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Abstract
The exact new solutions are given in the form of rational, exponential, trigonometric and hyperbolic
forms in which some of them are new and realistic for Schrödinger equation. Numeral studies have
been reveals that the obtained solutions may be applicable for some physical environments, such as
plasma fluids and fiber communications. The computational study and obtained conclusions
reported that the offered methods are pretentious, robust and influential in applications of voyager
storm analysis, observations of space plasmas and in optical fibers.

Keywords: solitary wave solutions, exp(−j(ξ)) expansion technique, sine–cosine technique,
Riccati–Bernoulli sub-ODE technique, Schrodingerʼs equation
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1. Introduction

No one can relegate that partial differential nonlinear integrable
evolution equations (PDNIES) are widespread in nature scien-
tific phenomena in physics and fluid dynamics [1–9]. A com-
parison of theoretical and computational analysis with the
observations and prediction studies for physical environments
suggests that it is indispensable to inspect some physical
properties as particle temperature, impurities, obliqueness,
viscosity and nonlinear damping on the soliton envelopes that
propagate in the studied medium [10–12]. These properties
cause nonlinear, dispersion and dissipative wave forms which
displayed and described by PDNIES [13, 14]. Many mathe-
maticians are able to study and explain some standing wave
stabilities for Schrödinger and ralated equations such as Cho-
quard, Hartree and its fractional form equations [15–18].
Accordinglly, the modulational instability represents exponen-
tially the growth of wave perturbative plane wave solution and
becomes very important in many science applications in a
weakly dispersive and nonlinear forms [19–22]. Therefore,
many studies focused on the structure of soliton and other types
solutions to PDNIES [23–35]. These solutions perform an

important factor for understanding the qualitative interpretation
for different phenomena in nature. On the other hand, in robust
dispersive environments, investigating instability and wave
progress becomes one of the essential realistic questions in fluid
dynamics, fiber applications, superfluid [36–39]. Accordingly,
Sabry et al investigated nonplanar nonlinear modulation of
acoustic envelope solitary wave in electron–positron–ion fluid
via modified Schrödinger equation with damping term [40]. The
stability of modified unstable Schrödinger equation (mUNLSE)
has been examined and its periodic and solitary waves are
obtained by modified-extended-mapping technique [41]. Fur-
thermore, othersolution forms are depicted by modified
Kudraysov and sine-Gordon approaches [42]. Zhoui et al
solved mUNLSE using direct algebraic analysis and obtained
hyperbolic and rational solutions [43]. This paper focus and
concern with the improvement of mUNLSE solutions [41–43].
This equation is given by [41, 42, 44]

y y y y gy+ - - = = -i 2 0, i 1 , 1.1t xx xt
2∣ ∣ ( )

where γ is the free parameters and ψ=ψ(x, t) is a complex-
valued function. Equation (1.1) is a type of nonlinear Schrö-
dinger equation with space and time exchanged. This equation
prescribes a time evolution of disturbances in unstable media.
The mUNLSE determines certain instabilities of modulated
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wave-trains and the additions of the term −γψxt vanquishes the
ill-posedness of this equation [45]. This equation is subjected to
a series of critical points between the stability and instability
which called singular points. The behavior of solutions around
this points changes dramatically to form and exist many solu-
tion forms in this regions such as solitons, periodics, shocks,
solitons of dark and bright envelopes and rogue waves. This
solutions changes its directions around this points [46–51]. In
fact, many numerical and analytical methods have been also
implemented to get solutions for equation (1.1) such as mod-
ified Kudraysov method, the sine-Gordon expansion approach
[42], the extended simple equation method [44] and the mod-
ified extended mapping method [41]. To the best of our
knowledge, no previous research work has been done using the
proposed methods for solving the mUNLSE.

In the current work, the proposed exp(−j(ξ))-expansion,
sine–cosine and Riccati–Bernoulli sub-ODE techniques are
employed to obtain new solutions in different form of
equation (1.1). Furthermore, we show that the Riccati–Ber-
noulli sub-ODE technique provides infinite solutions. Indeed,
we introduce new types of exact analytical solutions. Indeed
the new solutions presented in this article are so important in
the theory of soliton. Moreover these solutions turn out to be
very useful for physicists to explain many interesting physical
phenomena.

