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Abstract

®

CrossMark

The propagation of surface waves in semi-bounded quantum collisional plasmas are investigated
by taking into account the quantum Bohm potential, Fermi statistical pressure, electron
exchange-correlation effects and collisional effects. The modified quantum hydrodynamic model
in conjunction with Maxwell equations are used to obtain the new general dispersion relations of
surface waves, and the dispersion relations are discussed in some special cases of interest. It is
indicated that the wave frequency spectrum can be down-shifted due to the electron exchange-
correlation effects. It is also shown that the growth rate of surface waves instability can be
enhanced by increasing the collisional frequency, especially in the short wavelength region. The
corresponding results can be helpful for identifying surface waves which transport in intense

metallic plasmas.
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1. Introduction

The interest to investigate quantum plasmas have attracted
considerable attention in recent years. In the traditional
research of plasma physics, most of the studies focused on the
high-temperature and low-density plasma, and the quantum
effects can be safely ignored. However, when the electron
density reaches 1023-103° cm~3 in high energy dense plas-
mas, the plasmas are degenerate and the distribution function
follows the Fermi—Dirac for the electrons. The degeneracy of
electrons makes us to consider the quantum Bohm potential
and Fermi statistical pressure, so the quantum effects in high-
energy dense plasma becomes important, and cannot be
simply ignored. One knows that at room temperature and
standard metal densities, the electron gas is also quantum
plasma, as discussed by Manfredi [1]. Quantum plasmas have
a wide range of research area in high-density astrophysical
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systems such as in the interior of Jupiter, white dwarfs, high-
density neutron stars, and in miniature semiconductor devices
[2, 3]. Meanwhile, quantum plasmas are also widely studied
in high-density laser plasma [4], ultra-small electronic
equipment [5], and in dusty plasmas [6].

Waves in quantum plasmas are very plentiful, through
the study of the characteristics of waves, one can understand
the properties of quantum plasmas. In recent years, many
scientists have carried out extensive research on wave phe-
nomena in quantum plasmas. Ren et al studied the dispersion
relation of electrostatic drift waves with the presence of an
equilibrium magnetic field inhomogeneity and found a new
purely quantum branch [7]. The elliptically polarized extra-
ordinary electromagnetic waves in superdense magnetized
quantum plasmas with electron spin-1/2 effects were studied
in 2012, and the results indicated that the electron spin-1,/2
effects can reduce the transport of energy in quantum plasma
systems [8]. Electrostatic solitary waves in quantum plasmas
with relativistically degenerate electrons were discussed by
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Masood et al a nonlinear Korteweg—de Vries equation was
derived using the small amplitude expansion method, and the
results shown that the increasing number density increases the
amplitude but decreases the width of the ion acoustic solitary
wave with relativistically degenerate electrons [9]. The pro-
pagation of surface waves in spin-1/2 magnetized quantum
plasmas with and without collisional effects have been pre-
sented by some authors, respectively [10, 11]. Especially, the
surface waves, which propagate along the interface between
two different media, are widely discussed in many theories
and experiments in recent years. Surface waves may be
important in connection with plasma diagnostics by laser light
scattering of the particles or by examining the wave disper-
sion properties. In addition, surface waves are relevant to laser
fusion and astrophysical problems in the magnetosphere.
Furthermore, because of electromagnetic-energy localization
near the boundary, surface waves could be preferable for use
in solid-state and gaseous-plasma electronics, owing to the
comparative simplicity of excitation and removal of energy
and the convenience of interaction with electron beams and
external electromagnetic fields [12]. For these reasons, it is of
interest to study surface waves which can exist on the
boundary separating two dielectric media.

