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We investigate the dispersion of the Tamm states at the interface of a 1D graphene-based

photonic crystal and a nonlinear dielectric slab. We use the nonlinear transfer matrix method to
obtain the dispersion of the Tamm states in both the graphene induced and Bragg gaps in the
terahertz region. We explore the spectral tunability of the surface modes by adjusting parameters
such as the thickness of the nonlinear slab, the intensity of the surface modes, and the chemical
potential of graphene layers. We reveal that the penetration depth of the graphene induced
bandgap modes in the uniform environment is several times greater than that of the conventional
Bragg gap modes. Also, it is shown that we can improve the penetration depth of the surface
modes by adjusting the thickness of the nonlinear slab, the intensity of the Tamm states, or the
chemical potential of the graphene layers.

Keywords: Kerr-type nonlinearity, Tamm states, graphene, photonic crystal, chemical potential,
penetration depth
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1. Introduction

In the last two decades, the surface electromagnetic waves
(SEWs) have attracted the widespread attention of research-
ers. SEWs, which is utilized to study the physical features of
the surfaces, have the potential to use in many applications
and devices such as sensors, filters, microscopy, optical
modulators, and in the enhancement of the nonlinear optical
effects [1-5]. These non-radiative electromagnetic modes,
which are evanescent perpendicular to the interface and
propagate parallel to the interface between two media,
sometimes called Bloch surface waves [6]. The SEWs which
are supported by semi-infinite one-dimensional photonic
crystals (1D-PCs) are called TAMM states [7-10]. Such a 1D-
PC can be constructed from different materials including,
dielectrics, semiconductors, metals, and graphene as the
corresponding constituent elements of the structure. These
materials play an essential role in the photonic bandgap
(PBG) engineering [11-14].

0031-8949,/20,/045504+08$33.00

Graphene, a flat monolayer of carbon atoms arranged in a
honeycomb lattice, has gained much attention in recent years
due to its unique thermal, mechanical, electrical, gate-con-
trollable Fermi level, and optical/terahertz (THz) properties
such as broadband optical absorption, ultrafast optical
response and universal optical conductivity from visible to
infrared [15-21]. Graphene has dissipative losses less than the
usual metals at the THz and far-IR frequencies. Notably, the
optical and electrical characteristics of the graphene are
described by its frequency-dependent surface conductivity. It
is found that the existence of SEWs depends on the con-
ductivity of the graphene, which contains two interband and
intraband contributions [22-25]. The optical conductivity of
the graphene may be controlled and tuned using an external
electric field which varies the chemical potential of graphene
[15, 26]. Due to the experimental realization of the graphene
monolayer and the layered structure composed of alternating
graphene and dielectric layers [27, 28], there is an increasing
interest to explore all optical properties of the graphene-based
photonic crystal (GBPC). From this perspective, extensive
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Figure 1. Geometry of the problem consist of a 1D GBPC and a
nonlinear Kerr-type dielectric slab. Here, we assume that
dy =10 um, dg = 10 um, dg = 3dy, €4 = 4.84,e5 =2.29,¢, = 1.

studies have also been carried out in the realm of linear
optical properties of the GBPCs. Among them, some
researchers have examined linear Tamm states in the GBPCs
to achieve the best local and tunable SEWs [29-33]. Contrary
to the linear regime, the nonlinear optical properties of the
GBPCs, especially nonlinear SEWSs, have received less
attention [34-38].

In this work, we theoretically investigate the dispersion
properties of the TE-polarized Tamm states guided by the
interface of a 1D GBPC and a nonlinear Kerr-type dielectric
slab in THz region. We use the well-known transfer matrix
method to calculate the PBGs of the 1D-PC and the disper-
sion of the nonlinear Tamm states. Then we discuss the
intensity-dependent dispersion curves inside the first two
bandgaps of the structure and explore the controllability of the
dispersion of the Tamm states by adjusting parameters such as
the thickness of the nonlinear slab, the intensity of the surface
modes, and the chemical potential of graphene layers. The
paper is organized as follows. In section 2, we introduce the
model of the considered structure. The general calculated
results and their analysis are presented in section 3. Finally,
section 4 concludes with brief comments on the significance
of the findings.