The layout of the paper is as follows. Section 2 presents
some new exact solutions for the mUNLSE. Discussion of our
results and comparing with the results of other authors are
given in section 3. Moreover, we give some three-dimen-
sional figures for some selected solutions. Conclusion will
appear in section 4.

2. Applications

By introducing the following transformation

y x z n x w= = + = +zx t u x t px t kx t, e , , , ,
2.1

x ti ,( ) ( ) ( )
( )

( )

where p, ν, k and ω are constants. The mUNLSE (1.1) con-
verted to a nonlinear ordinary differential equation as follows

gw gn n

w
gn

g

-  - + - - =

=
-

-

k k u u p p u
k p

p

2 0,
2

1
. 2.2

3 2( ) ( )
( ) ( )

In sequel, the exp(−j(ξ))-expansion, the sine–cosine and
the Riccati–Bernoulli sub-ODE methods are employed to
solve equation (2.2).

2.1. The solution of equation (1.1) using the
expð�jðξÞÞ-expansion method

According to the exp(−j(ξ))-expansion technique [26,
27, 33], we have the following equation:

j j m l= + - ¢ = + +j j-u A A exp , e e , 2.30 1 ( ) ( )

where A0 and A1 are constants and ¹A 01 . It is easy to see
that

j l j
m l j lm

 = - + -
+ + - +

u A 2 exp 3 3 exp 2

2 exp , 2.4
1

2

( ( ) ( )
( ) ( ) ) ( )

j j

j

= - + -

+ - +

u A A A

A A A

exp 3 3 exp 2

3 exp , 2.5

3
1
3

0 1
2

0
2

1 0
3

( ) ( )
( ) ( )

where λ and μ are constants. Superseding u u u, , 3 into
equation (2.2) and hence equating the coefficients of j-exp( )
to zero, we obtain

gw lm gn n- - + - - =k k A A p p A2 0, 2.61 0
3 2

0( ) ( ) ( )

gw l m gn n- + - + - - =k k A A A p p A2 6 0,
2.7

1
2

0
2

1
2

1( ) ( ) ( )
( )

gw l- - =k k A A A2 0, 2.81 0 1
2( ) ( )

gw- - =k k A A 0. 2.91 1
3( ) ( )

Solving equations (2.6)–(2.9), we get

l

g l m g g

g l m g g

n
g l m g
g l m g g

=
- - - +

=
- - - +

=
+ - + -

- + - + -

A
k

k p p

A
k

k p p

k k p p p

k p p

2 2 4 4 2
,

2

2 4 4 2
,

4 2 2

2 4 4 2
.

2.10

0
2 2 2 2 2

1
2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

( )

( )
( )( )

( )
( )

We consider only one case, whenever the other cases follow
similarly. In this case, the solution of equation (2.3) reads as:

x
g l m g g

l j x

=
- - - +

´ + -

u
k

k p p2 2 4 4 2

2 exp .

2.11

2 2 2 2 2
( )

( )

( ( ( ))
( )

Then the solutions of equation (2.2) [26, 27, 33] are
Case 1. At l m m- > ¹4 0, 0,2

g l m g g

l
m

l m x l

= 
- - - +

´ -
- + +

l m-

u x t
k

k p p

C

,
2 2 4 4 2

4

4 tanh
.

2.12

1,2
2 2 2 2 2

2 4

2

2

⎜ ⎟

⎛

⎝

⎜⎜⎜⎜ ⎛
⎝

⎞
⎠

⎞

⎠

⎟⎟⎟⎟

( )
( )

( ) ( )

Using equations (2.1) and (2.12) the solutions of equation (1.1)
are

y
g l m g g

l
m

l m x l

= 
- - - +

´ -
- + +

z

l m-

x t
k

k p p

C

,
2 2 4 4 2

e

4

4 tanh
.

