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Abstract
The impact of electromagnetic (thermal) radiation on the dispersive low-frequency waves is
examined in a radiative dusty magnetoplasma. For this purpose, a magneto-hydrodynamic model
along with the Maxwell equations is employed to describe the three-component radiative dusty
plasma that contains inertialess electrons, dynamical positive ions and negatively charged static dust
particulates. The behavior of the electrostatic and electromagnetic waves significantly changes in a
plasma medium when a radiation pressure is taken into consideration, as compared to the waves in
vacuum. After seeking a plane wave solution, a general dispersion relation is obtained to investigate
different limiting cases of the low-frequency modes propagating parallel, perpendicular and oblique to
the external magnetic field direction both analytically and numerically. The calculations reveal that
the usual thermal and acoustic speeds (cT, ca) do not remain constant even if the temperature is kept
constant, because of the radiationpressure ae( ˜ ) which strongly depends on the equilibrium number
density as well. The present results may prove a useful understanding for the new features of the
dispersive dust-ion-acoustic and compressional Alfven waves in astrophysical dusty magnetoplasmas.
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1. Introduction

The Alfvén wave models can be utilized as an important tools
[1]to describe the upper solar atmosphere heating. A necessary
element for such models is an effective and permanently acting
sourcethat not only excites these waves but also generates the
waves throughout solar atmosphere. The existence of high and
low amplitude drift and kinetic Alfven oscillations near the Earth
plasma surroundings has been confirmed by many spacecraft
observations [2–4]. Specifically, the waves recorded by Cluster
[5] have shown the spatial scalesof the order of ion Larmor
radius with a wave impedance equal to local Alfven velocity.
The Alfven and soundspeeds can substantially vary in an
inhomogenious magnetosphere. In a linear magneto-hydro-
magnetic limit, the hydrodynamic waves are used to model the
sudden magnetospheric perturbations [6]. However,the com-
pressional Alfvén waves(CAWs) that are the low-frequency
waves in comparison with the ion-cyclotron (wc) and upper-

hybrid waves (ωUH) i.e. ω w< c, ωUH, propagating in a magne-
tosphere across the magnetic shells to act as a source for gen-
eration of transverse waves [7] and ionospheric dissipation [8].
The dispersion properties of the low-frequency Alfvén and
magnetosonic waves [9, 10] have successfully been discussed in
a magnetized dusty plasma within the framework of magneto-
hydrodynamic theory. Authora in [11] considered the oblique
propagation of shear Alfven-like waves in self-gravitating,
weakly ionized inhomogeneous dusty magnetoplasmas. and
revealed the unstable waves with a wavelength (wave period) of
the order 10AU (30 000 years) owing to the dust self-gravita-
tional effects. Subsequently, Amin [12] carried out both analy-
tical and numerical analyzes to examine the linear and nonlinear
compressional Alfven waves in an electron-hole semiconductor
plasmas and showed unique features involving the amplitude
modulation and modulation instability. Influence of plasma
parameters on the low frequency ion cyclotron and ion acoustic
waves are investigated in [13]. More recently low frequency
modes observed in lunar wake are focused in [14], kinetic
Alfven waves excited by ion beam in the Earth’s
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magnetosphere was studied in [15] to investigate the influence of
plasma parameters on growth of low frequency waves, further it
was shown in [16] that plasma parameters have significant
signature on the helium cyclotron instability.