Surface waves in quantum plasmas have been investi-
gated in a number of papers. The quantum effects on the
Langmuir oscillation of a semi-bounded quantum plasma was
investigated by Chang and Jung [13]. Moradi studied the
surface electrostatic oscillation in the semi-bounded quantum
plasma under the existence of quantum effects, and the
numerical results revealed that the plasmon energy is sig-
nificantly changed by the very slow nonlocal variation [14].
The propagation of high frequency electrostatic waves pro-
pagation in a dense and semi-bounded quantum plasmas was
studied by Lee et al and the results showed that the quantum
effects enhanced the frequency of the wave especially in the
high wave number [15]. In 2016, Choudhury et al studied the
nature of solitary waves in a quantum semiconductor plasma
by taking into account the quantum Bohm potential, Fermi
statistical pressure and electron exchange-correlation effects
[16]. For the collisionless approximation in quantum plasmas,
it is generally agreed that the quantum coupling parameter
8o < 1, where g, is the ratio of the interaction energy to the
average kinetic energy [1]. For example, dense plasmas pro-
duced by a strong laser, its quantum coupling parameters is
8o ~ 0.15 < 1, so there is no need to consider the collisional
effects. On the contrary, it is known that quantum coupling
parameter in metallic plasmas may be much greater than one,
so the collision lengths may be larger than the Fermi lengths.
Thus, the binary collisions have a considerable effect on the
dynamics of plasma particles. When g, > 1, the collisional
effects will have a considerable influence and cannot be
ignored, the quantum plasmas are assumed to be collisional or
strongly coupled. Khorashadizadeh ef al [17]. investigated the
propagation of surface waves in the quantum plasma semi-
bounded by considering the collisional effects, and found that
the surface waves can be unstable when the collisional effects

are included. It is also shown that the quantum effects and
collisional effects can enhance the growth rate of instability.
The interactions between electrons in quantum plasmas
can be separated into Hartree term due to the electron
exchange-correlation term, especially, when the electron
density is relatively high and the temperature is low, the
electron exchange-correlation effects should be significant.
The including of additional exchange-correlation term which
is somehow retrievable from the density functional theory
(DFT) in the momentum equation gives rise to an additional
force on electrons. The electron exchange-correlation term
depends on the number density of the system. Therefore, in
quantum plasmas with low electron temperature and high
electron density, the influence of the exchange-correlation
effect becomes important and its effects cannot be ignored.
This effect is a complicated function of the electron density
which can be derived through the adiabatic local-density
approximation, as discussed by Crouseilles [18]. Ma et al
considered wave excitation in a bounded quantum plasma
with the effect of electron exchange-correlation potential and
found that the electron exchange-correlation effects have a
significant effect on the collective mode at high and low
frequency limits [19]. Khan et al explored in detail the
electrostatic electron plasma oscillations in single-walled
carbon nanotubes including the electron exchange-correlation
effects, and they found that the quantum effects and the
exchange-correlations effects have significant impact on the
wave. The frequency of wave was influenced by variation in
azimuthally index and radius of the nanotubes [20]. Lazar
et al studied the dispersion of surface waves on a quantum
electron plasma semi-bounded, and the results showed that
the electrostatic surface waves were significantly affected by
the quantum effects [21]. In this work, we will further study
the propagation properties of surface waves in semi-bounded
quantum collisional plasmas, combining the quantum effects,
electron exchange-correlation effects and collisional effects.

2. Theoretical model and dispersion relations

In this paper, the propagation properties of surface waves in
the semi-bounded quantum plasmas will be analyzed and
studied by using the quantum hydrodynamic model and
Maxwell equations. The dynamics of the electron is governed
by the continuity and momentum equations as follows

on,
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where v is the electron fluid velocity, n, and n,, represent the
perturbed and equilibrium electron number density, E is the
electric field, P, = m,vi.n> /3n%, Vg is the Fermi velocity

which is given by /2kg T, /m, , T, is the Fermi temperature,
kg is the Boltzmann constant, m, is the electron mass, ¢ is the
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electron charge, h = h/2 is the Planck’s constant divided by
27, v is the effective collision frequency for momentum
transfer. The third term in the right-hand side of equation (2)
is the quantum force due to the so-called quantum Bohm
potential. The fourth term in the right-hand side of
equation (2) is associated with the electron exchange-corre-
lation potential, and the general framework that produces the
exchange-correlation potential is the DFT [18, 22], it is a
complicated function of the electron density which is given by

0.034
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where ag = €h?/m,e? is the Bohr radius and e is the effective
dielectric permeability of the material. The last term in the
right-hand side of equation (2) is collisional term.

The electromagnetic fields are coupled by the linearized
Maxwell equations

V X E = _la_B’ 4)
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c Ot c
V-B=0, (6)
V - E = —4nen,. @)

The quantum Bohm potential, Fermi statistical pressure,
electron exchange-correlation effects and collisional effects
are considered together in the momentum equation (2). The
linearized equations can be obtained from equations (1) and
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where a = vg, 7= 0.985¢2n)3/m,e, A = 0.308¢2n}3/
a+ 18.376n610/3a3)mez-: and = h/2m, are the corresp-
onding auxiliary quantities. It is necessary to mention that the
v and A are new parameters, due to the added potential,
measuring the electron exchange-correlation effects,
respectively.