2. Theoretical model and calculations

Consider a semi-infinite 1D GBPC consists of alternative
isotropic nonmagnetic dielectric layers A, B with the thick-
nesses d,, dp and the relative permittivities ¢4, and ep
respectively, with the graphene monolayers G between them
(see figure 1). A nonlinear Kerr-type dielectric slab of the
thickness dg and relative permittivity en;. from the left is
attached to the GBPC. The relative permittivity of the Kerr-
type nonlinear slab is given by [39, 40]:

ENL = €5 + OZ|E|2 (1)

Here, €5 is the linear part of the relative dielectric permittivity
of the slab. The positive parameter o describes the Kerr-type

nonlinearity. Also, the optical properties of the graphene
monolayer, which is affected by the low absorption at the
THz and far-IR frequencies, are given by the following di-
electric function [41, 42]:

igg (W)

g =1+ —=—, 2
g kod, )

where og(w) is the surface conductivity of the graphene
monolayer ~ given by the Kubo formula
0y (W) = 0" (W) + 03" (w) [23, 43]. Here
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ko = w/c is the vacuum wave number, d, = 0.334 nm is the
thickness of the graphene monolayer, 7, is the impedance of
the vacuum, T is the temperature, e is the charge of the
electron, kg is the Boltzmann constant, and p¢ is the chemical
potential of the graphene monolayer which is determined by
the electron density and can be varied with a gate voltage.

Consider a TE-polarized electromagnetic plane wave
incident to the structure with its electric field in the y-direction
of the used coordinates system in which the graphene
monolayers are parallel to the x—y plane. Assume that
E, = E(z)eo®=ivr 1 ¢ c. which 3 is the component of the
normalized wave number along the interface. We can deter-
mine the value of 3 during the excitation of the SEWs. One
can generally excite the SEWs using prisms or gratings. If we
use a prism, 8 = n, sin (6,) where n,, is the refractive index of
the prism and 6, is the incident angle of the beam used for
excitation of the SEWs. The electric field amplitude E(z) in
the uniform medium on the left side of the nonlinear slab is
given as E(z) = EpefGtds)  for 7 < —dg, which
k, = ko3> — €, and E, is the electric field amplitude at
z = —ds. The value of E, depends on the intensity of the
excitation beam. In the right-side with z > 0, the wave is the
Bloch mode with

E(2) = (2)e, “)

where Kg is the Bloch wave number, and v(z) is the Bloch
function which is a periodic function of z. At frequencies
where the Bloch wave number has a complex value, the
Bloch modes are evanescent. This condition defines the so-
called forbidden bands of the periodic medium [44]. We use
the transfer matrix method to investigate the forbidden
bandgaps of the considered GBPC. One can easily show that
the transfer matrix M = My x M, X Mp x M, relates the
fields of two identical layers in the adjacent unit cells of the
GBPC. Here My, Mg and M, are defined as follows:

i
coskady —sinkdy
MA = CA ’ (5)
i( sinkads  cosk.ads
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w1
with ¢, = ==, CB:%, ko = koyJea — 3> and

k.p = ko~/eg — (3%. The eigenvector of M is then given by
[45]:

. ®)
PC T Ked — My, |

where M;; (i, j = 1, 2) are elements of the transfer matrix M,
d = dy + dp and Kgd is given as:

2
Kyd = M1,1-;M2,2 " \/(M1,1+M2,2) iy

5 ©))
To obtain the dispersion of the Tamm states, we must apply
the electromagnetic boundary conditions at the interface of
the nonlinear slab and the GBPC. To do this, we need the
electromagnetic fields inside the nonlinear slab, which we can
obtain them using the nonlinear transfer matrix method. Since
the slab is nonlinear and the electromagnetic fields inside the
slab depend on the amplitude of the electric field, we assume
that the slab is composed of N sublayers. We choose the
number of sublayers so that the spatial variations of the
electric field within each sublayer to be negligible. Hence, the
permittivity within the jth sublayer can be assumed to be
constant: ¢; = €5 + a|E(z = —(j — 1)ds/N)[>. Then, we
use the transfer matrix method to obtain the electromagnetic

fields inside the nonlinear slab at z= —jds/N as:
Yz = —jds/N) = M; x (z = —(j — 1)dg/N) where
cos k;ids /N —Lsin kzde/N
M; = S .0
—i¢;sink;d; /N cosk;dy/N
indicates  transfer matrix of jth sub-layer, (; = %kf
ki = koygj — 8, Y(z = —jds/N) and

Wz = —(j — Dds/N) denote the electromagnetic fields in
two adjacent sublayers. Finally, the electromagnetic fields at
z = 0 are obtained in terms of the electromagnetic fields at
z = —dy as follows [46]:

N
Yz =0) = [H Mj] X P(z = —ds). (11)
j=1
Using the boundary conditions at z = —ds, the eigenvector
W(z = —dy) is given as:
1
V(= —ds) = [< ]Eo- (12)

Here, (, = iq,/w and g, = k,/ko. To find the dispersion of
the Tamm states, we satisfy the boundary conditions for the
tangential components of the electric and magnetic fields at
z = 0 using equations (8)—(12), to obtain

13)

Mo g [ e
Kpd — M, i1 / o

and numerically solve it.

