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Abstract
The effects of a new type of asynchronous updating on the dynamical behavior of coupled
chaotic maps with nearest neighbor as well as global coupling are studied in this paper. In
contrast to synchronous updating, the occurrence of the synchronized fixed point window is
observed in the parameter space for nearest neighbor interactions as a consequence of
asynchronous updating. Moreover, the effects of variation of the degree of asynchronocity have
been investigated and it is observed that the size of the synchronized fixed point window
strongly depends on the degree of asynchronocity. The value of coupling constant at the point of
onset of synchronization is found analytically and the result is in good agreement with the
numerics. Lattice size also has a significant impact on the synchronization behavior for some
coupling function. On the other hand in a globally coupled network, synchronization is identified
for a certain range of the degree of asynchronocity but surprisingly the width of synchronized
fixed point window is independent of the value of the asynchronocity parameter. This study may
be useful to explain the spatiotemporal order structure observed in spatially extended complex
biological and social systems with the help of stochastic asynchronous updating.
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1. Introduction

Coupled map lattice (CML) captures essential features of
emergent synchrony in extended dynamical systems consist-
ing of interacting nonlinear units [1]. It has been studied as a
model of spatiotemporal phenomena in various fields like
condensed matter physics, neuroscience [2, 3], chemical
physics, laser theory [4], communications [5] and even in
evolutionary biology [6]. CMLs can be constructed from
deterministic cellular automata (CAs) [7], which itself has
attracted huge attention in research area last decade [8, 9].

The spatiotemporal behavior arises from two competent
mechanisms typically the nonlinear dynamics of the local
maps and the diffusion due to the coupling. Nearest neighbor
interaction in CML can show rich phenomenology like spatial
pattern and intermittent behavior [10]. But due to weakness in
coupling effect, nearest neighbor coupling is not capable of
generating synchronized orbit in CML of chaotic maps.

In globally coupled maps, for weaker coupling, cluster
formation can be identified and with the increasing coupling

strength different types of phases like coherent and turbulent
appear. Global coupling has practical implications in the
fields like gas discharges, transport process in semi-con-
ductors [11] and also in Josephson junction array [12], mul-
timode lasers and biological information processing,
neurodynamics, oscillating chemical reactions [13], evolu-
tionary dynamics [14].

Synchronization, more specifically chaos synchroniza-
tion in a network of coupled nonlinear system has become a
widely recognized issue [15–17]. Most of the works on CMLs
so far were based on synchronous updating [18–24]. The
occurrence of synchronous updating of events is rarely visible
in natural systems. In general, the update of the units in a
CML is made synchronously in contrary to the reality where,
the elements in an array are not perfectly synchronous. Thus,
some amount of asynchronocity is essential in modeling
spatially extended complex systems. The degree of asyn-
chronocity of a node can be defined as the probability of
being not updated at each time step. Thus, the network with
asynchronocity 0 is the standard synchronously updated
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network. Therefore, increase of the parameter value indicates
the increase of asynchronicity in the model. However, syn-
chronocity parameter q=k/N represents that k number of
nodes among the total N nodes are updated at an instant.
Hence, value of synchronocity parameter 1 corresponds to
value 0 for asynchronocity parameter. Asynchronous updat-
ing may generate window of synchronized orbits and induce
regularity in coupled systems [25–27].

In natural and artificial systems, asynchronous updating
is common. Large scale integrated circuit design is an
important field of application of asynchronous updating.
Another good example of random asynchronous updating is
social network [28]. In a cellular automata model, it has been
shown that updating the model within a time step has a huge
impact on the model output [29]. Some other asynchronously
updated systems are multiprocessor systems, distributed
digital networks, discrete time models of market economy etc.
There are studies where CML evolve asynchronously i.e.
where updates of lattice sites are sequential instead of being
concurrent. Dynamics of asynchronous global maps have
been studied using mean field approximation [30]. Neurons
and neuron groups evolve asynchronously and thus employ
asynchronous schemes. So, it is worth investigating the
effects of asynchronocity on these models [31]. The issue of
asynchronocity also appears in the context of boolean net-
works and biological networks. Monte Carlo algorithms
which are used to simulate equilibrium statistical mechanical
system uses asynchronous updating [32]. The similarities of
delay dynamical network and asynchronously updated net-
work have been discussed in a recent paper [33]. Recently,
study of asynchronous stochastic updating [28, 34, 35] over
networks have gained momentum due to its ability to model
biological, social systems.

