrode
having charge ( )Q Q1 2 on ( )MR MRL R is charged by voltage ( )-V V1 2 .
The equilibrium separation between MRL and MRR is r. The small
deviation of MRL and MRR, due to Coulomb interaction and radiation
pressure interaction, from their equilibrium positions are q1 and q2
respectively. The cavity is driven by a pump (probe) fields εL(εp).
Left mechanical resonator (MRL) (right mechanical resonator (MRR))
is driven by external coherently fields with amplitude εa(εb). (b)
Schematic of the energy-level diagram in the hybrid cavity OMS,
where ∣ ñN , na and nb denote the number states of the photon inside the
cavity, MRL and MRR phonons. The transitions ∣ ∣ñ « +N n n N, ,a b

ñn n1, ,a b , ∣ ∣+ ñ « + ñN n n N n n1, , , 1,a b a b and ∣ +N n, 1,a

∣ñ « + + ñn N n n1, , 1b a b changes the cavity field, caused by
the radiation pressure coupling and induced by the Coulomb coupling
respectively. (c) Energy level diagram of the hybrid OMS in the
dressed-state view. The two dressed states are bring forth by the
Coulomb coupling between the two mechanical resonators.
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respectively. The Hamiltonian of the system is given by

( )= + +H H H H , 1int dr0

where
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Here, H0is the free Hamiltonian comprising the two
terms The first term is the self energy of single mode cavity
with frequency ωc and the second term, in the bracket,
describes Hamiltonian of the two mechanical resonators. Hint

represents the interaction Hamiltonian. The first term in Hint is
the interaction between cavity and the mechanical resonator
MRL with coupling strength g. HCI represents the Coulomb
interaction between two charged mechanical resonators MRL

and MRR. Hdr is the Hamiltonian describing the energy of
input fields to the system. The first two terms of Hdr represent
the mechanical driving fields with amplitude εa and εb which
are applied to excite the mechanical resonator MRL and MRR

respectively. Meanwhile, the cavity is driven by strong pump
field with amplitude εL and a weak probe field with amplitude
εp as exhibited by the last two terms in Hdr.

We consider the Coulomb coupling between two
mechanical resonators MRL and MRR and is given as [50, 51]

∣ ∣
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where r is the equilibrium separation between two resonators.
The gate size is such that the charge Q1 (Q2) on the
mechanical resonators MRL (MRR) is equal to C1V1 (-C V2 2)
with C1(C2) and V1(−V2) being the capacitance and the
voltage of the bias gate, respectively. We assume that there is
no dependency of V2 upon Q1 and vice versa. We also assume
that the small oscillations of the charged resonators is much
weaker than the distance between the two charged resonators
i.e. q ri . The term describing the interaction between two
charged resonators can be expanded to the second order as:
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The linear term can be absorbed into the definition of the
equilibrium positions, and the quadratic term includes a
renormalization of the oscillation frequency for both resona-
tors MRL and MRR. Through further omitting the constant
term, the Coulomb interaction term can be written in a simpler
from

( )s= H q q , 5CI 1 2

where σ=
pe 

C V C V

r4 o

1 1 2 2
3 [25, 56–58]. In the rotating wave

approximation at the coupling frequency ωL, the Hamiltonian

of our system can be written as
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where Δ0=ωc−ωL and Ω=ωp−ωL is the frequency
detuning of the probe field from the pump field. With the
creation (annihilation) operator ( )†b bk k , the momentum and
position operators of the mechanical resonators can be written

as ( ˆ ˆ )†
= -wp b bi ,k

m
k k2

k k and ( ˆ ˆ )†
= +

w
q b bk m k k2 k k

. The

Hamiltonian of the system becomes
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where = =
w

w
w

 g gm m L m2 2
c

1 1 1 1
is the single-photon opto-

mechanical coupling between the optical field mode (photonic
mode) and the mechanical mode (phononic mode). Here, ωc is
the intra-cavity frequency and L is the length of the cavity.
Furthermore, G = s