In the past, thermal radiation or black body radiation has
received a considerable attention due to its crucial relevance in
astronomical/astrophysical objects and stars. Specifically, stel-
lar luminosity can be explained with the utilization of radiation
theory. It has been found [17] that radiation energy and pressure
not only play an important role in internal energy and pressure
in very high-temperature tenuous plasmas but also affect sig-
nificantly the collective waves and instabilities in plasmas. In
this context, electromagneto-hydrodynamic equations have
been developed for investigating relativistic plasmas and photon
gas [18] to assume photons in thermal equilibrium with plasma.
The theory of thermal radiation has mostly been discussed in
the past [19–21] for one-component systems. However, ori-
ginally, Planck has proposed the radiation to be a collection of
photons (known as black body radiation) with a dispersion
relation in vacuum as ω=ck, where ω(k) represents the fre-
quency (wave number) of the radiation and c is the speed of
light in vacuum. In particular, thermodynamics [22] due to
electromagnetic radiations gets more influence in plasma
medium rather than in vacuum. Considering a charged plane
surface of a radiative dusty plasma [17], the impact of radiation
pressure was examined on the Jeans instability [23], hence was
sown in two analysis [17, 23] that radiation energy and pressure
significantly affect the collective modes and associated
instabilities in plasmas, thus playing a crucial role in the internal
energy and pressure in a very high-temperature tenuous plasma.
More recently [24], the radiation pressure corrections were
made to dense radiative dusty plasma to show that the nonlinear
properties of the circularly polarized dust Alfven waves.

It well-known that an electron executes a quantum jump
in the electric field of ion, may emit a photon or it may also
absorb a photon, thus attaining additional kinetic energy. The
expression for the pressure of high density and low temper-
ature plasma i.e. w > > T 1ps s [22], involving the electro-
magnetic radiation in a plasma medium, can be expressed in
terms of radiation energy density (uRs), as

= º


p u
T b

c
3

0.202
1Rs Rs

s s
4 3 2

3( )
( )

with w= b T .s ps s Here the subscript ‘s’ essentially stands for
the sth plasma species (s equals e for electrons and i for ions).
The plasma oscillation frequency, thermal temperature (in
energy units) and scaled Planck constant are denoted by
w p= n q m4 ,ps s s s0

2 1 2[ ( ) ] Ts and ÿ, respectively, Eliminating the
parameter bs from equation (1), we readily arrives at the fol-
lowing relation
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It is pertinent to mention that radiation pressure due to plasma
particles (via equation (1)) is to be taken into account in the
momentum equation besides the usual thermal pressure
[23] =p n T .Ts s s( )

In this work, we consider a three-component dusty
magnetoplasmato account for electron-ion radiation pres-
sures apart from their thermal pressures. Utilizing the line-
arized magnetohydrodynamical (MHD) model [25] along
with Maxwell equations, we shall obtain a generalized dis-
persion relation for the electromagnetic waves and aim to
analyze different limiting cases of the modes propagating
parallel, perpendicular, and oblique to the external magnetic
field direction both analytically and numerically.

The layout of manuscript is organized as follows: In
section 2, we solve the MHD model equations along with the
Maxwell equations and derive a general dispersion relation
for electromagnetic waves with electron and ion radiation
pressures. It is found that the angular frequencies and wave
phase speeds associated with the parallel, perpendicular, and
obliquely propagating modes are significantly modified by the
radiation pressures. Section 3 illustrates parametric analyzes
and numerical findings involving the electrostatic dust-ion-
acoustic waves (DIAWs) and radiative compressional Alfven
waves (RCAWs) in radiative dusty magnetoplasmas., while
section 4 summarizes the main results.

2. Governing plasma model and formalism

We consider the compressional Alfvén waves that propagate in
the y–z plane with wave vector =k k k0, ,y z( ) in a magnetized
dusty plasma, whose constituents are the inertialess electrons,
inertial ions, and static dust grains. An external magnetic field
having the strength B0 is applied along the z-axis with magnetic
field perturbations B1=(Bx, By,0) in x–y plane. The quasi-
neutrality at equilibrium imposes the condition of the form

= +n n Z n ,i e d d0 0 0 0 where Zd0 being the dust charging state, e,
i, and d stand for the electron, ion and dust grain species,
respectively. For our investigation, we assume here that the
dusty grains are fixed in the background and appear only
through quasi-neutrality, the equation of motion for a radiative
plasma is given by