Considering the surface waves propagate along the
plasma-vacuum interface and the wave vector is parallel to
the surface, and the quantum plasmas are assumed to fill
with the semi-bounded, x > 0, which is bounded with
vacuum. We suppose that each quantity ¢ can be written as
p(x)exp (ikyy — iwt), where k, is component of the wave
vector along y axis and w is the frequency of surface waves.
The perturbation equation of electron density can be derived
from equations (7)—(9)

d? 2
PRI 2 n.(x) =0,
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slow nonlocal variations

(10)
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where qb% = kv2 +

the very are ignored, i.e.

ky 2(94/0x%) <« 9?/0x? < k2, therefore, the solution of
equation (10) in the plasma medium can be written as

an

where A is a constant. In addition, by combining the
equations (2), (4) and (5), one can yield the wave equation of
the magnetic field

n,(x) = Aexp(—qgx), x>0,

d 2
e B(x) =0, (12)
wf,e(i) - w?
where g, = k} +

The solution of the Cequation (12) in the vacuum region
(x<0)is

B,(x) = Ciexp(—g,x), (13)
where qu = ky2 — w?/c?, and the solution of the
equation (12) in the plasma region (x > 0) is

B,(x) = Cyexp(—qyx) (14)

C, and C, are constant vectors. Using the Maxwell equations
again, one can find that the electric field of surface waves in
the vacuum and plasma regions can be expressed as follows

E,(x) = D,exp(g,x), x <0 (15)
4meAexp(—gqgx)
E,(x) = D,exp(—qy,x) +
P 2 XPL (ivw + w?) — wie
302 — v — 2\
X [+ — gy — kyz)]
X (—qpex + ikye,), x >0 (16)

where D, and D, are constant vectors.

In order to obtain the general dispersion relation of surface
waves, we consider the appropriate boundary conditions in the
interface plane, that is, (a) the tangential component of E and B
are continuous at x = 0, (b) the normal component of the dis-
placement vector is continuous in the interface, (c) the velocity
components will vanish for electrons, i.e. v, = 0 at x = 0.

Here, by using Maxwell equations and the velocity
components vanish for electrons in the interface plane, i.e.
v, = 0 at x = 0, one can see that

OE,
ox

ik, = —q’E.. (17)

By substituting equations (15) and (16) into (17), one can
therefore obtain

D, =

4meA k2 qdr — qv .
Whe = (W + i)\ gyg, + ¢

qE]QZ- (18)

Similarly, by introducing the boundary conditions at x = 0,
and from equation (9), one can also derive
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where Q% = w — B*(g; — k}). Using the above

expression in equations (18) and (19), one can see that

whekl gy + aua,qe + 9pa; — k7 qp)

=4qpq,(qy + )W + ivw). 20)
Equation (20) is a general dispersion relation for the surface
waves on semi-bounded quantum plasmas by considering
quantum Bohm potential, Fermi statistical pressure, electron
exchange-correlation effects and collisional effects, and the
appropriate boundary conditions were also considered here.

3. Analysis of the dispersion relation in different
cases

In section 2, the general dispersion equation is derived and
now we concentrate on the electrostatic surface waves
because the transverse electromagnetic component of the
surface waves is not affected by the quantum effects,
as mentioned in the previous literature [23]. Assuming the
electrostatic limit  condition, c — 00, and the
overcritical dense condition, ie. k]vg, + Ik, /4m? <
|wf,e — w? — iww|, one can derive the general dispersion
relation in the following form
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Solving equation (21), by taking into account the condition
v?/w? < 1, whence we find that
w=—iZ + Wpe 1+Mﬁ
2 2 V2
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therefore, we can obtain the imaginary part of equation (22) as
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If we neglect the collision term (¥ = 0) in equation (22), the
dispersion relation of surface waves can be rewritten as

\/az—l—%-ﬁ-ﬁzkf] (24)
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this dispersion relation is similar to the expression derived by
Niknam et al [23].
If we simply ignore the electron exchange-correlation
effects in equation (22), one can also obtain the new

dispersion relation as follows
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this result is consistent with the work which has been
obtained in [17].