Mehta and Sinha [26] have reported the effects of
asynchronous updating on the synchronization behavior of a
CML. In their proposed updating rule they break the lattice
into disjoint subsets, and update the sites belonging to each
subset simultaneously, while updating different subsets
sequentially. CML with asynchronous sequential updating are
not suitable to model social and economic networks, neural
networks, and gene or protein webs. However, CML with
asynchronous stochastic updating [28] is more suitable to
model such systems. These facts motivate us to report the
synchronization behavior of CML with asynchronous sto-
chastic updating of nodes. In case of stochastic asynchronous
updating, at each time step, only some randomly chosen
nodes are updated and others stay at their previous states.

In this work, we have investigated the impacts of sto-
chastic asynchronous updating on the synchronization beha-
vior of a CML in 1D and 2D models under nearest neighbor
coupling with periodic boundary conditions. We have chosen
the updating rule in such a way that a randomly chosen
fraction of nodes will be updated at every time step. We
discuss the effect of varying degree of asynchronocity on the
synchronization behavior of the CML and speculate to match
the results with the analytics. The section wise split of the
paper is the following: in section 2, we formulate the model of

CML with asynchronous updating. In section 3, we provide
analytical as well as numerical results and discuss specific
examples to elucidate the results. In section 4, an overall
conclusion is drawn.

2. Model

The governing equations of CML with well known nearest
neighbor interaction over a ring network [18] are the fol-
lowing
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where xn(i) represents the state variable, n(�0) is the integer
valued time index, i=1, KN are the space index, N is the
linear size of the array, òis the coupling strength. In this
model every node of the CML are updated synchronously.

To investigate the effectiveness of stochastic asynchro-
nous updating on the synchronization behavior of a network
of coupled maps we modify the above model and formulate
the mathematical scheme as
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where Ξ(n) is the set of randomly chosen integers from the
interval [1, N] at time n. The elements of the set Ξ(n) vary
stochastically with time. f (x) represents the local map, òthe
coupling constant and g(x) the coupling function which can
take different forms. The impact of different degrees of
asynchronocity can be realized taking more than one values
from Ξ(n) at each time step. On a 2D lattice the system looks
like
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For more clarity, we assume to take k values at random
out of N possibilities from the set Ξ(n) at each time step and
update those elements. The rest elements stay at their previous
states. We define the degree of synchronocity q as q=k/N.
Due to the random selection of nodes some nodes update
more than other nodes.

The asynchronocity induced globally coupled map net-
work the can be written as
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In this paper, we choose nearest neighbor coupling and
analyze the effect of asynchronocity in updating on the sta-
bility behavior. We attempt to realize how far the dynamics
under asynchronous updating deviates from the synchronous
case. In our present study, we choose one dimensional maps
as local maps.

3. Results and discussion

3.1. Numerical results

For simulation, we have taken a ring lattice of 100 nodes for
both 1D and 2D lattices and update each site asynchronously
instead of synchronous evolution. We used different coupling
forms like g(x)=f (x) and g(x)=x to check the effect of
asynchronocity on the network synchronization behavior. The
initial conditions are randomly chosen from the interval (0, 1)
and the time steps are taken as 2000 with transient 1800. Our
choice of nodes for updating is not sequential but random.
Here, we vary the degree of asynchronocity (1−q) of updat-
ing and check if the range of stable synchronized window
changes with the variation of q.