2.13

1,2
2 2 2 2 2

i

2 4

2

2

⎜ ⎟

⎛

⎝

⎜⎜⎜⎜ ⎛
⎝

⎞
⎠

⎞

⎠

⎟⎟⎟⎟

( )
( )

( ) ( )
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Case 2. At l m m- < ¹4 0, 0,2

g l m g g

l
m

m l x l

= 
- - - +

´ +
- + -

m l-

u x t
k

k p p

C

,
2 2 4 4 2

4

4 tan
.

2.14

3,4
2 2 2 2 2

2 4

2

2

⎜ ⎟

⎛

⎝

⎜⎜⎜⎜ ⎛
⎝

⎞
⎠

⎞

⎠

⎟⎟⎟⎟

( )
( )

( ) ( )

Using equations (2.1) and (2.14) the solutions of equation (1.1)
are

y
g l m g g

l
m

m l x l

= 
- - - +

´ +
- + -

z

m l-

x t
k

k p p

C

,
2 2 4 4 2

e

4

4 tan
.

2.15

3,4
2 2 2 2 2

i

2 4

2

2

⎜ ⎟

⎛

⎝

⎜⎜⎜⎜ ⎛
⎝

⎞
⎠

⎞

⎠

⎟⎟⎟⎟

( )
( )

( ) ( )

Case 3.At l m m l- > = ¹4 0, 0, 02

g l g g

l
l

l x

=
- - +

´ +
+ -

u x t
k

k p p

C

,
2 2 4 2

2

exp 1
. 2.16

5,6
2 2 2 2 2

⎛
⎝⎜

⎞
⎠⎟

( )

( ( ))
( )

Using equations (2.1) and (2.16) the solutions of equation (1.1)
are

y
g l g g

l
l

l x

=
- - +

´ +
+ -

zx t
k

k p p

C

,
2 2 4 2

e

2

exp 1
.

2.17

5,6
2 2 2 2 2

i

⎛
⎝⎜

⎞
⎠⎟

( )

( ( ))
( )

Case 4. At l m m l- = ¹ ¹4 0, 0, 0,2

g g

l
l x

l x

=
- +

´ -
+

+ +

u x t
k

p p

C

C

,
2 2 4 2

2
. 2.18

7,8
2 2

2⎛
⎝⎜

⎞
⎠⎟

( )

( )
( )

( )

Using equations (2.1) and (2.18) the solutions of equation (1.1)
are

y
g g

l
l x

l x

=
- +

´ -
+

+ +

zx t
k

p p

C

C

,
2 2 4 2

e

2
. 2.19

7,8
2 2

i

2⎛
⎝⎜

⎞
⎠⎟

( )

( )
( )

( )

Case 5. At l m m l- = = =4 0, 0, 0,2

g g x
= 

- + +
u x t

k

p p C
,

2 2 4 2

1
. 2.209,10

2 2

⎛
⎝⎜

⎞
⎠⎟( ) ( )

Using equations (2.1) and (2.20) the solutions of equation (1.1)
are

y
g g x

= 
- + +

zx t
k

p p C
,

2 2 4 2
e

1
. 2.219,10

2 2

i
⎛
⎝⎜

⎞
⎠⎟( ) ( )

Here k, γ, λ, μ, p, C are constants, whereas z n= +px t and
x w= +kx t for ν and ω, given in (2.10) and (2.2), respectively.

2.2. The solution of equation (1.1) using the sine–cosine
method

According to sine–cosine technique [52, 53], we have the
following equation:

a bx x
p
b=


u x t,

sin , ,

0, otherwise,
. 2.22

r⎧
⎨⎪
⎩⎪

( )
( ) ∣ ∣

( )

Substituting (2.22) into (2.2), yields

gw b a bx b a bx

a bx gn n a bx

- - + -

- + - - =

-k k r r r

p p

sin 1 sin

2 sin sin 0.