Meanwhile, without the electron exchange-correlation
effects and the collisional effects, we recover from
equation (22) the dispersion relation in the following

Wpe 1k > 2,2
14+ — a® + B%;
\/2[ N2 wpe 7,

this is just the same result presented by Lazar er al [21].
Furthermore, without the quantum effects due to the quantum
Bohm potential and the Fermi statistical pressure,
equation (26) can give the frequency of surface plasmons
w = wye /N2 [24].

In order to simplify the formulation, we introduce the
dimensionless quantity ~parameter as ) = w/w,, K =
kvae/wpes I'= 7/3‘}1*26’ A= 2)‘/3‘}er» H= m‘}pe/zmesze
(the plasmonic coupling parameter), © = v/w),, equation (22)
can also be expressed in the following
0=-i2 4+ L

2 V2

X[1+1+1«/§®

NG
thus, we can separate the real and imaginary parts of the fre-
quency spectrum in equation (27) as follows

(26)

w =
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One can see from equations (28) and (29) that the real and
imaginary parts of the frequency are related to three effects, that
is: (a) quantum effects (including the quantum Bohm potential
and the Fermi statistical pressure), (b) electron exchange-corre-
lation effects and (c) collisional effects. Next, in order to show
these effects on the dispersion properties of surface waves, we
plot the real and imaginary parts of the frequency versus the
normalized wavenumber K. Here , we consider the parameters of
electrons in metal at room temperature, and the typical para-
meters  are 1,9 = 5.9 x 10¥m=3, wp,, = 1.37 x 100571,
Vee = 1.4 x 10ms™!, Tre = 5.53¢eV, and T = 0.026 eV,
respectively. The quantum coupling parameter g, ~ 12.7 > 1,
the degeneracy parameter Y = 213 > 1. The magnitudes of the
quantum coupling parameter and the degeneracy parameter
indicated that the metallic plasma is a quantum collisional
plasma. For better comparison and clarity, the results of Khora-
shadizadeh et al [17] are included in figures 1 and 2, which are
depicted by the red dotted line.
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Figure 1. The normalized real frequency of the surface waves
Re(€) with respect to the normalized wavenumber K = kyVge /Wpe
in quantum plasmas with the electron exchange-correlation
effects, for (a) H = 0.2, (b) H = 0.4, and (c) H = 0.6.

Each figures are plotted for different values of parameter

A + T. The results of Khorashadizadeh et al are included in
these figures which are presented by the red dotted line

which does not consider the electron exchange-correlation
effects [17].
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Figure 2. Plot of the imaginary frequency of the surface waves
Im(£2) with respect to the normalized wavenumber K = ky Ve /Wpe

in collisional quantum surface plasmas with the electron exchange-
correlation effects. H = 0.4, A + " = 0.2, for (a) © = 0.001, (b)
© = 0.01, and (c) © = 0.1. The red dotted line in (a)—(c) is the
result of Khorashadizadeh et al which does not consider the electron
exchange-correlation effects [17].

The numerical plots of the normalized real part of the
frequency spectrum against the normalized wavenumber K
for different values of the plasmonic parameter H are shown
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in figures 1(a)—(c). From these figures, one can find that in the
presence of electron exchange-correlation, the value of the
normalized real part of the frequency spectrum decreases and
dispersion relation for the surface wave shifts to lower fre-
quencies. The down-shift of the normalized real part of the
frequency spectrum increases with the values of parameter
A + T, especially in short wavelength region. On the other
hand, the dynamic of the surface waves are modified evi-
dently by the electron exchange-correlation effects in the
short wavelength region. These figures indicate that the
electron exchange-correlation effects tend to reduce the fre-
quency of surface waves, but the quantum Bohm potential
and Fermi statistical pressure effects display an opposite
effects. From figures 1(a)—(c), we also notice that the fre-
quency spectrum of the surface waves changes from a
approximately straight line to a parabolic line when the value
of the plasmonic parameter H increases gradually and its
influence is more pronounced in short wavelength region.
Thus, the propagation velocity of surface waves are enhanced
due to the quantum effects. On the other hand, the plasmonic
parameter H characterizes the quantum effects, and from
figure 1, one can derive that the quantum effects can promote
the increase of the real part of the frequency spectrum.
Meanwhile, comparing our results (the black solid line, the
green dashed line and the blue dashed—dotted line in figure 1)
and the Khorashadizadeh’s corresponding results (the red
dotted line in figure 1), one can therefore find that the fre-
quency spectrum of the surface waves is down-shifted due to
the electron exchange-correlation effects in the short wave-
length region.