We consider first a network of coupled chaotic logistic
map

( ) ( ) [ ]= - Îf x x x x4 1 0, 1

and update the sites asynchronously instead of updating
simultaneously for numerical simulation. With increasing
degrees of synchronocity (q), the number of updated nodes at
a time increases and the limiting case q=1 is our traditional
synchronous case. Other extreme case q=0 represents the
evolution with no updating. We draw the bifurcation dia-
grams with respect to coupling strength of 1D and 2D CML
with g(x)=x for different values of synchronocity parameter
q in figure 1. It can be observed that, a window of synchro-
nized fixed point is generated for a wide range of coupling
strength even for nearest neighbor interaction unlike the result
of the synchronous case, where no synchronized window is
found. The size of the window gradually shrinks with the
increase in q, as can be seen in figure 1. From numerics, the
ranges of synchronized fixed point orbit for 1D lattice with
q=0.6 is found to be 0.55<ò<1 (figure 1(a)) and that for
q=0.95 it is 0.89<ò<1 (figure 1(b)). For 2D lattice, the
ranges of synchronization for different q values look similar
to that of 1D lattice. Taking q=0.4 and q=0.9 we have
drawn the bifurcation diagrams for 2D lattice in figures 1(c)

Figure 1. Bifurcation diagram of coupled logistic maps with g(x)=x with respect to òin 1D ring lattice for (a) q=0.6, (b) q=0.95 and in
2D lattice with periodic boundary conditions for (c) q=0.4, (d) q=0.9 under asynchronous updating.
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and (d) respectively. For small values of q, the ranges do not
vary much for both the cases of 1D and 2D lattice, rather keep
the same range 0.54<ò<1.

Taking coupling function g(x)=f (x), the bifurcation
diagram for 1D ring lattice with respect to coupling strength
exhibits fixed point window, as shown in figure 2.
Figures 2(a) and (b) capture the synchronization behavior
under asynchronous updating for q=0.5 and q=0.6
respectively. Synchronized fixed point window can be
observed in figure 2(a) which disappears as the synchronocity
parameter is slightly increased (figure 2(b)). More clearly
speaking, as the value of q increases, the fixed point orbit
loses its stability. We have noted that, only for 0<q<0.55
the synchronized fixed point can be identified. Another
important observation here is that, the right end value of the
window of synchronization is the same for all values of q and
that value is ò;0.74.

Next we study the impact of the number of nodes on the
synchronization behavior. If we increase the number of nodes
in the lattice having coupling function g(x)=f (x), the syn-
chronization behavior changes slightly and these are captured
in figure 3 for 1D lattice. For low number of nodes, syn-
chronized period 2 orbit appears in some range of ò; e.g.
0.75�ò�0.8 for N=20, which is depicted in figure 3(a).
This period 2 window continues to appear for N=50, as can
be seen in 3(b). But, the synchronized period 2 orbit dis-
appears as we move further to N=100 (shown in 3(c)) and
then to N=1000 (plotted in 3(d)). A 2D lattice with periodic
boundary conditions also shows the same behavior both
qualitatively and quantitatively.

Furthermore we look on the influence of asynchronous
updating on the network for other local maps. In figure 4, we
have presented the bifurcation diagrams of 1D lattice with
respect to coupling strength for different local maps and some

chosen sets of map parameters and different degrees of
asynchronocity. By plotting the bifurcation diagram of cou-
pled Ricker maps

( ) [ )( )= Î ¥-f x x xe 0,x4 1

in figure 4(a), with coupling function g(x)=x for q=0.6,
we confirm our assertion that, asynchronocity can open up
window of synchronized fixed point orbit. It is well known
that cubic map

( ) ( )= - +f x x x3 53

shows bistability. For coupled cubic maps, bistable fixed
points are generated. In figure 4(b), taking q=0.8, the syn-
chronization behavior of coupled cubic maps is featured for
positive initial conditions (with blue color) and negative
initial conditions (with magenta color) simultaneously. Tak-
ing coupled discontinuous maps

