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Abstract
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In this work, the stochastic time fractional Gardner equation is analysed. Some white noise
functional solutions for this equation are obtained by using white noise analysis, Hermite
transforms and the modified fractional sub-equation method. These solutions include exact
stochastic trigonometric functions, hyperbolic functions solutions and wave solutions.
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1. Introduction

In the recently, fractional calculus gained considerable inter-
ests and significant theoretical developments in many fields
and many studies have been done in this field [1-11]. There
are some studies related to stochastic fractional partial diff-
erential equations other than deterministic fractional differ-
ential equation. Solving stochastic differential equations is
more complex, because of its additional random terms [12].
Stochastic process models play an important role in a range of
application areas of chemistry [13, 14].

Due to the fact that the stochastic models are more realistic
than the deterministic models, we concentrate our study in this
paper on the wick-type stochastic fractional Gardner equation
with conformable fractional derivatives. Many more researches
related to stochastic fractional differential equations [15-18]. In
[15], first is investigated the effects of external noise for the
motion of solitons and investigated the diffusion of soliton of
the KdV equation with the aid of Gaussian noise, which
satisfies a diffusion equation in transformed coordinates.
Ghany and Hyder [16] obtained analytical solutions stochastic
time-fractional KdV equations with the wick-type, Ghany and
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Zakarya [17] obtained exact traveling wave solutions stochastic
Schamel KdV equation with wick-type, in [18] is used white
noise functional approach for the fractional coupled KdV
equations and is obtained new soliton solutions.

In this paper, we will analyse the time fractional Gardner
equation (FGE). The Gardner equation can describe various
interesting physic phenomena, such as the internal waves in a
stratified ocean, the long wave propagation in an inhomoge-
neous two-layer shallow liquid and ion acoustic waves in plasma
with negative ion [19-21]. The Gardner equation is an advan-
tageously example for the definition of internal solitary waves in
shallow water while the buck-master’s equation is used in thin
viscous fluid sheet flows and have been usually investigated by
using the various methods [22-24]. These internal waves have
an extensive role in the ocean as dissipation of energy from wind
and tidal sources and in ocean mixing. This equation with
conformable derivatives is given by [24]

DY p(s2, 7) + u(r)[p(55 7) — v(T)p (35 7))
X Dp (s, 7) + D3*p(5¢, 7) = 0,

6,7 ERXR,0<ax<], (1.1)

where u(7 ) and v(r ) are limited mensurable or integrable
functions on R .
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The exact solution for equation (1.1), when u(7 ) = 6, v
(r)=1land a =1, is

The conformable fractional derivative was investigated in
[24]. This derivative is important for covering unexplained
aspects of previous definitions. In addition to this derivative is
the directly, most natural and efficient definition of the frac-
tional derivative with order 7 € (0, 1]. It can be said here, the
definition can be generalized to involve any 7. Besides, the
state 7 € (0, 1] is the most considerable one.

The conformable derivative with order 7 € (0, 1) defined
as the following expression [24]

f@+ 9" — f ()
19 b

D"f(t) = lim
¥—0
f: (@0, 00) — R.

The definition explains a natural production of normal
derivatives. Besides the shape of the definition explains that it
is the most natural definition, and the most efficient one. The
definition for 0 < n < 1 explains with the classical defini-
tions on polynomials (up to a constant).

Several properties of the conformable derivative below
[24, 25]

(@) Dt =t ", VneR,
(b) :D"(fg) = fD"g + &:Df,
(©) D"(fog) = t' " ()f (g(1)),
D'f — f,D"
0.r{L) - 2052
8 8

This derivative is more favorable than others because it is
very easier. In the last few years, there has been several
studies about the conformable case of fractional calculations
[26-30].

The stochastic model of equation (1.1) in the Wick sense
with conformable derivatives can be given in the following
process

DIP+ U(1) O [P— V() & P O DIP

+ DXP =0, (1.2)

where ()’ is the Wick product on the Kondratiev distribution
space (S)_1, U(T ) and V(7 ) are (S)_,-valued functions [18].

In order to obtain the exact solutions of the random FGE
with conformable fractional derivatives, we only consider it in
a white noise environment, that is, we will discuss the Wick-
type stochastic fractional Gardner equation (1.2).

Our aim in this work is to obtain new stochastic soliton
and periodic wave solutions of the Wick-type stochastic FGE
with the aid of conformable derivatives. We use the modified
fractional sub-equation method [31, 32], white noise theory,
and Hermite transform to produce a new set of exact soliton
and periodic wave solutions for the FGE with conformable
derivatives. Moreover, we apply the inverse Hermite trans-
form to obtain stochastic soliton and periodic wave solutions
of the Wick-type stochastic FGE with the aid of conformable

derivatives. Finally, by an application example, we show how
the stochastic solutions can be given as Brownian motion
functional solutions.