w w


m m2 1 2 1 2
is the phonon–phonon coupling

strength between the resonator MRL and MRL. Neglecting the
thermal noises and quantum noise terms, the set of nonlinear
quantum Langevin equations for this system can be written as
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where κ is the cavity decay rate and γ1(γ2) is the intrinsic
damping rates of mechanical resonators b1 (b2). Relative to
the intensity of controlled field, we assume that the intensities
of the weak external mechanical driving fields and the weak
probe field satisfies the conditions ∣ ∣ ∣ ∣e ep c , ∣ ∣ ∣ ∣e ea c and
∣ ∣ ∣ ∣e eb c . Thus in this case, we can linearize the set of
above dynamical equations of the triply driven OMS by
assuming each operator is the sum of its mean value and
quantum fluctuation i.e., ˆ d= +O O Os , where O denotes any
one of these quantities c, b1 and b2. The steady state values of
the system can be gotten from equations (8)–(10) when
e  0p , e  0a and e  0b
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where ( )†D = D + +g b bc m s s0 1 1 is the effective cavity
detuning including frequency shift due radiation pressure.
The corresponding linearized Langevin equations as follow:
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where G=gmcs represents the effective optomechanical
coupling strength which is controlled by the cavity input
powerÃ. We assume that the OMS is operated in the resolved
sideband regime, in which wi κ (i=1,2) and also the
cavity is driven by the optical pump field at the red sideband
Δc=ω1=ω2. In order to solve the above set of linearized
equation, we also assume that Ω=ωa=ωb, then the fluc-
tuation terms can be solved by introducing the ansatz:
d = +-
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WO O Oe et ti i whereO− and O+ (with O=c, b1,
b2) correspond to the components at the frequencies ωp and
2ωL−ωp respectively. Upon substituting the above ansatz
into equations (14)–(16), we obtain the solution as
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3. Optical response of the system

In this section, we will find out the response of the system at
the probe frequency which can easily be calculated by the

input–output relation [59]
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with external loss rate κex=η κ. κ is the sum of the intrinsic
loss rate κin inside the cavity and external loss rate κex at the
input mechanical resonator. Here, η is the experimentally
adjustable coupling parameter between the external loss rate
κex and the total decay rate κ. The range of η is h 0 1. It
is worth mentioning that cavity is overcoupled for h 1 and
undercoupled for h 1. The transmission coefficient Tp of
the probe field is given by

( )e
e

k e
e

k
e

= =
-

= -
f

f

f f-
-

-

-
-

-
T

c c

e

e

e e
1. 19p

out

p

ex p

p

ex

p
i

i

i ip

p

p p

In order to study the phase dependency on optical response
properties for the probe field, we define the total output field
at the probing frequency ωp can be given by
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It is clear that χp=Re(εT) and c̃p=Im(εT) are the in phase
and out-of-phase quadratures of the output probe field,
representing the absorptive and dispersive behavior of the
output probe field, respectively. The output field in a con-
structive form
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where ΦA=fa−fp and ΦB=fb−fp are the phase dif-
ference between the probe field and the mechanical driving
fields. βa and βb are the amplitude-ratios between the probe
field and external mechanical driving field i.e. b e e=m m p

(μ=a, b).
The real part and imaginary part of εT describe the

absorption and dispersion of the output field at the probe
frequency respectively and can be measured via homodyne
technique [59]. In the absence of right mechanical driving
field i.e. εb=0, equation (21)) can be written as
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Similarly, in the absence of left mechanical driving field i.e.
εa=0, equation (21) can be written as
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4. Effect of phase and intensity on the optical
response