( ) m
m

= + <
= + +

f x ax x
bx c

if 0
elsewhere,

(with a, b, μ being map parameters and c being the length of
the gap of discontinuity) we have tested the effect of various
types of stochastic asynchronocity and found that the results
are qualitatively similar to the CML with smooth maps.
Figure 4(c) displays bifurcation diagram with respect to
coupling strength for coupled discontinuous maps with
a=−1.2, b=−1.3, μ=−0.4, c=0.55 for q=0.5 and
positive initial conditions. Here also asynchronocity creates
fixed point windows. We can reach to the same conclusion
from figure 4(d), which is the bifurcation diagram of coupled
discontinuous maps with q=0.9 and negative initial condi-
tions with the map parameters same as before.

If s number of random initial conditions are taken and
among them synchronization are obtained in w cases, then
the fraction of random initial conditions F, for which syn-
chronization occurs in the lattice is defined as w

s
. To compute

the fraction of initial conditions (F) leading to synchroni-
zation of the fixed point of the network of coupled chaotic
logistic maps with asynchronous updating, we have taken
100 random initial conditions. The value of F may lie
between 0 and 1. If w=s, i.e F=1 then synchronization
happens in all cases. F=1 implies complete synchroniza-
tion and F less than 1 denotes partial synchronization or no
synchronization. Figure 5 displays the fraction of random
initial conditions which are attracted to the synchronized
state in ò−q parameter space of 1D CML of chaotic
logistic maps with coupling function g(x)=x over ring
network. With higher q the fraction tends to zero, indicating
the destruction of synchronized fixed point orbits with the
decrease of asynchronocity.

The point of onset of synchronization in parameter space
òbifur is plotted in figure 6 for a 1D network of logistic maps
over the ring network. The figure points out the fact that, for
higher values of q the value of òbifur becomes larger. How-
ever, the value of òbifur decreases with the decrease of q and
òbifur remains fixed after a critical value of q.

Figure 2. Bifurcation diagram of asynchronously updated coupled
logistic maps with respect to òin 1D ring lattice with g(x)=f (x) for
(a) q=0.5, (b) q=0.6.
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Finally we consider the globally coupled chaotic map as
equation [4]. From the bifurcation diagram of globally cou-
pled chaotic logistic map 4x(1−x) in figure 7(a), for q=0.6
the range of synchronized fixed point window is found to be
0.51<ò<1. However for q=0.8 no synchronized peri-
odic window can be detected in figure 7(b).

3.2. Analytical results

Though due to the stochasticity in updating it is quite difficult
to derive the exact analytical solution for the stability of the

fixed point, we have tried to give some intuitive arguments for
stability of such systems. For analytical calculation taking g
(x)=x in the system [2] the averaged out equation [18] can

be written as
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This equation can be written for higher values of q only. For
lower q the case is far different. For stability analysis of the
synchronized fixed point x*, which is the period 1 orbit of the
local map, we calculate the Jacobian matrix as

where, ∣( )=d f x

x x
d

d
*. As J is a circulant matrix, the eigenvalues

of the matrix are given by

[ ( ) ( ) ]q q p- + - + = q d q q r N1 1 cos where, 2r r

Figure 3. Bifurcation diagram of asynchronously updated coupled logistic maps with respect to òin 1D ring lattice with g(x)=f (x) for
q=0.5, with different number of nodes (a) N=20, (b) N=50, (c) N=100, (d) N=1000.
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r=0, 1, 2...(N−1). The synchronized spatiotemporal
fixed point will be stable if all eigenvalues of J lie inside the
unit circle (centered at origin) in the complex plane. This

makes the stability condition of the form

∣[ ( ) ( ) ]∣q- + - + < q d q q1 1 cos 1.r

After some simple calculations, we get the range of stability
of the synchronized fixed point as

( )+
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< < -
-
+
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q d

d

d

d

d
d

2

1

1

1

1

1
, if 1

and the inequality is reversed for the rest cases. Taking
chaotic logistic map f (x)=4x(1−x) as local map and
coupling function g(x)=x for a high synchronocity
q=0.9, the range of synchronized periodic orbit is found
to be 0.89<ò<1, that matches quite well with the
numerical finding.