The modified fractional sub-equation method is based on
the homogeneous balance principle [33], Jumarie’s modified
Riemann—Liouville derivative and symbolic computation
[34]. By this powerful method the solutions are found in
hyperbolic, trigonometric and rational function form invol-
ving some parameters. The used method has many advan-
tages: it is straight forward, quite efficient, direct and concise.
It provides fast convergence to exact solutions.

2. Exact solutions of equation (1.1)

In this part, we will investigate exact solutions of the Wick-
type stochastic FGE with conformable derivative. Using the
Hermite transform of equation (1.1), we use the deterministic
equation

DOP(se, 7,2) + Ur,2) O (P T, 2)
- ‘7(7, 2) O P56 7,2)%) O DYP (5, T, 2)

+D}*P(s,1,7) =0, (2.1)

where 7 = (g, 22,...) € (CV), is a parameter. To obtain
travelling wave solutions to equation (2.1), we introduce
the transformations U(7, z) = u(r, z), V(r, 2) = v(T, 2),
P, 7,2) =p(oe 7, 2) = p(€( T, 7)) with

€66 7, 2) :k(ﬁ) vof 00D,
« 0 Y

Tlf(

(2.2)

where k, w are arbitrary constants and 6 is a nonzero function
to be determined. Hence, equation (2.2) can be converted to
the following NODE:

dp dp
0-= + U(r, D)k(p — V (1, )p?)—=
w ac + U(T, 2k(p (T z)p)d6

3
+ede o,

T (2.3)

* Consider the solution of equation (2.3) can write as a
series expansion solution as follows

N N
p©) =3 (1, G () + Y Bi(r, G (),

i=0 i=1

where o; (i=0, 1, ..., n), B; (=1, 2, ..., n) are
functions to be found later and G(§ ) satisfies the
fractional Riccati equation as follows:

G'(&) = o + G2(6),

(2.4)

2.5)

where ¢ is an arbitrary constants.
* N is obtained with the aid of balance between the highest
order derivatives and the nonlinear terms in equation (2.3).
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A few special solutions of equation (2.5) are given by [32];
(1) When o < 0

G1(§) = —v—0 tanh, (V=0 &),
G1(€) = — /=5 cotha (+—FE), (2.6)
(2) When o > 0
G3(§) = o tan, (<7 E),
G4(§) = Vo coto(+/TE), 2.7
(3) When o = 0, p = const.
r'da+ o
G =" 2.8
(O = 2.8)

Remark. The generalized trigonometric and hyperbolic
functions are defined as [2];

tan, (¢) = Eali€) — Ea(i€")
‘ (Eq (i€%) 4 Eo(—i€)’
ot (6) — EalE + Ea(~i67)
‘ E,(i€") — E,(—ig®)
tanh, (¢) = a6 = Ea(=€
‘ Ea(€%) + Eo(—€%
cothy (¢) = £a€) + Ea(=€Y)
¢ E(!(goz) - Ea(_fu) '
where E, (&) = XN, 1“(1£+ D is the Mittag—Leffler function.

By balancing p —’ with F

N = 1. We can write the solution of equation (2.3) is given by:
p) = ag + G () + H1G (), (2.9)

where G(€ ) satisfied equation (2.5).

Substituting (2.9) and (2.5) into (2.3), from the coeffi-
cients of G(¢ ), and solving the obtaining system, the fol-
lowing groups of some solutions are obtained:

One of the four groups of values is given by;

o
2V (r, 2)
J6ko
Bl = ——-=
JU(T, 2)V (T, 2)
_ k(U(1, 2) + 8k*V (7, 2)0)
40V (1, 7) '

in equation (2.3), is found

The exact solutions of equation (2.1) are given by;

(1) When o < 0

(o, T,2) = ! - J6ko
piios T 2v(7, 2) ~=oJu(r, 2)v(T, 2)
cotha(«/—_o(k(x—a)
«

KV (1,2)(U(7,2) + 8k*V (1,2)0)
4V (1,2)w
7_1704

dr)),

t
f
0

1 J6ko
2v(T, 2) ~=oJu(r, 2)v(T, 2)

tanha(J—_U(k(ﬁ)
e

p2(%’ T, Z) =

kV(1,2)(U(7,2) + 8k*V (1,2)0)

t Vd
—w [ HIE —dr)),
0 T
(2.10)
(2) When o > 0
6ko
p3(o6 T, 2) = + J6k /T
2v(T, 2) Ju(r, 2)v(r, 2)
cota(ﬁ(k(x—)
«
, kV (7, 0)(U(,2) + 8k*V(7,2)0)
4V (t, 7)™
—=f = dr)),
1 6ko
(o T, 2) = + J6k /T
2v(T, 2) Ju(r, 2)v(7, 2)
tan,, ﬁ(k(x—)
«@
, kV (1, 2)(U(T,2) + 8k2V (7,2)0)
4V (r,2)w
— dr ||, 2.11
wL/(‘) Tlf(y T ( )

(3) When o = 0, p = const.