In order to give an intuitive illustration of the optical
response, we have numerically evaluated the optical response
under the effect of Coulomb strength and two mechanical
driving fields and viability of enhanced opacity and remark-
able amplification. Here we consider the strong coupling
regime for which we have assumed ∣ ∣ kg>G 2m . In this
regime, one can easily get the standard OMIT or Autler–
Townes splitting spectra if only the probe and the control
fields are applied to the system. But when one apply the
additional mechanical driving field, the interference between
the phonon–photon parametric process and the OMIT process
occur and one can obtain the phase-dependent optical
response. The first term in equation (21)) represents the
standard OMIT response, second term represents the phonon–
photon parametric process and the third term represents
phonon–phonon parametric process induced by Coulomb
coupling Γ and driving the two mechanical resonators. The
parameter used in our system are: decay rate of the driven
cavity field κ=0.1ωm, the damping rate of mechanical
resonators g g g k= = = 0.001m1 2 , η=0.05. We plot the
power transmission coefficient Tp and the phase quadratures
of the output probe fields and evaluate the system by con-
sidering the system parameters. We can estimate the feasi-
bility of the choice of numerical values of the Coulomb
coupling strength Γ in recent experiment. If we adjust the gate
voltage V1=V2=200V, the capacitance of the gate
C1=C2=2.4nF and the separation between mechanical
resonators without Coulomb and optomechanical interaction
r;2 mm, in this situation Γ≈0.1κ. If we compare the
numerical values used in our coupled OMS, it is obvious that
our choice of numerical value of Coulomb coupling strength
is easily executable in experiments. table. 1 shows more
relevant parameters of experimentally achieved coupled MRs.

In figure 2, we plot the absorption Re(εT) as a function of
Δ/κ and Γ/κ in the absence of external mechanical driving
fields. One can easily note that in the absence of Coulomb
coupling strength, a single OMIT window appears at Δ/
κ=0. The maxima of the single OMIT window depends on
the coupling between the cavity and the mechanical resona-
tors. Once the Coulomb coupling appears, the dip of the
single OMIT window is split to form DOMIT windows. Since
the DOMIT is induced by Coulomb coupling, therefore
Coulomb coupling determine the separation between the
minima of the DOMIT. Specifically, the distance between the

two dips is given by 2Γ. The detailed explanation of single
and DOMIT windows have also been studied in [8, 24, 25].

Left mechanical resonator driven case:- in order to see the
effect of phase ΦA on the optical response in the presence of
Coulomb interaction, we plot the power transmission coeffi-
cient Tp, absorption Re(εT) and dispersion Im(εT) versus Δ/κ
for different relative phase ΦA in the presence of Coulomb
coupling and in the absence of right mechanical driving field
i.e., βb=0 in figures 3(a)–(d). When ΦA=0, the interference
processes of the two terms in equation (22) slightly suppress
the absorption profile around Δ/κ=0 and a symmetric
absorption profiles with the maxima at Δ/κ;±0.5 is
appeared. When ΦA=π/2, we can obtain the gain asymmetric
spectra. One can easily observe that in addition to the
absorption profile at Δ/κ=0, maxima of the absorption and
amplification profiles appear in the red and blue-detunned
regions, respectively. When ΦA=π, the Autler–Townes
absorption split around Δ/κ=0 and maximum gain appear
around Δ=±0.1κ. When ΦA=3π/2, we can get the
absorption curve which is almost the mirror image of the
absorption curve when ΦA=π/2. The inset in figure 3(a)
represent the transmission (absorption) coefficient atΔ/κ=0.

Right mechanical resonator driven case:- now we turn to
examine the effect of phase ΦB on the optical response. We plot
the power transmission coefficient Tp, absorption Re(εT) and
dispersion Im(εT) versus Δ/κ for different relative phase ΦB in
figures 4(a)–(d) in the absence of left mechanical driving field

Table 1. Parameters used in recent experiments for the mechanical resonators.

Reference ω1 ω2 γ1 γ2 Material

Fan et al [13] 6.87 GHz 456.5 MHz 105.5 KHz 8.47 KHz AIN
Okamoto et al [53] 1.845 MHz 1.848 MHz 131.9 Hz 131.9 Hz GaAs
Lin et al [60] 8.3 MHz 13.6 MHz 2.1 MHz 0.11 MHz SiO2

Prasad et al [61] 243 MHz 420 MHz 2.4 MHz 2.15 MHz MoS2
Weaver et al [62] 297 KHz 659 KHz 9.42 Hz 6.28 Hz Si3N4