2.23

r r

r r

2 2 2 2

3 3 2

( )( ( ) ( ) ( )

( ) ( ) ( )
( )

Thus by comparing the coefficients of the sine functions, we
get

gw b a a
gw b a gn n a

- ¹ - =
- - - =

- - + - - =

r r r

k k r r

k k r p p

1 0, 2 3 ,

1 2 0,

0. 2.24

2 3

2 2 2

( ) ( )
( ) ( ) ( )

Solving this system yields

a n g

b
n g

gw

=- =  - -

=
- -
-

r p p

p p

k k

1, 1 ,

1
, 2.25

2

2

( )

( )
( )

( )

n g - - >p p1 02( ) and gw- ¹k k 0( ) . Consequently, the
periodic solutions [52, 53] are

n g

n g
gw

w

n g
gw

w
p

= - -

´
- -
-

+

- -
-

+ <

u x t p p

p p

k k
kx t

p p

k k
kx t

, 1

sec
1

,

1

2
2.26

1,2
2

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

˜ ( ) ( )

( )
( )

(

( )
( )

( ) ( )
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and

n g

n g
gw

w

n g
gw

w
p

= - -

´
- -
-

+

- -
-

+ <

u x t p p

p p

k k
kx t

p p

k k
kx t

, 1

csc
1

,

1

2
. 2.27

3,4
2

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

˜ ( ) ( )

( )
( )

(

( )
( )

( ) ( )

Using equations (2.1) and (2.20) the solutions of
equation (1.1) are

y n g

n g
gw

w

n g
gw

w
p

= - -

´
- -
-

+

- -
-

+ <

n+x t p p

p p

k k
kx t

p p

k k
kx t

, 1 e

sec
1

,

1

2
2.28

px t
1,2

2 i

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

˜ ( ) ( )

( )
( )

(

( )
( )

( ) ( )

( )

and

y n g

n g
gw

w

n g
gw

w
p

= - -

´
- -
-

+

- -
-

+ <

n+x t p p

p p

k k
kx t

p p

k k
kx t

, 1 e

csc
1

,

1

2
2.29

px t
3,4

2 i

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

˜ ( ) ( )

( )
( )

(

( )
( )

( ) ( )

( )

However, n g - - <p p1 02( ) , we obtain the soliton
and complex solutions

n g

n g
gw

w

= - -

´
- -

-
+

u x t p p

p p

k k
kx t

, 1

sech
1

2.30

5,6
2

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

˜ ( ) ( )

( )
( )

( ( )

and

n g

n g
gw

w

= - -

´
- -

-
+

u x t p p

p p

k k
kx t

, 1

csch
1

. 2.31

7,8
2

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

˜ ( ) ( )

( )
( )

( ( )

Using equations (2.1) and (2.20) the solutions of equation

y n g

n g
gw

w

= - -

´
- -

-
+

n+x t p p

p p

k k
kx t

, 1 e

sech
1

2.32

px t
5,6

2 i

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

˜ ( ) ( )

( )
( )

( ( )

( )

and

y n g

n g
gw

w

= - -

´
- -

-
+

n+x t p p

p p

k k
kx t

, 1 e

csch
1

. 2.33

px t
7,8

2 i

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

˜ ( ) ( )

( )
( )

( ( )

( )

2.3. The solution of equation (1.1) using Riccati–Bernoulli sub-
ODE method

According to Riccati–Bernoulli sub-ODE method [32, 33],
we have the following equation:

¢ = + +-u aq bu cu , 2.34n n2 ( )

where a, b, c and n are parameters determined later. Sub-
stituting (2.34) into (2.2), yields

gw

gn n

- - + -
+ + +

+ + - + - - =

- -

-

k k ab n u a n u

nc u bc n u

ac b u u p p u

3 2

1

2 2 0.

2.35

n n

n n

2 2 3 2

2 2 1

2 3 2

( )( ( ) ( )
( )

( ) ) ( )
( )

Putting n=0, equation (2.35) becomes

gw
gn n

- + + + +
- + - - =

k k abu a u bc ac b u

u p p u

3 2 2

2 0. 2.36

2 2 3 2

3 2

( )( ( ) )
( ) ( )

Setting each coefficient of u i (i=0, 1, 2, 3) to zero, we have

=bc 0, 2.37( )
gw gn n- + + - - =k k ac b p p2 0, 2.382 2( )( ) ( ) ( )

=ab3 0, 2.39( )
gw- - =k k a 1 0. 2.402( ) ( )