Now, taking coupling g(x)=f (x), we can calculate the
range of synchronized fixed point as well. Proceeding as
above, we get the eigenvalues of the Jacobian matrix as

( ) ( ) q q p- + - + = q d q q d r N1 1 cos where, 2r r

r=0, 1, 2...(N−1). Stability region is given by

( )- -
-

< < -
-

<d q

qd

d

d
d

1 2

2

1

2
, if 0

else, the inequality reverses. For chaotic coupled logistic
maps 4x(1−x), the upper bound of the inequality is always

Figure 4. Bifurcation diagrams of asynchronously updated 1D lattice with respect to òfor different local map and g(x)=x as coupling
function; (a) coupled Ricker maps for q=0.6, (b) coupled cubic map for q=0.8 with both +ve (blue color) and −ve (red color) initial
conditions, (c) coupled discontinuous maps with a=−1.2, b=−1.3, μ=−0.4, c=0.55 for q=0.5 and +ve initial conditions and (d)
with the same parameter sets as (c) for q=0.9 and negative initial conditions.

Figure 5. Density plot of fraction of initial states leading to
synchronization in ò−q parameter space for 1D coupled logistic
maps with g(x)=x under asynchronous updating. The value 1 in
colorbar represents complete synchronization.
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0.75 irrespective of the asynchronocity parameter value and
this supports the results obtained from the numerics.

However, for lower values of q, the above analysis is
unable to explain the dynamics of such systems. The reason
behind such scenario can be understood following Atman-
spacher [36]. For this, we consider the system for synchro-
nous case

( ) ( ) ( ( )) { ( ) ( )}+ = - + + + - 
x i f x i x i x i1 1

2
1 1 .n n n n

The stability of the fixed point solution requires the
eigenvalue of the Jacobian matrix to stay within the unit
circle. The eigenvalues take the form (1−ò)d+òcos θr
with θr=2r π/N. Stability of fixed point demands
−1<(1−ò)d+òcos θr<1. Near the lower bound of
stability equation the individual perturbation from the fixed
point solution changes sign at each iteration at random. So
on an average the contribution from the neighbors are
expected to be canceled out. The stability condition now
takes the form −1<(1−ò)d which for f (x)=4x(1−x)
becomes 0.5<ò.

Even with 2D lattice the results do not seem to differ
from the ring lattice behaviors. Considering a 2D lattice with
asynchronous updating having local map as 4x(1−x) and
coupling function g(x)=x, we can check our assertion. For
higher q values, the averaged out equation coming from the

system [3] is as follows
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For stability analysis of the synchronized fixed point x*,
we can write the Jacobian as
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J is an N2×N2 block circulant matrix. The eigenvalues can
be found using the properties of block circulant matrix by
making it block diagonal. The block diagonal form is
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where the matrix Mr(r=0, 1, 2,KN−1) are N×N
matrices given by

( )q= +M A B2 cos 13r r

and θr=2πr/N.
The individual matrix Mr is a circulant matrix. Thus the

eigenvalues of J take the form
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Figure 6. Variation of òbifur with the variation of q in 1D ring lattice
with logistic maps taking g(x)=x under asynchronous updating.
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With different combinations of r and s, N2 eigenvalues can be
obtained. For stability, the norm of all eigenvalues must be
less than unity. Maximum eigenvalue is q(1−ò)d +
(1−q)+qòand minimum eigenvalue is q(1−ò)d+(1−q)
−qò. So the stability conditions are

( )+
-

-
+

< < -
-
+

< -
q d

d

d

d

d
d

2

1

1

1

1

1
, if 1

and the inequality is reversed for the rest cases. It can be
noticed that the conditions are the same as derived from that
of the 1D lattice described in equation [6].