Kuzyk et al [63] 436MHz 437 MHz 22 KHz 22.6 KHz −

Figure 2. The Real part Re(εT) as a function of Δ /κ and Coulomb
coupling Γ/κ in the absences of both mechanical driving fields. The
other parameters are ω1=ω2=ωm, κ=0.1ωm, γ1=γ2=γm=κ
/1000 and G=0.5κ .
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i.e., βa=0. When ΦB=0, the absorption curve is symmetric
but the destructive interference between the two terms in
equation (23) strongly suppressed the absorption curve at Δ/
κ=0. One can easily see that in addition to the maximum
absorption at Δ=±0.5κ, the absorption curve is strongly
amplified at Δ/κ=0 When ΦB=π/2 and ΦB=3π/2, both
the absorption and dispersion profiles are anomalous and exhibit

the mirror symmetry. Furthermore, one can easily observe the
absorption and the dispersion curves in the red-detunned or blue-
detunned regions. When ΦB=π, the constructive interference
between the two terms in equation (23) strongly enhanced the
absorption at the opacity point.

Comparing the above two cases, one can easily observe
that when the left mechanical resonator is driven, the
absorption from the two side peaks appear when ΦA=0 and
the amplification from the two dips appeared when ΦA=π.
While in the right mechanical driven case, the absorption
peak (amplification) occur at the opacity point when ΦB=π
(ΦB=0). One can observe the absorption and the amplifi-
cation is very sharp and narrow around Δ/κ=0. Hence one
can easily conclude that the left mechanical driven case can
be used to enhance the side peaks of the absorption curve
(ΦA=0) or amplify the side dips of the absorption curve
(ΦA=π). However, the right mechanical driven case can be
used to amplify the absorption peak (ΦB=0) or enhance the
absorption (ΦB=π) around Δ/κ=0.

In figures 5(a)–(d), we plot the power transmission
coefficient Tp, absorption Re(εT) and dispersion Im(εT) versus
Δ/κ when both the mechanical driving fields applied on the
mechanical resonators are present with equal intensity and
phase. One can see that the absorption curve exhibits the
combined effect of two mechanical driving fields, which we
have separately discussed earlier. Hence, equal contribution
of the two mechanical driving fields play an important role to
tune the optical response of the OMS.

In order to further explore the effect of two mechanical
driving fields more clearly, we plot the absorption spectra as a
function of probe detuning for different value of βa in absence
of βb in figures 6(a)–(b) and for different value of βb in

Figure 3. Plots of the phase-dependent power transmission
coefficient (dotted–dashed red), absorption (solid green), dispersion
(dashed black) versus Δ /κ for different choice of the phase factor
(a) ΦA=0, (b) ΦA=π /2, (c) ΦA=π and (d) ΦA=3π /2. In (a)–
(d), βa=1, βb=0. G=0.5κ and Γ=0.1κ . The inset shows the
absorption and transmission curve around Δ /κ. The other
parameters are same as in figure 2.

Figure 4. Plots of the phase-dependent power transmission
coefficient (dotted–dashed red), absorption (solid green), dispersion
(dashed black) versus Δ /κ for different choice of the phase factor
(a) ΦB=0, (b) ΦB=π /2, (c) ΦB=π and (d) ΦB=3π /2. In (a)–
(d) βa=0, βb=1, G=0.5κ and Γ=0.1κ . The other parameters
are same as in figure 2.

Figure 5. Plots of the phase-dependent power transmission
coefficient (dotted–dashed red), absorption (solid green), dispersion
(dashed black) versus Δ/κ for different phase factor (a)
ΦA=ΦB=0, (b) ΦA=ΦB=π/2, (c) ΦA=ΦB=π and (d)
ΦA=ΦB=3π/2. βa=βb=1. The other parameters are same as
in figure 2.
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absence of βa in figures 6(c)–(d). One can easily see that in
the absence of βa and βb, a typical DOMIT appears as shown
by the solid green line in all subfigures of figure 6. Enhancing
the intensity of mechanical driving field βa when ΦA=0, the
absorption increase from the two sideband window around
Δ=±0.5κ as shown in figure 6(a). When ΦA=π, the
absorption decrease from the two sideband window around
Δ=±0.1κ as shown in figure 6(b). In figures 6(c)–(d), we
plot the absorption as function of probe detuning for different
value of βb in absence of βa. When ΦB=0 (ΦB=π), the
absorption is decreased (enhanced) monotonically by
increasing the amplitude of the mechanical driving field field
βb. Hence, the intensification of left mechanical driving field,
the absorption is well modulated from full opacity to
enhanced opacity when ΦA=0 and from full opacity to
significant amplification when ΦA=π at the two sideband
windows. In contrast, the enhancement of right mechanical
driving field modulate the absorption curve from full opacity
to noteworthy amplification when ΦB=0 and from full
opacity to excessive opacity when ΦB=π around Δ/κ=0.