Solving equations (2.37)–(2.40), we have

=b 0, 2.41( )
gn n
gw

=
- +

-
ac

p p

k k2
, 2.42

2

( )
( )

gn n
gw

= 
- +

-
c

p p

k k2
, 2.43

2

( )
( )

gw
= 

-
a

k k

1
2.44

( )
( )

consequently, we provide the solutions for equation (2.2) as
follows:

Rational function solutions: (when b= 0 and c= 0, i.e.
gn n- + =p p 02 )

The solution of equation (2.2) [32] is

w m= - + + -u x t a kx t, , 2.451
1ˆ ( ) ( ( )) ( )

Therefore, using equations (2.1) and (2.45), yields the solu-
tion of mUNLSE as follows

y w m= - + +n+ -x t a kx t, e , 2.46px t
1

i 1ˆ ( ) ( ( )) ( )( )

where p, ν, γ, k, μ are arbitrary constants and w = gn
g
-

-
k p

p

2

1

( ) .

Trigonometric function solution: (when >gn n
gw

- +
-

0p p

k k

2

( )
)

The solution of equation (2.2) [32] is

gn n

gn n
gw

w m

=
- +

´
- +

-
+ +

u x t
p p

p p

k k
kx t

,
2

tan
2

2.47

2,3

2

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ˆ ( )

( )
( )

( )

4

Phys. Scr. 95 (2020) 045220 M A E Abdelrahman and N Abdo



and

gn n

gn n
gw

w m

=
- +

´
- +

-
+ +

u x t
p p

p p

k k
kx t

,
2

cot
2

.

2.48

4,5

2

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ˆ ( )

( )
( )

( )

Consequently, using equations (2.1) and (2.45), yields the
solution of mUNLSE as follows

y
gn n

gn n
gw

w m

=
- +

´
- +

-
+ +

n+x t
p p

p p

k k
kx t

,
2

e

tan
2

2.49

px t
2,3

2
i

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ˆ ( )

( )
( )

( )

( )

and

y
gn n

gn n
gw

w m

=
- +

´
- +

-
+ +

n+x t
p p

p p

k k
kx t

,
2

e

cot
2

,

2.50

px t
4,5

2
i

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ˆ ( )

( )
( )

( )

( )

where n g mp k, , , , are arbitrary constants and w = gn
g
-

-
k p

p

2

1

( ) .

Hyperbolic function solution: (when <gn n
gw

- +
-

0p p

k k

2

( )
)

The solution of equation (2.2) [32] is

gn n

gn n
gw

w m

=
- -

´
- -
-

+ +

u x t
p p

p p

k k
kx t

,
2

tanh
2

2.51

6,7

2

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ˆ ( )

( )
( )

( )

and

gn n

gn n
gw

w m

=
- -

´
- -
-

+ +

u x t
p p

p p

k k
kx t

,
2

coth
2

.

2.52

8,9

2

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ˆ ( )

( )
( )
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Thus, the new exact solutions to the mUNLSE (1.1) are
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where p, ν, γ, k, μ are arbitrary constants and w = gn
g
-

-
k p

p

2

1

( ) .

Remark 2.1. Applying the Bäcklund transformation [32, 33]
to = ¼u x t i, , 1, , 9i ( ) , once, then equation (2.2) as well as
for equation (1.1) has new solutions:
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where n g mL p k, , , , ,3 are arbitrary constants and

w = gn
g
-

-
k p

p

2

1

( ) . Repeating this process again and again gives

an infinite solutions.

3. Results and discussion

Here we discuss the reported results given in this work. The
exp(−j(ξ ))-expansion, sine–cosine and Riccati–Bernoulli
sub-ODE techniques have been efficiently applied to con-
struct many new solutions. As an outcome, a number of new
exact solutions for the modified unstable nonlinear Schrö-
dinger equation were formally derived. These exact solu-
tions of the mUNLSE were achieved in the explicit form,

which have an important contribution in applied sciences
and physics, such as the propagation of pulse in optical
fibers etc. Indeed, Riccati–Bernoulli sub-ODE scheme
yields a wide range of new explicit exact solutions includ-
ing rational functions, trigonometric functions, hyperbolic
functions and exponential functions in a straightforward
manner. Our study shows that the proposed three methods
are reliable in handling NPDEs to establish a variety of
exact solutions. According to the mPULSE solutions,
solutions (2.13) and (2.15) are periodic and bell-shaped
soliton profiles as shown in figures 1 and 2. On the other
hand, solution (2.15) as in figure 3 specified a series of
double huge waves for the unstable mode of mPULSE with
critical points depends on the medium parameters and the

Figure 1. Shape of ψ1 in (2.13), (a) real part and (b) imaginary part.