å

¶
¶
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Here Rs is the dissipative or frictional force term repre-
senting the momentum gained by the electron fluid due to col-
lisions with ions if = º -m n vR P u us ei e e ei i e[ ( )] and the
momentum gained by the ion fluid due to collisions with elec-
trons [23] if = º -m n vR P u u ,s ie i i ie e i[ ( )] vei vie( ) stands for
the electron-ion (ion-electron) collisional frequency and u ue i( )
denotes the electron (ion) fluid velocity. It is assumed that col-
lisions among the electron and ion species are so frequent that
collisional frequencies become dominant ¶ v v, .t ei ie( ) How-
ever, in a situation, in which collisions can only be neglected
when the frictional forces are balanced by the other terms in
equation (3) and the fluid velocities of plasma species are equal,
i.e. ui » u .e Consequently, the conservation of momenta then
vanish, i.e.å =R 0s s , as can be seen in [26]. Hence the plasma
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is characterized by a well-known density relation [27] as

=
n

n

n

n
. 4e

e

i

i0 0
( )

Also in equation (3), pTs (pRs) is the usual thermal pressure (the
radiation pressure) for the electron and ion species. It is well-
known [23] that for ideal gas having constant specific heat, the
entropy remains conserved. As the model in consideration is
comprised of three subsystems, i.e. the electrons, ions and dust
grains, so the entropy of each subsystem must be conserved. As
a consequence, the Poisson’s adiabatic relation between the
number density (ns) and temperature (Ts) for sth species with an
adiabatic expansion or compression, can be expressed, as
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where =Cs
T

n
s

s

0

0
2 3( ) is a constant with Ts0 and ns0

2 3 as the equi-

librium temperature and number density of species s. Multi-
plying and dividing the left and right hand sides in equation (5)
by ns and n ,s0 respectively, we then immediately obtain a rela-
tion for thermal pressure as given by

=p p
n

n
, 6Ts s

s
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⎞
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where =p n Ts s s0 0 0( ) is the equilibrium pressure of the plasma
species. Similarly, substituting the expression of Ts from
equation (5) into equation (2), we obtain the radiation pressure of
plasma species
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In order to consider a set of magnetohydrodynamic equations in
a radiative dusty plasma, we have to linearize the continuity
equations for ions and electrons, respectively, as

¶
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In the present model, the dust particulates are assumed to be
static, whereas we ignore the electron inertia in comparison with
dynamical ions, and into account the conservation of momen-
tum, i.e. å =R 0s s , equation (3) looks for inertialess electrons
and inertial ions with thermal and radiation pressures becomes,
respectively, as
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where the subscript 0 denotes the equilibrium values. We shall
also make use of the following Maxwell’s equations:

¶
¶
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Here c represents the speed of light, e is the charge of electrons,
E1(B1) is the perturbed electric (magnetic) field, and ue1(ui1) is the
electron (ion) fluid velocity. Note that the displacement current
term in equation (12) is ignored due to the fact that we have
focused on the waves, whose phase speed is much smaller than
the speed of light. Calculating = - ´

p
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from equation (13) and putting it into equation (10), then by
using equation (4) we obtain
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Substituting equation (14) into equation (11) and utilizing the
equilibrium charge neutrality condition = - 1Z n

n
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eventually arrive at
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where a = a Te e3 0
5 2e˜ and a = a Ti i3 0

5 2i˜ . In deriving equation (14)
we have make use of equation (4) i.e. =n

n

n

n
e

e

i

i

1

0

1

0
. Here

wW = Z n nR ci d d e0 0 0( ) is the Rao cut-off frequency with ion-
cyclotron frequency w =eB m cci i0( ) [28]. We have noticed that
the effect of dust is associated to the finite cut-off frequency at the
infinite wavelength ( =k 0) limit and the ion drift velocity in the
compressional magnetic field perturbation is inversely propor-
tional to the dust charge density. It may be important to mention
that Rao cut-off frequency was first time introduced by Rao in
[10], representing the boundary in a system’s frequency response
at which the index of refraction goes to zero or k=0. It may be
noticed that both the ion-acoustic and thermal speeds, i.e. ca and
cT are strongly modified by the radiation pressure effects. Now
substituting equation (14) into equation (12) and using identity
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 ´  =f 0( ) , we are left with an equation
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thermal and radiation pressures. Now taking the time derivative
of equation (18) on both sides and also eliminating the term ¶
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by using (i.e. equation (18)) the back substitution as well as
taking divergence of ui⊥, we finally arrive at the following
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Equation (21) can be simplified by utilizing equation (20) and
identity f ´  =^ ^z. 0( ˆ ) , here f represents the scalar func-
tion
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Here the Alfvén speed is given by
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Making use of (19) and (21) into (23) and multiplying the