Finally, we discuss the situation when the two mechanical
driving fields, with equal intensity, have same or opposite
phase. In figure 7(a), we plot the absorption as a function ofΔ/
κ for ΦA=π and ΦB=0. One can clearly see that not only the
absorption curve moved to the amplification side around Δ/
κ=0 but also the amplification region become more and more
broader as the intensity of the two driving fields increase
simultaneously. Next, we consider the situation when ΦA=0
and ΦB=π. In this case, not only the complete suppression of
the absorption curve around Δ=±0.1κ vanish but also

remarkable absorption appear, which monotonically increase
with the increase of intensity, around Δ/κ=0 as shown in
figure 7(b). Hence, our OMS can be used to generate OMIA.
Figures 7(c)–(d) shows the absorption when the phase of the
two mechanical driving fields are same. When ΦA=ΦB=0,
the absorption at the two side band due to left mechanical
driving and amplification at the opacity point due to right
mechanical drive occur at the same time which is well con-
sistent with the figures 6(a) and (c). Similarly when
ΦA=ΦB=π, absorption at the at the opacity point due to
right mechanical driving and amplification at the two side band
due to left mechanical driving occur simultaneously which is
consistent with the figures 6(b) and (d). Hence, one can con-
clude that the two mechanical driving fields act oppositely.

5. Conclusion

We, in this study, considered an OMS with two mechanically
driven resonators. Our results show that, we can manipulate the
response probe field by tuning the phase and the intensities of
mechanical resonators. The left mechanical driving field can be
used to increase (decrease) the absorption and the amplification
of the absorption curve at the sideband windows. However, the
right mechanical driving field evolve to display the enhanced
absorption and amplification around the opacity point. It is
worth noting that when the two mechanical driving fields are
out of phase, we can either achieve the OMIA or strong
amplification. However, when the mechanical driving fields are
in phase, we can get the enhanced absorption or amplification
simultaneously. Hence, the phase of the two mechanical driv-
ing fields play a vital role and helps to realize our model in

Figure 6. Plots of the absorption Re(εT ) versus Δ/κ for different
phase factor (a) ΦA=0 and (b) ΦA=π. In (a),(b), we set βb=0.
Here, green solid line represents βa=0, dotted–dashed red line
represents βa=0.5, and dashed black line represents βa=1. Plots
of the absorption Re(εT ) versus Δ/κ for different phase factor (c)
ΦB=0 and (d) ΦB=π. In (c),(d), we set βa=0. Here, solid green
line represents βb=0, dotted–dashed red line represents βb=0.5,
and dashed black line represents βb=1. The other parameters are
same as in figure 2.

Figure 7. Plots of the absorption Re(εT ) versus Δ/κ for different
phase factor (a) ΦA=π, ΦB=0, (b) ΦA=0, ΦB=π, (c)
ΦA=ΦB=0 and (d) ΦA=ΦB=π. In (a)–(d), figures solid green
line represents βa=βb=0, dotted–dashed red line represents
βa=βb=0.5, and dashed black line represents βa=βb=1. The
other parameters are same as in figure 2.
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optical switching [64, 65]. Finally, we would like to say that an
OMS with two driven mechanical resonators provide great
flexibility to control and tune the optical response by control-
ling the phase and intensity of the mechanical driving fields.
Furthermore, our system can also be utilize in high-resolution
spectroscopy and multiband optical communications. In addi-
tion, it will be beneficial to study the role mechanical driving
fields in precision measurements [66, 67], photon blockade
[68] and phonon–photon mutual blockade [69].
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