3. Results and discussion

As a model system, the SiO, and polyethylene as dielectric
materials of A and B were chosen, respectively. In our cal-
culations, the thicknesses and the relative permittivities are
according to [47, 48]. Therefore, the calculations were carried
out using the values ¢4 =4.84, c3=229, ¢ =1,
gs = 2.4025(polydiacetylene: 9 — BCMU), d4 = 10 ym
dp = 10 pm and T = 300 K. Although in theoretical calcu-
lations, we considered a semi-infinite GBPC, in practice, to
avoid the manufacturing difficulty, it must have finite periods.
Experimentally, the 1D GBPC may be fabricated through the
thermal evaporation procedure [49]. Motivated with the
experimental realization of a 1D structure composed of five
periods of alternating graphene and Al,O5 layers by Chang
et al [50], we consider a 1D GBPC of 5 periods and inves-
tigate its optical properties. It is quite straightforward to use
the transition matrix method to obtain the reflection and

transmission  coefficients of the 1D GBPC as
My — Moy + Mz — My / (p 2

R = and T =
My + Moy + Mz + My / (g My + Moy + Mip + My /¢’

respectively [37]. Here, Mj; (i, j = 1, 2) are elements of the
transfer matrix Ml = (M 'M;'Mz'M;")5. Figure 2(a) shows
the transmission of the 1D GBPC with the structure (AGBG)’
on the plane of frequency and (3 as shown in figure 2(a). In the
figure, the dark and bright regions show the forbidden and
propagation bands of the considered structure, respectively.
We consider the frequency interval 0-9 THz in which the real
part of the graphene conductivity o,(w) is negligible [51]. At
this frequency interval, the structure shows two bandgaps.
The first bandgap, which is attributed to the existence of the
graphene monolayers in the structure, is a graphene induced
photonic band gap (GIPBG) and the second one is the con-
ventional Bragg gap [31]. To compare the quality of the

GIPBG and the Bragg gap, we plotted the fineness F = lﬁﬁ
of the structure as a function of 3 at two typical frequencies
f= 1THz and f = 5.5 THz in figure 2(b). The figure reveals
that the fineness of the structure at the GIPBG is higher than
its fineness at the Bragg gap and increases by increasing beta.
Here, we assume the chemical potential of the graphene
monolayers to be 0.2 eV. The chemical potential of graphene
can be changed by applying an appropriate voltage or doping.
Adjusting the chemical potential of graphene modifies the
conductivity of graphene. By controlling the conductivity of
graphene, one can control the characteristics (the bandwidth
and the central frequency) of the bandgaps [51]. Due to the
controllable bandgaps, studying the dispersion behavior of
Tamm states in the GBPCs may be of great importance.
The dispersion properties of the Tamm states are sum-
marized in the first two bandgaps of the GBPC on the plane of
frequency versus (3 (see figure 3(a)). The figure shows the
dispersion of the Tamm states for different width of the slab.
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Figure 2. (a) The transmission of the 1D GBPC structure (AGBG)’ on the plane of (f, 5) and (b) the fineness of the structure as a function of 3
at two typical frequencies f = 1 THz (the solid line) and f = 5.5 THz (the dashed line), respectively. Here, the dark and bright regions show
the forbidden and propagation bands of the considered structure, respectively. The other parameters are same as figure 1.
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Figure 3. (a) The dispersion of the Tamm states versus [ for different width of the nonlinear slab. The penetration depth of the Tamm states
of (b) the GIPBG and (c) the Bragg gap in the uniform medium versus the frequency, respectively. The thicknesses of the nonlinear slab are
assumed to be dg = d4 (the solid line), dg = 2 d, (the dashed lines), ds = 3 d, (the dashed—dotted lines) and dg = 4 d, (the dotted lines)

with o|Eg} =
structure, respectively. The other parameters are same as figure 1.