resultant equation by + W¶
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After seeking the plane wave solution in equations (22) and (24),
and solving them together, a general dispersion relation for low-
frequency radiative Alfven waves is obtained in a magnetized

radiative dusty plasma, as
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It is important to mention here that equation (25) is significantly
modified by the thermal as well as radiation pressures and static
dust particulates. For a simple electron-ion plasma, we assume
W  n n0,R i e0 0 in equation (25), as a consequence we are
left with an equation
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is the Alfven speed, which physically

shows that both wave and particles are moving together however,
at high field or low density, the velocity of the Alfvén wave
approaches the speed of light, and the Alfvén wave may be an
ordinary electromagnetic wave, = +V c ca Teff

2 2 1 2¯ ( ) is the
effective speeds in an electron-ion plasma. Equation (26) repre-
sents a quadratic equation having an analytic solution of the form
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Next, we now investigate the dispersive properties of radiative
compressional Alfven waves for three particular cases, the par-
allel, perpendicular, and oblique propagations. For this purpose,
let us substitute q=k k cosz and q=k̂ k sin to re-write
equation (25) in following form
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This is the 6th degree polynomial equation, representing a
modified general dispersion for RCAWs in radiative dusty
plasma.

2.1. Parallel Propagation (θ=0)

To analyze equation (28) analytically, we first consider the
parallel propagation by assuming θ=0 and obtain from
equation (28)

w w- W - =k V 0 29R
2 2 2 2 2
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2( ) ( ) ( )

with possible solutions as
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n
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Since the positive roots are the physical roots in contrast to
negative ones, therefore only the positive real frequencies in
equation (30) represent the cut-off frequency and a modified
dust-ion acoustic waves, respectively. For null dust number
density, we have ΩR=0, n ni e0 0 and as a result, one can
easily obtain an ion-acoustic wave that is significantly mod-
ified with electron and ion radiation pressures. Moreover, for
numerical analysis, we normalize equation (30) in the
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presence of dust component using the scaled parameters,
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2.2. Perpendicular propagation ðθ ¼ π
2 Þ

In case of perpendicular propagation, we choose an angle
θ=π/2 in equation (28) to obtain the following equation

w w- W + +

+ W W + + =

k V k V

k V k V

2

0 32

R A eff

R R A eff

4 2 2 2 2 2 2

2 2 2 2 2 2

( )

( ) ( )

with solutions

w = W + +


W + +

- W W + +

k V k V

k V k V

k V k V

1

2
2

1

2

2

4
. 33

R A

R A

R R A

2 2 2 2 2
eff
2

2 2 2 2
eff
2 2

2 2 2 2 2
eff
2

1 2
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

( )

( )
( )

( )

This is the dispersion relation of the radiative compressional
Alfven waves in cold dusty magnetoplasmas. Here + and −
signs indicate the fast and slow modes. Equation (33) can be
expressed in normalized form as
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2.3. Oblique propagation

In this case, if we ignore the dust component, i.e.W  0R and
n ne i0 0 . Then equation (28) may be simplified, as

w w q q q- + + =k V k V k V Vsin sin cos 0.
35
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This is the dispersion equation of the radiative compressional
Alfven waves in a dust-free magnetoplasma, which accounts
for thermal and radiation pressures. The solutions of (35) can
be expressed, as
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In a normalized form, the above equation (36) leads to
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3. Parametric analysis and discussion

Numerical illustration helps us in explaining the electro-
magnetic/electrostatic waves with more reliable findings, con-
sistent to an application area. Thus, the present section solves
numerically equations (31), (34) and (37) to examine the impact
of thermal and radiation pressures on the wave speed and
associated frequencies of radiative compressional Alfven waves
(RCAWs). Here RCAWs waves are propagating parallel,
perpendicular and obliquely to the external magnetic field. For
this purpose, as an example, we have chosen typical parameters
from dense astrophysical environments [29, 30] with typical
density and temperature as = ´n 1.001i0 = ´- n10 cm , 1e