1
2v(T, 2)

t K@U+ 83V(r,9)0) )(U(T )+8k V(r,2)0) a
wf —2= dr| +p

Ju(r, 2v(t, 2 T'(1 + «)

ps(%a T, Z) -

_ \/—ka[(

(2.12)

3. White noise functional solutions of equation (1.2)

In this section, we apply the inverse Hermite transform and
theorem 4.1.1 in [12] to investigate white noise functional
solutions of equation (1.2). The characteristics of generalized
exponential, trigonometric and hyperbolic functions give that
there exists a bounded open set GCRx Ri,a <oo,b>0
such that the solution p (s, 7, z) of equation (2.1) and all its
fractional derivatives which are involved in equation (2.1) are
uniformly bounded for (s, 7, 2) € G x K,(b), continuous
with respect to (3¢, 7) € G for all z € G x K,(b) and ana-
Iytic with respect to z € K,(b) , for all (s, 7) € G. From
theorem 4.1.1 in [12], there exist P(sz, 7) € (S)_; such that
pGe, 7, 2) = P(3, 7)(2) for all (55, 7, 2) € G x K,(b) and
P (s, T) solves equation(1l.2) in (S)_;. Then, by using the
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inverse Hermite transform for equations (2.10)—(2.12), we
will analyse the white noise functional solutions of
equation (1.2) for U(7 ) > 0, V(1) > 0 as given below.

(D) Exact stochastic hyperbolic solutions:
1
2V (1)

— \/Eka coth
U@ oV

kO V(1,2) O (U(T,2) + 8k2V(7,2)0)
t
4 w
_ wf V(r,2) O dr
0
PZ(%’ T) =

P](%, ’T) =

o)
(0%

)

Tl—a

1
2V (1)

— \/gka tanh
Jum ove |

kO V(r,2) O (U(T,2) + 8k2V (T,2)0)
4V(1,0) 0w
V(r,2) 0 dr

t
—wf 1
0 T

o)
«

3.1

(II) Exact stochastic trigonometric solutions:

1 Jeko

x(l’
P3(s, T) = coto(+/o (k O (—)
’ 2V | JUM OV o
kQV(1,2) O (U(7,2) + 8k*V(1,2)0)
4 4V (1,2)w
w,_/; Tl—u, dT))’
Py(o, ) = ! ko tang|, Vo |,k O (x—)
2v(r)y  JU(T) O V(r) a
kO V(r,2) O(U(T,2) + 8k2V (7,2)0)
! W(r) 0w
wj; g dr
(3.2)
(IIT) Exact stochastic wave solutions:
1
Ps(s¢, 7) =
20 = e
. ; kKOVED 0 UED+ 82V (T.2)0) Oa
J6ko k(x—) - wf L dr| +p
o O T
JUG OV + ) 33)

4. Examples

In this section, we investigate special application example to
represent the availability of our results and to confirm the real
assist of these results. We explain that the solutions of

equation (1.2) are strongly depend on the form of the given
functions U(7 ) and V(7 ). So, for dissimilar forms of U(T )
and V(7 ), we can find dissimilar solutions of equation (1.2)
which come from equations (3.1)—(3.3). We illustrate this by
giving the following examples.

When a = 1

tan,(x) = tan(x), cot,(x) = cot(x),
tanh, (x) = tanh(x),
coth,(x) = coth(x), E,(x) = exp(x).

4.1. Example 1

Suppose U(T) = 0 V(r ) and V(1) = f(1) + p W,, where 9
and p are arbitrary constants, f(7 ) is a limited mensurable
function on R, and W is the Gaussian white noise which is
the time derivative (in the strong sense in (S)_;) of the
Brownian motion B,. The Hermite transform of W, is given

by W) = 2%z fo " W(#)dr [35]. Using the definition of

ﬁ’;(z), equations (3.1)—(3.3) yield the white noise functional
solution of equation (1.2) as follows:

Pi(sc, 7) = ! — \/gka
’ 2(f(1) + pWe)  J=0d (f (1) + pW,)
coth[d—_a(kx _ k@ + 8k9) +48k2”)
; -2
x {fo F@)dr + p(BT - ?)} + c)]
@.1
Py(se. 1) = 1 _ J6ko
| 2(f(1) + pWo) =00 (f(1) + pW,)
tanh(m(kx _ k(a+8k2")
T 7-2
x {f; f(dr + p(BT - 7)} + c]]
(4.2)
1 J6 k&
Py(s 7) = T
D = o o T oG 1 oW
cot(ﬁ(kx — —k(a +48k20)
T 7-2
x {fo F(0)dr + p(BT - 7)} + c]] (4.3)
1 J6 kT
P, ) = n
Ty Te T S T
tan(«/?(kx — 7]((8 +48k20)

x {f;f(t)dr + p(BT _ %2)} + c)] 44)
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1 ﬁka((kx . W%W{j(jf(t)dt n p(BT - 72)} + c) + p)