We need an appropriate criterion for comparing surface waves
in terms of their intensity. We consider this criterion as the
intensity of surface waves at the interface between the uni-
form medium and the nonlinear slab, and we use the
dimensionless intensity «|Eg|* to show it. Here we assume
that a|Eg> = 0.1¢g. In the figure, the dark and bright
regions show the propagation and forbidden bands of the
considered structure, respectively.

Note that in the GIPBG there is no dispersion curve for
ds = d4. This means that the dispersion equation has a

0.1 g5 and p. = 0.2 eV. Here, the dark and bright regions show the propagation and forbidden bands of the considered

solution only for the specific thicknesses of the nonlinear slab
(here, ds = 2dy, 3dy, 4 dy). Besides, the dispersion curves of
the Tamm states move away from the edge of the GIPBG and
experience a redshift as the nonlinear slab thickness increases
(see figure 3(a)). However, the situation is quite different at
the Bragg gap. Here, the dispersion equation has solutions for
all considered slab thicknesses. The dispersion curves of the
Tamm states in the Bragg gap also shift to lower frequencies
as the thickness of the nonlinear layer increases. The shift of
the modes ends by reaching the lower limit of the Bragg gap.
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Figure 4. The penetration depth of the Tamm states of (a) the GIPBG and (b) the Bragg gap in the GBPC versus the frequency, respectively.
Here, the thicknesses of the nonlinear slab are assumed to be dg = d4 (the solid line), dg = 2 d, (the dashed lines), dg = 3 d,4 (the dashed-
dotted lines) and ds = 4 d, (the dotted lines) with a|Eg> = 0.1 g5 and p. = 0.2 eV. The other parameters are same as figure 1.

Then the Tamm states emerge from the upper edge of the
bandgap and resume moving to the lower frequencies as the
slab thickness increases.

To get a more profound insight into the Tamm states of
both band gaps, we investigate their penetration depth in the
left homogenous medium. The penetration depth of the Tamm
states in the uniform medium (6,) is given as 6, = 1/Re(k,).
The figures 3(b) and (c) show the penetration depth of the
Tamm states of the GIPBG and the Bragg gap in the uniform
medium versus the frequency, respectively. We can see that
for the specified thickness of the nonlinear layer, the modes of
both bandgaps have high penetration depths at low fre-
quencies (equivalently small ). However, the penetration
depth of the Tamm states of the GIPBG is several times grater
than that of the Bragg gap modes. Further, the penetration
depth of the modes of both band gaps decreases and even-
tually becomes independent of the thickness of the nonlinear
layer for the high-frequency Tamm states. Since the Tamm
state of a given frequency with the highest 5 have the lowest
penetration depth, the penetration depth of the surface modes
can be adjusted by choosing the appropriate thickness for the
nonlinear slab. The localized modes (the modes with the least
penetration depth) of both bandgaps may have potential
application in sensing devices, especially the biosensors [52].
Besides, the penetration depth of the Tamm states in the 1D
GBPC (6pc) is given as épc = 1/Im(Kg). In figure 4 the
penetration depth of the Tamm states of (a) the GIPBG and
(b) the Bragg gap are plotted as functions of the frequency. As
the figure reveals, the penetration depth of the modes in the
PC is much less than the depth of penetration into the uniform
medium. Here, unlike the uniform medium, the Tamm state
closer to the upper edge of the corresponding bandgap has the
most depth of penetration into the GBPC.

Now, we want to study the effect of increasing the
intensity on the dispersion curves of the Tamm states for a
specified thickness of the nonlinear slab. The figure 5(a)
shows the dispersion curves of the Tamm states for three

different intensities ao|Egl*= 0.1¢,, (the solid lines), 0.3¢; (the
dashed lines), and 0.5¢; (the dashed—dotted lines) at the
interface between the nonlinear slab and the GBPC (z = 0)
with dg = 4d,. As it is clear, increasing the intensity shifts
the dispersion curves of the Tamm states of both bandgaps
towards the lower frequencies. The penetration depth of the
Tamm states of (b) the GIPBG and (c) the Bragg gap in the
uniform medium are plotted versus the frequency for the
intensities o|Ey|?= 0.1¢,, (the solid lines), 0.3¢; (the dashed
lines), and 0.5¢; (the dashed—dotted lines) of the modes at
z = 0 in figure 5. The figure shows that at a given frequency,
in both band gaps, the penetration depth of the modes in the
homogeneous medium decreases with increasing intensity.
Consequently, one can control the frequency and localization
length of the nonlinear Tamm states by adjusting the intensity
of surface waves.