Figure 2. Shape of ψ3 in (2.15), (a) real part and (b) imaginary part.
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( )
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unstable coefficient [54, 55]. Furthermore, solutions (2.28)
and (2.46) represent dissipative solitary forms as in
figures 4 and 5. In figure 4 the shock shape is obtained while

the oscillatory shock is given in figure 5. These forms may
be used to investigate space observations and the damping
wave motion out at free surface water [56, 57]. On another

Figure 4. Shape of y1
˜ in (2.28), (a) real part and (b) imaginary part.

Figure 5. Shape of y1
ˆ in (2.46), (a) real part and (b) imaginary part.

Figure 3. Shape of ψ5 in (2.17), (a) real part and (b) imaginary part.
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point of view, figures 6 and 7 indicated that solutions (2.49)
and (2.53) are periodic solutions. Since, the main topic of
this work is to investigate the unstable coefficient term
effects on the properties of the unstable wave modes,

solution (2.21) is examined numerically for different values
of γ as shown in figures 8–10. It was noted that, the increase
in gamma raises the series of freak wave’s amplitude
rapidly.

Figure 6. Shape of y2
ˆ in (2.49), (a) real part and (b) imaginary part.

Figure 7. Shape of y6
ˆ in (2.53), (a) real part and (b) imaginary part.

Figure 8. Shape of ψ9 in (2.21), (a) real part and (b) imaginary part.
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In the following we give also some furthers features of
our study, which summarize as follow

Remark 3.1.

1. Comparing our results about mUNLSE in this article
with the results in [41, 42, 44], one can easily recognize
that the results in this study are most comprehensive.

2. Riccati–Bernoulli sub-ODE method poses a special
characteristic, which gives infinite solutions.

3. The proposed methods in this article are direct, easy and
powerful for solving other NPDEs. Indeed these
methods can be easily extended for solving fractional
differential equations [9, 34, 35, 58, 59].

Here, we present 3D graphics of the trigonometric,
hyperbolic, exponential and rational function solutions of the
mUNLSE. To this aim, we select some special values of the
parameters obtained, which given for each corresponding
figures as follows:

Figure 1(a) illustrates the real part of ψ=ψ1(x, t) in
(2.13), whereas figure 1(b) illustrates imaginary part for
k=1.5, γ=1.3, λ=3.4, μ=0.9, p=1.5, C=1.3,
ν=1.8088 and ω=1.024.

Figure 2(a) illustrates the real part of ψ=ψ3(x, t) in
(2.15), whereas figure 2(b) illustrates imaginary part for
k=0.6, γ=1.4, λ=0.7, μ=0.9, p=1, C=1,
ν=1.3868 and ω=0.0877.

Figure 3(a) illustrates the real part of ψ=ψ5(x, t) in
(2.17), whereas figure 3(b) illustrates imaginary part for
k=0.6, γ=0.3, λ=0.8, μ=0, p=1.9, C=1,
ν=−15.515 and ω=−11.797.

Figure 4(a) illustrates the real part of y y= x t,1
˜ ( ) in

(2.28), whereas figure 4(b) illustrates imaginary part for
p=2, ν=0.5, γ=5, k=1.5 and ω=0.25.

Figure 5(a) illustrates the real part of y y= x t,1
ˆ ( ) in

(2.46), whereas figure 1(b) illustrates imaginary part for
k=0.2, a=7, p=1.2, γ=2, ω=0.049, ν=1.028 57
and μ= 1.