Ps(se, 7) = — 4.5)
2(f(T) + pW;) Jo(f ) + pWr)
1 J6kT
4.2. Example 2 Py(52, 7) = +
" 2@+ W) =L (f @) + pW)
Suppose U (1) = —%V(T) and V(1) = f(7) + p W,, where p
is arbitrary constants, f(7 ) is a limited mensurable function k(—% + Skza)
on R, and W, is the Gaussian white noise which is the time tan | o[ kx — - 4
derivative (in the strong sense in (S)_;) of the Brownian
motion B,. Using the definition of ﬁ/;(z), equations (3.1)—
. . . X . . )
(3.3) yield the white noise functional solution of ~ { f f@®dr + p(BT — % } +c|l|, 4.9)
0
k(=1 +8k%0) [T 22
J6ko kx—‘f{j; f(t)dt—f—p(BT— 7)} +c|l+p
Ps(z, 7) ! , 4.10)

T2 () + W)

equation (1.1) as follows:

Pi(5 1) = ! - J6ko
' 2(f (1) + pW;) g(f(r) + pW,)
k(-1 + 8k2
coth| /—c|kx — y
r 2
x {fo f(dr + p(BT - %)} +ell @6
Py(5 7) = ! - Joko
2T @ + oW JZ@ - ow)
k(-1 + 8k2
tanh| ~/—o | kx — w
T 7-2
x {fo f@dr + p(BT - 7)} +all,
4.7
Py(og, 1) = 1 N J6k-j&
’ 2(f (1) + pW;) ,%(f(q—) + pW,)
k(-1 + 8k2
cot ,\/E kx — y

X {j: f(®dt + p(BT — %2)} + c)], (4.8)

—L(f() + pWr)
where we have already used the following relation [35]

2)
i
T

cot?(B,) = cot (BT - —

B

tan®(B,) = tan (BT -

|

)
)

S]
B N

Shl

coth®(B,) = coth -

tanh®(B,) = tanh (BT
(BT

S

5. Physical reviews

In this section, we drawn some pictures to investigate the
behavior of the obtained solutions of equation (1.2).

In figure 1, we show the evolutional behaviors of
stochastic equation (2.1) with Brownian motion B, =
random[0, 1]x sinh27 and B, = 1, 2. In (b), we thought the
behaviors of stochastic equation (2.1) without effect of sto-
chastic term W..

In figure 2, we show the evolutional behaviors of sto-
chastic equation (2.1) with Brownian motion B, = B..
Namely it means that the stochastic forcing term gives to the
uncertainty of the wave attitude.

6. Final remarks

In this article, we analysed the time FGE with deterministic
and stochastic types. We obtain some exact solutions by
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P, (x )

Figure 1. The 3D and 2D graphics of the solution (4.1) for Wick-type stochastic time fractional Gardner equation (2.1) (f (7) = sinh 27,
k=05,0=-1,p=1,0 =2, c=0.3) (a) for B, = random[0, 1]x sinh 27, (b) for B, = 1, 2.

1500

1000 .

1P, (<)

500

- -0 10 x

Figure 2. The 3D and 2D graphics of the solution (4.8) for Wick-
type stochastic time fractional Gardner equation (2.1) (f(7) = 1,4,
B, =B,k=-050=1,p=0,c=0).

using the modified fractional sub-equation method, Hermite
transform and white noise theory. We applied inverse Hermite
transform to obtain stochastic hiperbolic and trigonometric
wave solutions for the Wick-model stochastic FGE with
conformable derivatives. Furthermore, we investigate with the
aid of two examples how the stochastic solutions can be
obtained as Brownian motion functional solutions. Besides, if
a = 1, then the stochastic solutions (3.1)—(3.3) give a new set
of stochastic solutions for the Wick-model stochastic Gardner
equation with integer derivatives.

This work explain that the modified fractional sub-
equation method is sufficient to solve the stochastic nonlinear
equations in mathematical physics. This method in this paper
is standard, direct, and computerized method, which lets us to
do confused and boring algebraic calculation. It is shown that
the algorithm can be also applied to other nonlinear stochastic
differential equations in mathematical physics.

We investigated some graphics in section 5. We did not
include some other solutions of presented equation for different
cases. We defer the study of such solutions to future work.
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