Figure 2 shows the behavior of normalized imaginary
parts against normalized wavenumber of the frequency
spectrum (equation (29)), and is plotted in some typical
parameters in metallic plasma for three different collisional
frequencies. Figures 2(a)—(c) are depicted for ©® = 0.001,
© = 0.01 and © = 0.1, respectively. The horizontal axis
represents the normalized wavenumber, K, and the long-
itudinal axis stands for the normalized growth rate of
instability of the surface waves. From figures 2(a)—(c), it is
found that the collisional effects are quite important when we
study the propagation properties of the surface waves in such
plasma system. Equations (28) and (29) indicate the colli-
sional effects have no influence on the real part of the fre-
quency spectrum, but the imaginary part of the frequency
spectrum is apparently affected by the collisional effects. One
can obviously see from these figures that the collisional
effects can lead to damping or growth the surface waves, and
the growth rates of surface waves increase by increasing the
collision frequency. Equation (23) and figure 2 indicate that
when

1 (v 2x 2) (2 v 2/\)2 oo P
ky> —||L + 22 - + — L 22| +28%7,
Y ﬁﬂﬂs 3 3 3 A

(30)

we need to consider the generation of instability. In addi-
tion, figures 2(a)-(c) indicate that the surface waves
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Figure 3. Plot of the normalized growth rate of the modulational
instability in collisional quantum plasmas with the electron
exchange-correlation effects. H = 0.4, A + T" = 0.2, where

© = 0.1 (red solid line) , ® = 0.01 (blue dashed—dotted line),
© = 0.001 (black dashed line).

instability can arise in the presence of quantum effects,
electron exchange-correlation effects as well as collisional
effects, and the surface waves modulational instability
growth rate increases by increasing the collisional effects,
especially in the short wavelength region. By the way, we
should point out that the numerical values of Im({2) at
K = 0 depends on the parameter © = v/w,, and its value
changes with different collision frequency at K = 0. Also
from figure 2(a), one can see the value of K; is lager than K],
which means that the critical point of damping and
instability of surface waves can be changed by the electron
exchange-correlation effects, and figures 2(b) and (c) also
show the same physical situation.

In order to expound the influence of different collisional
frequencies on the normalized imaginary part of the fre-
quency spectrum, we plot figure 3 in the above. This figure
shows that the growth rates of surface waves are sig-
nificantly changed under the different collisional fre-
quencies. The positive imaginary part of {2 shows that this
system is modulational unstable and growing with the rate
of Im(£2). The surface waves can be unstable in the presence
of the collisional effects when Im(£2) > 0, but in the case of
Im(2) < 0, the surface waves will be damped. From the
three different curves in figure 3, it is visible that the surface
waves instability can increase by increasing the collisional
frequency, and this situation is more obvious in the short
wavelength region.

4. Summary and conclusion

In the present study, the propagation of surface waves in semi-
bounded quantum collisional plasmas are studied. Combining
the quantum Bohm potential, Fermi statistical pressure, electron
exchange-correlation effects and collisional effects, a new
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general dispersion relation has been obtained, and discussed in
some special cases. Analysis of the dispersion properties of
surface waves shows that in the presence of electron exchange-
correlation effects, the value of frequency of the system can be
decreased, and the down-shifted frequency due to the electron
exchange-correlation effects increases with increasing plasmonic
parameter H. The numerical results indicate that the electron
exchange-correlation effects tend to reduce the frequency of
surface waves, but the quantum Bohm potential and Fermi
statistical pressure effects display an opposite effects. The results
also exhibit the collisional effects can lead to damping or growth
of the surface waves, and the growth rates of surface waves
increase by increasing the collision frequency, especially in the
short wavelength region. Moreover, one can find that there is a
threshold of k, for the existence of surface wave instability in
this system. The present results can be of interest in the study of
the dispersion properties of surface waves in dense semi-boun-
ded quantum collisional plasmas, such as on the interface of the
metallic plasmas. Furthermore, this theoretical studies may be
useful for design of nanotubes and metallic nanostructures.
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