Figure 6(a) illustrates the real part of y y= x t,2
ˆ ( ) in

(2.49), whereas figure 6(b) illustrates imaginary part for
k=0.5, a=0.8644, p=1.1, γ=1.3, ω=−1.6744,
ν=2.8 and μ= 1.

Figure 7(a) illustrates the real part of =q q x t,6̂( ) in (2.53),
whereas figure 7(b) illustrates imaginary part for k=0.7,
a=0.4502, p=1.1, γ=1.3, ω=−4.8837, ν=4 and μ= 1.

Figure 8(a) illustrates the real part of ψ=ψ9(x, t) in
(2.21), whereas figure 8(b) illustrates imaginary part for

Figure 9. Shape of ψ9 in (2.21), (a) real part and (b) imaginary part.

Figure 10. Shape of ψ9 in (2.21), (a) real part and (b) imaginary part.

9

Phys. Scr. 95 (2020) 045220 M A E Abdelrahman and N Abdo



g l m= = = =k 1.5, 0, 0, 0, n= = = -p C3.5, 4, 12.25
and ω=−10.5.

Figure 9(a) illustrates the real part of ψ=ψ9(x, t) in
(2.21), whereas figure 9(b) illustrates imaginary part for

g l= = =k 1.5, 0.03, 0,
m n= = = = -p C0, 3.5, 4, 14.8341 and ω=−12.4777.

Figure 10(a) illustrates the real part of ψ=ψ9(x, t) in
(2.21), whereas figure 10(b) illustrates imaginary part for
k=1.5, γ=0.09, λ=0, μ=0, p=3.5, C=4,
ν=−23.7573 and ω=−20.0106.

In summary:
– It has been reported that the exact solutions of the

mUNLSE were achieved in the explicit form. Also, new
solutions were obtained, such as (2.56)–(2.59), and rational
forms see equations (2.21) and (2.46). These solutions
represents the wave pictures of rogue profiles in ocean, fiber
optics soliton, different hydrodynamic plasma instability
forms It was expected that the obtained profiles can be
interprit the space observations, telecommunications experi-
ments and experimental techniques of femtosecond pulse,
spatio-temporal solutions, capillary profiles, chaotic Pulses
laser and fundamentals of Bloch [60–67].

– The behavior of the equation (1.1) solutions being
solitons, dissipative or periodic and so on, is an indication for
the values of the physical parameters in the dispersion and
nonlinear coefficients. For example, the type of wave changes
from compressive to rarefactive at critical points and stability
regions changed to unstable regions at certain values of wave
number called critical values see [11, 12, 19, 41]. The peri-
odic and shock solutions generated in stability regions. The
Instability regions are characterized by the existence of waves
grows very rapidly such as huge waves see [14, 21, 22,
39, 40]. This is evident in several works in which the study
relied on the specific state of mathematical multiplication of
coefficients [38, 50] while another relied on the study of
modulation instabilities [19, 41, 61]. In our study, we study a
normalized equation in which the nonlinear and dispersion
coefficients do not appears directly, but it becomes a
descriptive study of the resulting solutions of arbitrary values
that do not express a specific system. In order to clarify our
solutions and their correspondence with stability (instability),
we find that figures 6, 7 represent a state of stability, while
figures 3, 8 represent the instability case whose amplitudes are
positive or negative. The study of the sensitivity of the
modulation instability in producing different forms of our
new solution of Schrödinger related equations in real physical
models with derived coefficients are the motivation of our
future research.

4. Conclusions

In this work, we have obtained some exact solutions of the
modified unstable nonlinear Schrödinger equation, utilizing
the exp(−j(ξ))-expansion, sine–cosine and Riccati–Bernoulli
sub-ODE methods. Some new soliton, periodic soliton and

traveling wave solutions of the equation are given. Actually,
these solutions are of significant importance in the studies of
applied science as they help in explaining some interesting
physical mechanism for the complex phenomena. One can see
that these methods are easy, direct, concise and efficacious
tools that give good results. Moreover these methods can be
applied to other complex nonlinear models. The application
of this work might be especially motivating in the new
observations for the ocean and coastal water motions, space
plasma and fiber applications.
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