31 3
0

=- -n10 cm , 10d
31 3

0
4 ni0, = -Zd

n n

n0
i e

d

0 0

0
, = ´T T 9e i (

- ´10 2 10 K.8 9)
The substitution of the above values along with = ´T 9e0

10 K8 , = ´T 1 10 Ki0
7 , = ´B G1 100

6 and the wave
number k=109 cm−1 in equation (31); one can easily compute
other parameters like the usual ion-thermal speed ~ ´V 2.3Ti

-10 cm s ,7 1 the electron plasma frequency ωpe=1.7×1020 s−1,
the ion plasma frequency w = ´ -4.1 10 s ,pi

18 1 the ion-thermal

length l = ~ ´
w

-5.63 10 cmTi
V 12Ti

pi
( ) , the equilibrium electron-

thermal pressure = ´ -p 1.24 10 dyne cme0
24 2, the equilibrium

ion-thermal pressure = ´ -p 1.38 10 dyne cmi0
22 2 with elec-

tron-radiation pressure a = = ´a -T 9.4 10 dyne cme e3 0
5 2 20 2e˜ ,

ion-radiation pressure a = = ´a -T 4.4 10 dyne cmi i3 0
5 2 13 2i˜

and thermal speed = ´ -c 3.711 13 10 cm sT
7 1. It is pertinent

here to note that radiation pressure due to electrons is quite large
as compared to the radiation pressure of ions (a > >e˜ ai˜ ).
Therefore, the ion-radiation pressure can be comparatively
ignored in the present analysis. For taking into account the par-
allel propagation with = =

w
k 0.02,kVTi

pi

˜( ) the modifiedr444

corresponding frequency and acoustic speed slightly get reduced

in magnitude to w w= 0.300 15 pi and = =ca
p

m n

5

3

1 2
e

i e

0

0( )
´ -3.520 68 10 cm s .8 1 Hence, the radiation pressure not only

modifies the phase speed but also enhances the angular frequency
of the longitudinal DIAWs, as displayed in figure 1. It may be
observed that modifications appear more prominent at shorter
wavelengths, accounting for radiation pressure effect.

In order to examine the impact ofelectron density on
radiation pressure a ,e( ˜ ) we may fix the electron temperature

= ´T 9 10 Ke0
8 and = ´ -n 1 10 cme0

31 3 to find
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a = ´ -9.4 10 dyne cm .e
20 2˜ And a reduction occurs in

radiation pressure a = ´ -1.6 10 dyne cm ,e
20 2˜ when the

density = ´ -n 1 10 cme0
30 3 is reduced. So, the parametric

analysis clearly show that the variation of radiation pressure
ae˜ via either number density or temperature modify the
angular frequency w̃ of RCAWs effectively.

In particular, figure 2 displays the variation of the
radiation pressure ae( ˜ ) on the normalized angular frequency
of the RCAWs as a function of the normalized radiative
Alfvén speed. Note that the acoustic speed ca as well as the
effective speed (Veff

2 ) go on increasing as long as the radiation
pressure increases, thus leading to the enhancement of the
frequency and phase speed of the RCAWs. Similarly, the
normalized angular frequency of the compressional mode (as
given by equation (33)) is represented against the normalized
radiative Alfvén speed for different dust concentrationin
figure 3. It shows that an increase in the dust number density
causes to increase the normalized angular frequency of the
RCAWs through the cut-off dust frequency ΩR.

To examine how the thermal radiation speed alters the fre-
quency of obliquely propagating compressional Alfven waves in
a radiative dusty plasma, we parametrically analyze equation (37)
with different angles of propagation. For q = p

5
and taking

= ´ =T V V9 10 K, 10e A Ti0
8 ¯ and k̂̃ =0.005 fixed, the effective

speed becomes = + = ´ -V c 3.541 53 10 cm sa
p

m neff
2 5

3

1 2
8 1i

i i

0

0( )¯

and angular frequency of the RCAWs ω=0.087 490 4ωpi
with modified acoustic speed ´ -3.522 03 10 cm s .8 1 Whereas
the effective speed in the absence of radiation yields =Veff