It is well known that the chemical potential and hence the
conductivity of the graphene monolayer is modified by dop-
ing or applying a gate voltage. On the other hand, the dis-
persion equation (13) depends on the conductivity of the
graphene sheets. So, it is interesting to investigate how the
dispersion curves of the Tamm states affected by varying the
conductivity of the graphene layers. To do this, we plotted the
dispersion curves of the Tamm states as a function of the
chemical potential of the graphene monolayers (u.) at
B = 1.1 (the solid line), 8 = 1.15 (the dashed lines) and
(6= 1.2 (the dotted—dashed lines) in figure 6(a). Here,
al|Eg*= 0.1¢;, and dg = 4d,. It is seen that increasing the
chemical potential increases the bandwidth of the GIPBG
more effectively than the conventional Bragg gap. Addition-
ally, the central frequency of the GIPBG undergoes a sub-
stantial blue shift than the Bragg gap by increasing chemical
potential. Moreover, the frequency of the Tamm states of both
bandgaps slightly shifts to higher frequencies by increasing
the chemical potential. The penetration depth of the Tamm
states of (b) the GIPBG and (c) the Bragg gap in the uniform
medium are plotted versus the frequency at 3 = 1.1 (the solid
line), 8 = 1.15 (the dashed lines) and 5 = 1.2 (the dotted—
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Figure 5. (a) The dispersion of the Tamm states versus 3 for different intensities of the Tamm states at the interface between the nonlinear
slab and the GBPC. The penetration depth of the Tamm states of (b) the GIPBG and (c) the Bragg gap in the uniform medium versus the
frequency, respectively. The intensities of the Tamm states at the interface between the nonlinear slab and the GBPC are assumed to be

a|lEg? = 0.1¢g (the solid line), a|Eg? = 0.2 &g (the dashed lines) and a|Eg? = 0.3 &g (the dotted—dashed lines) with dg = 4 d, and
e = 0.2 eV. Here, the dark and bright regions show the propagation and forbidden bands of the considered structure, respectively. The other

parameters are same as figure 1.
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Figure 6. (a) The dispersion of the Tamm states versus chemical potential of graphene p, for different § with 3 = 1.1 (the solid line),

[ = 1.15 (the dashed lines) and 5 = 1.2 (the dotted—dashed lines). The penetration depth of the Tamm states of (b) the GIPBG and (c) the
Bragg gap in the uniform medium versus the frequency, respectively. Here, the dark and bright regions show the propagation and forbidden
bands of the considered structure respectively, a|Egl> = 0.1 &5, ds = 4 d, and p. = 0.2 eV. The other parameters are same as figure 1.

dashed lines) respectively, in figure 6. Here, the penetration 4. Conclusion
depth of the Tamm states of both bandgaps decreases by

increasing the chemical potential of graphene. In summary, the dispersion properties of the TE-polarized

Tamm states were investigated in the terahertz regime at the
interface of a nonlinear Kerr-type dielectric slab and a 1D
GBPC. The band structure of the PC under study contains one
graphene induced bandgap and one Bragg gap in the desired
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frequency range, which both of them support Tamm states of
different characteristics. The dispersion of the Tamm states
depends on the thickness of the nonlinear slab, the intensity of
the surface modes, and the chemical potential of the graphene
layers. That is, the surface modes are red-shifted with
increasing the thickness of the nonlinear slab or the intensity,
whereas they are blue-shifted with increasing the chemical
potential. Since adjusting the thickness of the nonlinear slab
means replacing it with a new one and changing the chemical
potential of graphene is also not an easy task, it seems that the
only effective way to adjust the dispersion of the Tamm states
is to change the intensity of the modes. We have shown that
the penetration depth of the graphene induced bandgap modes
in the uniform environment is several times greater than that
of the Bragg gap modes. Also, we observed that the pene-
tration depth of the Tamm states decreases with increasing
frequency and eventually becomes independent of the non-
linear slab thickness and intensity of the modes. At a given
frequency, the Tamm state with the highest § has the least
penetration depth. Therefore, we can alter the penetration
depth of the surface modes by adjusting the thickness of the
nonlinear slab, the intensity of the Tamm states, or the che-
mical potential of the graphene layers.
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