For asynchronous globally coupled network as referred
in equation [4] the evolution equation can be written as

( ) [( ) ( ( )) ( ( ))]

( ) ( ) ( )

å= - +
-

+ -

+
=
¹

 
x i q f x i

N
f x j

q x i

1
1

1 . 14

n n
j
j i

N

n

n

1
1

For stability analysis of the synchronized fixed point x*, we
calculate the Jacobian as

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥ ( )
    

¢ =

¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢

J

A B B B B
B A B B B

B B B B A

...

...

...

...

, 15

where A′=q(1−ò)f′+(1−q) and ¢ = ¢
-
B qf

N 1
,

∣( )¢ =f f x

x x
d

d
*. The eigenvalues can be written as

( )
( ) ( ) ( )

( )

( )

w w w= ¢ + ¢ + ¢ + + ¢

= + + + +
= + - -

q q q

q q q

-

-

-

M A B B B

A B

A B

....

e e ... e

e 1 e 1 e 16

r r r r
N

N

N

2 1

i 2i 1 i

i i 1 i

r r r

r r r

ω r= qei r, θr=2πr/N.
Now, M0=A′+(N−1)B′. Eigenvalue of M0 is

q( f′−1)+1.
For stability −1<q( f′−1)+1<1. Taking f (x)=4x

(1−x), we have f′=−2 and so the range of stability of
synchronized fixed point becomes −1<−3q+1<1 and
this gives the range of q as q<0.66. Thus synchronized fixed
point orbit is not possible for q>0.66.

4. Conclusion

This paper is comprised of the spatiotemporal evolution of the
CML under stochastic asynchronous updating incorporating
various degrees of asynchronocity. Results show that,
updating can have a profound effect on synchronization
behavior. From the phenomenology, the effect of asynchro-
nous updating in creating windows of fixed points and peri-
odic orbit in parameter space is confirmed. Asynchronocity
exhibits a huge difference in collective behavior when com-
pared with the synchronous updating results of CML. In case
of synchronous updating synchronization is impossible [18]
for nearest neighbor coupling. In contrast, it has been shown
here that stochastic asynchronous updating can induce syn-
chronization in network under purely nearest neighbor cou-
pling. The results are verified numerically for smooth as well
as nonsmooth maps. Even small asynchronocity is able to
suppress the chaotic dynamics of the network and generate
synchronization window. On the other hand, with the
decrease of asynchronocity the range of synchronized fixed
point shortens gradually. Analytic investigation supports the
numerical results up to some extent, specifically for large
values of q. Taking coupling function g(x)=f (x), synchro-
nized periodic orbit can be obtained for small values of q
only. Lattice size is also an important factor if we consider
coupling function g(x)=f (x) and the nature of synchronized
orbit depends strongly on the lattice size in this case. Syn-
chronized period 2 appears for some ranges in the parameter
space for smaller lattice size, which disappears with the
increase of nodes. Therefore, we can conclude that synchro-
nous and stochastic asynchronous updating may lead to
qualitatively very different dynamics in case of nearest
neighbor coupling. In globally coupled network synchronized
fixed point generates for certain range of q but the size of
periodic window does not vary with variation of ò. The study
of asynchronous updating is motivated by the modeling of
evolution of complex social, economical and physical sys-
tems and thus at the end asynchronocity emerge as a chaos
controlling method for spatially extended dynamical systems.
This study may be useful to explain the spatiotemporal order

Figure 7. Bifurcation diagram of 1D globally coupled map under asynchronous updating for (a) q=0.6 and (b) q=0.8.
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structure observed in spatially extended biological and social
systems by using asynchronous diffusion processes. Effects
of variation of time scales of diffusion in the synchronization
behavior of modular networks are open areas for further
investigations.
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