´ -3.540 17 10 cm s8 1 with a corresponding angular frequency
w w= 0.301 811 pi. However, for changing q = p

3
, we trace the

angular frequency w w= 0.095 633 .pi The parametric analysis
further elaborates that as we increase the angles of propagation,
the corresponding angular frequency also increases. This result is

also evident from the numerical plot in figure 4. For small values
of the normalized Alfven speed, the angle of propagation has not
very prominent impact on the frequency of the RCAWs, but it
affects quite significantly at large normalized Alfven speeds. So
we have shown via numerical analysis that for in the crust of
white dwarf, having Ts>1.5×10

7 K and > -n 10 m ,s
32 3

the radiation pressure become much more important inspite of the
fact that the radiation pressure is only a few thousandths of the
gas pressure, since the net effect is small.

4. Summary

To sum up, we have studied the dispersive properties of the
electromagnetic/electrostatic waves in a radiative dusty magne-
toplasma that essentially accounts for thermal and radiation
pressures of the plasma species. After solving the one-fluid
adiabatic MHD model along with the Maxwell equations and
seeking a plane wave solution to all perturbed quantities, we have
obtained a modified general dispersion relation for the

Figure 1. Normalized angular frequency w = w
wpi( )˜ of DIAWs (as given

by equation (31)) is plotted against the normalized wave number
=

w
k kVTi

pi

˜( ) for different electron radiation pressure values, a = ´9.5e˜
-10 dyne cm20 2 (red dashed curve),a = ´ -1.2 10 dyne cme

21 2˜ (blue
thin curve), and a = ´ -1.9 10 dyne cme

21 2˜ (green thick curve).
These values correspond to the electron temperatures = ´T 9 10 K,e0

8

1×109 K and 1.2×109 K, respectively, with other fixed parameters,
as = -n 10 cm ,e0

31 3 = ´ -n 1.001 10 cm ,i0
31 3 = ´B 1 10 G,0

6

and =T 10 K.i0
7

Figure 2. Normalized angular frequency w̃ of the compressional
mode(as given by equation (34)) is plotted against the normalized
Alfvén speed V

V
A

Ti
( ) for varying the electron radiation pressure through

ae˜ , i.e. a = ´ -9.5 10 dyne cme
20 2˜ (red dashed curve), a = ´1.2e˜

-10 dyne cm21 2 (blue thin curve), and a = ´ -1.9 10 dyne cme
21 2˜

(green thick curve) with =^
-k 10 cm .9 1

Figure 3. Normalized frequency w̃ of the RCAWs(as given by
equation (34)) is shown as function of the normalized Alfvén speed V

V
A

Ti
( )

for different dust number densities, = -n 10d0
5 ni0 (red dashed curve),

= -n 10d0
2 ni0 (blue thin curve), = -n 10d0

1 ni0 (green thick curve).
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electromagnetic/electrostatic waves and analyzed different lim-
iting cases for the modes propagating parallel, perpendicular and
oblique to the external magnetic field direction both analytically
and numerically. It is revealed that the usual thermal and acoustic
speeds (cT, ca) have not only strong dependence on temperature
but also on the equilibrium number density because of the
radiationpressure a .e( ˜ ) The main findings stem from the general
dispersion relation, showing the influence of the radiation pres-
sure on the dispersive low-frequency dust-ion-acoustic and
compressional Alfven waves in dusty magnetoplasmas. Even for
a dust-free plasma, we have assumed W = 0,R that implies that
n ni e0 0 and as a result, one can easily obtain an ion-acoustic
wave modified significantly with the electron and ion radiation
pressures. Similarly, the dispersion relation for the fast and slow
compressional Alfven waves are examined for thermal and
radiation pressure effects in dusty magnetoplasmas. Thus, the
wave frequencies and associated phase speeds are found to be
affected by thermal radiation pressure. However, the variation in
the angle of propagation mitigates these frequencies and phase
speeds of the plasma waves. The present results are important for
understanding the new features of the dispersive electrostatic/
electromagnetic waves in dusty astrophysical dense plasmas.
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